Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.
Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H
2016-11-22
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.
Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface
Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.
2016-01-01
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053
Efficient two-dimensional compressive sensing in MIMO radar
NASA Astrophysics Data System (ADS)
Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad
2017-12-01
Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.
Vorontsov, Mikhail; Weyrauch, Thomas; Lachinova, Svetlana; Gatz, Micah; Carhart, Gary
2012-07-15
Maximization of a projected laser beam's power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field's statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam's wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.
Wafer-shape metrics based foundry lithography
NASA Astrophysics Data System (ADS)
Kim, Sungtae; Liang, Frida; Mileham, Jeffrey; Tsai, Damon; Bouche, Eric; Lee, Sean; Huang, Albert; Hua, C. F.; Wei, Ming Sheng
2017-03-01
As device shrink, there are many difficulties with process integration and device yield. Lithography process control is expected to be a major challenge due to tighter overlay and focus control requirement. The understanding and control of stresses accumulated during device fabrication has becoming more critical at advanced technology nodes. Within-wafer stress variations cause local wafer distortions which in turn present challenges for managing overlay and depth of focus during lithography. A novel technique for measuring distortion is Coherent Gradient Sensing (CGS) interferometry, which is capable of generating a high-density distortion data set of the full wafer within a time frame suitable for a high volume manufacturing (HVM) environment. In this paper, we describe the adoption of CGS (Coherent Gradient Sensing) interferometry into high volume foundry manufacturing to overcome these challenges. Leveraging this high density 3D metrology, we characterized its In-plane distortion as well as its topography capabilities applied to the full flow of an advanced foundry manufacturing. Case studies are presented that summarize the use of CGS data to reveal correlations between in-plane distortion and overlay variation as well as between topography and device yield.
Coherent gradient sensing method and system for measuring surface curvature
NASA Technical Reports Server (NTRS)
Rosakis, Ares J. (Inventor); Moore, Jr., Nicholas R. (Inventor); Singh, Ramen P. (Inventor); Kolawa, Elizabeth (Inventor)
2000-01-01
A system and method for determining a curvature of a specularly reflective surface based on optical interference. Two optical gratings are used to produce a spatial displacement in an interference field of two different diffraction components produced by one grating from different diffraction components produced by another grating. Thus, the curvature of the surface can be determined.
Optical coherence domain reflectometry guidewire
Colston, Billy W.; Everett, Matthew; Da Silva, Luiz B.; Matthews, Dennis
2001-01-01
A guidewire with optical sensing capabilities is based on a multiplexed optical coherence domain reflectometer (OCDR), which allows it to sense location, thickness, and structure of the arterial walls or other intra-cavity regions as it travels through the body during minimally invasive medical procedures. This information will be used both to direct the guidewire through the body by detecting vascular junctions and to evaluate the nearby tissue. The guidewire contains multiple optical fibers which couple light from the proximal to distal end. Light from the fibers at the distal end of the guidewire is directed onto interior cavity walls via small diameter optics such as gradient index lenses and mirrored corner cubes. Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers, which are multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The guidewire can also be used in nonmedical applications.
Salamonson, Yenna; Ramjan, Lucie M; van den Nieuwenhuizen, Simon; Metcalfe, Lauren; Chang, Sungwon; Everett, Bronwyn
2016-03-01
This paper examines the relationship between nursing students' sense of coherence, self-regulated learning and academic performance in bioscience. While there is increasing recognition of a need to foster students' self-regulated learning, little is known about the relationship of psychological strengths, particularly sense of coherence and academic performance. Using a prospective, correlational design, 563 first year nursing students completed the three dimensions of sense of coherence scale - comprehensibility, manageability and meaningfulness, and five components of self-regulated learning strategy - elaboration, organisation, rehearsal, self-efficacy and task value. Cluster analysis was used to group respondents into three clusters, based on their sense of coherence subscale scores. Although there were no sociodemographic differences in sense of coherence subscale scores, those with higher sense of coherence were more likely to adopt self-regulated learning strategies. Furthermore, academic grades collected at the end of semester revealed that higher sense of coherence was consistently related to achieving higher academic grades across all four units of study. Students with higher sense of coherence were more self-regulated in their learning approach. More importantly, the study suggests that sense of coherence may be an explanatory factor for students' successful adaptation and transition in higher education, as indicated by the positive relationship of sense of coherence to academic performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benz, Thomas; Angst, Felix; Lehmann, Susanne; Aeschlimann, André
2013-05-04
According to Antonovsky's salutogenic concept, a strong sense of coherence is associated with physical and psychological health. The goal of this study was to analyze the association of Antonovsky's sense of coherence with physical and psychosocial health components in patients with hip and knee osteoarthritis before and after in- and outpatient rehabilitation. Prospective cohort study with 335 patients, 136 (41%) with hip and 199 (59%) with knee osteoarthritis. The outcome was measured by Short Form-36 (SF-36), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the Sense of Coherence (SOC-13). Baseline scores of the SF-36 and WOMAC scales and the observed effect sizes after rehabilitation were correlated with the baseline SOC-13. These correlations of the SF-36 scales were compared to the Factor Score Coefficients for the Mental Component Summary of SF-36, which quantify the factor load on the psychosocial dimension. Predictive impact of the baseline SOC-13 for the SF-36 and WOMAC scales (baseline scores and effect sizes) was then determined by multivariate linear regression controlled for possible confounders. At baseline, the SOC-13 correlated with the WOMAC scores between r = 0.18 (stiffness) and r = 0.25 (pain) and with the SF-36 scores between r = 0.10 (physical functioning) and r = 0.53 (mental health). The correlation of these SF-36 correlation coefficients to the Factor Score Coefficient of the SF-36 Mental Component Summary was r = 0.95. The correlations for the effect sizes (baseline → discharge) with the baseline SOC-13 global score were all negative and varied between r = 0.00 (physical functioning) and r = -0.19 (social functioning). In the multivariate linear regression model, the explained variance of the SF-36 scores by the baseline SOC-13 increased continuously from physical to psychosocial health dimensions (from 12.9% to 29.8%). This gradient was consistently observed for both the baseline scores and the effect sizes. The results of the WOMAC were consistent with the physical health scales of SF-36. The sense of coherence was associated with psychosocial health dimensions but hardly with physical health. The higher the load of