Veronese, Guido; Pepe, Alessandro
2015-06-18
The present study aims to test whether sense of coherence (SOC) acts as a determinant of positive psychological functioning in aid workers directly exposed to warfare. Specifically, we performed multiple regression analyses to compare different groups of aid workers in terms of the effects of SOC and cumulative trauma on their psychological distress. Palestinian helpers, both professional and non-professional (N = 159) completed three self-reported measures: the General Health questionnaire, Sense of Coherence Scale, and Impact of Events Scale. The findings bear out the predictive power of SOC and posttraumatic stress disorder (PTSD) in relation to mental health across different professional groups. In particular, volunteers without a specific professional profile, psychiatrists, medical doctors, and less markedly counselors seemed to protect their mental health through a SOC. Clinical implications and recommendations for training and supervision are discussed. © The Author(s) 2015.
Mc Gee, Shauna L; Höltge, Jan; Maercker, Andreas; Thoma, Myriam V
2017-08-11
The present study evaluated the revised Sense of Coherence (SOC-R) scale in a sample of older adults, using an extended range of psychological concepts. It further examined the psychometric properties of the revised scale and tested the theoretical assumptions underpinning the SOC-R concept. The SOC-R scale was evaluated in 268 Swiss older adults (mean age = 66.9 years), including n = 15 heavily traumatized former indentured child labourers. Standardised questionnaires collected information on positive and negative life experiences, resources, current health, and well-being. Results: Confirmatory Factor Analysis indicated good model fit for a second-order three-factor model of SOC-R with the factors manageability, balance, and reflection. Satisfactory convergent and discriminant correlations were shown with related psychological concepts, including neuroticism (r = -.32, p < .01), optimism (r = .31, p < .01), and general self-efficacy (r = .49, p < .01). SOC-R was not observed to differ by age group. Moderation analyses indicated that SOC-R moderated the relationship between certain early-life adversities and mental health. The study provides support for the psychometric properties and theoretical assumptions of SOC-R and suggests that SOC-R is a valid and reliable measure suitable for use with older adults. Future studies should employ longitudinal designs to examine the stability of SOC-R.
Smith, Peter M; Breslin, F Curtis; Beaton, Dorcas E
2003-09-01
Much debate exists about the stability of the sense of coherence measure. This study examined changes in sense of coherence (SOC), and the variables associated with these changes, over a 4-year period, in a representative sample of the Canadian labour force (n=6,790). Two methods were used to assess change in SOC: (1) Change outside of that which could be considered as indistinguishable from measurement error, and (2) Change of more than 10%, which was originally proposed by Antonovksy, the scales designer. Over the study period, 35.4% of the population reported changes in SOC outside the range we consider possible due to measurement error, with 58% reporting change greater than 10%. Unskilled occupations were associated with declines in SOC, with household income demonstrating a curvilinear relationship with decline in SOC in the female population only. None of the variables used predicted increases in SOC. Given the degree of change in SOC, and the representativeness of the study sample, we suggest that SOC has a large state component. Given this lack of stability, we recommend caution if using the SOC to represent a stable global orientation within a causal context.
Validity of Antonovsky's sense of coherence scale: a systematic review
Eriksson, M.; Lindstrom, B.
2005-01-01
Study objective: The aim of this paper is to systematically review and analyse the validity and reliability of Antonovsky's life orientation questionnaire/sense of coherence scale (SOC). Design: The study is descriptive and analytical with a systematic integration of the contemporary knowledge base on the salutogenic research published 1992–2003. The review includes 458 scientific publications and 13 doctoral theses. Setting: Worldwide, based on postgraduate scientific publications in eight authorised databases, doctoral theses, and available books. Main results: The SOC questionnaire has been used in at least 33 languages in 32 countries with at least 15 different versions of the questionnaire. In 124 studies using SOC-29 the Cronbach's α ranges from 0.70 to 0.95. The α values in 127 studies using SOC-13 range from 0.70 to 0.92, and in 60 studies using a modified SOC scale range from 0.35 to 0.91. Test-retest correlation show stability and range from 0.69 to 0.78 (1 year), 0.64 (3 years), 0.42 to 0.45 (4 years), 0.59 to 0.67 (5 years) to 0.54 (10 years). The means of SOC-29 range 100.50 (SD 28.50) to 164.50 (SD 17.10) points and SOC-13 from 35.39 (SD 0.10) to 77.60 (SD 13.80) points. After 10 years SOC seems to be comparatively stable, but not as stable as Antonovsky initially assumed. SOC tends to increase with age. The factorial structure of SOC seems rather to be multidimensional than unidimensional. SOC predicts a positive outcome in a long term perspective, although there are divergent findings reported. The SOC scale seems to be a reliable, valid, and cross culturally applicable instrument measuring how people manage stressful situations and stay well. PMID:15911640
Sammallahti, P R; Holi, M J; Komulainen, E J; Aalberg, V A
1996-09-01
Antonovsky's Sense of Coherence Scale (SOC) and Bond's Defense Style Questionnaire (DSQ) were compared in a sample of 334 community controls and 122 psychiatric outpatients. The major question was, whether the two coping inventories with different theoretical backgrounds-stress research vs. psycho-analysis-tap similar phenomena. The affinity of the two coping measures was evident: in multiple regression analysis defenses explained 68% of the variance in sense of coherence. Not surprisingly, the SOC scale-emerging out of the salutogenic orientation-showed more expertise in measuring how people manage when they do well, whereas the DSQ-with its theoretical roots deep in psychopathology-was most sensitive to how people manage when they do rather poorly.
Benz, Thomas; Angst, Felix; Lehmann, Susanne; Aeschlimann, André
2013-05-04
According to Antonovsky's salutogenic concept, a strong sense of coherence is associated with physical and psychological health. The goal of this study was to analyze the association of Antonovsky's sense of coherence with physical and psychosocial health components in patients with hip and knee osteoarthritis before and after in- and outpatient rehabilitation. Prospective cohort study with 335 patients, 136 (41%) with hip and 199 (59%) with knee osteoarthritis. The outcome was measured by Short Form-36 (SF-36), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the Sense of Coherence (SOC-13). Baseline scores of the SF-36 and WOMAC scales and the observed effect sizes after rehabilitation were correlated with the baseline SOC-13. These correlations of the SF-36 scales were compared to the Factor Score Coefficients for the Mental Component Summary of SF-36, which quantify the factor load on the psychosocial dimension. Predictive impact of the baseline SOC-13 for the SF-36 and WOMAC scales (baseline scores and effect sizes) was then determined by multivariate linear regression controlled for possible confounders. At baseline, the SOC-13 correlated with the WOMAC scores between r = 0.18 (stiffness) and r = 0.25 (pain) and with the SF-36 scores between r = 0.10 (physical functioning) and r = 0.53 (mental health). The correlation of these SF-36 correlation coefficients to the Factor Score Coefficient of the SF-36 Mental Component Summary was r = 0.95. The correlations for the effect sizes (baseline → discharge) with the baseline SOC-13 global score were all negative and varied between r = 0.00 (physical functioning) and r = -0.19 (social functioning). In the multivariate linear regression model, the explained variance of the SF-36 scores by the baseline SOC-13 increased continuously from physical to psychosocial health dimensions (from 12.9% to 29.8%). This gradient was consistently observed for both the baseline scores and the effect sizes. The results of the WOMAC were consistent with the physical health scales of SF-36. The sense of coherence was associated with psychosocial health dimensions but hardly with physical health. The higher the load of a scale on the psychosocial dimension the higher was its correlation to the sense of coherence. This is in contrast to the idea of Antonovsky who predicted high associations with both mental and physical health.
Lu, X Y; Dai, J M; Wu, N; Shu, C; Gao, J L; Fu, H
2016-10-20
Objective: To investigate understand the current status of the sense of coherence and occupational stress in modern service workers, and to analyze the association between occupational stress and the sense of coherence. Methods: From March to April, 2016, 834 modern service workers from 3 companies in Shanghai, China (in air transportation industry, marketing industry, and travel industry) were surveyed by non-ran-dom sampling. The self-completion questionnaires were filled out anonymously given the informed consent of the workers. The occupational stress questionnaire was used to evaluate occupational stress, and the Chinese version of the Sense of Coherence Scale (SOC-13) was used to assess the mental health. Results: The mean score for the sense of coherence of the respondents was 61.54±10.46, and 50.1% of them were self-rated as having occupational stress. There were significant differences in SOC score between groups with different ages, marital status, positions, lengths of service, family per capita monthly income, and weekly work hours ( P <0.05). The occupational stress score differed significantly across groups with different marital status, lengths of service, and weekly work hours ( P <0.05). The scores for working autonomy, social support, and occupational stress differed significantly between groups with different SOC levels ( P< 0.05). There were significant differences in SOC score and the distribution of low-SOC respondents between groups with different levels of working autonomy, social support, and occupational stress. High SOC is a protective factor for occupational stress ( OR =0.39, 95% CI 0.26~ 0.59). Conclusion: Modern service workers in Shanghai have high SOC and moderate occupational stress. Therefore, improving SOC may reduce occupational stress.
Drageset, Jorunn; Espehaug, Birgitte; Kirkevold, Marit
2012-04-01
To analyse the relationships between depressive symptoms, sense of coherence and emotional and social loneliness among nursing home residents without cognitive impairment. Depression symptoms and loneliness are major health problems for older people. Sense of coherence, which is based on a salutogenic theoretical framework, is a strong determinant of positive health and successful coping and is associated with well-being and depression among older people. Few studies have explored the relationships between depression symptoms, sense of coherence and emotional and social loneliness among nursing home residents. A cross-sectional, descriptive, correlational design. Sample - 227 residents 65-102 years old from 30 nursing home residing ≥ six months. All had a Clinical Dementia Rating ≤ 0·5 and could converse. Residents were interviewed using the Social Provisions Scale, Geriatric Depression Scale and Sense of Coherence Scale (SOC-13). Possible relationships between these were analysed, controlled for sex, age, marital status, education, length of stay and comorbidity. Before adjustment, Geriatric Depression Scale was associated with attachment and social integration. After adjustment, Geriatric Depression Scale was still associated with attachment and social integration. Further adjusting for Sense of Coherence Scale reduced the association between Geriatric Depression Scale and attachment and even more so for the association between Geriatric Depression Scale and social integration. Sense of coherence and Geriatric Depression Scale did not interact, and SOC-13 was associated with attachment and social integration. Depression symptoms contribute to emotional and social loneliness. Independent of sense of coherence, depression symptoms are associated with emotional loneliness, sense of coherence influence emotional and social loneliness. Clinical nurses should observe residents closely for signs of depression and loneliness and support their sense of coherence to reduce emotional and social loneliness. © 2012 Blackwell Publishing Ltd.
Jacobsson, L J; Westerberg, M; Malec, J F; Lexell, J
2011-06-01
The objective of the study was to assess sense of coherence (SOC) many years after traumatic brain injury (TBI) and explore the relationship between SOC and self-rated life satisfaction (LS) as well as measures of functioning and disability, sex, age at injury, injury severity and time post-injury. Sixty-six individuals (aged 18-65 years) who were 6-15 years post-injury were interviewed. Data on SOC (SOC-13 item scale), measures of functioning and disability (Mayo-Portland Adaptability Inventory, MPAI-4), LS (Satisfaction with Life Scale, SWLS), and sex, age at injury, injury severity and time post-injury were analysed with hierarchical multiple regression analyses. The results showed that SOC in the study group did not differ from the general population and was strongly associated with LS. Regression analyses revealed that emotional factors, social participation, SOC, and time since injury, were more influential than sex, age at injury, and injury severity in explaining LS. It was concluded that SOC in this group of individuals with TBI who were many years post-injury was similar to nondisabled individuals. SOC, together with emotional factors, social participation and injury-related factors, were determinants of LS. These results confirm that LS after TBI is a complex phenomenon dependent on several factors that are important targets for rehabilitation professionals.
Imaging mouse cerebellum with serial optical coherence scanner (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Chao J.; Williams, Kristen; Orr, Harry; Taner, Akkin
2017-02-01
We present the serial optical coherence scanner (SOCS), which consists of a polarization sensitive optical coherence tomography and a vibratome with associated controls for serial imaging, to visualize the cerebellum and adjacent brainstem of mouse. The cerebellar cortical layers and white matter are distinguished by using intrinsic optical contrasts. Images from serial scans reveal the large-scale anatomy in detail and map the nerve fiber pathways in the cerebellum and adjacent brainstem. The optical system, which has 5.5 μm axial resolution, utilizes a scan lens or a water-immersion microscope objective resulting in 10 μm or 4 μm lateral resolution, respectively. The large-scale brain imaging at high resolution requires an efficient way to collect large datasets. It is important to improve the SOCS system to deal with large-scale and large number of samples in a reasonable time. The imaging and slicing procedure for a section took about 4 minutes due to a low speed of the vibratome blade to maintain slicing quality. SOCS has potential to investigate pathological changes and monitor the effects of therapeutic drugs in cerebellar diseases such as spinocerebellar ataxia 1 (SCA1). The SCA1 is a neurodegenerative disease characterized by atrophy and eventual loss of Purkinje cells from the cerebellar cortex, and the optical contrasts provided by SOCS is being evaluated for biomarkers of the disease.
Hosokawa, Rikuya; Katsura, Toshiki; Shizawa, Miho
2017-01-01
We examined the relationships between mothers' sense of coherence (SOC) and their child's social skills development among preschool children, and how this relationship is mediated by mother's childrearing style. Mothers of 1341 Japanese children, aged 4-5 years, completed a self-report questionnaire on their SOC and childrearing style. The children's teachers evaluated their social skills using the social skills scale (SSS), which comprises three factors: cooperation, self-control, and assertion. Path analyses revealed that the mother's childrearing mediated the positive relationship between mother's SOC and the cooperation, self-control, and assertiveness aspects of children's social skills. Additionally, there was a significant direct path from mother's SOC to the self-control component of social skills. These findings suggest that mother's SOC may directly as well as indirectly influence children's social skills development through the mediating effect of childrearing. The results offer preliminary evidence that focusing on support to improve mothers' SOC may be an efficient and effective strategy for improving children's social skills development.
Reddy, Kommuri Sahithi; Doshi, Dolar; Kulkarni, Suhas; Reddy, Bandari Srikanth; Reddy, Madupu Padma
2016-01-01
The sense of coherence (SOC) has been suggested to be highly applicable concept in the public health area because a strong SOC is stated to decrease the likelihood of perceiving the social environment as stressful. This reduces the susceptibility to the health-damaging effect of chronic stress by lowering the likelihood of repeated negative emotions to stress perception. The demographic data and general information of subjects' oral health behaviors such as frequency of cleaning teeth, aids used to clean teeth, and dental attendance were recorded in the self-administered questionnaire. The SOC-related data were obtained using the short version of Antonovsky's SOC scale. The periodontal status was recorded based on the modified World Health Organization 1997 pro forma. The total of 780 respondents comprising 269 (34.5%) males and 511 (65.5%) females participated in the study. A significant difference was noted among the subjects for socioeconomic status based on gender ( P = 0.000). The healthy periodontal status (community periodontal index [CPI] code 0) was observed for 67 (24.9%) males and 118 (23.1%) females. The overall SOC showed statistically negative correlation with socioeconomic status scale ( r = -0.287). The CPI and loss of attachment (periodontal status) were significantly and negatively correlated with SOC. The present study concluded that a high level of SOC was associated with good oral health behaviors, periodontal status, and socioeconomic status.
Braun-Lewensohn, Orna; Sagy, Shifra; Roth, Guy
2011-05-01
This study aimed to explore the relationships between sense of coherence (SOC) and stress reactions as mediated by cognitive appraisal and coping strategies among adolescents facing the acute stressful situation of missile attacks. Employing the Salutogenic Model and the interactionist approach to coping, we asked what the roles of situational factors such as coping strategies and cognitive appraisal were in mediating the relationship between SOC and stress reactions. Data were gathered during January 2009 when hundreds of missiles fell in southern Israel. One hundred and thirty eight adolescents filled out questionnaires dealing with SOC, cognitive appraisal (endangerment feelings), Adolescent Coping Scale, state anxiety, state anger, and psychological distress. Overall, our model explained 55% of the variance in stress reactions. SOC had the strongest total direct and indirect effects. Previous findings have indicated SOC as playing only a limited role in explaining stress reactions in acute stress situations. The results of this study highlight the potential of SOC as a powerful resilience factor even in an acute situation, through mediation of situational factors.
Julkunen, Juhani; Ahlström, Richard
2006-07-01
The aim of this study was to investigate the relationship of hostility and anger expression to sense of coherence (SOC) and their role as predictors of health-related quality of life (HQL). It was hypothesised that SOC would mediate the impact of hostility and anger on HQL. This is a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial, which evaluates different treatment strategies to prevent cardiovascular disease in hypertensive patients. At baseline, SOC was assessed with a short form measure, and hostility-anger with the Cynical Distrust scale and with the Anger Expression scales. HQL was assessed at 6 months with the RAND-36. The sample comprised of 774 subjects (77.5% men). Results showed that strong SOC associates with ability to control expression of anger and with low levels of suppressed or openly expressed anger. Anger control and SOC were related to good HQL; cynicism, anger-out, and anger-in correlated negatively with HQL. Path models revealed that SOC was the strongest predictor of HQL while hostility and anger lost their direct impact on HQL. Given the significant associations of hostility and anger with SOC, it is concluded that the salutogenic theory of Antonovsky (A. Antonovsky, Health, Stress, and Coping: New Perspectives on Mental Health and Physical Well-Being, Jossey-Bass Inc, San Francisco, 1979) should be extended to include hostility-related constructs. The impact of hostility and anger on HQL is, to a great extent, mediated through SOC, which implies that in future studies, the role of hostility as a risk factor of ill health should be reconsidered from the SOC theory perspective.
Reliability and validity of a new scale on internal coherence (ICS) of cancer patients
Kröz, Matthias; Büssing, Arndt; von Laue, Hans Broder; Reif, Marcus; Feder, Gene; Schad, Friedemann; Girke, Matthias; Matthes, Harald
2009-01-01
Background Current inventories on quality of life used in oncology mainly focus on functional aspects of patients in the context of disease adaption and treatments (side) effects (EORTC QLQ C30) or generically the status of common functions (Medical Outcome Study SF 36). Beyond circumscribed dimensions of quality of life (i.e., physical, emotional, social, cognitive etc.), there is a lack of inventories which also address other relevant dimensions such as the 'sense of coherence' (SOC) in cancer patients. SOC is important because of its potential prognostic relevance in cancer patients, but the current SOC scale has mainly been validated for psychiatric and psychosomatic patients. Our two-step validation study addresses the internal coherence (ICS) scale, which is based on expert rating, using specific items for oncological patients, with respect to its reliability, validity and sensitivity to chemotherapy. Methods The items were tested on 114 participants (57 cancer patients and a matched control group), alongside questions on autonomic regulation (aR), the Hospital Anxiety and Depression Scale (HADS), self-regulation (SRQ) and Karnofsky the Performance-Index (KPI). A retest of 65 participants was carried out after a median time span of four weeks. In the second part of the study, the ICS was used to assess internal coherence during chemotherapy in 25 patients with colorectal carcinoma (CRC) and 17 breast cancer patients. ICS was recorded before, during and 4 – 8 weeks after treatment. Results The 10-item scale of 'internal coherence' (ICS) shows good to very good reliability: Cronbach-α r = 0.91, retest-reliability r = 0.80. The ICS correlates with r = 0.43 – 0.72 to the convergence criteria (all p < 0.001). We are able to show decreased ICS-values after the third cycle for CRC and breast cancer patients, with a subsequent increase of ICS scores after the end of chemotherapy. Conclusion The ICS has good to very good reliability, validity and sensitivity to chemotherapy. PMID:19552807
Sense of coherence as a protective factor in chronic urticaria
Miniszewska, Joanna; Pietrzak, Anna; Zalewska-Janowska, Anna
2017-01-01
Introduction Chronic urticaria (CU) seems to be perceived as a psychodermatological disorder. Different psychological factors play an important role in CU triggering and course. One of them is a sense of coherence (SOC), which is believed to be a protective factor against anxiety and depression. Aim To investigate quality of life (QoL) in CU patients and to compare selected psychological parameters (anxiety, depression and sense of coherence) between CU individuals and the control group. Material and methods The study comprised 46 female patients with chronic urticaria and 33 healthy females as a control group. The following methods were employed: Urticaria Activity Score (UAS), Hospital Anxiety and Depression Scale (HADS), Sense of Coherence Questionnaire (SOC-29) and Dermatology Life Quality Index (DLQI). Results The CU patients presented a significantly higher anxiety level in comparison to the control group (z = 4.488; p < 0.001). There were no statistically significant differences regarding depression intensity and SOC. In both groups anxiety and depression negatively correlated with global SOC and all its components. Disease severity positively correlated with QoL (ρ = 0.46, p < 0.01) and negatively with global SOC (ρ = –0.33, p < 0.05). Conclusions Bearing in mind higher prevalence of anxiety and depressive symptoms in our CU group, it would be useful to perform screening of these aspects in all CU patients and subsequently develop respective psychological interventions, based on enhancement of personal resources. PMID:28507497
Antonovsky's sense of coherence scale and the relation with health: a systematic review
Eriksson, Monica; Lindström, Bengt
2006-01-01
Study objective The aim of this paper is to synthesise empirical findings on the salutogenic concept sense of coherence (SOC) and examine its capacity to explain health and its dimensions. Design The study is descriptive and analytical with a systematic integration of the contemporary knowledge base on the salutogenic research published 1992–2003. The review includes 458 scientific publications and 13 doctoral theses. Setting Worldwide, based on postgraduate scientific publications in eight authorised databases, doctoral theses, and available books. Main results SOC is strongly related to perceived health, especially mental health. The stronger the SOC the better the perceived health in general, at least for those with an initial high SOC. This relation is manifested in study populations regardless of age, sex, ethnicity, nationality, and study design. SOC seems to have a main, moderating or mediating role in the explanation of health. Furthermore, the SOC seems to be able to predict health. SOC is an important contributor for the development and maintenance of people's health but does not alone explain the overall health. Conclusion SOC seems to be a health promoting resource, which strengthens resilience and develops a positive subjective state of health. Salutogenesis is a valuable approach for health promotion and would be worth to implement in practice much more than to date. PMID:16614325
Morawa, Eva; Erim, Yesim
2015-06-01
Immigrants are faced with several impediments in the host country that may affect their quality of life (QoL), but little is known about the impact of these stressors as well as about the protective role of sense of coherence (SoC) in the context of Polish immigration to Germany. Health Related QoL (Short Form Health Survey SF-36) and SoC (Sense of Coherence Scale SOC-29) were assessed in a total sample consisting of 511 participants aged between 18 and 84 years (260 Polish immigrants in Germany and 251 indigenous Poles). Polish immigrants reported a significantly lower mental and physical health-related QoL than the German norm population, but they were comparable to native Poles. This result remained the same when the model was adjusted for age but physical health status was better for immigrants compared with indigenous Poles. Both groups scored significantly lower for SoC than Germans, but did not differ from each other. The main differences concerning the examined variables were with respect to the German norm population and are putatively shaped by culture. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Antonovsky's sense of coherence scale and its relation with quality of life: a systematic review
Eriksson, Monica; Lindström, Bengt
2007-01-01
The aim of this paper is to synthesise findings on the salutogenic concept, sense of coherence (SOC), and its correlation with quality of life (QoL). This study is descriptive and analytic, with a systematic integration of the contemporary knowledge base on the salutogenic research published in 1992–2003. This review includes 458 scientific publications and 13 doctoral theses on salutogenesis. In all, 32 papers had the main objective of investigating the relationship between SOC and QoL. This study is based on scientific publications in eight authorised databases, doctoral theses and available books. The SOC seems to have an impact on the QoL; the stronger the SOC, the better the QoL. Furthermore, longitudinal studies confirm the predictive validity of the SOC for a good QoL. The findings correspond to the core of the Ottawa Charter—that is, the process of enabling people to live a good life. Therefore, a certain possibility to modify and extend the health construct is becoming discernible, implicating a construct including salutogenesis and QoL. The SOC concept is a health resource, influencing QoL. PMID:17933950
Braun-Lewensohn, Orna; Sagy, Shifra; Roth, Guy
2011-02-01
Employing the salutogenic approach (Antonovsky, 1987), this pilot study aimed at exploring the mediation effect of Sense of Coherence (SOC) on the relationships between exposure to missile attacks and stress-related reactions among adolescents. A strong SOC means a tendency to see the world as more comprehensible, manageable and meaningful. Data were gathered during August 2006 (Second Lebanon War) from 230 Israeli adolescents, 12-18 years old. Adolescents filled out self-reported questionnaires, including demographics, level of physical exposure, SOC, Scale of Psychological Distress (SPD), State Anxiety and State Anger. Exposure to missile attacks was found to be significantly positively linked to stress reactions; exposure was negatively linked to SOC which was also negatively linked to stress reactions. The mediation hypothesis was supported, with SOC mediating the effect of exposure to missile attacks on stress reactions. It seems that SOC may have a protective effect against stress reactions among adolescents exposed to political violence. This should be further studied in a longitudinal research. Copyright © 2010 The Association for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Impact of Sense of Coherence on Oral Health among Bus Drivers: A Cross-Sectional Study
Ahmed, Shaik Ijaz; Sudhir, Kudlur Maheswarappa; Reddy, V. Chandra Sekhara; Kumar, R. V. S. Krishna; Srinivasulu, G.; Deepthi, Athuluru
2018-01-01
Aim and Objectives: To assess the sense of coherence (SOC) and the impact of SOC on oral hygiene behaviors and oral health status among bus drivers in Nellore district, Andhra Pradesh. Materials and Methods: A descriptive cross-sectional study was conducted during August–September 2017. Cluster random sampling methodology was used for the selection of drivers. Five depots were randomly selected from the list of various Andhra Pradesh State Road Transport Corporation depots in Nellore district. The estimated sample size was proportionately divided among these five depots of Nellore district (n = 120). The SOC-related data were obtained using short version of Antonovsky's SOC scale. Every item was scored on a Likert scale ranging from 1 to 7. The sum of the scores for SOC was 13–91. A high score indicates a strong SOC. Clinical examination was done for recording oral health status using Oral Hygiene Index-simplified (OHI-S), dental caries, periodontal status, and oral mucosal lesions were recorded according to the WHO criteria 1997. Data were entered and analyzed using SPSS ver. 22 (SPSS Inc., Chicago, IL, USA). Results: Majority of the bus drivers who participated in the study had a low SOC (60%). A significant (P < 0.05) positive correlation was observed with age (r = 0.1420), socioeconomic status (r = 0.1467), and visit to dentist (r = 0.1912). A nonsignificant negative correlation was observed with habits (r = −0.0681), OHI-S (r = −0.0772), dental caries (r = −0.0874), Community Periodontal Index (r = −0.0642), loss of attachment (r = −0.0650), and oral mucosal lesions (r = −0.0542). Conclusion: Strong SOC was associated with increase in age, better socioeconomic status, good habits, increased frequency of dental visits, and a good oral health.
Benstoem, C; Wübker, R; Lüngen, M; Breuer, T; Marx, G; Autschbach, R; Goetzenich, A; Schnoering, H
2018-05-14
For cardiac surgery patients who were employed prior to surgery, the return to their professional life is of special importance. In addition to medical reasons, such as pre-existing conditions, the success of the operation or postoperative course and patient-intrinsic reasons, which can be assessed with the Sense of Coherence (SOC) scale by Antonovsky, may also play a role in the question of a possible return into working life. In this study 278 patients (invasive coronary artery bypass graft surgery and/or surgery on heart valves, age < 60 years, employed) were questioned postoperatively via post with the SOC questionnaire. The SOC questionnaire was used in addition to questions about return to work. The cohort was stratified according to the time of return to work. Subsequently, the point of maximum sensitivity and specificity was determined for the total SOC score and the prediction power was considered. Of the 278 patients, 61 questionnaires (22%) were considered as eligible and included in the analysis. Of these, 47 participants had returned to work after undergoing cardiac surgery and 14 participants had not. We observed significant differences in SOC values between both groups (146.07 ± 29.76 versus 124.29 ± 28.8, p = 0.020). Patients that returned to work within the first 6 months after surgery showed even higher SOC scores (148.56 ± 28.98, p = 0.034). Patients with an SOC score < 130 are at greater risk not to return to their professional life after cardiac surgery. The SOC is an easily obtainable score that reliably predicts the probability of return to work after cardiac surgery.
Staneva, Aleksandra; Morawska, Alina; Bogossian, Fiona; Wittkowski, Anja
2016-10-01
Maternal mental health during pregnancy has been identified as a key factor in the future physiological, emotional and social development of both the mother and her baby. Yet little is known about the factors that contribute to increased levels of pregnancy-specific distress. The present study investigated the role of two psychosocial and personality-based constructs, namely women's sense of coherence (SoC) and their mothering orientations, on their pregnancy-specific distress. During their second trimester of pregnancy, 293 Australian and New Zealand women participated in an online study. Hierarchical multiple regression analysis was used to determine the unique contribution of women's SoC (Sense of Coherence Scale, SoC 13) and their antenatal mothering orientation (Antenatal Mothering Orientation Measure-Revised, AMOM-R) to pregnancy-specific distress (Revised Prenatal Distress Questionnaire, NuPDQ). Low SoC was the best determinant of women's pregnancy-specific distress, accounting for over 45% of the variance (β = -0.33, p < 0.001, 95% CI [-0.43, -0.23]). A Regulator mothering orientation was correlated with distress but did not have a unique contribution in the final model. This study further highlights the importance of better understanding women's perceptions of emotional health and their mothering role while taking into consideration their wider social context.
Disentangling Sense of Coherence and Resilience in case of multiple traumas.
Fossion, Pierre; Leys, Christophe; Kempenaers, Chantal; Braun, Stéphanie; Verbanck, Paul; Linkowski, Paul
2014-05-01
Depressive and anxiety disorders (DAD) are a major public health problem. Trauma endured during childhood is known to increase the risk of DAD in adulthood. We investigate the hypothesis that Sense of Coherence (SOC) is a mediator between childhood trauma and depressive and anxious symptoms (DAD) in adulthood. We also explore the nature (personality trait or aptitude) of SOC and attempt to disentangle the concepts of resilience and SOC. Former hidden children (FHC), the Jewish youths who spent World War II in various hideaway shelters across Nazi-occupied Europe, were compared with a control group. In each group we measured the presence of multiple traumas, the resilience with the Resilience Scale for Adults, the DAD with the Hopkins Symptoms Checklist and the SOC with the SOC-13 self-report questionnaire. We tested a mediated moderation model with childhood Trauma as the predictor; Adulthood trauma as the moderator; SOC as the mediator; and DAD as the outcome variable. Results were consistent with a sensitization model of DAD partially mediated by SOC. A first component of SOC was similar to an aptitude and another part of SOC was more similar to a personality trait. We are unable to differentiate if the sensitization process is a consequence of the nature of the trauma endured by FHC (long-standing exposure to extreme external events) or a consequence of the fact that this first trauma occurred during childhood. Our results could account for the controversial debate regarding the life time stability of SOC. Copyright © 2014 Elsevier B.V. All rights reserved.
Pakkala, Inka; Read, Sanna; Sipilä, Sarianna; Portegijs, Erja; Kallinen, Mauri; Heinonen, Ari; Alen, Markku; Kiviranta, Ilkka; Rantanen, Taina
2012-06-01
Older people with disabilities are at increased risk of psychological health decline. There are no earlier studies on the effects of resistance training on sense of coherence (SOC) among older people with a history of hip fracture. The aim of this study is to test the effects of intensive 12-week strength-power training on SOC among older adults after hip fracture. A clinical sample of 60-85-year-old community-dwelling men and women was studied, 0.5. to 7.0 years after hip fracture. Forty-six had no contraindications for participation and were randomized into training (n=24) and control groups (n=22). The training group participated in a 12-week, individually tailored, strength-power training program, twice a week in a senior gym and supervised by an experienced physiotherapist. SOC was assessed with Antonovsky's short 13-item scale. Data were collected at baseline and after intervention. Intensive 12-week strength-power training had no effect on participants' SOC level. Results indicated no change in SOC after 12-week physical exercise training among participants after hip fracture. Further studies on SOC among older people with disabilities and potential ways of increasing it are needed.
Shiu, A T
1998-08-01
The study aimed to investigate the significance of sense of coherence (SOC) for the perceptions of task characteristics and for stress perceptions during interruptions of public health nurses (PHNs) with children in Hong Kong. The research design employed the experience sampling method. Convenience sampling was used to recruit 20 subjects. During stage one of the study a watch was worn that gave a signal at six random times each day for seven days to complete an experience sampling diary. PHNs on average responded to 34 signals (80%) to complete the diaries which collected data on work and family juggling, task characteristics, and their effects on mood states. At stage two respondents completed the SOC scale which measured confidence in life as comprehensible, manageable, and meaningful. Two major findings provide the focus for this paper. First, results indicate that there was positive correlation between SOC and perceived task characteristics. Second, results reveal that when interruptions occurred, PHNs with high SOC had higher positive affect and lower negative affect than PHNs with low SOC. These results suggest that SOC as a salutogenic model helps PHNs to cope with the family and work juggling as well as the occupational stress. Implications for nursing management on strengthening SOC of PHNs are discussed.
Comparing Antonovsky's sense of coherence scale across three UK post-industrial cities.
Walsh, David; McCartney, Gerry; McCullough, Sarah; Buchanan, Duncan; Jones, Russell
2014-11-25
High levels of 'excess' mortality (ie, that seemingly not explained by deprivation) have been shown for Scotland compared to England and Wales and, especially, for its largest city, Glasgow, compared to the similarly deprived English cities of Liverpool and Manchester. It has been suggested that this excess may be related to differences in 'Sense of Coherence' (SoC) between the populations. The aim of this study was to ascertain whether levels of SoC differed between these cities and whether, therefore, this could be a plausible explanation for the 'excess'. Three post-industrial UK cities: Glasgow, Liverpool and Manchester. A representative sample of more than 3700 adults (over 1200 in each city). SoC was measured using Antonovsky's 13-item scale (SOC-13). Multivariate linear regression was used to compare SoC between the cities while controlling for characteristics (age, gender, SES etc) of the samples. Additional modelling explored whether differences in SoC moderated city differences in levels of self-assessed health (SAH). SoC was higher, not lower, among the Glasgow sample. Fully adjusted mean SoC scores for residents of Liverpool and Manchester were, respectively, 5.1 (-5.1 (95% CI -6.0 to -4.1)) and 8.1 (-8.1 (-9.1 to -7.2)) lower than those in Glasgow. The additional modelling confirmed the relationship between SoC and SAH: a 1 unit increase in SoC predicted approximately 3% lower likelihood of reporting bad/very bad health (OR=0.97 (95% CI 0.96 to 0.98)): given the slightly worse SAH in Glasgow, this resulted in slightly lower odds of reporting bad/very bad health for the Liverpool and Manchester samples compared to Glasgow. The reasons for the high levels of 'excess' mortality seen in Scotland and particularly Glasgow remain unclear. However, on the basis of these analyses, it appears unlikely that a low SoC provides any explanation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Almedom, Astier M; Tesfamichael, Berhe; Saeed Mohammed, Zein; Mascie-Taylor, C G N; Alemu, Zemui
2007-01-01
An adapted 'sense of coherence' scale short form (SOC-13) was administered in nine languages of Eritrea with a total of 265 participants (162 women and 103 men) in order to assess 'resilience' in quantitative terms. Statistical analysis yielded significant differences in SOC scores between the displaced and non-displaced: mean=54.84 (SD=6.48) in internally displaced person (IDP) camps, compared with mean=48.94 (SD=11.99) in urban and rural settlements (t=3.831, p<0.001). Post-hoc tests revealed that the main difference is between IDP camp dwellers and urban (non-displaced) residents. Those in rural but traditionally mobile (pastoralist or transhumant) communities scored more or less the same as the urban non-displaced - i.e. significantly higher than those in IDP camps (p<0.05). Analysis of variance showed that displacement has a significantly negative effect on women compared with men (RR=0.262, p<0.001). Repeating the analysis for the three groups confirmed that urban and pastoralist/transhumant groups are similar, while women in IDP camps are lower scoring (RR=0.268, p<0.001), Hamboka women being worst affected due to their experience of serial displacement. These findings are interpreted and discussed in the light of qualitative information gleaned from the study participants' interrogation of the content of the SOC scale; and in the wider context of historical, socio-political and cultural characteristics of Eritrea. The study's implications for humanitarian and public health policy are considered.
Rohani, Camelia; Abedi, Heidar-Ali; Sundberg, Kay; Langius-Eklöf, Ann
2015-12-09
In our previous study, we found that the degree of sense of coherence (SOC) and baseline ratings of several dimensions of health-related quality of life (HRQoL) were the most important predictors of HRQoL changes 6 months after the pre-diagnosis period of breast cancer. To find a way to explain these findings, the aim of this study was to explore the mediating effect of the SOC between ratings of HRQoL dimensions before final diagnosis, and ratings of the same dimensions at the 6 months follow up, within a sample of women with breast cancer. A longitudinal study with a prospective design at baseline (T1) and 6 months later (T2) was conducted on 162 women with breast cancer. To measure HRQoL dimensions three different questionnaires, the European Organization for Research and Treatment of Cancer QLQ-30, the SF-12 Health Survey version 2 and the Health Index were applied at T1 and T2 to cover both diagnostic-specific and generic dimensions. Measurement of the SOC as a mediator was done by the SOC-13 scale. Mediational analyses on eight significant pairs of HRQoL dimensions showed that the degree of SOC totally mediated variations of global quality of life (p < 0.001) as well as cognitive and social functioning (p <0.05) scores between T1 to T2. Changes in the scores of emotional functioning (p < 0.01), fatigue (p < 0.05), financial difficulties (p < 0.05), well-being (p < 0.001), and mental health component (p < 0.001) were partially mediated. The degree of SOC explained 16% to 45% of the variances in HRQoL dimensions at T2. The mediating pathway of the SOC in the context of this study appears to be the key to understanding how a higher sense of coherence as an inner resource may serve as a protective psychological factor in the adaptation process of the patients. Clinicians might consider coherence-oriented structure of the SOC and the connection between the SOC and HRQoL data in intervention plans from the first visit onwards. It may assist the identification of women who are at greater risk for maladaptation to the breast cancer trajectory.
Mato, Mie; Tsukasaki, Keiko
2017-04-01
Sense of coherence (SOC) is a concept that helps to explain the relation between personal intentionality as psychosocial factors and health-related behaviors. Thus, it is essential to enhance SOC when encouraging a healthy lifestyle. However, the factors that promote SOC have not been fully investigated among university students. The objective of this study was to clarify the general resistance resources (GRRs) that may promote the development of the SOC among university students. Therefore, we examined the relationship between SOC and social capital (SC), self-efficacy, and mental health. Participants included 443 students from nine academic departments at eight universities in the Kanto or Kinki metropolitan areas of Japan. Participants completed an anonymous questionnaire. Individual-level cognitive and structural SC, generalized self-efficacy, mental health inventory (from SF-36v2), and SOC were measured. Confirmatory factor analysis using structural equation modeling was conducted to verify the factor structure of the SOC-13 scale. Stepwise multiple regression analysis and two-way layout analysis of variance were performed with SOC as the dependent variable. The factor structure of SOC indicated the optimal model fit in the second-order three-factor model of the 12 items. SOC was predicted by five variables: age, cognitive SC, structural SC, mental health, and self-efficacy. For students from urban areas, SOC was predicted by the interaction between cognitive and structural SC. SOC was significantly related to cognitive SC, structural SC, and self-efficacy as well as mental health in university students from urban areas. Furthermore, the combination of higher-level cognitive SC and higher-level structural SC exerted an inhibitory influence on SOC among students who previously and currently live in urban areas. Therefore, the findings indicated that both cognitive and structural SC as well as self-efficacy may act as GRRs that promote the development of SOC, and similarly, good mental health may promote a strong SOC.
Tsuchiya, Masa; Giuliani, Alessandro; Hashimoto, Midori; Erenpreisa, Jekaterina; Yoshikawa, Kenichi
2015-01-01
Background The underlying mechanism of dynamic control of the genome-wide expression is a fundamental issue in bioscience. We addressed it in terms of phase transition by a systemic approach based on both density analysis and characteristics of temporal fluctuation for the time-course mRNA expression in differentiating MCF-7 breast cancer cells. Methodology In a recent work, we suggested criticality as an essential aspect of dynamic control of genome-wide gene expression. Criticality was evident by a unimodal-bimodal transition through flattened unimodal expression profile. The flatness on the transition suggests the existence of a critical transition at which up- and down-regulated expression is balanced. Mean field (averaging) behavior of mRNAs based on the temporal expression changes reveals a sandpile type of transition in the flattened profile. Furthermore, around the transition, a self-similar unimodal-bimodal transition of the whole expression occurs in the density profile of an ensemble of mRNA expression. These singular and scaling behaviors identify the transition as the expression phase transition driven by self-organized criticality (SOC). Principal Findings Emergent properties of SOC through a mean field approach are revealed: i) SOC, as a form of genomic phase transition, consolidates distinct critical states of expression, ii) Coupling of coherent stochastic oscillations between critical states on different time-scales gives rise to SOC, and iii) Specific gene clusters (barcode genes) ranging in size from kbp to Mbp reveal similar SOC to genome-wide mRNA expression and ON-OFF synchronization to critical states. This suggests that the cooperative gene regulation of topological genome sub-units is mediated by the coherent phase transitions of megadomain-scaled conformations between compact and swollen chromatin states. Conclusion and Significance In summary, our study provides not only a systemic method to demonstrate SOC in whole-genome expression, but also introduces novel, physically grounded concepts for a breakthrough in the study of biological regulation. PMID:26067993
Hirao, Kazuki; Kobayashi, Ryuji
2013-01-01
Unemployment is known to have a negative effect on the quality of life (QOL) of individuals. However, the influence of an autotelic personality on QOL and SOC of unemployed individuals remains unclear. Our study compared health-related quality of life (HRQOL) and sense of coherence (SOC) among 3 groups: (i) an autotelic personality group (AP), which tends to "go with the flow," (ii) an average group (AV), and (iii) a non-autotelic personality group (NAP). In October 2010, we conducted a cross-sectional survey among 140 job trainees not receiving unemployment benefits in Hiroshima, Japan. We collected 134 completed questionnaires. Autotelic personality was investigated using the Flow Experience Checklist, health-related quality of life was assessed using the Short Form (SF-8) Health Survey, and SOC was measured using the University of Tokyo Health Sociology version of the SOC3 scale (SOC3-UTHS). The average age of participants was 36.14±11.54 year. Participants were classified into 3 groups based on daily activity values: 4+ for AP (n = 22), 1-3 for AV (n = 82), and 0 for NAP (n = 30). Significant differences were observed in mental component summary (MCS) score and SOC3-UTHS total scores in the ranking order of AP (highest), AV, and NAP. Our findings indicate a need to develop programs for facilitating AP among unemployed people to enhance mental QOL and SOC.
Dewake, Nanae; Hamasaki, Tomoko; Sakai, Rie; Yamada, Shima; Nima, Yuko; Tomoe, Miki; Kakuta, Satoko; Iwasaki, Masanori; Soh, Inho; Shimazaki, Yoshihiro; Ansai, Toshihiro
2017-11-01
Sense of coherence (SOC) is a measurement of ability of an individual to cope with psychological stress and remain in good health. The aim of the present study was to examine the relationships among SOC score, oral health status, nutritional status and care need level of older adults using path analysis. We enrolled 53 older adults (17 men and 36 women) who were attending a day care service (mean age 80.4 ± 6.5 years). SOC was assessed using a 13-item, seven-scale instrument. Oral health status (number of present teeth, denture use) and nutritional status (assessed with Mini-Nutritional Assessment Short-Form) were also evaluated. Path analysis was used to examine the relationship of SOC with other related factors, including care need level. The mean SOC score was 57.0 ± 13.9. Mini-Nutritional Assessment Short-Form results showed that one participant (1.8%) was malnourished, 26 (49.1%) were at risk of malnutrition and 26 (49.1%) had normal nutritional status. Participants with high SOC scores showed a strong positive attitude, had a relatively large number of teeth, were in good nutritional condition and showed low care need levels. The present results showed that maintaining a high SOC level and good oral health help to reduce care need levels in older adults, and also prevent a worsening of their nutritional condition. Geriatr Gerontol Int 2017; 17: 2083-2088. © 2017 Japan Geriatrics Society.
Qiu, Rong Min; Wong, May C M; Lo, Edward C M; Lin, Huan Cai
2013-03-19
Sense of coherence (SOC) is hypothesized to be an important psychological factor that enables people to cope with stressors and successfully maintain and improve health. Mother's SOC has been shown to be an important psychological factor associated with oral health and oral health-related behaviors of adolescents and 11- to 12-year-old children. However, little is known about the relationship between the caregiver's SOC and oral health-related behaviors of the preschool children. The objective of this study was to investigate the relationship between oral health-related behaviors of 5-year-old children in Southern China and SOC of their caregiver. A cross-sectional study was conducted in a randomized sample of 1332 children aged 5 years and their caregivers in Guangzhou, Southern China. Data were collected through questionnaires completed by the caregivers. The Chinese short version of Antonovsky's SOC scale (13 items) was employed to assess the caregiver's SOC. The outcome variables were the child's oral health-related behaviors, including frequency of sugary snack intake, toothbrushing frequency, utilization of dental service, and pattern of dental visits. Multiple logistic regression was used to analyze the relationship between the variables. No association was found between the children's sugary snack intake and the mother's or the father's SOC. After adjustment for other significant factors related to the child's oral health-related behaviors, 8.9% of the children whose grandparents (as caregivers) had higher SOC scores had a lower frequency of sugary snack intake, compared with the children whose grandparents had lower SOC scores (OR = 0.61, 95% CI = 0.50-0.73, p = 0.008). The other measures of oral health-related behaviors of the child were not significantly associated with the caregiver's SOC. Sugary snack intake behavior of the 5-year-old children was not associated with the mother's or the father's SOC. It was associated with the SOC of their grandparents, who are a small group of the caregivers in China.
Freitas, Thiago H; Andreoulakis, Elias; Alves, Gilberto S; Miranda, Hesley L L; Braga, Lúcia L B C; Hyphantis, Thomas; Carvalho, André F
2015-06-07
To investigate the relationship between sense of coherence, psychological distress and health related quality of life in inflammatory bowel disease (IBD). This cross-sectional study enrolled a consecutive sample of 147 IBD (aged 45.1 ± 14.1 years; 57.1% female) patients recruited from a tertiary gastroenterology service. Sixty-four participants met diagnostic criteria for Crohn's disease, while eighty-three patients had ulcerative colitis. Socio-demographic data (education, age, race, gender, gross monthly income and marital status), disease-related variables (illness activity, relapse rate in past 2 years, history of surgery and time since diagnosis), sense of coherence (Antonovsky's SOC scale), psychological distress symptoms (Hospital Anxiety and Depression Scale) and health-related quality of life (HRQoL; WHOQOL-Bref) were assessed. Hierarchical multiple regression analyses were performed to identify factors that are independently associated with psychological distress and HRQoL in patients with IBD and to provide indications for possible moderating or mediating effects. In addition, formal moderation and mediation analyses (Sobel tests) were performed to confirm potential moderators/mediators of the relationship between SOC, psychological distress symptoms and HRQoL. Lower SOC scores (std beta= -0.504; P < 0.001), female gender (std beta = 0.176; P = 0.021) and White race (std beta = 0.164; P = 0.033) were independently associated with higher levels of depressive symptoms, while lower levels of SOC (std beta = -0.438; P < 0.001) and higher relapse rate (std beta = 0.161; P = 0.033) were independently associated with more severe anxiety symptoms. A significant interaction between time since diagnosis and SOC was found with regard to the severity of depressive or anxiety symptoms, as the interaction term (time since diagnosis X SOC) had beta coefficients of -0.191 (P = 0.009) and -0.172 (P = 0.026), respectively. Lower levels of anxiety symptoms (std beta = -0.369; P < 0.001), higher levels of SOC (std beta = 0.231; P = 0.016) and non-White race (std beta = -0.229; P = 0.006), i.e., mixed-race, which represented the reference category, were independently associated with higher levels of overall HRQoL. Anxiety symptoms were the most potent independent correlate of most aspects of HRQoL. In addition, anxiety mediated the association between SOC and satisfaction with health, as well as its relationship with physical, mental, and social relations HRQoL. Depressive symptoms also mediated the association between SOC and mental HRQoL. Our data indicated that SOC is an important construct, as it influences psychological distress and has significant albeit indirect effects on several HRQoL domains in IBD.
Drageset, Jorunn; Eide, Geir Egil; Nygaard, Harald A; Bondevik, Margareth; Nortvedt, Monica W; Natvig, Gerd Karin
2009-01-01
Few studies have examined the association between social support and health-related quality of life (HRQOL) among nursing home residents and whether the sense of coherence (SOC) modifies the effect of social support on health-related quality of life. The main aims of this study were to determine the relationship between social support and HRQOL and to investigate whether the SOC modifies the effect of social support on HRQOL. A cross-sectional, descriptive, correlational design. All 30 nursing homes in Bergen in western Norway. Two hundred and twenty-seven mentally intact long-term nursing home residents 65 years and older. Data were obtained through face-to-face interviews using the SF-36 Health Survey, Social Provisions Scale and Sense of Coherence Scale. Possible relationships between the Social Provisions Scale and the eight SF-36 subdimensions were analysed using multiple linear regression while controlling for age, sex, marital status, education and comorbid illness. Interactions between the Sense of Coherence Scale and Social Provisions Scale were investigated. Attachment affected the mental health subdimension (p=0.001), opportunity for nurturance affected social functioning (p=0.003) and reassurance of worth affected vitality (p=0.001) after adjustment for demographic variables and comorbid illness. After the analysis included the sense of coherence, nurturance still significantly affected social functioning and reassurance of worth still significantly affected vitality. No interaction with sense of coherence was found, and sense of coherence significantly affected all SF-36 subdimensions. The opportunity to provide nurturance for others appears to be important for social functioning, and sense of competence and sense of self-esteem appear to be important for vitality. Further, the residents' relationships with significant others comprise an important component of mental health. Finally, independent of the level of sense of coherence, social support is an important resource for better health-related quality of life. Clinical nurses should recognize that social support is associated with health-related quality of life and pay attention to the importance of social support for the residents in daily practice.
Zielińska-Więczkowska, Halina; Ciemnoczołowski, Waldemar; Kędziora-Kornatowska, Kornelia; Muszalik, Marta
2012-01-01
The SOC is an important determinant of life satisfaction of elderly people. It determines the level of coping with various difficult situations, which accompany an old age stage. The aim of the study was to determine the connection between the SOC levels and life satisfaction among the U3A students. Another analyzed relationship was the SOC level against the background of socio-demographic factors. The study comprised 257 students of the U3A in Poland, located in the city of Bydgoszcz. The study group consisted of 237 women and 20 men, at the average age of 64.54 ± 6.01 years. The vast majority of the study group included individuals at the secondary education level, as well as married individuals. Just over half of the group claimed to be in good health, and have no afflictions. All of the respondents were fully mobile. The study was conducted with the diagnostic poll method, using the standardized questionnaires: The Scale SOC-29, WHOQOL-Bref, and the Geriatric Depression Scale (GDS-bref version). The average value of global SOC was 128.77; the standard deviation 21.04; discrepancy 153 (minimum 50 and maximum 203). The SOC indicated significant relationship with quality of life (QoL) in the mental domain, social relationships, and environmental domain; no significant correlation in the physical domain was observed. The QOL reached about 70% of maximum result value, showing equal levels in its specific areas. A moderately decreasing (r=-0.375, p<0.01) relation η=0.376, between global SOC values and depression occurrence, as well as its non-existence was shown in the study. Individual SOC components were also negatively correlated with depression. Another observation was weak correlation between the sense of coherence and the individuals' level of education. No statistically significant effect of age, gender and marital status on the SOC levels of U3A students was found. Higher parameters of SOC and level of education shape significantly higher effects of life satisfaction, and result in better adaptation to old age stage as a phase of multiple challenges, and increasing life difficulties. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Health in Elite Sports from a Salutogenetic Perspective: Athletes' Sense of Coherence
Mayer, Jochen; Thiel, Ansgar
2014-01-01
Objective Considering the high number of stressors encountered in the context of elite sports, a high sense of coherence (SOC) is crucial to allow athletes to maintain their health from both short- and long-term perspectives. The aim of this cross-sectional study was to investigate SOC in a population of elite athletes, focusing on identification of subsets of athletes with particularly high and low SOC scores, and any related predictors. The elite athletes' SOC scores were also evaluated for differences with those of the general population of Germany; whether a correlation between SOC and subjective health existed was additionally examined. Method In total, 698 male and female elite athletes, drawn from Germany's highest-level national track and field squads, and first and second division handball teams, completed a survey that included the SOC-L9 Scale and measures of subjective health, sociodemographic information, and the number of injury lay-offs experienced during the athletes' careers to date. Results Classification tree analysis reveals six contrast groups with varying SOC scores. Several interacting factors determine the group to which an athlete belongs. Together with overuse injuries, additional factors are age, gender, and completed/not completed apprenticeship/degree. Female athletes aged between 19 and 25, who had already been subject to lay-offs due to overuse injuries, comprise the group with the lowest SOC scores. Overall, the SOC of elite athletes is slightly lower than in the general population. In accordance with other studies, a stronger SOC is also correlated significantly with better global subjective health. Conclusion The identification of contrast groups with varying SOC scores contributes to the development of more targeted salutogenetic health promotion programs. Such programs would ideally include learning modules pertaining to coping with overuse injuries, as well as social support systems aiming to effectively combine education and elite sport. PMID:25014085
Hirao, Kazuki; Kobayashi, Ryuji
2013-01-01
Background Unemployment is known to have a negative effect on the quality of life (QOL) of individuals. However, the influence of an autotelic personality on QOL and SOC of unemployed individuals remains unclear. Our study compared health-related quality of life (HRQOL) and sense of coherence (SOC) among 3 groups: (i) an autotelic personality group (AP), which tends to “go with the flow,” (ii) an average group (AV), and (iii) a non-autotelic personality group (NAP). Methods In October 2010, we conducted a cross-sectional survey among 140 job trainees not receiving unemployment benefits in Hiroshima, Japan. We collected 134 completed questionnaires. Autotelic personality was investigated using the Flow Experience Checklist, health-related quality of life was assessed using the Short Form (SF-8) Health Survey, and SOC was measured using the University of Tokyo Health Sociology version of the SOC3 scale (SOC3–UTHS). Results The average age of participants was 36.14±11.54 year. Participants were classified into 3 groups based on daily activity values: 4+ for AP (n = 22), 1–3 for AV (n = 82), and 0 for NAP (n = 30). Significant differences were observed in mental component summary (MCS) score and SOC3–UTHS total scores in the ranking order of AP (highest), AV, and NAP. Conclusion Our findings indicate a need to develop programs for facilitating AP among unemployed people to enhance mental QOL and SOC. PMID:24069249
Binder, Heinz P.; Mesenholl-Strehler, Elke; Paß, Paul; Endler, P. Christian
2006-01-01
The sense of coherence (according Aaron Antonovsky, 1923—1994, when a persons sense that his/her own life and the world are sufficiently comprehensible, manageable, and meaningful) of Austrian psychotherapists was assessed and compared with a standard sample, as well as with the sense of coherence (SOC) of members of other professions. In addition, the question as to whether psychotherapists who had completed more extensive individual training therapy/self-awareness sessions had a higher SOC than do those with fewer, was addressed. Forty psychotherapists who worked in private practices and various psychosocial health care institutions in Styria, Austria took part in the study. The investigation was conducted in the form of a questionnaire assessment. The evaluation showed that the overall SOC value of the professional group in question was significantly higher than that of the standard sample (162.3 vs. 145.7), as well as other samples (physicians: SOC = 153.8; teachers: SOC = 156.1; physiotherapists SOC = 158.1). Concerning whether psychotherapists who had completed more individual training therapy/self-awareness sessions had higher SOC values than did those with fewer, we found no difference in regard to the overall SOC score or SOC scores for individual components. The SOC of psychotherapists did not seem to depend on the number of additional training therapy/self-awareness sessions. PMID:17370015
Kobayashi, Tohru
2017-01-01
Objective The present study aimed to explore the effects of sense of coherence (SOC) on depressive symptoms after employment in the Japan Self-Defense Force among male young adults.Methods In April 2013, 953 new male members of the Japan Ground Self-Defense Force (JGSDF; age range: 18-24 years) participated in this study. Depressive symptoms were assessed using the 20-item version of the Center for Epidemiologic Studies Depression scale (CES-D), which defines a score of 16 or greater as indicating the presence of depressive symptoms. The SOC score was assessed using a 13-item version (SOC-13), in which a score of 59 or greater is as assigned to the high score group. A second survey was conducted two months later, in June of 2013. For the analysis, we selected participants without depressive symptoms at the baseline survey. The association between SOC scores at baseline and the onset of depressive symptoms was examined using a logistic regression analysis.Results The final analysis was conducted on data on 389 new male members of the JGSDF. The logistic regression analysis showed a significant reduction in the onset of depressive symptoms among the group with high SOC scores (odds ratios: 0.59, 95% confidence interval=0.35-0.98) as compared with that observed in the group with low SOC scores.Conclusions The present study clarified that SOC among male young adults has a buffering effect on the risk of developing depressive symptoms after employment in the Japan Self-Defense Force. Our results may be useful for improving the mental health of new employees.
Paediatric occupational therapy: addressing parental stress with the sense of coherence.
Stokes, Rochelle H; Holsti, Liisa
2010-02-01
Families of children who have disabilities experience multiple stressors. "Sense of coherence" (SOC) reflects a person's view of life and his or her capacity to respond to stressful situations. The purposes of this paper are to (I) introduce the concept of SOC; (2) review the literature on the stresses experienced by parents of children with disabilities; and (3) discuss how SOC can be used to evaluate systematically and to address effectively parents' resiliency against stressors. The literature shows a strong correlation between parental stress, avoidantcoping, depression, and low SOC. Preliminary evidence suggests that an early intervention program can help increase parents' SOC. Occupational therapists can use the SOC as a framework from which to identify the strength of a parents' SOC, and, when deemed to be low, help create a process for enhancing resilience.
Lajunen, Timo
2018-01-01
Antonovsky's concept "sense of coherence" (SOC) and the related measurement instrument "The Orientation to Life Questionnaire" (OLQ) has been widely applied in studies on health and well-being. The purpose of the present study is to investigate the cultural differences in factor structures and psychometric properties as well as mean scores of the 13-item form of Antonovsky's OLQ among Australian (n = 201), Finnish (n = 203), and Turkish (n = 152) students. Three models of factor structure were studied by using confirmatory factor analysis: single-factor model, first-order correlated-three-factor model, and the second-order three-factor model. Results obtained in all three countries suggest that the first- and second-order three-factor models fitted the data better that the single-factor model. Hence, the OLQ scoring based on comprehensibility, manageability, and meaningfulness scales was supported. Scale reliabilities and inter-correlations were in line with those reported in earlier studies. Two-way analyses of variance (gender × nationality) with age as a covariate showed no cultural differences in SOC scale scores. Women got higher scores on the meaningfulness scale than men, and age was positively related to all SOC scale scores indicating that SOC increases in early adulthood. The results support the three-factor model of OLQ which thus should be used in Australia, Finland, and Turkey instead of a single-factor model. Need for cross-cultural studies taking into account cultural correlates of SOC and its relation to health and well-being indicators as well as studies on gender differences in the OLQ are emphasized.
Maternal personal resources and children's socioemotional and behavioral adjustment.
Al-Yagon, Michal
2008-09-01
The study examined the role of three maternal personal resources [sense of coherence (SOC), attachment style, and social/emotional feelings of loneliness] in explaining children's socioemotional adjustment (self-rated loneliness and SOC, and mother-rated child behavior) and children's (self-rated) secure attachment. The sample included 58 mother-child dyads (27 boys and 31 girls) aged 8-11 years. Preliminary analyses indicated significant group differences between mothers with high or low scores on the two subscales of the attachment scale (i.e., avoidance and anxiety), on their SOC, and their social/emotional loneliness. Findings revealed that maternal SOC significantly contributed to all child socioemotional adjustment measures and attachment scores. In addition, the current findings demonstrated the role of maternal anxious attachment in explaining children's externalizing behaviors. Discussion focused on the unique value of maternal characteristics for understanding social and emotional adjustment among school-age children.
Yoshida, Eri; Yamada, Kazuko; Morioka, Ikuharu
2014-01-01
There is limited information about the sense of coherence (SOC), stress reactions and the relationship between SOC and stress reactions in male nurses. The aim of this survey was to clarify SOC, stress reactions, and the relationship of SOC with stress reactions in male nurses working in a hospital. Fifty-one male and 51 female nurses took part in a questionnaire survey. Each female subject was matched with a male of the same age (within 1 year), qualifications (nurse only or both nurse and public health nurse), and work place (internal medicine ward, surgery ward or others). The question items were basic attributes, SOC, Brief Job Stress Questionnaire and Brief Scales for Coping Profile (BSCP). To examine the relationship between the SOC and stress reactions, a multiple regression analysis was performed with psychological or somatic symptoms, as the dependent variable. The median age of male nurses was 27 (interquartile range: 24-30) years. The median length of their working career was 4 (2-7) years. There were no gender differences in the total scores of SOC. Among the stressors, the conditions of mental demand were better in male nurses, but the conditions of stress by workplace environment were worse than in female nurses. Depressive mood, one of the stress reactions, was worse in male nurses. Support from supervisors and coworkers that had an effect on stress reactions were weaker in male nurses than in female nurses. In the subscales of BSCP, "emotional expression to others" and "avoidance and suppression" were more often used by male nurses, but "seeking help for a solution to problems" was less frequently used by them than by female nurses. There were significant relationships between the total score of SOC and psychological and somatic symptoms in both sexes, even when adjusted for 9 stressor factors, 4 factors that had an effect on stress reactions, and 6 subscales of the BSCP and age. The sense of manageability, one of the subscales of SOC, showed significant relationships with psychological and somatic symptoms only in male nurses. The SOC showed no sex difference. The depressive reaction was stronger in male nurses. The relationship of the subscale of SOC to psychological and somatic symptoms showed a gender difference, although the total scores of SOC showed similar tendencies in both sexes.
Tselebis, A; Bratis, D; Pachi, A; Moussas, G; Karkanias, A; Harikiopoulou, M; Theodorakopoulou, E; Kosmas, E; Ilias, I; Siafakas, N; Vgontzas, A; Tzanakis, N
2013-01-01
Chronic Obstructive Pulmonary Disease (COPD) is mainly related to smoking habit and is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually both progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. Worldwide and in Greece, COPD constitutes a major epidemiological issue. Incidence of depression and anxiety is high in the COPD population. Most studies on depression and anxiety in COPD deal with factors that are positively correlated with both of these comorbidities. The aim of our study was to assess whether two variables, sense of coherence (SOC) and perception of family support (FS), are negatively correlated with depressive and anxiety symptoms in outpatients with COPD. According to Aaron Antonovsky, sense of coherence refers to the ability of individuals to make sense of and manage events. Studies in other diseases suggest that sense of family support has a significant impact on the course and outcome of the disease, yet a limited number of reports across literature addresses the role of family support in COPD patients. In our present study one hundred twenty two (98 men and 24 women) outpatients with pure COPD were included. Age and years of education were recorded. Severity of COPD was assessed with spirometry before and after bronchodilation. All patients replied to self- administered questionnaires on depression (Beck Depression Inventory, BDI), anxiety (Spielberger State-Trait Anxiety Scale, STAI), family support (Family Support Scale, FSS-13) and sense of coherence (Sense of Coherence Scale, SOC). According to our results the mean BDI depression score was 11.65 (SD 7.35), mean trait anxiety score was 40.69 (SD 11.19), mean SOC score was 54.62 (SD 7.40) and mean FS score was 64.58 (SD 11.63). Women patients had higher anxiety scores and lower sense of family support compared to men. Significant negative correlations were evidenced between depression and sense of coherence as well as between anxiety and family support. Step-wise multiple linear regression analysis verified the results and quantified the aforementioned correlations. Notably, raising scores in sense of family support by one point reduces anxiety scores by 0.14 points, and increasing sense of coherence scores by one point reduces depression scores by 0.21 points. In sum, our study confirms the presence of high levels of anxiety and depressive symptoms in COPD patients, with females being in a more disadvantaged position as they tend to have higher levels of both. Sense of coherence and family support are both protective psychological factors against the risk of developing anxiety and depressive symptoms in these patients.
Sense of coherence moderates late effects of early childhood Holocaust exposure.
van der Hal-van Raalte, Elisheva A M; van IJzendoorn, Marinus H; Bakermans-Kranenburg, Marian J
2008-12-01
This study evaluated child Holocaust survivors with an emphasis on potential protective factors facilitating participants' adaptation to post-Holocaust life. We examined Antonovsky's (1979, 1987) salutogenic paradigm, testing the mediating and moderating effect of participants' sense of coherence (SOC) on the association between early childhood deprivation due to Holocaust persecution and posttraumatic stress later in life. The nonclinical sample, composed of 203 child Holocaust survivors born between 1935 and 1944 completed questionnaires on Holocaust survival exposure, inventories on current health, posttraumatic stress, and SOC. The results indicated that SOC moderates the association between traumatic experiences during the war and posttraumatic stress, and SOC acts as a protective factor, buffering the impact of traumatic Holocaust experiences on child survivors in old age. Survivors with a less coherent perspective on the meaning of their life showed greater vulnerability for posttraumatic complaints. The moderating role of the SOC may suggest promising avenues of therapeutic interventions for child Holocaust survivors and other adults with early childhood trauma. (c) 2008 Wiley Periodicals, Inc.
Sense of coherence and periodontal health outcomes.
Cyrino, Renata Magalhães; Costa, Fernando Oliveira; Cortelli, José Roberto; Cortelli, Sheila Cavalca; Cota, Luís Otávio Miranda
2016-07-01
Sense of Coherence (SOC) has been associated with perceived oral health measures, but the contribution of SOC to clinical measures is still unclear. The aim of the present cross-sectional study was to evaluate the potential association between periodontal health outcomes, such as periodontal clinical parameters and perceived periodontal health, and SOC. The study sample comprised 276 individuals, aged 18-60 years, from Belo Horizonte, Brazil. Participants answered questionnaires covering sociodemographic variables, self-perceived periodontal health and SOC. Full-mouth periodontal examinations were performed. The sample was divided into three groups according to SOC score: (a) SOC1 = weak (24-46); (b) SOC2 = moderate (47-51); (c) SOC3 = strong (52-65). Multivariate analyses including appropriate logistic or linear regression models were performed to evaluate the association between periodontal health outcomes and biological, sociodemographic and behavioural variables. Perceived general oral health was associated with family income bracket (p = 0.010), smoking (p = 0.004), dental flossing (p = 0.017) and SOC (weak SOC: p = 0.005). Perceived gum disease and perceived periodontal disease were associated with SOC (weak SOC: p = 0.001 and p = 0.015, respectively). Overall, perceived periodontal health outcomes were associated with SOC. However, no association between clinical periodontal health outcomes and SOC were observed.
ERIC Educational Resources Information Center
Kimura, Miyako; Yamazaki, Yoshihiko
2016-01-01
Background: Although sense of coherence (SOC) moderates parental stress, the relationship between SOC, parental mental health and physical punishment of children with intellectual disabilities remains uncertain. The present authors describe parental physical punishment towards children with intellectual disabilities and investigate its related…
Sense of Coherence and Emotional Health in Adolescents
ERIC Educational Resources Information Center
Moksnes, Unni K.; Espnes, Geir A.; Lillefjell, Monica
2012-01-01
The present paper investigates possible gender and age differences on emotional states (state depression and state anxiety) and sense of coherence (SOC) as well as the association between SOC and emotional states. The cross-sectional sectional sample consists of 1209 adolescents 13-18 years from public elementary and secondary schools in…
Oztekin, Ceyda; Tezer, Esin
2009-01-01
This study investigated the role of sense of coherence and total physical activity in positive and negative affect. Participants were 376 (169 female, 206 male, and 1 missing value) student volunteers from different faculties of Middle East Technical University. Three questionnaires: Sense of Coherence Scale (SOC), Physical Activity Assessment Questionnaire (PAAQ), and Positive and Negative Affect Schedule (PANAS) were administered to the students together with the demographic information sheet. Two separate stepwise multiple linear regression analyses were conducted to examine the predictive power of sense of coherence and total physical activity on positive and negative affect scores. Results revealed that both sense of coherence and total physical activity predicted the positive affect whereas only the sense of coherence predicted the negative affect on university students. Findings are discussed in light of sense of coherence, physical activity, and positive and negative affect literature.
Work Stressors, Health and Sense of Coherence in UK Academic Employees
ERIC Educational Resources Information Center
Kinman, Gail
2008-01-01
This cross-sectional study examined relationships between job-specific stressors and psychological and physical health symptoms in academic employees working in UK universities. The study also tests the main and moderating role played by sense of coherence (SOC: Antonovsky, 1987 in work stress process). SOC is described as a generalised resistance…
Factors related to sense of coherence in adult patients with Type 2 diabetes.
Odajima, Yuki; Sumi, Naomi
2018-02-01
The influence of a diabetic person's sense of burden and blood sugar control through sense of coherence (SOC) on self-management has yet to be sufficiently clarified. The purpose of this study was to examine the utility of salutogenesis, which has sense of coherence at its core, for the self-management of patients with type 2 diabetes. A total of 258 questionnaires were distributed to patients who were seen at one of three hospitals in an urban area in Japan, after obtaining consent from the patient. They were between 20 and 75 years old and regularly received care. Of the 185 responses, 177 were valid. The responses were analyzed by referring to the framework of salutogenesis, and the relationship between patient characteristics, SOC, the Problem Areas In Diabetes survey (PAID), and glycosylated hemoglobin (HbA1c) were studied with structural equation modeling (SEM). SOC had a main effect on PAID scores and an indirect effect on HbA1c. Moreover, age influenced SOC positively. The SOC of patients with type 2 diabetes in the present study was comparatively high. These observations suggest a direct effect of SOC on reducing the sense of burden from having diabetes and an indirect effect on decreasing HbA1c. This research suggested the possibility that diabetes can be controlled by improving SOC.
Depression and work family conflict among corrections officers.
Obidoa, Chiwekwu; Reeves, David; Warren, Nicholas; Reisine, Susan; Cherniack, Martin
2011-11-01
This article assessed work-to-family conflict (W-FC) and family-to-work conflict (F-WC) and their impact on depression among corrections officers in two correctional facilities in the United States. The sample consisted of 220 officers who completed questionnaires that included data on demographics, sense of coherence (SOC), physical health, psychosocial job characteristics, and work-family conflict. The Center for Epidemiologic Studies Depression Scale (CES-D-10) assessed depression. The mean CES-D score was 7.8 (SD = 5.2); 31% had scores of 10 or more, indicative of serious psychological distress. The SOC, W-FC, and F-WC were significantly and positively associated with depression; W-FC mediated the effects of SOC on depression. Psychosocial job characteristics were not related to depression. Depressive symptoms were high among officers, and W-FC was a critical factor contributing to psychological distress.
Cysarz, Daniel; Piwowarczyk, Apolonia; Czernikiewicz, Wiesław; Dulko, Stanisław; Kokoszka, Andrzej
2008-01-01
Assessment of body image satisfaction, sense of coherence and life satisfaction during the therapy of women with transsexualism. 27 women with transsexualism (before therapy--9; in therapy but before surgery--7; after surgery--11), in different stages of therapy and 15 women and 15 men from the control group participated in the study. The Body Image Scale, the Sense of Coherence- SOC 29 and Satisfaction with Life Scale-- SWLS. The results suggest that the increased satisfaction from the body image in the group of women with transsexualism is related with progress in therapy. Persons from the control group were significantly more satisfied form their own body image than persons with transexualism. The progress of therapy is related with the decrease of will to change the body. The mean scores on the meaningfulness subscale of Sense of Coherence Scale was significantly lower in the group of patients before the beginning of treatment than in the control group and in the group after surgery. There was no relation between the level of life satisfaction and stages of therapy.
[The sense of coherence among nurses].
Malagón-Aguilera, M Carmen; Fuentes-Pumarola, Concepció; Suñer-Soler, Rosa; Bonmatí-Tomàs, Anna; Fernández-Peña, Roser; Bosch-Farré, Cristina
2012-01-01
Through the construct "The sense of coherence" (SOC), the salutogenic model explains why people subjected to stressors are able to maintain good health. The SOC was defined by Antonovsky as a global orientation that expresses the extent to which a person has a highly internalized, permanent - but at the same time dynamic - feeling of confidence; this feeling of confidence is predictable and leads to a high probability that events will turn out well. The present article reviews the literature on the SOC in the nursing profession. The results show that the SOC is a protective factor against stressors in the work environment and in the work-life balance. Low SOC levels are associated with health problems such as burnout or depression, as well as certain personality traits. Copyright © 2012 Elsevier España, S.L. All rights reserved.
ERIC Educational Resources Information Center
Braun-Lewensohn, Orna; Sagy, Shifra; Roth, Guy
2011-01-01
Employing the salutogenic approach (Antonovsky, 1987), this pilot study aimed at exploring the mediation effect of Sense of Coherence (SOC) on the relationships between exposure to missile attacks and stress-related reactions among adolescents. A strong SOC means a tendency to see the world as more comprehensible, manageable and meaningful. Data…
Okada, Nagisa; Nakata, Akinori; Nakano, Masahiro; Sakai, Kumiko; Takai, Kiyako; Kodama, Hiromi; Kobayashi, Toshio
Many female nurses leave their jobs because of major life events. However, the mental health status and related factors among nurses who assume the roles of wives and/or mothers have been insufficiently examined. Therefore we examined the mental health levels and related factors among such nurse. We conducted a questionnaire survey on 763 female nurses working at general hospitals with over 200 beds in Fukuoka Prefecture. Of 402 responses, 108 were divided into two groups: nurses who had left because of marriage, childbirth, or childrearing (leaving group), and those who had not (non-leaving group). The following were assessed: work satisfaction level, the Brief Job Stress Questionnaire, The General Health Questionnaire (GHQ) 28, and the Sense of Coherence (SOC) scale. Results showed that nurses who had assumed the roles of wives and/or mothers had lower mental health status than general women, and nurses who retained their jobs had higher mental health status and sense of comprehensibility on the SOC scale than those who left. Multiple regression analyses using the total GHQ score as an objective variable showed that only the sense of comprehensibility on the SOC scale correlated with mental health status in the non-leaving group. For the leaving group, having support, high work and life satisfaction levels, and several work stressors were correlated. These findings strongly suggest that to maintain and improve the mental health of nurses who assume the role of wives and/or mothers, greater support, higher satisfaction, reduced stressors, and maintenance and improvement of the sense of comprehensibility are required.
Quality of life among Iranian refugees resettled in Sweden.
Ghazinour, Mehdi; Richter, Jörg; Eisemann, Martin
2004-04-01
The relationships between quality of life, psychopathological manifestations and coping related variables (coping resources, social support, sense of coherence) were examined among individuals who have perceived several severe traumata. One hundred Iranian refugees resettled in Sweden have been investigated by the Symptom Checklist (SCL-90-R), the Beck Depression Inventory (BDI), the Coping Resources Inventory (CRI), and the Interview Schedule for Social Interaction (ISSI), the Sense of Coherence Scale (SOC), and the WHOQoL-100 questionnaire in a cross-sectional study. Individuals, traumatized by combat experiences as a soldier during the war, with low BDI scores showed on average the significantly highest overall quality of life, the best physical health, the highest scores according to the sense of coherence most pronounced for "Meaningfulness," and the best availability of social integration compared to participants who did not had these experiences in combats and those with the experience but scored high in the BDI. Quality of life, coping resources, and social support were found closely related to psychopathological manifestations. Motivational orientations (highly developed Meaningfulness-SOC) and various coping competencies probably enable some traumatized individuals to resist against several traumata and to live in a good quality of life without psychopathological disturbances.
Reliability and validity of a Swedish language version of the Resilience Scale.
Nygren, Björn; Randström, Kerstin Björkman; Lejonklou, Anna K; Lundman, Beril
2004-01-01
The purpose of this study was to test the reliability and validity of the Swedish language version of the Resilience Scale (RS). Participants were 142 adults between 19-85 years of age. Internal consistency reliability, stability over time, and construct validity were evaluated using Cronbach's alpha, principal components analysis with varimax rotation and correlations with scores on the Sense of Coherence Scale (SOC) and the Rosenberg Self-Esteem Scale (RSE). The mean score on the RS was 142 (SD = 15). The possible scores on the RS range from 25 to 175, and scores higher than 146 are considered high. The test-retest correlation was .78. Correlations with the SOC and the RSE were .41 (p < 0.01) and .37 (p < 0.01), respectively. Personal Assurance and Acceptance of Self and Life emerged as components from the principal components analysis. These findings provide evidence for the reliability and validity of the Swedish language version of the RS.
Teraoka, Seitaro; Hayashida, Naomi; Shinkawa, Tetsuko; Taira, Yasuyuki; Nagai-Sekitani, Yui; Irie, Sumiko; Kamasaki, Toshihiko; Nakashima-Hashiguchi, Kanami; Yoshida, Koji; Orita, Makiko; Morishita, Michiko; Clancey, Gregory; Takamura, Noboru
2013-01-01
Psychosocial stress is generally associated with adverse health behaviors and has been linked to the development of cardiovascular diseases (CVD). Recently, an individual's sense of coherence (SOC), which is a concept that reflects the ability to cope with psychosocial stress, has been recognized as an essential component of long-term health and stress management. The association between SOC and traditional and alternative atherosclerotic markers in a community sample, however, has not been thoroughly investigated. In the present study, we evaluated stress management capability and psychological conditions using the Japanese version of the Sense of Coherence-13 (SOC-13) Scale, supplemented by the General Health Questionnaire-12 (GHQ-12) that screens for minor psychiatric disorders. The study subjects were 511 adults, median age 64 years (range 48-70), who participated in a regular medical screening program in Nagasaki Prefecture, Japan. We then correlated our findings with atherosclerotic risk factors in the same community sample, such as body mass index (BMI) and proper and regular sleeping habits. We found that close association between good stress management capability and lower BMI and/or regular sleeping habits in elderly Japanese. This provides strong evidence that BMI and sleep management are contributory to SOC. If the ability to cope with psychosocial stress is important to the prevention of CVD, then weight control and proper sleep habits must be emphasized from a psychosocial stress-management perspective as well as a physical one.
Mayer, Claude-Hélène; Viviers, Rian; Flotman, Aden-Paul; Schneider-Stengel, Detlef
2016-12-01
Sense of coherence (SOC) and mindfulness (MI) are believed to promote the health and well-being of individuals and organisations. The aim of this longitudinal study was to contribute to the literature on the development of SOC through training and interventions and thereby explore the development of these constructs in a group of senior professionals in the German Catholic Church. A sample of eight participants voluntarily enrolled for a 12-day training programme spread over a period of nine months to develop intercultural and inter-religious competencies, SOC and MI. Quantitative scores of the pre- and post-test SOC and MI questionnaires were qualitatively analysed. Results indicate that the majority of participants scored lower in the post-test on SOC and slightly higher in MI. The discussion explores the pitfalls in the development of these constructs in the study's participants and highlights the implications for theory and practice. Practical training implications for developing SOC and MI are offered.
Braun-Lewensohn, Orna; Sagy, Shifra
2011-12-01
The salutogenic theory considers sense of coherence (SOC) as a cross-cultural concept ( Antonovsky, 1987 ), meaning that in all cultures and at all stages of coping with a stressor, a person with a strong SOC is at an advantage in preventing tension from being transformed into stress. However, in seeking to understand how the SOC works, it is culture which seems to define which resources are appropriate. The aim of our paper is to examine this theoretical assumption of Antonovsky. Data on personal and community SOC as well as on stress reactions were gathered after the last fire in northern Israel (December 2010) among adolescents aged 12-18 belonging to three cultural groups (Jews, Druze, Muslims). We compared the pattern of personal versus community SOC in explaining stress reactions in the three cultures. Results indicate that personal SOC was the strongest predictor of stress reactions in all cultures. Community SOC, however, played a significant role mainly for Druze. Results are discussed relating to Antonovsky's theory and to adolescence as a 'universal' period, as well as considering the uniqueness of each culture separately.
Sense of coherence and the motivational process of the job-demands-resources model.
Vogt, Katharina; Hakanen, Jari J; Jenny, Gregor J; Bauer, Georg F
2016-04-01
This longitudinal study systematically examines the various roles played by the personal resource "sense of coherence" (SoC) in the motivational process described by the job-demands-resources model. SoC captures the extent to which people perceive their life as comprehensible, manageable and meaningful, and there is evidence of its influence in many health-related outcomes. The first aim here was to establish whether a resourceful working environment builds up SoC and whether SoC leads to work engagement. A second aim was to test reverse relationships: how work engagement leads to SoC and how SoC in turn relates to job resources. A third aim was to assess whether SoC boosts the relationship between job resources and work engagement. The study utilized a 3-wave, 3-month panel design, involving 940 employees working in a broad range of occupations and economic sectors. The results of longitudinal structural equation modeling show that job resources predict SoC and SoC predicts work engagement, suggesting a mediating role of SoC. In addition, SoC predicts job resources, suggesting reciprocal relationships between job resources and SoC. No boosting effect of SoC was found. Overall, the present findings support the view that providing employees with a resourceful working environment will help to build their SoC. The effects of SoC on perceptual, appraisal, and behavioral processes may in turn lead to enhanced job resources and positive outcomes such as greater work engagement. (c) 2016 APA, all rights reserved).
Honkinen, Päivi-Leena K; Suominen, Sakari B; Välimaa, Raili S; Helenius, Hans Y; Rautava, Päivi T
2005-01-01
Poor perceived health during childhood may affect an individual's well-being throughout life. In adult studies, sense of coherence (SOC) has been shown to be associated with perceived health. The aim of this study was to determine which factors with an emphasis on SOC and physical exercise were associated with perceived health among 12-year-old children. A total of 1,231 12-year-old school children (83%) completed a questionnaire. Most of the 37 questions had multiple-choice types of response. The questions were largely based on those used in the Health Behaviour in School-aged Children (HBSC) study coordinated by the WHO. SOC was determined using the 13-item scale developed by Antonovsky. Factors used in calculating performance at school were marks (given by the teachers, range 4-10, 10 being the best) in mathematics, native language, and first foreign language. Statistical analysis involved the use of logistic regression models and the so-called generalized estimation technique because of the multi-level study design. In a multivariate model adjusted for reported psychosomatic symptoms, insufficient physical exercise was clearly (OR 4.6) associated with poor perceived health. Other variables with significant associations (OR 1.4-1.7) were a mark below 9 in mathematics, belonging to the weakest SOC tertile, reporting of problems of perceived support from teachers, and reporting of various problems involving the class climate. Among the studied variables physical exercise was the most strongly associated with perceived health, even when several social and psychological risk factors were included in the analysis. SOC and variables of social support were also of importance.
Thygesen, Elin; Saevareid, Hans Inge; Lindstrom, Torill Christine; Nygaard, Harald A; Engedal, Knut
2009-03-01
Objectives. This study examined predisposing, enabling and need variables (Andersen's Behavioral Model) influencing the need for nursing home admission (NHA) in older people receiving home nursing care. In particular, the potential role of coping ability, measured as 'sense of coherence' (SOC), was studied. Design, sample, and measurements. A survey with baseline- and follow-up data after a 2-year period was undertaken with 208 patients aged 75+. The measures used were: gender, education, age, social visits, SOC, social provision scale (SPS), self-rated health (SRH), general health questionnaire (GHQ), clinical dementia rating (CDR), Barthel activities of daily living (ADL) index, and registered illnesses (RI). A Cox proportional model was used to examine factors that could explain risk of NHA. Results. Measures with predictive properties were Barthel ADL index, SPS, SRH, and gender. SOC, along with subjective health complaints, general health questionnaire, RI and social visits did not predict NHA. Conclusions. It is concluded that the patients' subjective evaluations of both their health and perceived social support were important predictors of future NHA needs, and should be seriously taken into consideration, along with the more commonly used objective measures of ADL and CDR. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
Association between dental caries experience and sense of coherence among adolescents and mothers.
Lage, Carolina Freitas; Fulgencio, Livia Bonfim; Corrêa-Faria, Patricia; Serra-Negra, Junia Maria; Paiva, Saul Martins; Pordeus, Isabela Almeida
2017-09-01
Sense of coherence (SOC) is associated with oral health. Investigate associations between dental caries experience and SOC among mothers and adolescents. A cross-sectional study was conducted with 1195 adolescents and their mothers. Data were collected through a questionnaire, the short version of the SOC and oral clinical examinations. The data were statistically analyzed using bivariate analysis, Poisson regression models with robust variance, and Spearman's correlation coefficient. The prevalence of dental caries experience was 41.8%. A moderate correlation was found between the SOC of mothers and adolescents (r = 0.563; P < 0.001). A higher mother's SOC (PR: 0.44; 95% CI: 0.36-0.53) and adolescent's SOC (PR: 0.46; 95% CI: 0.39-0.55) were protective factors against dental caries experience in the adolescents. The prevalence of dental caries experience was higher among adolescents with visible plaque (Model 1-PR: 1.77; 95% CI: 1.53-2.04; Model 2-PR: 1.59; 95% CI: 1.37-1.84) and those whose families were in a lower economic class (Model 1-PR: 1.56; 95% CI: 1.35-1.80; Model 2-PR: 1.57; 95% CI: 1.36-1.81). Dental caries in adolescents was associated with social determinants evaluated through the sense of coherence. © 2016 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Salutogenic factors for mental health promotion in work settings and organizations.
Graeser, Silke
2011-12-01
Accompanied by an increasing awareness of companies and organizations for mental health conditions in work settings and organizations, the salutogenic perspective provides a promising approach to identify supportive factors and resources of organizations to promote mental health. Based on the sense of coherence (SOC) - usually treated as an individual and personality trait concept - an organization-based SOC scale was developed to identify potential salutogenic factors of a university as an organization and work place. Based on results of two samples of employees (n = 362, n = 204), factors associated with the organization-based SOC were evaluated. Statistical analysis yielded significant correlations between mental health and the setting-based SOC as well as the three factors of the SOC yielded by factor analysis yielded three factors comprehensibility, manageability and meaningfulness. Significant statistic results of bivariate and multivariate analyses emphasize the significance of aspects such as participation and comprehensibility referring to the organization, social cohesion and social climate on the social level, and recognition on the individual level for an organization-based SOC. Potential approaches for the further development of interventions for work-place health promotion based on salutogenic factors and resources on the individual, social and organization level are elaborated and the transcultural dimensions of these factors discussed.
Ayo-Yusuf, Olalekan A; Reddy, Priscilla S; van den Borne, Bart W
2009-02-01
To determine the association between adolescents' sense of coherence (SOC) and their tooth-brushing behaviour. This 18-month longitudinal study involved a representative sample of 8th-graders (n = 1025) from 11 randomly selected public high schools in the Limpopo Province, South Africa. Data collected by means of a self-administered questionnaire included respondents' socio-demographic profiles, vulnerability to depression, smoking status, dental treatment attendance pattern, frequency of and motivation for tooth-brushing. Based on the responses to the question on readiness to change brushing behaviour and in line with the integrated change model, respondents were also categorized as being in the pre-contemplation, contemplation or preparation/action stages. Respondents' SOC was measured using a six-item adapted Antonovsky SOC scale. Data analysis included chi-squared analysis, t-tests and step-wise multiple logistic regression. At baseline, 72.6% (n = 744) of the respondents reported that they were not consistently brushing twice daily. Of those who did not brush twice daily and were followed up on (n = 578), those living with their mother at baseline not only presented with a greater increase in their SOC over time (follow-up minus baseline), but they were also more likely to be brushing twice daily at the time of the follow-up (15.4% versus 10.6%; P = 0.04). Adding baseline intention state to a multivariate model attenuated the influence of baseline SOC to a statistically insignificant level. However, increasing within-subject SOC changes (beta = 0.16; P < 0.01), living with the mother (beta = 0.11; P < 0.05), smoking (beta = -0.14; P < 0.05), being depression vulnerable (beta = -0.23; P < 0.01) and in the preparation/action stage (beta = 0.13; P < 0.05) remained associated with the transition to twice-daily tooth-brushing. In planning oral health promotion interventions, it should be considered that children's psychological predisposition and family environment might significantly influence their tooth-brushing behaviour.
Togari, Taisuke; Sato, Miho; Otemori, Reika; Yonekura, Yuki; Yokoyama, Yukari; Kimura, Miyako; Tanaka, Wako; Yamazaki, Yoshihiko
2012-06-01
Children in early adolescence and their mothers were studied to clarify the association between a child's sense of coherence (SOC) and its mother's SOC, the quality of family relationships as gauged by the mother, and the child's positive life experiences at home. An anonymous self-administered group questionnaire was given to all 1540 students of a high school in Tokyo, and a similar questionnaire was sent by mail to their legal guardians. Responses were received from 1505 students (response rate: 97.7%) and 989 legal guardians (response rate: 64.2%); questionnaires completed by legal guardians who were the mothers of the students were paired with the corresponding child's questionnaire. The SOC scores of mothers and students were calculated, and hierarchical multiple regression analysis was performed with the student's SOC as a dependent variable. Results for boys revealed that a mother's SOC was directly related to the child's SOC, regardless of family relationships and participation in decision-making at home. For girls, a mother's SOC was related to family relationships and was indirectly related to the child's SOC through the child's participation in decision-making at home. Results revealed that for both boys and girls, a mother's SOC had an effect on the child's SOC, and this corroborates the hypothesis of Antonovsky.
García-Moya, Irene; Suominen, Sakari; Moreno, Carmen
2014-10-01
The aim of this study was to examine the prevalence of bullying victimization and its impact on physical and psychological complaints in a representative sample of adolescents and to explore the role of sense of coherence (SOC) in victimization prevalence and consequences. A representative sample of Spanish adolescents (N = 7580, mean age = 15.41) was selected as part of the Health Behaviour in School-aged Children study. Bullying victimization, physical and psychological symptoms, and SOC were measured, and comparisons were made between strong- and weak-SOC adolescents regarding their likelihood of being a victim of bullying and the negative effects of bullying victimization on their health. Weak-SOC adolescents were significantly more likely to suffer from bullying victimization regardless of type (nonphysical vs physical and nonphysical) or means (traditional vs cyberbullying). In addition, bullying victimization showed significant increasing effects on weak-SOC adolescents' physical and psychological symptoms whereas in strong-SOC adolescents it was not significantly associated with increases in physical complaints and its effects on psychological complaints seemed to be weaker. Weak-SOC adolescents seem to be at higher risk of becoming bullying victims and victimization experiences appear to have increased negative effects on them when compared to strong-SOC students. © 2014, American School Health Association.
Sense of coherence and diabetes: a prospective occupational cohort study.
Kouvonen, Anne M; Väänänen, Ari; Woods, Stephen A; Heponiemi, Tarja; Koskinen, Aki; Toppinen-Tanner, Salla
2008-02-06
Sense of coherence (SOC) is an individual characteristic related to a positive life orientation leading to effective coping. A weak SOC has been associated with indicators of general morbidity and mortality. However, the relationship between SOC and diabetes has not been studied in prospective design. The present study prospectively examined the relationship between a weak SOC and the incidence of diabetes. The relationship between a weak SOC and the incidence of diabetes was investigated among 5827 Finnish male employees aged 18-65 at baseline (1986). SOC was measured by questionnaire survey at baseline. Data on prescription diabetes drugs from 1987 to 2004 were obtained from the Drug Imbursement Register held by the Social Insurance Institution. During the follow-up, 313 cases of diabetes were recorded. A weak SOC was associated with a 46% higher risk of diabetes in participants who had been = <50 years of age on entry into the study. This association was independent of age, education, marital status, psychological distress, self-rated health, smoking status, binge drinking and physical activity. No similar association was observed in older employees. The results suggest that besides focusing on well-known risk factors for diabetes, strengthening SOC in employees of = <50 years of age can also play a role in attempts to tackle increasing rates of diabetes.
Kimura, Miyako; Yamazaki, Yoshihiko
2016-09-01
Although sense of coherence (SOC) moderates parental stress, the relationship between SOC, parental mental health and physical punishment of children with intellectual disabilities remains uncertain. The present authors describe parental physical punishment towards children with intellectual disabilities and investigate its related demographic characteristics, SOC and parental mental health. With the cooperation of Tokyo's 10 special needs schools, the present authors obtained 648 questionnaire responses from parents of children with intellectual disabilities. Of the parents, 69.7% reported having physically punished their children with intellectual disabilities. This was positively associated with parents' younger age, poorer mental health, lower SOC, children's younger age, birth order (firstborns) and disability type (autism/pervasive developmental disorder). This is the first study supporting the relationship between SOC, mental health and physical punishment use among parents of children with intellectual disabilities. It may assist the development of strategies to prevent physical abuse of children with disabilities. © 2015 John Wiley & Sons Ltd.
Turró Garriga, Oriol; Farrés Costa, Sílvia; Pérez Terré, Albert; Batlle Amat, Pau
2018-02-24
The care of dependent persons is arduous, and requires time, energy, and physical effort on the part of caregivers. Personal characteristics, such as the sense of coherence (SOC), can influence the perceived burden and care giving. To determine the impact of SOC on the perceived burden and to determine if these characteristics are associated with adherence to a psycho-educational program for informal caregivers. Prospective observational study of caregivers of dependent persons participating in the 'School of Caregivers', a psycho-educational program for family and paid caregivers. An analysis was made of the SOC-13 items and the results of the Zarit Burden Interview. The relationship between the SOC and the adherence to the program (≥50% sessions) was also analysed. The study included 96 participants, with 71.9% family carers. The higher burden was associated with a lower SOC meaningfulness factor (β=-0.388; P=.002), and to be a relative vs. paid carer (β=-0.300; P=.010). Just over half (52.1%) of carers completed 50% or more sessions, and in the case of the relatives, this adherence increased by higher SOC (OR: 1.1, P=.034), and lower burden (OR: 0.95, P=.032). The lack of adherence of paid caregivers was not associated with any of the analysed variables. The sense of coherence and mainly the meaning, is a characteristic to take into account for the adaptation of interventions in caregivers and provide them with greater equity working more on the people who need it the most (lower SOC and greater burden). Copyright © 2018 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.
Psychological and socio-demographic data contributing to the resilience of holocaust survivors.
Fossion, Pierre; Leys, Christophe; Kempenaers, Chantal; Braun, Stéphanie; Verbanck, Paul; Linkowski, Paul
2014-01-01
The authors provide a within-group study of 65 Former Hidden Children (FHC; i.e., Jewish youths who spent World War II in various hideaway shelters across Nazi-occupied Europe) evaluated by the Hopkins Symptom Check List (HSCL), the Sense of Coherence Scale (SOCS), the Resilience Scale for Adults (RSA), and a socio-demographic questionnaire. The aim of the present article is to address the sensitization model of resilience (consisting in a reduction of resistance to additional stress due to previous exposure to trauma) and to identify the family, psychological, and socio-demographic characteristics that predict resilience among a group of FHC. The RSA score is negatively correlated with the number of post-war traumas and positively correlated with the SOCS score. FHC who have children present a higher RSA score than FHC who have no children. RSA global score negatively and significantly predicts HSCL score. In a global multivariate model, and in accordance with the sensitization model, the number of post-war traumas negatively predicts the RSA score. Moreover, the SOCS score and the number of children positively predict it. Therapeutic implications are discussed, limitations are considered, and further investigations are proposed.
Zeidner, Moshe; Aharoni-David, Eynat
2015-01-01
This study explores the nexus of relationships between memories of Holocaust-related early traumatic events, survivors' sense of coherence (SOC), and subjective well-being (SWB) in late life. The basic design of this study, based 106 survivors (54% female), was cross-sectional. Participants underwent an extensive in-depth clinical interview relating to their Holocaust experiences and responded to measures of SOC and SWB. These data provided no evidence for the moderating or "buffering" effect of SOC but showed support for indirect effects of SOC in the relationship between memory traces of specific traumatic experiences and adaptive outcomes. The results of the present study provide support for Antonovsky's salutogenic perspective. It is highly plausible that survivors who underwent severe experiences during the Holocaust period were forced to call upon all their inner strengths and coping resources,and that their success in doing so and also surviving this horrendous period, might have contributed to the development of a stronger sense of meaning and coherence, which, in turn lead to a better sense of mental health as they approach the final season of their lives.
Urakawa, Kayoko; Yokoyama, Kazuhito
2009-10-01
To examine if sense of coherence (SOC) can reduce the adverse effects of job stress on mental health status, self-administered questionnaires were distributed among 740 workers in a manufacturing industry. The questionnaire contained SOC, Job Content Questionnaire (JCQ), and General Health Questionnaire (GHQ-12). Complete answers were recovered from 466 workers (62.8%), consisting of 387 males and 79 females, with ages of 45.1 + or - 12.0 yr, and used for the analysis. The logistic regression analysis revealed the followings: Both for males and females, high GHQ was significantly associated with scores on SOC and JCQ job demand subscale, i.e. the mental health status was adversely related to job demand whereas it was positively associated with SOC. Similarly, the mental health status was affected adversely by managerial work in males, whereas was positively by co-workers support in females. Thus, high SOC enables workers to cope with their job demand, which is a potent job stressor, indicating that SOC is an important factor determining their coping ability to job stress for both genders. Male managerial employees may cope with their strong job stress because of high SOC, protecting their mental health status. Social support seems also significant for prevention of mental well-being of female workers from work-related stressors.
Glück, Tobias M; Tran, Ulrich S; Raninger, Simone; Lueger-Schuster, Brigitte
2016-03-01
Sense of Coherence (SOC) and mindfulness are known protective factors against psychopathology, also in older age. We set out to investigate the influence of SOC and mindfulness on posttraumatic symptoms and cognitions in the context of lifetime trauma in elderly persons with a history of childhood war-experiences. Elderly Austrians (N = 97) filled in questionnaires on traumatic lifetime experiences and posttraumatic symptoms (ETI), posttraumatic cognitions (PTCI), SOC (SOC-13) and mindfulness (FFMQ). We expected the influence of SOC scores on posttraumatic symptoms and cognitions to be on one hand influenced by mindfulness. On the other hand, we expected that both aspects would uniquely explain fewer posttraumatic symptoms and cognitions. Participants reported various lifetime traumas (M = 2.42), including experiences during World War II (WWII) as children and adolescents. Mindfulness partially mediated the association of SOC scores with posttraumatic cognitions, but not with posttraumatic symptoms. However, in a two-stage mediation model, mindfulness significantly predicted posttraumatic symptoms via its effects on posttraumatic cognitions. Although SOC was the strongest predictor of posttraumatic symptoms, mindfulness influenced the severity of posttraumatic symptoms via its effects on posttraumatic cognitions. We discuss implications for mindfulness-based interventions on trauma-related cognitions in the elderly.
A sense of coherence and health. Salutogenesis in a societal context: Åland, a special case?
Eriksson, Monica; Lindström, Bengt; Lilja, John
2007-01-01
Background Antonovsky's salutogenic concept of a sense of coherence (SOC) has proved most influential in the way that health is now perceived. Aim To (1) describe the distribution of SOC among 40–70‐year‐old Ålanders; (2) examine the distribution of depression in Åland, Finland, and its relationship with SOC; and (3) discuss the findings within a salutogenic framework in a societal context. Design A cross‐sectional study design was adopted. Antonovsky's SOC Questionnaire (13 items) and the Beck Depression Inventory (13 items) were used. In addition, in a separate questionnaire, sociodemographic information about each participant was sought, together with a question specific to this study and designed to measure self‐rated health. Setting Åland, an autonomous island province of Finland. Results The proportion of respondents reporting good health was high (64%). The overall mean (SD) SOC was 70.7 (11.7) points, whereas for farmers and fishermen it was 73.88 (8.8) and 74.33 (9.2) points, respectively. SOC was significantly and strongly related to the self‐rated health score. The higher the SOC, the better was the health of the respondents. Furthermore, the study provided clear evidence of the potential of the SOC concept as a positive mental health indicator. Conclusion The SOC seems to be a health‐promoting resource that supports the development of a positive subjective state of health. PMID:17630366
Eli, Karin; Sorjonen, Kimmo; Mokoena, Lincoln; Pietrobelli, Angelo; Flodmark, Carl-Erik; Faith, Myles S; Nowicka, Paulina
2016-10-01
Sense of Coherence (SOC) measures an individual's positive, or salutogenic, orientation toward her/his capacities, environment, future, and life. SOC comprises three factors: comprehensibility (the sense of one's own life as ordered and understandable); manageability (the perception of available resources and skills to manage stressors); and meaningfulness (the overall sense that life is filled with meaning and purpose). In numerous studies, SOC has been associated with resilience to stress. However, associations between parental SOC and controlling feeding practices have yet to be studied. This study examines the validity of the SOC 13-item, 3-factor questionnaire, associations between SOC and maternal and child characteristics, and associations between SOC and use of pressuring or restrictive feeding, among mothers of 4-year-olds. 565 mothers (23.5% of foreign origin, 30.3% with overweight/obesity) recruited via the Swedish population registry (response rate: 65%), completed the SOC-13, the Child Feeding Questionnaire (CFQ), and a background questionnaire. The validity of SOC-13 was examined using confirmatory factor analysis; associations with background characteristics and feeding practices were tested with structural equation modeling. SOC-13 validity testing showed acceptable fit (TLI = 0.93, CFI = 0.94, RMSEA = 0.06, SRMR = 0.04) after allowing one pair of error terms to correlate. The Cronbach's alpha for meaningfulness was 0.73, comprehensibility 0.76, and manageability 0.75. SOC increased with mothers' Swedish background and education, and decreased with higher BMI. Child gender, age, and BMI, were not associated with SOC. Lower SOC was associated with controlling practices and with concern about child weight and eating. The associations between SOC and feeding suggest that SOC-related parameters could inform childhood obesity research, and that prevention should address the socioeconomic barriers that parents face in building resilience to stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fossion, Pierre; Leys, Christophe; Vandeleur, Caroline; Kempenaers, Chantal; Braun, Stéphanie; Verbanck, Paul; Linkowski, Paul
2015-01-15
The psychological transmission of the noxious effects of a major trauma from one generation to the next remains unclear. The present study aims to identify possible mechanisms explaining this transmission among families of Holocaust Survivors (HS). We hypothesized that the high level of depressive and anxiety disorders (DAD) among HS impairs family systems, which results in damaging coping strategies of their children (CHS) yielding a higher level of DAD. 49 CHS completed the Resilience Scale for Adults, the Hopkins Symptom Check List-25, the 13-Item Sense of Coherence (SOC) scale, and the Family Adaptability and Cohesion Scale. We test a mediation model with Family types as the predictor; coping strategies (i.e. Resilience or SOC) as the mediator; and DAD as the outcome variable. Results confirm that the CHS׳ family types are more often damaged than in general population. Moreover, growing in a damaged family seems to impede development of coping strategies and, therefore, enhances the occurrence of DAD. The present investigation is correlational and should be confirmed by other prospective investigations. At a theoretical level we propose a mechanism of transmission of the noxious effects of a major trauma from one generation to the next through family structure and coping strategies. At a clinical level, our results suggest to investigate the occurrence of trauma among parents of patients consulting for DAD and to reinforce their coping strategies. Copyright © 2014 Elsevier B.V. All rights reserved.
Soil organic carbon across scales.
O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B
2015-10-01
Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management. © 2015 John Wiley & Sons Ltd.
Strengthening sense of coherence: opportunities for theory building in health promotion.
Super, S; Wagemakers, M A E; Picavet, H S J; Verkooijen, K T; Koelen, M A
2016-12-01
Sense of coherence (SOC) reflects a coping capacity of people to deal with everyday life stressors and consists of three elements: comprehensibility, manageability and meaningfulness. SOC is often considered to be a stable entity that is developed in young adulthood and stabilizes around the age of 30. Recent studies have questioned this stability of SOC and some studies report on interventions that have been successful in strengthening SOC in adult populations. Currently, however, there is no clear understanding of the mechanisms underlying SOC. As a consequence, it is a challenge to determine what is needed in health promotion activities to strengthen SOC. This article aims to explore the mechanisms underlying SOC as these insights may underpin future health promotion efforts. An exploration of the salutogenic model suggests two important mechanisms: the behavioural and the perceptual. The behavioural mechanism highlights the possibility to empower people to use their resources in stressful situations. The perceptual mechanism suggests that, in order for people to deal with life stressors, it is essential that they are able to reflect on their understanding of the stressful situation and the resources that are available. Based on these mechanisms, we suggest that both empowerment and reflection processes, which are interdependent, may be relevant for health promotion activities that aim to strengthen SOC. The successful application of resources to deal with stressors is not only likely to have a positive influence on health, but also creates consistent and meaningful life experiences that can positively reinforce SOC levels. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bernabé, Eduardo; Kivimäki, Mika; Tsakos, Georgios; Suominen-Taipale, Anna L; Nordblad, Anne; Savolainen, Jarno; Uutela, Antti; Sheiham, Aubrey; Watt, Richard G
2009-08-01
This study assessed the independent and interactive associations between sense of coherence (SOC) and socio-economic status (SES) with oral health-related behaviours. Data from 5,399 dentate adults regarding their demographic characteristics, years of education, SOC score, and oral health-related behaviours were analysed. Household income was obtained from tax authorities. Logistic regression was used to test the adjusted association of SOC with each behaviour and to test the statistical interaction between each SES indicator and the SOC score. Subjects were 1.20 [95% confidence interval (95% CI): 1.11-1.28] and 1.22 (95% CI: 1.12-1.32) times more likely to visit dentists regularly for check-ups and to brush their teeth twice daily or more often, respectively, and were 1.11 (95% CI: 1.03-1.20) and 1.21 (95% CI: 1.12-1.32) times less likely to be daily smokers and to consume sugar-added products on a daily basis, respectively, for every unit increase in SOC score. The findings provide strong support for an association between higher levels of SOC and more favourable oral health-related behaviours, independently of current SES and demographic characteristics of the participants and across the four behaviours assessed. By contrast, the findings give limited support for the moderating role of SOC on the relationship between SES and oral health-related behaviours.
Is sense of coherence a predictor of lifestyle changes in subjects at risk for type 2 diabetes?
Nilsen, V; Bakke, P S; Rohde, G; Gallefoss, F
2015-02-01
To determine whether the sense of coherence (SOC) could predict the outcome of an 18-month lifestyle intervention program for subjects at risk of type 2 diabetes. Subjects at high risk of type 2 diabetes mellitus were recruited to a low-intensity lifestyle intervention program by their general practitioners. Weight reduction ≥ 5% and improvement in exercise capacity of ≥ 10% from baseline to follow-up indicated a clinically significant lifestyle change. SOC was measured using the 13-item SOC questionnaire. The study involved 213 subjects with a mean body mass index of 37 (SD ± 6). Complete follow-up data were obtained for 131 (62%). Twenty-six participants had clinically significant lifestyle changes. There was a 21% increase in the odds of a clinically significant lifestyle change for each point increase in the baseline SOC score (odds ratio = 1.21; confidence interval = 1.11-1.32). The success rate was 14 times higher in the highest SOC score tertile group compared with the lowest. High SOC scores were good predictors of successful lifestyle change in subjects at risk of type 2 diabetes. SOC-13 can be used in daily practice to increase clinical awareness on the impact of mastery on the outcome of life-style intervention programs. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
[Protective factors for anxiety and depression in thyroid cancer patients].
Tagay, Sefik; Senf, Wolfgang; Schöpper, Nicole; Mewes, Ricarda; Bockisch, Andreas; Görges, Rainer
2007-01-01
Depression and anxiety are the most common mental symptoms in patients with thyroid cancer (DTC) and have an important influence on the quality of life. The aim of the current study was to identify protective factors of depression and anxiety in DTC patients. In a cross-sectional study 230 DTC patients were examined with Hospital Anxiety and Depression Scale (HADS-D), the Sense of Coherence Scale (SOC-13) and the Questionnaire of Social Support (F-SOZU). Depression correlated highly significantly with anxiety (r = .633, p = 0,001). Social support and sense of coherence correlated highly significantly negative with depression as well as with anxiety (both p < or = 0,001). Although still significant, the correlation between age and anxiety was lower (r = -.19; p < or = 0,005). The TSH level as an indicator of hypothyreodism did not correlate with depression or with anxiety on a significant statistical level. Furthermore, variables such as education, religiosity and elapsed time interval since initial diagnosis were not correlated with depression and anxiety. Our results support the thesis that low social support and low sense of coherence enhance vulnerability to depressive and anxiety symptoms.
Świtaj, Piotr; Grygiel, Paweł; Chrostek, Anna; Nowak, Izabela; Wciórka, Jacek; Anczewska, Marta
2017-09-01
To elucidate the mechanism through which internalized stigma reduces the quality of life (QoL) of people with mental illness by exploring the mediating roles of self-esteem and sense of coherence (SOC). A cross-sectional analysis of 229 patients diagnosed with schizophrenia or affective disorders was undertaken to test a sequential mediation model assuming that more severe internalized stigma is related to lower self-esteem, which is associated with weaker SOC, which in turn relates to worse QoL. The proposed model was supported by the data. A sequential indirect effect from internalized stigma to QoL via self-esteem and SOC turned out to be significant [beta = -0.06, SE = 0.02; 95% CI (-0.11, -0.03)]. Support was also found for simple mediation models with either self-esteem or SOC as single mediators between internalized stigma and QoL. Self-esteem and SOC are personal resources that should be considered as potential targets of interventions aiming to prevent the harmful consequences of internalized stigma for the QoL of people receiving psychiatric treatment.
Maternal Personal Resources and Children's Socioemotional and Behavioral Adjustment
ERIC Educational Resources Information Center
Al-Yagon, Michal
2008-01-01
The study examined the role of three maternal personal resources [sense of coherence (SOC), attachment style, and social/emotional feelings of loneliness] in explaining children's socioemotional adjustment (self-rated loneliness and SOC, and mother-rated child behavior) and children's (self-rated) secure attachment. The sample included 58…
Sense of coherence modifies the effect of overtime work on mental health.
Ohta, Masanori; Higuchi, Yoshiyuki; Yamato, Hiroshi; Kumashiro, Masaharu; Sugimura, Hisamichi
2015-01-01
In the occupational health field, it is important to know how workload influences mental health. Overtime work and job strain appear to affect the mental health status of workers. Sense of coherence (SOC) may mediate the relationship between work stress and mental health. Since SOC represents a personal ability to manage psychological stressors, we hypothesized that a strong SOC would modify the adverse effect of an objective measure of overtime work on mental health. A total of 1,558 Japanese workers employed in an information technology company were asked to complete a 3-item SOC Questionnaire and 28-item General Health Questionnaire (GHQ) to assess mental health status. Workload was assessed by the actual amount of overtime work hours recorded by the company. Multiple regression analysis revealed a main effect of overtime work (β=0.08, p=0.0003) and SOC scores (β=0.41, p <0.0001) on GHQ scores. There was a tendency toward interaction between overtime work and SOC scores (β=0.05, p=0.051). Simple slope analysis supported this association (-1 SD below the mean, simple slope=0.04, SE=0.01, p < 0.0001; +1 SD above the mean, simple slope=0.01, SE=0.01, p=0.188). These results suggest that SOC buffers the mental health impacts of workload as measured by an objective index of overtime work, and should be considered when assessing the effects of workload on mental health.
More similarities than differences between men and women with irritable bowel syndrome.
Björkman, I; Jakobsson Ung, E; Ringström, G; Törnblom, H; Simrén, M
2015-06-01
Differences regarding symptoms, coping abilities, and quality of life (QOL) between men and women with irritable bowel syndrome (IBS) have been reported but data are sparse and sometimes conflicting. The aim of present study was to investigate gender differences in gastrointestinal, extra-intestinal, and psychological symptoms, and sense of coherence (SOC) and QOL in a large group of patients diagnosed with IBS. We analyzed questionnaire data from 557 patients (152 men) diagnosed with IBS consecutively included in studies at an outpatient clinic for functional bowel disorders between 2002 and 2010. Following questionnaires were included: IBS severity scoring system (IBS-SSS), Hospital Anxiety and Depression Scale (HAD), IBSQOL Scale, Visceral Sensitivity Index (VSI), SOC Scale, Bristol Stool Form Scale (BSFS), and Patient Health Questionnaire (PHQ-15). Women had harder stools (FDR-adjusted p-value: q = 0.033), more severe bloating (q = 0.020), higher symptom severity (q = 0.042), higher total somatic symptom burden (q = 0.035), lower SOC (q = 0.042), and lower QOL. Women rated more general anxiety (q = 0.017) and gastrointestinal-specific anxiety (q = 0.042), but there were no group differences in depression, pain, stool frequency, impact on daily life, dissatisfaction with bowel habit, or extra-colonic symptoms. The differences found were small (effect sizes: r < 0.3). In this study, we demonstrated more similarities than differences between men and women with IBS. The largest difference were seen for QOL which might reflect certain structural stressors to which women in general are more exposed than men. © 2015 John Wiley & Sons Ltd.
Mitnik, Inbal; Lev-Ari, Shahar
2015-01-01
"The Work" is a meditative technique developed by Byron Katie in 1986 and is practiced by hundreds of thousands of people in more than 30 countries. The technique trains individuals to identify the thoughts that cause stress and suffering in a systematic and comprehensive way and to meditatively "investigate" these thoughts, thus enabling them to experience a different interpretation of reality. The current study aimed to assess the effect of "The Work" meditation on psychological scales among a non-clinical sample. This was a prospective research study conducted without a control group. The intervention consisted of a 9-day workshop of "The Work" meditation technique. Fifty-eight participants completed the following questionnaires before and after the intervention: satisfaction with life (SWLS), sense of coherence (SOC), general well-being (MHI), self-esteem (SES) and demographics. A significant improvement was obtained in all measures after "The Work" intervention: SWLS (21.6 to 25.07, p<0.001); SOC-comprehensibility subscale (4.05 to 4.55, p<0.001), SOC-manageability subscale (4.39 to 4.9, p<0.001) and meaningfulness subscale (4.58 to 5.07, p<0.001); SES (17.61 to 21.56, p<0.001); General wellbeing-well-being subscale (4.34 to 4.87, p<0.001) and distress subscale (3.42 to 2.79, p<0.001). A sense of coherence is an important resource for coping with challenging life events and promoting well-being and health. This resource can be influenced by mind-body interventions. Satisfaction with life is a subjective judgment of satisfaction with one's life in relation to one's own unique criteria. It is a central resource in mental and physical health promotion. "The Work" meditation technique includes cognitive conceptualization and processes, which may have contributed to the increase demonstrated in this scale. Psychological well-being scales also improved--a finding which has health, social and economic implications in the general population. The findings of the current study should be evaluated in light of its limitations, mainly the lack of a control group. The current pilot study shows the potentially beneficial effects of "The Work" technique as a method of intervention for improving results on psychological scales and promoting mental health among the general population. Future randomized controlled studies should examine the effectiveness of "The Work" intervention in this population.
NASA Astrophysics Data System (ADS)
Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang
2017-03-01
The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y2O3), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y2O3), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.
Maass, Ruca; Lindstrøm, Bengt; Lillefjell, Monica
2014-01-01
Background Health and conditions for health are unevenly distributed across neighbourhoods. Within a salutogenic perspective, neighbourhood-resources can be internalised, and become generalised resistance resources. This paper aims to examine whether the neighbourhood could be a supportive arena for health-promotion, and for whom. Design and Methods A cross-sectional study, based on register data from the population-survey in Malvik, Norway, (N=865) was conducted. Using multiple regression analysis, total sample and sub-group analyses (men/women, low/high earners, employed/unemployed) of 5 independent neighbourhood-measures (overall satisfaction, neighbourhood Social Capital, satisfaction with availability and quality of neighbourhood-resources, and neighbourhood participation) on Sense of Coherence (SOC) and health respectively were obtained. Results Overall satisfaction (β=0.153) and neighbourhood social capital (β=0.134) emerged as the most consistent partial correlates of SOC across groups. In turn, SOC was the strongest coefficient for health-outcomes (β=0.238). Neighbourhood participation had more consistent correlations with health than SOC across groups. Group-differences became visible in proportions of explained variance in SOC (varying from 7 to 23.7%) and health (varying from 6.7 to 20.6%), and in the relative importance of neighbourhood-variables. Satisfaction with quality of neighbourhood-resources was significantly related to SOC in non-workers (β=0.451) and low-earners (β=0.261), and health-outcomes in women (β=0.143). Conclusions Health might be promoted in the neighbourhood mainly through strengthening SOC, and deprived groups, especially non-workers, may benefit most from health-promotion in the neighbourhood. Findings suggest that high satisfaction with quality can contribute to better health-outcomes for groups with weaker average SOC. The proposed theoretical framework is only partly supported. Significance for public health The creation of health-promoting settings has been outlined as one of the main strategies ahead by the Ottawa-charter. Findings from this study suggest that health can be promoted through the neighbourhood, both through strengthening Sense of coherence (SOC), and providing resources for health-promotion. It is suggested that the neighbourhood might be of benefit for promoting health in groups which might be otherwise hard to reach, such as people outside the work-force. Moreover, investigating the relationships between various perceptions of neighbourhood-resources and SOC/health across groups allows for developing strategies for positive change, including improving quality of neighbourhood-resources, and facilitating neighbourhood participation. PMID:25170510
Kimhi, Shaul; Eshel, Yohanan; Zysberg, Leehu; Hantman, Shira; Enosh, Guy
2010-01-01
This study investigated the role of sense of coherence (SOC) as a mediator between demographic attributes of individuals (gender, age, economic situation, and exposure to traumatic events during the war) and two war outcomes (postwar stress symptoms and perceived posttraumatic recovery). The participants were 870 adults (ages ranged between 20 and 85), who were affected by the Second Lebanon War and were evacuated from their home town. They were administered the research questionnaire approximately one year after this war. Path analysis indicated the following: gender, age, economic situation, and exposure were significantly associated with level of symptoms as well as perceived recovery. However, three of these connections (age, economic, and exposure) were partially mediated by SOC which was linked with lower levels of stress symptoms and higher levels of perceived posttraumatic recovery. Unlike our hypothesis, exposure by age interaction was not significantly associated with SOC and the two war outcomes. Results supported the hypotheses that SOC mediates between demographic characteristics and negative (symptoms) as well as positive (perceived recovery) war outcomes.
Stress and medicine use for headache: does sense of coherence modify the association?
Koushede, Vibeke; Holstein, Bjørn E; Andersen, Anette; Hansen, Ebba Holme
2011-10-01
Medicine use as a strategy for coping with daily stressors is an under-studied issue. Studies show that stress is associated with use of over-the-counter medicine, but the underlying mechanisms are not well understood. The aim of this study was to examine whether sense of coherence (SOC) modifies the association between perceived stress and medicine use for headache. National cross-sectional study in Denmark. men and women aged 25-44 years, n = 990. The survey was conducted by web-based questionnaires and telephone interviews. The outcome measure was medicine use for headache. The independent variable was perceived stress. SOC and gender were investigated as moderators. Social class, headache prevalence and severity, and response method were included as co-variates. Our study showed that SOC modified the association between stress and medicine use for headache (only statistically significant among women). The odds for medicine use among women who felt stressed were 2.30 (1.39-3.79) compared to women who did not feel stressed; among men who felt stressed the equivalent odds were 1.46 (0.80-2.66). In analysis stratified by SOC, the odds for medicine use when stressed were 2.09 (0.71-6.21) among women with high SOC, 2.21 (1.10-4.41) among women with medium SOC and 3.69 (1.09-12.47) among women with low SOC. The equivalent odds for men were 1.29 (0.33-5.04), 1.33 (0.59-3.04) and 2.47 (0.57-10.64), respectively. SOC modifies the association between stress and medicine use especially among women. Individuals with fewer coping resources may be more likely to use medicine beyond indication to treat stress.
Kimura, Miyako; Yamazaki, Yoshihiko
2016-12-01
We investigated predictors of mental health and positive change among mothers of children with intellectual disabilities in Japan based on the concept of the Double ABCX model. We used variables of having a child with autism spectrum disorder (ASD) and dissatisfaction with systems as stressors, availability of social support and social capital (SC) as existing resources, sense of coherence (SOC) as appraisal of the stressor, and mental health and positive change as adaptation. A self-administered questionnaire was distributed to 10 intellectual disability-oriented special needs schools in Tokyo, and obtained 613 responses from mothers of children under age 20 attending these schools. The results showed that our Double ABCX model explained 46.0% of the variance in mothers' mental health and 38.9% of the variance in positive change. The most powerful predictor of this model was SOC, and SC may be directly and indirectly related to maternal mental health and positive change through mothers' SOC. Increasing opportunity for interaction between neighbors and family of children with disabilities may be one effective way to enhance SOC through SC. Since maternal SOC, SC, mental health, and positive change were significantly correlated with each other, synergy among these elements could be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stress Factors Associated With Burnout Among Attending Physicians: A Cross-Sectional Study.
Kawamura, Yurika; Takayashiki, Ayumi; Ito, Makoto; Maeno, Takami; Seo, Emiko; Maeno, Tetsuhiro
2018-03-01
Burnout in attending physicians is a crucial issue that may negatively impact patient outcomes, as well as affect the quality of training provided to residents. To investigate the association between burnout and stress-coping ability, we conducted a cross-sectional study of attending physicians. From April 2013 to March 2014, we distributed an anonymous, self-administered questionnaire to 1,897 attending physicians who attended teaching-related training sessions and workshops. The questionnaire included the Maslach Burnout Inventory General Survey (MBI-GS, Japanese version) to evaluate burnout; the sense of coherence scale (SOC, Japanese version) to measure stress-coping ability, with higher scores indicating higher stress-coping ability; the Brief Scales for Job Stress (BSJS) to assess stress and buffering factors; demographic factors; mean weekly working hours; and factors related to instructing residents. The MBI-GS was used to determine the presence of physician burnout. Subjects were divided into tertiles based on SOC scores. We conducted logistic regression analysis of burnout using the following independent variables: physician experience, sex, mean weekly working hours, SOC group, mental workload, and reward from work. Of the 1,543 (81.3%) attending physicians who responded, 376 did not meet the inclusion criteria and 106 had missing data, thus 1,061 (55.9%) were analyzed. The prevalence of burnout was 17.2%. Physicians with burnout had significantly fewer years of experience as a doctor (P < 0.01), were more likely to be female (P < 0.01), worked more hours per week (P < 0.01), and had a lower SOC score (P < 0.01) than physicians without burnout. On the BSJS, the mean score of all stress factors was higher and that of buffering factors was lower in physicians with burnout (P < 0.01). The percentages of physicians with burnout were 35.7%, 12.8%, and 3.2% in the low, middle, and high SOC groups, respectively (P < 0.01). Using the high SOC group as a reference, the adjusted odds ratio for burnout in the low SOC group was 4.7 (95% confidence interval: 2.31 - 9.63) (P < 0.01). In this study, burnout among attending physicians was significantly associated with SOC scores after adjustment for stress factors and buffering factors.
The sense of coherence and risk of injuries: role of alcohol consumption and occupation.
Poppius, E; Virkkunen, H; Hakama, M; Tenkanen, L
2008-01-01
To test the hypothesis that individuals with a strong sense of coherence (SOC) have a decreased incidence of external cause injuries and to study the role of alcohol consumption and occupational category in that association. Participants of the Helsinki Heart Study were followed up for injuries for eight years through the national hospital discharge register and cause of death statistics. Cox proportional hazards models were used to calculate the relative risks. The Helsinki Heart Study, a clinical trial to prevent coronary heart disease. 4405 Finnish middle-aged employed men. The SOC was inversely associated with the risk of injuries, with a significant 25% lower incidence in the highest tertile of SOC (7.6 per 1000 person-years) compared with the lowest (10.2 per 1000 person-years). The association remained significant if adjusted for age, but not if adjusted additionally for alcohol consumption or occupation. When considered jointly with occupational category, the injury risk showed a decreasing trend (p = 0.02) with increasing SOC among blue collar but not among white collar workers. The use of alcohol had a great impact on injury risk among those with weak SOC, with incidences of 7.7, 10.2, and 14.9 per 1000 person-years in the non/light, medium, and heavy categories of consumption (p for trend 0.01). No such trend was seen in other SOC tertiles. There was an effect of SOC on the incidence of injury especially among blue collar workers. A substantial part of the effect was mediated by alcohol consumption.
Vanguelova, E I; Bonifacio, E; De Vos, B; Hoosbeek, M R; Berger, T W; Vesterdal, L; Armolaitis, K; Celi, L; Dinca, L; Kjønaas, O J; Pavlenda, P; Pumpanen, J; Püttsepp, Ü; Reidy, B; Simončič, P; Tobin, B; Zhiyanski, M
2016-11-01
Spatially explicit knowledge of recent and past soil organic carbon (SOC) stocks in forests will improve our understanding of the effect of human- and non-human-induced changes on forest C fluxes. For SOC accounting, a minimum detectable difference must be defined in order to adequately determine temporal changes and spatial differences in SOC. This requires sufficiently detailed data to predict SOC stocks at appropriate scales within the required accuracy so that only significant changes are accounted for. When designing sampling campaigns, taking into account factors influencing SOC spatial and temporal distribution (such as soil type, topography, climate and vegetation) are needed to optimise sampling depths and numbers of samples, thereby ensuring that samples accurately reflect the distribution of SOC at a site. Furthermore, the appropriate scales related to the research question need to be defined: profile, plot, forests, catchment, national or wider. Scaling up SOC stocks from point sample to landscape unit is challenging, and thus requires reliable baseline data. Knowledge of the associated uncertainties related to SOC measures at each particular scale and how to reduce them is crucial for assessing SOC stocks with the highest possible accuracy at each scale. This review identifies where potential sources of errors and uncertainties related to forest SOC stock estimation occur at five different scales-sample, profile, plot, landscape/regional and European. Recommendations are also provided on how to reduce forest SOC uncertainties and increase efficiency of SOC assessment at each scale.
Ferrajão, Paulo Correia; Oliveira, Rui Aragão
2016-01-01
We analyzed the effects of 3 war components-combat exposure (CES), observation of abusive violence (OBS), and participation in abusive violence (PARTC)-and sense of coherence (SOC) on the development of both posttraumatic stress disorder (PTSD) and depression among a sample of war veterans. We also analyzed the role of SOC as a mediator of the effects of CES, OBS, and PARTC on both depression and PTSD symptoms. Sample was composed of 120 Portuguese Colonial War veterans. A binomial logistic regression analysis was performed to determine the effects of these variables on depression and PTSD diagnosis. Mediation test was performed by conducting several hierarchical regression analyses. Results showed that OBS and PARTC, and lower levels of SOC were associated with increased odds for exceeding the clinical cutoff scores for diagnosis of depression. All variables were associated with increased odds for exceeding the clinical cutoff scores for diagnosis of PTSD. In mediation analysis, at first step, PARTC was not a significant predictor of both PTSD and depression symptoms, and PARTC did not enter in subsequent analysis. SOC was a full mediator of the effects of OBS and CES on both depression and PTSD symptoms. We propose that treatment of war veterans should aim the reconciliation of traumatic incongruent experiences in veterans' personal schemas to strengthen veterans' sense of coherence, especially for those exposed to acts of abusive violence. (c) 2016 APA, all rights reserved).
Ekelin, M; Crang Svalenius, E; Larsson, A-K; Nyberg, P; Marsál, K; Dykes, A-K
2009-10-01
To investigate parents' expectations, experiences and reactions, sense of coherence and anxiety before and after a second-trimester routine ultrasound examination, with normal findings. Before and after ultrasound questionnaires including the scales parents' expectations, experiences and reactions to routine ultrasound examination (PEER-U state of mind index), sense of coherence (SOC) and state and trait anxiety inventory (STAI), were sent to a 1-year cohort of women and their partners. Replies received were 2183. Both parents had significantly less worried state of mind (PEER-U) after the examination than before. Women had a lower grade of state anxiety after than before, but for men there was no significant change. Before the ultrasound, women had a higher degree of worried state of mind, as well as a higher grade of state and trait anxiety and a lower sense of coherence, than men. The women showed a greater reduction in worried state of mind than the men after the ultrasound examination. There were no significant differences in sense of coherence before and after ultrasound. Women and men are affected in their psychological well-being in relation to a routine ultrasound examination, but their sense of coherence remains stable.
Zerach, Gadi; Levin, Yafit
2015-12-17
This study assessed posttraumatic stress symptoms (PTSS), burn-out (BO), and compassion satisfaction (CS) among Israeli body handlers. We aimed to explore differences between two groups of Orthodox Jewish male volunteers: the "ZAKA" body handlers (ZAs: n = 102), and a comparison group of charity workers (CWs: n = 101). Furthermore, we assessed the contribution of two potential resilience buffers-sense of coherence (SOC) and spirituality at the workplace (SAW)-to PTSS, BO, and CS among these volunteers via self-report measures. Surprisingly, results show that ZAs reported significantly lower levels of PTSS and BO as compared with CWs. ZAs also reported significantly higher levels of CS as compared with CWs. Importantly, SOC mediated the link between groups and PTSS and BO. Both SOC and SAW mediated the link between groups and CS. These findings suggest that "ZAKA" body handlers demonstrate substantial resilience following repeated exposure to death and atrocities. To reduce work-related psychological distress and improve CS, SOC and SAW should be taken into account in the process of recruitment and training of body handlers. © The Author(s) 2015.
Shor, Vlada; Grinstein-Cohen, Orli; Reinshtein, Judith; Liberman, Orly; Delbar, Vered
2015-02-01
To compare HRQOL of husbands of women with non-metastatic breast cancer to husbands of healthy women. Additionally, to examine the impact of Sense of Coherence (SOC), socio-demographic, and clinical variables, on HRQOL of spouses in both groups. This study used a comparative, matched, convenience sample. Husbands of women with non-metastatic breast cancer (n = 50), undergoing chemotherapy during 3-6 months after diagnoses and spouses of healthy women (n = 50) participated in a study. HRQOL was measured using the Medical Outcomes Study (MOS SF-36), and coping characteristics were measured using the Short Sense of Coherence scale. Socio-demographic factors, cancer stage, and treatments were collected. The groups were matched by age, education, employment (working/not working). The physical and mental component summary scores were dependent variables in the regression analysis. Physical and Mental Component Summary indexes in the study group were significantly lower than in the control group. Higher education level, greater income, or more daily working hours were associated with better physical health index (added 30% to explaining the variance). The only personal variable predicting the mental component of QOL was financial situation (added 7%). Higher SOC was associated with higher HRQOL. Disease and treatment characteristics were found to have no influence upon the husbands' QOL. While the main influence found in this study of a woman's breast cancer on her partner's quality of life is on the mental component, the partner's physical health should also be taken into account. Copyright © 2014 Elsevier Ltd. All rights reserved.
Smith, L O; Elder, J H; Storch, E A; Rowe, M A
2015-01-01
Children with autism spectrum disorder (ASD) may be a stressor for family members yet there is little published research on the impact of having a child with ASD on their typically developing (TD) adolescent siblings. According to Antonovsky's salutogenic model, a strong sense of coherence leads to the view that the stressor is a manageable challenge rather than a burden and promotes healthier adaptation. This study examines the relationship between stress, TD sibling resources and the sense of coherence in TD siblings. This quantitative mail-based study uses a survey methodology, analysing the responses of TD adolescent siblings (n = 96) of individuals with autism, Asperger's syndrome, or pervasive developmental disorder - not otherwise specified to several rating scales. Adolescent siblings, ages 11 to 18 years, completed the Adolescent Coping Orientation for Problem Experience (ACOPE), Network of Relationship Inventory - Social Provision Version (NRI-SPV), Youth Self Report (YSR), and Sense of Coherence (SOC) instruments; parents completed the Child Autism Rating Scale - 2nd Edition (CARS-2). The salutogenesis model was used to guide and inform this research. Findings suggested the following: (a) the stress of ASD severity and resource of adjustment are related in TD adolescent siblings; (b) TD sibling adjustment has a strong relationship with sense of coherence levels; and (c) a greater number of positive coping strategies buffer TD sibling coherence levels when ASD severity scores are high. ASD severity and TD adolescent sibling resources influence sense of coherence in adolescent TD siblings of individuals with ASD. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Relationship between work-family conflict and a sense of coherence among Japanese registered nurses.
Takeuchi, Tomoko; Yamazaki, Yoshihiko
2010-12-01
Work-family conflict (WFC) refers to the conflict that arises between a person's work and family life. Previous studies have reported workload, job demands, and irregular working shifts as related to the WFC among nurses and have clarified that WFC is a predictor of job satisfaction, morale, and turnover intention. Very few studies have investigated WFC among Japanese nurses and no study has taken into consideration the sense of coherence (SOC) that helps nurses to cope with stress. The present study aimed to determine the relationship between WFC and SOC and to clarify how WFC and a SOC influence the mental and physical health of nurses in order to suggest ways of establishing work environments that enable nurses to achieve a balance between their work and family life. A self-report questionnaire survey of 388 Japanese female nurses was conducted. The data from 138 nurses who were a mother and/or wife were analyzed. Work-family conflict was significantly related to the SOC. It had a larger impact on the physical and mental health of nurses than their work and family characteristics. The SOC also had a major influence on the physical and mental health of nurses, while having a buffering effect on WFC with respect to depression. Our findings underscore the importance of taking organizational steps to create work environments that contribute to an enhanced SOC in order to reduce the WFC among nurses. © 2010 The Authors. Japan Journal of Nursing Science © 2010 Japan Academy of Nursing Science.
Manor-Binyamini, Iris; Nator, Maha
2016-08-01
Many studies have examined the coping resources of parents of children with disabilities but most have involved Western families and only a few refer to unique and traditional cultures. This study sought to compare Druze parents of adolescents with and without developmental disabilities (DD) in the context of Druze traditions and beliefs and whether they may lead to better coping by parents of a child with DD. The study used the measures of stress; sense of coherence (SOC) - an orientation towards the world which reflects an ongoing confidence that things fall into place in a logical and meaningful way; and hope. The sample group consisted of 99 Druze parents of adolescents with and without DD enrolled in regular and special schools in Israel. The parents were asked to complete four questionnaires on demography, stress, SOC (Sense of coherence) and hope. The research findings indicate a higher sense of parental stress and a lower overall SOC, particularly meaningfulness, and hope among parents of adolescents with DD. There was no difference between the two groups of parents with respect to marital, economic and overall stress or in the other two components of SOC. The results of the study partly contradict the assumption in the limited literature about Druze that they may cope better with life stressors as a result of their traditions and beliefs. The results also indicate the need for further research and culturally-based intervention programs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Mishra, U.; Riley, W. J.
2015-01-01
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ~ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Mishra, U.; Riley, W. J.
2015-07-01
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data set with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ∼ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
Mishra, U.; Riley, W. J.
2015-07-02
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ∼ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
Mishra, U.; Riley, W. J.
2015-01-01
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonablemore » fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ~ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, U.; Riley, W. J.
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ∼ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less
Soil organic carbon - a large scale paired catchment assessment
NASA Astrophysics Data System (ADS)
Kunkel, V.; Hancock, G. R.; Wells, T.
2016-12-01
Soil organic carbon (SOC) concentration can vary both spatially and temporally driven by differences in soil properties, topography and climate. However most studies have focused on point scale data sets with a paucity of studies examining larger scale catchments. Here we examine the spatial and temporal distribution of SOC for two large catchments. The Krui (575 km2) and Merriwa River (675km2) catchments (New South Wales, Australia). Both have similar shape, soils, topography and orientation. We show that SOC distribution is very similar for both catchments and that elevation (and associated increase in soil moisture) is a major influence on SOC. We also show that there is little change in SOC from the initial assessment in 2006 to 2015 despite a major drought from 2003 to 2010 and extreme rainfall events in 2007 and 2010 -therefore SOC concentration appears robust. However, we found significant relationships between erosion and deposition patterns (as quantified using 137Cs) and SOC for both catchments again demonstrating a strong geomorphic relationship. Vegetation across the catchments was assessed using remote sensing (Landsat and MODIS). Vegetation patterns were temporally consistent with above ground biomass increasing with elevation. SOC could be predicted using both these low and high resolution remote sensing platforms. Results indicate that, although moderate resolution (250 m) allows for reasonable prediction of the spatial distribution of SOC, the higher resolution (30 m) improved the strength of the SOC-NDVI relationship. The relationship between SOC and 137Cs, as a surrogate for the erosion and deposition of SOC, suggested that sediment transport and deposition influences the distribution of SOC within the catchment. The findings demonstrate that over the large catchment scale and at the decadal time scale that SOC is relatively constant and can largely be predicted by topography.
Gate control of quantum dot-based electron spin-orbit qubits
NASA Astrophysics Data System (ADS)
Wu, Shudong; Cheng, Liwen; Yu, Huaguang; Wang, Qiang
2018-07-01
We investigate theoretically the coherent spin dynamics of gate control of quantum dot-based electron spin-orbit qubits subjected to a tilted magnetic field under electric-dipole spin resonance (EDSR). Our results reveal that Rabi oscillation of qubit states can be manipulated electrically based on rapid gate control of SOC strength. The Rabi frequency is strongly dependent on the gate-induced electric field, the strength and orientation of the applied magnetic field. There are two major EDSR mechanisms. One arises from electric field-induced spin-orbit hybridization, and the other arises from magnetic field-induced energy-level crossing. The SOC introduced by the gate-induced electric field allows AC electric fields to drive coherent Rabi oscillations between spin-up and -down states. After the crossing of the energy-levels with the magnetic field, the spin-transfer crossing results in Rabi oscillation irrespective of whether or not the external electric field is present. The spin-orbit qubit is transferred into the orbit qubit. Rabi oscillation is anisotropic and periodic with respect to the tilted and in-plane orientation of the magnetic field originating from the interplay of the SOC, orbital, and Zeeman effects. The strong electrically-controlled SOC strength suggests the possibility for scalable applications of gate-controllable spin-orbit qubits.
Nuccitelli, C; Valentini, A; Caletti, M T; Caselli, C; Mazzella, N; Forlani, G; Marchesini, G
2018-03-01
Despite intensive training, a few individuals with Type 1 diabetes mellitus (T1DM) fail to reach the desired metabolic targets. To evaluate the association between disease-related emotional and cognitive aspects and metabolic control in subjects with T1DM. Health locus of control (HLOC), sense of coherence (SOC), and self-esteem were assessed in T1DM subjects using validated questionnaires. Sixty-seven consecutive subjects who did not attain the desired HbA1c target (mean HbA1c, 8.3% [67 mmol/mol]) were compared with 30 cases in satisfactory metabolic control (HbA1c levels <7%-53 mmol/mol). In the overall population, SOC was negatively associated with BMI and average HbA1c, as was the association of self-esteem with HbA1c. Subjects attaining the desired metabolic target were characterized by higher SOC scores, higher Internal HLOC and prevalent Internal vs. Powerful-others HLOC. Compared to subjects in good metabolic control, subjects with unsatisfactory control had lower scores of SOC, Internal HLOC and Self-esteem, with no difference in Powerful others, or Chance HLOC. In the same group, SOC in the upper tertile was significantly associated with self-esteem (OR 1.35; 95% CI 1.08-1.69) and PHLOC (OR 1.24; 95% CI 1.03-1.49), after adjustment for age, sex, educational level, and comorbidities. Patients who fail to reach a satisfactory metabolic control tend to rely on significant others, trusting in the physicians' skills or on the efficiency of the health-care system. Strategies aimed at increasing self-efficacy and SOC, based on personal ability, are eagerly awaited to help patients improve diabetes care.
Sense of Coherence, Hope and Values among Adolescents under Missile Attacks: A Longitudinal Study
ERIC Educational Resources Information Center
Braun-Lewensohn, Orna; Sagy, Shifra
2010-01-01
This study aimed to explore measures of spirituality--sense of coherence (SOC), hope and values--among adolescents living in a violent political area and experiencing missile attacks. The three variables represent attributes of spirituality, such as searching for meaning and purpose in life, hope and feelings about the future, as well as values…
Osuchowska-Kościjańska, Anna; Charzyńska, Katarzyna; Chadzyńska, Małgorzata; Drozdzyńska, Anna; Kasperek-Zimowska, Beata; Bednarek, Agata; Sawicka, Maryla
2014-01-01
The aim of the present study was to investigate sense of coherence in healthy siblings of persons suffering from schizophrenia as well as their ways of coping in the relationship with ill brother or sister. 40 healthy brothers and sisters of persons with ICD- 10 diagnosis of F20 to F29 participated in the present study. Orientation to Life Scale (SOC- 29) was used to assess sense of coherence and Ways of Coping with Stress questionnaire (SRSS) was used to examine stress coping strategies. Mean global score of siblings of persons with schizophrenia was 111 points. Subjects used coping strategies focused on problem significantly more often than those focused on emotions. Therapeutic work with healthy siblings should focus on strengthening sense of personal competence, development of personal resources and different ways of coping with stress, investigation of emotions that healthy siblings experience in the relationship with ill brother or sister as well as supporting the process of accepting changes in the relationship with the ill sibling.
ERIC Educational Resources Information Center
Londal, Knut
2010-01-01
This article is based on materials gathered from qualitative research interviews among eight-year-old and nine-year-old children participating in an after-school programme (ASP) in Oslo, and investigates how bodily play affects their sense of coherence (SOC). In line with Maurice Merleau-Ponty, children's lived experiences are regarded as layered…
ERIC Educational Resources Information Center
Levi, Uzi; Einav, Michal; Raskind, Ilana; Ziv, Orit; Margalit, Malka
2013-01-01
Teachers play a critical role in facilitating the academic achievements of students with learning disabilities (LD). The personal resources of teachers, such as sense of coherence (SOC) and hopeful thinking, may predict self-perception of the competency and efficacy they possess to help students with LD acquire needed learning skills. Several…
ERIC Educational Resources Information Center
García-Moya, Irene; Suominen, Sakari; Moreno, Carmen
2014-01-01
Background: The aim of this study was to examine the prevalence of bullying victimization and its impact on physical and psychological complaints in a representative sample of adolescents and to explore the role of sense of coherence (SOC) in victimization prevalence and consequences. Methods: A representative sample of Spanish adolescents (N =…
Sense of Coherence: Learning to Live with Chronic Illness through Health Education
ERIC Educational Resources Information Center
Førland, Georg; Eriksson, Monica; Silèn, Charlotte; Ringsberg, Karin
2018-01-01
Objective: This study examines people's experiences of how to live with a chronic disease, their learning needs and their reasons for participating in a health education programme. The aim of the study was to examine if and how a Sense of Coherence (SOC) might guide an understanding of learning processes in health education. Methods: This study…
Geomorphic and climate influences on soil organic carbon concentration at large catchment scales
NASA Astrophysics Data System (ADS)
Hancock, G. R.; Martinez, C.; Wells, T.; Dever, C.; Willgoose, G. R.; Bissett, A.
2013-12-01
Soils represent the largest terrestrial sink of carbon on Earth. Managing the soil organic carbon (SOC) pool is becoming increasingly important in light of growing concerns over global food security and the climatic effects of anthropogenic CO2 emissions. The development of accurate predictive SOC models are an important step for both land resource managers and policy makers alike. Presently, a number of SOC models are available which incorporate environmental data to produce SOC estimates. The accuracy of these models varies significantly over a range of landscapes due to the highly complex nature of SOC dynamics. Fundamental gaps exist in our understanding of SOC controls. To date, studies of SOC controls, and the subsequent models derived from their findings have focussed mainly on North American and European landscapes. Additionally, SOC studies often focus on the paddock to small catchment scale. Consequently, information about SOC in Australian landscapes and at the larger scale is limited. This study examines controls over SOC across a large catchment of approximately 600 km2 in the Upper Hunter Valley, New South Wales, Australia. The aim was to develop a predictive model for use across a range of catchment sizes and climate. Here it was found that elevation (derived from DEMs) and vegetation (above ground biomass quantified by remote sensing were the primary controls of SOC. SOC was seen to increase with elevation and NDVI. This relationship is believed to be a reflection of rainfall patterns across the study area and plant growth potential. Further, a relationship was observed between SOC and the environmental tracer 137Cs which suggests that SOC and 137Cs move through catchment via similar sediment transport mechanisms. Therefore loss of SOC by erosion and gain by deposition may be necessary to be accounted for in any SOC budget. Model validation indicated that the use of simple linear relationships could predict SOC based on rainfall and vegetation (above ground biomass as quantified by remote sensing). The results suggest that simple landscape and climate models have the potential to predict the spatial distribution of SOC. The findings of this study emphasise the importance of tailoring SOC models to the appropriate scale.
Wrześniewski, Kazimierz; Włodarczyk, Dorota
2012-01-01
The vast majority of research on the quality of life (QoL) after myocardial infarction (MI) concentrates on such factors as: the type and course of MI, methods and stage of treatment or the patient's occupational and family status. Drawing from general psychological knowledge we may assume that some individual factor, especially personality, is also a significant contributor. The present study focused on a specific personality dimension: sense of coherence (SOC). It is defined as a global life orientation to perceive life as comprehensible (rational, predictable and structured), manageable (adequate and sufficient resources to overcome adversities are perceived as available) and meaningful (the demands created by adversities are seen as challenges and worthy of engagement). To compare the QoL one year after MI in men and women and to examine the role of SOC as a predictor of the QoL one year after MI, in groups of men and women. The study group consisted of 83 participants (including 34 women), aged 35-59 (50.2 ± 6.2) years. They had a history of uncomplicated MI and were referred for post-hospitalisation cardiac rehabilitation in the sanatorium setting. SOC was measured with the Polish version of SOC-13 by A. Antonovsky. The QoL was evaluated with the MacNew questionnaire by N.B. Oldridge and L. Lim. The SOC was assessed during the stay at the heart centre. One year after their MI the participants completed the QoL questionnaires (sent to them by post). Men in comparison to women demonstrated stronger SOC (p 〈 0.004) and a better QoL in all dimensions: physical (p 〈 0.001), emotional (p 〈 0.001), social (p 〈 0.001) and as a global score (p 〈 0.001). The SOC turned out to be a significant predictor of the QoL one year after MI even after controlling for demographic and medical factors. Its predictive value was higher for women. Research on the QoL in patients after MI should take into account personality factors. The SOC is a significant predictor, especially in women. Persons after MI scoring low on SOC at the early stage of rehabilitation should receive psychological intervention.
Salutogenesis: A New Approach toward Oral Health Promotion
Kaur, Manpreet; Jindal, Ritu; Dua, Rohini; Gautam, Aanchal; Kaur, Ramandeep
2017-01-01
Introduction: Sense of coherence (SOC) is hypothesized to be an important psychological factor that enables people to cope with stressors and successfully maintain and improve health. Very few publications report on the relationship between “salutogenesis,” as measured by the concept of SOC and oral health status. However, little is known about the relationship between the mother's SOC and dental caries of their children. Aims and Objectives: The aim of the present study was to explore the impact of mother's SOC level on dental caries status of their children. Materials and Methods: A school-based cross-sectional study was conducted with the children aged 4–8 years attending public school (n = 200). Questionnaires were applied to mothers to obtain level of SOC. Dental caries status in children was assessed using decayed, missing, filled tooth surfaces (DMFS) and/or dmfs index. One-way analysis of variance F-test and post hoc Tukey test were used to assess the effect of mother's SOC level on their children's caries dmfs index. Results: Mean of dmfs and/or DMFS in children showed statistically significant relation with their mother's SOC level (P < 0.01). On intergroup comparison, significant (P < 0.01) difference was found when mean of dmfs and/or DMFS with mothers having low SOC and high SOC was compared. However, there was no significant relation when mean was compared to mothers with medium and low SOC. Conclusion: Dental caries of children gets influenced by mother's SOC level. There was an inverse relationship between mother's SOC level and their children dental caries status. PMID:29042722
Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate
Zhang, Yongping; Chen, Gang; Zhang, Chuanwei
2013-01-01
Spin-orbit coupling (SOC), the intrinsic interaction between a particle spin and its motion, is responsible for various important phenomena, ranging from atomic fine structure to topological condensed matter physics. The recent experimental breakthrough on the realization of SOC for ultra-cold atoms provides a completely new platform for exploring spin-orbit coupled superfluid physics. However, the SOC strength in the experiment is not tunable. In this report, we propose a scheme for tuning the SOC strength through a fast and coherent modulation of the laser intensities. We show that the many-body interaction between atoms, together with the tunable SOC, can drive a quantum phase transition (QPT) from spin-balanced to spin-polarized ground states in a harmonic trapped Bose-Einstein condensate (BEC), which resembles the long-sought Dicke QPT. We characterize the QPT using the periods of collective oscillations of the BEC, which show pronounced peaks and damping around the quantum critical point. PMID:23727689
[Social-medical significance of the concept of salutogenesis in neurology and psychiatry].
Glazinski, R
2007-03-01
The so-called "sense of coherence" (SOC) is the central idea of Antonovsky's concept of salutogenesis. The structure and the meaning of SOC for a person's ability to cope with stress are discussed as well as the overall health-promoting effect of SOC. At the end of the study's first part the question of proving the SOC empirically and of the SOC's construct validity are critically discussed. The second part of the article demonstrates the relevance of salutogenic mechanisms for psychiatry and neurology, especially regarding the social aspects of both disciplines. Health promotion and disease prevention are already important issues in the Mental Health Community. But also in neurology, which is much more grounded in the physical medicine than psychiatry, the concept of salutogenesis can help patients to prevent illness or to cope better with the consequences of diseases. Finally, the necessity to supply the current health care system in psychiatry and neurology with much more salutogenic input is questioned.
Culture-sensitive therapy and salutogenesis: treating Israeli Bedouin of the Negev.
Benyamin, Maoz; Hadar, Shalev; Asher, Shiber
2011-12-01
The Salutogenesis theory and its essential component, the sense of coherence (SOC) is an epigenetic concept. The SOC was defined as a 'way of being in the world'. As such it is most important that one's SOC will be intact for healthy mental status. Collisions between western and non-western cultures might interfere in the process of psychiatric and psychotherapeutic treatment. This review demonstrates the importance of a culture-sensitive approach and therapy and the usefulness of specific culture-sensitive services for certain non-western populations. We illustrate this approach by giving the example of the unique ways of treatment carried out among the Bedouin of the Negev region of Israel.
NASA Astrophysics Data System (ADS)
Trigalet, Sylvain; Chartin, Caroline; Van Oost, Kristof; van Wesemael, Bas
2017-04-01
Understanding the soil organic carbon (SOC) distribution a few decades after conversion to cropland and plantations in a hilly catchment in southern Brazil is challenging due to scale-dependent controlling factors. Firstly, SOC, bulk density (BD) and texture were measured by depth intervals along 18 soil profiles located in three topographical positions (sloping plateau, central back slope and concave foot slope) in cropland and forest with contrasting slopes. SOC stocks in concave footslope position were not significantly different between fields on steep (11.1 kg C m-2) and gentle slopes (12.8 kg C m-2). However, in eroding profiles, SOC stocks are twice as high in fields on gentle slopes (17.6/12.6 kg C m-2) compared to steep slopes (8.3/7.1 kg C m-2). SOC stocks on steep slope on cropland (8.8 kg C m-2) are three times lower than SOC stocks on steep slope under undisturbed forest (23.7 kg C m-2). On gentle slopes, the effect of deforestation on SOC stocks was not so drastic (14.3 and 14.4 kg C m-2). Therefore, contrasting topography generates different patterns of SOC redistribution in the catchment. The effect of conversion to cropland is probably due to soil redistribution by water and tillage erosion aggravated by the steep terrain. Secondly, in order to assess the heterogeneity of SOC distribution at catchment scale, samples were collected at 10-20; 40-50 and 75-85 cm in 167 soil profiles sampled with an auger. SOC concentrations (gC kg-1 ) in numerous bulk soil samples (n = 378) were predicted by VIS-NIR spectroscopy and partial least-square regression models. SOC stocks were assessed by a mass preserving spline tool by interpolating SOC mass at the three non-contiguous depth intervals. Samples of calibration-validation dataset (n = 95) were used for physical SOC fractionation allowing the measurement of carbon associated with < 20 μm fraction. Multivariate linear regression models and Pearson correlation coefficients were used to assess the influence of several covariates on SOC stocks, SOC in bulk soil and fractions. This integrated approach highlights how SOC distribution is influenced by different proximal or distal controlling factors that are scale-dependent. Spectroscopy increases the density of samples available at catchment scale while SOC fractionation provides information on SOC quality on a representative subset of samples.
Topographic Controls on Soil Carbon Distribution in Iowa Croplands, USA
NASA Astrophysics Data System (ADS)
McCarty, Greg; Li, Xia
2017-04-01
Topography is a key factor affecting soil organic carbon (SOC) redistribution (erosion or deposition) because it influences several hydrological indices including soil moisture dynamics, runoff velocity and acceleration, and flow divergence and convergence. In this study, we examined the relationship between 15 topographic metrics derived from Light Detection and Ranging (Lidar) data and SOC redistribution in agricultural fields. We adopted the fallout 137Cesium (137Cs) technique to estimate SOC redistribution rates across 560 sampling plots in Iowa. Then, using stepwise ordinarily least square regression (SOLSR) and stepwise principle component analysis (SPCA), topography-based SOC models were developed to simulate spatial patterns of SOC content and redistribution. Results suggested that erosion and deposition of topsoil SOC were regulated by topography with SOC gain in lowland areas and SOC loss in sloping areas. Topographic wetness index (TWI) and slope were the most influential variables controlling SOC content and redistribution. The topography-based models exhibited good performances in simulating SOC content and redistribution across two crop sites with intensive samplings. SPCA models had slightly lower coefficients of determination and Nash-Sutcliffe efficiency values compared to SOLSR models at the field scale. However, significantly SPCA outperformed SOLAR in predicting SOC redistribution patterns at the watershed scale. Results of this study suggest that the topography-based SPCA model was more robust for scaling up models to the watershed scale because SPCA models may better represent the landscapes and are less subject to over fitting. This work suggests an improved method to sample and characterize landscapes for better prediction of soil property distribution.
Hansen, Åse Marie; Grynderup, Matias Brødsgaard; Rugulies, Reiner; Conway, Paul Maurice; Garde, Anne Helene; Török, Eszter; Mikkelsen, Eva Gemzøe; Persson, Roger; Hogh, Annie
2018-05-01
The aim of the present study was to examine the bidirectional associations between subjective role ambiguity and role conflicts at work, respectively, and self-reported sleep 2 years later. In addition, we also examine whether sense of coherence (SOC) moderate or mediate the association between role stressors and poor sleep and between poor sleep and role stressors. We used questionnaire data collected in 2006 and 2008 from the Workplace Bullying and Harassment cohort. In 2006, 3363 responded to the questionnaire and in 2008 1671 responded. In total, 1569 participants responded in both 2006 and 2008 to the questions on role stressors (in terms of role ambiguity and role conflicts at work) and sleep problems in both 2006 and 2008. Sleep problems were assessed with the awakening index (AWI) and the disturbed sleep index (DSI). Moderation and mediation analyses of the association were estimated using structural equation modelling. We found a prospective association between role stressors and sleep problems [beta values were 0.07 (95% CI 0.03-0.11) and 0.05 (CI 0.01-0.10) for DSI and AWI, respectively] when adjusting for sleep problems at baseline, age, sex, and life style factors (i.e. alcohol, smoking, and leisure time physical activity). SOC moderated the association showing that participants with lower SOC scores who reported higher role ambiguity reported sleep problems to a higher extent than participants with high SOC scores. SOC also mediated the association between role stressors and sleep problems. We also found support for sleep problems at baseline and role stressors 2 years later [DSI 0.04 (CI 0.00-0.08) and 0.15 (CI 0.09-0.21)] for role ambiguity and role conflicts, respectively. Similar results were observed for AWI. Subjective role stressors were prospectively associated with sleep problems. Yet, sleep problems could also prospectively predict subjective role stressors (i.e. reverse causation). The analyses also showed that SOC may be regarded as both a mediating and a moderating factor of the association between subjective role conflicts and poor sleep. We found that SOC moderated the prospective association so participants with low SOC report more sleep problems with subjective role conflicts compared to participants with high SOC. Finally, we also found SOC mediated the prospective association between subjective role stressors and sleep problems and the reverse association.
NASA Astrophysics Data System (ADS)
Chartin, Caroline; Krüger, Inken; Goidts, Esther; Carnol, Monique; van Wesemael, Bas
2017-04-01
The quantification and the spatialisation of reliable SOC stocks (Mg C ha-1) and total stock (Tg C) baselines and associated uncertainties are fundamental to detect the gains or losses in SOC, and to locate sensitive areas with low SOC levels. Here, we aim to both quantify and spatialize SOC stocks at regional scale (southern Belgium) based on data from one non-design-based nor model-based sampling scheme. To this end, we developed a computation procedure based on Digital Soil Mapping techniques and stochastic simulations (Monte-Carlo) allowing the estimation of multiple (here, 10,000) independent spatialized datasets. The computation of the prediction uncertainty accounts for the errors associated to the both estimations of i) SOC stock at the pixel-related area scale and ii) parameters of the spatial model. Based on these 10,000 individuals, median SOC stocks and 90% prediction intervals were computed for each pixel, as well as total SOC stocks and their 90% prediction intervals for selected sub-areas and for the entire study area. Hence, a Generalised Additive Model (GAM) explaining 69.3 % of the SOC stock variance was calibrated and then validated (R2 = 0.64). The model overestimated low SOC stock (below 50 Mg C ha-1) and underestimated high SOC stock (especially those above 100 Mg C kg-1). A positive gradient of SOC stock occurred from the northwest to the center of Wallonia with a slight decrease on the southernmost part, correlating to the evolution of precipitation and temperature (along with elevation) and dominant land use. At the catchment scale higher SOC stocks were predicted on valley bottoms, especially for poorly drained soils under grassland. Mean predicted SOC stocks for cropland and grassland in Wallonia were of 26.58 Tg C (SD 1.52) and 43.30 Tg C (2.93), respectively. The procedure developed here allowed to predict realistic spatial patterns of SOC stocks all over agricultural lands of southern Belgium and to produce reliable statistics of total SOC stocks for each of the 20 combinations of land use / agricultural regions of Wallonia. This procedure appears useful to produce soil maps as policy tools in conducting sustainable management at regional and national scales, and to compute statistics which comply with specific requirements of reporting activities.
A Programmable and Configurable Mixed-Mode FPAA SoC
2016-03-17
A Programmable and Configurable Mixed-Mode FPAA SoC Sahil Shah, Sihwan Kim, Farhan Adil, Jennifer Hasler, Suma George, Michelle Collins, Richard...Abstract: The authors present a Floating-Gate based, System-On-Chip large-scale Field- Programmable Analog Array IC that integrates divergent concepts...Floating-Gate, SoC, Command Word Classification This paper presents a Floating-Gate (FG) based, System- On-Chip (SoC) large-scale Field- Programmable
Sense of coherence, depression, and anger among adults with atopic dermatitis.
Takaki, Hiroko; Ishii, Yasutomo
2013-01-01
The prevalence of atopic disease (AD) in adults has significantly increased in industrialized countries. Psychological traits and lack of skills to cope with stress could be maintaining factors of AD. The first aim of the present study was to compare sense of coherence (SOC), depression, and anger among adult patients with AD, adults with remission from AD, and adults without AD. The second aim was to explore whether depression and anger have significant impacts on SOC. A cross-sectional survey was carried out from May to September of 2007. In total, 43 adult patients with AD, 32 adults with remission from AD, and 63 adults without AD participated. A one-way analysis of variance showed that adult patients with AD have significantly higher levels of depression than adults with remission from AD and adults without AD. Furthermore, structural equation modeling indicated a significant impact of depression on SOC across the three groups, along with a significant impact of anger suppression on depression, particularly in adult patients with AD. The findings of this study suggest that psychological traits have a negative impact on skills for coping with stress, and that this relationship might be a contributory factor for maintenance of AD.
Koushede, Vibeke; Hansen, Ebba Holme; Andersen, Anette; Holstein, Bjørn E
2012-01-01
Over-the-counter analgesic (OTCA) use is increasingly common and may have potential harmful side effects. The primary reason for using analgesics is headache symptoms. Whether OTCA use for headache is sensitive to psychosocial and social circumstances is an understudied topic. The purpose of this study was to examine the combined effect of socioeconomic position (SEP) and perceived stress on OTCA use for headache. An additional objective was to determine whether sense of coherence (SOC) modifies the association. Data derived from the cross-sectional "Danish Lifestyle and Medicine Use Study," 2009. The study population consisted of men and women ages 25-44 years (n = 955). The dependent variable was OTCA use for headache within the past 14 days. The independent variables were SEP, perceived stress, and SOC. Gender, headache prevalence, and response method were included as covariates. Associations were examined by means of logistic regression analyses, and reported as odds ratios (ORs) with 95% confidence intervals. The OR for OTCA use was 1.42 (0.94-2.14) (statistically nonsignificant) among participants with low SEP but no perceived stress (reference high SEP, no perceived stress), 2.09 (1.53-2.85) for participants with perceived stress and high SEP, and 2.65 (1.66-4.25) among participants with perceived stress and low SEP. In analysis, stratified by SOC associations were stronger among participants with low SOC than among those with high SOC. Individuals exposed to both low SEP and high perceived stress have high odds for using OTCA for headache, apparently higher than participants only exposed to 1 of these factors. SOC may act as a buffer against the harmful effects of perceived stress and low SEP on OTCA use. Health care professionals and policymakers need to be aware of the sensitivity of OTCA use to psychosocial and social circumstances. Copyright © 2012 Elsevier Inc. All rights reserved.
Workplace health in dental care - a salutogenic approach.
Lindmark, U; Wagman, P; Wåhlin, C; Rolander, B
2018-02-01
The purpose was to explore self-reported psychosocial health and work environments among different dental occupations and workplaces from a salutogenic perspective. A further purpose was to analyse possible associations between three salutogenic measurements: The Sense of Coherence questionnaire (SOC), the Salutogenic Health Indicator Scale (SHIS) and the Work Experience Measurement Scale (WEMS). Employees in the Public Dental Service in a Swedish county council (n = 486) were invited to respond to a self-reported web survey including demographics, work-related factors, the SOC, the SHIS and the WEMS. This study showed positive associations between employee characteristics and self-reported overall psychosocial health as well as experienced work environment. Autonomy was reported more among men than women (P < 0.000) and to a higher degree by dentists and dental hygienists than dental nurses (P < 0.000). Meaningfulness, happiness, job satisfaction, autonomy and positive to reorganization were reported by personnels aged less than 40 years (P ≤ 0.047). Clinical coordinators reported significant better health (SOC, SHIS) and experienced more autonomy, better management and more positive to reorganization than other dental professions. Dental hygienists and nurses experienced less time pressure than dentists (P ≤ 0.007). Better health and positive work experiences were also seen in smaller clinics (P ≤ 0.29). Dental professionals reported a high degree of overall psychosocial health as well as a positive work experience. Some variations could be seen between employee characteristics such as gender, years in dental care, professionals, managing position and workplace size. Identify resources and processes at each workplace are important and should be included in the employee's/employers dialogue. © 2016 The Authors. International Journal of Dental Hygiene Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen
2017-03-01
Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial (10-30 m) and temporal changes in SOC stocks, particularly pronounced in arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal dynamics as well as small-scale spatial differences of ΔSOC using measurements of the net ecosystem carbon balance (NECB) as a proxy. To estimate the NECB, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) were used. To verify our method, results were compared with ΔSOC observed by soil resampling. Soil resampling and AC measurements were performed from 2010 to 2014 at a colluvial depression located in the hummocky ground moraine landscape of northeastern Germany. The measurement site is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity regarding SOC and nitrogen (Nt) stocks. Tendencies and magnitude of ΔSOC values derived by AC measurements and repeated soil inventories corresponded well. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able to reveal small-scale spatial differences and short-term temporal dynamics of ΔSOC.
Prediction of PTSD in police officers after six months--a prospective study.
Schütte, Nils; Bär, Olaf; Weiss, Udo; Heuft, Gereon
2012-11-01
The aim of this prospective study was to explore the predictors for the development of PTSD in police officers six months after encountering situations of a potentially traumatic nature. Fifty-nine police officers were studied immediately after the event (T1) and six months later (T2). At T2 PTSD was assessed using the Structured Clinical Interview for DSM-IV (SCID-I). PTSD was predicted by intrusions (Impact of Event Scale-Revised; IES-R), the impairment scale (is), global assessment of functioning scale (GAF), gender, age and sense of coherence scale (SOC). The diagnosis of an acute stress disorder (ASD) at T1 had a high specificity for identifying PTSD at T2. The strongest predictor for the development of PTSD was found to be the factor intrusions. Contrary to our expectations, age was not a significant predictive factor for PTSD. Thus, acute stress disorder (ASD) and a high degree of intrusions experienced immediately after a traumatic incident helped to identify early police officers at risk of developing chronic PTSD.
NASA Astrophysics Data System (ADS)
Köchy, M.; Hiederer, R.; Freibauer, A.
2014-09-01
The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget. We review current estimates of soil organic carbon stocks (mass/area) and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg. Correcting the HWSD's bulk density of organic soils, especially Histosols, results in a mass of 1062 Pg. The uncertainty of bulk density of Histosols alone introduces a range of -56 to +180 Pg for the estimate of global SOC in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arc minutes, the areal masses of SOC and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. Incorporating more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Data Base (496 Pg SOC) and tropical peatland carbon, global soils contain 1324 Pg SOC in the upper 1 m including 421 Pg in tropical soils, whereof 40 Pg occur in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".
Estimating Soil Organic Carbon Stocks and Spatial Patterns with Statistical and GIS-Based Methods
Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D.; Wu, Jiaping
2014-01-01
Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1∶50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure. PMID:24840890
A Preliminary Study for a New Model of Sense of Community
ERIC Educational Resources Information Center
Tartaglia, Stefano
2006-01-01
Although Sense of Community (SOC) is usually defined as a multidimensional construct, most SOC scales are unidimensional. To reduce the split between theory and empirical research, the present work identifies a multifactor structure for the Italian Sense of Community Scale (ISCS) that has already been validated as a unitary index of SOC. This…
Topographic Metric Predictions of Soil redistribution and Organic Carbon Distribution in Croplands
NASA Astrophysics Data System (ADS)
Mccarty, G.; Li, X.
2017-12-01
Landscape topography is a key factor controlling soil redistribution and soil organic carbon (SOC) distribution in Iowa croplands (USA). In this study, we adopted a combined approach based on carbon () and cesium (137Cs) isotope tracers, and digital terrain analysis to understand patterns of SOC redistribution and carbon sequestration dynamics as influenced by landscape topography in tilled cropland under long term corn/soybean management. The fallout radionuclide 137Cs was used to estimate soil redistribution rates and a Lidar-derived DEM was used to obtain a set of topographic metrics for digital terrain analysis. Soil redistribution rates and patterns of SOC distribution were examined across 560 sampling locations at two field sites as well as at larger scale within the watershed. We used δ13C content in SOC to partition C3 and C4 plant derived C density at 127 locations in one of the two field sites with corn being the primary source of C4 C. Topography-based models were developed to simulate SOC distribution and soil redistribution using stepwise ordinary least square regression (SOLSR) and stepwise principal component regression (SPCR). All topography-based models developed through SPCR and SOLSR demonstrated good simulation performance, explaining more than 62% variability in SOC density and soil redistribution rates across two field sites with intensive samplings. However, the SOLSR models showed lower reliability than the SPCR models in predicting SOC density at the watershed scale. Spatial patterns of C3-derived SOC density were highly related to those of SOC density. Topographic metrics exerted substantial influence on C3-derived SOC density with the SPCR model accounting for 76.5% of the spatial variance. In contrast C4 derived SOC density had poor spatial structure likely reflecting the substantial contribution of corn vegetation to recently sequestered SOC density. Results of this study highlighted the utility of topographic SPCR models for scaling field measurements of SOC density and soil redistribution rates to watershed scale which will allow watershed model to better predict fate of ecosystem C on agricultural landscapes.
Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo
2015-01-01
Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1) respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.
Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo
2015-01-01
Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg-1 respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer. PMID:26047012
Ekstam, Lisa; Johansson, Ulla; Guidetti, Susanne; Eriksson, Gunilla; Ytterberg, Charlotte
2015-01-01
Objectives The aim of the study was to explore the associations between the dyad’s (person with stroke and informal caregiver) perception of the person with stroke’s rehabilitation needs and stroke severity, personal factors (gender, age, sense of coherence), the use of rehabilitation services, amount of informal care and caregiver burden. Further, the aim was to explore the personal experience of everyday life changes among persons with stroke and their caregivers and their strategies for handling these 1 year after stroke. Design A mixed methods design was used combining quantitative and qualitative data and analyses. Setting Data were mainly collected in the participants’ homes. Outcome measures Data were collected through established instruments and open-ended interviews. The dyad's perceptions of the person with stroke’s rehabilitation needs were assessed by the persons with stroke and their informal caregivers using a questionnaire based on Ware’s taxonomy. The results were combined and classified into three groups: met, discordant (ie, not in agreement) and unmet rehabilitation needs. To assess sense of coherence (SOC) in persons with stroke, the SOC-scale was used. Caregiver burden was assessed using the Caregiver Burden Scale. Data on the use of rehabilitation services were obtained from the computerised register at the Stockholm County Council. Participants 86 persons with stroke (mean age 73 years, 38% women) and their caregivers (mean age 65 years, 40% women). Results Fifty-two per cent of the dyads perceived that the person with stroke’s need for rehabilitation was met 12 months after stroke. Met rehabilitation needs were associated with less severe stroke, more coping strategies for solving problems in everyday activities and less caregiver burden. Conclusions Rehabilitation interventions need to focus on supporting the dyads’ process of psychological and social adaptation after stroke. Future studies need to explore and evaluate the effects of using a dyadic perspective throughout rehabilitation. PMID:25678540
Gros, Daniel F; Sarver, Nina Wong
2014-04-01
Despite the recent increase of measures developed to assess the cognitive symptoms of social anxiety disorder (SOC), their validation is still largely preliminary. Thus, the present studies sought to replicate and extend the psychometric evaluation of the Social Thoughts and Beliefs Scale (STABS). Study 1 involved both participants with SOC (n=206) and healthy controls (n=222) that completed the STABS and other related measures of anxiety. In Study 2, participants with SOC (n=66) completed exposure-based psychotherapy for SOC with the STABS used to track symptom changes. Together, the two studies provided additional support for the validity and reliability of the STABS as a measure of the cognitive symptoms of SOC. However, contrary to previous research with two subscales, a single total scale was suggested as the best interpretation of the STABS, as well as the possible general presentation of the cognitive symptoms of SOC. Published by Elsevier Ltd.
Matching soil grid unit resolutions with polygon unit scales for DNDC modelling of regional SOC pool
NASA Astrophysics Data System (ADS)
Zhang, H. D.; Yu, D. S.; Ni, Y. L.; Zhang, L. M.; Shi, X. Z.
2015-03-01
Matching soil grid unit resolution with polygon unit map scale is important to minimize uncertainty of regional soil organic carbon (SOC) pool simulation as their strong influences on the uncertainty. A series of soil grid units at varying cell sizes were derived from soil polygon units at the six map scales of 1:50 000 (C5), 1:200 000 (D2), 1:500 000 (P5), 1:1 000 000 (N1), 1:4 000 000 (N4) and 1:14 000 000 (N14), respectively, in the Tai lake region of China. Both format soil units were used for regional SOC pool simulation with DeNitrification-DeComposition (DNDC) process-based model, which runs span the time period 1982 to 2000 at the six map scales, respectively. Four indices, soil type number (STN) and area (AREA), average SOC density (ASOCD) and total SOC stocks (SOCS) of surface paddy soils simulated with the DNDC, were attributed from all these soil polygon and grid units, respectively. Subjecting to the four index values (IV) from the parent polygon units, the variation of an index value (VIV, %) from the grid units was used to assess its dataset accuracy and redundancy, which reflects uncertainty in the simulation of SOC. Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pool, matching with soil polygon units map scales, respectively. With the optimal raster resolution the soil grid units dataset can hold the same accuracy as its parent polygon units dataset without any redundancy, when VIV < 1% of all the four indices was assumed as criteria to the assessment. An quadratic curve regression model y = -8.0 × 10-6x2 + 0.228x + 0.211 (R2 = 0.9994, p < 0.05) was revealed, which describes the relationship between optimal soil grid unit resolution (y, km) and soil polygon unit map scale (1:x). The knowledge may serve for grid partitioning of regions focused on the investigation and simulation of SOC pool dynamics at certain map scale.
A Self-Critique of Self-Organized Criticality in Astrophysics
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.
2015-08-01
The concept of ``self-organized criticality'' (SOC) was originally proposed as an explanation of 1/f-noise by Bak, Tang, and Wiesenfeld (1987), but turned out to have a far broader significance for scale-free nonlinear energy dissipation processes occurring in the entire universe. Over the last 30 years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into numerical SOC toy models. The novel applications stimulated also vigorous debates about the discrimination between SOC-related and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC models applied to astrophysical observations, attempt to describe what physics can be captured by SOC models, and offer a critique of weaknesses and strengths in existing SOC models.
A Self-Critique of Self-Organized Criticality in Astrophysics
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.
The concept of ``self-organized criticality'' (SOC) was originally proposed as an explanation of 1/f-noise by Bak, Tang, and Wiesenfeld (1987), but turned out to have a far broader significance for scale-free nonlinear energy dissipation processes occurring in the entire universe. Over the last 30 years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into numerical SOC toy models. The novel applications stimulated also vigorous debates about the discrimination between SOC-related and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC models applied to astrophysical observations, attempt to describe what physics can be captured by SOC models, and offer a critique of weaknesses and strengths in existing SOC models.
Risk factors for mental disorders develop early in German students of dentistry.
Scholz, M; Neumann, C; Ropohl, A; Paulsen, F; Burger, P H M
2016-11-01
We investigated mental risk factors such as symptoms of burnout and sense of coherence in students of dental medicine at the University of Erlangen in the context of a learning type survey. Our aim was to assess the presence of analogies to the results we had previously determined for students of human medicine. We surveyed a total of 163 dentistry students during the first 2.5 years, up to the first state examination. To ensure comparability, the data were collected from all students at the beginning of each semester. Standardized, validated questionnaires on burnout symptoms (Burnout Screening Scales; BOSS-II), sense of coherence (Sense of Coherence Scale; SOC-L9) and learning type according to Kolb were used in the survey. A total of about 90% of the students provided responses to the voluntary survey. The extent and manifest dynamics of the stress levels observed can be characterized as dramatic. Having started out at cognitive and emotional stress levels typical of the normal populace, a massive deterioration of these parameters was observed in the students by the time they were facing their first state examination in the 5th semester. At the same time, their sense of coherence also suffered a pronounced drop-off. No significant learning type-correlated differences were determined in a mean comparison of the measured parameters. Based on the results obtained, we see a need for preventive course offerings to students of dentistry to reduce the prevalence of mental disorders in this group. We discern additional potential for enhancement of mental health with courses more specifically geared to the different learning styles among the students. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen
2017-04-01
Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial and temporal changes in SOC stocks, particularly pronounced on arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal as well as small-scale spatial dynamics of ΔSOC. Therefore, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) was used. To verify our method, results were compared with ΔSOC observed by soil resampling. AC measurements were performed from 2010 to 2014 under a silage maize/winter fodder rye/sorghum-Sudan grass hybrid/alfalfa crop rotation at a colluvial depression located in the hummocky ground moraine landscape of NE Germany. Widespread in large areas of the formerly glaciated Northern Hemisphere, this depression type is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity in soil properties, such as SOC and nitrogen (Nt). After monitoring the initial stage during 2010, soil erosion was experimentally simulated by incorporating topsoil material from an eroded midslope soil into the plough layer of the colluvial depression. SOC stocks were quantified before and after soil manipulation and at the end of the study period. AC-based ΔSOC values corresponded well with the tendencies and magnitude of the results observed in the repeated soil inventory. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able to reveal small-scale spatial and short-term temporal dynamics of ΔSOC.
Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.
Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q
2018-02-02
We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.
NASA Astrophysics Data System (ADS)
Köchy, M.; Hiederer, R.; Freibauer, A.
2015-04-01
The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD's bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm-3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of -56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".
NASA Astrophysics Data System (ADS)
Sulman, B. N.; Phillips, R.; Shevliakova, E.; Oishi, A. C.; Pacala, S. W.
2014-12-01
The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which plants induce SOC losses (through accelerated decomposition or "priming") or promote SOC gains (via stabilization through physico-chemical protection). We developed a new SOC model, "Carbon, Organisms, Rhizosphere and Protection in the Soil Environment" (CORPSE), to examine the net effect of priming and protection in response to rising atmospheric CO2, and conducted simulations of rhizosphere priming effects at both ecosystem and global scales. At the ecosystem scale, the model successfully captured and explained disparate SOC responses at the Duke and Oak Ridge free-air CO2 enrichment (FACE) experiments. We show that stabilization of "new" carbon in protected SOC pools may equal or exceed microbial priming of "old" SOC in ecosystems with readily decomposable litter (e.g. Oak Ridge). In contrast, carbon losses owing to priming dominate the net SOC response in ecosystems with more resistant litters (e.g. Duke). For global simulations, the model was fully integrated into the Geophysical Fluid Dynamics Laboratory (GFDL) land model LM3. Globally, priming effects driven by enhanced root exudation and expansion of the rhizosphere reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from the enhanced ecosystem productivity driven by CO2 fertilization. Collectively, our results suggest that SOC stocks globally depend not only on temperature and moisture, but also on vegetation responses to environmental changes, and that protected C may provide an important constraint on priming effects.
Withington, Stafford; Yassin, Ghassan
2002-07-01
A procedure is described for calculating the power coupled between partially coherent waveguide fields that are in different states of coherence. The method becomes important when it is necessary to calculate the power transferred from a distributed source S to a distributed load L through a length of multimode metallic, or dielectric, waveguide. It is shown that if the correlations between the transverse components of the electric and magnetic fields of S and L are described by coherence matrices M and M', respectively, then the normalized average power coupled between them is (eta) = Tr[MM']/Tr[M]Tr[M'], where Tr denotes the trace. When the modal impedances are equal, this expression for the coupled power reduces to an equation derived in a previous paper [J. Opt. Soc. Am. A 18, 3061 (2001)], by use of thermodynamic arguments, for the power coupled between partially coherent free-space beams.
Szpringer, Monika; Oledzka, Marzena; Amann, Benedikt L.
2018-01-01
Glioblastoma multiforme (GBM) is a highly aggressive brain cancer and its survival after diagnosis is less than 2 years. Therefore, GBM patients are especially prone to co-occurring psychological conditions such as anxiety and depressive disorders. Furthermore, aggressive medical therapies affect patients’ lives, undermining their sense of meaning and coherence. The main aim of this study was to determine the effectiveness of Eye Movement Desensitization and Reprocessing (EMDR) therapy on anxiety, depression and sense of coherence in patients with GBM. Thirty-seven GBM-diagnosed women were included in this trial and received standard medical care. Of those, 18 patients were treated during 4 months with 10–12 individual EMDR sessions (60–90 minutes each). Nineteen GBM patients were used as a non-randomized control group as they consented to psychological evaluations but not to a psychotherapeutic intervention. The groups were homogeneous in terms of gender, age, educational level and treatment, but not in anxiety and depressive levels at baseline. All patients were evaluated at baseline, after treatment (4 months) and at follow-up (further 4 months) by the Hospital Anxiety and Depression Scale (HADS-M) and the Sense of Coherence Scale (SOC-29). Caregivers in both groups were interviewed by the Patient Caregiver Questionnaire after 4 months follow-up. Statistical analyses were conducted using ANOVA statistics, correlation and regression analysis. Results showed a statistically significant decrease in the EMDR group in anxiety, depression and anger, when compared to the experimental group. EMDR therapy also had a positive impact upon the sense of coherence level in the experimental group, whereas in the control group this declined. Finally, the caregivers reported beneficial outcomes of the EMDR therapy with less anxiety- and anger-related behaviors in patients in the experimental group compared to the control group. This study is the first to show beneficial effects of EMDR therapy in alleviating affective symptoms and improving coherence in a severe medically ill population with GBM. PMID:29892240
Szpringer, Monika; Oledzka, Marzena; Amann, Benedikt L
2018-01-01
Glioblastoma multiforme (GBM) is a highly aggressive brain cancer and its survival after diagnosis is less than 2 years. Therefore, GBM patients are especially prone to co-occurring psychological conditions such as anxiety and depressive disorders. Furthermore, aggressive medical therapies affect patients' lives, undermining their sense of meaning and coherence. The main aim of this study was to determine the effectiveness of Eye Movement Desensitization and Reprocessing (EMDR) therapy on anxiety, depression and sense of coherence in patients with GBM. Thirty-seven GBM-diagnosed women were included in this trial and received standard medical care. Of those, 18 patients were treated during 4 months with 10-12 individual EMDR sessions (60-90 minutes each). Nineteen GBM patients were used as a non-randomized control group as they consented to psychological evaluations but not to a psychotherapeutic intervention. The groups were homogeneous in terms of gender, age, educational level and treatment, but not in anxiety and depressive levels at baseline. All patients were evaluated at baseline, after treatment (4 months) and at follow-up (further 4 months) by the Hospital Anxiety and Depression Scale (HADS-M) and the Sense of Coherence Scale (SOC-29). Caregivers in both groups were interviewed by the Patient Caregiver Questionnaire after 4 months follow-up. Statistical analyses were conducted using ANOVA statistics, correlation and regression analysis. Results showed a statistically significant decrease in the EMDR group in anxiety, depression and anger, when compared to the experimental group. EMDR therapy also had a positive impact upon the sense of coherence level in the experimental group, whereas in the control group this declined. Finally, the caregivers reported beneficial outcomes of the EMDR therapy with less anxiety- and anger-related behaviors in patients in the experimental group compared to the control group. This study is the first to show beneficial effects of EMDR therapy in alleviating affective symptoms and improving coherence in a severe medically ill population with GBM.
Endocrine stress responses and risk of type 2 diabetes mellitus.
Siddiqui, Azaz; Madhu, S V; Sharma, S B; Desai, N G
2015-08-13
This study was carried to ascertain whether stress responses are associated with abnormalities in glucose tolerance, insulin sensitivity and pancreatic beta cell function and risk of type 2 Diabetes Mellitus. Salivary cortisol, a marker of hypothalamic-pituitary-adrenal (HPA) axis and salivary α-amylase, a marker of sympathetic nervous system (SNS) were compared in 125 subjects of newly detected diabetes mellitus (NDDM) and normal glucose tolerance (NGT) subjects who were diagnosed on the basis of oral glucose tolerance test (OGTT). Assessment of stress in them was done through stress scales - presumptive stressful life events scale (PSLES), perceived stress scale (PSS) and sense of coherence (SOC) and correlated with these and other stress response markers. Significantly higher 10 pm salivary cortisol and post dexamethasone salivary cortisol were found in NDDM subjects as compared to NGT. 10 pm salivary cortisol correlated significantly with fasting plasma glucose (FPG), 2 h plasma glucose (2h PG) and glycated hemoglobin (HbA1c) while post dex salivary cortisol correlated with 2h PG, HbA1c and salivary α-amylase with 2h PG. Stepwise logistic regression analysis showed that body mass index (OR: 1.840), SOC (OR: 0.688) and 10 pm salivary cortisol (OR: 1.427) were the strongest predictors of NDDM. The results of the present study indicate that NDDM subjects display significantly higher chronic stress and stress responses when compared to subjects with NGT. Chronic stress and endocrine stress responses are significantly associated with glucose intolerance, insulin resistance and diabetes mellitus.
Unravelling salutogenic mechanisms in the workplace: the role of learning.
Pijpker, Roald; Vaandrager, Lenneke; Bakker, Evert Jan; Koelen, Maria
To explore the moderating and mediating role(s) of learning within the relationship between sense of coherence (SOC) and generalized resistance resources. Cross-sectional study (N=481), using a self-administered questionnaire, of employees working in the healthcare sector in the Netherlands in 2017. Four residential healthcare settings and one healthcare-related Facebook group were involved. Multiple linear regression models were used to test for moderating and mediating effects of learning. Social relations, task significance, and job control significantly explained variance in SOC. Conceptual, social, and instrumental learning, combined, moderated the relationship between SOC and task significance. Instrumental learning moderated the relationship between job control and SOC. Social learning also mediated this relationship. Conceptual learning did not show any moderating or mediating effect. The relationship between SOC and the three GRRs seems to be strengthened or explained-to a certain extent-by instrumental and social learning. Healthcare organizations are recommended to promote learning through formal activities as well as through cooperation, feedback, sharing experiences, and job challenges. This requires employee participation and a multilevel interdisciplinary approach. Copyright © 2018 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Ocean Variability Effects on Underwater Acoustic Communications
2010-09-30
fluctuations on noncoherent acoustic communication [11] as well as on phase-coherent communication [12] were investigated for a near-seafloor source over...V. McDonald, and the KauaiEx Group, “Effects of ocean thermocline variability on noncoherent underwater acoustic communications,” J. Acoust. Soc. Am
Dynamics and climate change mitigation potential of soil organic carbon sequestration.
Sommer, Rolf; Bossio, Deborah
2014-11-01
When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC. Copyright © 2014 Elsevier Ltd. All rights reserved.
Landscape patterns and soil organic carbon stocks in agricultural bocage landscapes
NASA Astrophysics Data System (ADS)
Viaud, Valérie; Lacoste, Marine; Michot, Didier; Walter, Christian
2014-05-01
Soil organic carbon (SOC) has a crucial impact on global carbon storage at world scale. SOC spatial variability is controlled by the landscape patterns resulting from the continuous interactions between the physical environment and the society. Natural and anthropogenic processes occurring and interplaying at the landscape scale, such as soil redistribution in the lateral and vertical dimensions by tillage and water erosion processes or spatial differentiation of land-use and land-management practices, strongly affect SOC dynamics. Inventories of SOC stocks, reflecting their spatial distribution, are thus key elements to develop relevant management strategies to improving carbon sequestration and mitigating climate change and soil degradation. This study aims to quantify SOC stocks and their spatial distribution in a 1,000-ha agricultural bocage landscape with dairy production as dominant farming system (Zone Atelier Armorique, LTER Europe, NW France). The site is characterized by high heterogeneity on short distance due to a high diversity of soils with varying waterlogging, soil parent material, topography, land-use and hedgerow density. SOC content and stocks were measured up to 105-cm depth in 200 sampling locations selected using conditioned Latin hypercube sampling. Additive sampling was designed to specifically explore SOC distribution near to hedges: 112 points were sampled at fixed distance on 14 transects perpendicular from hedges. We illustrate the heterogeneity of spatial and vertical distribution of SOC stocks at landscape scale, and quantify SOC stocks in the various landscape components. Using multivariate statistics, we discuss the variability and co-variability of existing spatial organization of cropping systems, environmental factors, and SOM stocks, over landscape. Ultimately, our results may contribute to improving regional or national digital soil mapping approaches, by considering the distribution of SOC stocks within each modeling unit and by accounting for the impact of sensitive ecosystems.
On important precursor of singular optics (tutorial)
NASA Astrophysics Data System (ADS)
Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.
2018-01-01
The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].
Technical Specifications for Spread Function Model.
1983-05-01
ocean: theory and observation," J. Acoust. Soc. Am. 59, 818-838 (1976). 40. J. A. Neubert , *Coherence and its sound field structure in the...6000 Executive Boulevard Rockville, MD 20852 ATTN: Paul Etter 10. University of Miami RSMAS-OEN 4600 Rickenbacker Causeway Miami, PL 33149 ATTN: F
NASA Astrophysics Data System (ADS)
Siewert, Matthias; Hugelius, Gustaf
2017-04-01
Permafrost-affected soils store large amounts of soil organic carbon (SOC). Mapping of this SOC provides a first order spatial input variable for research that relates carbon stored in permafrost regions to carbon cycle dynamics. High-resolution satellite imagery is becoming increasingly available even in circum-polar regions. The presented research highlights findings of high-resolution mapping efforts of SOC from five study areas in the northern circum-polar permafrost region. These study areas are located in Siberia (Kytalyk, Spasskaya Pad /Neleger, Lena delta), Northern Sweden (Abisko) and Northwestern Canada (Herschel Island). Our high spatial resolution analyses show how geomorphology has a strong influence on the distribution of SOC. This is organized at different spatial scales. Periglacial landforms and processes dictate local scale SOC distribution due to patterned ground. Such landforms are non-sorted circles and ice-wedge polygons of different age and scale. Palsas and peat plateaus are formed and can cover larger areas in Sub-Arctic environments. Study areas that have not been affected by Pleistocene glaciation feature ice-rich Yedoma sediments that dominate the local relief through thermokarst formation and create landscape scale macro environments that dictate the distribution of SOC. A general trend indicates higher SOC storage in Arctic tundra soils compared to forested Boreal or Sub-Arctic taiga soils. Yet, due to the shallower active layer depth in the Arctic, much of the SOC may be permanently frozen and thus not be available to ecosystem processes. Significantly more SOC is stored in soils compared to vegetation, indicating that vegetation growth and incorporation of the carbon into the plant phytomass alone will not be able to offset SOC released from permafrost. This contribution also addresses advances in thematic mapping methods and digital soil mapping of SOC in permafrost terrain. In particular machine-learning methods, such as support vector machines, artificial neural networks and random forests show promising results as a toolbox for mapping permafrost-affected soils. Yet, these new methods do not decrease our dependency from soil pedon data from the field. In contrary, soil pedon data represents an urgent research priority. Statistical analyses are provided as an indication for best practice of soil pedon sampling for the quantification and the model representation of SOC stored in permafrost-affected soils.
Linking the climatic and geochemical controls on global soil carbon cycling
NASA Astrophysics Data System (ADS)
Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; Van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal
2015-04-01
Climatic and geochemical parameters are regarded as the primary controls for soil organic carbon (SOC) storage and turnover. However, due to the difference in scale between climate and geochemical-related soil research, the interaction of these key factors for SOC dynamics have rarely been assessed. Across a large geochemical and climatic transect in similar biomes in Chile and the Antarctic Peninsula we show how abiotic geochemical soil features describing soil mineralogy and weathering pose a direct control on SOC stocks, concentration and turnover and are central to explaining soil C dynamics at larger scales. Precipitation and temperature had an only indirect control by regulating geochemistry. Soils with high SOC content have low specific potential CO2 respiration rates, but a large fraction of SOC that is stabilized via organo-mineral interactions. The opposite was observed for soils with low SOC content. The observed differences for topsoil SOC stocks along this transect of similar biomes but differing geo-climatic site conditions are of the same magnitude as differences observed for topsoil SOC stocks across all major global biomes. Using precipitation and a set of abiotic geochemical parameters describing soil mineralogy and weathering status led to predictions of high accuracy (R2 0.53-0.94) for different C response variables. Partial correlation analyses revealed that the strength of the correlation between climatic predictors and SOC response variables decreased by 51 - 83% when controlling for geochemical predictors. In contrast, controlling for climatic variables did not result in a strong decrease in the strength of the correlations of between most geochemical variables and SOC response variables. In summary, geochemical parameters describing soil mineralogy and weathering were found to be essential for accurate predictions of SOC stocks and potential CO2 respiration, while climatic factors were of minor importance as a direct control, but are important through governing soil weathering and geochemistry. In conclusion, we pledge for a stronger implementation of geochemical soil properties to predict SOC stocks on a global scale. Understanding the effects of climate (temperature and precipitation) change on SOC dynamics also requires good understanding of the relationship between climate and soil geochemistry.
Caregiving burden and its determinants in Polish caregivers of stroke survivors.
Jaracz, Krystyna; Grabowska-Fudala, Barbara; Górna, Krystyna; Kozubski, Wojciech
2014-10-27
Despite the growing body of literature on the consequences of providing non-professional care to stroke survivors, the determinants of caregiving burden are still not fully recognized. Identification of significant determinants can facilitate caregiver intervention programs. The aim of this study was to evaluate the level of burden borne by caregivers of stroke patients and to identify the most important determinants of burden at 6 months after hospitalization. Data were collected from 150 pairs of stroke patients/caregivers. Caregiver burden was assessed on the Caregiver Burden scale (CB). Several characteristics were measured as potential predictors of the burden. Special attention was paid to the caregiver's sense of coherence (SOC) and anxiety. Regression analysis was employed to test the hypothesized relationships between these variables and the burden. Forty-seven percentage of the caregivers reported a substantial burden (severe or moderate). Caregiver SOC (p < 0.001), anxiety (p < 0.001) and the patients' functional status (p < 0.001) were the most important predictors of the overall burden and the most consistent predictors of the majority of aspects included in the CB scale. Caregiver health, patient's gender, time spent caregiving and social support were also factors related to the burden. The identified predictors explained 67% of the variance in the overall burden. Clinicians and other professionals should focus on the coping abilities of caregivers, their emotional state and the level of patients' dependency, as these are the vital and modifiable factors affecting caregiver burden following stroke.
Agricultural management explains historic changes in regional soil carbon stocks
van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark
2010-01-01
Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. PMID:20679194
Superconducting Microwave Multivibrator Produced by Coherent Feedback
NASA Astrophysics Data System (ADS)
Kerckhoff, Joseph; Lehnert, K. W.
2012-10-01
We investigate a nonlinear coherent feedback circuit constructed from preexisting superconducting microwave devices. The network exhibits emergent bistable and astable states, and we demonstrate its operation as a latch and the frequency locking of its oscillations. While the network is tedious to model by hand, our observations agree quite well with the semiclassical dynamical model produced by a new software package (N. Tezak , arXiv:1111.3081v1 [Phil. Trans. R. Soc. A (to be published)]) that systematically interpreted an idealized schematic of the system as a quantum optic feedback network.
Tan, Z.; Liu, S.; Li, Z.; Loveland, Thomas R.
2007-01-01
Background: Tillage practices greatly affect carbon (C) stocks in agricultural soils. Quantification of the impacts of tillage on C stocks at a regional scale has been challenging because of the spatial heterogeneity of soil, climate, and management conditions. We evaluated the effects of tillage management on the dynamics of soil organic carbon (SOC) in croplands of the Northwest Great Plains ecoregion of the United States using the General Ensemble biogeochemical Modeling System (GEMS). Tillage management scenarios included actual tillage management (ATM), conventional tillage (CT), and no-till (NT). Results: Model simulations show that the average amount of C (kg C ha-1yr-1) released from croplands between 1972 and 2000 was 246 with ATM, 261 with CT, and 210 with NT. The reduction in the rate of C emissions with conversion of CT to NT at the ecoregion scale is much smaller than those reported at plot scale and simulated for other regions. Results indicate that the response of SOC to tillage practices depends significantly on baseline SOC levels: the conversion of CT to NT had less influence on SOC stocks in soils having lower baseline SOC levels but would lead to higher potentials to mitigate C release from soils having higher baseline SOC levels. Conclusion: For assessing the potential of agricultural soils to mitigate C emissions with conservation tillage practices, it is critical to consider both the crop rotations being used at a local scale and the composition of all cropping systems at a regional scale. ?? 2007 Tan et al; licensee BioMed Central Ltd.
Merakou, Kyriakoula; Varouxi, Georgia; Barbouni, Anastasia; Antoniadou, Eleni; Karageorgos, Georgios; Theodoridis, Dimitrios; Koutsouri, Aristea; Kourea-Kremastinou, Jenny
2015-01-01
Music has been proposed as a safe, inexpensive, nonpharmacological antistress intervention. The purpose of this study was to determine whether patients undergoing cataract surgery while listening to meditation music experience lower levels of blood pressure and heart rate. Two hundred individuals undergoing cataract surgery participated in the study. Hundred individuals listened to meditation music, through headphones, before and during the operation (intervention group) and 100 individuals received standard care (control group). Patients stress coping skills were measured by the Sense of Coherence Scale (SOC Scale). Systolic and diastolic blood pressure and heart rate were defined as outcome measures. According to the SOC Scale, both groups had similar stress coping skills (mean score: 127.6 for the intervention group and 127.3 for the control group). Before entering the operating room (OR) as well as during surgery the rise in systolic and diastolic pressures was significantly lower in the intervention group (P < 0.001). Among patients receiving antihypertensive therapy, those in the intervention group presented a lower increase only in systolic pressure (P < 0.001) at both time recordings. For those patients in the intervention group who did not receive antihypertensive treatment, lower systolic blood pressure at both time recordings was recorded (P < 0.001) while lower diastolic pressure was observed only during entry to the OR (P = 0.021). Heart rate was not altered between the two groups in any of the recordings. Meditation music influenced patients' preoperative stress with regard to systolic blood pressure. This kind of music can be used as an alternative or complementary method for blood pressure stabilizing in patients undergoing cataract surgery.
Anatomy of a Security Operations Center
NASA Technical Reports Server (NTRS)
Wang, John
2010-01-01
Many agencies and corporations are either contemplating or in the process of building a cyber Security Operations Center (SOC). Those Agencies that have established SOCs are most likely working on major revisions or enhancements to existing capabilities. As principle developers of the NASA SOC; this Presenters' goals are to provide the GFIRST community with examples of some of the key building blocks of an Agency scale cyber Security Operations Center. This presentation viII include the inputs and outputs, the facilities or shell, as well as the internal components and the processes necessary to maintain the SOC's subsistence - in other words, the anatomy of a SOC. Details to be presented include the SOC architecture and its key components: Tier 1 Call Center, data entry, and incident triage; Tier 2 monitoring, incident handling and tracking; Tier 3 computer forensics, malware analysis, and reverse engineering; Incident Management System; Threat Management System; SOC Portal; Log Aggregation and Security Incident Management (SIM) systems; flow monitoring; IDS; etc. Specific processes and methodologies discussed include Incident States and associated Work Elements; the Incident Management Workflow Process; Cyber Threat Risk Assessment methodology; and Incident Taxonomy. The Evolution of the Cyber Security Operations Center viII be discussed; starting from reactive, to proactive, and finally to proactive. Finally, the resources necessary to establish an Agency scale SOC as well as the lessons learned in the process of standing up a SOC viII be presented.
Moons, Philip; Norekvål, Tone M
2006-03-01
A recent study indicated that the quality of life in adult patients with congenital heart disease was better than that of their healthy counterparts. A possible explanation for this is that these patients have a stronger sense of coherence than do their healthy counterparts. This enhanced sense of coherence develops in childhood through the successful application of generalized resistance resources. Here, we advance the hypothesis that sense of coherence may be a potential pathway for improving the quality of life in patients who grow up with a chronic health condition. This hypothesis needs to be tested in long-term longitudinal studies. If such studies can confirm the hypothesis, SOC can be an important target for interventions in childhood to improve patients' quality of life during adulthood.
ERIC Educational Resources Information Center
Wombacher, Jorg; Tagg, Stephen K.; Burgi, Thomas; MacBryde, Jillian
2010-01-01
In this article, the authors present a German Sense of Community (SOC) Scale for use in military settings. The scale is based on the translation and field-testing of an existing U.S.-based measure of neighborhood SOC (Peterson, Speer, & McMillan, 2008). The methodological intricacies underlying cross-cultural scale development are highlighted, as…
NASA Astrophysics Data System (ADS)
Moore, T. S.; Sanderman, J.; Baldock, J.; Plante, A. F.
2016-12-01
National-scale inventories typically include soil organic carbon (SOC) content, but not chemical composition or biogeochemical stability. Australia's Soil Carbon Research Programme (SCaRP) represents a national inventory of SOC content and composition in agricultural systems. The program used physical fractionation followed by 13C nuclear magnetic resonance (NMR) spectroscopy. While these techniques are highly effective, they are typically too expensive and time consuming for use in large-scale SOC monitoring. We seek to understand if analytical thermal analysis is a viable alternative. Coupled differential scanning calorimetry (DSC) and evolved gas analysis (CO2- and H2O-EGA) yields valuable data on SOC composition and stability via ramped combustion. The technique requires little training to use, and does not require fractionation or other sample pre-treatment. We analyzed 300 agricultural samples collected by SCaRP, divided into four fractions: whole soil, coarse particulates (POM), untreated mineral associated (HUM), and hydrofluoric acid (HF)-treated HUM. All samples were analyzed by DSC-EGA, but only the POM and HF-HUM fractions were analyzed by NMR. Multivariate statistical analyses were used to explore natural clustering in SOC composition and stability based on DSC-EGA data. A partial least-squares regression (PLSR) model was used to explore correlations among the NMR and DSC-EGA data. Correlations demonstrated regions of combustion attributable to specific functional groups, which may relate to SOC stability. We are increasingly challenged with developing an efficient technique to assess SOC composition and stability at large spatial and temporal scales. Correlations between NMR and DSC-EGA may demonstrate the viability of using thermal analysis in lieu of more demanding methods in future large-scale surveys, and may provide data that goes beyond chemical composition to better approach quantification of biogeochemical stability.
Ohta, Masanori; Higuchi, Yoshiyuki; Kumashiro, Masaharu; Yamato, Hiroshi; Sugimura, Hisamichi
2015-03-01
The aim of this study was to explore factors that ameliorate work ability by focusing on workers' capacity to deal with stress.The subjects were 1,330 workers from the Japanese information technology (IT) sector. Each subject completed questionnaires in 2011 and 2012 that consisted of the work ability index (WAI), the three-item sense of coherence (SOC), and the Mental Health Improvement and Reinforcement Research of Recognition (MIRROR). The results of the WAI were also obtained in 2013. The median SOC score in 2011 was used to divide the subjects into two groups, the Low SOC group and the High SOC group, then we verified the factors that contributed to improved work ability in both of these groups over a two-year period. Results indicate that an improvement in work ability in the Low SOC group could be predicted by giving workers opportunities for education or training, by making efforts to reduce the stress of commuting, by clarifying their assignments, and by establishing support systems when troubles occur. For the High SOC group, such improvements could be predicted by giving workers job control, by giving education or training for the promotion of their abilities, and by establishing a system for assuming responsibility. In conclusion, improvements in the work environment can increase the work ability of Japanese IT workers in conformity with their capacity to deal with stress.
Academic Expectations and Actual Achievements: The Roles of Hope and Effort
ERIC Educational Resources Information Center
Levi, Uzi; Einav, Michal; Ziv, Orit; Raskind, Ilana; Margalit, Malka
2014-01-01
This study sought to extend the research on adolescents' hope, academic expectations, and average grades. The hope theory (Snyder, "Psychological Inquiry" 13(4):249-275, 2002), the salutogenic paradigm (with a focus on sense of coherence (SOC) (Antonovsky 1987)), and Bandura's ("Journal of Management" 38(1):9-44,…
A Salutogenic Analysis of Developmental Tasks and Ego Integrity vs. Despair
ERIC Educational Resources Information Center
Wiesmann, Ulrich; Hannich, Hans-Joachim
2011-01-01
This study examines the hypothesis that the outcome of the Eriksonian crisis of integrity vs. despair is dependent on successful coping with four developmental tasks: maintenance of active involvement, reevaluation of life satisfaction, developing a sense of health maintenance, and reevaluation of the sense of coherence (SOC). A selective sample…
Braun-Lewensohn, Orna; Sagy, Shifra
2011-06-01
The aim of this study was to explore coping resources as explanatory factors in reducing emotional distress of adolescents in an acute stress situation. We compared two ethnic groups-Jewish and Arab-Bedouin Israelis-during intensive missile attacks in January 2009. Data were gathered from 138 Israeli-Jews and 84 Israeli-Arab Bedouins, 12-18 years old, who filled out self reported questionnaires among which state anxiety, state anger, and psychological distress (SPD) were measures of emotional distress, and sense of coherence (SOC) and hope index served as measures of coping resources. Findings indicated no differences between the two groups on state anxiety, SPD and hope levels. Arab Bedouins reported higher levels of state anger and lower levels of sense of coherence. The coping resources, however, explained the stress reactions differently among the two groups. While SOC made a major contribution in explaining stress reactions among Jewish adolescents, hope index explained stress reactions only for the Arab group. The findings are discussed against the background of the salutogenic theory and the cultural differences between the two ethnic groups.
NASA Astrophysics Data System (ADS)
Nocita, M.; Stevens, A.; Toth, G.; van Wesemael, B.; Montanarella, L.
2012-12-01
In the context of global environmental change, the estimation of carbon fluxes between soils and the atmosphere has been the object of a growing number of studies. This has been motivated notably by the possibility to sequester CO2 into soils by increasing the soil organic carbon (SOC) stocks and by the role of SOC in maintaining soil quality. Spatial variability of SOC masks its slow accumulation or depletion, and the sampling density required to detect a change in SOC content is often very high and thus very expensive and labour intensive. Visible near infrared diffuse reflectance spectroscopy (Vis-NIR DRS) has been shown to be a fast, cheap and efficient tool for the prediction of SOC at fine scales. However, when applied to regional or country scales, Vis-NIR DRS did not provide sufficient accuracy as an alternative to standard laboratory soil analysis for SOC monitoring. Under the framework of Land Use/Cover Area Frame Statistical Survey (LUCAS) project of the European Commission's Joint Research Centre (JRC), about 20,000 samples were collected all over European Union. Soil samples were analyzed for several physical and chemical parameters, and scanned with a Vis-NIR spectrometer in the same laboratory. The scope of our research was to predict SOC content at European scale using LUCAS spectral library. We implemented a modified local partial least square regression (l-PLS) including, in addition to spectral distance, other potentially useful covariates (geography, texture, etc.) to select for each unknown sample a group of predicting neighbours. The dataset was split in mineral soils under cropland, mineral soils under grassland, mineral soils under woodland, and organic soils due to the extremely diverse spectral response of the four classes. Four every class training (70%) and test (30%) sets were created to calibrate and validate the SOC prediction models. The results showed very good prediction ability for mineral soils under cropland and mineral soils under grassland, with a root mean square error (RMSE) of 3.6 and 7.2 g C kg-1 respectively, while mineral soils under woodland and organic soils predictions were less accurate (RMSE of 11.9 and 51.1 g C kg-1). The RMSE was lower (except for organic soils) when sand content was used as covariate in the selection of the l-PLS predicting neighbours. The obtained results proved that: (i) Although the enormous spatial variability of European soils, the developed modified l-PLS algorithm was able to produce stable calibrations and accurate predictions. (ii) It is essential to invest in spectral libraries built according to sampling strategies, based on soil types, and a standardized laboratory protocol. (iii) Vis-NIR DRS spectroscopy is a powerful and cost effective tool to predict SOC content at regional/continental scales, and should be converted from a pure research discipline into a reference operational method decreasing the uncertainties of SOC monitoring and terrestrial ecosystems carbon fluxes at all scales.
Holde, Gro Eirin; Baker, Sarah R; Jönsson, Birgitta
2018-07-01
To utilise Andersen's behavioural model for health services' use as the theoretical framework to examine direct and indirect relationships between population characteristics, oral health behaviours and periodontitis and oral health impacts. The model was tested in a general adult population (n = 1,886) in Norway, using structural equation modelling. Socioeconomic status, sense of coherence (SOC), dental anxiety, perceived treatment need, oral health behaviours and oral health impact profile (OHIP-14) were collected through questionnaire. Periodontal examinations consisted of full-mouth recordings. Andersen's model explained a large part of the variance in use of dental services (58%) and oral health-related impacts (55%), and to a less extent periodontitis (19%). More social structure and stronger SOC was related to more enabling resources, which in turn was associated with more use of dental services. More use of dental services was related to more periodontitis and more periodontitis was associated with increased oral health impacts. A stronger SOC was associated with less oral impacts. There was no association between use of dental services and oral health impacts. The result demonstrated complex relationships between population characteristics, oral health-related behaviours and oral health outcomes. Socioeconomic factors and smoking were main predictors of periodontitis. Regular dental visiting habits did not, however, reduce the likelihood of periodontitis. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lutfalla, Suzanne; Barré, Pierre; Bernard, Sylvain; Le Guillou, Corentin; Alléon, Julien; Chenu, Claire
2016-04-01
Better understanding the mechanisms responsible for the pluri-decadal persistence of carbon in soils requires well constraining the dynamics, the distribution and the chemical nature of both the soil organic carbon (SOC) and the associated mineral phases. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here, benefiting from the unique opportunity offered by an INRA long term bare fallow (LTBF) experiment having started in 1928 in Versailles (France), we report the in-situ characterization of SOC dynamics in four clay fractions of this silty loam soil (total clays [TC, <2μm], coarse clays [CC, 0.2-2μm], intermediate clays [IC, 0.05-0.2μm] and fine clays [FC, 0-0.05μm]). The IC and FC fractions only contain smectite and illite/smectite mixed-layered clay minerals while the CC fraction also contains illite and kaolinite. In the absence of any carbon input, the plant-free LTBF clay fractions from Versailles progressively lost SOC during the first 50 years of the experiment, until they reached a seemingly stable concentration. Of note, the investigated clay fractions did not lose the same amount of SOC and do not exhibit the same final carbon concentrations. The decrease of the organic C:N ratios with LTBF duration corresponds to a progressive enrichment in N-rich SOC for all fractions which can be attributed to microbial material. Even though the speciation of SOC appears to only slightly evolve with LTBF duration, an enrichment in carboxyl and carbonyl groups is revealed by bulk-scale C-NEXAFS data for SOC from all clay fractions. In addition, STXM-based NEXAFS investigations at the submicrometer scale reveal three types of SOC-clay assemblages in addition to clay-free SOC and organic-free clays. While SOC appears mostly adsorbed onto clay surfaces within the IC and FC fractions, other protection mechanisms occur within the CC fraction. Altogether, the present study suggests that smectite have more efficient protection capabilities than those of illite and kaolinite.
Self-Organized Criticality Systems
NASA Astrophysics Data System (ADS)
Aschwanden, M. J.
2013-07-01
Contents: (1) Introduction - Norma B. Crosby --- (2) Theoretical Models of SOC Systems - Markus J. Aschwanden --- (3) SOC and Fractal Geometry - R. T. James McAteer --- (4) Percolation Models of Self-Organized Critical Phenomena - Alexander V. Milovanov --- (5) Criticality and Self-Organization in Branching Processes: Application to Natural Hazards - Álvaro Corral, Francesc Font-Clos --- (6) Power Laws of Recurrence Networks - Yong Zou, Jobst Heitzig, Jürgen Kurths --- (7) SOC computer simolations - Gunnar Pruessner --- (8) SOC Laboratory Experiments - Gunnar Pruessner --- (9) Self-Organizing Complex Earthquakes: Scaling in Data, Models, and Forecasting - Michael K. Sachs et al. --- (10) Wildfires and the Forest-Fire Model - Stefan Hergarten --- (11) SOC in Landslides - Stefan Hergarten --- (12) SOC and Solar Flares - Paul Charbonneau --- (13) SOC Systems in Astrophysics - Markus J. Aschwanden ---
Towards integrated modelling of soil organic carbon cycling at landscape scale
NASA Astrophysics Data System (ADS)
Viaud, V.
2009-04-01
Soil organic carbon (SOC) is recognized as a key factor of the chemical, biological and physical quality of soil. Numerous models of soil organic matter turnover have been developed since the 1930ies, most of them dedicated to plot scale applications. More recently, they have been applied to national scales to establish the inventories of carbon stocks directed by the Kyoto protocol. However, only few studies consider the intermediate landscape scale, where the spatio-temporal pattern of land management practices, its interactions with the physical environment and its impacts on SOC dynamics can be investigated to provide guidelines for sustainable management of soils in agricultural areas. Modelling SOC cycling at this scale requires accessing accurate spatially explicit input data on soils (SOC content, bulk density, depth, texture) and land use (land cover, farm practices), and combining both data in a relevant integrated landscape representation. The purpose of this paper is to present a first approach to modelling SOC evolution in a small catchment. The impact of the way landscape is represented on SOC stocks in the catchment was more specifically addressed. This study was based on the field map, the soil survey, the crop rotations and land management practices of an actual 10-km² agricultural catchment located in Brittany (France). RothC model was used to drive soil organic matter dynamics. Landscape representation in the form of a systematic regular grid, where driving properties vary continuously in space, was compared to a representation where landscape is subdivided into a set of homogeneous geographical units. This preliminary work enabled to identify future needs to improve integrated soil-landscape modelling in agricultural areas.
NASA Astrophysics Data System (ADS)
Will, R. M.; Glenn, N. F.; Benner, S. G.; Pierce, J. L.; Spaete, L.; Li, A.
2015-12-01
Quantifying SOC (Soil Organic Carbon) storage in complex terrain is challenging due to high spatial variability. Generally, the challenge is met by transforming point data to the entire landscape using surrogate, spatially-distributed, variables like elevation or precipitation. In many ecosystems, remotely sensed information on above-ground vegetation (e.g. NDVI) is a good predictor of below-ground carbon stocks. In this project, we are attempting to improve this predictive method by incorporating LiDAR-derived vegetation indices. LiDAR provides a mechanism for improved characterization of aboveground vegetation by providing structural parameters such as vegetation height and biomass. In this study, a random forest model is used to predict SOC using a suite of LiDAR-derived vegetation indices as predictor variables. The Reynolds Creek Experimental Watershed (RCEW) is an ideal location for a study of this type since it encompasses a strong elevation/precipitation gradient that supports lower biomass sagebrush ecosystems at low elevations and forests with more biomass at higher elevations. Sagebrush ecosystems composed of Wyoming, Low and Mountain Sagebrush have SOC values ranging from .4 to 1% (top 30 cm), while higher biomass ecosystems composed of aspen, juniper and fir have SOC values approaching 4% (top 30 cm). Large differences in SOC have been observed between canopy and interspace locations and high resolution vegetation information is likely to explain plot scale variability in SOC. Mapping of the SOC reservoir will help identify underlying controls on SOC distribution and provide insight into which processes are most important in determining SOC in semi-arid mountainous regions. In addition, airborne LiDAR has the potential to characterize vegetation communities at a high resolution and could be a tool for improving estimates of SOC at larger scales.
NASA Astrophysics Data System (ADS)
Siewert, Matthias B.
2018-03-01
Soil organic carbon (SOC) stored in northern peatlands and permafrost-affected soils are key components in the global carbon cycle. This article quantifies SOC stocks in a sub-Arctic mountainous peatland environment in the discontinuous permafrost zone in Abisko, northern Sweden. Four machine-learning techniques are evaluated for SOC quantification: multiple linear regression, artificial neural networks, support vector machine and random forest. The random forest model performed best and was used to predict SOC for several depth increments at a spatial resolution of 1 m (1×1 m). A high-resolution (1 m) land cover classification generated for this study is the most relevant predictive variable. The landscape mean SOC storage (0-150 cm) is estimated to be 8.3 ± 8.0 kg C m-2 and the SOC stored in the top meter (0-100 cm) to be 7.7 ± 6.2 kg C m-2. The predictive modeling highlights the relative importance of wetland areas and in particular peat plateaus for the landscape's SOC storage. The total SOC was also predicted at reduced spatial resolutions of 2, 10, 30, 100, 250 and 1000 m and shows a significant drop in land cover class detail and a tendency to underestimate the SOC at resolutions > 30 m. This is associated with the occurrence of many small-scale wetlands forming local hot-spots of SOC storage that are omitted at coarse resolutions. Sharp transitions in SOC storage associated with land cover and permafrost distribution are the most challenging methodological aspect. However, in this study, at local, regional and circum-Arctic scales, the main factor limiting robust SOC mapping efforts is the scarcity of soil pedon data from across the entire environmental space. For the Abisko region, past SOC and permafrost dynamics indicate that most of the SOC is barely 2000 years old and very dynamic. Future research needs to investigate the geomorphic response of permafrost degradation and the fate of SOC across all landscape compartments in post-permafrost landscapes.
Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes
NASA Astrophysics Data System (ADS)
Citrin, J.; Arnichand, H.; Bernardo, J.; Bourdelle, C.; Garbet, X.; Jenko, F.; Hacquin, S.; Pueschel, M. J.; Sabot, R.
2017-06-01
The observation of distinct peaks in tokamak core reflectometry measurements—named quasi-coherent-modes (QCMs)—are identified as a signature of trapped-electron-mode (TEM) turbulence (Arnichand et al 2016 Plasma Phys. Control. Fusion 58 014037). This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the Gene code. A Tore-Supra density scan is studied, which traverses through a linear (LOC) to saturated (SOC) ohmic confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ion-temperature-gradient (ITG) modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulence.
NASA Astrophysics Data System (ADS)
Grinand, C.; Maire, G. Le; Vieilledent, G.; Razakamanarivo, H.; Razafimbelo, T.; Bernoux, M.
2017-02-01
Soil organic carbon (SOC) plays an important role in climate change regulation notably through release of CO2 following land use change such a deforestation, but data on stock change levels are lacking. This study aims to empirically assess SOC stocks change between 1991 and 2011 at the landscape scale using easy-to-access spatially-explicit environmental factors. The study area was located in southeast Madagascar, in a region that exhibits very high rate of deforestation and which is characterized by both humid and dry climates. We estimated SOC stock on 0.1 ha plots for 95 different locations in a 43,000 ha reference area covering both dry and humid conditions and representing different land cover including natural forest, cropland, pasture and fallows. We used the Random Forest algorithm to find out the environmental factors explaining the spatial distribution of SOC. We then predicted SOC stocks for two soil layers at 30 cm and 100 cm over a wider area of 395,000 ha. By changing the soil and vegetation indices derived from remote sensing images we were able to produce SOC maps for 1991 and 2011. Those estimates and their related uncertainties where combined in a post-processing step to map estimates of significant SOC variations and we finally compared the SOC change map with published deforestation maps. Results show that the geologic variables, precipitation, temperature, and soil-vegetation status were strong predictors of SOC distribution at regional scale. We estimated an average net loss of 10.7% and 5.2% for the 30 cm and the 100 cm layers respectively for deforested areas in the humid area. Our results also suggest that these losses occur within the first five years following deforestation. No significant variations were observed for the dry region. This study provides new solutions and knowledge for a better integration of soil threats and opportunities in land management policies.
Positive Psychology in Cancer Care: A Story Line Resistant to Evidence
Tennen, Howard; Ranchor, Adelita V.
2010-01-01
Background Aspinwall and Tedeschi (Ann Behav Med, 2010) summarize evidence they view as supporting links between positive psychological states, including sense of coherence (SOC) and optimism and health outcomes, and they refer to persistent assumptions that interfere with understanding how positive states predict health. Purpose We critically evaluate Aspinwall and Tedeschi’s assertions. Methods We examine evidence related to SOC and optimism in relation to physical health, and revisit proposed processes linking positive psychological states to health outcomes, particularly via the immune system in cancer. Results Aspinwall and Tedeschi’s assumptions regarding SOC and optimism are at odds with available evidence. Proposed pathways between positive psychological states and cancer outcomes are not supported by existing data. Aspinwall and Tedeschi’s portrayal of persistent interfering assumptions echoes a disregard of precedent in the broader positive psychology literature. Conclusion Positive psychology’s interpretations of the literature regarding positive psychological states and cancer outcomes represent a self-perpetuating story line without empirical support. PMID:20186581
Total Storage and Landscape Partitioning of Soil Organic Carbon and Phytomass Carbon in Siberia
NASA Astrophysics Data System (ADS)
Siewert, M. B.; Hanisch, J.; Weiss, N.; Kuhry, P.; Hugelius, G.
2014-12-01
We present results of detailed partitioning of soil organic carbon (SOC) and phytomass carbon (PC) from two study sites in Siberia. The study sites in the Tundra (Kytalyk) and the Taiga (Spasskaya Pad) reflect two contrasting environments in the continuous permafrost zone. In total 57 individual field sites (24 and 33 per study site respectively) have have been sampled for SOC and PC along transects cutting across different land covers. In Kytalyk the sampling depth for the soil pedons was 1 m depth. In Spasskaya Pad where the active layer was significantly deeper, we aimed for 2 m depth or tried to include at least the top of the permafrost. Here the average depth of soil profiles was 152 cm. PC was sampled from 1x1 m ground coverage plots. In Spasskaya Pad tree phytomass was also estimated on a 5x5 m plot. The SOC storage was calculated separately for the intervals 0-30 cm, 30-100 cm and 100-200 cm (the latter only for Spasskaya Pad), as well as for organic layer vs. mineral soil, active layer vs. permafrost and for cryoturbated soil horizons. Landscape partitioning was performed by thematic up-scaling using a vegetation based land cover classification of very high resolution (2x2 m) satellite imagery. Non-Metric Multidimensional Scaling (NMDS) was used to explore the relationship of SOC with PC and different soil and permafrost related variables. The results show that the different land cover classes can be considered distinct storages of SOC, but that PC is not significantly related to total SOC storage. At both study sites the 30-100 cm SOC storage is more important for the total SOC storage than the 0-30 cm interval, and large portions of the total SOC are stored in the permafrost. The largest contribution comes from wetland pedons, but highly cryoturbated individual non-wetland pedons can match these. In Kytalyk the landscape partitioning of SOC mostly follows large scale geomorphological features, while in Spasskaya pad forest type also has a large influence.
Harden, Jennifer W.; Hugelius, Gustaf; Ahlström, Anders; Blankinship, Joseph C.; Bond-Lamberty, Ben; Lawrence, Corey; Loisel, Julie; Malhotra, Avni; Jackson, Robert B.; Ogle, Stephen M.; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine; Vargas, Rodrigo; Vergara, Sintana E.; Cotrufo, M. Francesca; Keiluweit, Marco; Heckman, Katherine; Crow, Susan E.; Silver, Whendee L.; DeLonge, Marcia; Nave, Lucas E.
2018-01-01
Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.
Rosas, Scott R; Behar, Lenore B; Hydaker, William M
2016-01-01
Establishing a system of care requires communities to identify ways to successfully implement strategies and support positive outcomes for children and their families. Such community transformation is complex and communities vary in terms of their readiness for implementing sustainable community interventions. Assessing community readiness and guiding implementation, specifically for the funded communities implementing a system of care, requires a well-designed tool with sound psychometric properties. This scale development study used the results of a previously published concept mapping study to create, administer, and assess the psychometric characteristics of the System of Care Readiness and Implementation Measurement Scale (SOC-RIMS). The results indicate the SOC-RIMS possesses excellent internal consistency characteristics, measures clearly discernible dimensions of community readiness, and demonstrates the target constructs exist within a broad network of content. The SOC-RIMS can be a useful part of a comprehensive assessment in communities where system of care practices, principles, and philosophies are implemented and evaluated.
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2015-03-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2014-11-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
NASA Astrophysics Data System (ADS)
Wild, B.; Keuper, F.; Kummu, M.; Beer, C.; Blume-Werry, G.; Fontaine, S.; Gavazov, K.; Gentsch, N.; Guggenberger, G.; Hugelius, G.; Jalava, M.; Koven, C.; Krab, E. J.; Kuhry, P.; Monteux, S.; Richter, A.; Shazhad, T.; Dorrepaal, E.
2017-12-01
Predictions of soil organic carbon (SOC) losses in the northern circumpolar permafrost area converge around 15% (± 3% standard error) of the initial C pool by 2100 under the RCP 8.5 warming scenario. Yet, none of these estimates consider plant-soil interactions such as the rhizosphere priming effect (RPE). While laboratory experiments have shown that the input of plant-derived compounds can stimulate SOC losses by up to 1200%, the magnitude of RPE in natural ecosystems is unknown and no methods for upscaling exist so far. We here present the first spatial and depth explicit RPE model that allows estimates of RPE on a large scale (PrimeSCale). We combine available spatial data (SOC, C/N, GPP, ALT and ecosystem type) and new ecological insights to assess the importance of the RPE at the circumpolar scale. We use a positive saturating relationship between the RPE and belowground C allocation and two ALT-dependent rooting-depth distribution functions (for tundra and boreal forest) to proportionally assign belowground C allocation and RPE to individual soil depth increments. The model permits to take into account reasonable limiting factors on additional SOC losses by RPE including interactions between spatial and/or depth variation in GPP, plant root density, SOC stocks and ALT. We estimate potential RPE-induced SOC losses at 9.7 Pg C (5 - 95% CI: 1.5 - 23.2 Pg C) by 2100 (RCP 8.5). This corresponds to an increase of the current permafrost SOC-loss estimate from 15% of the initial C pool to about 16%. If we apply an additional molar C/N threshold of 20 to account for microbial C limitation as a requirement for the RPE, SOC losses by RPE are further reduced to 6.5 Pg C (5 - 95% CI: 1.0 - 16.8 Pg C) by 2100 (RCP 8.5). Although our results show that current estimates of permafrost soil C losses are robust without taking into account the RPE, our model also highlights high-RPE risk in Siberian lowland areas and Alaska north of the Brooks Range. The small overall impact of the RPE is largely explained by the interaction between belowground plant C allocation and SOC depth distribution. Our findings thus highlight the importance of fine scale interactions between plant and soil properties for large scale carbon fluxes and we provide a first model that bridges this gap and permits the quantification of RPE across a large area.
Maass, Ruca; Lindström, Bengt; Lillefjell, Monica
2017-09-12
Providing individuals with psychosocial resources such as sense of coherence (SOC) seems a beneficial strategy for health promotion in the neighborhood. In order to become a supporting theory for health promotion, Salutogenesis should renew its focus on resources for health, and explore how the development of a strong SOC can be facilitated. Relevant issues were explored using a Grounded Theory- approach. Three focus-group-sessions and three in-depth interviews were conducted with strategically sampled participants. The transcripts of the focus groups were initially analyzed line-by-line to ensure that insights emerged from the data. We then applied focused and systemic analyses to achieve axial coding, and to include insights into how social interactions during focus groups may reveal social processes in real-life-neighborhoods. The data from the in-depth interviews were used to validate and fill emerging categories, as well as to ensure data-saturation. Findings indicate the importance of repeated experiences with resources and every-day-challenges to develop a strong SOC. Active engagement with resources is a favorable condition for significant experiences, which enhance the internalization of resources. Core experiences are characterized by a re-organization of resources. Participation in intellectual meaning-making through equal power dialogue seems to broaden perspectives and promote the strengthening of SOC. A strong SOC can also be described as a deeper understanding of how and why resources work, which allows for a more flexible use of resources, including replacing missing resources. A new understanding of SOC as an intuitive understanding of how, why and under which circumstances resources work, as well as a new focus on everyday life and repeated experiences might facilitate new approaches to a purposeful strengthening of SOC through the planning and implementation of public measures.
Scaling and self-organized criticality in proteins I
Phillips, J. C.
2009-01-01
The complexity of proteins is substantially simplified by regarding them as archetypical examples of self-organized criticality (SOC). To test this idea and elaborate on it, this article applies the Moret–Zebende SOC hydrophobicity scale to the large-scale scaffold repeat protein of the HEAT superfamily, PR65/A. Hydrophobic plasticity is defined and used to identify docking platforms and hinges from repeat sequences alone. The difference between the MZ scale and conventional hydrophobicity scales reflects long-range conformational forces that are central to protein functionality. PMID:19218446
NASA Astrophysics Data System (ADS)
Dal Ferro, Nicola; Quinn, Claire Helen; Morari, Francesco
2017-04-01
A key challenge for soil scientists is predicting agricultural management scenarios that combine crop productions with high standards of environmental quality. In this context, reversing the soil organic carbon (SOC) decline in croplands is required for maintaining soil fertility and contributing to mitigate GHGs emissions. Bayesian belief networks (BBN) are probabilistic models able to accommodate uncertainty and variability in the predictions of the impacts of management and environmental changes. By linking multiple qualitative and quantitative variables in a cause-and-effect relationships, BBNs can be used as a decision support system at different spatial scales to find best management strategies in the agroecosystems. In this work we built a BBN to model SOC dynamics (0-30 cm layer) in the low-lying plain of Veneto region, north-eastern Italy, and define best practices leading to SOC accumulation and GHGs (CO2-equivalent) emissions reduction. Regional pedo-climatic, land use and management information were combined with experimental and modelled data on soil C dynamics as natural and anthropic key drivers affecting SOC stock change. Moreover, utility nodes were introduced to determine optimal decisions for mitigating GHGs emissions from croplands considering also three different IPCC climate scenarios. The network was finally validated with real field data in terms of SOC stock change. Results showed that the BBN was able to model real SOC stock changes, since validation slightly overestimated SOC reduction (+5%) at the expenses of its accumulation. At regional level, probability distributions showed 50% of SOC loss, while only 17% of accumulation. However, the greatest losses (34%) were associated with low reduction rates (100-500 kg C ha-1 y-1), followed by 33% of stabilized conditions (-100 < SOC < 100 kg ha-1 y-1). Land use management (especially tillage operations and soil cover) played a primary role to affect SOC stock change, while climate conditions were only slightly involved in C regulation within the 0-30 cm layer. The proposed BBN framework was flexible to perform both field-scale validation and regional-scale predictions. Moreover, BBN provided guidelines for improved land management strategies in a perspective of climate change scenarios, although further validation, including a broader set of experimental data, is needed to strengthen the outcomes across Veneto region.
Norekvål, Tone M; Fridlund, Bengt; Moons, Philip; Nordrehaug, Jan E; Saevareid, Hans I; Wentzel-Larsen, Tore; Hanestad, Berit R
2010-03-01
To determine the relationships between different sense of coherence levels and quality of life, and in older female myocardial infarction survivors; to investigate how socio-demographic, clinical characteristics, sense of coherence self-reported symptoms and function affect quality of life; and to determine whether sense of coherence and quality of life are stable during a six-month follow-up. Myocardial infraction confers new physical and mental challenges. However, research on sense of coherence and other factors involved in maintaining physical, psychosocial and environmental aspects of quality of life in older female myocardial infraction survivors is scant. Survey. A postal survey was conducted of 145 women, aged 62-80 years, three months to five years after myocardial infarction (T1), with a follow-up after six months (T2). Self-reported socio-demographic and clinical data and hospital medical records data were collected. The sense of coherence scale (SOC-29) and the World Health Organization Quality of Life Instrument Abbreviated (WHOQOL-BREF) were used. We found a significant difference in quality of life between weak, moderate, and strong sense of coherence groups (p<0.001). Sense of coherence contributed to the level of all quality of life domains (p<0.001). Several clinical characteristics contributed to quality of life: (1) physical domain: comorbidities (p<0.001), previous myocardial infarction (p = 0.013), ejection fraction (p<0.011), length of hospital stay (p = 0.005) symptoms and function (p<0.001); (2) psychological domain: previous myocardial infarction (p = 0.031) and symptoms and function (p<0.001); and (3) environmental domain: education (p = 0.033) and symptoms and function (p = 0.003). On group level, both sense of coherence and quality of life were stable. Experiencing specific health changes (p<0.001), not major life events, influenced quality of life during the six-month follow-up. Sense of coherence was an important stable determinant of quality of life domains in female myocardial infarction survivors. Although other factors were identified, further research is needed to elucidate additional determinants of quality of life. These specific factors could guide clinicians in making treatment decisions that optimize the quality of life of their patients. Applying a salutogenic perspective through patient education may be important.
NASA Astrophysics Data System (ADS)
Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K. Y. Michael; Zhou, Changsong
2016-01-01
Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.
Nomoto, Marino; Hara, Akiko; Kikuchi, Kimiyo
2015-06-01
The objective of this study was to investigate the effects of long-time commuting and long-hour working on lifestyle including sleeping, physical exercise, breakfast, smoking, alcohol intake and mental health. In this cross-sectional study, data were collected from 146 school teachers in Tokyo. The binary associations of commuting time and working hours with lifestyle, mental stress measured by the General Health Questionnaire (GHQ) and stress coping measured by the Sense of Coherence (SOC) scores were examined. The Chi-square test was used for statistical analyses. Our results indicated that the mean commuting time and working hours per week of the respondents were 42.1 (SD 22.5) minutes and 50.4 (SD 8.6) hours, respectively. Longer commuting time was significantly associated with shorter working hours (p = 0.023), less physical exercise (p < 0.001) and shorter sleeping hours (p = 0.001). Longer working hours were significantly associated with more frequent working on holidays (p = 0.001), higher SOC scores (p = 0.001) and more smoking (p = 0.028). The negative association between GHQ and SOC scores was also significant (p < 0.001). Our findings revealed that long-time commuters were more likely to sleep less, exercise less and work less long. Long-hour workers were more likely to commute shorter, work on holidays more frequently, smoke more and their stress coping potentials were higher. Some kinds of strategies are required to improve the healthy lifestyle for long-time com- muters or long-hour workers. Key words: stress; stress coping; general health questionnaire; sense of coherence
Soil carbon storage following road removal and timber harvesting in redwood forests
Seney, Joseph; Madej, Mary Ann
2015-01-01
Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second-growth forests and old-growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site-scale and landscape-scale variables in predicting SOC accumulation in treated road prisms and second-growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second-growth and old-growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second-growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%
NASA Astrophysics Data System (ADS)
Wolfgramm, Bettina; Hurni, Hans; Liniger, Hanspeter; Ruppen, Sebastian; Milne, Eleanor; Bader, Hans-Peter; Scheidegger, Ruth; Amare, Tadele; Yitaferu, Birru; Nazarmavloev, Farrukh; Conder, Malgorzata; Ebneter, Laura; Qadamov, Aslam; Shokirov, Qobiljon; Hergarten, Christian; Schwilch, Gudrun
2013-04-01
There is a fundamental mutual interest between enhancing soil organic carbon (SOC) in the world's soils and the objectives of the major global environmental conventions (UNFCCC, UNCBD, UNCCD). While there is evidence at the case study level that sustainable land management (SLM) technologies increase SOC stocks and SOC related benefits, there is no quantitative data available on the potential for increasing SOC benefits from different SLM technologies and especially from case studies in the developing countries, and a clear understanding of the trade-offs related to SLM up-scaling is missing. This study aims at assessing the potential increase of SOC under SLM technologies worldwide, evaluating tradeoffs and gains in up-scaling SLM for case studies in Tajikistan, Ethiopia and Switzerland. It makes use of the SLM technologies documented in the online database of the World Overview of Conservation Approaches and Technologies (WOCAT). The study consists of three components: 1) Identifying SOC benefits contributing to the major global environmental issues for SLM technologies worldwide as documented in the WOCAT global database 2) Validation of SOC storage potentials and SOC benefit predictions for SLM technologies from the WOCAT database using results from existing comparative case studies at the plot level, using soil spectral libraries and standardized documentations of ecosystem service from the WOCAT database. 3) Understanding trade-offs and win-win scenarios of up-scaling SLM technologies from the plot to the household and landscape level using material flow analysis. This study builds on the premise that the most promising way to increase benefits from land management is to consider already existing sustainable strategies. Such SLM technologies from all over the world documented are accessible in a standardized way in the WOCAT online database. The study thus evaluates SLM technologies from the WOCAT database by calculating the potential SOC storage increase and related benefits by comparing SOC estimates before-and-after establishment of the SLM technology. These results are validated using comparative case studies of plots with-and-without SLM technologies (existing SLM systems versus surrounding, degrading systems). In view of upscaling SLM technologies, it is crucial to understand tradeoffs and gains supporting or hindering the further spread. Systemic biomass management analysis using material flow analysis allows quantifying organic carbon flows and storages for different land management options at the household, but also at landscape level. The study shows results relevant for science, policy and practice for accounting, monitoring and evaluating SOC related ecosystem services: - A comprehensive methodology for SLM impact assessments allowing quantification of SOC storage and SOC related benefits under different SLM technologies, and - Improved understanding of upscaling options for SLM technologies and tradeoffs as well as win-win opportunities for biomass management, SOC content increase, and ecosystem services improvement at the plot and household level.
ERIC Educational Resources Information Center
Pozo, P.; Sarriá, E.; Brioso, A.
2014-01-01
Background: This study examined family quality of life (FQOL) and psychological well-being from a multidimensional perspective. The proposed model was based on the double ABCX model, with severity of the disorder, behaviour problems, social support, sense of coherence (SOC) and coping strategies as components. Method: One hundred and eighteen…
ERIC Educational Resources Information Center
Sharabi, Adi; Sade, Sarit; Margalit, Malka
2016-01-01
The goals of the study were first to compare the social and academic well-being (loneliness and academic self-efficacy (ASE) among college students with and without learning disabilities (LD), as well as three personal strengths (hope, optimism and sense of coherence (SOC). The second goal was to identify the predicting factors to their loneliness…
25 Years of Self-Organized Criticality: Solar and Astrophysics
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; McAteer, James; Milovanov, Alexander V.; Mineshige, Shin; Morales, Laura; Nishizuka, Naoto; Pruessner, Gunnar; Sanchez, Raul; Sharma, A. Surja; Strugarek, Antoine; Uritsky, Vadim
2016-01-01
Shortly after the seminal paper "Self-Organized Criticality: An explanation of 1/ f noise" by Bak et al. (1987), the idea has been applied to solar physics, in "Avalanches and the Distribution of Solar Flares" by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.
Harden, Jennifer W; Hugelius, Gustaf; Ahlström, Anders; Blankinship, Joseph C; Bond-Lamberty, Ben; Lawrence, Corey R; Loisel, Julie; Malhotra, Avni; Jackson, Robert B; Ogle, Stephen; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine; Vargas, Rodrigo; Vergara, Sintana E; Cotrufo, M Francesca; Keiluweit, Marco; Heckman, Katherine A; Crow, Susan E; Silver, Whendee L; DeLonge, Marcia; Nave, Lucas E
2018-02-01
Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Apers, Silke; Rassart, Jessica; Luyckx, Koen; Oris, Leen; Goossens, Eva; Budts, Werner; Moons, Philip
2016-01-01
Antonovsky coined sense of coherence (SOC) as the central concept of his salutogenic theory focusing on the origins of well-being. SOC captures the degree to which one perceives the world as comprehensible, manageable, and meaningful. Life events and resources are considered to be the building blocks of a person's SOC. However, mainly quantitative studies have looked into the role of life events and resources. Therefore, the present study aims to gain a deeper insight into the experiences of patients with congenital heart disease (CHD) regarding resources and life events. For this qualitative study, patients were selected from the sample of a preceding study on development of SOC (n = 429). In total, 12 young individuals with CHD who had either a weak (n = 6) or strong SOC (n = 6) over time were interviewed (8 women, median age of 20 years). Data analysis was based on the constant comparative method as detailed in the Qualitative Analysis Guide of Leuven. Commonalities and differences between patients from both groups were explored. The following themes emerged: (1) self-concept; (2) social environment; (3) daytime activities; (4) life events and disease-related turning points; (5) stress and coping; and (6) illness integration. Additionally, the degree of personal control was identified as an overarching topic that transcended the other themes when comparing both groups of patients. These results may have implications for the structure and content of interventions improving well-being in young people with CHD.
Amagai, Manami; Li, Conghong; Kobayashi, Noriko; Hiroshima, Mayo
2016-06-01
Self-efficacy for social participation (SESP) of people with mental illness was examined in urban areas of Japan and China. The subjects were 266 people (140 Japanese, 126 Chinese) with mental illness who were living in their local community. Our SESP scale (SESP27) and the Rosenberg Self-Esteem Scale, Norbeck Social Support Questionnaire (NSSQ), Sense of Coherence measure (SOC13), General Health Questionnaire (GHQ12), and a self-administered questionnaire related to living conditions were used for data collection. Data were analyzed descriptively, correlations between scales were examined, and multiple regression analysis was performed by country. The results showed that annual income was related to SESP in Japan and China. Therefore, improvement of welfare and employment support for economic independence is likely to improve SESP of people with mental illness in both countries. In addition, SESP in people with mental illness is affected by self-esteem in Japan, and coping skills such as improvement of life functions in China. Thus, SESP is affected differently by the social, cultural and institutional characteristics of each country. Copyright © 2016 Elsevier Inc. All rights reserved.
Meta-modeling soil organic carbon sequestration potential and its application at regional scale.
Luo, Zhongkui; Wang, Enli; Bryan, Brett A; King, Darran; Zhao, Gang; Pan, Xubin; Bende-Michl, Ulrike
2013-03-01
Upscaling the results from process-based soil-plant models to assess regional soil organic carbon (SOC) change and sequestration potential is a great challenge due to the lack of detailed spatial information, particularly soil properties. Meta-modeling can be used to simplify and summarize process-based models and significantly reduce the demand for input data and thus could be easily applied on regional scales. We used the pre-validated Agricultural Production Systems sIMulator (APSIM) to simulate the impact of climate, soil, and management on SOC at 613 reference sites across Australia's cereal-growing regions under a continuous wheat system. We then developed a simple meta-model to link the APSIM-modeled SOC change to primary drivers, i.e., the amount of recalcitrant SOC, plant available water capacity of soil, soil pH, and solar radiation, temperature, and rainfall in the growing season. Based on high-resolution soil texture data and 8165 climate data points across the study area, we used the meta-model to assess SOC sequestration potential and the uncertainty associated with the variability of soil characteristics. The meta-model explained 74% of the variation of final SOC content as simulated by APSIM. Applying the meta-model to Australia's cereal-growing regions reveals regional patterns in SOC, with higher SOC stock in cool, wet regions. Overall, the potential SOC stock ranged from 21.14 to 152.71 Mg/ha with a mean of 52.18 Mg/ha. Variation of soil properties induced uncertainty ranging from 12% to 117% with higher uncertainty in warm, wet regions. In general, soils in Australia's cereal-growing regions under continuous wheat production were simulated as a sink of atmospheric carbon dioxide with a mean sequestration potential of 8.17 Mg/ha.
Predicting future spatial distribution of SOC across entire France
NASA Astrophysics Data System (ADS)
Meersmans, Jeroen; Van Rompaey, Anton; Quine, Tim; Martin, Manuel; Pagé, Christian; Arrouays, Dominique
2013-04-01
Soil organic carbon (SOC) is widely recognized as a key factor controlling soil quality and as a crucial and active component of the global C-cycle. Hence, there exists a growing interest in monitoring and modeling the spatial and temporal behavior of this pool. So far, a large attempt has been made to map SOC at national scales for current and/or past situations. Despite some coarse predictions, detailed spatial SOC predictions for the future are still lacking. In this study we aim to predict future spatial evolution of SOC driven by climate and land use change for France up to the year 2100. Therefore, we combined 1) an existing model, predicting SOC as a function of soil type, climate, land use and management (Meersmans et al 2012), with 2) eight different IPCC spatial explicit climate change predictions (conducted by CERFACS) and 3) Land use change scenario predictions. We created business-as-usual land use change scenarios by extrapolating observed trends and calibrating logistic regression models, incorporating a large set of physical and socio-economic factors, at the regional level in combination with a multi-objective land allocation (MOLA) procedure. The resultant detailed projections of future SOC evolution across all regions of France, allow us to identify regions that are most likely to be characterized by a significant gain or loss of SOC and the degree to which land use decisions/outcomes control the scale of loss and gain. Therefore, this methodology and resulting maps can be considered as powerful tools to aid decision making concerning appropriate soil management, in order to enlarge SOC storage possibilities and reduce soil related CO2 fluxes.
Global controls on carbon storage in mangrove soils
NASA Astrophysics Data System (ADS)
Rovai, André S.; Twilley, Robert R.; Castañeda-Moya, Edward; Riul, Pablo; Cifuentes-Jara, Miguel; Manrow-Villalobos, Marilyn; Horta, Paulo A.; Simonassi, José C.; Fonseca, Alessandra L.; Pagliosa, Paulo R.
2018-06-01
Global-scale variation in mangrove ecosystem properties has been explained using a conceptual framework linking geomorphological processes to distinct coastal environmental settings (CES) for nearly 50 years. However, these assumptions have not been empirically tested at the global scale. Here, we show that CES account for global variability in mangrove soil C:N:P stoichiometry and soil organic carbon (SOC) stocks. Using this ecogeomorphology framework, we developed a global model that captures variation in mangrove SOC stocks compatible with distinct CES. We show that mangrove SOC stocks have been underestimated by up to 50% (a difference of roughly 200 Mg ha-1) in carbonate settings and overestimated by up to 86% (around 400 Mg ha-1) in deltaic coastlines. Moreover, we provide information for 57 nations that currently lack SOC data, enabling these and other countries to develop or evaluate their blue carbon inventories.
NASA Astrophysics Data System (ADS)
Schipanski, M.; Rosenzweig, S. T.; Robertson, A. D.; Sherrod, L. A.; Ghimire, R.; McMaster, G. S.
2017-12-01
Agriculture covers 40% of Earth's ice-free land area and has broad impacts on global biogeochemical cycles. While some agricultural management changes are small in scale or impact, others have the potential to shift biogeochemical cycles at landscape and larger scales if widely adopted. Understanding which management practices have the potential to contribute to climate change adaptation and mitigation while maintaining productivity requires scaling up estimates spatially and temporally. We used on-farm, long-term, and landscape scale datasets to estimate how crop rotations impact soil organic carbon (SOC) accumulation rates under current and future climate scenarios across the semi-arid Central and Southern Great Plains. We used a stratified, landscape-scale soil sampling approach across 96 farm fields to evaluate crop rotation intensity effects on SOC pools and pesticide inputs. Replacing traditional wheat-fallow rotations with more diverse, continuously cropped rotations increased SOC by 17% and 12% in 0-10 cm and 0-20 cm depths, respectively, and reduced herbicide use by 50%. Using USDA Cropland Data Layer, we estimated soil C accumulation and pesticide reduction potentials of shifting to more intensive rotations. We also used a 30-year cropping systems experiment to calibrate and validate the Daycent model to evaluate rotation intensify effects under future climate change scenarios. The model estimated greater SOC accumulation rates under continuously cropped rotations, but SOC stocks peaked and then declined for all cropping systems beyond 2050 under future climate scenarios. Perennial grasslands were the only system estimated to maintain SOC levels in the future. In the Southern High Plains, soil C declined despite increasing input intensity under current weather while modest gains were simulated under future climate for sorghum-based cropping systems. Our findings highlight the potential vulnerability of semi-arid regions to climate change, which will be compounded by declining groundwater levels along the western edge of the High Plains Aquifer that increase reliance on dryland farming systems. Understanding these challenges provides opportunities to develop future transition and adaptation strategies in partnership with producers, policy makers, and rural communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harden, Jennifer W.; Hugelius, Gustaf; Ahlstrom, Anders
Here, soil organic matter supports the Earth’s ability to sustain terrestrial ecosystems, provide food and fiber, and retain the largest pool of actively cycling carbon (C). Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance land productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerablemore » to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well-established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil organic matter and C and their management for sustained production and climate regulation.« less
Harden, Jennifer W.; Hugelius, Gustaf; Ahlstrom, Anders; ...
2017-10-05
Here, soil organic matter supports the Earth’s ability to sustain terrestrial ecosystems, provide food and fiber, and retain the largest pool of actively cycling carbon (C). Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance land productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerablemore » to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well-established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil organic matter and C and their management for sustained production and climate regulation.« less
NASA Astrophysics Data System (ADS)
de Blécourt, Marleen; Corre, Marife D.; Paudel, Ekananda; Harrison, Rhett D.; Brumme, Rainer; Veldkamp, Edzo
2017-08-01
Presently, the lack of data on soil organic carbon (SOC) stocks in relation to land-use types and biophysical characteristics prevents reliable estimates of ecosystem carbon stocks in montane landscapes of mainland SE Asia. Our study, conducted in a 10 000 ha landscape in Xishuangbanna, SW China, aimed at assessing the spatial variability in SOC concentrations and stocks, as well as the relationships of SOC with land-use types, soil properties, vegetation characteristics and topographical attributes at three spatial scales: (1) land-use types within a landscape (10 000 ha), (2) sampling plots (1 ha) nested within land-use types (plot distances ranging between 0.5 and 12 km), and (3) subplots (10 m radius) nested within sampling plots. We sampled 27 one-hectare plots - 10 plots in mature forests, 11 plots in regenerating or highly disturbed forests, and 6 plots in open land including tea plantations and grasslands. We used a sampling design with a hierarchical structure. The landscape was first classified according to land-use types. Within each land-use type, sampling plots were randomly selected, and within each plot we sampled within nine subplots. SOC concentrations and stocks did not differ significantly across the four land-use types. However, within the open-land category, SOC concentrations and stocks in grasslands were higher than in tea plantations (P < 0.01 for 0-0.15 m, P = 0.05 for 0.15-0.30 m, P = 0.06 for 0-0.9 m depth). The SOC stocks to a depth of 0.9 m were 177.6 ± 19.6 (SE) Mg C ha-1 in tea plantations, 199.5 ± 14.8 Mg C ha-1 in regenerating or highly disturbed forests, 228.6 ± 19.7 Mg C ha-1 in mature forests, and 236.2 ± 13.7 Mg C ha-1 in grasslands. In this montane landscape, variability within plots accounted for more than 50 % of the overall variance in SOC stocks to a depth of 0.9 m and the topsoil SOC concentrations. The relationships of SOC concentrations and stocks with land-use types, soil properties, vegetation characteristics, and topographical attributes varied across spatial scales. Variability in SOC within plots was determined by litter layer carbon stocks (P < 0.01 for 0-0.15 m and P = 0.03 for 0.15-0.30 and 0-0.9 m depth) and slope (P ≤ 0.01 for 0-0.15, 0.15-0.30, and 0-0.9 m depth) in open land, and by litter layer carbon stocks (P < 0.001 for 0-0.15, 0.15-0.30 and 0-0.9 m depth) and tree basal area (P < 0.001 for 0-0.15 m and P = 0.01 for 0-0.9 m depth) in forests. Variability in SOC among plots in open land was related to the differences in SOC concentrations and stocks between grasslands and tea plantations. In forests, the variability in SOC among plots was associated with elevation (P < 0.01 for 0-0.15 m and P = 0.09 for 0-0.9 m depth). The scale-dependent relationships between SOC and its controlling factors demonstrate that studies that aim to investigate the land-use effects on SOC need an appropriate sampling design reflecting the controlling factors of SOC so that land-use effects will not be masked by the variability between and within sampling plots.
Löffler, Sabine; Knappe, Rainer; Joraschky, Peter; Pöhlmann, Karin
2010-01-01
This study investigated differences in the personal meaning systems of psychotherapists and psychotherapy patients as well as correlations between meaning in life and mental health. We qualitatively assessed the content and structure of the personal meaning systems of 41 psychotherapists and 77 psychotherapy patients. In addition, the participants completed questionnaires measuring meaning in life (LRI-r-d), sense of coherence (SOC-9L), self-esteem (RSES), satisfaction with life (SWLS), self-efficacy (SWK), and depression (BDI). The personal meaning systems of psychotherapists were more complex and coherent compared to psychotherapy patients. In the group of psychotherapy patients, a more elaborate structure of the personal meaning system correlated with the subjective sense of meaning. We were able to confirm correlations between meaning in life and mental health for most of the instances. Psychotherapists had more elaborate and coherent meaning systems than psychotherapy patients. Especially for psychotherapy patients elaborate and coherent meaning systems turned out to be important for mental health.
Modal Theory of Transverse Acoustic Coherence in Shallow Oceans
2012-09-28
J. Ocean. Eng. 24(3), 333–345 (1999). 54. J. F. Lynch, G. Jin, R. Pawlowicz, D. Ray, A. J. Plueddenmann, C.-S. Chiu, J. H. Miller, R. H. Bourke , A. R...Theory and experiment,” J. Acoust. Soc. Am. 99(2), 803–821 (1996). 55. A. R. Parsons, R. H. Bourke , R. D. Muench, C.-S. Chiu, J. F. Lynch, J. H. Miller
Soil organic carbon dynamics as related to land use history in the northwestern Great Plains
Tan, Z.; Liu, S.; Johnston, C.A.; Loveland, Thomas R.; Tieszen, L.L.; Liu, J.; Kurtz, R.
2005-01-01
Strategies for mitigating the global greenhouse effect must account for soil organic carbon (SOC) dynamics at both spatial and temporal scales, which is usually challenging owing to limitations in data and approach. This study was conducted to characterize the SOC dynamics associated with land use change history in the northwestern Great Plains ecoregion. A sampling framework (40 sample blocks of 10 × 10 km2 randomly located in the ecoregion) and the General Ensemble Biogeochemical Modeling System (GEMS) were used to quantify the spatial and temporal variability in the SOC stock from 1972 to 2001. Results indicate that C source and sink areas coexisted within the ecoregion, and the SOC stock in the upper 20-cm depth increased by 3.93 Mg ha−1 over the 29 years. About 17.5% of the area was evaluated as a C source at 122 kg C ha−1 yr−1. The spatial variability of SOC stock was attributed to the dynamics of both slow and passive fractions, while the temporal variation depended on the slow fraction only. The SOC change at the block scale was positively related to either grassland proportion or negatively related to cropland proportion. We concluded that the slow C pool determined whether soils behaved as sources or sinks of atmospheric CO2, but the strength depended on antecedent SOC contents, land cover type, and land use change history in the ecoregion.
Soil Carbon Cycling - More than Changes in Soil Organic Carbon Stocks
NASA Astrophysics Data System (ADS)
Lorenz, K.
2015-12-01
Discussions about soil carbon (C) sequestration generally focus on changes in soil organic carbon (SOC) stocks. Global SOC mass in the top 1 m was estimated at about 1325 Pg C, and at about 3000 Pg C when deeper soil layers were included. However, both inorganically and organically bound carbon forms are found in soil but estimates on global soil inorganic carbon (SIC) mass are even more uncertain than those for SOC. Globally, about 947 Pg SIC may be stored in the top 1 m, and especially in arid and semi-arid regions SIC stocks can be many times great than SOC stocks. Both SIC and SOC stocks are vulnerable to management practices, and stocks may be enhanced, for example, by optimizing net primary production (NPP) by fertilization and irrigation (especially optimizing belowground NPP for enhancing SOC stocks), adding organic matter (including black C for enhancing SOC stocks), and reducing soil disturbance. Thus, studies on soil C stocks, fluxes, and vulnerability must look at both SIC and SOC stocks in soil profiles to address large scale soil C cycling.
Applying transport-distance specific SOC distribution to calibrate soil erosion model WaTEM
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Heckrath, Goswin J.; Kuhn, Nikolaus J.
2016-04-01
Slope-scale soil erosion, transport and deposition fundamentally decide the spatial redistribution of eroded sediments in terrestrial and aquatic systems, which further affect the burial and decomposition of eroded SOC. However, comparisons of SOC contents between upper eroding slope and lower depositional site cannot fully reflect the movement of eroded SOC in-transit along hillslopes. The actual transport distance of eroded SOC is decided by its settling velocity. So far, the settling velocity distribution of eroded SOC is mostly calculated from mineral particle specific SOC distribution. Yet, soil is mostly eroded in form of aggregates, and the movement of aggregates differs significantly from individual mineral particles. This urges a SOC erodibility parameter based on actual transport distance distribution of eroded fractions to better calibrate soil erosion models. Previous field investigation on a freshly seeded cropland in Denmark has shown immediate deposition of fast settling soil fractions and the associated SOC at footslopes, followed by a fining trend at the slope tail. To further quantify the long-term effects of topography on erosional redistribution of eroded SOC, the actual transport-distance specific SOC distribution observed on the field was applied to a soil erosion model WaTEM (based on USLE). After integrating with local DEM, our calibrated model succeeded in locating the hotspots of enrichment/depletion of eroded SOC on different topographic positions, much better corresponding to the real-world field observation. By extrapolating into repeated erosion events, our projected results on the spatial distribution of eroded SOC are also adequately consistent with the SOC properties in the consecutive sample profiles along the slope.
Variation of Soil Organic Carbon and Its Major Constraints in East Central Asia
Lee, Xinqing; Huang, Yimin; Huang, Daikuan; Hu, Lu; Feng, Zhaodong; Cheng, Jianzhong; Wang, Bing; Ni, Jian; Shurkhuu, Tserenpil
2016-01-01
Variation of soil organic carbon (SOC) and its major constraints in large spatial scale are critical for estimating global SOC inventory and projecting its future at environmental changes. By analyzing SOC and its environment at 210 sites in uncultivated land along a 3020km latitudinal transect in East Central Asia, we examined the effect of environmental factors on the dynamics of SOC. We found that SOC changes dramatically with the difference as high as 5 times in north China and 17 times in Mongolia. Regardless, C:N remains consistent about 12. Path analysis indicated that temperature is the dominant factor in the variation of SOC with a direct effect much higher than the indirect one, the former breaks SOC down the year round while the latter results in its growth mainly via precipitation in the winter half year. Precipitation helps accumulate SOC, a large part of the effect, however, is taken via temperature. NH4+-N and topography also affect SOC, their roles are played primarily via climatic factors. pH correlates significantly with SOC, the effect, however, is taken only in the winter months, contributing to the decay of SOC primarily via temperature. These factors explained as much as 79% of SOC variations, especially in the summer months, representing the major constraints on the SOC stock. Soil texture gets increasingly fine southward, it does not, however, constitute an apparent factor. Our results suggested that recent global warming should have been adversely affecting SOC stock in the mid-latitude as temperature dominates other factors as the constraint. PMID:26934707
Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.
2016-01-01
Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.
Axelsson, Lars; Andersson, Ingemar; Håkansson, Anders; Ejlertsson, Göran
2005-01-01
Background Working life is an important arena in most people's lives, and the working line concept is important for the development of welfare in a society. For young people, the period before permanent establishment in working life has become longer during the last two decades. Knowledge about attitudes towards work can help us to understand young people's transition to the labour market. Adolescents are the future workforce, so it seems especially important to notice their attitudes towards work, including attitudes towards the welfare system. The aim of this study was to describe and analyse upper secondary school students' work attitudes, and to explore factors related to these attitudes. Methods The sample consisted of 606 upper secondary school students. They all received a questionnaire including questions about quality of life (QOL), sense of coherence (SOC), subjective health and attitudes towards work. The response rate was 91%. A factor analysis established two dimensions of work attitudes. Multivariate analyses were carried out by means of logistic regression models. Results Work ethics (WE) and general work attitudes (GWA) were found to be two separate dimensions of attitudes towards work. Concerning WE the picture was similar regardless of gender or study programme. Males in theoretical programmes appeared to have more unfavourable GWA than others. Multivariate analyses revealed that good QOL, high SOC and good health were significantly related to positive WE, and high SOC was positively related to GWA. Being female was positively connected to WE and GWA, while studying on a practical programme was positively related to GWA only. Among those who received good parental support, GWA seemed more favourable. Conclusion Assuming that attitudes towards work are important to the working line concept, this study points out positive factors of importance for the future welfare of the society. Individual factors such as female gender, good QOL, high SOC and good health as well as support from both parents, positive experience of school and work contacts related positively to attitudes towards work. Further planning and supportive work have to take these factors into account. PMID:16212657
Tang, Lili; Fritzsche, Kurt; Leonhart, Rainer; Pang, Ying; Li, Jinjiang; Song, Lili; Fischer, Irmela; Koch, Maike; Wuensch, Alexander; Mewes, Ricarda; Schaefert, Rainer
2017-12-01
To evaluate the relationship between quality of life (QOL) and physical as well as psychological variables in Chinese breast cancer patients. This multicenter cross-sectional study enrolled 254 Chinese breast cancer patients in different stages and treatment phases. They answered standard instruments assessing QOL (EORTC), somatic symptom severity (PHQ-15), depression (PHQ-9), anxiety (GAD-7), health-related anxiety (WI-7), illness perception (BIPQ), and sense of coherence (SOC-9). Canonical correlation was applied to identify the strongest correlates between the physical, emotional and social QOL scales and the physical and psychological variables. In our sample, a low global QOL was significantly associated with the following physical and psychological variables: symptom-related disability (Karnofsky Index) (r = .211, p < .01), somatic symptom severity (r = -.391, p < .001), depression (r = -.488, p < .001), anxiety (r = -.439, p < .001), health-related anxiety (r = -.398, p < .001), dysfunctional illness perception (r = -.411, p < .001), and sense of coherence (r = .371, p < .001). In the canonical correlation analysis, high somatic symptom severity, depression, anxiety, dysfunctional illness perception, and low sense of coherence showed the strongest correlations with low physical, emotional and social functioning. The first three significant canonical correlations between these two sets of variables were .78, .56, and .45. QOL in Chinese breast cancer patients is strongly associated with psychological factors. Our results suggest that Chinese physicians and nurses should incorporate these factors into their care for women with breast cancer to improve patients' QOL.
Scaling and self-organized criticality in proteins II
Phillips, J. C.
2009-01-01
The complexity of proteins is substantially simplified by regarding them as archetypical examples of self-organized criticality (SOC). To test this idea and to elaborate it, this article applies the Moret–Zebende (MZ) SOC hydrophobicity scale to transport repeat proteins of the HEAT superfamily, importin β, and transportin, as well as the export protein Cse1p, and their ubiquitous cargo manager Ran. The difference between the MZ scale and conventional hydrophobicity scales reflects long-range conformational forces that are central to protein functionality. These compete with long-range Coulomb forces associated with cationic and anionic side chains in a revealing way. PMID:19124778
Hasfeldt, Dorthe; Maindal, Helle Terkildsen; Toft, Palle; Birkelund, Regner
2014-10-01
Noise is a general stressor that affects the cardiovascular system, resulting in increased blood pressure and heart rate, both of which can be problematic for the patient preparing for anesthesia and surgery. The purpose of this study was to investigate the patient's perception of noise in the OR before anesthesia, the correlation between the actual noise levels and the patient's perception of noise, and if there are particular patient subgroups that are especially vulnerable to noise. This cross-sectional study was performed within a mixed descriptive and analytical design, including 120 patients (60 acute/60 elective) undergoing general anesthesia for orthopaedic surgery. Data collection consisted of registration of demographic variables and measurements of noise levels in the OR combined with a questionnaire. Results showed that 10% of the patients perceived noise levels in the OR as very high and experienced the noise as annoying, disruptive, and stressful. There was no correlation between the actual noise levels to which patients were exposed and their perception of noise. Acute patients perceived significantly more noise than elective patients (P<.01), although they were actually exposed to less noise. Of the acute patients, those undergoing major surgery perceived more noise than patients undergoing minor surgery (P<.01), although actually exposed to less noise. There was a significant correlation between patients' sense of coherence (SOC) and their perception of noise (P<.01). Most patients who perceived noise levels as very high had a SOC below 50 (scale: 13-91). Perianesthesia nurses need to maintain their focus on keeping noise levels in the OR as low as possible. When caring for acute patients, patients undergoing major surgery and patients with a low SOC perianesthesia nurses should be particularly aware, as these patients might be more vulnerable to noise. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.
Barber, L.B.; Thurman, E.M.; Runnells, D.R.; ,
1992-01-01
The effect of particle size, mineralogy and sediment organic carbon (SOC) on solution of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is < 0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.The effect of particle size, mineralogy and sediment organic carbon (SOC) on sorption of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is <0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.
NASA Astrophysics Data System (ADS)
Ramirez-Lopez, L.; van Wesemael, B.; Stevens, A.; Doetterl, S.; Van Oost, K.; Behrens, T.; Schmidt, K.
2012-04-01
Soil Organic Carbon (SOC) represents a key component in the global C cycle and has an important influence on the global CO2 fluxes between terrestrial biosphere and atmosphere. In the context of agricultural landscapes, SOC inventories are important since soil management practices have a strong influence on CO2 fluxes and SOC stocks. However, there is lack of accurate and cost-effective methods for producing high spatial resolution of SOC information. In this respect, our work is focused on the development of a three dimensional modeling approach for SOC monitoring in agricultural fields. The study area comprises ~420 km2 and includes 4 of the 5 agro-geological regions of the Grand-Duchy of Luxembourg. The soil dataset consist of 172 profiles (1033 samples) which were not sampled specifically for this study. This dataset is a combination of profile samples collected in previous soil surveys and soil profiles sampled for other research purposes. The proposed strategy comprises two main steps. In the first step the SOC distribution within each profile (vertical distribution) is modeled. Depth functions for are fitted in order to summarize the information content in the profile. By using these functions the SOC can be interpolated at any depth within the profiles. The second step involves the use of contextual terrain (ConMap) features (Behrens et al., 2010). These features are based on the differences in elevation between a given point location in the landscape and its circular neighbourhoods at a given set of different radius. One of the main advantages of this approach is that it allows the integration of several spatial scales (eg. local and regional) for soil spatial analysis. In this work the ConMap features are derived from a digital elevation model of the area and are used as predictors for spatial modeling of the parameters of the depth functions fitted in the previous step. In this poster we present some preliminary results in which we analyze: i. The use of different depth functions, ii. The use of different machine learning approaches for modeling the parameters of the fitted depth functions using the ConMap features and iii. The influence of different spatial scales on the SOC profile distribution variability. Keywords: 3D modeling, Digital soil mapping, Depth functions, Terrain analysis. Reference Behrens, T., K. Schmidt, K., Zhu, A.X. Scholten, T. 2010. The ConMap approach for terrain-based digital soil mapping. European Journal of Soil Science, v. 61, p.133-143.
Virtanen, P; Koivisto, A
2001-01-01
STUDY OBJECTIVE—Knowledge about changes in wellbeing during the passage from professional studies to working life is scarce and controversial. This study examined these changes among university graduates with good and poor employment prospects. DESIGN—A longitudinal study with four postal questionnaire surveys of a closed cohort. SETTING—Cohorts of graduating Finnish physicians and architects were followed up from 1994 to 1998. In 1994 Finland's national economy was still struggling to break loose from a period of severe recession, and unemployment rates were high even among educated professionals. As economic growth eventually got under way the unemployment situation began to ease for physicians but not for architects. PARTICIPANTS—Architecture students (n = 189) from Finland's three technical universities and medical students (n = 638) from Finland's five medical faculties. Both had started their studies in 1989. RESULTS—In the first questionnaire survey there were no differences between the professions in strain resistance resources, as indicated by Sense of Coherence (SOC), or in psychological distress, as indicated by General Health Questionnaire (GHQ). Profession emerged as a significant between subject factor in analysis of variance for repeated measures of both SOC and GHQ. Physicians' scores on the 13 item SOC questionnaire improved during the follow up from 62.6 to 67.5 and on the 12 item GHQ questionnaire from 24.2 to 22.2. Among architects the corresponding scores remained unchanged (62.5-62.2 and 23.1-22.6). The significance of profession remained unchanged when gender and individuals' graduation and total work experience were introduced to the statistical models as between subject factors. CONCLUSIONS—Improved SOC in physicians but not in architects supports the hypothesis that good employment prospects are important to employee wellbeing. Although less consistent, indicating fluctuations in day to day psychological distress, GHQ findings are also in line with the hypothesis. In both professions the indicators studied were independent of individuals' graduation and career. It is concluded that rather than individually, the mechanisms that connect employment prospects with wellbeing operate collectively within the whole profession. Highly educated professionals do not complete their studies until almost 30, and if for reasons of insecure employment they are unable to develop their SOC to the optimum level at that age, their resources for resisting health endangering strain may remain permanently poor. Keywords: university graduates; employment insecurity; sense of coherence; general health questionnaire PMID:11604440
NASA Astrophysics Data System (ADS)
Wu, A.; Bell, J. C.; Nater, E. A.
2012-12-01
Human disturbance has dramatically affected organic carbon cycling in soils. The Des Moines Lobe region of Minnesota is a young glaciated region with closed depressions and a deranged drainage network. Native prairie and forests in this region were nearly all converted to cropland following European settlement circa 1840s. It has generally been assumed that intensive tillage intensifies soil erosion and increases the rate of oxidation of soil organic carbon (SOC) and the subsequent release of carbon dioxide (CO2) to the atmosphere. However, more recent studies suggest that tillage simply redistributes sediments and SOC to concave and low-lying areas, and that dynamic replacement of SOC at erosional sites and burial of SOC in poorly-aerated depressional wetlands may serve as a soil carbon sink in this region. The spatial distribution of SOC in these depressional landscapes following tillage and subsequent erosion/deposition is not well understood. We aim to understand the distribution of SOC in relation to topographic controls at the landscape scale and to quantify SOC contents at the regional extent. While spatial distribution of SOC can be modeled by terrain analysis, topographic characteristics used to predict soil properties including SOC have been mostly limited to local neighborhoods (i.e. attributes calculated using three by three cell-sized windows in gridded datasets). Relevant topographic characteristics in the upslope contributing area (UCA) were rarely applied in soil-landscape models, possibly due to technical complexity. Our objectives in this study were: 1. To develop variables that represent UCA terrain attributes for soil-landscape modeling, 2. to predict SOC distribution and mass contents from the best-fit spatial SOC models with model validation for use in this depressional landscape region, and 3. to interpret SOC processes under the impact of agriculture-induced erosion and deposition since the settlement in this region. We took soil samples by soil horizon to a depth of 1m in transects following hillslope positions at our study site at Lake Rebecca Park Reserve. A mass-preserving spline function was applied to provide the mean SOC values (%) in 25cm increments to 1m deep from horizon-based field data in order to model SOC in fixed depths. Local neighborhood terrain attributes, including elevation, slope steepness, slope length, specific catchment area, profile curvature, plan curvature, topographic wetness index and stream power index, were developed from a LiDAR-based 1-m digital elevation model. Gridded UCA datasets for each sampling site were carefully queried and investigated. Mean and standard deviation of the terrain attributes within the UCA were extracted as representative variables for the UCA terrain attributes. We applied both local and upslope terrain attributes as predictor variables for spatial SOC modeling using regression and principle component regression analyses. Performance and validation of the SOC models were investigated. Intending to apply the best-fit SOC model at the regional scale, we validated the models using SOC data from soil samples taken in thirteen counties with similar Des Moines Lobe till landscapes in south-central Minnesota. The spatial distribution of SOC was mapped and the overall SOC mass (kg/m3) was estimated for this region of Minnesota.
Fates of eroded soil organic carbon: Mississippi Basin case study
Smith, S.V.; Sleezer, R.O.; Renwick, W.H.; Buddemeier, R.W.
2005-01-01
We have developed a mass balance analysis of organic carbon (OC) across the five major river subsystems of the Mississippi (MS) Basin (an area of 3.2 ?? 106 km2). This largely agricultural landscape undergoes a bulk soil erosion rate of ???480 t??km -2??yr-1 (???1500 ?? 106 t/yr, across the MS Basin), and a soil organic carbon (SOC) erosion rate of ???7 t??km-2??yr-1 (???22 ?? 106 t/yr). Erosion translocates upland SOC to alluvial deposits, water impoundments, and the ocean. Soil erosion is generally considered to be a net source of CO2 release to the atmosphere in global budgets. However, our results indicate that SOC erosion and relocation of soil apparently can reduce the net SOC oxidation rate of the original upland SOC while promoting net replacement of eroded SOC in upland soils that were eroded. Soil erosion at the MS Basin scale is, therefore, a net CO2 sink rather than a source. ?? 2005 by the Ecological Society of America.
Stable isotopic constraints on global soil organic carbon turnover
NASA Astrophysics Data System (ADS)
Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith
2018-02-01
Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p < 0.001) linear relationship between ln( - β) and estimates of litter and root decomposition rates suggests similar controls over rates of organic matter decay among the generalized soil C stocks. Overall, these findings demonstrate the utility of soil δ13C for independently benchmarking global models of soil C turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.
Buell, Gary R.; Markewich, Helaine W.
2004-01-01
U.S. Geological Survey investigations of environmental controls on carbon cycling in soils and sediments of the Mississippi River Basin (MRB), an area of 3.3 x 106 square kilometers (km2), have produced an assessment tool for estimating the storage and inventory of soil organic carbon (SOC) by using soil-characterization data from Federal, State, academic, and literature sources. The methodology is based on the linkage of site-specific SOC data (pedon data) to the soil-association map units of the U.S. Department of Agriculture State Soil Geographic (STATSGO) and Soil Survey Geographic (SSURGO) digital soil databases in a geographic information system. The collective pedon database assembled from individual sources presently contains 7,321 pedon records representing 2,581 soil series. SOC storage, in kilograms per square meter (kg/m2), is calculated for each pedon at standard depth intervals from 0 to 10, 10 to 20, 20 to 50, and 50 to 100 centimeters. The site-specific storage estimates are then regionalized to produce national-scale (STATSGO) and county-scale (SSURGO) maps of SOC to a specified depth. Based on this methodology, the mean SOC storage for the top meter of mineral soil in the MRB is approximately 10 kg/m2, and the total inventory is approximately 32.3 Pg (1 petagram = 109 metric tons). This inventory is from 2.5 to 3 percent of the estimated global mineral SOC pool.
Modeling the factors associating with health-related habits among Japanese students.
Mato, Mie; Tsukasaki, Keiko
2017-11-23
The aim of the present study was to clarify the structural relationship between health-related habits and psychosocial factors during adolescence/early adulthood. An anonymous, self-administered questionnaire was provided to 1141 third- and fourth-year students at eight academic departments from six universities in regional Japanese cities. Surveys included items addressing participants' demographic characteristics, psychosocial factors (individual-level social capital, self-efficacy, mental health (from health-related quality of life SF-36v2), and sense of coherence (SOC)), and health-related habits. A multiple indicator analysis based on structural equation modeling was conducted to examine the structural relationship between health-related habits and these factors. Valid responses were obtained from 952 participants. The final model demonstrated a high level of goodness of fit. While the path from SOC to health-related habits was significant, those from self-efficacy to health-related habits and from mental health to health-related habits were not significant. The path coefficient from SOC to health-related habits was greater than the path coefficient from background characteristics. In the multiple population comparison that considered gender, a nearly identical model was supported for men and women. Psychosocial factors related to health-related habits were social capital, self-efficacy, mental health, and SOC. Furthermore, it was suggested that SOC functions as an intervening factor for maintaining a healthy lifestyle. It was observed that individual psychosocial factors influence health-related habits more than their background characteristics. Findings highlight that supporting the building of social relationships and social environments is essential to promote a healthy lifestyle among university students. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The combustion behavior of large scale lithium titanate battery
Huang, Peifeng; Wang, Qingsong; Li, Ke; Ping, Ping; Sun, Jinhua
2015-01-01
Safety problem is always a big obstacle for lithium battery marching to large scale application. However, the knowledge on the battery combustion behavior is limited. To investigate the combustion behavior of large scale lithium battery, three 50 Ah Li(NixCoyMnz)O2/Li4Ti5O12 batteries under different state of charge (SOC) were heated to fire. The flame size variation is depicted to analyze the combustion behavior directly. The mass loss rate, temperature and heat release rate are used to analyze the combustion behavior in reaction way deeply. Based on the phenomenon, the combustion process is divided into three basic stages, even more complicated at higher SOC with sudden smoke flow ejected. The reason is that a phase change occurs in Li(NixCoyMnz)O2 material from layer structure to spinel structure. The critical temperatures of ignition are at 112–121°C on anode tab and 139 to 147°C on upper surface for all cells. But the heating time and combustion time become shorter with the ascending of SOC. The results indicate that the battery fire hazard increases with the SOC. It is analyzed that the internal short and the Li+ distribution are the main causes that lead to the difference. PMID:25586064
Han, Xiaozeng; Yu, Wantai; Wang, Peng; Cheng, Weixin
2017-01-01
Soil organic carbon (SOC) is a major component in the global carbon cycle. Yet how input of plant litter may influence the loss of SOC through a phenomenon called priming effect remains highly uncertain. Most published results about the priming effect came from short-term investigations for a few weeks or at the most for a few months in duration. The priming effect has not been studied at the annual time scale. In this study for 815 days, we investigated the priming effect of added maize leaves on SOC decomposition of two soil types and two treatments (bare fallow for 23 years, and adjacent old-field, represent stable and relatively labile SOC, respectively) of SOC stabilities within each soil type, using a natural 13C-isotope method. Results showed that the variation of the priming effect through time had three distinctive phases for all soils: (1) a strong negative priming phase during the first period (≈0–90 days); (2) a pulse of positive priming phase in the middle (≈70–160 and 140–350 days for soils from Hailun and Shenyang stations, respectively); and (3) a relatively stabilized phase of priming during the last stage of the incubation (>160 days and >350 days for soils from Hailun and Shenyang stations, respectively). Because of major differences in soil properties, the two soil types produced different cumulative priming effects at the end of the experiment, a positive priming effect of 3–7% for the Mollisol and a negative priming effect of 4–8% for the Alfisol. Although soil types and measurement times modulated most of the variability of the priming effect, relative SOC stabilities also influenced the priming effect for a particular soil type and at a particular dynamic phase. The stable SOC from the bare fallow treatment tended to produce a narrower variability during the first phase of negative priming and also during the second phase of positive priming. Averaged over the entire experiment, the stable SOC (i.e., the bare fallow) was at least as responsive to priming as the relatively labile SOC (i.e., the old-field) if not more responsive. The annual time scale of our experiment allowed us to demonstrate the three distinctive phases of the priming effect. Our results highlight the importance of studying the priming effect by investigating the temporal dynamics over longer time scales. PMID:28934287
NASA Astrophysics Data System (ADS)
Vos, Cora; Jaconi, Angélica; Jacobs, Anna; Don, Axel
2018-06-01
Atmospheric carbon dioxide levels can be mitigated by sequestering carbon in the soil. Sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools, as labile pools with a high turnover may be accumulated much faster but are also more vulnerable to losses. The aims of this study were to (1) assess how soil organic carbon (SOC) is distributed among SOC fractions on a national scale in Germany, (2) identify factors influencing this distribution and (3) identify regions with high vulnerability to SOC losses. The SOC content and proportion of two different SOC fractions were estimated for more than 2500 mineral topsoils (< 87 g kg-1 SOC) covering Germany, using near-infrared reflectance spectroscopy. Drivers of the spatial variability in SOC fractions were determined using the machine learning algorithm cforest. The SOC content and proportions of fractions were predicted with good accuracy (SOC content: R2 = 0.87-0.90; SOC proportions: R2 = 0.83; ratio of performance to deviation (RPD): 2.4-3.2). The main explanatory variables for the distribution of SOC among the fractions were soil texture, bulk soil C / N ratio, total SOC content and pH. For some regions, the drivers were linked to the land-use history of the sites. Arable topsoils in central and southern Germany were found to contain the highest proportions and contents of stable SOC fractions, and therefore have the lowest vulnerability to SOC losses. North-western Germany contains an area of sandy soils with unusually high SOC contents and high proportions of light SOC fractions, which are commonly regarded as representing a labile carbon pool. This is true for the former peat soils in this area, which have already lost and are at high risk of losing high proportions of their SOC stocks. Those black sands
can, however, also contain high amounts of stable SOC due to former heathland vegetation and need to be treated and discussed separately from non-black sand agricultural soils. Overall, it was estimated that, in large areas all over Germany, over 30 % of SOC is stored in easily mineralisable forms. Thus, SOC-conserving management of arable soils in these regions is of great importance.
NASA Astrophysics Data System (ADS)
Bechtold, Michel; Tiemeyer, Bärbel; Don, Axel; Altdorff, Daniel; van der Kruk, Jan; Huisman, Johan A.
2013-04-01
Previous studies showed that in-situ visible near-infrared (vis-NIR) spectroscopy can overcome the limitations of conventional soil sampling. Costs can be reduced and spatial resolution enhanced when mapping field-scale variability of soil organic carbon (SOC). Detailed maps can help to improve SOC management and lead to better estimates of field-scale total carbon stocks. Knowledge of SOC field patterns may also help to reveal processes and factors controlling SOC variability. In this study, we apply in situ vis-NIR and apparent electrical conductivity (ECa) mapping to a disturbed bog relict. The major question of this application study was how field-scale in-situ vis-NIR mapping performs for a very heterogeneous area and under difficult grassland conditions and under highly-variable water content conditions. Past intensive peat cutting and deep ploughing in some areas, in combination with a high background heterogeneity of the underlying mineral sediments, have led to a high variability of SOC content (5.6 to 41.3 %), peat layer thickness (25 to 60 cm) and peat degradation states (from nearly fresh to amorphous). Using a field system developed by Veris Technologies (Salina KS, USA), we continuously collected vis-NIR spectra at 10 cm depth (measurement range: 350 nm to 2200 nm) over an area of around 12 ha with a line spacing of about 12 m. The system includes a set of discs for measuring ECa of the first 30 and 90 cm of the soil. The same area was also mapped with a non-invasive electro-magnetic induction (EMI) setup that provided ECa data of the first 25, 50 and 100 cm. For calibration and validation of the spatial data, we took 30 representative soil samples and 15 soil cores of about 90 cm depth, for which peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content were determined for various depths. Preliminary results of the calibration of the NIR spectra to the near-surface SOC contents indicate good data quality despite the challenging site conditions. Bore hole data indicates that the peat layer is characterized by lower BD, higher pore water EC, higher SOC content, and higher water contents compared to the underlying mineral sediments. This ECa contrast at the peat-sand interface is promising for using the various ECa investigation depths as predictors for peat thickness. Preliminary EMI results also show a correlation between ECa and SOC content, most strongly for the 25 cm EMI signal. We evaluate how vis-NIR and ECa data can be used in a joined approach to estimate SOC content as well as SOC stock distribution.
Wang, Shufang; Wang, Xiaoke; Ouyang, Zhiyun
2012-01-01
Soil organic carbon (SOC) and total nitrogen (TN) contents as well as their relationships with site characteristics are of profound importance in assessing current regional, continental and global soil C and N stocks and potentials for C sequestration and N conservation to offset anthropogenic emissions of greenhouse gases. This study investigated contents and distribution of SOC and TN under different land uses, and the quantitative relationships between SOC or TN and site characteristics in the Upstream Watershed of Miyun Reservoir, North China. Overall, both SOC and TN contents in natural secondary forests and grasslands were much higher than in plantations and croplands. Land use alone explained 37.2% and 38.4% of variations in SOC and TN contents, respectively. The optimal models for SOC and TN, achieved by multiple regression analysis combined with principal component analysis (PCA) to remove the multicollinearity among site variables, showed that elevation, slope, soil clay and water contents were the most significant factors controlling SOC and TN contents, jointly explaining 70.3% of SOC and 67.1% of TN contents variability. Only does additional 1.9% and 3% increase in the interpretations of SOC and TN contents variability respectively when land use was added to regressions, probably due to environment factors determine land use. Therefore, environmental variables were more important for SOC and TN variability than land use in the study area, and should be taken into consideration in properly evaluating effects of future land use changes on SOC and TN on a regional scale.
NASA Astrophysics Data System (ADS)
Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof
2014-05-01
Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should account for the impact of soil erosion (both by water and tillage).
The mechanics of erosion on soil organic redistribution
NASA Astrophysics Data System (ADS)
Papanicolaou, T.
2014-12-01
Soil Organic Carbon (SOC) is an important constituent of the earth's fabric derived from the breakdown of above ground plant litter, plant rhizomes and root exudates in the form of organic by-products. Stocks of SOC can be affected by a variety of natural and human-induced drivers, including climate and land management practices which collectively could affect intrinsic and extrinsic factors related to SOC, for example, soil texture, soil microclimate, and biomass accumulation rates . In intensely managed agricultural landscapes (IMLs), i.e., regions of significant land use change where significant degradation of SOC has been reported due to soil erosion, enhancing the sequestration or storage potential of SOC is of paramount importance to the ecosystem well-being of these landscapes. A literature review reveals that aspects of the SOC research have received considerable attention in the bioegeochemical, ecological, and agricultural disciplines because available SOC stocks within a soil column affect the evolution of key soil biogeochemical constituents. However, at the landscape scale the quantitative assessment of the SOC storage potential suffers in parts from lack of understanding of the collective effects that tillage and water-driven erosion have on the transport and burial of the eroded SOC. In this study an integrative process-based modeling framework that couples an established biogeochemical soil column model with a physically-based, landscape oriented watershed model capable of replicating the collective erosion effects on the mobilization and redistribution of SOC is developed. All simulations are conducted in an agricultural watershed in the U.S. Midwest Clear Creek, IA which has experienced intense agriculture since the beginning of the century to also assess the legacy effects that land use change and SOC initialization periods have on current SOC stock estimations.
Wertebach, Tim-Martin; Hölzel, Norbert; Kämpf, Immo; Yurtaev, Andrey; Tupitsin, Sergey; Kiehl, Kathrin; Kamp, Johannes; Kleinebecker, Till
2017-09-01
The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha -1 yr -1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha -1 yr -1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha -1 yr -1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction. © 2017 John Wiley & Sons Ltd.
Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung
Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations with major LUCs from cropland, grassland and forest to lands producing biofuel crops (i.e., corn, switchgrass, Miscanthus, poplar and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted inmore » an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion, and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems, field trials and modeling efforts are needed to determine the site- and system-specific rates and direction of change associated with their production.« less
Can Questionnaires Measure Culture: Eight Extended Field-Studies.
ERIC Educational Resources Information Center
Tucker, Robert W.; McCoy, Walt J.
Fifty managers and leaders of business and industry participated in a 2-year qualitative study to identify the elements of organizational culture (OC) that were most salient and potent in their judgment. These discussions provided the foundation for developing a multi-scale, self-administered survey of organizational culture (SOC). The SOC was…
NASA Astrophysics Data System (ADS)
Rosenberg, S.; Watkins, N. W.; Chapman, S.
2008-12-01
Space plasma physics provides an important arena for the study of natural hazards, because of the threat posed by space weather to space-based and ground based communications and other infrastructure. Extreme fluctuations are thus of interest, and there is by now abundant evidence for scaling in many quantities in the coupled solar-terrestrial system (solar wind, magnetosphere and ionosphere). Direct physical explanations for scaling have been sought through descriptions such as low dimensional chaos, intermittent turbulence (IT) and self-organised criticality (SOC). We have however advocated consideration of a complementary approach (Watkins [NPG, 2002]; Watkins et al. [Space Science Reviews, 2005]). This is the use of deliberately oversimplified mathematical "testbeds" to separate the proprties of the diagnostics used to infer IT or SOC from those of the models themselves. To demonstrate the need for this we consider a recent claim by Uritsky et al ([PRL, 2007]; U07) of direct observational evidence for the coexistence of SOC and IT in the magnetized plasma of the solar corona. By analyzing two dimensional (2D) EUV snapshots (typically 3-4000) of the solar corona, U07 found coexisting power law avalanche statistics and multiscaling of the structure functions. Avalanches were defined by "bursts" for which the signal exceeded a given threshold. These properties were asserted to be robust signatures of SOC and IT respectively. U07 took their coexistence to imply new physics with elements of both SOC and IT. We first point out that U07 assumed that their chosen signatures were unique to SOC and IT. We show however i) that a standard 1D multifractal model of IT, the p-model, straightforwardly generates U07's IT and SOC signatures simultaneously, and ii)that a stochastic process, linear fractional stable motion or LFSM can give the IT signatures and nonlinearity in the structure functions. We infer that not only may it not be necessary to invoke SOC to explain U07's observations, but also that our result has wider implications, which will be discussed.
Kan, Chiemi; Kawakami, Norito; Umeda, Maki
2015-12-01
The majority of studies on the role of psychological resources linking childhood socioeconomic status (SES) and adult health have been conducted in Western countries. Empirical evidence for mediation effects of psychological resources is currently lacking in Japan. The purpose of this study was to investigate the mediating effect of psychological resources (mastery and sense of coherence [SOC]) on the association between childhood SES and current health. Analyses were conducted on cross-sectional data (1,497 men and 1,764 women) from the Japanese Study of Stratification, Health, Income, and Neighborhood Study (J-SHINE) in Tokyo. Psychological resources (mastery and SOC), childhood SES (parents' education and perceived childhood SES), and current health of adults (psychological distress measured by K6 and self-rated health) were measured using a self-report questionnaire. Mastery and SOC significantly and independently mediated the association between childhood SES and current health in the total sample after adjusting for age, gender, and respondent education, regardless of type of SES or health outcome indicators. Similar mediation effects were observed for both men and women. A few gender differences were observed; specifically, SOC significantly mediated the association between parents' education and current health only among women, and it mediated the association between perceived childhood SES and current health only among men. Overall, the findings underscore the importance of the mediating role of psychological resources in the association between childhood SES and current health.
Scaling properties of rainfall records in some Mexican zones
NASA Astrophysics Data System (ADS)
Angulo-Fernández, Fercia; Reyes-Ramírez, Israel; Flores-Márquez, Elsa Leticia
2018-04-01
Since the 1990 decade, it has been suggested that atmospheric processes associated with rainfall could be a self-organized critical (SOC) phenomenon similar, for example, to seismicity. In this sense, the rain events taken as the output of the complex atmospheric system (sun's radiation, water evaporation, clouds, etc.) are analogous to earthquakes, as the output of a relaxation process of the earth crust. A clue on this possible SOC behavior of rain phenomenon has been the ubiquitous presence of power laws in rain statistics. In the present article, we report the scaling properties of rain precipitation data taken from meteorological stations located at six zones of Mexico. Our results are consistent with those that assert that rainfall is a SOC phenomenon. We also analyze the Hurst exponent, which is appropriate to measure long-term memory of time series.
Russ, Daniel E.; Ho, Kwan-Yuet; Colt, Joanne S.; Armenti, Karla R.; Baris, Dalsu; Chow, Wong-Ho; Davis, Faith; Johnson, Alison; Purdue, Mark P.; Karagas, Margaret R.; Schwartz, Kendra; Schwenn, Molly; Silverman, Debra T.; Johnson, Calvin A.; Friesen, Melissa C.
2016-01-01
Background Mapping job titles to standardized occupation classification (SOC) codes is an important step in identifying occupational risk factors in epidemiologic studies. Because manual coding is time-consuming and has moderate reliability, we developed an algorithm called SOCcer (Standardized Occupation Coding for Computer-assisted Epidemiologic Research) to assign SOC-2010 codes based on free-text job description components. Methods Job title and task-based classifiers were developed by comparing job descriptions to multiple sources linking job and task descriptions to SOC codes. An industry-based classifier was developed based on the SOC prevalence within an industry. These classifiers were used in a logistic model trained using 14,983 jobs with expert-assigned SOC codes to obtain empirical weights for an algorithm that scored each SOC/job description. We assigned the highest scoring SOC code to each job. SOCcer was validated in two occupational data sources by comparing SOC codes obtained from SOCcer to expert assigned SOC codes and lead exposure estimates obtained by linking SOC codes to a job-exposure matrix. Results For 11,991 case-control study jobs, SOCcer-assigned codes agreed with 44.5% and 76.3% of manually assigned codes at the 6- and 2-digit level, respectively. Agreement increased with the score, providing a mechanism to identify assignments needing review. Good agreement was observed between lead estimates based on SOCcer and manual SOC assignments (kappa: 0.6–0.8). Poorer performance was observed for inspection job descriptions, which included abbreviations and worksite-specific terminology. Conclusions Although some manual coding will remain necessary, using SOCcer may improve the efficiency of incorporating occupation into large-scale epidemiologic studies. PMID:27102331
NASA Astrophysics Data System (ADS)
Throop, H. L.; Archer, S.
2004-12-01
The abundance of woody species in grasslands and savannas has increased globally over the past century. Recent estimates suggest that this proliferation of woody plants may account for a significant fraction of the Northern Hemisphere C sink, although a large degree of uncertainty exists in the magnitude and spatial distribution of these plant and soil pools. While field-based inventories have made progress in assessing the role of aboveground woody growth in ecosystem C inventories, the effect of woody proliferation on soil organic carbon (SOC) remains controversial, despite the fact that the majority of ecosystem C in these systems is typically belowground. Elevated levels of SOC underneath woody plant canopies have been widely reported, but little is known about the spatial distribution of SOC relative to tree canopies. Understanding the spatial distribution of SOC is critical, however, to developing accurate landscape-scale assessments of woody proliferation impacts on ecosystem C pools. We quantified the influence of encroaching mesquite trees (Fabaceae: Prosopis velutina) on the concentration of SOC and total nitrogen (TN) in a semi-desert grassland in southern Arizona. SOC concentrations near the boles of large trees (basal diameter 85-102 cm) were approximately double that of SOC in intercanopy zones (0.9% vs. 0.4% SOC by weight). SOC declined moving out from the bole to the canopy edge, at which point it was equivalent to inter-canopy spaces. Small to medium-sized trees (basal diameters less than 85 cm) had minimal influence on SOC concentrations. Patterns of TN values mirrored those of SOC in all cases, although TN values were roughly an order of magnitude lower than SOC values. These data suggest that accurate accounting of landscape-level SOC stocks will require developing area-weighting algorithms that account for tree size and bole-to-canopy gradients.
A Novel Hybrid MADM Based Competence Set Expansions of a SOC Design Service Firm
NASA Astrophysics Data System (ADS)
Huang, Chi-Yo; Tzeng, Gwo-Hshiung; Lue, Yeou-Feng; Chuang, Hsiu-Tyan
As the IC (integrated circuit) industry migrates to the System-on-Chip (SOC) era, a novel business model, the SOC design service (DS), is emerging. However, how to expand a firm’s innovation competences while satisfying multiple objectives including highest quality, lowest cost, and fastest time to market as well as most revenues for economics of scale are always problems for a design service firm. Therefore, attempts to expand the innovation competences, and thus the competitiveness, of latecomers in the SOC DS industry have already become the most critical issue facing the top managers of SOC design service firms. In this paper, a novel multiple attribute decision making (MADM) analytic framework based on the concept of competence set expansion, as well as MADM methods consisting with DEMATEL, ANP and multiple objective decision making (MODM) will be proposed in order to define a path for expanding a late-coming SOC DS firm’s innovation capabilities. An empirical study on expanding innovation competence sets, of a late-coming Taiwanese DS firm then will be presented.
Spatial distribrrtion of soil carbon in southern New England hardwood forest landscapes
Aletta A. Davis; Mark H. Stolt; Jana E. Compton
2004-01-01
Understanding soil organic C (SOC) spatial variability is critical when developing C budgets, explaining the cause and effects of climate change, and for basic ecosystem characterization. We investigated delineations of four soil series to elucidate teh factors that affect the size, distribution, and varibility of SOC pools from horizon to landscape scales. These soils...
Wu, Yiping; Liu, Shuguang; Young, Claudia J; Dahal, Devendra; Sohl, Terry L; Davis, Brian
2015-06-01
Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7-104.7 TgC as of 2050, 70-101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m(2)/yr (i.e., 6.6-10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.
Wu, Yiping; Liu, Shuguang; Young, Claudia J.; Dahal, Devendra; Sohl, Terry L.; Davis, Brian
2015-01-01
Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7–104.7 TgC as of 2050, 70–101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m2/yr (i.e., 6.6–10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.
Wu, Yiping; Liu, Shuguang; Young, Claudia J.; Dahal, Devendra; Sohl, Terry L.; Davis, Brian
2015-01-01
Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7–104.7 TgC as of 2050, 70–101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m2/yr (i.e., 6.6–10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development. PMID:26027873
Criticality and turbulence in a resistive magnetohydrodynamic current sheet
NASA Astrophysics Data System (ADS)
Klimas, Alexander J.; Uritsky, Vadim M.
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
Criticality and turbulence in a resistive magnetohydrodynamic current sheet.
Klimas, Alexander J; Uritsky, Vadim M
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
NASA Astrophysics Data System (ADS)
Mayes, M. T.; Marin-Spiotta, E.; Ozdogan, M.; Erdogan, M. A.
2011-12-01
In ecosystems where intensive farming and grazing have been occurring for millennia, there is poor understanding of how present-day soil biogeochemical properties relate to factors associated with soil parent materials (e.g. texture, mineralogy), and the net effects of long-term land use practices. Soil organic carbon (SOC) and total soil nitrogen (TN) are important for their roles in maintaining soil structure, moisture, fertility and contributing to carbon sequestration. Our research used a state factor approach (Jenny 1981) to study effects of soil parent materials and land use practices on SOC, TN, and other properties across thirty-five sites in the Konya Basin, an arid region in south-central Turkey farmed and grazed for over 8,000 years. This project is one of the first to study land use impacts on soils at a landscape scale (500 km2) in south-central Turkey, and incorporate geospatial data (e.g. a satellite imagery-derived land cover map we developed) to aid selection of field sites. Focusing on the plough layer (0-25cm) in two depth intervals, we compared effects of agriculture, orchard cultivation and grazing land use practices and clay-loam alluvial, sandy-loam volcanic and lacustrine clay soils on soil properties using standard least squares regression analyses. SOC and TN depended strongly on parent materials, but not on land use. Averaged across both depth intervals, alluvial soil SOC and TN concentrations (19.4 ± 1.32 Mg/ha SOC, 2.86 ± 1.23 Mg/ha TN) were higher and significantly different than lacustrine (9.72 ± 3.01 Mg/ha SOC, 1.57 ± 0.69 Mg/ha TN) and volcanic soil concentrations (7.40 ± 1.72 Mg/ha SOC, 1.02 ± 0.35 Mg/ha TN). Land use significantly affected SOC and TN on alluvial soils, but not on volcanic or lacustrine soils. Our results demonstrate the potential for land use to have different effects on different soils in this region. Our data on SOC, TN and other soil properties illustrate patterns in regional SOC and TN variability not shown by previous modeling or soil survey efforts. We provide baseline information on SOC and TN that can inform benchmarks for future soil monitoring and land use planning in an arid region that is likely to be highly impacted by future climatic changes, agricultural intensification and urban development. Our results suggest the importance of accounting for soil physical properties, and land use effects that are dependent on soil parent materials in future efforts to model or account for SOC and TN in similar ancient agricultural landscapes.
Acute stress among adolescents and female rape victims measured by ASC-Kids: a pilot study.
Nilsson, Doris; Nordenstam, Carin; Green, Sara; Wetterhall, Annika; Lundin, Tom; Svedin, Carl Göran
2015-01-01
Rape is considered a stressful trauma and often with durable consequences. How the aftermath of rape is for young adolescents' girls considering acute stress is an overlooked field and remains to be studied. In this study, we wanted to investigate acute stress among adolescent victims of rape and the psychometric properties of the Acute Stress Checklist for Children (ASC-Kids). A clinical sample (n = 79) of raped girls, 13-17 years old who had turned to a special rape victim unit for treatment, answered the ASC-Kids. ASC-Kids was also given to a group of minor stressed, non-raped adolescents in the same age range (n = 154) together with the University of California at Los Angeles Post-traumatic Stress Disorder Reaction Index (UCLA PTSD RI), and the Sense of Coherence Scale 13 (SOC-13). The scores from the groups were compared and showed significant differences in mean values on all the diagnostic criteria of acute stress disorder. In the clinical group, 36.7% obtained full ASD criteria. ASC-Kids could discriminate well between groups. Cronbach's alpha was found to be excellent, and the correlation between the UCLA PTSD RI and ASC-Kids found to be good; both ASC-Kids and UCLA PTSD RI had a good and moderate negative correlation with SOC-13. Adolescent female rape victims were shown to have a very high level of acute stress, and the ASC-Kids was found to have sound psychometrics and can be a valuable screening instrument to support clinicians in their assessments of an indication of adolescents after potentially stressful events such as rape.
Öhlin, Leif; Hesse, Morten; Fridell, Mats; Tätting, Per
2011-05-12
Continuous abstinence and retention in treatment for alcohol and drug use disorders are central challenges for the treatment providers. The literature has failed to show consistent, strong predictors of retention. Predictors and treatment structure may differ across treatment modalities. In this study the structure was reinforced by the addition of supervised urine samples three times a week and mandatory daily work/structured education activities as a prerequisite of inclusion in the program. Of 128 patients consecutively admitted to buprenorphine maintenance treatment five patients dropped out within the first week. Of the remaining 123 demographic data and psychiatric assessment were used to predict involuntary discharge from treatment and corresponding cumulative abstinence probability. All subjects were administered the Structured Clinical Interview for DSM-IV-TR, and the Symptom Checklist 90 (SCL-90), the Alcohol Use Disorder Identification Test (AUDIT), the Swedish universities Scales of Personality (SSP) and the Sense of Coherence Scale (SOC), all self-report measures. Some measures were repeated every third month in addition to interviews. Of 123 patients admitted, 86 (70%) remained in treatment after six months and 61 (50%) remained in treatment after 12 months. Of those discharged involuntarily, 34/62 individuals were readmitted after a suspension period of three months. Younger age at intake, poly-substance abuse at intake (number of drugs in urine), and number of conduct disorder criteria on the SCID Screen were independently associated with an increased risk of involuntary discharge. There were no significant differences between dropouts and completers on SCL-90, SSP, SOC or AUDIT. Of the patients admitted to the programme 50% stayed for the first 12 months with continuous abstinence and daily work. Poly-substance use before intake into treatment, high levels of conduct disorder on SCID screen and younger age at intake had a negative impact on retention and abstinence.
Penning Ionization: Measurement of Ion and Molecular Lifetimes.
1977-12-01
State of CH", James Carozza and Richard Anderson, J. Opt. Soc. Am. 67, 118 (1977). "Spin & Coherence Transfer in Penning Ionization", L.D. Schearer...Lamp , F. Rev. Sei. Instru. 48, 92 (1977). _^^ ^rtjri ’’Radiative Lifetime of the PrÄ State of CH , James Carroza and Richard ’ Anderson, J. Opt...lr.h .--.- •’••• —•;••.: — - ----- Radiative lifetime of the A2A state of CHr James Carozza and Richard Anderson Drparimem 0/ Physics
Research Laboratory of Electronics Progress Report Number 134
1991-12-31
Optical Pulse Compression," J. Opt. Soc. Am. 8 4:1404 (1987); C.H. Bito Cruz, P.C. Becker, R.L Fork, and C.V. Shank, ’Phase Correction of Femtosecond...sented at the IEEE Lasers and Electro-Optical the inputs to the external cavity, and coherence of Society ( LEOS ) Annual Conference, San Jose, the output...with second- image (8 GHz frequency) in which complex polar- epoch measurements of the dMe stars AD Leo , EV ization structure is evident. We will use
Wilson, Chris H; Caughlin, T Trevor; Rifai, Sami W; Boughton, Elizabeth H; Mack, Michelle C; Flory, S Luke
2017-07-01
Soil carbon sequestration in agroecosystems could play a key role in climate change mitigation but will require accurate predictions of soil organic carbon (SOC) stocks over spatial scales relevant to land management. Spatial variation in underlying drivers of SOC, such as plant productivity and soil mineralogy, complicates these predictions. Recent advances in the availability of remotely sensed data make it practical to generate multidecadal time series of vegetation indices with high spatial resolution and coverage. However, the utility of such data largely is unknown, only having been tested with shorter (e.g., 1-2 yr) data summaries. Across a 2,000 ha subtropical grassland, we found that a long time series (28 yr) of a vegetation index (Enhanced Vegetation Index; EVI) derived from the Landsat 5 satellite significantly enhanced prediction of spatially varying SOC pools, while a short summary (2 yr) was an ineffective predictor. EVI was the best predictor for surface SOC (0-5 cm depth) and total measured SOC stocks (0-15 cm). The optimum models for SOC in the upper soil layer combined EVI records with elevation and calcium concentration, while deeper SOC was more strongly associated with calcium availability. We demonstrate how data from the open access Landsat archive can predict SOC stocks, a key ecosystem metric, and illustrate the rich variety of analytical approaches that can be applied to long time series of remotely sensed greenness. Overall, our results showed that SOC pools were closely coupled to EVI in this ecosystem, demonstrating that maintenance of higher average green leaf area is correlated with higher SOC. The strong associations of vegetation greenness and calcium concentration with SOC suggest that the ability to sequester additional SOC likely will rely on strategic management of pasture vegetation and soil fertility. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Studer, Mirjam S.; Abiven, Samuel; González Domínguez, Beatriz R.; Hagedorn, Frank; Reisser, Moritz; Walthert, Lorenz; Zimmermann, Stephan; Niklaus, Pascal A.
2016-04-01
It is still largely unknown what drives the vulnerability of soil organic carbon (SOC) stocks to climate change, i.e. the likelihood of a soil to loose its SOC along with the change in environmental conditions. Our objective is to assess the SOC vulnerability of Swiss forest soils and identify its potential drivers: climate (temperature, soil moisture), soil (clay content, pH) and landscape (slope, aspect) properties. Fifty-four sites were selected for balanced spatial and driver magnitudes distribution. We measured the SOC characteristics (content and radiocarbon) and studied the C decomposition by laboratory soil incubations (details in Part I, abstract by B. González Domínguez). In order to assess the current SOC pool distribution and its radiocarbon signatures, we extended the Rothamsted Carbon (RothC) model with radiocarbon (14C) isotope modelling (RothCiso). The RothC model distinguishes four active SOC pools, decomposable and resistant plant material, microbial biomass and humified organic matter, and an inert SOC pool (Jenkinson 1990). The active pools are decomposed and mineralized to CO2 by first order kinetics. The RothCiso assigns all pools a 14C signature, based on the atmospheric 14C concentrations of the past century (plant C inputs) and their turnover. Currently we constrain the model with 14C signatures measured on the 54 fresh and their corresponding archived bulk soil samples, taken 12-24 years before. We were able to reproduce the measured radiocarbon concentrations of the SOC with the RothCiso and first results indicate, that the assumption of an inert SOC pool, that is radiocarbon dead, is not appropriate. In a second step we will compare the SOC mean residence time assessed by the two methodological approaches - incubation (C efflux based) and modelling (C stock based) - and relate it to the environmental drivers mentioned above. With the combination of the two methodological approaches and 14C analysis we hope to gain more insights into the source of the C lost along with climate change - is it "young" C from active pools with high turnover (e.g. plant material) or is it rather "old" C that was stabilized in pools with slow turnover (e.g. "humified" or stabilized organic matter)? This will enable us to judge if the C losses observed in the incubation experiments are relevant for longer time scales (decades) and could not be easily compensated for by increased C inputs. Thus, the SOC vulnerability to climate change will be rated based on the amount and source of C lost and compared with climate, soil and landscape properties to gain insights on the drivers of the SOC vulnerability on a regional scale. References Jenkinson, D. S. (1990). The turnover of organic carbon and nitrogen in soil. Phil. Trans. R. Soc. Lond. B, 329, 361-368.
Baseline-dependent responses of soil organic carbon dynamics to climate and land disturbances
Tan, Zhengxi; Liu, Shuguang
2013-01-01
Terrestrial carbon (C) sequestration through optimizing land use and management is widely considered a realistic option to mitigate the global greenhouse effect. But how the responses of individual ecosystems to changes in land use and management are related to baseline soil organic C (SOC) levels still needs to be evaluated at various scales. In this study, we modeled SOC dynamics within both natural and managed ecosystems in North Dakota of the United States and found that the average SOC stock in the top 20 cm depth of soil lost at a rate of 450 kg C ha−1 yr−1 in cropland and 110 kg C ha−1 yr−1 in grassland between 1971 and 1998. Since 1998, the study area had become a SOC sink at a rate of 44 kg C ha−1 yr−1. The annual rate of SOC change in all types of lands substantially depends on the magnitude of initial SOC contents, but such dependency varies more with climatic variables within natural ecosystems and with management practices within managed ecosystems. Additionally, soils with high baseline SOC stocks tend to be C sources following any land surface disturbances, whereas soils having low baseline C contents likely become C sinks following conservation management.
Large uncertainty in permafrost carbon stocks due to hillslope soil deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelef, Eitan; Rowland, Joel C.; Wilson, Cathy J.
Here, northern circumpolar permafrost soils contain more than a third of the global Soil Organic Carbon pool (SOC). The sensitivity of this carbon pool to a changing climate is a primary source of uncertainty in simulationbased climate projections. These projections, however, do not account for the accumulation of soil deposits at the base of hillslopes (hill-toes), and the influence of this accumulation on the distribution, sequestration, and decomposition of SOC in landscapes affected by permafrost. Here we combine topographic models with soil-profile data and topographic analysis to evaluate the quantity and uncertainty of SOC mass stored in perennially frozen hill-toemore » soil deposits. We show that in Alaska this SOC mass introduces an uncertainty that is > 200% than state-wide estimates of SOC stocks (77 PgC), and that a similarly large uncertainty may also pertain at a circumpolar scale. Soil sampling and geophysical-imaging efforts that target hill-toe deposits can help constrain this large uncertainty.« less
Large uncertainty in permafrost carbon stocks due to hillslope soil deposits
Shelef, Eitan; Rowland, Joel C.; Wilson, Cathy J.; ...
2017-05-31
Here, northern circumpolar permafrost soils contain more than a third of the global Soil Organic Carbon pool (SOC). The sensitivity of this carbon pool to a changing climate is a primary source of uncertainty in simulationbased climate projections. These projections, however, do not account for the accumulation of soil deposits at the base of hillslopes (hill-toes), and the influence of this accumulation on the distribution, sequestration, and decomposition of SOC in landscapes affected by permafrost. Here we combine topographic models with soil-profile data and topographic analysis to evaluate the quantity and uncertainty of SOC mass stored in perennially frozen hill-toemore » soil deposits. We show that in Alaska this SOC mass introduces an uncertainty that is > 200% than state-wide estimates of SOC stocks (77 PgC), and that a similarly large uncertainty may also pertain at a circumpolar scale. Soil sampling and geophysical-imaging efforts that target hill-toe deposits can help constrain this large uncertainty.« less
Liu, Shuguang; Tan, Z.; Li, Z.; Zhao, S.; Yuan, W.
2011-01-01
Upscaling the spatial and temporal changes in carbon (C) stocks and fluxes from sites to regions is a critical and challenging step toward improving our understanding of the dynamics of C sources and sinks over large areas. This study simulated soil organic C (SOC) dynamics within 0–100 cm depth of soils across the state of Iowa in the USA from 1972 to 2007 using the General Ensemble biogeochemical Modeling System (GEMS). The model outputs with variation coefficient were analyzed and assembled from simulation unit to the state scale based upon major land use types at annual step. Results from this study indicate that soils (within a depth of 0–100 cm) in Iowa had been a SOC source at a rate of 190 ± 380 kg C ha−1 yr−1. This was likely caused by the installation of a massive drainage system which led to the release of SOC from deep soil layers previously protected under poor drainage conditions. The annual crop rotation was another major force driving SOC variation and resulted in spatial variability of annual budgets in all croplands. Annual rate of change of SOC stocks in all land types depended significantly on the baseline SOC levels; soils with higher SOC levels tended to be C sources, and those with lower levels tended to be C sinks. Management practices (e.g., conservation tillage and residue management practices) slowed down the C emissions from Iowa soils, but could not reverse the general trend of net SOC loss in view of the entire state due mainly to a high level of baseline SOC stocks.
NASA Astrophysics Data System (ADS)
Gu, B.
2017-12-01
It is estimated that Arctic permafrost soils store approximately half of the global belowground organic carbon, which is susceptible to microbial decomposition under warming climate. Studies have shown that rates of soil organic carbon (SOC) decomposition are controlled not only by temperature but also SOC substrate quality or chemical composition. However, detailed molecular-scale characterization of SOC and its susceptibility to degradation are lacking, due to extremely complex nature of SOC. Here, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was utilized to determine compositional changes of SOC during a microcosm warming experiment using tundra soils that were collected from the Barrow Environmental Observatory in Alaska, USA. Soil microcosm incubation was conducted with both organic and mineral active layer soils at two temperatures (-2°C and 8°C) up to 122 days, and water-extractable SOC was analyzed. Results indicate that peptides, amino sugars, and carbohydrate-like compounds are among the most labile SOC compounds to be degraded, with nitrogen-containing compounds degrading at a much faster rate than those containing no nitrogen. Refractory SOC components are dominated by the lignin- or tannin-like compounds and, to a less extent, the aliphatic compounds. Additionally, elemental ratios of O:C, H:C, and N:C were found to decrease with incubation time, and SOC in the mineral soil exhibited lower O:C and N:C ratios than those of the organic-rich soil. A biodegradation index is proposed to facilitate the incorporation of mass spectrometry data into mechanistic models of SOC degradation and thus improved prediction model of climate feedbacks in the Arctic.
NASA Astrophysics Data System (ADS)
Gilbert, A.; Yamada, K.; Julien, M.; Yoshida, N.; Remaud, G.; Robins, R.
2016-12-01
It is estimated that Arctic permafrost soils store approximately half of the global belowground organic carbon, which is susceptible to microbial decomposition under warming climate. Studies have shown that rates of soil organic carbon (SOC) decomposition are controlled not only by temperature but also SOC substrate quality or chemical composition. However, detailed molecular-scale characterization of SOC and its susceptibility to degradation are lacking, due to extremely complex nature of SOC. Here, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was utilized to determine compositional changes of SOC during a microcosm warming experiment using tundra soils that were collected from the Barrow Environmental Observatory in Alaska, USA. Soil microcosm incubation was conducted with both organic and mineral active layer soils at two temperatures (-2°C and 8°C) up to 122 days, and water-extractable SOC was analyzed. Results indicate that peptides, amino sugars, and carbohydrate-like compounds are among the most labile SOC compounds to be degraded, with nitrogen-containing compounds degrading at a much faster rate than those containing no nitrogen. Refractory SOC components are dominated by the lignin- or tannin-like compounds and, to a less extent, the aliphatic compounds. Additionally, elemental ratios of O:C, H:C, and N:C were found to decrease with incubation time, and SOC in the mineral soil exhibited lower O:C and N:C ratios than those of the organic-rich soil. A biodegradation index is proposed to facilitate the incorporation of mass spectrometry data into mechanistic models of SOC degradation and thus improved prediction model of climate feedbacks in the Arctic.
NASA Astrophysics Data System (ADS)
Hombegowda, H. C.; van Straaten, O.; Köhler, M.; Hölscher, D.
2016-01-01
Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is influenced by the type of the agroforestry system established, the soil and climatic conditions, and management. In this regional-scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): home garden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across 4 climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference, an agriculture reference and two of the same AFS types of two ages (30-60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50-61 %) in the top meter of soil depending on the climate zone. The establishment of home garden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture SOC stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in home garden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.
Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng
2014-01-01
To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m(-2) s(-1). The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China.
Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng
2014-01-01
To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m−2 s−1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China. PMID:25157827
Landscape-scale modelling of soil carbon dynamics under land use and climate change
NASA Astrophysics Data System (ADS)
Lacoste, Marine; Viaud, Valérie; Michot, Didier; Christian, Walter
2013-04-01
Soil organic carbon (SOC) sequestration is highly linked to soil use and farming practices, but also to soil redistributions, soil properties, and climate. In a global change context, landscape, farming practice and climate changes are expected; and they will most probably impact SOC dynamics. To assess their respective impacts, we modelled the SOC contents and stocks evolution at the scale of an agricultural landscape, by taking into account the soil redistribution by tillage and water processes. The simulations were conducted from 2010 to 2100 under different scenarios of landscape and climate. These scenarios combined different land uses associated to specific farming practices (mixed dairy with rotations of crops and grasslands, intensive cropping with only crops rotations or permanent grasslands), landscape managements (hedges planting or removal), and climates (business-as-usual climate and climate change, with temperature and precipitations increase). We used a spatially SOC dynamic model (adapted from RothC), coupled to a soil redistribution model (LandSoil). SOC dynamics were spatially modelled with a lateral resolution of 2-m and for soil organic layers up to 105 cm. Initial SOC stocks were described with a 2-m resolution map based on field data and produced with digital soil mapping methods. The major factor of change in SOC stocks was land use change, the second factor of importance was climate change, and finally landscape management: for the total SOC stocks (0-to-105 cm soil layer) the change of land use, climate and landscape management induced a respective mean absolute variation of 10 to 20 tC ha-1, 9 tC ha-1 and 0.4 tC ha-1. When considering the 0-to-105 cm soil layer, the different modelled landscapes showed the same sensitivity to climate change, with induced a mean decrease of 10 tC ha-1. However, the impact of climate change was found different according to the different modelled landscape when considering the 0-to-7.5 and 0-to-30 cm soil layers: the more sensitive landscapes were those of intensive cropping. This shows the importance of considering not only the plough layer, but also the vertical distribution of SOC stocks to assess the variation in SOC dynamics under land use, landscape management or climate change. Finally, rural hedgerow landscapes were proved to be quite well adapted for soil protection in a context of climate change, focusing on both carbon storage and soil erosion.
Virues-Ortega, Javier; Vega, Saturio; Seijo-Martinez, Manuel; Saz, Pedro; Rodriguez, Fernanda; Rodriguez-Laso, Angel; de Las Heras, Susana Perez; Mateos, Raimundo; Martinez-Martin, Pablo; Mahillo-Fernandez, Ignacio; Garre-Olmo, Josep; Gascon, Jordi; Garcia-Garcia, Francisco Jose; Fernandez-Martinez, Manuel; Bermejo-Pareja, Felix; Bergareche, Alberto; Benito-Leon, Julian; de Pedro-Cuesta, Jesus
2017-01-31
Sense of Coherence (SOC) is defined as a tendency to perceive life experiences as comprehensible, manageable and meaningful. The construct is split in three major domains: Comprehensibility, Manageability, and Meaningfulness. SOC has been associated with successful coping strategies in the face of illness and traumatic events and is a predictor of self-reported and objective health in a variety of contexts. In the present study we aim to evaluate the association of SOC with disability and dependence in Spanish elders. A total of 377 participants aged 75 years or over from nine locations across Spain participated in the study (Mean age: 80.9 years; 65.3% women). SOC levels were considered independent variables in two ordinal logistic models on disability and dependence, respectively. Disability was established with the World health Organization-Disability Assessment Schedule 2.0 (36-item version), while dependence was measured with the Extended Katz Index on personal and instrumental activities of daily living. The models included personal (sex, age, social contacts, availability of an intimate confidant), environmental (municipality size, access to social resources) and health-related covariates (morbidity). High Meaningfulness was a strong protective factor against both disability (Odds Ratio [OR] = 0.50; 95% Confidence Interval [CI] = 0.29-0.87) and dependence (OR = 0.33; 95% CI = 0.19-0.58) while moderate and high Comprehensibility was protective for disability (OR = 0.40; 95% CI = 0.22-0.70 and OR = 0.39; 95%CI = 0.21-0.74), but not for dependence. Easy access to social and health resources was also highly protective against both disability and dependence. Our results are consistent with the view that high levels of SOC are protective against disability and dependence in the elderly. Elderly individuals with limited access to social and health resources and with low SOC may be a group at risk for dependence and disability in Spain.
Simulation of salinity effects on past, present, and future soil organic carbon stocks.
Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo
2012-02-07
Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study. Both sets of results suggest that saline soils have lost carbon and will continue to lose carbon under future climate. This demonstrates the importance of both reduced decomposition and reduced plant input in simulations of future changes in SOC stocks in saline soils.
Suberin-derived aliphatic monomers as biomarkers for SOM affected by root litter contribution
NASA Astrophysics Data System (ADS)
Kogel-Knabner, I.; Spielvogel, S.-; Prietzel, J.-
2012-12-01
The patchy distribution of trees and ground vegetation may have major impact on SOC variability and stability at the small scale. Knowledge about correlations between the pattern of tree and ground vegetation, SOC stocks in different soil depths and the contribution of root- vs. shoot-derived carbon to different SOC fractions is scarce. We have tested analysis of hydrolysable aliphatic monomers derived from the biopolyesters cutin- and suberin to investigate whether their composition can be traced back after decay and transformation into soil organic matter (SOM) to study SOM source, degradation, and stand history. The main objective of this study was to elucidate the relative abundance of cutin and suberin in different particle size and density fractions of a Norway spruce and a European beech site with increasing distance to stems. Soil samples, root, bark and needle/leave samples were analyzed for their cutin and/or suberin signature. Previous to isolation of bound lipids, sequential solvent extraction was used to remove free lipids and other solvent extractable compounds. Cutin- and suberin-derived monomers were extracted from the samples using base hydrolysis. Before analysis by Gas Chromatography/Mass Spectrometry (GC/MS), extracts were derivatized to convert compounds to trimethylsilyl derivatives. Statistical analysis identified four variables which as combined factors discriminated significantly between cutin and suberin based on their structural units. We found a relative enrichment of cutin and suberin contents in the occluded fraction at both sites that decreased with increasing distance to the trees. We conclude from our results that (i) patchy above- and belowground carbon input caused by heterogeneous distribution of trees and ground vegetation has major impact on SOC variability and stability at the small scale, (ii) tree species is an important factor influencing SOC heterogeneity at the stand scale due to pronounced differences in above- and belowground carbon input among the tree species and that (iii) forest conversion may substantially alter SOC stocks and spatial distribution. Suberin biomarkers can thus be used as indicators for the presence of root influence on SOM composition and for identifying root-affected soil compartments.
Weller, Kathryn E; Greene, Geoffrey W; Redding, Colleen A; Paiva, Andrea L; Lofgren, Ingrid; Nash, Jessica T; Kobayashi, Hisanori
2014-01-01
To develop and validate an instrument to assess environmentally conscious eating (Green Eating [GE]) behavior (BEH) and GE Transtheoretical Model constructs including Stage of Change (SOC), Decisional Balance (DB), and Self-efficacy (SE). Cross-sectional instrument development survey. Convenience sample (n = 954) of 18- to 24-year-old college students from a northeastern university. The sample was randomly split: (N1) and (N2). N1 was used for exploratory factor analyses using principal components analyses; N2 was used for confirmatory analyses (structural modeling) and reliability analyses (coefficient α). The full sample was used for measurement invariance (multi-group confirmatory analyses) and convergent validity (BEH) and known group validation (DB and SE) by SOC using analysis of variance. Reliable (α > .7), psychometrically sound, and stable measures included 2 correlated 5-item DB subscales (Pros and Cons), 2 correlated SE subscales (school [5 items] and home [3 items]), and a single 6-item BEH scale. Most students (66%) were in Precontemplation and Contemplation SOC. Behavior, DB, and SE scales differed significantly by SOC (P < .001) with moderate to large effect sizes, as predicted by the Transtheoretical Model, which supported the validity of these measures. Successful development and preliminary validation of this 25-item GE instrument provides a basis for assessment as well as development of tailored interventions for college students. Copyright © 2014 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
O'Brien, S. L.; Jastrow, J.D.; Grimley, D.A.; Gonzalez-Meler, M. A.
2010-01-01
Revitalization of degraded landscapes may provide sinks for rising atmospheric CO2, especially in reconstructed prairies where substantial belowground productivity is coupled with large soil organic carbon (SOC) deficits after many decades of cultivation. The restoration process also provides opportunities to study the often-elusive factors that regulate soil processes. Although the precise mechanisms that govern the rate of SOC accrual are unclear, factors such as soil moisture or vegetation type may influence the net accrual rate by affecting the balance between organic matter inputs and decomposition. A resampling approach was used to assess the control that soil moisture and plant community type each exert on SOC and total nitrogen (TN) accumulation in restored grasslands. Five plots that varied in drainage were sampled at least four times over two decades to assess SOC, TN, and C4- and C3-derived C. We found that higher long-term soil moisture, characterized by low soil magnetic susceptibility, promoted SOC and TN accrual, with twice the SOC and three times the TN gain in seasonally saturated prairies compared with mesic prairies. Vegetation also influenced SOC and TN recovery, as accrual was faster in the prairies compared with C3-only grassland, and C4-derived C accrual correlated strongly to total SOC accrual but C3-C did not. High SOC accumulation at the surface (0-10 cm) combined with losses at depth (10-20 cm) suggested these soils are recovering the highly stratified profiles typical of remnant prairies. Our results suggest that local hydrology and plant community are critical drivers of SOC and TN recovery in restored grasslands. Because these factors and the way they affect SOC are susceptible to modification by climate change, we contend that predictions of the C-sequestration performance of restored grasslands must account for projected climatic changes on both soil moisture and the seasonal productivity of C4 and C3 plants. ?? 2009 Blackwell Publishing Ltd.
Che, Sheng-guo; Guo, Sheng-li
2010-05-01
Analyzing and estimating soil organic carbon (SOC) storage and changes in deep layers under different land uses and landforms may play a pivotal role in comprehending the balance and cycle mechanisms of C cycling, and comprehending the capacity of C sequestration in the terrestrial ecosystem. The study mainly emphasized on effects of landforms and land uses on vertical distribution characteristic of SOC sampled to a depth of 200 cm at the Wangdonggou watershed on the tableland region of Loess Plateau, China. For the top soil of 0-20 cm, the order of SOC contents was gully (10.0 g x kg(-1)) > tableland (7.8 g x kg(-1)) and slopeland (8.2 g x kg(-1)). For the subsoil, SOC in tableland was higher than that in gully and slopeland. For slopeland and gully, SOC decreased with increasing depth, while for tableland, SOC decreased initially, then increased, lastly decreased. Meanwhile, for tableland, the order of SOC appeared approximately manmade grassland > cropland > orchard with the effecting depth of land uses for 40 cm, and for slopeland the order was native grassland (4.3 g x kg(-1)) > manmade woodland (3.8 g x kg(-1)) > manmade grassland (3.3 g x kg(-1)) > orchard (3.3 g x kg(-1)) with the depth for 100 cm, while for gully, there was no significantly difference (p > 0.05) among different land uses. SOC storage in the profile of 20-200 cm accounted for 67.6% sampled to a depth of 100 cm, while for 100-200cm, SOC storage accounted 37.3% in 0-200 cm equaled to 63.8% of the SOC storage in 0-100 cm. The results revealed that landforms and land uses highly significantly (p < 0.05) affected the vertical distribution of SOC at a small watershed scale and considerable amounts of C were stored at deeper depths.
Russ, Daniel E; Ho, Kwan-Yuet; Colt, Joanne S; Armenti, Karla R; Baris, Dalsu; Chow, Wong-Ho; Davis, Faith; Johnson, Alison; Purdue, Mark P; Karagas, Margaret R; Schwartz, Kendra; Schwenn, Molly; Silverman, Debra T; Johnson, Calvin A; Friesen, Melissa C
2016-06-01
Mapping job titles to standardised occupation classification (SOC) codes is an important step in identifying occupational risk factors in epidemiological studies. Because manual coding is time-consuming and has moderate reliability, we developed an algorithm called SOCcer (Standardized Occupation Coding for Computer-assisted Epidemiologic Research) to assign SOC-2010 codes based on free-text job description components. Job title and task-based classifiers were developed by comparing job descriptions to multiple sources linking job and task descriptions to SOC codes. An industry-based classifier was developed based on the SOC prevalence within an industry. These classifiers were used in a logistic model trained using 14 983 jobs with expert-assigned SOC codes to obtain empirical weights for an algorithm that scored each SOC/job description. We assigned the highest scoring SOC code to each job. SOCcer was validated in 2 occupational data sources by comparing SOC codes obtained from SOCcer to expert assigned SOC codes and lead exposure estimates obtained by linking SOC codes to a job-exposure matrix. For 11 991 case-control study jobs, SOCcer-assigned codes agreed with 44.5% and 76.3% of manually assigned codes at the 6-digit and 2-digit level, respectively. Agreement increased with the score, providing a mechanism to identify assignments needing review. Good agreement was observed between lead estimates based on SOCcer and manual SOC assignments (κ 0.6-0.8). Poorer performance was observed for inspection job descriptions, which included abbreviations and worksite-specific terminology. Although some manual coding will remain necessary, using SOCcer may improve the efficiency of incorporating occupation into large-scale epidemiological studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Soil organic carbon dynamics as affected by topography in southern California hillslopes systems
NASA Astrophysics Data System (ADS)
Fissore, C.; Dalzell, B. J.; Berhe, A. A.; Evans, M.; Voegtle, M.; Wu, A. M.
2015-12-01
Active topography is a predominant feature of Southern California's landscapes where intense erosion and depositional processes can influence SOC translocation and accumulation and where changes in chemical, physical, and topographic conditions may affect long-term stability of SOC. Considering the large variability in SOC content across areas with active topography, it is necessary to develop landscape-scale stratifications of sampling that capture SOC variability due to erosion and deposition processes at different topographic locations. To achieve this goal, landscape SOC needs to be assessed based on more than just slope position by taking into account specific topographic indices, such as slope class, curvature, and catchment area. In this work, we used a series of analytical approaches, including total and water extractable C fractions, ultraviolet absorbance, infrared spectroscopy and a radio-isotope tracer (137Cs) in combination with GIS and digital terrain attributes analyses to investigate the quality and distribution of SOC along the sloping landscape of Puente Hills Preserve, in Whittier, CA. The complex interaction of terrain attributes on erosion and depositional processes was evident from 137Cs analysis, which allowed us to identify depositional and eroding areas. Our findings indicate that greater SOC accumulation is associated with concave profile and plane curvature, when combined with low slope class. Slope appears to be the terrain attribute that most affects SOC content and slope effects persist at depth. Ultraviolet absorbance of water extractable OC and infrared spectroscopy of SOC allowed the identification of different levels of aromaticity and distribution of SOC moieties that have been correlated to rates of mineralization. Southern California, like other Mediterranean regions around the world, is expected to experience increasingly severe droughts, more intense erosion and more frequent fire perturbation - which can exacerbate erosion - in the context of a changing climate. For these reasons, our findings are relevant to make better predictions on future SOC dynamics in areas with evolving and complex three-dimensional landscapes.
Adaptive Quantum Control of Charge Motion in Semiconductor Heterostructures
NASA Astrophysics Data System (ADS)
Reitze, David
1998-05-01
Quantum control of electronic wavepacket motion and interactions using ultrafast lasers has moved from the conceptual stage to reality, in large part driven by advances in quantum control theory (R. J. Gordon and S. A. Rice, Ann. Rev. Phys. Chem. (1997), in press.) (M. Shapiro and P. Brumer, J. Chem. Soc. Faraday Trans. V93, 1263 (1997).) (D. Neuhauser and H. Rabitz, Acc. Chem. Res. V26, 496 (1993).) and experimental pulse shaping methods (A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science V247, 412 (1990).) (A. Efimov, C. Schaffer, and D. H. Reitze, J. Opt. Soc. Am VB12, 1968 (1995).). Here, we apply these methods to controlling charge motion in semiconductor heterostructures. Control of coherent charge dynamics in heterostructures enjoys an advantage in that spatial potential profiles can be adjusted almost arbitrarily. Thus, control of charge motion can be exerted by tailoring both the temporal and spatial interactions of the charges with the controlling optical and static fields. In this talk, we demonstrate an experimental feedback loop which adaptively shapes fs pulses in a quantum contol pump-probe experiment, apply it to the control of coherent wavepacket motion in DC-biased asymmetric double quantum well(ADQW) structures, and compare to theoretical predictions of quantum control in ADQWs (N. M. Beach, D. H. Reitze, and J. L. Krause, submitted to Opt. Exp.) (J. L. Krause, D. H. Reitze, G. D. Sanders, A. Kuznetsov, and C. J. Stanton, to appear in Phys. Rev. B).
Ayo-Yusuf, Olalekan A; Rantao, Masego M
2013-06-13
This 18-month longitudinal study examined the influence of adolescents' sense of coherence (SOC) and exposure to household smoking on their commitment to a smoke-free lifestyle. This study investigated a representative sample of 8th graders from 21 randomly selected high schools in the rural Limpopo Province of South Africa (n = 2,119). Of the total sample of 2,119 participants, 294 (14%) reported smoking at baseline and were therefore excluded from further analysis. Of those who did not smoke at baseline, 98.1% (n = 1,767) reported no intention of smoking in the upcoming 12 months. Of those who completed follow-up and had no intention of smoking at baseline (n = 1,316), 89.1% still did not smoke and remained committed to being smoke-free. Having a lower SOC, reporting alcohol binge-drinking at baseline, and having a household member who regularly smokes indoors (OR = 0.46: 0.26-0.82), as compared to not having any smoker in the household, were associated with lower odds of honoring a commitment to a smoke-free lifestyle. Furthermore, those who identified themselves as black Africans, as opposed to belonging to other race groups, were more likely to maintain a smoke-free lifestyle. Our findings suggest that interventions to prevent adolescent smoking should prioritize stress-coping skills and promote smoke-free homes.
Skodova, Zuzana; Lajciakova, Petra
2013-11-01
The aims of this paper were to explore the influence of personality factors on student burnout syndrome and to explore the effect of psychosocial training on burnout and personality predictors among university students in health care professions. A quasi-experimental pre-test/post-test design was used to evaluate the effect of psychosocial training. A sample of 111 university students were divided into experimental and control groups (average age 20.7 years, SD=2.8 years; 86.1% females). The School Burnout Inventory (SBI), Sense of Coherence (SOC) questionnaire, and Rosenberg's Self-esteem scale were employed. Linear regression and analysis of variance were applied for statistical analysis. The results show that socio-psychological training had a positive impact on the level of burnout and on personality factors that are related to burnout. After completing the training, the level of burnout in the experimental group significantly decreased (95% confidence interval: 0.93, 9.25), and no significant change was observed in the control group. Furthermore, respondents' sense of coherence increased in the experimental group (95% confidence interval: -9.11, 2.64), but there were no significant changes in respondents' self-esteem levels in either group. Psychosocial training positively influenced burnout among students in health care professions. Because the coping strategies that were used during the study are similar to effective work coping strategies, psychosocial training can be considered to be an effective tool to prevent burnout in the helping professions. Copyright © 2013. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Lombardo, Luigi; Saia, Sergio; Schillaci, Calogero; Mai, P. Martin; Huser, Raphaël
2018-05-01
Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications have dominated the SOC stock mapping at regional scale so far. However, the community has hardly ever attempted to implement Quantile Regression (QR) to spatially predict the SOC distribution. In this contribution, we test QR to estimate SOC stock (0-30 $cm$ depth) in the agricultural areas of a highly variable semi-arid region (Sicily, Italy, around 25,000 $km2$) by using topographic and remotely sensed predictors. We also compare the results with those from available SOC stock measurement. The QR models produced robust performances and allowed to recognize dominant effects among the predictors with respect to the considered quantile. This information, currently lacking, suggests that QR can discern predictor influences on SOC stock at specific sub-domains of each predictors. In this work, the predictive map generated at the median shows lower errors than those of the Joint Research Centre and International Soil Reference, and Information Centre benchmarks. The results suggest the use of QR as a comprehensive and effective method to map SOC using legacy data in agro-ecosystems. The R code scripted in this study for QR is included.
Tan, Z.; Liu, S.; Johnston, C.A.; Liu, J.; Tieszen, L.L.
2006-01-01
Our ability to forecast the role of ecosystem processes in mitigating global greenhouse effects relies on understanding the driving forces on terrestrial C dynamics. This study evaluated the controls on soil organic C (SOC) changes from 1973 to 2000 in the northwest Great Plains. SOC source-sink relationships were quantified using the General Ensemble Biogeochemical Modeling System (GEMS) based on 40 randomly located 10 × 10 km2 sample blocks. These sample blocks were aggregated into cropland, grassland, and forestland groups based on land cover composition within each sample block. Canonical correlation analysis indicated that SOC source-sink relationship from 1973 to 2000 was significantly related to the land cover type while the change rates mainly depended on the baseline SOC level and annual precipitation. Of all selected driving factors, the baseline SOC and nitrogen levels controlled the SOC change rates for the forestland and cropland groups, while annual precipitation determined the C source-sink relationship for the grassland group in which noticeable SOC sink strength was attributed to the conversion from cropped area to grass cover. Canonical correlation analysis also showed that grassland ecosystems are more complicated than others in the ecoregion, which may be difficult to identify on a field scale. Current model simulations need further adjustments to the model input variables for the grass cover-dominated ecosystems in the ecoregion.
Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang
2013-01-01
The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0-20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km(2)) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed.
Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang
2013-01-01
The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0–20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km2) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed. PMID:24391791
NASA Astrophysics Data System (ADS)
Hombegowda, H. C.; van Straaten, O.; Köhler, M.; Hölscher, D.
2015-08-01
Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is however influenced by the type of the agroforestry system established, the soil and climatic conditions and management. In this regional scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): homegarden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across four climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference plot, an agriculture reference and two of the same AFS types of two ages (30-60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50-61 %) in the top meter of soil depending on the climate zone. The establishment of homegarden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in homegarden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.
NASA Astrophysics Data System (ADS)
Meyer, F. J.; Walter Anthony, K. M.; Regmi, P.; Engram, M. J.; Wirth, L.; Grosse, G.
2016-12-01
In this NASA ABoVE-funded project, we combine geospatial data products derived from airborne and spaceborne remote sensing (RS) data with targeted field observations and modeling in order to quantify ecosystem responses to Arctic and boreal environmental change. Specifically, we quantify methane (CH4) ebullition (bubbling) emissions associated with 60 years of permafrost thaw in thousands of Alaskan and NW Canadian lakes by direct observation with RS systems. To achieve our goals, we have developed statistically-significant models that are using SAR, optical and infrared RS data in order to detect and quantify CH4 ebullition emissions at intra-, whole- and regional-lake scales. We also established a relationship between observed CH4 ebullition and average annual soil organic carbon (SOC) inputs to a handful of Alaskan lakes via thermokarst-margin expansion during recent decades using field data, radiocarbon dating and modeling. Our paper we will provide an overview of the goals, datasets, and methods used for the various components of this project. We will present on (1) the collection of new and synthesis of existing field data on CH4 ebullition, thaw-bulbs and SOC; (2) the analysis of existing data from aerial surveys, SAR and optical RS of CH4 in lake ice; (3) the orthorectification of historic aerial photos for comparison to high-resolution satellite imagery to produce fine-scale regional maps of lake area change, (4) the modelling of permafrost SOC quantities eroded into lakes; (5) the radiocarbon dating of CH4 and SOC, (6) GIS modeling to produce multi-temporal regional maps of historic lake area change, associated CH4 emissions, and permafrost SOC stocks; and (7) outreach to stakeholders at Alaska village and rural community field sites. To demonstrate the scientific relevance of our work we will also showcase a set of research results that we have been able to achieve so far. These will include (1) first regional-scale RS-based estimates of lake-borne CH4 ebullition emissions; (2) regional scale estimates of lake area change from an analysis of 50 years of remote sensing data; and (3) regression models linking lake area change to CH4 emissions.
NASA Astrophysics Data System (ADS)
Kurganova, Irina; Prishchepov, Alexander V.; Schierhorn, Florian; Lopes de Gerenyu, Valentin; Müller, Daniel; Kuzyakov, Yakov
2016-04-01
Land use change is a major driver of land-atmosphere carbon (C) fluxes. The largest net C fluxes caused by LUC are attributed to the conversion of native unmanaged ecosystems to croplands and vice versa. Here, we present the changes of soil organic carbon (SOC) stocks in response to large-scale land use changes in the former Soviet Union from 1953-2012. Widespread and rapid conversion of native ecosystems to croplands occurred in the course of the Virgin Lands Campaign (VLC) between 1954 to 1963 in the Soviet Union, when more than 45 million hectares (Mha) were ploughed in south-eastern Russia and northern Kazakhstan in order to expand domestic food production. After 1991, the collapse of the Soviet Union triggered the abandonment of around 75 Mha across the post-Soviet states. To assess SOC dynamics, we generated a static cropland mask for 2009 based on three global cropland maps. We used the cropland mask to spatially disaggregate annual sown area statistics at province level based on the suitability of each plot for crop production, which yielded land use maps for each year from 1954 to 2012 for all post-Soviet states. To estimate the SOC-dynamics due to the VLC and post-Soviet croplands abandonment, we used available experimental data, own field measurements, and soil maps. A bookkeeping approach was applied to assess the total changes in SOC-stocks in response to large-scale land use changes in the former Soviet Union. The massive croplands expansion during VLC resulted in a substantial loss of SOC - 611±47 Mt C and 241±11 Mt C for the upper 0-50 cm soil layer during the first 20 years of cultivation for Russia and Kazakhstan, respectively. These magnitudes are similar to C losses due to the plowing up of the prairies in USA in the mid-1930s. The total SOC sequestration due to post-Soviet croplands abandonment was estimated at 72.2±6.0 Mt C per year from 1991 to 2010. This amount of carbon equals about 40% of the current fossil fuel emission for this territory or about 7% of global C loss due to land-use change. However, recent recultivation of abandoned croplands in Russia and Kazakhstan can lead to release more labile forms of SOC stored on abandoned lands during last two decades. Since 2001, about 80 Mt of new sequestered SOC has been lost due to current programs on agricultural development in Russia and Kazakhstan. Our results demonstrate the large effects of land-use policies and institutional changes for the national and global C budgets during the last century.
Bochove, Erik J; Rao Gudimetla, V S
2017-01-01
We propose a self-consistency condition based on the extended Huygens-Fresnel principle, which we apply to the propagation kernel of the mutual coherence function of a partially coherent laser beam propagating through a turbulent atmosphere. The assumption of statistical independence of turbulence in neighboring propagation segments leads to an integral equation in the propagation kernel. This integral equation is satisfied by a Gaussian function, with dependence on the transverse coordinates that is identical to the previous Gaussian formulation by Yura [Appl. Opt.11, 1399 (1972)APOPAI0003-693510.1364/AO.11.001399], but differs in the transverse coherence length's dependence on propagation distance, so that this established version violates our self-consistency principle. Our formulation has one free parameter, which in the context of Kolmogorov's theory is independent of turbulence strength and propagation distance. We determined its value by numerical fitting to the rigorous beam propagation theory of Yura and Hanson [J. Opt. Soc. Am. A6, 564 (1989)JOAOD60740-323210.1364/JOSAA.6.000564], demonstrating in addition a significant improvement over other Gaussian models.
Relation between self-organized criticality and grain aspect ratio in granular piles
NASA Astrophysics Data System (ADS)
Denisov, D. V.; Villanueva, Y. Y.; Lőrincz, K. A.; May, S.; Wijngaarden, R. J.
2012-05-01
We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α) exponents, the avalanche fractal dimension (D), the avalanche size distribution exponent (τ), the critical angle (γ), and its fluctuation. At superficial inspection, three types of grains seem to have power-law-distributed avalanches with a well-defined τ. However, only rice is truly SOC if we take three criteria into account: a power-law-shaped avalanche size distribution, finite size scaling, and a universal scaling relation relating characteristic exponents. We study SOC as a spatiotemporal fractal; in particular, we study the spatial structure of criticality from local observation of the slope angle. From the fluctuation of the slope angle we conclude that greater fluctuation (and thus bigger avalanches) happen in piles consisting of grains with larger aspect ratio.
Park, Subok; Gallas, Bradon D; Badano, Aldo; Petrick, Nicholas A; Myers, Kyle J
2007-04-01
A previous study [J. Opt. Soc. Am. A22, 3 (2005)] has shown that human efficiency for detecting a Gaussian signal at a known location in non-Gaussian distributed lumpy backgrounds is approximately 4%. This human efficiency is much less than the reported 40% efficiency that has been documented for Gaussian-distributed lumpy backgrounds [J. Opt. Soc. Am. A16, 694 (1999) and J. Opt. Soc. Am. A18, 473 (2001)]. We conducted a psychophysical study with a number of changes, specifically in display-device calibration and data scaling, from the design of the aforementioned study. Human efficiency relative to the ideal observer was found again to be approximately 5%. Our variance analysis indicates that neither scaling nor display made a statistically significant difference in human performance for the task. We conclude that the non-Gaussian distributed lumpy background is a major factor in our low human-efficiency results.
Scale-free avalanches in the multifractal random walk
NASA Astrophysics Data System (ADS)
Bartolozzi, M.
2007-06-01
Avalanches, or Avalanche-like, events are often observed in the dynamical behaviour of many complex systems which span from solar flaring to the Earth's crust dynamics and from traffic flows to financial markets. Self-organized criticality (SOC) is one of the most popular theories able to explain this intermittent charge/discharge behaviour. Despite a large amount of theoretical work, empirical tests for SOC are still in their infancy. In the present paper we address the common problem of revealing SOC from a simple time series without having much information about the underlying system. As a working example we use a modified version of the multifractal random walk originally proposed as a model for the stock market dynamics. The study reveals, despite the lack of the typical ingredients of SOC, an avalanche-like dynamics similar to that of many physical systems. While, on one hand, the results confirm the relevance of cascade models in representing turbulent-like phenomena, on the other, they also raise the question about the current state of reliability of SOC inference from time series analysis.
Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd 2Os 2O 7
Calder, Stuart A; Vale, James G.; Bogdanov, Nikolay; ...
2016-06-07
Here, much consideration has been given to the role of spin-orbit coupling (SOC) in 5d oxides, particularly on the formation of novel electronic states and manifested metal-insulator transitions (MITs). SOC plays a dominant role in 5d 5 iridates (Ir 4+), undergoing MITs both concurrent (pyrochlores) and separated (perovskites) from the onset of magnetic order. However, the role of SOC for other 5d configurations is less clear. For example, 5d 3 (Os 5+) systems are expected to have an orbital singlet with reduced effective SOC. The pyrochlore Cd 2Os 2O 7 nonetheless exhibits a MIT entwined with magnetic order phenomenologically similarmore » to pyrochlore iridates. Here, we resolve the magnetic structure in Cd 2Os 2O 7 with neutron diffraction and then via resonant inelastic X-ray scattering determine the salient electronic and magnetic energy scales controlling the MIT. In particular, SOC plays a subtle role in creating the electronic ground state but drives the magnetic order and emergence of a multiple spin-flip magnetic excitation.« less
Barber, Larry B.; Thurman, E. Michael; Runnells, Donald D.
1992-01-01
The effect of particle size, mineralogy and sediment organic carbon (SOC) on sorption of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5–25% of the bulk sediment. Although SOC content of the bulk sediment is <0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.
Zhao, Yongcun; Wang, Meiyan; Hu, Shuijin; Zhang, Xudong; Ouyang, Zhu; Zhang, Ganlin; Huang, Biao; Zhao, Shiwei; Wu, Jinshui; Xie, Deti; Zhu, Bo; Yu, Dongsheng; Pan, Xianzhang; Xu, Shengxiang; Shi, Xuezheng
2018-04-17
China's croplands have experienced drastic changes in management practices, such as fertilization, tillage, and residue treatments, since the 1980s. There is an ongoing debate about the impact of these changes on soil organic carbon (SOC) and its implications. Here we report results from an extensive study that provided direct evidence of cropland SOC sequestration in China. Based on the soil sampling locations recorded by the Second National Soil Survey of China in 1980, we collected 4,060 soil samples in 2011 from 58 counties that represent the typical cropping systems across China. Our results showed that across the country, the average SOC stock in the topsoil (0-20 cm) increased from 28.6 Mg C ha -1 in 1980 to 32.9 Mg C ha -1 in 2011, representing a net increase of 140 kg C ha -1 year -1 However, the SOC change differed among the major agricultural regions: SOC increased in all major agronomic regions except in Northeast China. The SOC sequestration was largely attributed to increased organic inputs driven by economics and policy: while higher root biomass resulting from enhanced crop productivity by chemical fertilizers predominated before 2000, higher residue inputs following the large-scale implementation of crop straw/stover return policy took over thereafter. The SOC change was negatively related to N inputs in East China, suggesting that the excessive N inputs, plus the shallowness of plow layers, may constrain the future C sequestration in Chinese croplands. Our results indicate that cropland SOC sequestration can be achieved through effectively manipulating economic and policy incentives to farmers.
Soils as sediment: does aggregation skew slope scale SOC balances?
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Fister, Wolfgang; Kuhn, Nikolaus
2014-05-01
The net effect of soil erosion as a source or sink of CO2 in global carbon cycling has been the subject of a heated debate. On one hand, erosion exposes the previously encapsulated soil organic carbon (SOC), which may accelerate the mineralization of eroded SOC. On the other hand, deposition limits the decomposition of SOC upon burial, while incorporation of biomass at eroding sites replaces the lost SOC. So far, effects of erosion on CO2 emissions have largely been assessed by comparing SOC stocks at eroding and depositional sites. The underlying assumption for this approach is a non-selective transport of eroded SOC across a landscape. However, several recent publications showed both an at least temporary on-site enrichment of SOC in sediment as well as a preferential deposition of sediment particles with SOC concentrations that differed from the soil SOC. As a consequence, balances between eroding and depositional sites may over- or underestimate mineralization of eroded SOC during transport. Two Luvisols, from the villages of Möhlin and Movelier in northwest Switzerland, were used in this study. They have different mineral grain size distribution, organic carbon concentration and aggregate stability. Based on the concept of Equivalent Quartz Size (EQS), the eroded sediments were fractionated by a settling tube apparatus into six different size classes, according to their settling velocities and likely transport distances. According to the model developed by Starr et al., 2000, the likely transport distances of six EQS classes were grouped into three likely fates: deposited across landscapes, possibly transferred into rivers, and likely transferred into rivers. Respiration rates of the fractionated sediments were measured by gas chromatograph for 50 days. Our results show that 1) due to aggregation, 60% of the Möhlin eroded fractions and 82% of the Movelier fractions would be re-deposited in the terrestrial system, which strongly contrasts with their grain size distribution; 2) 63% of eroded SOC for the Möhlin soil and 83% for the Movelier soil would be re-deposited in the terrestrial system rather than transferred into the aquatic system. This is much greater than the high concentration of SOC in grain size fraction <32 µm would suggest; 3) the SOC re-deposited in the terrestrial system is more likely to be mineralized than the SOC in fine particles which would be transferred into the aquatic system. Our observations indicate that 1) aggregation reduces the likely transport distances of eroded SOC, and thus decreases the likelihood of eroded SOC to be transferred from eroding hill-slopes to the aquatic system; 2) the re-deposited SOC in the terrestrial system is more likely to be mineralized than the SOC in fine particles that could be transferred into the aquatic system. These findings highlight a potentially higher contribution of erosion to atmospheric CO2 than anticipated by estimating source for sink transfer without considering the effects of aggregation.
Modeling soil organic carbon stocks and changes in Spain using the GEFSOC system
NASA Astrophysics Data System (ADS)
Álvaro-Fuentes, Jorge; Easter, Mark; Cantero-Martínez, Carlos; Paustian, Keith
2010-05-01
Currently, there is little information about soil organic carbon (SOC) stocks in Spain. To date the effects of land-use and soil management on SOC stocks in Spain have been evaluated in experimental fields under certain soil and climate conditions. However, these field experiments do not account for the spatial variability in management, cropping systems and soil and climate characteristics that exist in the whole territory. More realistic approaches like ecosystem-level dynamic simulation systems linked to geographic information systems (GIS) allow better assessments of SOC stocks at a regional or national level. The Global Environmental Facility Soil Organic Carbon (GEFSOC) system was recently built for this purpose (Milne et al., 2007) and it incorporates three widely used models for estimating SOC dynamics: (a) the Century ecosystem model; (b) the RothC soil C decomposition model; and (c) the Intergovernmental Panel on Climate Change (IPCC) method for assessing soil C at regional scales. We modeled 9.5 Mha in northeast Spain using the GEFSOC system to predict SOC stocks and changes comprising: pasture, forest, cereal-fallow, cereal monoculture, orchards, rice, irrigated land and grapes and olives. The spatial distribution of the different land use categories and their change over time was obtained from the European Corine database and from Spanish census data on land use from 1926 to 2007. At the same time, current and historical management information was collected from different sources in order to have a fairly well picture of changes in land use and management for this area. Soil parameters needed by the system were obtained from the European soil map (1 km x 1 km) and climate data was produced by the Meteorology State Agency (Ministry of the Environment and Rural and Marine Environs of Spain). The SOC stocks simulated were validated with SOC values from the European SOC map and from other national studies. Modeled SOC results suggested that spatial-based approaches are crucial for quantify SOC stocks and changes in Spain.
Effects of shrub encroachment on soil organic carbon in global grasslands.
Li, He; Shen, Haihua; Chen, Leiyi; Liu, Taoyu; Hu, Huifeng; Zhao, Xia; Zhou, Luhong; Zhang, Pujin; Fang, Jingyun
2016-07-08
This study aimed to evaluate the effect of shrub encroachment on soil organic carbon (SOC) content at broad scales and its controls. We conducted a meta-analysis using paired control data of shrub-encroached grassland (SEG) vs. non-SEG collected from 142 studies worldwide. SOC contents (0-50 cm) were altered by shrub encroachment, with changes ranging from -50% to + 300%, with an effect size of 0.15 (p < 0.01). The SOC contents increased in semi-arid and humid regions, and showed a greater rate of increase in grassland encroached by leguminous shrubs than by non-legumes. The SOC content decreased in silty and clay soils but increased in sand, sandy loam and sandy clay loam. The SOC content increment was significantly positively correlated with precipitation and temperature as well as with soil bulk density but significantly negatively correlated with soil total nitrogen. We conclude the main effects of shrub encroachment would be to increase topsoil organic carbon content. As structural equation model revealed, soils properties seem to be the primary factors responsible for the extent of the changes, coarse textured soils having a greater capacity than fine textured soils to increase the SOC content. This increased effect appears to be secondarily enhanced by climate and plant elements.
Liang, Feng; Li, Jianwei; Yang, Xueyun; Huang, Shaomin; Cai, Zejiang; Gao, Hongjun; Ma, Junyong; Cui, Xian; Xu, Minggang
2016-01-01
Fertilizations affect soil organic carbon (SOC) content but the relative influences of the edaphic and climate factors on SOC storage are rarely studied across wide spatiotemporal scales. This study synthesized long-term datasets of fertilization experiments in six typical Chinese croplands, and calculated annual C input from crops and manure amendments, changes in SOC storage (ΔSOC) and C sequestration efficiency (i.e. the percentage of soil C change per unit of C input, hereafter referred as CSE) in 0–20 cm soil over three decades. Three fertilization treatments include no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed significant fertilization effects on C input and ΔSOC (NPKM>NPK>CK), and significantly higher CSE in Qiyang at Hunan than Zhengzhou at Henan and Heihe at Heilongjiang. The variance partitioning analysis (VPA) showed more variance of CSE can be explained by edaphic factors (up to 39.7%) than other factors. Furthermore, soil available N content and pH were identified as the major soil properties explaining CSE variance. This study demonstrated key controls of soil fertility factors on SOC sequestration and informs the need to develop strategic soil management plan to promote soil carbon sequestration under long-term intensive fertilization. PMID:27492771
NASA Astrophysics Data System (ADS)
Liang, Feng; Li, Jianwei; Yang, Xueyun; Huang, Shaomin; Cai, Zejiang; Gao, Hongjun; Ma, Junyong; Cui, Xian; Xu, Minggang
2016-08-01
Fertilizations affect soil organic carbon (SOC) content but the relative influences of the edaphic and climate factors on SOC storage are rarely studied across wide spatiotemporal scales. This study synthesized long-term datasets of fertilization experiments in six typical Chinese croplands, and calculated annual C input from crops and manure amendments, changes in SOC storage (ΔSOC) and C sequestration efficiency (i.e. the percentage of soil C change per unit of C input, hereafter referred as CSE) in 0-20 cm soil over three decades. Three fertilization treatments include no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed significant fertilization effects on C input and ΔSOC (NPKM>NPK>CK), and significantly higher CSE in Qiyang at Hunan than Zhengzhou at Henan and Heihe at Heilongjiang. The variance partitioning analysis (VPA) showed more variance of CSE can be explained by edaphic factors (up to 39.7%) than other factors. Furthermore, soil available N content and pH were identified as the major soil properties explaining CSE variance. This study demonstrated key controls of soil fertility factors on SOC sequestration and informs the need to develop strategic soil management plan to promote soil carbon sequestration under long-term intensive fertilization.
Liang, Feng; Li, Jianwei; Yang, Xueyun; Huang, Shaomin; Cai, Zejiang; Gao, Hongjun; Ma, Junyong; Cui, Xian; Xu, Minggang
2016-08-05
Fertilizations affect soil organic carbon (SOC) content but the relative influences of the edaphic and climate factors on SOC storage are rarely studied across wide spatiotemporal scales. This study synthesized long-term datasets of fertilization experiments in six typical Chinese croplands, and calculated annual C input from crops and manure amendments, changes in SOC storage (ΔSOC) and C sequestration efficiency (i.e. the percentage of soil C change per unit of C input, hereafter referred as CSE) in 0-20 cm soil over three decades. Three fertilization treatments include no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed significant fertilization effects on C input and ΔSOC (NPKM>NPK>CK), and significantly higher CSE in Qiyang at Hunan than Zhengzhou at Henan and Heihe at Heilongjiang. The variance partitioning analysis (VPA) showed more variance of CSE can be explained by edaphic factors (up to 39.7%) than other factors. Furthermore, soil available N content and pH were identified as the major soil properties explaining CSE variance. This study demonstrated key controls of soil fertility factors on SOC sequestration and informs the need to develop strategic soil management plan to promote soil carbon sequestration under long-term intensive fertilization.
System on a Chip (SoC) Overview
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2010-01-01
System-on-a-chip or system on chip (SoC or SOC) refers to integrating all components of a computer or other electronic system into a single integrated circuit (chip). It may contain digital, analog, mixed-signal, and often radio-frequency functions all on a single chip substrate. Complexity drives it all: Radiation tolerance and testability are challenges for fault isolation, propagation, and validation. Bigger single silicon die than flown before and technology is scaling below 90nm (new qual methods). Packages have changed and are bigger and more difficult to inspect, test, and understand. Add in embedded passives. Material interfaces are more complex (underfills, processing). New rules for board layouts. Mechanical and thermal designs, etc.
Mineralogical control of soil organic carbon persistence at the multidecadal time scale
NASA Astrophysics Data System (ADS)
Lutfalla, Suzanne; Barré, Pierre; Bernard, Sylvain; Le Guillou, Corentin; Chenu, Claire
2015-04-01
One of the current challenges in understanding the long term persistence of organic carbon in soils is to assess how mineral surfaces, especially at small scale, can stabilize soil organic carbon (SOC). The question we address in this work is whether different mineral species stabilize different types of SOC. Here we used the unique opportunity offered by long term bare fallows to study in situ C dynamics in several fine fractions of a silty loam soil. Indeed, with no vegetation i.e. no external input of fresh C, the plant-free soil of the Versailles 42 Plots (INRA, France) has been progressively enriched in persistent SOC during the 80 years of bare fallow. To separate mineral phases of the clay size fraction we performed a size fractionation on samples taken from 4 different plots at 5 different dates (0, 10, 22, 52, and 79 years after the beginning of the BF) and analyzed the SOC in the different fractions thus obtained. First, the clay fraction (< 2 µm) was isolated by wet sieving and centrifugation in water. Then, the clay fraction was further separated into 3 size fractions by centrifugation: fine clay (< 0.05 µm), intermediate clay (0.05 - 0.2 µm), and coarse clay (0.2 - 2 µm). X-ray diffraction was used to determine the mineralogy of the phases and we found that the coarse clay fraction on the one hand and fine and intermediate clay fractions on the other hand exhibited contrasted mineralogies. Fine and intermediate clay fractions contained almost exclusively smectite and mixed-layered illite/smectite minerals whereas coarse clays contained also discrete illite and kaolinite on top of smectite and illite/smectite. We carried out CHN elemental analysis to study the C and nitrogen dynamics with time in the different fractions. And synchrotron based spectroscopy and microscopy (NEXAFS bulk and STXM at the carbon K edge of 280 eV, CLS Saskatoon, Canada) was used to get information on the distribution and the chemical speciation of the SOC in fractions with contrasted mineralogies. Data analysis is still ongoing and full results will be presented at EGU. First results show that the dynamics and quality of the SOC differ in the different clay fractions. SOC decay was greater in coarse clays compared to intermediate clays, SOC in the coarse clay fraction displaying more diversity than in the other fractions. SOC persistence at the multidecadal timescale also seems to be mineral dependent: smectite being more efficient at protecting carbon compared to illite.
Land use changing SOC pool: A field investigation from four catchments on the Loess Plateau in China
NASA Astrophysics Data System (ADS)
Guo, Shengli; Wang, Rui; Hu, Yaxian
2017-04-01
The Loess Plateau in China has long been known for severe erosion, a degraded ecosystem and heavy sediment delivery to the Yellow River. Apart from, the highly erodible loess soil and the hilly geomorphology, intensive cultivation has been caused such most destructive human activities. This made the Loess Plateau once the least fertile region in China with extreme poverty. To restore soil fertility and ecosystem sustainability, a national-level project was launched in 1990s to encourage land use changes via afforestation or conversion of cropland back to grassland or woodland. After nearly three decades of land use conversion, the SOC pool in the soil can be expected to have substantially changed. However, climate conditions, geomorphic types and soil properties were spatially distinctive across the Loess Plateau. Their individual as well interactive impacts on changes of soil carbon pool during land use conversions must thus be properly accounted for. In this study, four watersheds distributed over the Loess Plateau were investigated. The four watersheds mainly consisted of three geomorphic types: wide gully, loess ridge, and round knoll. On each geomorphic feature, three land use types prevailed: cropland, grassland and woodland. In total, 695 soil samples were taken from the top 20 cm of the four watersheds during 2010 and 2011. Our results show: 1) Degrees of erosion hugely differed among the four watersheds, with Catchment A (hilly) having three times more erosion modulus than the least eroded Catchment D (gully) (12000 vs. 1800 Mg per km2 per year). 2) The increasing SOC content from 4 mg g-1 at Catchment A to 8.1 mg g-1 at Catchment D agreed well with their decreasing erosion, suggesting that geomorphology induced erosion history was the predominant factor to set the general level of watershed-scale SOC reservoir. 3) Within each watershed, grassland and woodland consistently had at least 34% more SOC than cropland, demonstrating the influence of land use changes on local SOC pool. Overall, our field investigation suggests that on watershed scale, geomorphic types and the associated erosion are the decisive factor regulating the local SOC reservoir. Within each watershed, land use conversions from cropland to grassland and woodland had significantly improved SOC pool.
Land Use Changing SOC pool: A Field Investigation from Six Catchments on the Loess Plateau in China
NASA Astrophysics Data System (ADS)
Guo, S.; Wang, R.; Hu, Y.
2016-12-01
The Loess Plateau in China has long been known for severe erosion, degraded ecosystem and heavy sediment delivery to the Yellow River. Besides the highly erodible loess soil and the hilly geomorphology nature, intensive cultivation has been accused as one of the most destructive anthropogenic activities undermining erosion situation on the Loess Plateau. This made the Loess Plateau once the least fertile region in China with extreme poverty. To preserve soil fertility and ecosystem sustainability, a magnificent national-level project was launched in 1990s to encourage land use changes via afforestation or conversion cropland back to grassland or woodland. After nearly three decades, SOC pool must have been substantially changed following land use conversions. However, climate conditions, geomorphic types and soil properties were spatially distinctive across the Loess Plateau. Their individual as well interactive impacts on changes of soil carbon pool during land use conversions must be properly accounted for. In this study, six watersheds well distributed on the Loess Plateau were investigated. The six watersheds mainly represented three geomorphic types (wide gully, loess ridge, and round knoll), each with three land use types (cropland, grassland and woodland). In total, 695 soil samples were taken from the top 20 cm of the six watersheds during 2010 and 2011. Our results show: 1) Degrees of erosion hugely differed among the six watersheds, with Huangfuchuan having three times more erosion modulus than the least eroded Gaoquangou (21000 vs. 6120 t km-2 per year). 2) The increasing SOC content from 4 mg g-1 at Huangfuchuan to 8.1 mg g-1 at Gaoquangou agreed well with their decreasing erosion modulus, suggesting that geomorphology induced erosion history was the predominant factor to set the general level of watershed-scale SOC reservoir. 3) Within each watershed, grassland and woodland consistently had at least 34% more SOC than cropland, demonstrating the influence of land use changes on local SOC pool. Overall, our field investigation suggests that in watershed scale, geomorphic types and the thus induced erosion degrees are the decisive factor to regulate local SOC reservoir. Within each watershed, land use conversions from cropland to grassland and woodland had significantly improved SOC pool.
NASA Astrophysics Data System (ADS)
Ahmed, I.; Karim, A.; Boutton, T. W.; Strom, K.; Fox, J.
2013-12-01
The thematic focus of this 3-year period multidisciplinary USDA-CBG collaborative applied research is integrated monitoring of soil organic carbon (SOC) loss from multi-use lands using state-of-the-art stable isotope science under uncertain hydrologic influences. In this study, SOC loss and water runoff are being monitored on a 150 square kilometer watershed in Houston, Texas, using natural rainfall events, and total organic carbon/nitrogen concentration (TOC/TN) and stable isotope ratio (δ13C, δ15N) measurements with different land-use types. The work presents the interdisciplinary research results to uncover statistically valid and scientifically sound ways to monitor SOC loss by (i) application of Bayesian Markov Chain Monte Carlo statistical models to assess the relationship between rainfall-runoff and SOC release during soil erosion in space and time, (ii) capturing the episodic nature of rainfall events and its role in the spatial distribution of SOC loss from water erosion, (iii) stable isotope composition guided fingerprinting (source and quantity) of SOC by considering various types of erosion processes common in a heterogeneous watershed, to be able to tell what percentage of SOC is lost from various land-use types (Fox and Papanicolaou, 2008), (iv) creating an integrated watershed scale statistical soil loss monitoring model driven by spatial and temporal correlation of flow and stable isotope composition (Ahmed et. al., 2013a,b), and (v) creation of an integrated decision support system (DSS) for sustainable management of SOC under hydrologic uncertainty to assist the end users. References: Ahmed, I., Karim, A., Boutton, T.W., and Strom, K.B. (2013a). 'Monitoring Soil Organic Carbon Loss from Erosion Using Stable Isotopes.' Proc., Soil Carbon Sequestration, International Conference, May 26-29, Reykjavik, Iceland. Ahmed, I, Bouttom, T.W., Strom, K. B., Karim, A., and Irvin-Smith, N. (2013b). 'Soil carbon distribution and loss monitoring in the urbanized Buffalo Bayou watershed, Houston, Texas.' Proc., 4th Annual All Investigators Meeting of the North American Carbon Program, February 4-7, Albuquerque, NM. Fox, J.F. and Papanicolaou, A.N. (2008). An un-mixing model to study watershed erosion processes. Advances in Water Resources, 31, 96-108. ______________________________ * Corresponding author';s e-mail: ifahmed@pvamu.edu
NASA Astrophysics Data System (ADS)
Waweru, Geofrey; Okoba, Barrack; Cornelis, Wim
2016-04-01
The low food production in Sub-Saharan Africa (SSA) has been attributed to declining soil quality. This is due to soil degradation and fertility depletion resulting from unsustainable conventional farming practices such as continuous tillage, crop residue burning and mono cropping. To overcome these challenges, conservation agriculture (CA) is actively promoted. However, little has been done in evaluating the effect of each of the three principles of CA namely: minimum soil disturbance, maximum surface cover and diversified/crop rotation on soil quality in SSA. A study was conducted for three years from 2012 to 2015 in Laikipia East sub county in Kenya to evaluate the effect of tillage, surface cover and intercropping on a wide variety of physical, chemical and biological soil quality indicators, crop parameters and the field-water balance. This abstract reports on soil microbial biomass carbon (SMBC) and soil organic carbon (SOC). The experimental set up was a split plot design with tillage as main treatment (conventional till (CT), no-till (NT) and no-till with herbicide (NTH)), and intercropping and surface cover as sub treatment (intercropping maize with: beans, MB; beans and leucaena, MBL; beans and maize residues at 1.5 Mg ha-1 MBMu, and dolichos, MD). NT had significantly higher SMBC by 66 and 31% compared with CT and NTH respectively. SOC was significantly higher in NTH than CT and NT by 15 and 4%, respectively. Intercropping and mulching had significant effect on SMBC and SOC. MBMu resulted in higher SMBC by 31, 38 and 43%, and SOC by 9, 20 and 22% as compared with MBL, MD and MB, respectively. SMBC and SOC were significantly affected by the interaction between tillage, intercropping and soil cover with NTMBMu and NTHMBMu having the highest SMBC and SOC, respectively. We conclude that indeed tillage, intercropping and mulching substantially affect SMBC and SOC. On the individual components of CA, tillage and surface cover had the highest effect on SMBC and SOC, respectively, but the highest positive effect was realized when all the three principles were applied consecutively. Therefore, CA has the potential to improve biological soil quality among small scale rainfed farmers and thus promote sustainable production.
NASA Astrophysics Data System (ADS)
Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J. L.
2009-04-01
Soil organic carbon (SOC) spatial characterization is necessary to evaluate under what circumstances soil acts as a source or sink of carbon dioxide. However, at the field or catchment scale it is hard to accurately characterize its spatial distribution since large numbers of soil samples are necessary. As an alternative, near-surface geophysical sensor-based information can improve the spatial estimation of soil properties at these scales. Electromagnetic induction (EMI) sensors provide non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa), which depends under non-saline conditions on clay content, water content or SOC, among other properties that determine the electromagnetic behavior of the soil. This study deals with the possible use of ECa-derived maps to improve SOC spatial estimation by Simple Kriging with varying local means (SKlm). Field work was carried out in a vertisol in SW Spain. The field is part of a long-term tillage experiment set up in 1982 with three replicates of conventional tillage (CT) and Direct Drilling (DD) plots with unitary dimensions of 15x65m. Shallow and deep (up to 0.8m depth) apparent electrical conductivity (ECas and ECad, respectively) was measured using the EM38-DD EMI sensor. Soil samples were taken from the upper horizont and analyzed for their SOC content. Correlation coefficients of ECas and ECad with SOC were low (0.331 and 0.175) due to the small range of SOC values and possibly also to the different support of the ECa and SOC data. Especially the ECas values were higher in the DD plots. The normalized ECa difference (ΔECa), calculated as the difference between the normalized ECas and ECad values, distinguished clearly the CT and DD plots, with the DD plots showing positive ΔECa values and CT plots ΔECa negative values. The field was stratified using fuzzy k-means (FKM) classification of ΔECa (FKM1), and ECas and ECad (FKM2). The FKM1 map mainly showed the difference between CT and DD plots, while the FKM2 map showed both differences between CT and DD and topography-associated features. Using the FKM1 and FKM2 maps as secondary information accounted for 30% of the total SOC variability, whereas plot and management average SOC explained 44 and 41%, respectively. Cross validation of SKlm using FKM2 reduced the RMSE by 8% and increased the efficiency index almost 70% as compared to Ordinary Kriging. This work shows how ECa can improve the spatial characterization of SOC, despite its low correlation and the small size of the plots used in this study.
The sensitivity of hearing-impaired adults to acoustic attributes in simulated rooms
Whitmer, William M.; McShefferty, David; Akeroyd, Michael A.
2016-01-01
In previous studies we have shown that older hearing-impaired individuals are relatively insensitive to changes in the apparent width of broadband noises when those width changes were based on differences in interaural coherence [W. Whitmer, B. Seeber and M. Akeroyd, J. Acoust. Soc. Am. 132, 369-379 (2012)]. This insensitivity has been linked to senescent difficulties in resolving binaural fine-structure differences. It is therefore possible that interaural coherence, despite its widespread use, may not be the best acoustic surrogate of spatial perception for the aged and impaired. To test this, we simulated the room impulse responses for various acoustic scenarios with differing coherence and lateral (energy) fraction attributes using room modelling software (ODEON). Bilaterally impaired adult participants were asked to sketch the perceived size of speech tokens and musical excerpts that were convolved with these impulse responses and presented to them in a sound-dampened enclosure through a 24-loudspeaker array. Participants’ binaural acuity was also measured using an interaural phase discrimination task. Corroborating our previous findings, the results showed less sensitivity to interaural coherence in the auditory source width judgments of older hearing-impaired individuals, indicating that alternate acoustic measurements in the design of spaces for the elderly may be necessary. PMID:27213028
The sensitivity of hearing-impaired adults to acoustic attributes in simulated rooms.
Whitmer, William M; McShefferty, David; Akeroyd, Michael A
2013-06-02
In previous studies we have shown that older hearing-impaired individuals are relatively insensitive to changes in the apparent width of broadband noises when those width changes were based on differences in interaural coherence [W. Whitmer, B. Seeber and M. Akeroyd, J. Acoust. Soc. Am. 132, 369-379 (2012)]. This insensitivity has been linked to senescent difficulties in resolving binaural fine-structure differences. It is therefore possible that interaural coherence, despite its widespread use, may not be the best acoustic surrogate of spatial perception for the aged and impaired. To test this, we simulated the room impulse responses for various acoustic scenarios with differing coherence and lateral (energy) fraction attributes using room modelling software (ODEON). Bilaterally impaired adult participants were asked to sketch the perceived size of speech tokens and musical excerpts that were convolved with these impulse responses and presented to them in a sound-dampened enclosure through a 24-loudspeaker array. Participants' binaural acuity was also measured using an interaural phase discrimination task. Corroborating our previous findings, the results showed less sensitivity to interaural coherence in the auditory source width judgments of older hearing-impaired individuals, indicating that alternate acoustic measurements in the design of spaces for the elderly may be necessary.
NASA Astrophysics Data System (ADS)
Chartin, Caroline; Stevens, Antoine; Kruger, Inken; Esther, Goidts; Carnol, Monique; van Wesemael, Bas
2016-04-01
As many other countries, Belgium complies with Annex I of the United Nations Framework Convention on Climate Change (UNFCCC). Belgium thus reports its annual greenhouse gas emissions in its national inventory report (NIR), with a distinction between emissions/sequestration in cropland and grassland (EU decision 529/2013). The CO2 fluxes are then based on changes in SOC stocks computed for each of these two types of landuse. These stocks are specified for each of the agricultural regions which correspond to areas with similar agricultural practices (rotations and/or livestock) and yield potentials. For Southern Belgium (Wallonia) consisting of ten agricultural regions, the Soil Monitoring Network (SMN) 'CARBOSOL' has been developed this last decade to survey the state of agricultural soils by quantifying SOC stocks and their evolution in a reasonable number of locations complying with the time and funds allocated. Unfortunately, the 592 points of the CARBOSOL network do not allow a representative and a sound estimation of SOC stocks and its uncertainties for the 20 possible combinations of land use/agricultural regions. Moreover, the SMN CARBIOSOL is based on a legacy database following a convenience scheme sampling strategy rather than a statistical scheme defined by design-based or model-based strategies. Here, we aim to both quantify SOC budgets (i.e., How much?) and spatialize SOC stocks (i.e., Where?) at regional scale (Southern Belgium) based on data from the SMN described above. To this end, we developed a computation procedure based on Digital Soil Mapping techniques and stochastic simulations (Monte-Carlo) allowing the estimation of multiple (10,000) independent spatialized datasets. This procedure accounts for the uncertainties associated to estimations of both i) SOC stock at the pixelscale and ii) parameters of the models. Based on these 10,000 individual realizations of the spatial model, mean SOC stocks and confidence intervals can be then computed at the pixel scale, for selected sub-areas (i.e., the 20 landuse/agricultural region combinations) and for the entire study area.
NASA Astrophysics Data System (ADS)
Hashimoto, Shoji; Nanko, Kazuki; Ťupek, Boris; Lehtonen, Aleksi
2017-03-01
Future climate change will dramatically change the carbon balance in the soil, and this change will affect the terrestrial carbon stock and the climate itself. Earth system models (ESMs) are used to understand the current climate and to project future climate conditions, but the soil organic carbon (SOC) stock simulated by ESMs and those of observational databases are not well correlated when the two are compared at fine grid scales. However, the specific key processes and factors, as well as the relationships among these factors that govern the SOC stock, remain unclear; the inclusion of such missing information would improve the agreement between modeled and observational data. In this study, we sought to identify the influential factors that govern global SOC distribution in observational databases, as well as those simulated by ESMs. We used a data-mining (machine-learning) (boosted regression trees - BRT) scheme to identify the factors affecting the SOC stock. We applied BRT scheme to three observational databases and 15 ESM outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and examined the effects of 13 variables/factors categorized into five groups (climate, soil property, topography, vegetation, and land-use history). Globally, the contributions of mean annual temperature, clay content, carbon-to-nitrogen (CN) ratio, wetland ratio, and land cover were high in observational databases, whereas the contributions of the mean annual temperature, land cover, and net primary productivity (NPP) were predominant in the SOC distribution in ESMs. A comparison of the influential factors at a global scale revealed that the most distinct differences between the SOCs from the observational databases and ESMs were the low clay content and CN ratio contributions, and the high NPP contribution in the ESMs. The results of this study will aid in identifying the causes of the current mismatches between observational SOC databases and ESM outputs and improve the modeling of terrestrial carbon dynamics in ESMs. This study also reveals how a data-mining algorithm can be used to assess model outputs.
Coherent manipulation of mononuclear lanthanide-based single-molecule magnets
NASA Astrophysics Data System (ADS)
Datta, Saiti; Ghosh, Sanhita; Krzystek, Jurek; Hill, Stephen; Del Barco, Enrique; Cardona-Serra, Salvador; Coronado, Eugenio
2010-03-01
Using electron spin echo (ESE) spectroscopy, we report measurements of the longitudinal (T1) and transverse (T2) relaxation times of diluted single-crystals containing recently discovered mononuclear lanthanide-based single-molecule magnets (SMMs) encapsulated in polyoxometallate cages [AlDamen et al. J. Am. Chem. Soc. 130, 8874 -- 8875 (2008)]. This encapsulation offers the potential for preserving bulk SMM properties outside of a crystal, e.g. in molecular spintronic devices. The magnetic anisotropy in these complexes arises from the spin-orbit splitting of the ground state J multiplet of the lanthanide ion in the presence of a ligand field. At low frequencies only hyperfine-split transitions within the lowest ground state ±mJ doublet are observed. Spin relaxation times were measured for a holmium complex, and the results were compared for different hyperfine transitions and crystal dilutions. Clear Rabi oscillations were also observed, indicating that one can manipulate the spin coherently in these complexes.
NASA Astrophysics Data System (ADS)
Gavilan, C.; Grunwald, S.; Quiroz, R.
2017-12-01
The Andes represent the largest and highest mountain range in the tropics and is considered an important reserve of biodiversity, water provision and soil organic carbon (SOC) stocks. Nevertheless, limited attention has been given to estimate these stocks due to the lack of recent soil data, the poor accessibility and the wide range of coexistent ecosystems. In addition, conventional methods to determine SOC are usually time consuming and expensive to use in large-scale studies, hindering the possibility to have an accurate SOC assessment in the region. Proximal soil sensing techniques, such as visible near infrared (VNIR) and mid infrared (MIR) spectroscopy, have proven to be useful as an alternative to conventional methods for characterizing SOC but have not been tested in Andean soils. The aim of this study was to evaluate the potential of using VNIR and MIR spectroscopy to predict SOC content in the Central Andean region, using multivariate methods. Three study areas were selected across the Peruvian Central Andes. A total of 400 topsoil samples (0-30 cm) were collected and analyzed for SOC. The VNIR and MIR reflectance of the soil samples was measured in the laboratory. Three modeling approaches: Partial least squares regression (PLSR), random forest (RF) and support vector machine (SVM) were used to predict SOC from VNIR and MIR spectra in the study areas. The data was preprocessed in order to minimize the noise and optimize the accuracy of predictions. The models, for each study area, were assessed using 10-fold cross validation. Independent validation was implemented in the whole dataset (400 observations) by splitting it into calibration (70 %) and validation (30%) sets. Overall, the results indicate potential for both VNIR and MIR spectra to predict SOC content in the Andean soils. SOC content predictions from MIR spectra outperformed those from VNIR spectra. The evaluation of model performance shows that RF and SVM provide more accurate SOC predictions compared to PLSR. These findings suggest that integrating VNIR and MIR spectroscopy with machine learning algorithms constitutes a promising approach for assessing SOC content in high-Andean ecosystems.
Observing System Simulation Experiment (OSSE) for a future Doppler Wind Lidar satellite in Japan:
NASA Astrophysics Data System (ADS)
Baron, Philippe; Ishii, Shoken; Okamoto, Kozo
2017-04-01
A feasibility study of tropospheric wind measurements by a coherent Doppler lidar aboard a super-low-altitude satellite is being conducted in Japan. We consider a coherent lidar with a laser light source at 2.05 μm whose characteristics correspond to an existing ground-based instrument (power=3.75 W, PRF=30 Hz and pulse width=200 ns). An Observing System Simulation Experiment (OSSE) has been implemented based on the Sensitivity Observing System experiment (SOSE) developed at the Japanese Meteorological-Research-Institute using the Japan Meteorological Agency global Numerical Weather Prediction model. The measurement simulator uses wind, aerosol and cloud 3-d global fields from the OSSE speudo-truth and the aerosol model MASINGAR. In this presentation, we will first discuss the measurement performances. Considering measurement horizontal resolutions of 100 km along the orbit track, we found that below 3 km, the median horizontal wind error is between 0.8-1 m/s for a vertical resolution of 0.5 km, and that near 50% of the data are valid measurements. Decreasing the vertical resolution to 1 km allows us to maintain similar performances up to 8 km almost over most latitudes. Above, the performances significantly fall down but a relatively good percentage of valid measurements (20-40%) are still found near the tropics where cirrus clouds frequently occur. The potential of the instrument to improve weather prediction models will be discussed using the OSSE results obtained for both polar and low inclination orbit satellites. The first results show positive improvements of short-term forecasts (<48 hours), in particular, on the wind speed at 850 hPa and 250 hPa. S. Ishii, K. Okamoto, P. Baron, T. Kubota, Y. Satoh, D. Sakaizawa, T. Ishibashi, T. Y. Tanaka, K. Yamashita, S. Ochiai, K. Gamo, M. Yasui, R. Oki, M. Satoh, and T. Iwasaki, "Measurement performance assessment of future space-borne Doppler wind lidar", SOLA, vol. 12, pp. 55-59, 2016. S. Ishii et al., "Feasibility study for future space-borne coherent Doppler wind lidar, Part 1: Instrumental Overview for Global Wind Profile Observation", submitted to J. Meteor. Soc. Japan, 2016 P. Baron et al., "Feasibility study for future space-borne coherent Doppler wind lidar, Part 2: Measurement simulation algorithms and retrieval error characterization", submitted to J. Meteor. Soc. Japan, 2016.
Prolonged displacement may compromise resilience in Eritrean mothers.
Almedom, Astier; Tesfamichael, Berhe; Mohammed, Zein; Mascie-Taylor, Nick; Muller, Jocelyn; Alemu, Zemui
2005-12-01
to assess the impact of prolonged displacement on the resilience of Eritrean mothers. an adapted SOC scale (short form) was administered. Complementary qualitative data were gathered from study participants' spontaneous reactions to and commentaries on the SOC scale. Displaced women's SOC scores were significantly less than those of the non-displaced: Mean = 54.84; SD = 6.48 in internally displaced person (IDP) camps, compared to non-displaced urban and rural/pastoralist: Mean = 48. 94, SD = 11.99; t = 3.831, p < .001. Post hoc tests revealed that the main difference is between IDP camp dwellers and urban (non-displaced). Rural but traditionally mobile (pastoralist or transhumant) communities scored more or less the same as the urban non-displaced--i.e., significantly higher than those in IDP camps (p < 0.05). Analysis of variance confirmed that gender is critical: displacement has significantly negative effects on women compared to men: RR = .262, p < .001. SOC scores of urban and pastoralist/transhumant groups were similar, while women in IDP camps were lower scoring--RR = .268, p < .001. The implications of these findings for health policy are critical. It is incumbent on the international health institutions including the World Health Organization and regional as well as local players to address the plight of internally displaced women, their families and communities in Eritrea and other places of dire conditions such as, for example Darfur in the Sudan.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Boutton, T. W.; Wu, X. B.
2016-12-01
Recent global trends of increasing woody plant abundance in grass-dominated ecosystems may substantially enhance soil organic carbon (SOC) storage and could represent an important carbon (C) sink in the terrestrial environment. However, most studies assessing SOC response to woody encroachment only consider surface soils, and have not explicitly assessed the extent to which deeper portions of the profile may be affected by this phenomenon. Consequently, little is known about the direction, magnitude, and spatial heterogeneity of SOC throughout the soil profile following woody encroachment. These factors were quantified via spatially-specific intensive soil sampling to a depth 1.2 m across a subtropical savanna landscape that has undergone woody proliferation during the past century in southern Texas, USA. Increased SOC sequestration following woody encroachment was observed throughout the profile, albeit at reduced magnitudes at deeper depths. Overall, soils beneath small woody clusters and larger groves accumulated 12.87 and 18.67 Mg C ha-1 more SOC, respectively, to a depth of 1. 2 m compared to grasslands. Recent woody encroachment during the past 100 y significantly altered the spatial pattern and amplified the spatial heterogeneity of SOC at the 0-5 cm depth, with marginal effects at 5-15 cm and no distinct impact on soils below 15 cm. Fine root density explained much of the variation in SOC in the upper 15 cm, while a combination of fine root density and soil clay content accounted for more of the variation in SOC in soils below 15 cm. These findings emphasize the existence of substantial SOC sequestration in deeper portions of the soil profile following woody encroachment. Given the geographical extent of woody encroachment on a global scale, this largely undocumented deep soil C sequestration suggests woody encroachment may play a more significant role in regional and global C sequestration than previously thought.
Wang, Guocheng; Li, Tingting; Zhang, Wen; Yu, Yongqiang
2014-01-01
Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km × 10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) - and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha-1 yr-1. With a moderate rate of manure application (i.e., 2000 kg ha-1 yr-1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha-1 yr-1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha-1 yr-1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha-1 during 2010s to the current worldwide average of ∼ 55 Mg ha-1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration.
Soil organic carbon dynamics following afforestation in the Loess Plateau of China
NASA Astrophysics Data System (ADS)
Lu, N.; Liski, J.; Chang, R. Y.; Akujärvi, A.; Wu, X.; Jin, T. T.; Wang, Y. F.; Fu, B. J.
2013-07-01
Soil organic carbon (SOC) is the largest terrestrial carbon pool and sensitive to land use and cover change; its dynamics is critical for carbon cycling in terrestrial ecosystems and the atmosphere. In this study, we combined a modeling approach and field measurements to examine the temporal dynamics of SOC following afforestation of former arable land at six sites under different climatic conditions in the Loess Plateau during 1980-2010. The results showed that the measured mean SOC increased to levels higher than before afforestation when taking the last measurements (i.e., at age 25 to 30 yr), although it decreased in the first few years at the wetter sites. The accumulation rates of SOC were 1.58 to 6.22% yr-1 in the upper 20 cm and 1.62 to 5.15% yr-1 in the upper 40 cm of soil. The simulations reproduced the basic characteristics of measured SOC dynamics, suggesting that litter input and climatic factors (temperature and precipitation) were the major causes for SOC dynamics and the differences among the sites. They explained 88-96, 48-86 and 57-74% of the variations in annual SOC changes at the soil depths of 0-20, 0-40, and 0-100 cm, respectively. Notably, the simulated SOC decreased during the first few years at all the sites, although the magnitudes of decreases were small at the drier sites. This suggested that the modeling may be advantageous in capturing SOC changes at finer time scale. The discrepancy between the simulation and measurement was a result of uncertainties in model structure, data input, and sampling design. Our findings indicated that afforestation promoted soil carbon sequestration at the study sites, which is favorable for further restoration of the vegetation and environment. Afforestation activities should decrease soil disturbances to reduce carbon release in the early stage. The long-term strategy for carbon fixation capability of the plantations should also consider the climate and site conditions, species adaptability, and successional stage of recovery.
Wang, Guocheng; Li, Tingting; Zhang, Wen; Yu, Yongqiang
2014-01-01
Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km×10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) – and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha−1 yr−1. With a moderate rate of manure application (i.e., 2000 kg ha−1 yr−1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha−1 yr−1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha−1 yr−1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha−1 during 2010s to the current worldwide average of ∼55 Mg ha−1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration. PMID:24722689
Spatial analysis of soil organic carbon in Zhifanggou catchment of the Loess Plateau.
Li, Mingming; Zhang, Xingchang; Zhen, Qing; Han, Fengpeng
2013-01-01
Soil organic carbon (SOC) reflects soil quality and plays a critical role in soil protection, food safety, and global climate changes. This study involved grid sampling at different depths (6 layers) between 0 and 100 cm in a catchment. A total of 1282 soil samples were collected from 215 plots over 8.27 km(2). A combination of conventional analytical methods and geostatistical methods were used to analyze the data for spatial variability and soil carbon content patterns. The mean SOC content in the 1282 samples from the study field was 3.08 g · kg(-1). The SOC content of each layer decreased with increasing soil depth by a power function relationship. The SOC content of each layer was moderately variable and followed a lognormal distribution. The semi-variograms of the SOC contents of the six different layers were fit with the following models: exponential, spherical, exponential, Gaussian, exponential, and exponential, respectively. A moderate spatial dependence was observed in the 0-10 and 10-20 cm layers, which resulted from stochastic and structural factors. The spatial distribution of SOC content in the four layers between 20 and 100 cm exhibit were mainly restricted by structural factors. Correlations within each layer were observed between 234 and 562 m. A classical Kriging interpolation was used to directly visualize the spatial distribution of SOC in the catchment. The variability in spatial distribution was related to topography, land use type, and human activity. Finally, the vertical distribution of SOC decreased. Our results suggest that the ordinary Kriging interpolation can directly reveal the spatial distribution of SOC and the sample distance about this study is sufficient for interpolation or plotting. More research is needed, however, to clarify the spatial variability on the bigger scale and better understand the factors controlling spatial variability of soil carbon in the Loess Plateau region.
Spike avalanches in vivo suggest a driven, slightly subcritical brain state
Priesemann, Viola; Wibral, Michael; Valderrama, Mario; Pröpper, Robert; Le Van Quyen, Michel; Geisel, Theo; Triesch, Jochen; Nikolić, Danko; Munk, Matthias H. J.
2014-01-01
In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy. PMID:25009473
Scale-by-scale energy budgets which account for the coherent motion
NASA Astrophysics Data System (ADS)
F, Thiesset; L, Danaila; A, Antonia R.; T, Zhou
2011-12-01
Scale-by-scale energy budget equations are written for flows where coherent structures may be prominent. Both general and locally isotropic formulations are provided. In particular, the contribution to the production, diffusion and energy transfer terms associated with the coherent motion is highlighted. Preliminary results are presented in the intermediate wake of a circular cylinder for phase-averaged second-and third-order structure functions. The experimental data provide adequate support for the scale-by-scale budgets.
Avraham, Sarit; Machtinger, Ronit; Cahan, Tal; Sokolov, Amit; Racowsky, Catherine; Seidman, Daniel S
2014-01-01
To evaluate adequacy and adherence to American Society for Reproductive Medicine (ASRM) guidelines of internet information provided by Society for Assisted Reproductive Technology (SART)-affiliated clinics regarding social oocyte cryopreservation (SOC). Systematic evaluation of websites of all SART member fertility clinics. The internet. None. All websites offering SOC services were scored using a 0-13 scale, based on 10 questions designed to assess website quality and adherence to the ASRM/SART guidelines. The websites were analyzed independently by two authors. Whenever disagreement occurred, a third investigator determined the score. Scores defined website quality as excellent, ≥9; moderate, 5-8; or poor, ≤4 points. Of the 387 clinics registered as SART members, 200 offered oocyte cryopreservation services for either medical or social reasons; 147 of these advertised SOC. The average website scores of those clinics offering SOC was 3.4 ± 2.1 (range, 2-11) points. There was no significant difference in scores between private versus academic clinics or clinics performing more or less than 500 cycles per year. The majority of the websites do not follow the SART/ASRM guidelines for SOC, indicating that there is a need to improve the type and quality of information provided on SOC by SART member websites. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
The Effects of Tree Species on Soil Organic Carbon Content and Distribution in South Korea.
NASA Astrophysics Data System (ADS)
Oh, N. H.; Cha, J. Y.; Cha, Y. K.
2016-12-01
Soil organic carbon (SOC) content of forests is controlled by the dynamic balance between photosynthesis and respiration. Changes of tree species can affect the SOC content both directly by alteration in quantity and quality of newly photosynthesized inputs, and indirectly by changes in soil conditions such as root distribution and soil microbial communities. Although many studies have been conducted on the effects of tree species on SOC, the results are mixed possibly due to the locality and the scales of the studies. This can be overcome by systematic analysis on extensively collected samples of forest floors and soils. We investigated the impacts of tree species, dominantly pines (Pinus) and oaks (Quercus), on SOC stock and distribution in South Korea by conducting ANOVA and GLM analyses using the Korean National Forest Inventory data collected from 640 plots during 2007-2010. The trees used in the data were relatively young with 67% of them being less than 40 years old because of a nation-wide reforestation program started in the 1970s. The results demonstrated a clear contrast between Pinus and Quercus, depending on soil horizons. Forest floor SOC under Pinus was 6.98 ton C/ha, significantly higher than 5.30 ton C/ha under Quercus. In contrast, SOC in mineral soils was 51.31 ton C/ha under Pinus, significantly lower than 64.76 ton C/ha under Quercus. The total SOC content including both forest floor and mineral soils was significantly higher under Quercus than Pinus, suggesting that Quercus has a potential to sequester more atmospheric CO2 in the forests in Korea.
Soil erosion, sedimentation and the carbon cycle
NASA Astrophysics Data System (ADS)
Cammeraat, L. H.; Kirkels, F.; Kuhn, N. J.
2012-04-01
Historically soil erosion focused on the effects of on-site soil quality loss and consequently reduced crop yields, and off-site effects related to deposition of material and water quality issues such as increased sediment loads of rivers. In agricultural landscapes geomorphological processes reallocate considerable amounts of soil and soil organic carbon (SOC). The destiny of SOC is of importance because it constitutes the largest C pool of the fast carbon cycle, and which cannot only be understood by looking at the vertical transfer of C from soil to atmosphere. Therefore studies have been carried out to quantify this possible influence of soil erosion and soil deposition and which was summarized by Quinton et al. (2010) by "We need to consider soils as mobile systems to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks". Currently a debate exists on the actual fate of SOC in relation to the global carbon cycle, represented in a controversy between researchers claiming that erosion is a sink, and those who claim the opposite. This controversy is still continuing as it is not easy to quantify and model the dominating sink and source processes at the landscape scale. Getting insight into the balance of the carbon budget requires a comprehensive research of all relevant processes at broad spatio-temporal scales, from catchment to regional scales and covering the present to the late Holocene. Emphasising the economic and societal benefits, the merits for scientific knowledge of the carbon cycle and the potential to sequester carbon and consequently offset increasing atmospheric CO2 concentrations, make the fate of SOC in agricultural landscapes a high-priority research area. Quinton, J.N., Govers, G., Van Oost, K., Bardgett, R.D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci, 3, 311-314.
NASA Astrophysics Data System (ADS)
Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.
2016-12-01
Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the lowest latitude forests experience accelerated C fluxes that maintain relatively young but highly decomposed material. Collectively, these observations of within-biome soil C responses to climate demonstrate that the enhanced rates of SOC loss that typically occur with warming can be balanced by enhanced rates of C inputs.
[Effect of a "Like!" seal on the stress reactions of nurses in a hospital].
Yoshida, Eri; Yamada, Kazuko; Morioka, Ikuharu
2016-01-01
Improving the work environment is effective as a primary measure against mental health disorders. The aim of this study was to verify the hypothesis that using a "Like!" seal would promote friendly relations in the workplace, and reduce the stress reactions of nurses in a hospital. The "Like!" seal was inspired by "Thanks" cards conveying appreciation mutually, "OK" cards conveying the recognition of good points, and the "Like" button frequently used in social networking services. The subjects were 362 nurses working in a university hospital, of whom, 156 (43.1%) permitted the use of data collected before and after the intervention. A total of 151 (41.7%) subjects were analyzed. The intervention using the "Like!" seal lasted 8 weeks. The controls were 105 nurses who answered the same questionnaire in the same hospital and who permitted the use of the collected data. The question items comprised: basic attributes, the Brief Job Stress Questionnaire, the Sense of Coherence (SOC) scale, the Brief Scales for Coping Profile (BSCP), the lifestyles (HPI), and the number of uses of the "Like!" seal. To examine the effects of the intervention, a two-way analysis of variance was performed. To examine the factors related to changed psychological symptoms, a multiple linear regression analysis (stepwise method) was performed with the variation as the dependent variable. The number of uses of the "Like!" seal was 7,010 seals in total, and 19.4 seals on average per nurse. Many seals read phrases showing thanks and/or approval. Psychological symptoms showed a significant interaction. The scores increased in the intervention group after the intervention, but showed no change in the control group. Among the subscales of SOC, manageability showed a significant interaction. Increased scores were found in the intervention group after the intervention, but there was no change in the control group. Multiple linear regression analysis revealed that two factors were related to the variation of psychological symptoms. They were: the variation of manageability, and the number of seals used per nurse. The "Like!" seal which encourages mutual conveyance of feelings of thanks and/or approval has the potential to reduce the stress reactions of nurses.
Dispersion Engineering of Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Khamehchi, Mohammad Amin
The subject of this dissertation is engineering the dispersion relation for dilute Bose-Einstein condensates (BECs). When a BEC is immersed into suitably tailored laser fields its dispersion can be strongly modified. Prominent examples for such laser fields include optical lattice geometries and Raman dressing fields. The ability to engineer the dispersion of a BEC allows for the investigation of a range of phenomena related to quantum hydrodynamics and condensed matter. In the first context, this dissertation studies the excitation spectrum of a spin-orbit coupled (SOC) BEC. The spin-orbit coupling is generated by " dressing" the atoms with two Raman laser fields. The excitation spectrum has a Roton-like feature that can be altered by tuning the Raman laser parameters. It is demonstrated that the Roton mode can be softened, but it does not reach the ground state energy for the experimental conditions we had. Furthermore, the expansion of SOC BECs in 1D is studied by relaxing the trap allowing the BEC to expand in the SOC direction. Contrary to the findings for optical lattices, it is observed that the condensate partially occupies quasimomentum states with negative effective mass, and therefore an abrupt deceleration is observed although the mean field force is along the direction of expansion. In condensed-matter systems, a periodic lattice structure often plays an important role. In this context, an alternative to the Raman dressing scheme can be realized by coupling the s- and p- bands of a static optical lattice via a weak moving lattice. The bands can be treated as pseudo-spin states. It is shown that similar to the dispersion relation of a Raman dressed SOC, the quasimomentum of the ground state is different from zero. Coherent coupling of the SOC dispersion minima can lead to the realization of the stripe phase even though it is not the thermodynamic ground state of the system. Along the lines of studying the hydrodynamics of BECs, three novel multicomponent solitonic states are realized. It is shown that the solitons are structurally stable and the oscillation of vector dark-anti-dark solitons is studied in a weak harmonic trap.
NASA Astrophysics Data System (ADS)
Lesschen, Jan Peter; Sikirica, Natasa; Bonten, Luc; Dibari, Camilla; Sanchez, Berta; Kuikman, Peter
2014-05-01
Soil Organic Carbon (SOC) is a key parameter to many soil functions and services. SOC is essential to support water retention and nutrient buffering and mineralization in the soil as well as to enhance soil biodiversity. Consequently, loss of SOC or low SOC levels might threaten soil productivity or even lead to a collapse of a farming system. Identification of areas in Europe with critically low SOC levels or with a negative carbon balance is a challenge in order to apply the appropriate strategies to restore these areas or prevent further SOC losses. The objective of this study is to assess current soil carbon flows and stocks at a regional scale; we follow a carbon balance approach which we developed within the MITERRA-Europe model. MITERRA-Europe is an environmental impact assessment model and calculates nitrogen and greenhouse emission on a deterministic and annual basis using emission and leaching factors at regional level (NUTS2, comparable to province level) in the EU27. The model already contained a soil carbon module based on the IPCC stock change approach. Within the EU FP7 SmartSoil project we developed a SOC balance approach, for which we quantified the input of carbon (manure, crop residues, other organic inputs) and the losses of carbon (decomposition, leaching and erosion). The calculations rules from the Roth-C model were used to estimate SOC decomposition. For the actual soil carbon stocks we used the data from the LUCAS soil sample survey. LUCAS collected soil samples in 2009 at about 22000 locations across the EU, which were analysed for a range of soil properties. Land management practices are accounted for, based on data from the EU wide Survey on Agricultural Production Methods in the 2010 Farm Structure Survey. The survey comprises data on the application of soil tillage, soil cover, crop rotation and irrigation. Based on the simulated soil carbon balance and the actual carbon stocks from LUCAS we now can identify regions within the EU that are at risk. We further present results of the potential soil carbon sequestration by land management practices, such as cover crops, zero and reduced tillage, crop residue management and additional input of organic carbon. These results will be relevant for defining region specific strategies to reach the policy target on preventing loss of soil organic matter as stipulated in the Roadmap to a Resource Efficient Europe.
Predicting climate change effects on surface soil organic carbon of Louisiana, USA.
Zhong, Biao; Xu, Yi Jun
2014-10-01
This study aimed to assess the degree of potential temperature and precipitation change as predicted by the HadCM3 (Hadley Centre Coupled Model, version 3) climate model for Louisiana, and to investigate the effects of potential climate change on surface soil organic carbon (SOC) across Louisiana using the Rothamsted Carbon Model (RothC) and GIS techniques at the watershed scale. Climate data sets at a grid cell of 0.5° × 0.5° for the entire state of Louisiana were collected from the HadCM3 model output for three climate change scenarios: B2, A2, and A1F1, that represent low, higher, and even higher greenhouse gas emissions, respectively. Geo-referenced datasets including USDA-NRCS Soil Geographic Database (STATSGO), USGS Land Cover Dataset (NLCD), and the Louisiana watershed boundary data were gathered for SOC calculation at the watershed scale. A soil carbon turnover model, RothC, was used to simulate monthly changes in SOC from 2001 to 2100 under the projected temperature and precipitation changes. The simulated SOC changes in 253 watersheds from three time periods, 2001-2010, 2041-2050, and 2091-2100, were tested for the influence of the land covers and emissions scenarios using SAS PROC GLIMMIX and PDMIX800 macro to separate Tukey-Kramer (p < 0.01) adjusted means into letter comparisons. The study found that for most of the next 100 years in Louisiana, monthly mean temperature under all three emissions projections will increase; and monthly precipitation will, however, decrease. Under three emission scenarios, A1FI, A2, and B2, the mean SOC in the upper 30-cm depth of Louisiana forest soils will decrease from 33.0 t/ha in 2001 to 26.9, 28.4, and 29.2 t/ha in 2100, respectively; the mean SOC of Louisiana cropland soils will decrease from 44.4 t/ha in 2001 to 36.3, 38.4, and 39.6 t/ha in 2100, respectively; the mean SOC of Louisiana grassland soils will change from 30.7 t/ha in 2001 to 25.4, 26.6, and 27.0 t/ha in 2100, respectively. Annual SOC changes will be significantly different among the land cover classes including evergreen forest, mixed forest, deciduous forest, small grains, row crops, and pasture/hay (p < 0.0001), emissions scenarios (p < 0.0001), and their interactions (p < 0.0001).
Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index
Fang, Yilin; Liu, Chongxuan; Huang, Maoyi; ...
2014-12-02
Soil organic carbon (SOC) plays a key role in the global carbon cycle that is important for decadal-to-century climate prediction. Estimation of soil organic carbon stock using model-based methods typically requires spin-up (time marching transient simulation) of the carbon-nitrogen (CN) models by performing hundreds to thousands years long simulations until the carbon-nitrogen pools reach dynamic steady-state. This has become a bottleneck for global modeling and analysis, especially when testing new physical and/or chemical mechanisms and evaluating parameter sensitivity. Here we report a new numerical approach to estimate global soil carbon stock that can avoid the long term spin-up of themore » CN model. The approach uses canopy leaf area index (LAI) from satellite data and takes advantage of a reaction-based biogeochemical module NGBGC (Next Generation BioGeoChemical Module) that was recently developed and incorporated in version 4 of the Community Land Model (CLM4). Although NGBGC uses the same CN mechanisms as used in CLM4CN, it can be easily configured to run prognostic or steady state simulations. In this approach, monthly LAI from the multi-year Moderate Resolution Imaging Spectroradiometer (MODIS) data was used to calculate potential annual average gross primary production (GPP) and leaf carbon for the period of the atmospheric forcing. The calculated potential annual average GPP and leaf C are then used by NGBGC to calculate the steady-state distributions of carbon and nitrogen in different vegetation and soil pools by solving the steady-state reaction-network in NGBGC using the Newton-Raphson method. The new approach was applied at point and global scales and compared with SOC derived from long spin-up by running NGBGC in prognostic mode, and SOC from the empirical data of the Harmonized World Soil Database (HWSD). The steady-state solution is comparable to the spin-up value when the MODIS LAI is close to the LAI from the spin-up solution, and largely captured the variability of the HWSD SOC across the different dominant plant functional types (PFTs) at global scale. The numerical correlation between the calculated and HWSD SOC was, however, weak at both point and global scales, suggesting that the models used in describing biogeochemical processes in CLM needs improvements and/or HWSD needs updating as suggested by other studies. Besides SOC, the steady state solution also includes all other state variables simulated by a spin-up run, such as NPP, GPP, total vegetation C etc., which makes the developed approach a promising tool to efficiently estimate global SOC distribution and evaluate and compare different aspects simulated by different CN mechanisms in the model.« less
Measure synchronization in a spin-orbit-coupled bosonic Josephson junction
NASA Astrophysics Data System (ADS)
Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin
2015-11-01
We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.
Forest-fire model as a supercritical dynamic model in financial systems
NASA Astrophysics Data System (ADS)
Lee, Deokjae; Kim, Jae-Young; Lee, Jeho; Kahng, B.
2015-02-01
Recently large-scale cascading failures in complex systems have garnered substantial attention. Such extreme events have been treated as an integral part of self-organized criticality (SOC). Recent empirical work has suggested that some extreme events systematically deviate from the SOC paradigm, requiring a different theoretical framework. We shed additional theoretical light on this possibility by studying financial crisis. We build our model of financial crisis on the well-known forest fire model in scale-free networks. Our analysis shows a nontrivial scaling feature indicating supercritical behavior, which is independent of system size. Extreme events in the supercritical state result from bursting of a fat bubble, seeds of which are sown by a protracted period of a benign financial environment with few shocks. Our findings suggest that policymakers can control the magnitude of financial meltdowns by keeping the economy operating within reasonable duration of a benign environment.
Scaling and self-organized criticality in proteins: Lysozyme c
NASA Astrophysics Data System (ADS)
Phillips, J. C.
2009-11-01
Proteins appear to be the most dramatic natural example of self-organized criticality (SOC), a concept that explains many otherwise apparently unlikely phenomena. Protein functionality is often dominated by long-range hydro(phobic/philic) interactions, which both drive protein compaction and mediate protein-protein interactions. In contrast to previous reductionist short-range hydrophobicity scales, the holistic Moret-Zebende hydrophobicity scale [Phys. Rev. E 75, 011920 (2007)] represents a hydroanalytic tool that bioinformatically quantifies SOC in a way fully compatible with evolution. Hydroprofiling identifies chemical trends in the activities and substrate binding abilities of model enzymes and antibiotic animal lysozymes c , as well as defensins, which have been the subject of tens of thousands of experimental studies. The analysis is simple and easily performed and immediately yields insights not obtainable by traditional methods based on short-range real-space interactions, as described either by classical force fields used in molecular-dynamics simulations, or hydrophobicity scales based on transference energies from water to organic solvents or solvent-accessible areas.
Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N; Schwalm, Christopher R; Michalak, Anna M; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning
2015-06-01
Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO 2 ) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901-2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10 15 g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr -1 with a median value of 51 Pg C yr -1 during 2001-2010. The largest uncertainty in SOC stocks exists in the 40-65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901-2010 ranges from -70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO 2 and nitrogen deposition over intact ecosystems increased SOC stocks-even though the responses varied significantly among models. Model representations of temperature and moisture sensitivity, nutrient limitation, and land use partially explain the divergent estimates of global SOC stocks and soil C fluxes in this study. In addition, a major source of systematic error in model estimations relates to nonmodeled SOC storage in wetlands and peatlands, as well as to old C storage in deep soil layers.
Tian, Hanqin; Lu, Chaoqun; Yang, Jia; ...
2015-06-05
Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO₂) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-longmore » (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10¹⁵ g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr⁻¹ with a median value of 51 Pg C yr⁻¹ during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from –70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO₂ and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly among models. Model representations of temperature and moisture sensitivity, nutrient limitation, and land use partially explain the divergent estimates of global SOC stocks and soil C fluxes in this study. In addition, a major source of systematic error in model estimations relates to nonmodeled SOC storage in wetlands and peatlands, as well as to old C storage in deep soil layers.« less
Hydropathic self-organized criticality: a magic wand for protein physics.
Phillips, J C
2012-10-01
Self-organized criticality (SOC) is a popular concept that has been the subject of more than 3000 articles in the last 25 years. The characteristic signature of SOC is the appearance of self-similarity (power-law scaling) in observable properties. A characteristic observable protein property that describes protein-water interactions is the water-accessible (hydropathic) interfacial area of compacted globular protein networks. Here we show that hydropathic power-law (size- or length-scale-dependent) exponents derived from SOC enable theory to connect standard Web-based (BLAST) short-range amino acid (aa) sequence similarities to long-range aa sequence hydropathic roughening form factors that hierarchically describe evolutionary trends in water - membrane protein interactions. Our method utilizes hydropathic aa exponents that define a non-Euclidean metric realistically rooted in the atomic coordinates of 5526 protein segments. These hydropathic aa exponents thereby encapsulate universal (but previously only implicit) non-Euclidean long-range differential geometrical features of the Protein Data Bank. These hydropathic aa exponents easily organize small mutated aa sequence differences between human and proximate species proteins. For rhodopsin, the most studied transmembrane signaling protein associated with night vision, analysis shows that this approach separates Euclidean short- and non-Euclidean long-range aa sequence properties, and shows that they correlate with 96% success for humans, monkeys, cats, mice and rabbits. Proper application of SOC using hydropathic aa exponents promises unprecedented simplifications of exponentially complex protein sequence-structure-function problems, both conceptual and practical.
Gros, Daniel F; McCabe, Randi E; Antony, Martin M
2013-11-30
New hybrid models of psychopathology have been proposed that combine the current categorical approach with symptom dimensions that are common across various disorders. The present study investigated the new hybrid model of social anxiety in a large sample of participants with anxiety disorders and unipolar mood disorders to improve understanding of the comorbidity and symptom overlap between social phobia (SOC) and the other anxiety disorders and unipolar mood disorders. Six hundred and eighty two participants from a specialized outpatient clinic for anxiety treatment completed a semi-structured diagnostic interview and the Multidimensional Assessment of Social Anxiety (MASA). A hybrid model symptom profile was identified for SOC and compared with each of the other principal diagnoses. Significant group differences were identified on each of the MASA scales. Differences also were identified when common sets of comorbidities were compared within participants diagnosed with SOC. The findings demonstrated the influence of both the principal diagnosis of SOC and other anxiety disorders and unipolar mood disorders as well as the influence of comorbid diagnoses with SOC on the six symptom dimensions. These findings highlight the need to shift to transdiagnostic assessment and treatment practices that go beyond the disorder-specific focus of the current categorical diagnostic systems. Published by Elsevier Ireland Ltd.
Menichetti, Lorenzo; Houot, Sabine; van Oort, Folkert; Kätterer, Thomas; Christensen, Bent T; Chenu, Claire; Barré, Pierre; Vasilyeva, Nadezda A; Ekblad, Alf
2015-03-01
Changes in the (12)C/(13)C ratio (expressed as δ(13)C) of soil organic C (SOC) has been observed over long time scales and with depth in soil profiles. The changes are ascribed to the different reaction kinetics of (12)C and (13)C isotopes and the different isotopic composition of various SOC pool components. However, experimental verification of the subtle isotopic shifts associated with SOC turnover under field conditions is scarce. We determined δ(13)C and SOC in soil sampled during 1929-2009 in the Ap-horizon of five European long-term bare fallow experiments kept without C inputs for 27-80 years and covering a latitudinal range of 11°. The bare fallow soils lost 33-65% of their initial SOC content and showed a mean annual δ(13)C increase of 0.008-0.024‰. The (13)C enrichment could be related empirically to SOC losses by a Rayleigh distillation equation. A more complex mechanistic relationship was also examined. The overall estimate of the fractionation coefficient (ε) was -1.2 ± 0.3‰. This coefficient represents an important input to studies of long-term SOC dynamics in agricultural soils that are based on variations in (13)C natural abundance. The variance of ε may be ascribed to site characteristics not disclosed in our study, but the very similar kinetics measured across our five experimental sites suggest that overall site-specific factors (including climate) had a marginal influence and that it may be possible to isolate a general mechanism causing the enrichment, although pre-fallow land use may have some impact on isotope abundance and fractionation.
Soft-Cliff Retreat, Self-Organized Critical Phenomena in the Limit of Predictability?
NASA Astrophysics Data System (ADS)
Paredes, Carlos; Godoy, Clara; Castedo, Ricardo
2015-03-01
The coastal erosion along the world's coastlines is a natural process that occurs through the actions of marine and subaerial physico-chemical phenomena, waves, tides, and currents. The development of cliff erosion predictive models is limited due to the complex interactions between environmental processes and material properties over a wide range of temporal and spatial scales. As a result of this erosive action, gravity driven mass movements occur and the coastline moves inland. Like other studied earth natural and synthetically modelled phenomena characterized as self-organized critical (SOC), the recession of the cliff has a seemingly random, sporadic behavior, with a wide range of yearly recession rate values probabilistically distributed by a power-law. Usually, SOC systems are defined by a number of scaling features in the size distribution of its parameters and on its spatial and/or temporal pattern. Particularly, some previous studies of derived parameters from slope movements catalogues, have allowed detecting certain SOC features in this phenomenon, which also shares the recession of cliffs. Due to the complexity of the phenomenon and, as for other natural processes, there is no definitive model of recession of coastal cliffs. In this work, various analysis techniques have been applied to identify SOC features in the distribution and pattern to a particular case: the Holderness shoreline. This coast is a great case study to use when examining coastal processes and the structures associated with them. It is one of World's fastest eroding coastlines (2 m/yr in average, max observed 22 m/yr). Cliffs, ranging from 2 m up to 35 m in height, and made up of glacial tills, mainly compose this coast. It is this soft boulder clay that is being rapidly eroded and where coastline recession measurements have been recorded by the Cliff Erosion Monitoring Program (East Riding of Yorkshire Council, UK). The original database has been filtered by grouping contiguous sections, with similar geomorphological and dynamic features, to configure a complete and suitable catalogue of yearly recession rates (in m/yr) to analyze. Results show SOC fingerprint characteristics in the limited range scaling of the probability distribution function, in the variographic analysis and in the zero-mean Gaussian distribution of the Fourier coefficients. Therefore it cannot be neglected the possibility that Holderness cliffs behave as a SOC system. According to the discussed results, predictability possibilities of sea-cliff recession phenomena have been concluded.
NASA Astrophysics Data System (ADS)
Papanicolaou, A. N. (Thanos); Wacha, Kenneth M.; Abban, Benjamin K.; Wilson, Christopher G.; Hatfield, Jerry L.; Stanier, Charles O.; Filley, Timothy R.
2015-11-01
Most available biogeochemical models focus within a soil profile and cannot adequately resolve contributions of the lighter size fractions of organic rich soils for enrichment ratio (ER) estimates, thereby causing unintended errors in soil organic carbon (SOC) storage predictions. These models set ER as constant, usually equal to unity. The goal of this study is to provide spatiotemporal predictions of SOC stocks at the hillslope scale that account for the selective entrainment and deposition of lighter size fractions. It is hypothesized herein that ER values may vary depending on hillslope location, Land Use/Land Cover (LULC) conditions, and magnitude of the hydrologic event. An ER module interlinked with two established models, CENTURY and Watershed Erosion Prediction Project, is developed that considers the effects of changing runoff coefficients, bare soil coverage, tillage depth, fertilization, and soil roughness on SOC redistribution and storage. In this study, a representative hillslope is partitioned into two control volumes (CVs): a net erosional upslope zone and a net depositional downslope zone. We first estimate ER values for both CVs I and II for different hydrologic and LULC conditions. Second, using the improved ER estimates for the two CVs, we evaluate the effects that management practices have on SOC redistribution during different crop rotations. Overall, LULC promoting less runoff generally yielded higher ER values, which ranged between 0.97 and 3.25. Eroded soils in the upland CV were up to 4% more enriched in SOC than eroded soils in the downslope CV due to larger interrill contributions, which were found to be of equal importance to rill contributions. The chronosequence in SOC storage for the erosional zone revealed that conservation tillage and enhanced crop yields begun in the 1980s reversed the downward trend in SOC losses, causing nearly 26% of the lost SOC to be regained.
Subsampling effects in neuronal avalanche distributions recorded in vivo
Priesemann, Viola; Munk, Matthias HJ; Wibral, Michael
2009-01-01
Background Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s) of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s), and sigma = 1, are hallmark features of self-organized critical (SOC) systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s) and sigma by imposing subsampling on three different SOC models. We then compared f(s) and sigma of the subsampled models with those of multielectrode local field potential (LFP) activity recorded in three macaque monkeys performing a short term memory task. Results Neither the LFP nor the subsampled SOC models showed a power law for f(s). Both, f(s) and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s) and sigma similar to those calculated from LFP activity. Conclusion Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s) and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s) and sigma calculated from the physiological recordings may be selected over alternatives. PMID:19400967
Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C
2013-11-01
An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmondson, J. K.; Lepri, S. T.; Zurbuchen, T. H.
2013-11-20
This analysis offers evidence of characteristic scale sizes in solar wind charge state data measured in situ for 13 quiet-Sun Carrington rotations in 2008. Using a previously established novel methodology, we analyze the wavelet power spectrum of the charge state ratio C{sup 6+}/C{sup 4+} measured in situ by ACE/SWICS for 2 hr and 12 minute cadence. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data to a resolution of 24 minutes. We analyze each waveletmore » power spectrum for transient coherency and global periodicities resulting from the superposition of repeating coherent structures. From the significant wavelet power spectra, we find evidence for a general upper limit on individual transient coherency of ∼10 days. We find evidence for a set of global periodicities between 4-5 hr and 35-45 days. We find evidence for the distribution of individual transient coherency scales consisting of two distinct populations. Below the ∼2 day timescale, the distribution is reasonably approximated by an inverse power law, whereas for scales ≳2 days, the distribution levels off, showing discrete peaks at common coherency scales. In addition, by organizing the transient coherency scale distributions by wind type, we find that these larger, common coherency scales are more prevalent and well defined in coronal hole wind. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Hanqin; Lu, Chaoqun; Yang, Jia
2015-06-05
Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and loss from soil accounts for a large pro portion of land-atmosphere C exchange. Due to large pool size and variable residence time from years to millennia, even small changes in soil organic C(SOC) have substantial effects on the terrestrial C budget, thereby affecting atmospheric carbon dioxide (CO2)concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain and identifyingmore » major driving forces controlling soil C storage and fluxes remains a key research challenge his study has compiled century-long (1901-2010)estimates of SOC storage and heterotrophic respiration (Rh) from ten terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) and two observation based datasets. The ten-TBM ensemble shows that global SOC estimate range from 4 to 2111 Pg C (1 Pg = 10 15g) with a median value of 1158 Pg C33 in 2010. Modeling approach estimates a broad range of Rh from 35 to 69 Pg C yr -1 with a median value of 51Pg C yr -1 during 200–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude band while Rh differences are the largest in the tropics. All the models agreed that climate and land use changes have decreased SOC stocks while elevated CO 2 and atmospheric nitrogen deposition have increased SOC stocks though the response varied significantly among models. Model representations of temperature and moisture sensitivity,nutrient limitation and land use partially explain the divergent estimates of global SOC stocks and soil fluxes in this study. In addition, major sources of uncertainty from model estimation include exclusion of SOC storage in wetlands and peatlands as well as C storage in deep soil layers.« less
Peng, Yi; Xiong, Xiong; Adhikari, Kabindra; Knadel, Maria; Grunwald, Sabine; Greve, Mogens Humlekrog
2015-01-01
There is a great challenge in combining soil proximal spectra and remote sensing spectra to improve the accuracy of soil organic carbon (SOC) models. This is primarily because mixing of spectral data from different sources and technologies to improve soil models is still in its infancy. The first objective of this study was to integrate information of SOC derived from visible near-infrared reflectance (Vis-NIR) spectra in the laboratory with remote sensing (RS) images to improve predictions of topsoil SOC in the Skjern river catchment, Denmark. The second objective was to improve SOC prediction results by separately modeling uplands and wetlands. A total of 328 topsoil samples were collected and analyzed for SOC. Satellite Pour l'Observation de la Terre (SPOT5), Landsat Data Continuity Mission (Landsat 8) images, laboratory Vis-NIR and other ancillary environmental data including terrain parameters and soil maps were compiled to predict topsoil SOC using Cubist regression and Bayesian kriging. The results showed that the model developed from RS data, ancillary environmental data and laboratory spectral data yielded a lower root mean square error (RMSE) (2.8%) and higher R2 (0.59) than the model developed from only RS data and ancillary environmental data (RMSE: 3.6%, R2: 0.46). Plant-available water (PAW) was the most important predictor for all the models because of its close relationship with soil organic matter content. Moreover, vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), were very important predictors in SOC spatial models. Furthermore, the 'upland model' was able to more accurately predict SOC compared with the 'upland & wetland model'. However, the separately calibrated 'upland and wetland model' did not improve the prediction accuracy for wetland sites, since it was not possible to adequately discriminate the vegetation in the RS summer images. We conclude that laboratory Vis-NIR spectroscopy adds critical information that significantly improves the prediction accuracy of SOC compared to using RS data alone. We recommend the incorporation of laboratory spectra with RS data and other environmental data to improve soil spatial modeling and digital soil mapping (DSM).
Peng, Yi; Xiong, Xiong; Adhikari, Kabindra; Knadel, Maria; Grunwald, Sabine; Greve, Mogens Humlekrog
2015-01-01
There is a great challenge in combining soil proximal spectra and remote sensing spectra to improve the accuracy of soil organic carbon (SOC) models. This is primarily because mixing of spectral data from different sources and technologies to improve soil models is still in its infancy. The first objective of this study was to integrate information of SOC derived from visible near-infrared reflectance (Vis-NIR) spectra in the laboratory with remote sensing (RS) images to improve predictions of topsoil SOC in the Skjern river catchment, Denmark. The second objective was to improve SOC prediction results by separately modeling uplands and wetlands. A total of 328 topsoil samples were collected and analyzed for SOC. Satellite Pour l’Observation de la Terre (SPOT5), Landsat Data Continuity Mission (Landsat 8) images, laboratory Vis-NIR and other ancillary environmental data including terrain parameters and soil maps were compiled to predict topsoil SOC using Cubist regression and Bayesian kriging. The results showed that the model developed from RS data, ancillary environmental data and laboratory spectral data yielded a lower root mean square error (RMSE) (2.8%) and higher R2 (0.59) than the model developed from only RS data and ancillary environmental data (RMSE: 3.6%, R2: 0.46). Plant-available water (PAW) was the most important predictor for all the models because of its close relationship with soil organic matter content. Moreover, vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), were very important predictors in SOC spatial models. Furthermore, the ‘upland model’ was able to more accurately predict SOC compared with the ‘upland & wetland model’. However, the separately calibrated ‘upland and wetland model’ did not improve the prediction accuracy for wetland sites, since it was not possible to adequately discriminate the vegetation in the RS summer images. We conclude that laboratory Vis-NIR spectroscopy adds critical information that significantly improves the prediction accuracy of SOC compared to using RS data alone. We recommend the incorporation of laboratory spectra with RS data and other environmental data to improve soil spatial modeling and digital soil mapping (DSM). PMID:26555071
The impact of soil redistribution on SOC pools in a Mediterranean agroforestry catchment
NASA Astrophysics Data System (ADS)
Quijano, Laura; Gaspar, Leticia; Lizaga, Iván; Navas, Ana
2017-04-01
Soil redistribution processes play an important role influencing the spatial distribution patterns of soil and associated soil organic carbon (SOC) at landscape scale. Information on drivers of SOC dynamics is key for evaluating both soil degradation and SOC stability that can affect soil quality and sustainability. 137Cs measurements provide a very effective tool to infer spatial patterns of soil redistribution and quantify soil redistribution rates in different landscapes, but to date these data are scarce in mountain Mediterranean agroecosystems. We evaluate the effect of soil redistribution on SOC and SOC pools in relation to land use in a Mediterranean mountain catchment (246 ha). To this purpose, two hundred and four soil bulk cores were collected on a 100 m grid in the Estaña lakes catchment located in the central sector of the Spanish Pyrenees (31T 4656250N 295152E). The study area is an agroforestry and endorheic catchment characterized by the presence of evaporite dissolution induced dolines, some of which host permanent lakes. The selected landscape is representative of rainfed areas of Mediterranean continental climate with erodible lithology and shallow soils, and characterized by an intense anthropogenic activity through cultivation and water management. The cultivated and uncultivated areas are heterogeneously distributed. SOC and SOC pools (the active and decomposable fraction, ACF and the stable carbon fraction SCF) were measured by the dry combustion method and soil redistribution rates were derived from 137Cs measurements. The results showed that erosion predominated in the catchment, most of soil samples were identified as eroded sites (n=114) with an average erosion rate of 26.9±51.4 Mg ha-1 y-1 whereas the mean deposition rate was 13.0±24.2 Mg ha-1 y-1. In cultivated soils (n=54) the average of soil erosion rate was significantly higher (78.5±74.4 Mg ha-1 y-1) than in uncultivated soils (6.8±10.4 Mg ha-1 y-1). Similarly, the mean of soil deposition rate in cultivated soils (n=22) was significantly higher (42.6±35.1 Mg ha-1 y-1) than in uncultivated soils (3.4±3.2 Mg ha-1 y-1). The mean SOC content for all soil samples was 2.5±2.0%. In uncultivated soils, significantly higher (P<0.01) amounts of SOC (3.0±2.6%), ACF (2.1±0.7%) and SCF (0.9±0.4%) were found compared to cultivated soils where the means were 1.1±0.7%, 0.7±0.5% and 0.4±0.3%, respectively. Significant (P<0.05) correlations between SOC, SOC pools and soil redistribution rates indicate that the distribution of SOC pools were significantly affected by soil redistribution in the study area. SOC and SOC pools were significantly higher at depositional (n=90, 2.8±1.8%) than at eroded sampling points (2.2±2.1%). ACF shows greater differences at eroding sites and at depositional sites than SCF reflecting that ACF is more sensitive to soil redistribution processes. Our findings emphasize the role of soil redistribution and land use in influencing the dynamics of SOC, information that can be also relevant in soil management. Improving the knowledge on the relationships between land use, soil redistribution processes and SOC fractions is of interest, especially in these Mediterranean rapidly changing landscapes.
Target-in-the-loop phasing of a fiber laser array fed by a linewidth-broadened master oscillator
NASA Astrophysics Data System (ADS)
Hyde, Milo W.; Tyler, Glenn A.; Rosado Garcia, Carlos
2017-05-01
In a recent paper [J. Opt. Soc. Am. A 33, 1931-1937 (2016)], the target-in-the-loop (TIL) phasing of an RF-modulated or multi-phase-dithered fiber laser array, fed by a linewidth-broadened master oscillator (MO) source, was investigated. It was found that TIL phasing was possible even on a target with scattering features separated by more than the MO's coherence length as long as the received, backscattered irradiance changed with the array's modulation or phase dither. To simplify the problem and gain insight into how temporal coherence affects TIL phasing, speckle and atmospheric turbulence were omitted from the analysis. Here, the scenario analyzed in the prior work is generalized by including speckle and turbulence. First, the key analytical result from the prior paper is reviewed. Simulations, including speckle and turbulence, are then performed to test whether the conclusions derived from that result hold under more realistic conditions.
NASA Astrophysics Data System (ADS)
Altdorff, Daniel; Bechtold, Michel; van der Kruk, Jan; Tiemeyer, Bärbel; von Hebel, Christian; Huisman, Johan Alexander
2014-05-01
Peatlands represent a huge storage of soil organic carbon (SOC), and there is considerable interest to assess the total amount of carbon stored in these ecosystems. However, reliable field-scale information about peat properties, particularly SOC content and bulk density (BD) necessary to estimate C stocks, remains difficult to obtain. A potential way to acquire information on these properties and its spatial variation is the non-invasive mapping of easily recordable physical variables that correlate with peat properties, such as bulk electrical conductivity (ECa) measured with electromagnetic induction (EMI). However, ECa depends on a range of soil properties, including BD, soil and water chemistry, and water content, and thus results often show complex and site-specific relationships. Therefore, a reliable prediction of SOC and BD from ECa data is not necessarily given. In this study, we aim to explore the usefulness of Multiple Linear Regression (MLR) models to predict the peat soil properties SOC and BD from multi-offset EMI and high-resolution DEM data. The quality of the MLR models is assessed by cross-validation. We use data from a medium-scale disturbed peat relict (approximately 35ha) in Northern Germany. The potential explanatory variables considered in MLR were: EMI data of six different integral depths (approximately 0.25, 0.5, 0.6, 0.9, 1, and 1.80 m), their vertical heterogeneity, as well as several topographical variables extracted from the DEM. Ground truth information for SOC, BD content and peat layer thickness was obtained from 34 soil cores of 1 m depth. Each core was divided into several 5 to 20 cm thick layers so that integral information of the upper 0.25, 0.5, and 1 m as well as from the total peat layer was obtained. For cross-validation of results, we clustered the 34 soil cores into 4 classes using K-means clustering and selected 8 cores for validation from the clusters with a probability that depended on the size of the cluster. With the remaining 26 samples, we performed a stepwise MLR and generated separate models for each depth and soil property. Preliminary results indicate reliable model predictions for SOC and BD (R² = 0.83- 0.95). The RMSE values of the validation ranged between 3.5 and 7.2 vol. % for SOC and 0.13 and 0.37 g/cm³ for BD for the independent samples. This equates roughly the quality of SOC predictions obtained by field application of vis-NIR (visible-near infrared) presented in literature for a similar peatland setting. However, the EMI approach offers the potential to derive information from deeper depths and allows non-invasive mapping of BD variability, which is not possible with vis-NIR. Therefore, this new approach potentially provides a more useful tool for total carbon stock assessment in peatlands.
Tsuchiya, Masa; Giuliani, Alessandro; Hashimoto, Midori; Erenpreisa, Jekaterina; Yoshikawa, Kenichi
2016-01-01
Background A fundamental issue in bioscience is to understand the mechanism that underlies the dynamic control of genome-wide expression through the complex temporal-spatial self-organization of the genome to regulate the change in cell fate. We address this issue by elucidating a physically motivated mechanism of self-organization. Principal Findings Building upon transcriptome experimental data for seven distinct cell fates, including early embryonic development, we demonstrate that self-organized criticality (SOC) plays an essential role in the dynamic control of global gene expression regulation at both the population and single-cell levels. The novel findings are as follows: i) Mechanism of cell-fate changes: A sandpile-type critical transition self-organizes overall expression into a few transcription response domains (critical states). A cell-fate change occurs by means of a dissipative pulse-like global perturbation in self-organization through the erasure of initial-state critical behaviors (criticality). Most notably, the reprogramming of early embryo cells destroys the zygote SOC control to initiate self-organization in the new embryonal genome, which passes through a stochastic overall expression pattern. ii) Mechanism of perturbation of SOC controls: Global perturbations in self-organization involve the temporal regulation of critical states. Quantitative evaluation of this perturbation in terminal cell fates reveals that dynamic interactions between critical states determine the critical-state coherent regulation. The occurrence of a temporal change in criticality perturbs this between-states interaction, which directly affects the entire genomic system. Surprisingly, a sub-critical state, corresponding to an ensemble of genes that shows only marginal changes in expression and consequently are considered to be devoid of any interest, plays an essential role in generating a global perturbation in self-organization directed toward the cell-fate change. Conclusion and Significance ‘Whole-genome’ regulation of gene expression through self-regulatory SOC control complements gene-by-gene fine tuning and represents a still largely unexplored non-equilibrium statistical mechanism that is responsible for the massive reprogramming of genome expression. PMID:27997556
Hankir, Ahmed; Zaman, Rashid; Lim, Mao Fong; Lever, Isabel; Brothwood, Phillipa; Carrick, Frederick R; Hughes, Jamie Hacker; Jones, Charlotte Wilson
2017-09-01
There are higher levels of psychological distress in healthcare professionals and students compared to the general population. Yet, despite the availability of effective treatment, many in this group continue to suffer in silence. Fear of exposure to stigmatization has been identified to be a major barrier to accessing and using mental health services. King's College London Undergraduate Psychiatry Society (KCL PsychSoc) organized an event entitled, 'What does bipolar disorder even mean? Psychological distress: How can we challenge the stigma?'. Healthcare professionals who themselves recovered from psychological problems and a mental health advocate with first-hand experience of psychological distress were invited to deliver talks followed by an interactive question and answer session. We conducted a single-arm pre-post comparison study. People who attended the KCL Psych Soc event were recruited to participate. Validated stigma scales on knowledge (Mental Health Knowledge Schedule (MAKS), attitudes (Community Attitudes towards the Mentally Ill) and behavior (Reported and Intended Behavior Scale (RIBS)) were administered on participants before and immediately after exposure to the event. 44/44 of the participants recruited completed the study (100% response rate). There were statistically significant changes in the respondents' scores for all 3 stigma scales (p value MAKS<0.0001, p value CAMI<0.0001, p value RIBS=0.0011). As far as the authors are aware, this is the first study to date of an anti-stigma intervention comprised of healthcare professionals with first-hand experience of psychological distress. The KCL PsychSoc event was associated with statistically significant changes in the respondents' scores in all three of the stigma scales. More robust research in this area is needed before scaling up similar anti-stigma initiatives.
Spatio-temporal correlations in the Manna model in one, three and five dimensions
NASA Astrophysics Data System (ADS)
Willis, Gary; Pruessner, Gunnar
2018-02-01
Although the paradigm of criticality is centered around spatial correlations and their anomalous scaling, not many studies of self-organized criticality (SOC) focus on spatial correlations. Often, integrated observables, such as avalanche size and duration, are used, not least as to avoid complications due to the unavoidable lack of translational invariance. The present work is a survey of spatio-temporal correlation functions in the Manna Model of SOC, measured numerically in detail in d = 1,3 and 5 dimensions and compared to theoretical results, in particular relating them to “integrated” observables such as avalanche size and duration scaling, that measure them indirectly. Contrary to the notion held by some of SOC models organizing into a critical state by re-arranging their spatial structure avalanche by avalanche, which may be expected to result in large, nontrivial, system-spanning spatial correlations in the quiescent state (between avalanches), correlations of inactive particles in the quiescent state have a small amplitude that does not and cannot increase with the system size, although they display (noisy) power law scaling over a range linear in the system size. Self-organization, however, does take place as the (one-point) density of inactive particles organizes into a particular profile that is asymptotically independent of the driving location, also demonstrated analytically in one dimension. Activity and its correlations, on the other hand, display nontrivial long-ranged spatio-temporal scaling with exponents that can be related to established results, in particular avalanche size and duration exponents. The correlation length and amplitude are set by the system size (confirmed analytically for some observables), as expected in systems displaying finite size scaling. In one dimension, we find some surprising inconsistencies of the dynamical exponent. A (spatially extended) mean field theory (MFT) is recovered, with some corrections, in five dimensions.
NASA Astrophysics Data System (ADS)
Bell, M. J.; Worrall, F.
2009-04-01
In light of recent concern over the extent of global warming and the role of soil carbon as a potential store of atmospheric carbon, there is increasing demand for regions to estimate their current soil organic carbon (SOC) stocks with the greatest possible accuracy. Several previous attempts at calculating SOC baselines at global, national or regional scale have used mean values for soil orders and multiplied these values by the mapped areas of the soils they represent. Other methods have approached the task from a land cover point of view, making estimates using only land-use, or soil order/land-use combinations and others have included variables such as altitude, climate and soil texture. This study aimed to assess the major controls on SOC concentrations (%SOC) at the National Trust Wallington estate in Northumberland, NE England (area = 55km2) where an extensive soil sampling campaign was used to test what level of accuracy could be achieved in modelling the %SOC values on the Estate. Mapped %SOC values were compared to the values predicted from The National Soils Resources Institute (NSRI) representative soil profile data for major soil group, soil series and land-use corrected soil series values, as well as land-use/major soil group combinations from the Countryside Survey database. The results of this study can be summarised as follows: When only soil series or land-use were used as predictors only 48% and 44% of the variation in the dataset were explained. When soil series/land-use combinations were used explanatory power increased to 57% both altitude and soil pH are major controls on %SOC and including these variables gave an improvement to 59% A further improvement from 59% to 66% in the ability to predict %SOC levels at point locations when farm tenancy was included indicates that differences in land-management practices between farm tenancies explained more of the variation than either soil series or land-use in %SOC. Further work will involve a verification site in another area of the UK where the results of this sampling campaign will be used to confirm the greater predictive value of using land-use and management information in combination with soil series in correctly identifying %SOC at specific locations.
NASA Astrophysics Data System (ADS)
Siewert, Matthias B.; Hanisch, Jessica; Weiss, Niels; Kuhry, Peter; Maximov, Trofim C.; Hugelius, Gustaf
2015-10-01
Permafrost-affected ecosystems are important components in the global carbon (C) cycle that, despite being vulnerable to disturbances under climate change, remain poorly understood. This study investigates ecosystem carbon storage in two contrasting continuous permafrost areas of NE and East Siberia. Detailed partitioning of soil organic carbon (SOC) and phytomass carbon (PC) is analyzed for one tundra (Kytalyk) and one taiga (Spasskaya Pad/Neleger) study area. In total, 57 individual field sites (24 and 33 in the respective areas) have been sampled for PC and SOC, including the upper permafrost. Landscape partitioning of ecosystem C storage was derived from thematic upscaling of field observations using a land cover classification from very high resolution (2 × 2 m) satellite imagery. Nonmetric multidimensional scaling was used to explore patterns in C distribution. In both environments the ecosystem C is mostly stored in the soil (≥86%). At the landscape scale C stocks are primarily controlled by the presence of thermokarst depressions (alases). In the tundra landscape, site-scale variability of C is controlled by periglacial geomorphological features, while in the taiga, local differences in catenary position, soil texture, and forest successions are more important. Very high resolution remote sensing is highly beneficial to the quantification of C storage. Detailed knowledge of ecosystem C storage and ground ice distribution is needed to predict permafrost landscape vulnerability to projected climatic changes. We argue that vegetation dynamics are unlikely to offset mineralization of thawed permafrost C and that landscape-scale reworking of SOC represents the largest potential changes to C cycling.
NASA Astrophysics Data System (ADS)
Tan, Kun; Ciais, Philippe; Piao, Shilong; Wu, Xiaopu; Tang, Yanhong; Vuichard, Nicolas; Liang, Shuang; Fang, Jingyun
2010-03-01
The cold grasslands of the Qinghai-Tibetan Plateau form a globally significant biome, which represents 6% of the world's grasslands and 44% of China's grasslands. Yet little is known about carbon cycling in this biome. In this study, we calibrated and applied a process-based ecosystem model called Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) to estimate the C fluxes and stocks of these grasslands. First, the parameterizations of ORCHIDEE were improved and calibrated against multiple time-scale and spatial-scale observations of (1) eddy-covariance fluxes of CO2 above one alpine meadow site; (2) soil temperature collocated with 30 meteorological stations; (3) satellite leaf area index (LAI) data collocated with the meteorological stations; and (4) soil organic carbon (SOC) density profiles from China's Second National Soil Survey. The extensive SOC survey data were used to extrapolate local fluxes to the entire grassland biome. After calibration, we show that ORCHIDEE can successfully capture the seasonal variation of net ecosystem exchange (NEE), as well as the LAI and SOC spatial distribution. We applied the calibrated model to estimate 0.3 Pg C yr-1 (1 Pg = 1015 g) of total annual net primary productivity (NPP), 0.4 Pg C of vegetation total biomass (aboveground and belowground), and 12 Pg C of SOC stocks for Qinghai-Tibetan grasslands covering an area of 1.4 × 106 km2. The mean annual NPP, vegetation biomass, and soil carbon stocks decrease from the southeast to the northwest, along with precipitation gradients. Our results also suggest that in response to an increase of temperature by 2°C, approximately 10% of current SOC stocks in Qinghai-Tibetan grasslands could be lost, even though NPP increases by about 9%. This result implies that Qinghai-Tibetan grasslands may be a vulnerable component of the terrestrial carbon cycle to future climate warming.
NASA Astrophysics Data System (ADS)
Lutfalla, Suzanne; Skalsky, Rastislav; Martin, Manuel; Balkovic, Juraj; Havlik, Petr; Soussana, Jean-François
2017-04-01
The 4 per 1000 Initiative underlines the role of soil organic matter in addressing the three-fold challenge of food security, adaptation of the land sector to climate change, and mitigation of human-induced GHG emissions. It sets an ambitious global target of a 0.4% (4/1000) annual increase in top soil organic carbon (SOC) stock. The present collaborative project between the 4 per 1000 research program, INRA and IIASA aims at providing a first global assessment of the translation of this soil organic carbon sequestration target into the equivalent organic matter inputs target. Indeed, soil organic carbon builds up in the soil through different processes leading to an increased input of carbon to the system (by increasing returns to the soil for instance) or a decreased output of carbon from the system (mainly by biodegradation and mineralization processes). Here we answer the question of how much extra organic matter must be added to agricultural soils every year (in otherwise unchanged climatic conditions) in order to guarantee a 0.4% yearly increase of total soil organic carbon stocks (40cm soil depth is considered). We use the RothC model of soil organic matter turnover on a spatial grid over 10 years to model two situations for croplands: a first situation where soil organic carbon remains constant (system at equilibrium) and a second situation where soil organic matter increases by 0.4% every year. The model accounts for the effects of soil type, temperature, moisture content and plant cover on the turnover process, it is run on a monthly time step, and it can simulate the needed organic input to sustain a certain SOC stock (or evolution of SOC stock). These two SOC conditions lead to two average yearly plant inputs over 10 years. The difference between the two simulated inputs represent the additional yearly input needed to reach the 4 per 1000 objective (input_eq for inputs needed for SOC to remain constant; input_4/1000 for inputs needed for SOC to reach the 4 per 1000 target). A spatial representation of this difference shows the distribution of the required returns to the soil. This first tool will provide the basis for the next steps: choosing and implementing practices to obtain the required additional input. Results will be presented from simulations at the regional scale (country: Slovakia) and at the global scale (0,5° grid resolution). Soil input data comes from the HWSD, climatic input data comes from AgMERRA climate dataset averaged of a 30 years period (1980-2010). They show that, at the global scale, given some data corrections which will be presented and discussed, the 4 per 1000 increase in top soil organic carbon can be reached with a median additional input of +0.89 tC/ha/year for cropland soils.
Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun
2013-01-01
Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007-Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.
Shi, Huijin; Wang, Xiujun; Xu, Minggang; Zhang, Haibo; Luo, Yongming
2017-12-04
To better understand the characteristics of soil organic matter (SOM) in the North China Plain, we evaluate the large scale variations of soil organic carbon (SOC), total nitrogen (TN), carbon to nitrogen (C:N) ratio and stable carbon isotopic compositions (δ 13 C) in SOC over 0-100 cm. To assess the influence of the Yellow River, 31 sites are selected from the wheat-maize double cropping system, and grouped into two: 10 sites near and 21 sites far from the river. Our data show that mean soil C:N ratio is low (7.6-9.9) across the region, and not affected by the Yellow River. However, SOC and TN are significantly (P < 0.05) lower in subsoil near the Yellow River (2.0 and 0.2-0.3 g kg -1 for SOC and TN) than far away (3.1 and 0.4 g kg -1 ); δ 13 C is significantly more negative below 60 cm near the river (-23.3 to -22.6‰) than far away (-21.8 to -21.4‰). We estimate that the contributions of wheat and maize to SOC are 61.3-68.1% and 31.9-38.8%, respectively. Our analyses indicate that the overall low levels of SOC in the North China Plain may be associated with the low soil C:N ratio and less clay content. The hydrological processes may also partly be responsible, particularly for those near the Yellow River.
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud, E-mail: sonny.lion@obspm.fr
2016-06-10
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contributemore » to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.« less
2010-01-01
Background Patient-reported outcomes are increasingly seen as complementary to biomedical measures. However, their prognostic importance has yet to be established, particularly in female long-term myocardial infarction (MI) survivors. We aimed to determine whether 10-year survival in older women after MI relates to patient-reported outcomes, and to compare their survival with that of the general female population. Methods We included all women aged 60-80 years suffering MI during 1992-1997, and treated at one university hospital in Norway. In 1998, 145 (60% of those alive) completed a questionnaire package including socio-demographics, the Sense of Coherence Scale (SOC-29), the World Health Organization Quality of Life Instrument Abbreviated (WHOQOL-BREF) and an item on positive effects of illness. Clinical information was based on self-reports and hospital medical records data. We obtained complete data on vital status. Results The all-cause mortality rate during the 1998-2008 follow-up of all patients was 41%. In adjusted analysis, the conventional predictors s-creatinine (HR 1.26 per 10% increase) and left ventricular ejection fraction below 30% (HR 27.38), as well as patient-reported outcomes like living alone (HR 6.24), dissatisfaction with self-rated health (HR 6.26), impaired psychological quality of life (HR 0.60 per 10 points difference), and experience of positive effects of illness (HR 6.30), predicted all-cause death. Major adverse cardiac and cerebral events were also significantly associated with both conventional predictors and patient-reported outcomes. Sense of coherence did not predict adverse events. Finally, 10-year survival was not significantly different from that of the general female population. Conclusion Patient-reported outcomes have long-term prognostic importance, and should be taken into account when planning aftercare of low-risk older female MI patients. PMID:21108810
Norekvål, Tone M; Fridlund, Bengt; Rokne, Berit; Segadal, Leidulf; Wentzel-Larsen, Tore; Nordrehaug, Jan Erik
2010-11-25
Patient-reported outcomes are increasingly seen as complementary to biomedical measures. However, their prognostic importance has yet to be established, particularly in female long-term myocardial infarction (MI) survivors. We aimed to determine whether 10-year survival in older women after MI relates to patient-reported outcomes, and to compare their survival with that of the general female population. We included all women aged 60-80 years suffering MI during 1992-1997, and treated at one university hospital in Norway. In 1998, 145 (60% of those alive) completed a questionnaire package including socio-demographics, the Sense of Coherence Scale (SOC-29), the World Health Organization Quality of Life Instrument Abbreviated (WHOQOL-BREF) and an item on positive effects of illness. Clinical information was based on self-reports and hospital medical records data. We obtained complete data on vital status. The all-cause mortality rate during the 1998-2008 follow-up of all patients was 41%. In adjusted analysis, the conventional predictors s-creatinine (HR 1.26 per 10% increase) and left ventricular ejection fraction below 30% (HR 27.38), as well as patient-reported outcomes like living alone (HR 6.24), dissatisfaction with self-rated health (HR 6.26), impaired psychological quality of life (HR 0.60 per 10 points difference), and experience of positive effects of illness (HR 6.30), predicted all-cause death. Major adverse cardiac and cerebral events were also significantly associated with both conventional predictors and patient-reported outcomes. Sense of coherence did not predict adverse events. Finally, 10-year survival was not significantly different from that of the general female population. Patient-reported outcomes have long-term prognostic importance, and should be taken into account when planning aftercare of low-risk older female MI patients.
Predictors of mental health in female teachers.
Seibt, Reingard; Spitzer, Silvia; Druschke, Diana; Scheuch, Klaus; Hinz, Andreas
2013-12-01
Teaching profession is characterised by an above-average rate of psychosomatic and mental health impairment due to work-related stress. The aim of the study was to identify predictors of mental health in female teachers. A sample of 630 female teachers (average age 47 ± 7 years) participated in a screening diagnostic inventory. Mental health was surveyed with the General Health Questionnaire GHQ-12. The following parameters were measured: specific work conditions (teacher-specific occupational history), scales of the Effort-Reward-Imbalance (ERI) Questionnaire as well as cardiovascular risk factors, physical complaints (BFB) and personal factors such as inability to recover (FABA), sense of coherence (SOC) and health behaviour. First, mentally fit (MH(+)) and mentally impaired teachers (MH(-)) were differentiated based on the GHQ-12 sum score (MH(+): < 5; MH(-): ≥ 5); 18% of the teachers showed evidence of mental impairment. There were no differences concerning work-related and cardiovascular risk factors as well as health behaviour between MH(+) and MH(-). Binary logistic regressions identified 4 predictors that showed a significant effect on mental health. The effort-reward-ratio proved to be the most relevant predictor, while physical complaints as well as inability to recover and sense of coherence were identified as advanced predictors (explanation of variance: 23%). Contrary to the expectations, classic work-related factors can hardly contribute to the explanation of mental health. Additionally, cardiovascular risk factors and health behaviour have no relevant influence. However, effort-reward-ratio, physical complaints and personal factors are of considerable influence on mental health in teachers. These relevant predictors should become a part of preventive arrangements for the conservation of teachers' health in the future.
Coherence of the vortex Bessel-Gaussian beam in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Lukin, Igor P.
2017-11-01
In this paper the theoretical research of coherent properties of the vortex Bessel-Gaussian optical beams propagating in turbulent atmosphere are developed. The approach to the analysis of this problem is based on the analytical solution of the equation for the transverse second-order mutual coherence function of a field of optical radiation. The behavior of integral scale of coherence degree of vortex Bessel-Gaussian optical beams depending on parameters of an optical beam and characteristics of turbulent atmosphere is particularly considered. It is shown that the integral scale of coherence degree of a vortex Bessel-Gaussian optical beam essentially depends on value of a topological charge of a vortex optical beam. With increase in a topological charge of a vortex Bessel-Gaussian optical beam the value of integral scale of coherence degree of a vortex Bessel-Gaussian optical beam are decreased.
Long-term soil organic carbon changes in cereal and ley rotations: model testing
NASA Astrophysics Data System (ADS)
Kynding Borgen, Signe; Dörsch, Peter; Krogstad, Tore; Azzaroli Bleken, Marina
2015-04-01
Reliable modeling of soil organic carbon (SOC) dynamics in agroecosystems is crucial to define mitigation strategies related to crop management on the farm scale as well as the regional scale. International climate agreements and national political decisions rely to a large extent on the National Greenhouse gas Inventory Reports that are submitted annually to the UNFCCC. However, lower tier methods are used to estimate SOC changes on cropland in most country reports. The application of mechanistic models in national greenhouse gas inventory estimation requires proper model testing against measurements in order to verify the estimated emissions. Few long-term field experiments measuring SOC stock changes have been conducted in Norway. We evaluate the performance of the Introductory Carbon Balance Model (ICBM) in simulating SOC changes over 60 years in a field experiment conducted in Ås from 1953-2013. The site is located in south-eastern Norway, on the boarder of the boreal and temperate climate zone, where the majority of the country's grain production occurs. The field trial consisted of four rotations: I) continuous cereal, II) cereal + row crops, III) 2 years of ley + 4 years of cereal, IV) 4 years of ley + 2 years of cereal, and four treatments per rotation: a) low NPK, b) high NPK, c) low NPK + FYM, and d) straw (on rotations I and II) or high NPK + FYM (on rotations III and IV). The annual external modifying factor of the decomposition rate was calculated based on daily minimum and maximum temperature, precipitation, relative humidity, wind speed, and net radiation, and adjusted for soil type and crop management according to default ICBM calibration. We present results of simulated C changes for the long term plots and explore options to improve parameter calibration. Finally, we provide suggestions for how problems regarding model verification can be handled with when applying the model on a national scale for inventory reporting.
Empirical evidence for multi-scaled controls on wildfire size distributions in California
NASA Astrophysics Data System (ADS)
Povak, N.; Hessburg, P. F., Sr.; Salter, R. B.
2014-12-01
Ecological theory asserts that regional wildfire size distributions are examples of self-organized critical (SOC) systems. Controls on SOC event-size distributions by virtue are purely endogenous to the system and include the (1) frequency and pattern of ignitions, (2) distribution and size of prior fires, and (3) lagged successional patterns after fires. However, recent work has shown that the largest wildfires often result from extreme climatic events, and that patterns of vegetation and topography may help constrain local fire spread, calling into question the SOC model's simplicity. Using an atlas of >12,000 California wildfires (1950-2012) and maximum likelihood estimation (MLE), we fit four different power-law models and broken-stick regressions to fire-size distributions across 16 Bailey's ecoregions. Comparisons among empirical fire size distributions across ecoregions indicated that most ecoregion's fire-size distributions were significantly different, suggesting that broad-scale top-down controls differed among ecoregions. One-parameter power-law models consistently fit a middle range of fire sizes (~100 to 10000 ha) across most ecoregions, but did not fit to larger and smaller fire sizes. We fit the same four power-law models to patch size distributions of aspect, slope, and curvature topographies and found that the power-law models fit to a similar middle range of topography patch sizes. These results suggested that empirical evidence may exist for topographic controls on fire sizes. To test this, we used neutral landscape modeling techniques to determine if observed fire edges corresponded with aspect breaks more often than expected by random. We found significant differences between the empirical and neutral models for some ecoregions, particularly within the middle range of fire sizes. Our results, combined with other recent work, suggest that controls on ecoregional fire size distributions are multi-scaled and likely are not purely SOC. California wildfire ecosystems appear to be adaptive, governed by stationary and non-stationary controls, which may be either exogenous or endogenous to the system.
Shi, K; Liu, C Q; Huang, Z W; Zhang, B; Su, Y
2010-01-01
Detrended fluctuation analysis (DFA) and multifractal methods are applied to the time-scaling properties analysis of water pH series in Poyang Lake Inlet and Outlet in China. The results show that these pH series are characterised by long-term memory and multifractal scaling, and these characteristics have obvious differences between the Lake Inlet and Outlet. The comparison results suggest that monofractal and multifractal parameters can be quantitative dynamical indexes reflecting the capability of anti-acidification of Poyang Lake. Furthermore, we investigated the frequency-size distribution of pH series in Poyang Lake Inlet and Outlet. Our findings suggest that water pH is an example of a self-organised criticality (SOC) process. The results show that it is different SOC behaviours that result in the differences of power-law relations between pH series in Poyang Lake Inlet and Outlet. This work can be helpful to improvement of modelling of lake water quality.
Harrop, Emily; Noble, Simon; Edwards, Michelle; Sivell, Stephanie; Moore, Barbara; Nelson, Annmarie
2017-11-01
Coping plays an essential role in maintaining the wellbeing of patients with cancer. A number of different coping responses and strategies have been identified in the literature. The value and relevance of meaning based coping theory has also been emphasised, including Antonovosky's Sense of Coherence (SoC) theory. Ten patients with advanced lung cancer were interviewed up to three times. A total of twenty in depth interviews were carried out, fully transcribed and data were analysed following a methodology of Interpretative Phenomenological Analysis. Three broad domains were identified to categorise the core life concerns of participants; making sense of and managing one's illness; maintaining daily life and relationships and confronting the future. Within these domains multiple coping themes are identified, which to varying degrees help to maintain patient wellbeing and quality of life. This article considers the relevance of SoC theory for understanding the coping experiences of patients with advanced cancer, and identifies resources and factors likely to support patient coping, with implications for health and social care services. © 2017 The Authors. Sociology of Health & Illness published by John Wiley & Sons Ltd on behalf of Foundation for SHIL.
Zirke, N; Seydel, C; Szczepek, A J; Olze, H; Haupt, H; Mazurek, B
2013-03-01
To determine the prevalence and severity of psychological comorbidity in patients with chronic tinnitus in comparison with other chronic illnesses, namely chronic pain, chronic asthma and atopic dermatitis. Psychological diagnoses were done according to ICD-10 Chapter V(F). Subjective impairment was evaluated using 5 psychometric questionnaires: tinnitus questionnaire, Berlin mood questionnaire, sense of coherence (SOC-L9) and perceived stress questionnaire. Sleep disturbance was measured by the subdomain 'exhaustion' of the Giessen physical complaints inventory. Somatoform or affective disorders were most frequent in all disease groups. Patients with chronic tinnitus had a stronger SOC and better subjective mood, stronger commitment, and less anger and anxious depression than the patients with chronic pain, chronic asthma or atopic dermatitis. However, in patients with higher tinnitus annoyance, psychological comorbidity was similar to that found in patients with other chronic diseases. Besides collecting medical and social history, special psychometric instruments should be used for the diagnosis of tinnitus patients. Based on relative high frequency of psychological comorbidity, we recommend interdisciplinary cooperation between otorhinolaryngologists and other specialists (psychosomatic medicine, psychology or psychiatry) during the treatment of tinnitus patients, especially when high degree of tinnitus annoyance is involved.
Psychological factors determining success in a medical career: a 10-year longitudinal study.
Tartas, Malgorzata; Walkiewicz, Maciej; Majkowicz, Mikolaj; Budzinski, Waldemar
2011-01-01
Systemic review of predictors of success in medical career is an important tool to recognize the indicators of proper training. To determine psychological factors that predict success in a medical career. The success is defined as professional competence, satisfaction with medicine as a career, occupational stress and burnout and quality of life (QOF). Part I (1999-2005), medical students were examined each subsequent year, beginning with admission. Assessment included academic achievement (high school final examination results, entrance exam results, academic results during medical school) and psychological characteristics (sense of coherence (SOC), depression, anxiety, coping styles, value system and need for social approval). Part II (2008-2009), the same participants completed an Internet survey 4 years after graduation. Results of the postgraduate medical exam were taken under consideration. Academic achievement predicts only professional competence. Coping styles are significant indicators of satisfaction with medicine as a career. SOC, while assessed with anxiety and depression during studies, enabled us to recognize future QOF of medical graduates. Professional stress is not predictable to such an extent as other success indicators. There are significant psychological qualities useful to draw the outline of the future job and life performance of medical graduates.
Virtanen, P; Koivisto, A M
2001-11-01
Knowledge about changes in wellbeing during the passage from professional studies to working life is scarce and controversial. This study examined these changes among university graduates with good and poor employment prospects. A longitudinal study with four postal questionnaire surveys of a closed cohort. Cohorts of graduating Finnish physicians and architects were followed up from 1994 to 1998. In 1994 Finland's national economy was still struggling to break loose from a period of severe recession, and unemployment rates were high even among educated professionals. As economic growth eventually got under way the unemployment situation began to ease for physicians but not for architects. Architecture students (n = 189) from Finland's three technical universities and medical students (n = 638) from Finland's five medical faculties. Both had started their studies in 1989. In the first questionnaire survey there were no differences between the professions in strain resistance resources, as indicated by Sense of Coherence (SOC), or in psychological distress, as indicated by General Health Questionnaire (GHQ). Profession emerged as a significant between subject factor in analysis of variance for repeated measures of both SOC and GHQ. Physicians' scores on the 13 item SOC questionnaire improved during the follow up from 62.6 to 67.5 and on the 12 item GHQ questionnaire from 24.2 to 22.2. Among architects the corresponding scores remained unchanged (62.5-62.2 and 23.1-22.6). The significance of profession remained unchanged when gender and individuals' graduation and total work experience were introduced to the statistical models as between subject factors. Improved SOC in physicians but not in architects supports the hypothesis that good employment prospects are important to employee wellbeing. Although less consistent, indicating fluctuations in day to day psychological distress, GHQ findings are also in line with the hypothesis. In both professions the indicators studied were independent of individuals' graduation and career. It is concluded that rather than individually, the mechanisms that connect employment prospects with wellbeing operate collectively within the whole profession. Highly educated professionals do not complete their studies until almost 30, and if for reasons of insecure employment they are unable to develop their SOC to the optimum level at that age, their resources for resisting health endangering strain may remain permanently poor.
Li, Xiangyu; Xie, Nijie; Tian, Xinyue
2017-01-01
This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget. PMID:28208730
Li, Xiangyu; Xie, Nijie; Tian, Xinyue
2017-02-08
This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget.
Jabłoński, Marcin J; Szot-Parda, Magdalena; Grzegorek, Tomasz; Prusak, Jacek; Jach, Robert; Posadzka, Ewa
2016-01-01
Analysis and comparison of two types of motivation (autotelic and non-autotelic) which are behind the choice of medical specialisation by doctors in relation to their sense of coherence. Questionnaire method was used in the study. The study included a group of 86 graduates of the Faculty of Medicine of the Jagiellonian University, who have completed postgraduate internships at the Department of Haematology and Oncology, Department of Gynaecology of the Jagiellonian University and the L. Rydygier hospital in Krakow in 2010-2012. Statistical analyses were performed using the IBM SPSS Statistics 21. The level of significance was alpha = 0.05. It has been shown that doctors are more frequently characterised by the autotelic type of motivation. It has also been proven that there is a relationship between the male sex of the surveyed doctors and their autotelic type of motivation. Moreover, it has been demonstrated that there is a correlation between the comprehensibility component of the sense of coherence and the male sex. It has been also demonstrated that there is a correlation between meaningfulness component of the sense of coherence and the choice of surgical specialisation. Autotelic motivation prevails when choosing a medical specialty and this tendency is more noticeable in men than in women. The meaningfulness component of SoC plays a regulatory role in making career decisions related to the greater physical and mental pressure put on doctors. The observed differences in the types of motivation and the size of the components of the sense of coherence in groups of surveyed doctors - men and women - encourage further observations of these relationships on a larger population.
3D deblending of simultaneous source data based on 3D multi-scale shaping operator
NASA Astrophysics Data System (ADS)
Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Gong, Fei; Huang, Weilin
2018-04-01
We propose an iterative three-dimensional (3D) deblending scheme using 3D multi-scale shaping operator to separate 3D simultaneous source data. The proposed scheme is based on the property that signal is coherent, whereas interference is incoherent in some domains, e.g., common receiver domain and common midpoint domain. In two-dimensional (2D) blended record, the coherency difference of signal and interference is in only one spatial direction. Compared with 2D deblending, the 3D deblending can take more sparse constraints into consideration to obtain better performance, e.g., in 3D common receiver gather, the coherency difference is in two spatial directions. Furthermore, with different levels of coherency, signal and interference distribute in different scale curvelet domains. In both 2D and 3D blended records, most coherent signal locates in coarse scale curvelet domain, while most incoherent interference distributes in fine scale curvelet domain. The scale difference is larger in 3D deblending, thus, we apply the multi-scale shaping scheme to further improve the 3D deblending performance. We evaluate the performance of 3D and 2D deblending with the multi-scale and global shaping operators, respectively. One synthetic and one field data examples demonstrate the advantage of the 3D deblending with 3D multi-scale shaping operator.
NASA Astrophysics Data System (ADS)
Chabrillat, Sabine; Foerster, Saskia; Steinberg, Andreas; Stevens, Antoine; Segl, Karl
2016-04-01
There is a renewed awareness of the finite nature of the world's soil resources, growing concern about soil security, and significant uncertainties about the carrying capacity of the planet. As a consequence, soil scientists are being challenged to provide regular assessments of soil conditions from local through to global scales. However, only a few countries have the necessary survey and monitoring programs to meet these new needs and existing global data sets are out-of-date. A particular issue is the clear demand for a new area-wide regional to global coverage with accurate, up-to-date, and spatially referenced soil information as expressed by the modeling scientific community, farmers and land users, and policy and decision makers. Soil spectroscopy from remote sensing observations based on studies from the laboratory scale to the airborne scale has been shown to be a proven method for the quantitative prediction of key soil surface properties in local areas for exposed soils in appropriate surface conditions such as low vegetation cover and low water content. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next 3 to 5 years (EnMAP, HISUI, PRISMA, SHALOM), a great potential for the global mapping and monitoring of soil properties is appearing. Nevertheless, the capabilities to extend the soil properties current spectral modeling from local to regional scales are still to be demonstrated using robust methods. In particular, three central questions are at the forefront of research nowadays: a) methodological developments toward improved algorithms and operational tools for the extraction of soil properties, b) up scaling from the laboratory into space domain, and c) demonstration of the potential of upcoming satellite systems and expected accuracy of soil maps. In this study, airborne imaging spectroscopy data from several test sites are used to simulate EnMAP satellite images at 30 m scale. Then, different soil algorithms are examined based on the analyses of chemical-physical features from the soil spectral reflectance and/or multivariate established techniques such as Partial-Least Squares PLS, Support-Vector Machine SVM, to determine common surface soil properties, in particular soil organic carbon (SOC), clay and iron oxide content. Results show that EnMAP is able to predict clay, free iron oxide, and SOC with an RV2 between 0.53 and 0.67 compared to airborne imagery with RV2 between 0.64 and 0.74. The correlation between EnMAP and airborne imagery prediction results is high (Pearson coefficients between 0.84 and 0.91). Furthermore, spatial distribution is coherent between the airborne mapping and simulated EnMAP mapping as shown with a spatial structure analysis. In general, this paper demonstrates the high potential of upcoming spaceborne hyperspectral missions for soil science studies but also shows the need for future adapted strategies to fulfill the entire potential of soil spectroscopy for orbital utilization.
Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.
Aksoy, Ece; Yigini, Yusuf; Montanarella, Luca
2016-01-01
Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they're collected from the "Land Use/Cover Area frame Statistical Survey" (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and "Soil Transformations in European Catchments" (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960-1990 and 2000-2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%.
NASA Astrophysics Data System (ADS)
Wang, Guocheng; Zhang, Wen; Sun, Wenjuan; Li, Tingting; Han, Pengfei
2017-10-01
Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C) input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1° × 0.1°) and over a long timescale (54 years from 1961 to 2014). A widely used soil C turnover model (RothC) and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha-1 yr-1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive) and the edaphic variable of initial SOC content (linearly negative). Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to effectively mitigate climate change through soil C sequestration in croplands on a global scale.
Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe
Aksoy, Ece
2016-01-01
Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they’re collected from the “Land Use/Cover Area frame Statistical Survey” (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and “Soil Transformations in European Catchments” (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960–1990 and 2000–2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%. PMID:27011357
Jin, Virginia L; Schmer, Marty R; Stewart, Catherine E; Sindelar, Aaron J; Varvel, Gary E; Wienhold, Brian J
2017-07-01
Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N 2 O) and methane (CH 4 ) fluxes and SOC changes (ΔSOC) at a long-term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha -1 yr -1 , respectively) under no-till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N 2 O and CH 4 fluxes were measured for five crop-years (2011-2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area- and yield-scaled soil N 2 O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH 4 neutral and CT a CH 4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long-term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface SOC stocks. © 2017 John Wiley & Sons Ltd.
A scale-based connected coherence tree algorithm for image segmentation.
Ding, Jundi; Ma, Runing; Chen, Songcan
2008-02-01
This paper presents a connected coherence tree algorithm (CCTA) for image segmentation with no prior knowledge. It aims to find regions of semantic coherence based on the proposed epsilon-neighbor coherence segmentation criterion. More specifically, with an adaptive spatial scale and an appropriate intensity-difference scale, CCTA often achieves several sets of coherent neighboring pixels which maximize the probability of being a single image content (including kinds of complex backgrounds). In practice, each set of coherent neighboring pixels corresponds to a coherence class (CC). The fact that each CC just contains a single equivalence class (EC) ensures the separability of an arbitrary image theoretically. In addition, the resultant CCs are represented by tree-based data structures, named connected coherence tree (CCT)s. In this sense, CCTA is a graph-based image analysis algorithm, which expresses three advantages: 1) its fundamental idea, epsilon-neighbor coherence segmentation criterion, is easy to interpret and comprehend; 2) it is efficient due to a linear computational complexity in the number of image pixels; 3) both subjective comparisons and objective evaluation have shown that it is effective for the tasks of semantic object segmentation and figure-ground separation in a wide variety of images. Those images either contain tiny, long and thin objects or are severely degraded by noise, uneven lighting, occlusion, poor illumination, and shadow.
NASA Astrophysics Data System (ADS)
Meyer, N.; Welp, G.; Amelung, W.
2018-02-01
The temperature sensitivity of heterotrophic soil respiration is crucial for modeling carbon dynamics but it is variable. Presently, however, most models employ a fixed value of 1.5 or 2.0 for the increase of soil respiration per 10°C increase in temperature (Q10). Here we identified the variability of Q10 at a regional scale (Rur catchment, Germany/Belgium/Netherlands). We divided the study catchment into environmental soil classes (ESCs), which we define as unique combinations of land use, aggregated soil groups, and texture. We took nine soil samples from each ESC (108 samples) and incubated them at four soil moisture levels and five temperatures (5-25°C). We hypothesized that Q10 variability is controlled by soil organic carbon (SOC) degradability and soil moisture and that ESC can be used as a widely available proxy for Q10, owing to differences in SOC degradability. Measured Q10 values ranged from 1.2 to 2.8 and were correlated with indicators of SOC degradability (e.g., pH, r = -0.52). The effect of soil moisture on Q10 was variable: Q10 increased with moisture in croplands but decreased in forests. The ESC captured significant parts of Q10 variability under dry (R2 = 0.44) and intermediate (R2 = 0.36) moisture conditions, where Q10 increased in the order cropland
Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun
2013-01-01
Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007–Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China. PMID:24058408
Lowin, Julia; Sail, Kavita; Baj, Rakhi; Jalundhwala, Yash J; Marshall, Thomas S; Konwea, Henrietta; Chaudhuri, K R
2017-11-01
Parkinson's disease (PD) is an incurable, progressive neurological condition, with symptoms impacting movement, walking, and posture that eventually become severely disabling. Advanced PD (aPD) has a significant impact on quality-of-life (QoL) for patients and their caregivers/families. Levodopa/carbidopa intestinal gel (LCIG) is indicated for the treatment of advanced levodopa-responsive PD with severe motor fluctuations and hyper-/dyskinesia when available combinations of therapy have not given satisfactory results. To determine the cost-effectiveness of LCIG vs standard of care (SoC) for the treatment of aPD patients. A Markov model was used to evaluate LCIG vs SoC in a hypothetical cohort of 100 aPD patients with severe motor fluctuations from an Irish healthcare perspective. Model health states were defined by Hoehn & Yahr (H&Y) scale-combined with amount of time in OFF-time-and death. SoC comprised of standard oral therapy ± subcutaneous apomorphine infusion and standard follow-up visits. Clinical efficacy, utilities, and transition probabilities were derived from published studies. Resource use was estimated from individual patient-level data from Adelphi 2012 UK dataset, using Irish costs, where possible. Time horizon was 20 years. Costs and outcomes were discounted at 4%. Both one-way and probabilistic sensitivity analyses were conducted. The incremental cost-effectiveness ratio for LCIG vs SOC was €26,944/quality adjusted life year (QALY) (total costs and QALYs for LCIG vs SoC: €537,687 vs €514,037 and 4.37 vs 3.49, respectively). LCIG is cost-effective at a payer threshold of €45,000. The model was most sensitive to health state costs. LCIG is a cost-effective treatment option compared with SoC in patients with aPD.
Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio, USA
Tan, Z.; Lal, R.
2005-01-01
Soil C sequestration through changes in land use and management is one of the important strategies to mitigate the global greenhouse effect. This study was conducted to estimate C sequestration potential of the top 20 cm depth of soil for two scenarios in Ohio, USA: (1) with reforestation of both current cropland and grassland where SOC pools are less than the baseline SOC pool under current forest; (2) with the adoption of NT on all current cropland. Based on Ohio Soil Survey Characterization Database and long-term experimental data of paired conservation tillage (CT) versus no-till (NT), we specified spatial variations of current SOC pools and C sequestration potentials associated with soil taxa within each major land resource area (MLRA). For scenario I, there would be 4.56 Mha of cropland having an average SOC sequestration capacity of 1.55 kg C m−2 and 0.80 Mha of grassland with that of 1.35 kg C m−2. Of all potential area, 73% are associated with Alfisols and 15% with Mollisols, but the achievable potential could vary significantly with individual MLRAs. Alternately, an average SOC sequestration rate of 62 g C m−2 year−1 was estimated with conversion from CT to NT for cultivated Alfisols, by which a cumulative increase of 71 Tg C resulted from reforestation of cropland could be realized in 25 years. Soils with lower antecedent C contents have higher C sequestration rates. In comparison with the results obtained at the state scale, the estimates of SOC sequestration potentials taxonomically associated with each specific MLRA may be more useful to the formulation of C credit trading programs.
NASA Astrophysics Data System (ADS)
Poeplau, C.; Bolinder, M. A.; Eriksson, J.; Lundblad, M.; Kätterer, T.
2015-03-01
Soil organic carbon (SOC) plays a crucial role in the global carbon cycle as a potential sink or source. Land management influences SOC storage, so the European Parliament decided in 2013 that changes in carbon stocks within a certain land use type, including arable land, must be reported by all member countries in their national inventory reports for greenhouse gas emissions. Here we show the temporal dynamics of SOC during the past two decades in Swedish agricultural soils, based on soil inventories conducted in 1988-1997 (Inventory I), 2001-2007 (Inventory II) and from 2010 onwards (Inventory III), and link SOC changes with trends in agricultural management. From Inventory I to Inventory II, SOC increased in 16 out of 21 Swedish counties, while from Inventory I to Inventory III it increased in 18 out of 21 counties. Mean topsoil (0-20 cm) SOC concentration for the entire country increased from 2.48 to 2.67% C (a relative increase of 7.7%, or 0.38% yr-1) over the whole period. We attributed this to a substantial increase in ley as a proportion of total agricultural area in all counties. The horse population in Sweden has more than doubled since 1981 and was identified as the main driver for this management change (R2 = 0.72). Due to subsidies introduced in the early 1990s, the area of long-term set-aside (mostly old leys) also contributed to the increase in area of ley. The carbon sink function of Swedish agricultural soils demonstrated in this study differs from trends found in neighbouring countries. This indicates that country-specific or local socio-economic drivers for land management must be accounted for in larger-scale predictions.
NASA Astrophysics Data System (ADS)
Poeplau, C.; Bolinder, M. A.; Eriksson, J.; Lundblad, M.; Kätterer, T.
2015-06-01
Soil organic carbon (SOC) plays a crucial role in the global carbon cycle as a potential sink or source. Land management influences SOC storage, so the European Parliament decided in 2013 that changes in carbon stocks within a certain land use type, including arable land, must be reported by all member countries in their national inventory reports for greenhouse gas emissions. Here we show the temporal dynamics of SOC during the past 2 decades in Swedish agricultural soils, based on soil inventories conducted in 1988-1997 (Inventory I), 2001-2007 (Inventory II) and from 2010 onwards (Inventory III), and link SOC changes with trends in agricultural management. From Inventory I to Inventory II, SOC increased in 16 out of 21 Swedish counties, while from Inventory I to Inventory III it increased in 18 out of 21 counties. Mean topsoil (0-20 cm) SOC concentration for the entire country increased from 2.48 to 2.67% C (a relative increase of 7.7%, or 0.38% yr-1) over the whole period. We attributed this to a substantial increase in ley as a proportion of total agricultural area in all counties. The horse population in Sweden has more than doubled since 1981 and was identified as the main driver for this management change (R2 = 0.72). Due to subsidies introduced in the early 1990s, the area of long-term set-aside (mostly old leys) also contributed to the increase in area of ley. The carbon sink function of Swedish agricultural soils demonstrated in this study differs from trends found in neighbouring countries. This indicates that country-specific or local socio-economic drivers for land management must be accounted for in larger-scale predictions.
Critical carbon input to maintain current soil organic carbon stocks in global wheat systems
Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing
2016-01-01
Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha−1 yr−1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content. PMID:26759192
Adaptive self-organization of Bali's ancient rice terraces.
Lansing, J Stephen; Thurner, Stefan; Chung, Ning Ning; Coudurier-Curveur, Aurélie; Karakaş, Çağil; Fesenmyer, Kurt A; Chew, Lock Yue
2017-06-20
Spatial patterning often occurs in ecosystems as a result of a self-organizing process caused by feedback between organisms and the physical environment. Here, we show that the spatial patterns observable in centuries-old Balinese rice terraces are also created by feedback between farmers' decisions and the ecology of the paddies, which triggers a transition from local to global-scale control of water shortages and rice pests. We propose an evolutionary game, based on local farmers' decisions that predicts specific power laws in spatial patterning that are also seen in a multispectral image analysis of Balinese rice terraces. The model shows how feedbacks between human decisions and ecosystem processes can evolve toward an optimal state in which total harvests are maximized and the system approaches Pareto optimality. It helps explain how multiscale cooperation from the community to the watershed scale could persist for centuries, and why the disruption of this self-organizing system by the Green Revolution caused chaos in irrigation and devastating losses from pests. The model shows that adaptation in a coupled human-natural system can trigger self-organized criticality (SOC). In previous exogenously driven SOC models, adaptation plays no role, and no optimization occurs. In contrast, adaptive SOC is a self-organizing process where local adaptations drive the system toward local and global optima.
Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems
NASA Astrophysics Data System (ADS)
Wang, G.
2017-12-01
Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.
Towards a macrosystems approach for successful coastal management
Managing coastal resources for resiliency and sustainability often requires integrative, multi-disciplinary approaches across varying spatial and temporal scales to engage stakeholders and inform decision-makers. We discuss case studies integrating wetland ecology, economics, soc...
Evolution of multiple quantum coherences with scaled dipolar Hamiltonian
NASA Astrophysics Data System (ADS)
Sánchez, Claudia M.; Buljubasich, Lisandro; Pastawski, Horacio M.; Chattah, Ana K.
2017-08-01
In this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters. In all cases, a strong dependence between the evolution rate and the weighting factor is observed. Remarkably, all the curves appeared overlapped in a single trend when plotted against the self-time, a new time scale that includes the scaling factor into the evolution time. In other words, the spin system displayed always the same quantum evolution, slowed down as the scaling factor decreases, confirming the high performance of the new pulse sequence.
Continuous System-Level Scale for Comparing Laser Gain Media
2008-12-01
thickness in Yb3+-doped microchip lasers . J. Opt. Soc. Am. B October 2003, 20, 2061–2067. 29. Liu, Q.; Gong, M.; Lu, F.; Gong, W.; Li, C. 520-W...Continuous “System-Level” Scale for Comparing Laser Gain Media by Jeffrey O. White ARL-TR-4682 December 2008...System-Level” Scale for Comparing Laser Gain Media Jeffrey O. White Sensors and Electron Devices Directorate, ARL
NASA Astrophysics Data System (ADS)
Ahmed, Zia U.; Woodbury, Peter B.; Sanderman, Jonathan; Hawke, Bruce; Jauss, Verena; Solomon, Dawit; Lehmann, Johannes
2017-02-01
To predict how land management practices and climate change will affect soil carbon cycling, improved understanding of factors controlling soil organic carbon fractions at large spatial scales is needed. We analyzed total soil organic (SOC) as well as pyrogenic (PyC), particulate (POC), and other soil organic carbon (OOC) fractions in surface layers from 650 stratified-sampling locations throughout Colorado, Kansas, New Mexico, and Wyoming. PyC varied from 0.29 to 18.0 mg C g-1 soil with a mean of 4.05 mg C g-1 soil. The mean PyC was 34.6% of the SOC and ranged from 11.8 to 96.6%. Both POC and PyC were highest in forests and canyon bottoms. In the best random forest regression model, normalized vegetation index (NDVI), mean annual precipitation (MAP), mean annual temperature (MAT), and elevation were ranked as the top four important variables determining PyC and POC variability. Random forests regression kriging (RFK) with environmental covariables improved predictions over ordinary kriging by 20 and 7% for PyC and POC, respectively. Based on RFK, 8% of the study area was dominated (≥50% of SOC) by PyC and less than 1% was dominated by POC. Furthermore, based on spatial analysis of the ratio of POC to PyC, we estimated that about 16% of the study area is medium to highly vulnerable to SOC mineralization in surface soil. These are the first results to characterize PyC and POC stocks geospatially using stratified sampling scheme at the scale of 1,000,000 km2, and the methods are scalable to other regions.
Wang, Sheng-Jun; Hilgetag, Claus C.; Zhou, Changsong
2010-01-01
Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality (SOC). We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. Previously, it was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We found that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and SOC, which are not present in the respective random networks. The mechanism underlying the sustained activity is that each dense module cannot sustain activity on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical modular networks provide the coupling among subsystems with SOC. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivity of critical states and the predictability and timing of oscillations for efficient information processing. PMID:21852971
NASA Astrophysics Data System (ADS)
Wenger, Christian; Fompeyrine, Jean; Vallée, Christophe; Locquet, Jean-Pierre
2012-12-01
More than Moore explores a new area of Silicon based microelectronics, which reaches beyond the boundaries of conventional semiconductor applications. Creating new functionality to semiconductor circuits, More than Moore focuses on motivating new technological possibilities. In the past decades, the main stream of microelectronics progresses was mainly powered by Moore's law, with two focused development arenas, namely, IC miniaturization down to nano scale, and SoC based system integration. While the microelectronics community continues to invent new solutions around the world to keep Moore's law alive, there is increasing momentum for the development of 'More than Moore' technologies which are based on silicon technologies but do not simply scale with Moore's law. Typical examples are RF, Power/HV, Passives, Sensor/Actuator/MEMS or Bio-chips. The More than Moore strategy is driven by the increasing social needs for high level heterogeneous system integration including non-digital functions, the necessity to speed up innovative product creation and to broaden the product portfolio of wafer fabs, and the limiting cost and time factors of advanced SoC development. It is believed that More than Moore will add value to society on top of and beyond advanced CMOS with fast increasing marketing potentials. Important key challenges for the realization of the 'More than Moore' strategy are: perspective materials for future THz devices materials systems for embedded sensors and actuators perspective materials for epitaxial approaches material systems for embedded innovative memory technologies development of new materials with customized characteristics The Hot topics covered by the symposium M (More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics) at E-MRS 2012 Spring Meeting, 14-18 May 2012 have been: development of functional ceramics thin films New dielectric materials for advanced microelectronics bio- and CMOS compatible material systems piezoelectric films and nanostructures Atomic Layer Deposition (ALD) of oxides and nitrides characterization and metrology of very thin oxide layers We would like to take this opportunity to thank the Scientific Committee and Local Committee for bringing together a coherent and high quality Symposium at E-MRS 2012 Spring Meeting. Christian Wenger, Jean Fompeyrine, Christophe Vallée and Jean-Pierre Locquet Organizing Committee of Symposium M September 2012
Esch, Tobias; Sonntag, Ulrike; Esch, Sonja Maren; Thees, Stefanie
2013-01-01
Student life can be stressful. Hence, we started a regular mind-body medical stress management program in 2006. By today, more than 500 students took part and evaluations showed significant results, especially with regard to a reduction of stress warning signals. For further analysis, we now decided to run a randomized controlled longitudinal trial. Participating students at Coburg University were randomized into an intervention (n = 24) or a waitlist control group (n = 19). The intervention group completed 3 sets (pre/post/follow-up) and the control group 2 sets (pre/post) of self-administered questionnaires. The questionnaires included: SF-12 Health Survey, Perceived Stress Scale (PSS), Sense of Coherence (SOC-L9), Visual Analogue Scale (VAS) concerning stress, and the Stress Warning Signs (SWS) scale. Randomly selected participants of the intervention group were also queried in qualitative interviews. The intervention consisted of an 8 week stress management group program (mind-body medical stress reduction - MBMSR). Follow-up measures were taken after 6 months. Virtually, no drop-out occurred. Our study showed significant effects in the intervention group concerning SF-12 Mental Component Scale (p = 0.05), SF-12 Physical Component Scale (p = 0.001), VAS (in general, p = 0.001) and SWS (emotional reactions, p <0.001), underlined by qualitative results, which showed a higher quality of life. The effectiveness of an MBMSR program in a group of supposedly healthy students could be demonstrated. Findings suggest that stress management might be given importance at universities that care for the performance, the quality of life, and stress-health status of their students, acknowledging and accounting for the challenging circumstances of university life, as well as the specific needs of the modern student population. Copyright © 2013 S. Karger AG, Basel.
Environment spectrum and coherence behaviours in a rare-earth doped crystal for quantum memory.
Gong, Bo; Tu, Tao; Zhou, Zhong-Quan; Zhu, Xing-Yu; Li, Chuan-Feng; Guo, Guang-Can
2017-12-21
We theoretically investigate the dynamics of environment and coherence behaviours of the central ion in a quantum memory based on a rare-earth doped crystal. The interactions between the central ion and the bath spins suppress the flip-flop rate of the neighbour bath spins and yield a specific environment spectral density S(ω). Under dynamical decoupling pulses, this spectrum provides a general scaling for the coherence envelope and coherence time, which significantly extend over a range on an hour-long time scale. The characterized environment spectrum with ultra-long coherence time can be used to implement various quantum communication and information processing protocols.
Coherent structures: Comments on mechanisms
NASA Technical Reports Server (NTRS)
Hunt, J. C. R.
1987-01-01
There is now overwhelming evidence that in most turbulent flows there exist regions moving with the flow where the velocity and vorticity have a characteristic structure. These regions are called coherent structures because within them the large-scale distributions of velocity and/or vorticity remain coherent even as these structures move through the flow and interact with other structures. Since the flow enters and leaves the bounding surfaces of these structures, a useful definition for coherent structures is that they are open volumes with distinctive large-scale vorticity distributions. Possible fruitful directions for the study of the dynamics of coherent structures are suggested. Most coherent structures research to data was concentrated on measurement and kinematical analysis; there is now a welcome move to examine the dynamics of coherent structures, by a variety of different methods. A few of them will be described.
Salvati, Luca; Barone, Pier Matteo; Ferrara, Carlotta
2015-05-01
Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink.
Self Organized Criticality as a new paradigm of sleep regulation
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch.; Bartsch, Ronny P.
2012-02-01
Humans and animals often exhibit brief awakenings from sleep (arousals), which are traditionally viewed as random disruptions of sleep caused by external stimuli or pathologic perturbations. However, our recent findings show that arousals exhibit complex temporal organization and scale-invariant behavior, characterized by a power-law probability distribution for their durations, while sleep stage durations exhibit exponential behavior. The co-existence of both scale-invariant and exponential processes generated by a single regulatory mechanism has not been observed in physiological systems until now. Such co-existence resembles the dynamical features of non-equilibrium systems exhibiting self-organized criticality (SOC). Our empirical analysis and modeling approaches based on modern concepts from statistical physics indicate that arousals are an integral part of sleep regulation and may be necessary to maintain and regulate healthy sleep by releasing accumulated excitations in the regulatory neuronal networks, following a SOC-type temporal organization.
USDA-ARS?s Scientific Manuscript database
Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parameterize remote turbulence measurements, and to characterize ramp features in the turbulent field. The ramp features are associated with turbulent coherent structures, which dominate energy a...
Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging.
Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R
2015-12-15
Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A , 1985, 2 .] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a [Formula: see text] external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.
Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging
NASA Astrophysics Data System (ADS)
Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R.
2015-12-01
Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A, 1985, 2.] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a ? external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.
Tuszyńska-Bogucka, Wioletta; Saran, Tomasz; Jurkowska, Barbara; Dziaduch, Wiesław
2015-01-01
The aim of the study was investigation of the correlations between medical indicators of the course of illness and psychological factors, treated as generalised resistance resources, according to the Salutogenic Model by A.Antonovsky. The salutogenic orientation is one of the more viable paradigms for health promotion research and practice, and is offered as a useful theory for taking a salutogenic approach to health research. Data was used of 67 patients at Institute of Rural Health in Lublin, Poland, suffering from Osteoarthritis. Using psychological test methods: SOC-29, CISS, AIS, IZZ, KNS, GSES, BDI and The Index of Severity for Osteoarthritis of the Hip or the Knee and The Low Back Pain Rating Scale as medical indicators of the course of the illness. Analysis showed significance correlations between some psychosocial (sense of coherence, stress coping strategies, acceptance of illness, health behaviour, hope for success, self-efficacy and depression) and medical variables (intensity of the degenerative disease and low back spine). Results of analysis showed that psychological factors within the meaning of psychosocial resources may be potential pathways for improving or disturbing the treatment effects in the course of hip and knee osteoarthritis treatment, and/or the patient's condition.
Aho, Anna Carin; Hultsjö, Sally; Hjelm, Katarina
2015-01-01
To describe young adults' experiences of living with recessive limb-girdle muscular dystrophy (LGMD2) from a salutogenic orientation. A qualitative explorative interview study, including 14 participants aged 20-30 years, was performed focusing on comprehensibility, manageability and meaningfulness in daily life. Content analysis was used for data analysis. Living with LGMD2 not only implies learning to live with the disease and the variations between good and bad periods but also means trying to make sense of a progressive disease that brings uncertainty about future health, by striving to make the best of the situation. Disease progression involves practical and mental struggle, trying to maintain control over one's life despite vanished physical functions that require continual adjustments to the body. Restrictions in a double sense were described, not only due to the disease but also due to poor comprehension of the disease in society. Lack of knowledge about LGMD2 among professionals often results in having to fight for the support needed. In order to manage daily life, it is important to be seen and understood as an individual in contacts with professionals and in society in general, to have informal social support and meaningful activities as well as access to personal assistance if necessary. Recessive limb-girdle muscular dystrophy (LGMD2) is a group of progressive disorders, which manifest in physical and psychological consequences for the individual. According to the salutogenic orientation, people need to find life comprehensible, manageable and meaningful, i.e. to achieve a sense of coherence (SOC), but living with LGMD2 may recurrently challenge the individual's SOC. Through the holistic view of the individual's situation that the salutogenic orientation provides, professionals may support the individual to strengthen SOC and thereby facilitate the movement towards health.
NASA Astrophysics Data System (ADS)
Schillaci, Calogero; Saia, Sergio; Braun, Andreas; Acutis, Marco
2017-04-01
Topsoil organic carbon plays an important role in the agricultural yield, yield potential, and to deliver many ecosystem services, such as the potential to reduce greenhouse gas (GHG) emission from soil. In particular, SOC content sturdily affects soil properties, thus the precision of its estimation can support broad-scale agricultural and environmental management policy. Soils in temperate agro-ecosystem are generally highly productive and cropland occupies about 60% of their surface (Ramankutty et al 2008). In such contexts, lands is frequently subjected to SOC degrading operations, mostly ploughing, with drawbacks on soil fertility and erosion. In temperate agro-ecosystems, a strong role in SOC maintenance can be played by manure and residues inputs after husbandry and related activities and return of plant biomass to the soil (Acutis et al 2014). In this perspective, soil management can have a major role in SOC spatial distribution to maintain soil fertility and ecosystem services in a target area. Due to the considerable importance of SOC on both agronomical and ecological aspects of the agro-ecosystems, regional soil surveys over the years frequently take into account the measurement of SOC concentration and often stock. In the present study, we integrated a highly detailed legacy SOC dataset with climatic data and RS data to produce a reliable SOC maps from a farm to a district scale. In particular, the Normalized Difference Vegetation Index (NDVI)was used after the computation of its average value in a given pixel derived from several approximately cloud-free images. The input dataset was made of about 3000 Ap horizons implemented of SOC concentration, texture, bulk density and metadata. Climatic data (Worldclim), soil type (from the pedological map 1:250000 WRB), and a time series NDVI were applied. The NDVI data were derived from a set of Landsat 5 scenes (path 193, row 28,29) whereas the path 194, (row 28 and 29) contributes for less than one fourth of the study area. The use of machine learning approach for the generation of a SOC map of the flat terrain agricultural topsoil of Lombardy using the regional soil database relies on two assumptions: (1) the slow change in the content of the stabilised soil organic matter (SOM) fraction, which is almost everywhere the most represented SOM fraction; and (2) the intrinsic low erosion rates due to the low mean slope. In particular, NDVI, which is related land cover and to the amount of biomass returned the soil, can have drawbacks when applied in cultivated fields. These drawbacks mainly concern the variability on crop biomass within and across the year. Notwithstanding, this issue makes NDVI very suitable for differentiating contrasting land use (e.g. field crops vs. orchards) when computed from images captured in particular crop cycle moments (e.g. in summer). However, the same issue reduces NDVI suitability to estimate the amount of biomass within each land use or when aiming at highly detailed resolution. Different grade of cloud cover were admitted to construct the average NDVI. Boosted regression trees were used to reveal the effect of each spatial covariate in predicting the SOC content. Preliminary results highlighted that the integration of the soil pedological classification and the mean NDVI improved the pixel classification in SOC classes according to crop type and management. As expected, climatic gradient played an important role in SOC modelling but did not affect the spatial resolution of the final map. In conclusion, SOC estimate strongly depends on sample density and homogeneity of distribution and the environmental heterogeneity. The lack of the strong topographical traits in flat terrain areas represents a challenge for soil mapping. In such conditions, the computation of a reliable biomass-related RS trait such as the mean NDVI can increase the prediction ability of the models and reduce the mapping biases. References Acutis, M., Alfieri, L., Giussani, A., Provolo, G., Di Guardo, A., Colombini, S., Bertoncini, G.,Castelnuovo, M., Sali, G., Moschini, M., Sanna, M., Perego, A., Carozzi, M., Chiodini, M.E., Fumagalli, M., 2014. ValorE: An integrated and GIS-based decision support system for livestock manure management in the Lombardy region (northern Italy). Land use policy 41, 149-162. doi:10.1016/j.landusepol.2014.05.007 Ramankutty, N., A. T. Evan, C. Monfreda, and J. A. Foley (2008), Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000, Global Biogeochem. Cycles , 22, GB1003, doi:10.1029/2007GB002952.
Rapid Inflammation in Mice Lacking Both SOCS1 and SOCS3 in Hematopoietic Cells
Ushiki, Takashi; Huntington, Nicholas D.; Glaser, Stefan P.; Kiu, Hiu; Georgiou, Angela; Zhang, Jian-Guo; Nicola, Nicos A.; Roberts, Andrew W.; Alexander, Warren S.
2016-01-01
The Suppressors of Cytokine Signalling (SOCS) proteins are negative regulators of cytokine signalling required to prevent excess cellular responses. SOCS1 and SOCS3 are essential to prevent inflammatory disease, SOCS1 by attenuating responses to IFNγ and gamma-common (γc) cytokines, and SOCS3 via regulation of G-CSF and IL-6 signalling. SOCS1 and SOCS3 show significant sequence homology and are the only SOCS proteins to possess a KIR domain. The possibility of overlapping or redundant functions was investigated in inflammatory disease via generation of mice lacking both SOCS1 and SOCS3 in hematopoietic cells. Loss of SOCS3 significantly accelerated the pathology and inflammatory disease characteristic of SOCS1 deficiency. We propose a model in which SOCS1 and SOCS3 operate independently to control specific cytokine responses and together modulate the proliferation and activation of lymphoid and myeloid cells to prevent rapid inflammatory disease. PMID:27583437
Lifetime Traumatic Experiences and Leisure Physical Inactivity among Adolescent Boys.
Malinauskas, Romualdas; Malinauskiene, Vilija; Malinauskas, Mindaugas
2018-03-01
The aim of this study was to examine the associations between lifetime traumatic experiences and leisure physical inactivity among adolescent boys and to determine to what extent those associations are mediated by posttraumatic stress symptoms, unhealthy behaviors (smoking, alcohol use), the daily consumption of fresh fruit, and sense of coherence. A self-administered questionnaire combining 3 instruments measured leisure physical activity level (Godin and Shephard), symptoms of posttraumatic stress (IES-revised), lifetime traumatic experiences, sense of coherence (SOC-13, from Antonovsky), and behavioral and dietary patterns in a representative sample of eighth grade boys from a number of Kaunas, Lithuania, secondary schools (N = 885; response rate 88.6%). Fifty-six point eight percent of boys had experienced at least 1 lifetime traumatic event, with a 20.5% prevalence of PTS symptoms, and 5.4% were inactive during leisure time. In the logistic regression models, leisure physical inactivity was associated with lifetime traumatic experiences (adjusted OR = 2.33; 95% CI: 1.09-4.98). Sense of coherence and posttraumatic stress symptoms did not mediate those associations. Less-than-daily consumption of fresh fruit showed an independent effect, while smoking and weekly consumption of alcohol did not. Consistent associations between lifetime traumatic experiences and leisure physical inactivity among adolescent boys indicate that the presence of lifetime traumatic events should be taken into account when employing intervention and prevention programs on unhealthy lifestyles (physical inactivity, smoking, and alcohol).
NASA Astrophysics Data System (ADS)
Schönecker, Stephan; Li, Xiaoqing; Richter, Manuel; Vitos, Levente
2018-06-01
We investigate the lattice dynamical properties of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au in the nonequilibrium hcp structure by means of density-functional simulations, wherein spin-orbit coupling (SOC) was considered for Ir, Pt, and Au. The determined dynamical properties reveal that all eight elements possess a metastable hcp phase at zero temperature and pressure. The hcp Ni, Cu, Rh, Pd, and Au previously observed in nanostructures support this finding. We make evident that the inclusion of SOC is mandatory for an accurate description of the phonon dispersion relations and dynamical stability of hcp Pt. The underlying sensitivity of the interatomic force constants is ascribed to a SOC-induced splitting of degenerate band states accompanied by a pronounced reduction of electronic density of states at the Fermi level. To give further insight into the importance of SOC in Pt, we (i) focus on phase stability and examine a lattice transformation related to optical phonons in the hcp phase and (ii) focus on the generalized stacking fault energy (GSFE) of the fcc phase pertinent to crystal plasticity. We show that the intrinsic stable and unstable fault energies of the GSFE scale as in other common fcc metals, provided that the spin-orbit interaction is taken into account.
Zhong, Biao; Xu, Y Jun
2011-10-01
Exceeding 1.2 million acres (4856 km(2)) since the 1930s, coastal wetland loss has been the most threatening environmental problem in Louisiana, United States. This study utilized high-resolution LiDAR (Light Detection and Ranging) and DEM (Digital Elevation Model) data sets to assess the risk of potential wetland loss due to future sea level rises, their spatial distribution, and the associated loss of soil organic carbon (SOC) and organic nitrogen (SON) estimated from the State Soil Geographic (STATSGO) Database and National Wetlands Inventory (NWI) digital data. Potential inundation areas were divided into five elevation scales: < 0 cm, 0-50 cm, 50-100 cm, 100-150 cm, and 150-200 cm above mean sea level. The study found that southeastern Louisiana on the Mississippi River Delta, specifically the Pontchartrain and Barataria Basins, are most vulnerable to sea-level rise induced inundation. Accordingly, approximately 42,264,600 t of SOC and 2,817,640 t of SON would be inundated by 2050 using an average wetland SOC density (203 t per hectare) for the inundation areas between 0 and 50 cm. The estimated annual SOC and SON loss from Louisiana's coast is 17% of annual organic carbon and 6-8% of annual organic nitrogen inputs from the Mississippi River.
Jibeen, Tahira; Mahfooz, Musferah; Fatima, Shamem
2017-08-30
The current study examined the moderating role of personality traits (neuroticism and extraversion) on the relationship between spiritual transcendence and positive change, and spiritual transcendence and distress in burn patients. The sample (N = 98) comprised adult burn patients (age = 25-50) admitted to three hospitals in Lahore, Pakistan. They were assessed according to a demographic information sheet, the NEO Personality Inventory (McCrae and Costa in J Personal Soc Psychol 52:81-90, 1987), the Spiritual Transcendence Index (Seidlitz et al. in J Sci Study Relig 41:439-453, 2002), the Depression, Anxiety, Stress Scales-21 (Lovibond and Lovibond in Manual for the Depression Anxiety Stress scales, Psychology Foundation, Sydney, 1995), and the Perceived Benefit Scales (McMillen and Fisher in Soc Work Res 22(3):173-186, 1998). Stepwise moderated regression analysis showed that both personality traits (neuroticism and extraversion) played a moderating role in the relationship between spiritual transcendence and positive change, and spiritual transcendence and distress in burn patients. The findings highlight the potential role spiritual transcendence may have in understanding and improving the psychological adjustment of burn patients.
NASA Astrophysics Data System (ADS)
Sun, Yudong; Vadakkan, Tegy; Bassler, Kevin
2007-03-01
We study the universality and robustness of variants of the simple model of superconducting vortex dynamics first introduced by Bassler and Paczuski in Phys. Rev. Lett. 81, 3761 (1998). The model is a coarse-grained model that captures the essential features of the plastic vortex motion. It accounts for the repulsive interaction between vortices, the pining of vortices at quenched disordered locations in the material, and the over-damped dynamics of the vortices that leads to tearing of the flux line lattice. We report the results of extensive simulations of the critical ``Bean state" dynamics of the model. We find a phase diagram containing four distinct phases of dynamical behavior, including two phases with distinct Self Organized Critical (SOC) behavior. Exponents describing the avalanche scaling behavior in the two SOC phases are determined using finite-size scaling. The exponents are found to be robust within each phase and for different variants of the model. The difference of the scaling behavior in the two phases is also observed in the morphology of the avalanches.
Impact of savanna conversion to oil palm plantations on C stocks dynamics and soil fertility
NASA Astrophysics Data System (ADS)
Quezada, Juan Carlos; Guillaume, Thomas; Buttler, Alexandre; Ruegg, Johanna
2017-04-01
Large-scale expansion of oil palm cultivation on forested land in South-East Asia during the last decades lead to high negative environmental impacts. Because rainforests store high amount of C, their conversion to oil palm plantations results in large net CO2 emissions. Oil palm cultivation in tropical ecosystems such as savanna that store less C than forests is seen as an alternative to reduce greenhouse gas emissions of future oil palm development. While this option is more and more frequently mentioned, few data are available on the effective gain in C storage. Furthermore negative impact on soil organic carbon and soil fertility could offset gains of C storage in oil palm biomass. Here, we present results on aboveground and belowground C stocks and soil nutrient dynamics over a full rotation cycle of oil palm plantations established on tropical savanna grasslands. Three natural savanna grasslands as reference sites and 9 oil palm plantations ranging from two to twenty-seven years old were selected in the Llanos in Colombia. Oxisols were sampled down to 70 cm in each management zones of oil palm plantations (weeded circle, interrow, frond piles and harvesting path). Taking advantages of a shift from C4 to C3 vegetation, we quantified savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC stabilization rates and how they were affected by management practices (mineral fertilization, organic amendments, etc.). Results show that, in opposite to forest conversion, C storage increases when savannas are converted to oil palm plantations. Because soil C storage was very low in natural conditions, SOC changes had little effects on overall C storage. Substitution of savanna-derived SOC by oil palm-derived SOC was very fast in the topsoil and highest under frond pile and weeded circle where C and nutrients inputs are highest. However, stabilization of oil palm-derived SOC compensated loss of savanna-derived SOC rather than increased SOC stocks, indicating high SOC turnover. High turnover are explained by high nutrients inputs and little capacity of Oxisols to physically protect SOC. In conclusion, conversion of savanna to oil palm plantations results in a gain in ecosystem C storage as long as the cultivation lasts. Negative impacts on soil fertility are limited because savanna soils have low initial soil fertility. With more than 7 million ha of well-drained natural savanna grasslands, the Llanos could play a significant role in oil palm development. Nonetheless, a complete assessment of environmental impacts including biodiversity or water consumption is still necessary for the assessment on sustainability of the conversion of savanna to oil palm plantations.
NASA Astrophysics Data System (ADS)
Parras-Alcántara, Luis; Lozano-García, Beatriz
2016-04-01
Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Consequently, the scientific community is researching the fate of the organic carbon in the ecosystems. In this line, soil organic matter configuration plays an important role in the Soil System (Parras-Alcántara and Lozano García, 2014). Internationally it is known that soil C sequestration is a strategy to mitigate climate change. In this sense, many soil researchers have studied this parameter (SOC). However, many of these studies were carried out arbitrarily using entire soil profiles (ESP) by pedogenetic horizons or soil control sections (SCS) (edaphic controls to different thickness). As a result, the indiscriminate use of both methodologies implies differences with respect to SOC stock (SOCS) quantification. This scenario has been indicated and warned for different researchers (Parras-Alcántara et al., 2015a; Parras-Alcántara et al., 2015b). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in the Cardeña and Montoro Natural Park (Spain). This nature reserve is a forested area with 385 km2 in southern Spain. Thirty-seven sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The results obtained show an overestimation of SOCS when SCS sampling approach is used compared to ESP. This supports that methodology selection is very important to SOCS quantification. This research is an assessment for modeling SOCS at the regional level in Mediterranean natural areas. References Parras-Alcántara, L., Lozano-García, B., 2014. Conventional tillage versus organic farming in relation to soil organic carbon stock in olive groves in Mediterranean rangelands (southern Spain). Solid Earth, 5, 299-311 (2014). http://dx.doi.org/10.5194/se-5-299-2014. Parras-Alcántara, L., Lozano-García, B., Brevik, E.C., Cerdà, A., 2015a. Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. Journal of Environmental Management, 155, 219-228. http://dx.doi.org/10.1016/j.jenvman.2015.03.039. Parras-Alcántara, L., Lozano-García, B., Brevik, E.C., Cerdà, A., 2015b. Soil organic carbon stocks quantification in Mediterranean natural areas, a trade-off between entire soil profiles and soil control sections. Geophysical Research Abstracts. Vol. 17, 986. EGU General Assembly 2015.
A simple model of carbon in the soil profile for agricultural soils in Northwestern Europe
NASA Astrophysics Data System (ADS)
Taghizadeh-Toosi, Arezoo; Hutchings, Nicholas J.; Vejlin, Jonas; Christensen, Bent T.; Olesen, Jørgen E.
2014-05-01
World soil carbon (C) stocks are second to those in the ocean, and represent three times as much C as currently present in the atmosphere. The amount of C in soil may play a significant role in carbon exchanges between the atmosphere and the terrestrial environment. The C-TOOL model is a three-pool linked soil organic carbon (SOC) model in well-drained mineral soils under agricultural land management to allow generalized parameterization for estimating effects of management measures at medium to long time scales for the entire soil profile (0-100 cm). C-TOOL has been developed to enable simulations of SOC turnover in soil using temperature dependent first order kinetics for describing decomposition. Compared with many other SOC models, C-TOOL applies a less complicated structure, which facilitates easier calibration, and it requires only few inputs (i.e., average monthly air temperature, soil clay content,soil carbon-to-nitrogen ratio, and C inputs to the soil from plants and other sources). C-TOOL was parameterized using SOC and radiocarbon data from selected long-term field treatments in United Kingdom, Sweden and Denmark. However, less data were available for evaluation of subsoil C (25-100 cm) from the long-term experiments applied. In Denmark a national 7×7 km grid net was established in 1986 for soil C monitoring down to 100 cm depth. The results of SOC showed a significant decline from 1997 to 2009 in the 0-50 cm soil layer. This was mainly attributed to changes in the 25-50 cm layer, where a decline in SOC was found for all soil texture types. Across the period 1986 to 2009 there was clear tendency for increasing SOC on the sandy soils and reductions on the loamy soils. This effect is linked to land use, since grasslands and dairy farms are more abundant in the western parts of Denmark, where most of the sandy soils are located. The results and the data from soil monitoring have been used to validate the C-TOOL modelling approach used for accounting of changes in SOC of Danish agricultural soils and for verification of the national inventories of SOC changes in agricultural soils. Future work will focus on further evaluating effects on subsoil C as well as improving the estimation of C inputs, particularly root C input at different soil depth. Key words: Soil organic carbon, modelling, C-TOOL, agriculture, management, grassland
NASA Astrophysics Data System (ADS)
Yagasaki, Y.; Shirato, Y.
2014-08-01
Future potentials of the sequestration of soil organic carbon (SOC) in agricultural lands in Japan were estimated using a simulation system we recently developed to simulate SOC stock change at country-scale under varying land-use change, climate, soil, and agricultural practices, in a spatially explicit manner. Simulation was run from 1970 to 2006 with historical inventories, and subsequently to 2020 with future scenarios of agricultural activity comprised of various agricultural policy targets advocated by the Japanese government. Furthermore, the simulation was run subsequently until 2100 while forcing no temporal changes in land-use and agricultural activity to investigate duration and course of SOC stock change at country scale. A scenario with an increased rate of organic carbon input to agricultural fields by intensified crop rotation in combination with the suppression of conversion of agricultural lands to other land-use types was found to have a greater reduction of CO2 emission by enhanced soil carbon sequestration, but only under a circumstance in which the converted agricultural lands will become settlements that were considered to have a relatively lower rate of organic carbon input. The size of relative reduction of CO2 emission in this scenario was comparable to that in another contrasting scenario (business-as-usual scenario of agricultural activity) in which a relatively lower rate of organic matter input to agricultural fields was assumed in combination with an increased rate of conversion of the agricultural fields to unmanaged grasslands through abandonment. Our simulation experiment clearly demonstrated that net-net-based accounting on SOC stock change, defined as the differences between the emissions and removals during the commitment period and the emissions and removals during a previous period (base year or base period of Kyoto Protocol), can be largely influenced by variations in future climate. Whereas baseline-based accounting, defined as differences between the net emissions in the accounting period and the ex ante estimation of net business-as-usual emissions for the same period, has robustness over variations in future climate and effectiveness to factor out some of the direct human-induced effects such as changing land-use and agricultural activity. Factors affecting uncertainties in the estimation of the country-scale potential of SOC sequestration were discussed, especially those related to estimation of the rate of organic carbon input to soils under different land-use types. Our study suggested that, in order to assist decision making of policy on agriculture, land management, and mitigation of global climate change, it is also important to take account of duration and time course of SOC sequestration, supposition on land-use change pattern in future, as well as feasibility of agricultural policy planning.
Organic carbon stock modelling for the quantification of the carbon sinks in terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Durante, Pilar; Algeet, Nur; Oyonarte, Cecilio
2017-04-01
Given the recent environmental policies derived from the serious threats caused by global change, practical measures to decrease net CO2 emissions have to be put in place. Regarding this, carbon sequestration is a major measure to reduce atmospheric CO2 concentrations within a short and medium term, where terrestrial ecosystems play a basic role as carbon sinks. Development of tools for quantification, assessment and management of organic carbon in ecosystems at different scales and management scenarios, it is essential to achieve these commitments. The aim of this study is to establish a methodological framework for the modeling of this tool, applied to a sustainable land use planning and management at spatial and temporal scale. The methodology for carbon stock estimation in ecosystems is based on merger techniques between carbon stored in soils and aerial biomass. For this purpose, both spatial variability map of soil organic carbon (SOC) and algorithms for calculation of forest species biomass will be created. For the modelling of the SOC spatial distribution at different map scales, it is necessary to fit in and screen the available information of soil database legacy. Subsequently, SOC modelling will be based on the SCORPAN model, a quantitative model use to assess the correlation among soil-forming factors measured at the same site location. These factors will be selected from both static (terrain morphometric variables) and dynamic variables (climatic variables and vegetation indexes -NDVI-), providing to the model the spatio-temporal characteristic. After the predictive model, spatial inference techniques will be used to achieve the final map and to extrapolate the data to unavailable information areas (automated random forest regression kriging). The estimated uncertainty will be calculated to assess the model performance at different scale approaches. Organic carbon modelling of aerial biomass will be estimate using LiDAR (Light Detection And Ranging) algorithms. The available LiDAR databases will be used. LiDAR statistics (which describe the LiDAR cloud point data to calculate forest stand parameters) will be correlated with different canopy cover variables. The regression models applied to the total area will produce a continuous geo-information map to each canopy variable. The CO2 estimation will be calculated by dry-mass conversion factors for each forest species (C kg-CO2 kg equivalent). The result is the organic carbon modelling at spatio-temporal scale with different levels of uncertainty associated to the predictive models and diverse detailed scales. However, one of the main expected problems is due to the heterogeneous spatial distribution of the soil information, which influences on the prediction of the models at different spatial scales and, consequently, at SOC map scale. Besides this, the variability and mixture of the forest species of the aerial biomass decrease the accuracy assessment of the organic carbon.
Molecular cloning and potential function prediction of homologous SOC1 genes in tree peony.
Wang, Shunli; Beruto, Margherita; Xue, Jingqi; Zhu, Fuyong; Liu, Chuanjiao; Yan, Yueming; Zhang, Xiuxin
2015-08-01
The central flower integrator PsSOC1 was isolated and its expression profiles were analyzed; then the potential function of PsSOC1 in tree peony was postulated. The six flowering genes PrSOC1, PdSOC1, PsSOC1, PsSOC1-1, PsSOC1-2, and PsSOC1-3 were isolated from Paeonia rockii, Paeonia delavayi, and Paeonia suffruticosa, respectively. Sequence comparison analysis showed that the six genes were highly conserved and shared 99.41% nucleotide identity. Further investigation suggested PsSOC1 was highly homologous to the floral integrators, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), from Arabidopsis. Phylogenetic analysis showed that the SOC1 protein clustering has family specificity and PsSOC1 has a close relationship with homologous SOC1 from Asteraceae species. The studies of PsSOC1's expression patterns in different buds and flower buds, and vegetative organs indicated that PsSOC1 could express in both vegetative and reproductive organs. While the expression of PsSOC1 in different developmental stages of buds was different; high expression levels of PsSOC1 occurred in the bud at the bud sprouting stage and the type I aborted the flower bud. PsSOC1 expression was also shown to be affected by gibberellins (GA), low temperature, and photoperiod. One of the pathways that regulates tree peony flowering may be the GA-inductive pathway. Ectopic expression of PsSOC1 in tobacco demonstrated that greater PsSOC1 expression in the transgenic tobacco plants not only promoted plant growth, but also advanced the flowering time. Finally, the potential function of PsSOC1 in tree peony was postulated.
Towards a parsimonious program theory of return to work intervention.
Claudi Jensen, Anne Grete
2013-01-01
Presentation of a salutogenic theory of return to work (RTW). The study group include 118 unskilled Danish public employees and privately employed house-cleaners on sick leave due to musculoskeletal and/or common mental illnesses. Theory of RTW is discussed from a theoretical and empirical viewpoint, using baseline-data from an intervention study in a longitudinal, non-randomized study design with follow-up after one year. High work ability, strong social support from colleagues and over-commitment are the most important prognostic factors for RTW. An active coping style, high self-efficacy and Sense of Coherence (SOC) are found to increase RTW and high hostility and over-commitment to decrease RTW. Besides health elements in work ability are SOC, self-efficacy, social support and physical activity. Work ability and active coping mediate positive associations between RTW and health, and a negative association with stress. Work ability seems to express the intention to work decisive for RTW, reflecting the interpretation of the work/health situation based on comprehensibility, meaningfulness and manageability. It is influenced by the personal view of life, attitudes and interaction with the workplace. An ecological theory, integrating health promotion is proposed. A later paper will present the intervention study and further validation of the theory.
Insufficiency of avoided crossings for witnessing large-scale quantum coherence in flux qubits
NASA Astrophysics Data System (ADS)
Fröwis, Florian; Yadin, Benjamin; Gisin, Nicolas
2018-04-01
Do experiments based on superconducting loops segmented with Josephson junctions (e.g., flux qubits) show macroscopic quantum behavior in the sense of Schrödinger's cat example? Various arguments based on microscopic and phenomenological models were recently adduced in this debate. We approach this problem by adapting (to flux qubits) the framework of large-scale quantum coherence, which was already successfully applied to spin ensembles and photonic systems. We show that contemporary experiments might show quantum coherence more than 100 times larger than experiments in the classical regime. However, we argue that the often-used demonstration of an avoided crossing in the energy spectrum is not sufficient to make a conclusion about the presence of large-scale quantum coherence. Alternative, rigorous witnesses are proposed.
NASA Astrophysics Data System (ADS)
van Wesemael, Bas; Nocita, Marco
2016-04-01
One of the problems for mapping of soil organic carbon (SOC) at large-scale based on visible - near and short wave infrared (VIS-NIR-SWIR) remote sensing techniques is the spatial variation of topsoil moisture when the images are collected. Soil moisture is certainly an aspect causing biased SOC estimations, due to the problems in discriminating reflectance differences due to either variations in organic matter or soil moisture, or their combination. In addition, the difficult validation procedures make the accurate estimation of soil moisture from optical airborne a major challenge. After all, the first millimeters of the soil surface reflect the signal to the airborne sensor and show a large spatial, vertical and temporal variation in soil moisture. Hence, the difficulty of assessing the soil moisture of this thin layer at the same moment of the flight. The creation of a soil moisture proxy, directly retrievable from the hyperspectral data is a priority to improve the large-scale prediction of SOC. This paper aims to verify if the application of the normalized soil moisture index (NSMI) to Airborne Prima Experiment (APEX) hyperspectral images could improve the prediction of SOC. The study area was located in the loam region of Wallonia, Belgium. About 40 samples were collected from bare fields covered by the flight lines, and analyzed in the laboratory. Soil spectra, corresponding to the sample locations, were extracted from the images. Once the NSMI was calculated for the bare fields' pixels, spatial patterns, presumably related to within field soil moisture variations, were revealed. SOC prediction models, built using raw and pre-treated spectra, were generated from either the full dataset (general model), or pixels belonging to one of the two classes of NSMI values (NSMI models). The best result, with a RMSE after validation of 1.24 g C kg-1, was achieved with a NSMI model, compared to the best general model, characterized by a RMSE of 2.11 g C kg-1. These results confirmed the advantage to controlling the effect of soil moisture on the detection of SOC. The NSMI proved to be a flexible concept, due to the possible use of different SWIR wavelengths, and ease of use, because measurements of soil moisture by other techniques are not needed. However, in the future, it will be important to assess the effectiveness of the NSMI for different soil types, and other hyperspectral sensors.
Sukka-Ganesh, Bhagyalaxmi; Larkin, Joseph
2016-01-01
Although the specific events dictating systemic lupus erythematosus (SLE) pathology remain unclear, abundant evidence indicates a critical role for dysregulated cytokine signaling in disease progression. Notably, the suppressor of cytokine signaling (SOCS) family of intracellular proteins, in particular the kinase inhibitory region (KIR) bearing SOCS1 and SOCS3, play a critical role in regulating cytokine signaling. To assess a relationship between SOCS1/SOCS3 expression and SLE, the goals of this study were to: 1) evaluate the time kinetics of SOCS1/SOCS3 message and protein expression based on SLE associated stimulations, 2) compare levels of SOCS1 and SOCS3 present in SLE patients and healthy controls by message and protein, 3) relate SOCS1/SOCS3 expression to inflammatory markers in SLE patients, and 4) correlate SOCS1/SOCS3 levels to current treatments. We found that SOCS1 and SOCS3 were most abundant in murine splenic samples at 48 hours subsequent to stimulation by anti-CD3, LPS, or interferon gamma. In addition, significant reductions in SOCS1 and SOCS3 were present within PMBC’s of SLE patients compared to controls by both mRNA and protein expression. We also found that decreased levels of SOCS1 in SLE patients were correlated to enhanced levels of inflammatory markers and up-regulated expression of MHC class II. Finally, we show that patients receiving steroid treatment possessed higher levels SOCS1 compared to SLE patient counterparts, and that steroid administration to human PBMCs up-regulated SOCS1 message in a dose and time dependent manner. Together, these results suggest that therapeutic strategies focused on SOCS1 signaling may have efficacy in the treatment of SLE. PMID:27781323
Schiefer, Jasmin; Lair, Georg J; Lüthgens, Christopher; Wild, Eva Maria; Steier, Peter; Blum, Winfried E H
2018-07-01
During COP 21 in Paris 2015, several states and organizations agreed on the "4/1000" initiative for food security and climate. This initiative aims to increase world's soil organic carbon (SOC) stocks by 4‰ annually. The influence of soil development status on SOC dynamics is very important but usually not considered in studies. We analyse SOC accumulation under forest, grassland and cropping systems along a soil age gradient (10-17,000years) to show the influence of soil development status on SOC increase. SOC stocks (0-40cm) and accumulation rates along a chronosequence in alluvial soils of the Danube River in the Marchfeld (eastern Austria) were analysed. The analysed Fluvisols and Chernozems have been used as forest, grassland and cropland for decades or hundreds of years. The results showed that there is a fast build-up of OC stocks (0-40cm) in young soils with accumulation of ~1.3tha -1 a -1 OC in the first 100years and ~0.5tha -1 a -1 OC between 100 and 350years almost independent of land use. Chernozems with a sediment deposition age older than 5.000years have an accumulation rate<0.01tOCha -1 a -1 (0-40cm). Radiocarbon dating showed that the topsoil (0-10cm) consists mainly of ">modern" and "modern" carbon indicating a fast carbon cycling. Carbon in subsoil is less exposed to decomposition and OC can be stored at long-time scales in the subsoil ( 14 C age of 3670±35 BP). In view of the '4/1000' initiative, soils with constant carbon input (forest & grassland) fulfil the intended 4‰ growth rate of SOC stocks only in the first 60years of soil development. We proclaim that under the present climate in Central Europe, the increase of SOC stocks in soil is strongly affected by the state of soil development. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tuo, D.; Gao, G.; Fu, B.
2017-12-01
Precipitation is one of the most important limit factor affect soil organic carbon (SOC) and total nitrogen (TN) following re-vegetation; however, the effect of precipitation on the C and N cycling in deep soils is poorly understood. This study was designed to measure SOC and TN stocks and C/N ratio to a depth of 300 cm following re-vegetation along a precipitation gradient (280 to 540 mm yr-1) on the Loess Plateau of China. The results showed that the relationship of soil C-N coupling after cropland abandoned was related to mean annual precipitation (MAP) and soil depth. SOC and TN stocks in the shallow layers of 0-100 cm were 3.8 and 0.41 kg m-2, respectively, and that in the deep layers of 100-300 cm can represent about 62.7-72.5% and 60.2-88.7% to a depth of 0-300 cm, respectively. Positive linearly relationships were obtained between MAP and SOC and TN stocks at most soil layers of 0-300 cm (p < 0.05). The relationships between the MAP and changes of SOC and TN stocks following short-term restoration were highly dependent on soil depth. Changes of SOC and TN stocks after re-vegetation in shallow soils (0-100 cm) were gaining at regional scale, but in deep soils (100-300 cm), which were losing at wetter sites (MAP > 400 mm). The initial soil C loss may be attributed to greater C decomposition and lower belowground C input. The change of C/N ratio had significantly negatively correlation with MAP in each soil depth, except for 0-20 cm, indicating the effect of soil N on C accumulation is higher at drier areas rather than wetter sites. Based on the investigated factors, precipitation, soil water and clay had a dominant control over the spatial distribution of SOC, TN and C/N ratio to a 300 cm soil depth. This information is helpful our understanding of the dynamics of soil C and N of deep soils following re-vegetation in the semiarid regions.
Liu, Cai-Zhi; Luo, Yuan; Limbu, Samwel Mchele; Chen, Li-Qiao; Du, Zhen-Yu
2018-05-20
Insulin-like growth factor-1 (IGF-1) plays a crucial role in regulating growth in vertebrates whereas suppressors of cytokine signaling (SOCS) act as feedback inhibitors of the GH/IGF-1 axis. Although SOCS-2 binds the IGF-1 receptor and inhibits IGF-1-induced STAT3 activation, presently there is no clear evidence as to whether IGF-1 could induce SOCS gene expression. The current study aimed to determine whether IGF-1 could induce the transcription of SOCS in juvenile Nile tilapia ( Oreochromis niloticus ). We show that there is a common positive relationship between the mRNA expression of IGF-I and SOCS-2 under different nutritional statuses and stimulants, but not the mRNA expression of SOCS-1 and SOCS-3 Furthermore, rhIGF-1 treatment and transcriptional activity assay confirmed the hypothesis that IGF-1 could induce SOCS-2 expression, whereas it had no effect or even decreased the expression of SOCS-1 and SOCS-3 Overall, we obtained evidence that the transcription of SOCS-2, but not SOCS-1 or SOCS-3, could be induced by IGF signaling, suggesting that SOCS-2 serves as a feedback suppressor of the IGF-1 axis in juvenile Nile tilapia. © 2018. Published by The Company of Biologists Ltd.
Coherent photon scattering background in sub- GeV / c 2 direct dark matter searches
Robinson, Alan E.
2017-01-18
Here, proposed dark matter detectors with eV-scale sensitivities will detect a large background of atomic (nuclear) recoils from coherent photon scattering of MeV-scale photons. This background climbs steeply below ~10 eV, far exceeding the declining rate of low-energy Compton recoils. The upcoming generation of dark matter detectors will not be limited by this background, but further development of eV-scale and sub-eV detectors will require strategies, including the use of low nuclear mass target materials, to maximize dark matter sensitivity while minimizing the coherent photon scattering background.
NASA Astrophysics Data System (ADS)
Mineo, H.; Lin, S. H.; Fujimura, Y.
2013-02-01
The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012), 10.1021/ja3047848].
Mineo, H; Lin, S H; Fujimura, Y
2013-02-21
The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012)].
Ryan M. Mushinski; Thomas W. Boutton; D. Andrew Scott
2017-01-01
This study investigates whether different intensities of organic matter removal associated with timber harvest influence decadal-scale storage of soil organic carbon (SOC) and total nitrogen (TN) in the top 1 m of mineral soil 18 years postharvest in a Pinus taeda L. forest in the Gulf Coastal Plain. We quantified forest harvest-related changes in...
Engineering nanometre-scale coherence in soft matter
NASA Astrophysics Data System (ADS)
Liu, Chaoren; Xiang, Limin; Zhang, Yuqi; Zhang, Peng; Beratan, David N.; Li, Yueqi; Tao, Nongjian
2016-10-01
Electronic delocalization in redox-active polymers may be disrupted by the heterogeneity of the environment that surrounds each monomer. When the differences in monomer redox-potential induced by the environment are small (as compared with the monomer-monomer electronic interactions), delocalization persists. Here we show that guanine (G) runs in double-stranded DNA support delocalization over 4-5 guanine bases. The weak interaction between delocalized G blocks on opposite DNA strands is known to support partially coherent long-range charge transport. The molecular-resolution model developed here finds that the coherence among these G blocks follows an even-odd orbital-symmetry rule and predicts that weakening the interaction between G blocks exaggerates the resistance oscillations. These findings indicate how sequence can be exploited to change the balance between coherent and incoherent transport. The predictions are tested and confirmed using break-junction experiments. Thus, tailored orbital symmetry and structural fluctuations may be used to produce coherent transport with a length scale of multiple nanometres in soft-matter assemblies, a length scale comparable to that of small proteins.
Liu, Xuebin; Mameza, Marie G; Lee, Yun Sang; Eseonu, Chikezie I; Yu, Cheng-Rong; Kang Derwent, Jennifer J; Egwuagu, Charles E
2008-06-01
Suppressors of cytokine signaling (SOCS) are implicated in the etiology of diabetes, obesity, and metabolic syndrome. Here, we show that some SOCS members are induced, while others are constitutively expressed, in retina and examine whether persistent elevation of SOCS levels in retina by chronic inflammation or cellular stress predisposes to developing insulin resistance in retina, a condition implicated in diabetic retinopathy. SOCS-mediated insulin resistance and neuroprotection in retina were investigated in 1) an experimental uveitis model, 2) SOCS1 transgenic rats, 3) insulin-deficient diabetic rats, 4) retinal cells depleted of SOCS6 or overexpressing SOCS1/SOCS3, and 5) oxidative stress and light-induced retinal degeneration models. We show that constitutive expression of SOCS6 protein in retinal neurons may improve glucose metabolism, while elevated SOCS1/SOCS3 expression during uveitis induces insulin resistance in neuroretina. SOCS-mediated insulin resistance, as indicated by its inhibition of basally active phosphoinositide 3-kinase/AKT signaling in retina, is validated in retina-specific SOCS1 transgenic rats and retinal cells overexpressing SOCS1/SOCS3. We further show that the SOCS3 level is elevated in retina by oxidative stress, metabolic stress of insulin-deficient diabetes, or light-induced retinal damage and protects ganglion cells from apoptosis, suggesting that upregulation of SOCS3 may be a common physiologic response of neuroretinal cells to cellular stress. Our data suggest two-sided roles of SOCS proteins in retina. Whereas SOCS proteins may improve glucose metabolism, mitigate deleterious effects of inflammation, and promote neuroprotection, persistent SOCS3 expression caused by chronic inflammation or cellular stress can induce insulin resistance and inhibit neurotrophic factors, such as ciliary neurotrophic factor, leukemia inhibitory factor, and insulin, that are essential for retinal cell survival.
2011-11-01
Giraldo MA Stavenga DG (2007) Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies. Proc R Soc B 274:97-102 4...723 41. Stavenga DG, Arikawa K (2011) Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with
Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.
2004-01-01
Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions difficult. Such complexity may limit the accuracy of scaling approaches to mapping SOC and soil redistribution.
NASA Astrophysics Data System (ADS)
Naipal, V.; Wang, Y.; Ciais, P.; Guenet, B.; Lauerwald, R.
2017-12-01
The onset of agriculture has accelerated soil erosion rates significantly, mobilizing vast quantities of soil organic carbon (SOC) globally. Studies show that at timescales of decennia to millennia this mobilized SOC can significantly alter previously estimated carbon emissions from land use and land cover change (LULCC). However, a full understanding of the impact of soil erosion on land-atmosphere carbon exchange is still missing. The aim of our study is to better constrain the terrestrial carbon fluxes by developing methods, which are compatible with earth system models (ESMs), and explicitly represent the links between soil erosion and carbon dynamics. For this we use an emulator that represents the carbon cycle of ORCHIDEE, which is the land component of the IPSL ESM, in combination with an adjusted version of the Revised Universal Soil Loss Equation (RUSLE) model. We applied this modeling framework at the global scale to evaluate how soil erosion influenced the terrestrial carbon cycle in the presence of elevated CO2, regional climate change and land use change. Here, we focus on the effects of soil detachment by erosion only and do not consider sediment transport and deposition. We found that including soil erosion in the SOC dynamics-scheme resulted in two times more SOC being lost during the historical period (1850-2005 AD). LULCC is the main contributor to this SOC loss, whose impact on the SOC stocks is significantly amplified by erosion. Regionally, the influence of soil erosion varies significantly, depending on the magnitude of the perturbations to the carbon cycle and the effects of LULCC and climate change on soil erosion rates. We conclude that it is necessary to include soil erosion in assessments of LULCC, and to explicitly consider the effects of elevated CO2 and climate change on the carbon cycle and on soil erosion, for better quantification of past, present, and future LULCC carbon emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Spangler; Ross Bricklemyer; David Brown
2012-03-15
There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laboratory based soil characterization typically requires significant soil processing, which is time and resource intensive. This severely limits application for large-region soil characterization. Thus, development of rapid and accurate methods for characterizing soils are needed to map soil properties for precision agriculture applications, improve regional and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal contamination, among others. The greatest gains for efficientmore » soil characterization will come from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-based measurement costs. Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally different spectroscopic techniques that have the potential to meet this need. These sensors have the potential to be mounted on a soil penetrometer and deployed for rapid soil profile characterization at field and landscape scales. Details of sensor interaction, efficient data management, and appropriate statistical analysis techniques for model calibrations are first needed. In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon (SOC). While lab-based VisNIR has been established as a viable technique for estimating various soil properties, few experiments have compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR. Lab-based spectral data consistently provided more accurate predictions than on-the-go data. However, neither in situ nor lab-based spectroscopy yielded even semi-quantitative SOC predictions. There was little SOC variability to explain across the eight fields, and on-the-go VisNIR was not able to capture the subtle SOC variability in these Montana soils. With more variation in soil clay content compared to SOC, both lab and on-the-go VisNIR showed better explanatory power. There are several potential explanations for poor on-the-go predictive accuracy: soil heterogeneity, field moisture, consistent sample presentation, and a difference between the spatial support of on-the-go measurements and soil samples collected for laboratory analyses. Though the current configuration of a commercially available on-the-go VisNIR system allows for rapid field scanning, on-the-go soil processing (i.e. drying, crushing, and sieving) could improve soil carbon predictions. Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technology with the potential to provide rapid, accurate and precise analysis of soil constituents, such as carbon, in situ across landscapes. The research team evaluated the accuracy of LIBS for measuring soil profile carbon in field-moist, intact soil cores simulating conditions that might be encountered by a probe-mounted LIBS instrument measuring soil profile carbon in situ. Over the course of three experiments, more than120 intact soil cores from eight north central Montana wheat fields and the Washington State University (WSU) Cook Agronomy Farm near Pullman, WA were interrogated with LIBS for rapid total carbon (TC), inorganic carbon (IC), and SOC determination. Partial least squares regression models were derived and independently validated at field- and regional scales. Researchers obtained the best LIBS validation predictions for IC followed by TC and SOC. Laser-induced breakdown spectroscopy is fundamentally an elemental analysis technique, yet LIBS PLS2 models appeared to discriminate IC from TC. Regression coefficients from initial models suggested a reliance upon stoichiometric relationships between carbon (247.8 nm) and other elements related to total and inorganic carbon in the soil matrix [Ca (210.2 nm, 211.3 nm, and 220.9 nm), Mg (279.55-280.4 nm, 285.26 nm), and Si (251.6 nm, 288.1 nm)]. Expanding the LIBS spectral range to capture emissions from a broader range of elements related to soil organic matter was explored using two spectrometer systems to improve SOC predictions. Results for increasing the spectral range of LIBS to the full 200-800 nm found modest gains in prediction accuracy for IC, but no gains for predicting TC or SOC. Poor SOC predictions are likely a function of (1) the lack of a consistent/definable molecular composition of SOC, (2) relatively little variation in SOC across field sites, and (3) inorganic carbon constituting the primary form of soil carbon, particularly for Montana soils.« less
Micron-scale coherence in interphase chromatin dynamics
Zidovska, Alexandra; Weitz, David A.; Mitchison, Timothy J.
2013-01-01
Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin movement was coherent across large regions (4–5 µm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP dependent and unidirectional for several seconds, perhaps accounting for ATP-dependent directed movement of single genes. Perturbation of major nuclear ATPases such as DNA polymerase, RNA polymerase II, and topoisomerase II eliminated micron-scale coherence, while causing rapid, local movement to increase; i.e., local motions accelerated but became uncoupled from their neighbors. We observe similar trends in chromatin dynamics upon inducing a direct DNA damage; thus we hypothesize that this may be due to DNA damage responses that physically relax chromatin and block long-distance communication of forces. PMID:24019504
Study of Reversible Logic Synthesis with Application in SOC: A Review
NASA Astrophysics Data System (ADS)
Sharma, Chinmay; Pahuja, Hitesh; Dadhwal, Mandeep; Singh, Balwinder
2017-08-01
The prime concern in today’s SOC designs is the power dissipation which increases with technology scaling. The reversible logic possesses very high potential in reducing power dissipation in these designs. It finds its application in latest research fields such as DNA computing, quantum computing, ultra-low power CMOS design and nanotechnology. The reversible circuits can be easily designed using the conventional CMOS technology at a cost of a garbage output which maintains the reversibility. The purpose of this paper is to provide an overview of the developments that have occurred till date in this concept and how the new reversible logic gates are used to design the logic functions.
Large-Scale Coherent Vortex Formation in Two-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Orlov, A. V.; Brazhnikov, M. Yu.; Levchenko, A. A.
2018-04-01
The evolution of a vortex flow excited by an electromagnetic technique in a thin layer of a conducting liquid was studied experimentally. Small-scale vortices, excited at the pumping scale, merge with time due to the nonlinear interaction and produce large-scale structures—the inverse energy cascade is formed. The dependence of the energy spectrum in the developed inverse cascade is well described by the Kraichnan law k -5/3. At large scales, the inverse cascade is limited by cell sizes, and a large-scale coherent vortex flow is formed, which occupies almost the entire area of the experimental cell. The radial profile of the azimuthal velocity of the coherent vortex immediately after the pumping was switched off has been established for the first time. Inside the vortex core, the azimuthal velocity grows linearly along a radius and reaches a constant value outside the core, which agrees well with the theoretical prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, H.Y.W.; Rypdal, K.; Ritz, C.P.
1993-04-26
Bispectral analysis of Langmuir probe data indicates that coherent nonlinear coupling, in addition to the noncoherent turbulent interactions, exists in the edge plasma of the tokamak TEXT. Not all the modes involved reside within the spectral region of the usual broadband turbulence. At a major resonant surface the small-scale turbulent activity interacts [ital coherently] with a localized long-wavelength mode; a signature of regular or coherent structure. By the observed coupling to the transport related turbulence, the long-wavelength mode can influence plasma confinement indirectly. These observations signify the influence of low-order resonant surfaces on the edge turbulence in tokamaks.
SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome.
Vuong, Bao Q; Arenzana, Teresita L; Showalter, Brian M; Losman, Julie; Chen, X Peter; Mostecki, Justin; Banks, Alexander S; Limnander, Andre; Fernandez, Neil; Rothman, Paul B
2004-10-01
The regulation of cytokine signaling is critical for controlling cellular proliferation and activation during an immune response. SOCS-1 is a potent inhibitor of Jak kinase activity and of signaling initiated by several cytokines. SOCS-1 protein levels are tightly regulated, and recent data suggest that SOCS-1 may regulate the protein levels of some signaling proteins by the ubiquitin proteasome pathway; however, the cellular mechanism by which SOCS-1 directs proteins for degradation is unknown. In this report, SOCS-1 is found to colocalize and biochemically copurify with the microtubule organizing complex (MTOC) and its associated 20S proteasome. The SOCS-1 SH2 domain is required for the localization of SOCS-1 to the MTOC. Overexpression of SOCS-1 targets Jak1 in an SH2-dependent manner to a perinuclear distribution resembling the MTOC-associated 20S proteasome. Analysis of MTOCs fractionated from SOCS-1-deficient cells demonstrates that SOCS-1 may function redundantly to regulate the localization of Jak1 to the MTOC. Nocodazole inhibits the protein turnover of SOCS-1, demonstrating that the minus-end transport of SOCS-1 to the MTOC-associated 20S proteasome is required to regulate SOCS-1 protein levels. These data link SOCS-1 directly with the proteasome pathway and suggest another function for the SH2 domain of SOCS-1 in the regulation of Jak/STAT signaling.
Mõttus, René; Realo, Anu; Allik, Jüri; Esko, Tõnu; Metspalu, Andres; Johnson, Wendy
2015-01-01
The study investigated differences in the Five-Factor Model (FFM) domains and facets across adulthood. The main questions were whether personality scales reflected coherent units of trait development and thereby coherent personality traits more generally. These questions were addressed by testing if the components of the trait scales (items for facet scales and facets for domain scales) showed consistent age group differences. For this, measurement invariance (MI) framework was used. In a sample of 2,711 Estonians who had completed the NEO Personality Inventory 3 (NEO PI-3), more than half of the facet scales and one domain scale did not meet the criterion for weak MI (factor loading equality) across 12 age groups spanning ages from 18 to 91 years. Furthermore, none of the facet and domain scales met the criterion for strong MI (intercept equality), suggesting that items of the same facets and facets of the same domains varied in age group differences. When items were residualized for their respective facets, 46% of them had significant (p < 0.0002) residual age-correlations. When facets were residualized for their domain scores, a majority had significant (p < 0.002) residual age-correlations. For each domain, a series of latent factors were specified using random quarters of their items: scores of such latent factors varied notably (within domains) in correlations with age. We argue that manifestations of aetiologically coherent traits should show similar age group differences. Given this, the FFM domains and facets as embodied in the NEO PI-3 do not reflect aetiologically coherent traits.
Mõttus, René; Realo, Anu; Allik, Jüri; Esko, Tõnu; Metspalu, Andres; Johnson, Wendy
2015-01-01
The study investigated differences in the Five-Factor Model (FFM) domains and facets across adulthood. The main questions were whether personality scales reflected coherent units of trait development and thereby coherent personality traits more generally. These questions were addressed by testing if the components of the trait scales (items for facet scales and facets for domain scales) showed consistent age group differences. For this, measurement invariance (MI) framework was used. In a sample of 2,711 Estonians who had completed the NEO Personality Inventory 3 (NEO PI-3), more than half of the facet scales and one domain scale did not meet the criterion for weak MI (factor loading equality) across 12 age groups spanning ages from 18 to 91 years. Furthermore, none of the facet and domain scales met the criterion for strong MI (intercept equality), suggesting that items of the same facets and facets of the same domains varied in age group differences. When items were residualized for their respective facets, 46% of them had significant (p < 0.0002) residual age-correlations. When facets were residualized for their domain scores, a majority had significant (p < 0.002) residual age-correlations. For each domain, a series of latent factors were specified using random quarters of their items: scores of such latent factors varied notably (within domains) in correlations with age. We argue that manifestations of aetiologically coherent traits should show similar age group differences. Given this, the FFM domains and facets as embodied in the NEO PI-3 do not reflect aetiologically coherent traits. PMID:25751273
Yu, Cheng-Rong; Hayashi, Kozaburo; Lee, Yun Sang; Mahdi, Rashid M; Shen, De Fen; Chan, Chi-Chao; Egwuagu, Charles E
2015-04-01
Immunological responses to pathogens are stringently regulated in the eye to prevent excessive inflammation that damage ocular tissues and compromise vision. Suppressors of cytokine signaling (SOCS) regulate intensity/duration of inflammatory responses. We have used SOCS1-deficient mice and retina-specific SOCS1 transgenic rats to investigate roles of SOCS1 in ocular herpes simplex virus (HSV-1) infection and non-infectious uveitis. We also genetically engineered cell-penetrating SOCS proteins (membrane-translocating sequence (MTS)-SOCS1, MTS-SOCS3) and examined whether they can be used to inhibit inflammatory cytokines. Overexpression of SOCS1 in transgenic rat eyes attenuated ocular HSV-1 infection while SOCS1-deficient mice developed severe non-infectious anterior uveitis, suggesting that SOCS1 may contribute to mechanism of ocular immune privilege by regulating trafficking of inflammatory cells into ocular tissues. Furthermore, MTS-SOCS1 inhibited IFN-γ-induced signal transducers and activators of transcription 1 (STAT1) activation by macrophages while MTS-SOCS3 suppressed expansion of pathogenic Th17 cells that mediate uveitis, indicating that MTS-SOCS proteins maybe used to treat ocular inflammatory diseases of infectious or autoimmune etiology.
Coherent array of branched filamentary scales along the wing margin of a small moth
NASA Astrophysics Data System (ADS)
Yoshida, Akihiro; Tejima, Shin; Sakuma, Masayuki; Sakamaki, Yositaka; Kodama, Ryuji
2017-04-01
In butterflies and moths, the wing margins are fringed with specialized scales that are typically longer than common scales. In the hindwings of some small moths, the posterior margins are fringed with particularly long filamentary scales. Despite the small size of these moth wings, these scales are much longer than those of large moths and butterflies. In the current study, photography of the tethered flight of a small moth, Phthorimaea operculella, revealed a wide array composed of a large number of long filamentary scales. This array did not become disheveled in flight, maintaining a coherent sheet-like structure during wingbeat. Examination of the morphology of individual scales revealed that each filamentary scale consists of a proximal stalk and distal branches. Moreover, not only long scales but also shorter scales of various lengths were found to coexist in each small section of the wing margin. Scale branches were ubiquitously and densely distributed within the scale array to form a mesh-like architecture similar to a nonwoven fabric. We propose that possible mechanical interactions among branched filamentary scales, mediated by these branches, may contribute to maintaining a coherent sheet-like structure of the scale array during wingbeat.
A seismic coherency method using spectral amplitudes
NASA Astrophysics Data System (ADS)
Sui, Jing-Kun; Zheng, Xiao-Dong; Li, Yan-Dong
2015-09-01
Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant eigenvalue and the sum of all eigenvalues of the constructed covariance matrix. Thus, we eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.
Perturbed thymopoiesis in vitro in the absence of Suppressor of Cytokine Signalling 1 and 3
Croom, Hayley A.; Izon, David J.; Chong, Mark M.; Curtis, David J.; Roberts, Andrew W.; Kay, Thomas W.H.; Hilton, Douglas J.; Alexander, Warren S.; Starr, Robyn
2014-01-01
Cytokine signals are central to the differentiation of thymocytes and their stepwise progression through defined developmental stages. The intensity and duration of cytokine signals are regulated by the suppressor of cytokine signalling (SOCS) proteins. A clear role for SOCS1 during the later stages of thymopoiesis has been established, but little is known about its role during early thymopoiesis, nor the function of its closest relative, SOCS3. Here, we find that both SOCS1 and SOCS3 are expressed during early thymopoiesis, with expression coincident during the double negative (DN)2 and DN3 stages. We examined thymocyte differentiation in vitro by co-culture of SOCS-deficient bone marrow cells with OP9 cells expressing the Notch ligand Delta-like1 (OP9-DL1). Cells lacking SOCS1 were retarded at the DN3:DN4 transition and appeared unable to differentiate into double positive (DP) thymocytes. Cells lacking both SOCS1 and SOCS3 were more severely affected, and displayed an earlier block in T cell differentiation at DN2, the stage at which expression of SOCS1 and SOCS3 coincides. This indicates that, in addition to their specific roles, SOCS1 and SOCS3 share overlapping roles during thymopoiesis. This is the first demonstration of functional redundancy within the SOCS family, and has uncovered a vital role for SOCS1 and SOCS3 during two important checkpoints in early T cell development. PMID:18321577
Impact of downslope soil transport on carbon storage and fate in permafrost dominated landscapes
NASA Astrophysics Data System (ADS)
Shelef, E.; Rowland, J. C.; Wilson, C. J.; Altmann, G.; Hilley, G. E.
2014-12-01
A large fraction of high latitude permafrost-dominated landscapes are covered by soil mantled hillslopes. In these landscapes, soil organic carbon (SOC) accumulates and is lost through lateral transport processes. At present, these processes are not included in regional or global landsurface climate models. We present preliminary results of a soil transport and storage model over a permafrost dominated hillslope. In this model soil carbon is transported downslope within a mobile layer that thaws every summer. The model tracks soil transport and its subsequent storage at the hillslope's base. In a scenario where a carbon poor subsurface is blanketed by a carbon-rich surface layer, the progressive downslope soil transport can result in net carbon sequestration. This sequestration occurs because SOC is carried from the hilllsope's near-surface layer, where it is produced by plants and is capable of decomposing, into depositional sites at the hillslope's base where it is stored in frozen deposits such that it's decomposition rate is effectively zero. We use the model to evaluate the quantities of carbon stored in depositional settings during the Holocene, and to predict changes in sequestration rate in response to thaw depth thickening expected to occur within the next century due to climate-change. At the Holocene time scale, we show that a large amount of SOC is likely stored in depositional sites that comprise only a small fraction of arctic landscapes. The convergent topography of these sites makes them susceptible to fluvial erosion and suggests that increased fluvial incision in response to climate-change-induced thawing has the potential to release significant amounts of carbon to the river system, and potentially to the atmosphere. At the time scale of the next century, increased thaw depth may increase soil-transport rates on hillslopes and therefore increase SOC sequestration rates at a magnitude that may partly compensate for the carbon release expected from permafrost thawing. Model guided field data collection is essential to reduce the uncertainty of these estimates.
NASA Astrophysics Data System (ADS)
Sihi, D.; Gerber, S.; Inglett, K. S.; Inglett, P.
2014-12-01
Recent development in modeling soil organic carbon (SOC) decomposition includes the explicit incorporation of enzyme and microbial dynamics. A characteristic of these models is a feedback between substrate and consumers which is absent in traditional first order decay models. Second, microbial decomposition models incorporate carbon use efficiency (CUE) as a function of temperature which proved to be critical to prediction of SOC with warming. Our main goal is to explore microbial decomposition models with respect to responses of microbes to enzyme activity, costs to enzyme production, and to incorporation of growth vs. maintenance respiration. In order to simplify the modeling setup we assumed quick adjustment of enzyme activity and depolymerized carbon to microbial and SOC pools. Enzyme activity plays an important role to decomposition if its production is scaled to microbial biomass. In fact if microbes are allowed to optimize enzyme productivity the microbial enzyme model becomes unstable. Thus if the assumption of enzyme productivity is relaxed, other limiting factors must come into play. To stabilize the model, we account for two feedbacks that include cost of enzyme production and diminishing return of depolymerization with increasing enzyme concentration and activity. These feedback mechanisms caused the model to behave in a similar way to traditional, first order decay models. Most importantly, we found, that under warming, the changes in SOC carbon were more severe in enzyme synthesis is costly. In turn, carbon use efficiency (CUE) and its dynamical response to temperature is mainly determined by 1) the rate of turnover of microbes 2) the partitioning of dead microbial matter into different quality pools, and 3) and whether growth, maintenance respiration and microbial death rate have distinct responses to changes in temperature. Abbreviations: p: decay of enzyme, g: coefficient for growth respiration, : fraction of material from microbial turnover that enters the DOC pool, loss of C scaled to microbial mass, half saturation constant.
Romain, A J; Bernard, P; Attalin, V; Gernigon, C; Ninot, G; Avignon, A
2012-10-01
Stages of change in exercise behaviour have been shown to be associated with health-related quality of life (HRQoL) in overweight/obese adults. However, studies examining this relationship have not used questionnaires specifically designed for such a population. The present study assessed the impact of stages of change (SOC) for exercise, using the transtheoretical model, on the HRQoL, using the quality of life, obesity and dietetics (QOLOD) scale, an obesity-specific QoL questionnaire. Our hypothesis was that the more people are in the advanced stages of behavioural change, the better their HRQoL. A total of 214 consecutive obese individuals (148 women/66 men, mean age 47.4 ± 14.0 years, BMI 37.2 ± 8.4 kg/m2) were included in the cross-sectional study, and all completed SOC and QOLOD questionnaires. Multivariate analysis of covariance (MANCOVA) established significant effects on the overall composite of the five dimensions of the QOLOD (P < 0.001). Analysis of covariance (ANCOVA) further determined the significant effect of SOC in terms of physical impact (P < 0.001) and psychosocial impact (P < 0.01), with marginally significant effects on sex life (P = 0.07), but no impact on comfort with food (P = 0.13) or on the dieting experience (P = 0.13), two dimensions evaluating attitudes toward food. In obese/overweight individuals, the HRQoL varies with the SOC, with those in the more advanced behavioural stages reporting better HRQoL. However, dimensions related to food showed no differences according to SOC, confirming the complexity of the relationship between exercise and nutrition, and the need for further studies to acquire a more complete understanding of their underlying mechanisms. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Soucemarianadin, Laure; Barré, Pierre; Baudin, François; Chenu, Claire; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Plante, Alain F.; Cécillon, Lauric
2017-04-01
The organic carbon reservoir of soils is a key component of climate change, calling for an accurate knowledge of the residence time of soil organic carbon (SOC). Existing proxies of the size of SOC labile pool such as SOC fractionation or respiration tests are time consuming and unable to consistently predict SOC mineralization over years to decades. Similarly, models of SOC dynamics often yield unrealistic values of the size of SOC kinetic pools. Thermal analysis of bulk soil samples has recently been shown to provide useful and cost-effective information regarding the long-term in-situ decomposition of SOC. Barré et al. (2016) analyzed soil samples from long-term bare fallow sites in northwestern Europe using Rock-Eval 6 pyrolysis (RE6), and demonstrated that persistent SOC is thermally more stable and has less hydrogen-rich compounds (low RE6 HI parameter) than labile SOC. The objective of this study was to predict SOC loss over a 20-year period (i.e. the size of the SOC pool with a residence time lower than 20 years) using RE6 indicators. Thirty-six archive soil samples coming from 4 long-term bare fallow chronosequences (Grignon, France; Rothamsted, Great Britain; Ultuna, Sweden; Versailles, France) were used in this study. For each sample, the value of bi-decadal SOC mineralization was obtained from the observed SOC dynamics of its long-term bare fallow plot (approximated by a spline function). Those values ranged from 0.8 to 14.3 gC·kg-1 (concentration data), representing 8.6 to 50.6% of total SOC (proportion data). All samples were analyzed using RE6 and simple linear regression models were used to predict bi-decadal SOC loss (concentration and proportion data) from 4 RE6 parameters: HI, OI, PC/SOC and T50 CO2 oxidation. HI (the amount of hydrogen-rich effluents formed during the pyrolysis phase of RE6; mgCH.g-1SOC) and OI (the CO2 yield during the pyrolysis phase of RE6; mgCO2.g-1SOC) parameters describe SOC bulk chemistry. PC/SOC (the amount of organic C evolved during the pyrolysis phase of RE6; % of total SOC) and T50 CO2 oxidation (the temperature at which 50% of the residual organic C was oxidized to CO2 during the RE6 oxidation phase; °C) parameters represent SOC thermal stability. The RE6 HI parameter yielded the best predictions of bi-decadal SOC mineralization, for both concentration (R2 = 0.75) and proportion (R2 = 0.66) data. PC/SOC and T50 CO2 oxidation parameters also yielded significant regression models with R2 = 0.68 and 0.42 for concentration data and R2 = 0.59 and 0.26 for proportion data, respectively. The OI parameter was not a good predictor of bi-decadal SOC loss, with non-significant regression models. The RE6 thermal analysis method can predict in-situ SOC biogeochemical stability. SOC chemical composition, and to a lesser SOC thermal stability, are related to its bi-decadal dynamics. RE6 appears to be a more accurate and convenient proxy of the size of the bi-decadal labile SOC pool than other existing methodologies. Future developments include the validation of these RE6 models of bi-decadal SOC loss on soils from contrasted pedoclimatic conditions. Reference: Barré et al., 2016. Biogeochemistry 130, 1-12
An ecological approach to evaluating a system of care program: dollars making sense.
Green, Denise M; Twill, Sarah E; Nackerud, Larry; Holosko, Michael
2014-01-01
System of care (SOC) models in North America were developed in response to the needs of children with a severe emotional disturbance. Such children experience problems across life spheres including issues at home that put them at risk of abuse and neglect, difficulties at school including special education classification and dropping-out, and involvement with the juvenile courts. SOC evaluations and research suggests that an overreliance of evaluative research efforts on standardized scales and preconceived measurable outcomes have resulted in a loss of other important data. This study's confirmatory and holistic approach to evaluation illuminates important information concerning commonly ignored variables when using traditional evaluation models. The evaluative research study described focuses on three often overlooked behavioral variables in one SOC initiative, KidsNet Georgia, of Rockdale County, GA. These variables are: (a) using cohort analysis over time; (b) costing out services utilized; and (c) focusing on behavioral indicators and chance over time. The evaluative strategy, data collection, data, and cost analysis are discussed along with implications for practice with severe emotional disturbance youth and their families.
Voice-onset time and buzz-onset time identification: A ROC analysis
NASA Astrophysics Data System (ADS)
Lopez-Bascuas, Luis E.; Rosner, Burton S.; Garcia-Albea, Jose E.
2004-05-01
Previous studies have employed signal detection theory to analyze data from speech and nonspeech experiments. Typically, signal distributions were assumed to be Gaussian. Schouten and van Hessen [J. Acoust. Soc. Am. 104, 2980-2990 (1998)] explicitly tested this assumption for an intensity continuum and a speech continuum. They measured response distributions directly and, assuming an interval scale, concluded that the Gaussian assumption held for both continua. However, Pastore and Macmillan [J. Acoust. Soc. Am. 111, 2432 (2002)] applied ROC analysis to Schouten and van Hessen's data, assuming only an ordinal scale. Their ROC curves suppported the Gaussian assumption for the nonspeech signals only. Previously, Lopez-Bascuas [Proc. Audit. Bas. Speech Percept., 158-161 (1997)] found evidence with a rating scale procedure that the Gaussian model was inadequate for a voice-onset time continuum but not for a noise-buzz continuum. Both continua contained ten stimuli with asynchronies ranging from -35 ms to +55 ms. ROC curves (double-probability plots) are now reported for each pair of adjacent stimuli on the two continua. Both speech and nonspeech ROCs often appeared nonlinear, indicating non-Gaussian signal distributions under the usual zero-variance assumption for response criteria.
NASA Astrophysics Data System (ADS)
Siegel, Edward
2008-03-01
Buzzwordism,Bandwagonism,Sloganeering for:Fun,Profit,Survival, Ego=ethics DYSunctionality: Digits log-law: Siegel INVERSION: bosons=digits; Excluded d=0? P(0)=oo V P(1)
Soil organic carbon stock changes in the contiguous United States from 1920s to 2010s
NASA Astrophysics Data System (ADS)
Cao, B.; Grunwald, S.; Ferguson, H. J.; Hempel, J. W.; Xiong, X.; Patarasuk, R.; Ross, C. W.
2014-12-01
To investigate the changes of soil organic carbon (SOC) stocks is of great importance to understand soil carbon dynamics and develop greenhouse gas mitigation and adaptation strategies. There are research gaps in understanding how natural environmental and anthropogenic factors (such as socio-cultural and political/legislative) have provided positive and negative feedbacks on SOC stocks since the 1920s at continental scale. The objectives of this study were to 1) determine the temporal trends in SOC storage across the contiguous U.S.; 2) explore the factors that can explain if soils have acted as a carbon source or sink during the period from 1920s to 2010. We used two soil datasets: 1) National Characterization Soil Survey Database (NCSS) from 1924 to 2010, which includes a total of 14,493 site observations with mutiple soil horizons within 0-100 cm; 2) The data from the Rapid Carbon Assessment (RaCA) Project, containing a total of 6,409 site observations to the maximum depth of 100 cm (2010-2012). We also extracted environmental covariates (space-time layers) covering the U.S. from various sources (remote sensing, National Elevation Dataset, climate data from PRISM project, etc.) to those sites. Results show a fluctuating trend of SOC stocks from 4 kg m-2 in 1920-1930 to 6 kg m-2 in 2010 in the 0-20 cm profile, and from 9 kg m-2 in 1920-1930 to 17 kg m-2 in 2010 in the 0-100 cm profile, respectively. However, there had been a decrease of SOC stock from 1975 to 1985 in both the 0-20 cm and 0-100 cm profiles. Our analysis reveals relationships between SOC storage and major pivotal political/legislative and socio-cultural events as well as environmental factors. The variation of SOC across the contiguous U.S. was affected in some periods by environmental legislation while in others natural effects predominated. The SOC stock change assessment can be used to infer on the magnitude and past trends; and thus, allows some insight how past natural and anthropogenic conditions have interacted with soil carbon storage. These patterns are likely to be amplified under projected anthropogenic trajectories that are magnitude of orders larger in the future. Our results also highlight the importance to take measures to achieve a neutral carbon budget fostering soil carbon sequestration to enhance soil carbon natural capital.
Data-Driven Microbial Modeling for Soil Carbon Decomposition and Stabilization
NASA Astrophysics Data System (ADS)
Luo, Yiqi; Chen, Ji; Chen, Yizhao; Feng, Wenting
2017-04-01
Microorganisms have long been known to catalyze almost all the soil organic carbon (SOC) transformation processes (e.g., decomposition, stabilization, and mineralization). Representing microbial processes in Earth system models (ESMs) has the potential to improve projections of SOC dynamics. We have recently examined (1) relationships of microbial functions with environmental factors and (2) microbial regulations of decomposition and other key soil processes. According to three lines of evidence, we have developed a data-driven enzyme (DENZY) model to simulate soil microbial decomposition and stabilization. First, our meta-analysis of 64 published field studies showed that field experimental warming significantly increased soil microbial communities abundance, which is negatively correlated with the mean annual temperature. The negative correlation indicates that warming had stronger effects in colder than warmer regions. Second, we found that the SOC decomposition, especially the transfer between labile SOC and protected SOC, is nonlinearly regulated by soil texture parameters, such as sand and silt contents. Third, we conducted a global analysis of the C-degrading enzyme activities, soil respiration, and SOC content under N addition. Our results show that N addition has contrasting effects on cellulase (hydrolytic C-degrading enzymes) and ligninase (oxidative C-degrading enzymes) activities. N-enhanced cellulase activity contributes to the minor stimulation of soil respiration whereas N-induced repression on ligninase activity drives soil C sequestration. Our analysis links the microbial extracellular C-degrading enzymes to the SOC dynamics at ecosystem scales across scores of experimental sites around the world. It offers direct evidence that N-induced changes in microbial community and physiology play fundamental roles in controlling the soil C cycle. Built upon those three lines of empirical evidence, the DENZY model includes two enzyme pools and explicitly characterizes two classes of extracellular enzyme activities: one that degrades organic molecules containing both C and N (e.g., chitin or protein) and another that degrades only C (e.g., cellulose). The DENZY model assumes that the microbes allocate resources to different enzyme pools so as to exactly satisfy microbial CN ratio stoichiometry in response to changes in climate conditions and soil attributes. The DENZY model can simulate differential effects of nitrogen fertilization on the two groups of enzymes and thus soil respiration and SOC dynamics. We will select field experimental sites to test the DENZY model. With increasing amounts of available observations and data synthesis, this DENZY model will be better parameterized and have a potential to reveal how responses of microbial enzymes to environmental changes regulate soil carbon decomposition and stabilization.
Using LUCAS topsoil database to estimate soil organic carbon content in local spectral libraries
NASA Astrophysics Data System (ADS)
Castaldi, Fabio; van Wesemael, Bas; Chabrillat, Sabine; Chartin, Caroline
2017-04-01
The quantification of the soil organic carbon (SOC) content over large areas is mandatory to obtain accurate soil characterization and classification, which can improve site specific management at local or regional scale exploiting the strong relationship between SOC and crop growth. The estimation of the SOC is not only important for agricultural purposes: in recent years, the increasing attention towards global warming highlighted the crucial role of the soil in the global carbon cycle. In this context, soil spectroscopy is a well consolidated and widespread method to estimate soil variables exploiting the interaction between chromophores and electromagnetic radiation. The importance of spectroscopy in soil science is reflected by the increasing number of large soil spectral libraries collected in the world. These large libraries contain soil samples derived from a consistent number of pedological regions and thus from different parent material and soil types; this heterogeneity entails, in turn, a large variability in terms of mineralogical and organic composition. In the light of the huge variability of the spectral responses to SOC content and composition, a rigorous classification process is necessary to subset large spectral libraries and to avoid the calibration of global models failing to predict local variation in SOC content. In this regard, this study proposes a method to subset the European LUCAS topsoil database into soil classes using a clustering analysis based on a large number of soil properties. The LUCAS database was chosen to apply a standardized multivariate calibration approach valid for large areas without the need for extensive field and laboratory work for calibration of local models. Seven soil classes were detected by the clustering analyses and the samples belonging to each class were used to calibrate specific partial least square regression (PLSR) models to estimate SOC content of three local libraries collected in Belgium (Loam belt and Wallonia) and Luxembourg. The three local libraries only consist of spectral data (199 samples) acquired using the same protocol as the one used for the LUCAS database. SOC was estimated with a good accuracy both within each local library (RMSE: 1.2 ÷ 5.4 g kg-1; RPD: 1.41 ÷ 2.06) and for the samples of the three libraries together (RMSE: 3.9 g kg-1; RPD: 2.47). The proposed approach could allow to estimate SOC everywhere in Europe only collecting spectra, without the need for chemical laboratory analyses, exploiting the potentiality of the LUCAS database and specific PLSR models.
Spatially resolved nanoscale observations of soil carbon multidecadal persistence
NASA Astrophysics Data System (ADS)
Lutfalla, S.; Chenu, C.; Bernard, S.; Le Guillou, C.; Barré, P.
2015-12-01
Assessing how mineral surfaces, especially at small scale, can protect soil organic carbon (SOC) from biodegradation is crucial. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here we used the unique opportunity offered by long term bare fallows (BF) to study in situ C dynamics in several fine fractions of a silty loam soil. With no vegetation i.e. no external input of fresh C, the plant-free soil of the Versailles 42 Plots (INRA, France) has been progressively enriched in persistent SOC during the 80 years of BF. Contrasted mineral phases of the clay size fraction were isolated by size fractionation on samples from 5 different dates (0, 10, 22, 52, and 79 years after the beginning of the BF, four field replicates per date). Four fractions were studied: total clays (< 2 μm), and three sub fractions in the clay (fine clay: 0 - 0.05 μm, intermediate clay: 0.05 - 0.2 μm, and coarse clay: 0.2 - 2 μm). X-ray diffraction analyses showed contrasted mineralogies in the fine and intermediate clay (smectite and mixed layered illite/smectite) as opposed to the coarse clay (smectite, illite, kaolinite and mixed layered I/S). We performed CHN elemental analysis and synchrotron based spectroscopy and microscopy (NEXAFS bulk and STXM at the carbon K edge of 280 eV, CLS Saskatoon, Canada) to study the dynamics, the distribution and the chemical speciation of the SOC in these fractions. The quantity of C appears to be stabilized after 50 years of BF, even though the dynamics are different for the three clay fractions. Indeed, coarse and intermediate clays have the same final C content but coarse clays lose more C. Fine clay experiences the highest C losses and displays the highest final C content suggesting that fine clays contained more labile C and more persistent C. In all fractions, C:N ratios are really low (below 8) and are decreasing with time, evidencing the dominant presence of microbial SOC. STXM-NEXAFS data shows that, in the fine and intermediate clay fractions, during the first 50 years of BF all mineral particles are associated with SOC. On the contrary, in the coarse clays, SOC displays more diversity: the chemical signature is more diverse and mineral particles not associated with SOC appear more quickly.
TARDEC Collaboration - Energy Storage
2010-12-07
Lithium - Ion Battery Pack Manufacturing • Advanced battery material scale-up facility • Electromagnetic Armor Power Maturation • Nickel-Zinc 6T...specification focused on 95% accuracy for SoC and SoH. • Lithium - Ion Battery Management Systems – Li-ion Battery OEMs produce BMS for their own battery
Zhou, Xiaoqi; Chen, Chengrong; Wang, Yanfen; Smaill, Simeon; Clinton, Peter
2013-01-01
Improved understanding of changes in soil recalcitrant organic carbon (C) in response to global warming is critical for predicting changes in soil organic C (SOC) storage. Here, we took advantage of a long-term field experiment with increased temperature and precipitation to investigate the effects of warming, increased precipitation and their interactions on SOC fraction in a semiarid Inner Mongolian grassland of northern China since April 2005. We quantified labile SOC, recalcitrant SOC and stable SOC at 0–10 and 10–20 cm depths. Results showed that neither warming nor increased precipitation affected total SOC and stable SOC at either depth. Increased precipitation significantly increased labile SOC at the 0–10 cm depth. Warming decreased labile SOC (P = 0.038) and marginally but significantly increased recalcitrant SOC at the 10–20 cm depth (P = 0.082). In addition, there were significant interactive effects of warming and increased precipitation on labile SOC and recalcitrant SOC at the 0–10 cm depth (both P<0.05), indicating that that results from single factor experiments should be treated with caution because of multi-factor interactions. Given that the absolute increase of SOC in the recalcitrant SOC pool was much greater than the decrease in labile SOC, and that the mean residence time of recalcitrant SOC is much greater, our results suggest that soil C storage at 10–20 cm depth may increase with increasing temperature in this semiarid grassland. PMID:23341995
Markewich, Helaine W.; Buell, Gary R.; Britsch, Louis D.; McGeehin, John P.; Robbins, John A.; Wrenn, John H.; Dillon, Douglas L.; Fries, Terry L.; Morehead, Nancy R.
2007-01-01
Soil/sediment of the Mississippi River deltaic plain (MRDP) in southeastern Louisiana is rich in organic carbon (OC). The MRDP contains about 2 percent of all OC in the surface meter of soil/sediment in the Mississippi River Basin (MRB). Environments within the MRDP differ in soil/sediment organic carbon (SOC) accumulation rate, storage, and inventory. The focus of this study was twofold: (1) develop a database for OC and bulk density for MRDP soil/sediment; and (2) estimate SOC storage, inventory, and accumulation rates for the dominant environments (brackish, intermediate, and fresh marsh; natural levee; distributary; backswamp; and swamp) in the MRDP. Comparative studies were conducted to determine which field and laboratory methods result in the most accurate and reproducible bulk-density values for each marsh environment. Sampling methods included push-core, vibracore, peat borer, and Hargis1 sampler. Bulk-density data for cores taken by the 'short push-core method' proved to be more internally consistent than data for samples collected by other methods. Laboratory methods to estimate OC concentration and inorganic-constituent concentration included mass spectrometry, coulometry, and loss-on-ignition. For the sampled MRDP environments, these methods were comparable. SOC storage was calculated for each core with adequate OC and bulk-density data. SOC inventory was calculated using core-specific data from this study and available published and unpublished pedon data linked to SSURGO2 map units. Sample age was estimated using isotopic cesium (137Cs), lead (210Pb), and carbon (14C), elemental Pb, palynomorphs, other stratigraphic markers, and written history. SOC accumulation rates were estimated for each core with adequate age data. Cesium-137 profiles for marsh soil/sediment are the least ambiguous. Levee and distributary 137Cs profiles show the effects of intermittent allochthonous input and/or sediment resuspension. Cesium-137 and 210Pb data gave the most consistent and interpretable information for age estimations of soil/sediment deposited during the 1900s. For several cores, isotopic 14C and 137Cs data allowed the 1963-64 nuclear weapons testing (NWT) peak-activity datum to be placed within a few-centimeter depth interval. In some cores, a too old 14C age (when compared to 137Cs and microstratigraphic-marker data) is the probable result of old carbon bound to clay minerals incorporated into the organic soil/sediment. Elemental Pb coupled with Pb source-function data allowed age estimation for soil/sediment that accumulated during the late 1920s through the 1980s. Exotic pollen (for example, Vigna unguiculata and Alternanthera philoxeroides) and other microstratigraphic indicators (for example, carbon spherules) allowed age estimations for marsh soil/sediment deposited during the settlement of New Orleans (1717-20) through the early 1900s. For this study, MRDP distributary and swamp environments were each represented by only one core, backswamp environment by two cores, all other environments by three or more cores. MRDP core data for the surface meter soil/sediment indicate that (1) coastal marshes, abandoned distributaries, and swamps have regional SOC-storage values >16 kg m-2; (2) swamps and abandoned distributaries have the highest SOC storage values (swamp, 44.8 kg m-2; abandoned distributary, 50.9 kg m-2); (3) fresh-to-brackish marsh environments have the second highest site-specific SOC-storage values; and (4) site-specific marsh SOC storage values decrease as the salinity of the environment increases (fresh-marsh, 36.2 kg m-2; intermediate marsh, 26.2 kg m-2; brackish marsh, 21.5 kg m-2). This inverse relation between salinity and SOC storage is opposite the regional systematic increase in SOC storage with increasing salinity that is evident when SOC storage is mapped by linking pedon data to SSURGO map units (fresh marsh, 47 kg m-2; intermediate marsh, 67 kg m-2; brackish marsh, 75 kg m-2; and salt marsh, 80 kg m-2). MRDP core data for this study also indicate that levees and backswamp have regional SOC-storage values <16 kg m-2. Group-mean SOC storage for cores from these environments are natural levee (17.0 kg m-2) and backswamp (14.1 kg m-2). An estimate for the SOC inventory in the surface meter of soil/sediment in the MRDP can be made using the SSURGO mapped portion of the coastal-marsh vegetative-type map (13,236 km2, land-only area) published by the Louisiana Department of Wildlife and Fisheries and U.S. Geological Survey (1997). This area has a SOC inventory (surface meter) of 677 Tg (slightly more than 2 percent of the 30,289 Tg SOC inventory for the MRB). The MRDP (6,180 km2, land-only area) has an estimated SOC inventory of 397 Tg. Most of the MRDP is located within the SSURGO mapped coastal marshlands. The entire MRDP, including water, has an area of about 10,800 km2. Using the ratio of total MRDP area to SSURGO mapped MRDP area as an adjustment, the MRDP SOC inventory is estimated at 694 Tg. This larger estimate of 694 Tg for the SOC inventory is probably more realistic, because it is reasonable to assume that the marsh sediments overlain by shallow water have comparable SOC storage to that of the adjacent land areas. MRDP core data for this study indicate that there is some variability in long-term SOC mass-accumulation rates for centuries and millennia and that this variability may indicate important geologic changes or changes in land use. However, the consistency of the range in rates of SOC accumulation through time suggests a remarkable degree of marsh sustainability throughout the Holocene, including the recent period of significant marsh modification/channelization for human use. One example of marsh sustainability is its present ability to function as a SOC sink even with Louisiana's large-scale coastal land loss during the last several decades. With coastal-marsh restoration efforts, this sink potential will increase. Looking to the future, a total of 1,101 g m-2 yr-1 SOC is projected to be lost from all of coastal Louisiana (U.S. Army Corps of Engineers, Louisiana Coastal Area (LCA) subprovinces 1-4; not just the MRDP) through coastal erosion from year 2000 to 2050. This translates to a projected SOC-loss rate of about 0.20 percent per year. The recent Hurricanes Katrina and Rita, which devastated the Louisiana coast during late August and late September 2005, transformed about 259 km2 (100 mi2) of marsh to open water (U.S. Geological Survey, 2005). To the extent that some or all of this land loss is permanent, this result equates to a SOC loss of about 15 Tg. This estimate is based on the year-2000 15,153-km2 land area for the LCA study area that includes LCA subprovince 4. Using the year-2000 land area, the LCA study area had an estimated SOC inventory of 858 Tg. The estimated 15 Tg SOC loss attributable to Hurricanes Katrina and Rita is 1.7 percent of the year-2000 LCA inventory and 2.3 percent of the year-2000 MRDP inventory. If this SOC loss is included in the projection for the year 2050, then the MRDP would either remain a source with a net SOC loss of 3 Tg or become a weak sink with a net SOC gain of 4 Tg. These estimates are lower bounds for potential SOC flux because they are only for the surface meter of landmass.
Nygren, B; Aléx, L; Jonsén, E; Gustafson, Y; Norberg, A; Lundman, B
2005-07-01
Different concepts have been presented which denote driving forces and strengths that contribute to a person's ability to meet and handle adversities, and keep or regain health. The aim of this study, which is a part of The Umeå 85+ study, was to describe resilience, sense of coherence, purpose in life and self-transcendence in relation to perceived physical and mental health in a sample of the oldest old. The study sample consisted of 125 participants 85 years of age or older, who ranked themselves on the Resilience Scale, Sense of Coherence Scale, Purpose in Life Scale and Self-Transcendence Scale and answered the SF-36 Health Survey questionnaire. The findings showed significant correlations between scores on the Resilience Scale, the Sense of Coherence Scale, the Purpose in Life Test, and the Self-Transcendence Scale. Significant correlations were also found between these scales and the SF-36 Mental Health Summary among women but not among men. There was no significant correlation between perceived physical and mental health. The mean values of the different scales showed that the oldest old have the same or higher scores than younger age groups. Regression analyses also revealed sex differences regarding mental health. The conclusions are that, the correlation between scores on the different scales suggests that the scales measure some dimension of inner strength and that the oldest old have this strength at least in the same extent as younger adults. Another conclusion is that the dimensions that constitute mental health differ between women and men.
SOCS2 Binds to and Regulates EphA2 through Multiple Mechanisms.
Pilling, Carissa; Cooper, Jonathan A
2017-09-07
Suppressors of cytokine signaling (SOCS) proteins inhibit signaling by serving as substrate receptors for the Cullin5-RING E3 ubiquitin ligase (CRL5) and through a variety of CRL5-independent mechanisms. CRL5, SOCS2 and SOCS6 are implicated in suppressing transformation of epithelial cells. We identified cell proteins that interact with SOCS2 and SOCS6 using two parallel proteomics techniques: BioID and Flag affinity purification mass spectrometry. The receptor tyrosine kinase ephrin type-A receptor 2 (EphA2) was identified as a SOCS2-interacting protein. SOCS2-EphA2 binding requires the SOCS2 SH2 domain and EphA2 activation loop autophosphorylation, which is stimulated by Ephrin A1 (EfnA1) or by phosphotyrosine phosphatase inhibition. Surprisingly, EfnA1-stimulated EphA2-SOCS2 binding is delayed until EphA2 has been internalized into endosomes. This suggests that SOCS2 binds to EphA2 in the context of endosomal membranes. We also found that SOCS2 overexpression decreases steady state levels of EphA2, consistent with increased EphA2 degradation. This effect is indirect: SOCS2 induces EfnA1 expression, and EfnA1 induces EphA2 down-regulation. Other RTKs have been reported to bind, and be regulated by, over-expressed SOCS proteins. Our data suggest that SOCS protein over-expression may regulate receptor tyrosine kinases through indirect and direct mechanisms.
Soil carbon distribution in Alaska in relation to soil-forming factors
Johnson, K.D.; Harden, J.; McGuire, A.D.; Bliss, N.B.; Bockheim, James G.; Clark, M.R.; Nettleton-Hollingsworth, T.; Jorgenson, M.T.; Kane, E.S.; Mack, M.; O'Donnell, J.; Ping, C.-L.; Schuur, E.A.G.; Turetsky, M.R.; Valentine, D.W.
2011-01-01
The direction and magnitude of soil organic carbon (SOC) changes in response to climate change remain unclear and depend on the spatial distribution of SOC across landscapes. Uncertainties regarding the fate of SOC are greater in high-latitude systems where data are sparse and the soils are affected by sub-zero temperatures. To address these issues in Alaska, a first-order assessment of data gaps and spatial distributions of SOC was conducted from a recently compiled soil carbon database. Temperature and landform type were the dominant controls on SOC distribution for selected ecoregions. Mean SOC pools (to a depth of 1-m) varied by three, seven and ten-fold across ecoregion, landform, and ecosystem types, respectively. Climate interactions with landform type and SOC were greatest in the uplands. For upland SOC there was a six-fold non-linear increase in SOC with latitude (i.e., temperature) where SOC was lowest in the Intermontane Boreal compared to the Arctic Tundra and Coastal Rainforest. Additionally, in upland systems mineral SOC pools decreased as climate became more continental, suggesting that the lower productivity, higher decomposition rates and fire activity, common in continental climates, interacted to reduce mineral SOC. For lowland systems, in contrast, these interactions and their impacts on SOC were muted or absent making SOC in these environments more comparable across latitudes. Thus, the magnitudes of SOC change across temperature gradients were non-uniform and depended on landform type. Additional factors that appeared to be related to SOC distribution within ecoregions included stand age, aspect, and permafrost presence or absence in black spruce stands. Overall, these results indicate the influence of major interactions between temperature-controlled decomposition and topography on SOC in high-latitude systems. However, there remains a need for more SOC data from wetlands and boreal-region permafrost soils, especially at depths > 1 m in order to fully understand the effects of climate on soil carbon in Alaska.
Parental bonding during childhood affects stress-coping ability and stress reaction.
Ohtaki, Yuh; Ohi, Yuichi; Suzuki, Shun; Usami, Kazuya; Sasahara, Shinichiro; Matsuzaki, Ichiyo
2017-07-01
An online survey examined the effects of parental bonding during childhood on adult workers' stress-coping ability (Sense of Coherence) and stress reactions (General Health Questionnaire and Self-Rating Depression Scale). Participants who completed the questionnaire were grouped into optimal bonding and poor bonding groups. Analyses of covariance by gender with age as a covariate were conducted for the Sense of Coherence, General Health Questionnaire, and Self-Rating Depression Scale scores for 9525 participants. For both genders, the scores of the poor bonding group were significantly lower for the Sense of Coherence and significantly higher for the General Health Questionnaire and Self-Rating Depression Scale compared to those of the optimal bonding group.
Li, Jun; Zhang, Yang; Zhang, Yuehuan; Liu, Ying; Xiang, Zhiming; Qu, Fufa; Yu, Ziniu
2015-06-01
Members of the suppressor of cytokine signaling (SOCS) family are crucial for the control of a variety of signal transduction pathways that are involved in the immunity, growth and development of organisms. However, in mollusks, the identity and function of SOCS proteins remain largely unclear. In the present study, three SOCS genes, CgSOCS2, CgSOCS5 and CgSOCS7, have been identified by searching and analyzing the Pacific oyster genome. Structural analysis indicated that the CgSOCS share conserved functional domains with their vertebrate counterparts. Phylogenetic analysis showed that the three SOCS genes clustered into two distinct groups, the type I and II subfamilies, indicating that these subfamilies had common ancestors. Tissue-specific expression results showed that the three genes were constitutively expressed in all examined tissues and were highly expressed in immune-related tissues, such as the hemocytes, gills and digestive gland. The expression of CgSOCS can also be induced to varying degrees in hemocytes after challenge with pathogen-associated molecular patterns (PAMPs). Moreover, dual-luciferase reporter assays showed that the over-expression of CgSOCS2 and CgSOCS7, but not CgSOC5, can activate an NF-κB reporter gene. Collectively, these results demonstrated that the CgSOCS might play an important role in the innate immune responses of the Pacific oyster. Copyright © 2015 Elsevier Ltd. All rights reserved.
Social Well-Being Among Colombian and Peruvian Immigrants in Northern Chile.
Urzúa Morales, Alfonso; Delgado-Valencia, Eric; Rojas-Ballesteros, Mariela; Caqueo-Urízar, Alejandra
2017-10-01
In recent years, northern Chile has received a large number of immigrants attracted mainly by mining and related services. The last population census revealed that 70.5 % of foreigners in Chile came from South America, and were mainly Peruvians (30.5 %), Argentines (16.8 %), and Colombians (8.1 %). The aim of this cross-sectional study is to describe the social well-being levels reported by Colombian and Peruvian immigrants in northern Chile, as well as their connection to socio-demographic and relational factors. The Spanish version of the Scale of Social Well-being (Keyes in Soc Psychol Q 61:121-140, 1998) was administered to 431 men and women over 18 years old, with a minimum residence of 6 months in the city of Antofagasta. The highest-rated aspect was Social Contribution, and the lowest-rated aspect was Social Acceptance. The relational variables that show statistically significant differences in both populations relate to who the subject lives with, the degree of contact that the subject has with people from Chile, and the subject's relationship status. There are no differences that indicate a higher level of social well-being in one population more than the other; however, it appears that the Peruvian population has a greater perception of Social Coherence, while Colombians show a greater perception of Social Contribution.
Collective coherence in nearest neighbor coupled metamaterials: A metasurface ruler equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ningning; Zhang, Weili, E-mail: weili.zhang@okstate.edu; Singh, Ranjan, E-mail: ranjans@ntu.edu.sg
The collective coherent interactions in a meta-atom lattice are the key to myriad applications and functionalities offered by metasurfaces. We demonstrate a collective coherent response of the nearest neighbor coupled split-ring resonators whose resonance shift decays exponentially in the strong near-field coupled regime. This occurs due to the dominant magnetic coupling between the nearest neighbors which leads to the decay of the electromagnetic near fields. Based on the size scaling behavior of the different periodicity metasurfaces, we identified a collective coherent metasurface ruler equation. From the coherent behavior, we also show that the near-field coupling in a metasurface lattice existsmore » even when the periodicity exceeds the resonator size. The identification of a universal coherence in metasurfaces and their scaling behavior would enable the design of novel metadevices whose spectral tuning response based on near-field effects could be calibrated across microwave, terahertz, infrared, and the optical parts of the electromagnetic spectrum.« less
NASA Astrophysics Data System (ADS)
Dimassi, Bassem; Guenet, Bertrand; Mary, Bruno; Trochard, Robert; Bouthier, Alain; Duparque, Annie; Sagot, Stéphanie; Houot, Sabine; Morel, Christian; Martin, Manuel
2016-04-01
The land use, land-use change and forestry (LULUCF) activities and crop management (CM) in Europe could be an important carbon sink through soil organic carbon (SOC) sequestration. Recently, the (EU decision 529/2013) requires European Union's member states to assess modalities to include greenhouse gas (GHG) emissions and removals resulting from activities relating to LULUCF and CM into the Union's (GHG) emissions reduction commitment and their national inventories reports (NIR). Tier 1, the commonly used method to estimate emissions for NIR, provides a framework for measuring SOC stocks changes. However, estimations have high uncertainty, especially in response to crop management at regional and specific national contexts. Understanding and quantifying this uncertainty with accurate confidence interval is crucial for reliably reporting and support decision-making and policies that aims to mitigate greenhouse gases through soil C storage. Here, we used the Tier 3 method, consisting of process-based modelling, to address the issue of uncertainty quantification at national scale in France. Specifically, we used 20 Long-term croplands experiments (LTE) in France with more than 100 treatments taking into account different agricultural practices such as tillage, organic amendment, inorganic fertilization, cover crops, etc. These LTE were carefully selected because they are well characterized with periodic SOC stocks monitoring overtime and covered a wide range of pedo-climatic conditions. We applied linear mixed effect model to statistically model, as a function of soil, climate and cropping system characteristics, the uncertainty resulting from applying this Tier 3 approach. The model was fitted on the dataset yielded by comparing the simulated (with the Century model V 4.5) to the observed SOC changes on the LTE at hand. This mixed effect model will then be used to derive uncertainty related to the simulation of SOC stocks changes of the French Soil Monitoring Network (FSMN) where only one measurement is done in 16 Km regular grid. These simulations on the grid will be in turn used for NIR. Preliminary results suggest that the model do not adequately simulate SOC stocks levels but succeeds at capturing SOC changes due to management, despite the fact that the model does not explicitly simulate some management such as tillage. This is probably due to inappropriate model parametrization especially for crops and thus Cinput in the French context and/or model initialization.
Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo
2011-08-01
Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils. Therefore both the decomposition rate modifier and plant input modifier should be taken into account when accounting for SOC turnover in saline soils. Since modeling has previously not accounted for the impact of salinity, our results suggest that previous predictions may have overestimated SOC stocks.
Knocking off the suppressors of cytokine signaling (SOCS): their roles in mammalian pregnancy.
Fitzgerald, Justine S; Toth, Bettina; Jeschke, Udo; Schleussner, Ekkehard; Markert, Udo R
2009-12-01
This review discusses the possible role of the suppressor of cytokine signaling (SOCS) proteins in mammalian reproduction. SOCS are regulatory proteins that are rapidly transcribed in response to intracellular Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling, a cascade governing biological functions including cytokine-induced immunological responses and reproductive processes. For instance STAT3 appears to mediate trophoblast invasion induced by LIF. The SOCS family includes 8 members (cytokine-inducible SH2 protein [CIS] and SOCS1-7) that orchestrate distinct reactions by antagonizing STAT activation. Emerging evidence points to a role of some family members in synchronizing Th1/Th2 cell profiles, the balance in which is considered vital to pregnancy maintenance. The reproductive phenotypes of mutant mice harboring targeted disruption of SOCS gene isoforms offer insights for reproductive immunology, trophoblast function and human pregnancy. CIS transgenic mice display impaired responses to IL-2 and resemble STAT5 deficient mice, except they are fertile. SOCS1 deficiency leads to an overabundance of IFNgamma signaling, yet SOCS1 null mutant mice are able to reproduce. Lack of SOCS3 is embryonically lethal due to placental insufficiency, while SOCS3 over-expression leads to elevated Th2 responses. SOCS3 seems to be vital for reproduction by regulating LIF-driven trophoblast differentiation. SOCS5 inhibits IL-4 signaling, yet the SOCS5 transgenic mouse has no conspicuous reproductive phenotype. SOCS-6 and SOCS-7 null mutant mice display growth retardation. In summary, SOCS proteins are avidly involved in fine regulation of immunological and other vital cellular responses. Many of the above phenotypes present contradictions to accepted reproductive immunological paradigms.
IL-10 and socs3 Are Predictive Biomarkers of Dengue Hemorrhagic Fever.
Flores-Mendoza, Lilian Karem; Estrada-Jiménez, Tania; Sedeño-Monge, Virginia; Moreno, Margarita; Manjarrez, María Del Consuelo; González-Ochoa, Guadalupe; Millán-Pérez Peña, Lourdes; Reyes-Leyva, Julio
2017-01-01
Cytokines play important roles in the physiopathology of dengue infection; therefore, the suppressors of cytokine signaling ( socs ) that control the type and timing of cytokine functions could be involved in the origin of immune alterations in dengue. To explore the association of cytokine and socs levels with disease severity in dengue patients. Blood samples of 48 patients with confirmed dengue infection were analyzed. Amounts of interleukins IL-2, IL-4, IL-6, and IL-10, interferon- (IFN-) γ , and tumor necrosis factor- (TNF-) α were quantified by flow cytometry, and the relative expression of socs1 and socs3 mRNA was quantified by real-time RT-PCR. Increased levels of IL-10 and socs3 and lower expression of socs1 were found in patients with dengue hemorrhagic fever (DHF) with respect to those with dengue fever (DF) ( p < 0.05). Negative correlations were found between socs1 and both IL-10 and socs3 ( p < 0.01). The cutoff values of socs3 (>199.8-fold), socs1 (<1.94-fold), and IL-10 (>134 pg/ml) have the highest sensitivity and specificity to discriminate between DF and DHF. Simultaneous changes in IL-10 and socs1/socs3 could be used as prognostic biomarkers of dengue severity.
IL-10 and socs3 Are Predictive Biomarkers of Dengue Hemorrhagic Fever
Estrada-Jiménez, Tania; Sedeño-Monge, Virginia; Moreno, Margarita; Manjarrez, María del Consuelo; González-Ochoa, Guadalupe; Millán-Pérez Peña, Lourdes
2017-01-01
Background Cytokines play important roles in the physiopathology of dengue infection; therefore, the suppressors of cytokine signaling (socs) that control the type and timing of cytokine functions could be involved in the origin of immune alterations in dengue. Objective To explore the association of cytokine and socs levels with disease severity in dengue patients. Methods Blood samples of 48 patients with confirmed dengue infection were analyzed. Amounts of interleukins IL-2, IL-4, IL-6, and IL-10, interferon- (IFN-) γ, and tumor necrosis factor- (TNF-) α were quantified by flow cytometry, and the relative expression of socs1 and socs3 mRNA was quantified by real-time RT-PCR. Results Increased levels of IL-10 and socs3 and lower expression of socs1 were found in patients with dengue hemorrhagic fever (DHF) with respect to those with dengue fever (DF) (p < 0.05). Negative correlations were found between socs1 and both IL-10 and socs3 (p < 0.01). The cutoff values of socs3 (>199.8-fold), socs1 (<1.94-fold), and IL-10 (>134 pg/ml) have the highest sensitivity and specificity to discriminate between DF and DHF. Conclusion Simultaneous changes in IL-10 and socs1/socs3 could be used as prognostic biomarkers of dengue severity. PMID:28827898
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station research missions integration, crew requirements, SOC operations, and configurations are analyzed. Potential research and applications missions and their requirements are described. The capabilities of SOC are compared with user requirements. The SOC/space shuttle and shuttle-derived vehicle flight support operations and SOC orbital operations are described. Module configurations and systems options, SOC/external tank configurations, and configurations for geostationary orbits are described. Crew and systems safety configurations are summarized.
Subjective Wellbeing: Telling Only Half the Story
ERIC Educational Resources Information Center
Eckersley, Richard
2013-01-01
A new paper presents a strong case for life satisfaction scales (Diener et al. in "Soc Indic Res," 2012). However, it underestimates two important weaknesses in subjective wellbeing (SWB) measures: the contrast between individual satisfaction and social discontent; and the contradictory evidence on the benefits of personal freedom. This commentary…
Rotorcraft Airloads Measurements - Extraordinary Costs, Extraordinary Benefits
2014-08-01
obtained in the 1980s by the PETRA collider in a high-energy physics lab near Hamburg, Germany. The project, called JADE, was an international...and R. M. Martin . 1990. Aerodynamic and Acoustic Test of a United Technologies Scale Model Rotor at DNW. Amer. Hel. Soc. 46th Annual Forum, Wash
Self-organized criticality in forest-landscape evolution
J.C. Sprott; Janine Bolliger; David J. Mladenoff
2002-01-01
A simple cellular automaton replicates the fractal pattern of a natural forest landscape and predicts its evolution. Spatial distributions and temporal fluctuations in global quantities show power-law spectra, implying scale-invariance, characteristic of self-organized criticality. The evolution toward the SOC state and the robustness of that state to perturbations...
Passive Infrared Detection of Microburst Induced Low Level Wind Shear
1990-05-17
ring vortex breaks up as the microburst matures. Some rotor microbursts develops from larger scale macrobursts and gust fronts. From Fujita (1985) 2.2...Canada, Amer. Meteor. Soc., 638-645. , 1985:" The Downburst; Microburst and Macroburst ", University of Chicago, SRMP, University of Chicago. , 1986
Koga, D; Chian, A C-L; Miranda, R A; Rempel, E L
2007-04-01
The link between phase coherence and non-Gaussian statistics is investigated using magnetic field data observed in the solar wind turbulence near the Earth's bow shock. The phase coherence index Cphi, which characterizes the degree of phase correlation (i.e., nonlinear wave-wave interactions) among scales, displays a behavior similar to kurtosis and reflects a departure from Gaussianity in the probability density functions of magnetic field fluctuations. This demonstrates that nonlinear interactions among scales are the origin of intermittency in the magnetic field turbulence.
NASA Astrophysics Data System (ADS)
O'Driscoll, B.; Walker, R. J.; Clay, P. L.; Day, J. M.; Ash, R. D.; Daly, J. S.
2015-12-01
The mantle sections of ophiolites offer a means of studying the composition and structure of the oceanic mantle. In particular, the relations between different lithologies can be established in the field, permitting an assessment of the relative timing of processes such as melt extraction and melt-rock reaction. The Shetland Ophiolite Complex (SOC) contains a well-preserved mantle section that is dominated by harzburgite (≥70 vol.%), with dominantly chondritic present-day 187Os/188Os compositions1. Melt extraction and melt-rock reaction is evident in the form of dunite and chromitite layers and lenses, with thicknesses ranging from millimetres-to-metres. These lithologies are characteristic of supra-subduction zone processing and are considered to relate to closure of the Iapetus Ocean at ~492 Ma1. However, evidence of much earlier melt extraction has been suggested for some SOC harzburgites, which have relatively unradiogenic 187Os/188Os compositions that yield TRD model ages as old as ~1.4 Ga1. In order to assess the scales at which such compositional heterogeneities are preserved in the mantle, a small (45 m2) area of the SOC mantle section was selected for detailed lithological mapping and sampling. A selection of harzburgites (n=8), dunites (n=6) and pyroxenites (n=2) from this area has been analysed for their Os isotope and highly-siderophile element (HSE) compositions. Six of the harzburgites and four of the dunites have relative HSE abundances and gOs values that are approximately chondritic, with gOs ranging only from -0.6 to +2.7 (n=10). Two dunites have more radiogenic gOs (up to +7.5), that is correlated with enhanced concentrations of accessory base-metal sulphides, suggesting formation via melt percolation and melt-rock reaction. The two remaining harzburgites have less radiogenic gOs (-3.5 and -4), yielding Mesoproterozoic TRD ages. The new data indicate that a comparable range of Os isotope compositions to that previously measured across the entire SOC mantle section is present in the mapped area, i.e., at the m2 scale, revealing the modest scale of isotopic and chemical heterogeneity in the oceanic mantle. 1O'Driscoll B, Day JMD, Walker RJ, Daly JS, McDonough WF, Piccoli PM (2012). Earth and Planetary Science Letters 333-334: 226-237.
Yasukawa, Hideo; Nagata, Takanobu; Oba, Toyoharu; Imaizumi, Tsutomu
2012-01-01
The suppressors of cytokine signaling (SOCS) family of proteins are cytokine-inducible inhibitors of Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) signaling pathways. Among the family, SOCS1 and SOCS3 potently suppress cytokine actions by inhibiting JAK kinase activities. The generation of mice lacking individual SOCS genes has been instrumental in defining the role of individual SOCS proteins in specific cytokine pathways in vivo; SOCS1 is an essential negative regulator of interferon-γ (IFNγ) and SOCS3 is an essential negative regulator of leukemia inhibitory factor (LIF). JAK-STAT3 activating cytokines have exhibited cardioprotective roles in the heart. The cardiac-specific deletion of SOCS3 enhances the activation of cardioprotective signaling pathways, inhibits myocardial apoptosis and fibrosis and results in the inhibition of left ventricular remodeling after myocardial infarction (MI). We propose that myocardial SOCS3 is a key determinant of left ventricular remodeling after MI, and SOCS3 may serve as a novel therapeutic target to prevent left ventricular remodeling after MI. In this review, we discuss the signaling pathways mediated by JAK-STAT and SOCS proteins and their roles in the development of myocardial injury under stress (e.g., pressure overload, viral infection and ischemia). PMID:24058778
Contrasting effects of deep ploughing of croplands and forests on SOC stocks and SOC bioavailability
NASA Astrophysics Data System (ADS)
Alcántara, Viridiana; Don, Axel; Vesterdal, Lars; Well, Reinhard; Nieder, Rolf
2016-04-01
Subsoils are essential within the global C cycle since they have a high soil organic carbon (SOC) storage capacity due to a high SOC saturation deficit. However, measures for enhancing SOC stocks commonly focus on topsoils. We assessed the long-term stability of topsoil SOC buried in cropland and forest subsoils by deep ploughing. Deep ploughing was promoted until the 1970s for breaking up hardpan and improving soil structure to optimize crop growth conditions. In forests deep ploughing is performed as a site preparation measure for afforestation of sandy soil aiming at increasing water availability in deeper layers and decreasing weed competition by burial of seeds. An effect of deep ploughing was the translocation of topsoil SOC into subsoils, with a concomitant mixing of SOC-poor subsoil material into the "new" topsoil horizon. Deep ploughed croplands and forests represent unique long-term "in-situ incubations" of SOC-rich material in subsoils in order to assess the effect of soil depth on SOC turnover. In this study, we sampled soil from five loamy and five sandy cropland sites as well as from five sandy forest sites, which were ploughed to 55-127 cm depth 25 to 53 years ago. Adjacent, equally managed but conventionally ploughed or not ploughed (forests) subplots were sampled as reference. On average 45 years after the deep ploughing operation, at the cropland sites, the deep ploughed soils contained 42±13 Mg ha-1 more SOC than the reference subplots down to 100 cm depth. On the contrary, at the forest sites, the SOC stocks of the deep ploughed soils contained 18±9 Mg ha-1 less SOC compared to the reference soils on average 38 years deep ploughing. These contrasting results can be explained, on the one hand, by the slower SOC accumulation in the newly formed topsoils of the deep ploughed forest soil (on average 48% lower SOC stocks in topsoil) compared to the croplands (on average 15% lower SOC stocks in topsoil). On the other hand, the buried topsoils at the forest sites exhibited similar bioavailability of SOC (measured as net C mineralization rates from short-term in-vitro incubations) as compared to the reference topsoils. In contrast, at the sandy cropland sites, net C mineralization rates were significantly lower (67%) in the buried topsoil material compared to the reference topsoil. Buried SOC in the sandy soils is thus highly stable. Together with these results, we will present data on SOC fractions and discuss their implications for our view on stability of buried SOC in croplands and forests. Our results show that deep ploughing contributes to SOC sequestration by enlarging the storage space for SOC-rich material but only under the preconditions that i) burial is accompanied by decrease in SOC bioavailability and ii) SOC accumulates considerably in the newly formed topsoil.
Coherent Transition Radiation Generated from Transverse Electron Density Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.; Tyukhtin, A. V.
Coherent Transition radiation (CTR) of a given frequency is commonly generated with longitudinal electron bunch trains. In this paper, we present a study of CTR properties produced from simultaneous electron transverse and longitudinal density modulation. We demonstrate via numerical simulations a simple technique to generate THz-scale frequencies from mm-scale transversely separated electron beamlets formed into a ps-scale bunch train. The results and a potential experimental setup are discussed.
Stensletten, Kari; Bruvik, Frøydis; Espehaug, Birgitte; Drageset, Jorunn
2016-11-01
Family members are often the care providers of individuals with dementia, and it is assumed that the need for this will increase. There has been little research into the association between the burden of care and the caregiver's sense of coherence or receipt of social support. This study examined the relationship between the social support subdimensions and sense of coherence and the burden of care among older people giving care to a partner with dementia. The study was a cross-sectional observation study of 97 individuals, ≥65 years old and living with a partner who had symptoms of dementia. We used the Informant Questionnaire on Cognitive Decline in the Elderly, the Relative Stress Scale, the Social Provisions Scale, the Sense of Coherence Scale, and a questionnaire on sociodemographic variables. We used multiple regression analysis in a general linear model procedure. We defined statistical significance as p < 0.05. With adjustments for sociodemographic variables, the association with burden of care was statistically significant for the subdimension attachment (p < 0.01) and for sense of coherence (p < 0.001). The burden of care was associated with attachment and with sense of coherence. Community nurses and other health professionals should take necessary action to strengthen attachment and sense of coherence among the caregivers of people with dementia. Qualitative studies could provide deeper understanding of the variation informal caregivers experience when living together with their partner with dementia. © The Author(s) 2014.
Second-scale nuclear spin coherence time of ultracold 23Na40K molecules.
Park, Jee Woo; Yan, Zoe Z; Loh, Huanqian; Will, Sebastian A; Zwierlein, Martin W
2017-07-28
Coherence, the stability of the relative phase between quantum states, is central to quantum mechanics and its applications. For ultracold dipolar molecules at sub-microkelvin temperatures, internal states with robust coherence are predicted to offer rich prospects for quantum many-body physics and quantum information processing. We report the observation of stable coherence between nuclear spin states of ultracold fermionic sodium-potassium (NaK) molecules in the singlet rovibrational ground state. Ramsey spectroscopy reveals coherence times on the scale of 1 second; this enables high-resolution spectroscopy of the molecular gas. Collisional shifts are shown to be absent down to the 100-millihertz level. This work opens the door to the use of molecules as a versatile quantum memory and for precision measurements on dipolar quantum matter. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Soil organic carbon quality in forested mineral wetlands at different mean annual temperature.
Cinzia Fissore; Christian P. Giardina; Randall K. Kolka; Carl C. Trettin
2009-01-01
Forested mineral soil wetlands (FMSW) store large stocks of soil organic carbon (SOC), but little is known on: (i) whether the quality of SOC stored in these soils (proportion of active versus more resistant SOC compounds) differs from SOC in upland soils; (ii) how the quality of SOC in FMSW varies with mean annual temperature (MAT); and (iii) whether SOC decomposition...
NASA Astrophysics Data System (ADS)
Menichetti, Lorenzo; Kätterer, Thomas; Leifeld, Jens
2016-05-01
Soil organic carbon (SOC) dynamics result from different interacting processes and controls on spatial scales from sub-aggregate to pedon to the whole ecosystem. These complex dynamics are translated into models as abundant degrees of freedom. This high number of not directly measurable variables and, on the other hand, very limited data at disposal result in equifinality and parameter uncertainty. Carbon radioisotope measurements are a proxy for SOC age both at annual to decadal (bomb peak based) and centennial to millennial timescales (radio decay based), and thus can be used in addition to total organic C for constraining SOC models. By considering this additional information, uncertainties in model structure and parameters may be reduced. To test this hypothesis we studied SOC dynamics and their defining kinetic parameters in the Zürich Organic Fertilization Experiment (ZOFE) experiment, a > 60-year-old controlled cropland experiment in Switzerland, by utilizing SOC and SO14C time series. To represent different processes we applied five model structures, all stemming from a simple mother model (Introductory Carbon Balance Model - ICBM): (I) two decomposing pools, (II) an inert pool added, (III) three decomposing pools, (IV) two decomposing pools with a substrate control feedback on decomposition, (V) as IV but with also an inert pool. These structures were extended to explicitly represent total SOC and 14C pools. The use of different model structures allowed us to explore model structural uncertainty and the impact of 14C on kinetic parameters. We considered parameter uncertainty by calibrating in a formal Bayesian framework. By varying the relative importance of total SOC and SO14C data in the calibration, we could quantify the effect of the information from these two data streams on estimated model parameters. The weighing of the two data streams was crucial for determining model outcomes, and we suggest including it in future modeling efforts whenever SO14C data are available. The measurements and all model structures indicated a dramatic decline in SOC in the ZOFE experiment after an initial land use change in 1949 from grass- to cropland, followed by a constant but smaller decline. According to all structures, the three treatments (control, mineral fertilizer, farmyard manure) we considered were still far from equilibrium. The estimates of mean residence time (MRT) of the C pools defined by our models were sensitive to the consideration of the SO14C data stream. Model structure had a smaller effect on estimated MRT, which ranged between 5.9 ± 0.1 and 4.2 ± 0.1 years and 78.9 ± 0.1 and 98.9 ± 0.1 years for young and old pools, respectively, for structures without substrate interactions. The simplest model structure performed the best according to information criteria, validating the idea that we still lack data for mechanistic SOC models. Although we could not exclude any of the considered processes possibly involved in SOC decomposition, it was not possible to discriminate their relative importance.
Clarifying uncertainty in biogeochemical response to land management
NASA Astrophysics Data System (ADS)
Tonitto, C.; Gurwick, N. P.; Woodbury, P. B.
2013-12-01
We examined the ability of contemporary simulation and empirical modeling tools to describe net greenhouse gas (GHG) emissions as a result of agricultural and forest ecosystem land management, and we looked at how key policy institutions use these tools. We focused on quantification of nitrous oxide (N2O) emissions from agricultural systems, as agriculture is the dominant source of anthropogenic N2O emissions. Agricultural management impact on N2O emissions is especially challenging because controls on N2O emissions (soil aerobic status, inorganic N availability, and C substrate availability) vary as a function of site soil type, climate, and cropping system; available measurements do not cover all relevant combinations of these controlling system features. Furthermore, N2O emissions are highly non-linear, and threshold values of controlling soil environmental conditions are not defined across most agricultural site properties. We also examined the multi-faceted challenges regarding the quantification of increased soil organic carbon (SOC) storage as a result of land management in both agricultural and forest systems. Quantifying changes in SOC resulting from land management is difficult because mechanisms of SOC stabilization are not fully understood, SOC measurements have been concentrated in the upper 30cm of soil, erosion is often ignored when estimating SOC, and few long-term studies exist to track system response to diverse management practices. Furthermore, the permanence of SOC accumulating management practices is not easily established. For instance, under the Regional Greenhouse Gas Initiative (RGGI), forest land managed for SOC accumulation must remain under permanent conservation easement to ensure that SOC accumulation is not reversed due to changes in land cover. For agricultural protocols, given that many farmers rent land and that agriculture is driven by an annual management time scale, the ability to ensure SOC-accumulating land management would be maintained indefinitely has delayed the implementation of SOC accumulating practices for compliance with the California Global Warming Solutions Act (AB 32). GHG accounting tools are increasingly applied to implement GHG reduction policies. In this policy context, data limitation has impacted the implementation of GHG accounting strategies. For example, protocol design in support of AB 32 initially sought to apply simulation models to determine N2O emissions across all major U.S. agricultural landscapes. After discussion with ecosystem scientists, the lack of observations and model validation in most U.S. arable landscapes led to protocol definition based on simple empirical models and limited to corn management in 12 states. The distribution of protocol participants is also a potential source of inaccuracy in GHG accounting. Land management protocols are often structured assuming that in the aggregate policy achieves an average improvement by promoting specific management. However it is unclear that current policy incentives promote participation from a truly random distribution of landscapes. Participation in policy development to support improved land management challenges ecosystem scientists with making recommendations based on best-available information while acknowledging that uncertainty limits accurate quantification of impacts via analysis using either observations or simulation modeling.
Structure and reactivity of ferrihydrite-soil organic carbon-calcium ternary complexes
NASA Astrophysics Data System (ADS)
Yang, Y.; Adhikari, D.; Sowers, T.; Stuckey, J.; Poulson, S.; Sparks, D. L.
2017-12-01
Complete understanding about the interactions between soil organic carbon (SOC) and minerals is important for predicting the stability of SOC and its response to climate change. Recent studies have shown the importance of calcium (Ca)-bearing minerals and iron (Fe) oxide in associating with and stabilizing SOC. In this study, we have investigated the formation and reactivity of ferrihydrite-SOC-Ca ternary complexes. During the co-precipitation of ferrihydrite with SOC in the presence of Ca2+, 60% of SOC can be co-precipitated with ferrihydrite at a C/Fe (molar ratio) of up to 10, whereas the Ca/Fe ratio was saturated at 0.2. Increasing amount of Ca2+ did not affect the co-precipitation of SOC with ferrihydrite or the lability of ferrihydrite-bound SOC. In addition, microbial reduction of ferrihydrite and reductive release of ferrihydrite-bound SOC were not influenced by the presence of Ca, but the pathway for Fe mineral transformation during the reduction was affected by Ca. In the meantime, Fe reduction selectively released carboxylic-enriched SOC. As a comparison, the presence of SOC increased the incorporation of Ca into the structure of ferrihydrite. Our results indicate the formation of ferrihydrite-SOC-Ca complexes, with organic carbon bridging the ferrihydrite and Ca. Such ternary complexes potentially play an important role in regulating the interactions between SOC and mineral phases in soil.
Strebovsky, Julia; Walker, Patrick; Lang, Roland; Dalpke, Alexander H
2011-03-01
Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytoplasmic Janus kinases (Jak) and signal transducer and activator of transcription (STAT) signaling pathways. Previously the authors surprisingly observed that SOCS1 translocated into the nucleus, which was because of the presence of a nuclear localization sequence. This report now hypothesizes that SOCS1 mediates specific functions within the nuclear compartment because it is instantly transported into the nucleus, as shown by photoactivation and live cell imaging in human HEK293 cells. The NFκB component p65 is identified as an interaction partner for SOCS1 but not for other members of the SOCS family. SOCS1 bound to p65 only within the nucleus. By means of its SOCS box domain, SOCS1 operated as a ubiquitin ligase, leading to polyubiquitination and proteasomal degradation of nuclear p65. Thus, SOCS1 limited prolonged p65 signaling and terminated expression of NFκB inducible genes. Using mutants that lack either nuclear translocation or a functional SOCS box, this report identifies genes that are regulated in a manner dependent on the nuclear availability of SOCS1. Data show that beyond its receptor-proximal function in Jak/STAT signaling, SOCS1 also regulates the duration of NFκB signaling within the cell nucleus, thus exerting a heretofore unrecognized function.
Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan
2011-03-01
Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.
VENKITACHALAM, SRIVIDYA; CHUEH, FU-YU; LEONG, KING-FU; PABICH, SAMANTHA; YU, CHAO-LAN
2011-01-01
Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here we report that, among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine–inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identify the positive regulatory phospho-tyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases. PMID:21234523
van Straaten, Oliver; Corre, Marife D.; Wolf, Katrin; Tchienkoua, Martin; Cuellar, Eloy; Matthews, Robin B.; Veldkamp, Edzo
2015-01-01
Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion—the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses. PMID:26217000
Takahashi, Yuki; Kaneda, Haruka; Takasuka, Nana; Hattori, Kayoko; Nishikawa, Makiya; Watanabe, Yoshihiko; Takakura, Yoshinobu
2008-08-01
The suppressor of cytokine signaling (SOCS) proteins, negative regulators of interferon (IFN)-induced signaling pathways, is involved in IFN resistance of tumor cells. To improve the growth inhibitory effect of IFN-beta and IFN-gamma on a murine melanoma cell line, B16-BL6, and a murine colon carcinoma cell line, Colon26 cells, SOCS-1 and SOCS-3 gene expression in tumor cells was downregulated by transfection of plasmid DNA expressing short hairpin RNA targeting one of these genes (pshSOCS-1 and pshSOCS-3, respectively). Transfection of pshSOCS-1 significantly increased the antiproliferative effect of IFN-gamma on B16-BL6 cells. However, any other combinations of plasmids and IFN had little effect on the growth of B16-BL6 cells. In addition, transfection of pshSOCS-1 and pshSOCS-3 produced little improvement in the effect of IFN on Colon26 cells. To understand the mechanism underlining these findings, the level of SOCS gene expression was measured by real time polymerase chain reaction. Addition of IFN-gamma greatly increased the SOCS-1 mRNA expression in B16-BL6 cells. Taking into account the synergistic effect of pshSOCS-1 and IFN-gamma on the growth of B16-BL6 cells, these findings suggest that IFN-gamma-induced high SOCS-1 gene expression in B16-BL6 cells significantly interferes with the antiproliferative effect of IFN-gamma. These results indicate that silencing SOCS gene expression can be an effective strategy to enhance the antitumor effect of IFN under conditions in which the SOCS gene expression is upregulated by IFN.
van Straaten, Oliver; Corre, Marife D; Wolf, Katrin; Tchienkoua, Martin; Cuellar, Eloy; Matthews, Robin B; Veldkamp, Edzo
2015-08-11
Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion--the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses.
Carow, Berit; Reuschl, Ann-Kathrin; Gavier-Widén, Dolores; Jenkins, Brendan J.; Ernst, Matthias; Yoshimura, Akihiko; Chambers, Benedict J.; Rottenberg, Martin E.
2013-01-01
Suppressor of cytokine signalling 3 (SOCS3) negatively regulates STAT3 activation in response to several cytokines such as those in the gp130-containing IL-6 receptor family. Thus, SOCS3 may play a major role in immune responses to pathogens. In the present study, the role of SOCS3 in M. tuberculosis infection was examined. All Socs3fl/fl LysM cre, Socs3fl/fl lck cre (with SOCS3-deficient myeloid and lymphoid cells, respectively) and gp130F/F mice, with a mutation in gp130 that impedes binding to SOCS3, showed increased susceptibility to infection with M. tuberculosis. SOCS3 binding to gp130 in myeloid cells conveyed resistance to M. tuberculosis infection via the regulation of IL-6/STAT3 signalling. SOCS3 was redundant for mycobacterial control by macrophages in vitro. Instead, SOCS3 expression in infected macrophages and DCs prevented the IL-6-mediated inhibition of TNF and IL-12 secretion and contributed to a timely CD4+ cell-dependent IFN-γ expression in vivo. In T cells, SOCS3 expression was essential for a gp130-independent control of infection with M. tuberculosis, but was neither required for the control of infection with attenuated M. bovis BCG nor for M. tuberculosis in BCG-vaccinated mice. Socs3fl/fl lck cre mice showed an increased frequency of γδ+ T cells in different organs and an enhanced secretion of IL-17 by γδ+ T cells in response to infection. Socs3fl/fl lck cre γδ+ T cells impaired the control of infection with M. tuberculosis. Thus, SOCS3 expression in either lymphoid or myeloid cells is essential for resistance against M. tuberculosis via discrete mechanisms. PMID:23853585
Zarzycka, Danuta; Ślusarska, Barbara; Marcinowicz, Ludmiła; Wrońska, Irena; Kózka, Maria
2014-01-01
Civilization changes of the environment shaping the psychosocial resources from rural to urban influence human health. The study aimed to identify the differences due to the place of residence (rural, urban) as far as health resources are concerned (social support, sense of coherence, dehydroepiandrosterone sulfate concentration in plasma) and health in examination stress situations. The study also determined the concentration of dehydroepiandrosterone sulfate (health resource) and cortisol (stress indicator). The psychosocial variables were assessed using the scales: ISEL-48v. Coll., SOC-29, SF-36v.2™ o and analogue scale (perception of examination stress). The study included, based on a stratified sampling (year of study) and purposive sampling (written examination, major), 731 students representing the six universities in Lublin, south-east Poland. Among the respondents, 130 students were rural residents. Health resources of students living in rural and urban areas generally differ statistically significantly in social support and the subscales of availability of tangible support, availability of appreciative support, the availability of cognitive-evaluative support and a sense of resourcefulness. The study recorded a sstatistically significantly larger network of family ties among students living in rural areas. The demonstrated diversity of resources did not substantially affect the perceived health, with the exception of pain sensation. Examination stress assessed by subjective opinion of the respondents and plasma cortisol levels vary relative to the place of residence. Students residing in rural areas showed significantly lower cortisol levels values, but subjectively perceived the situation of examation as more stressful. Differences in health resources and their mechanism of impact on health, to a limited extent, were conditioned by the place of residence, but they are so important in the light of human choices that they require further analysis.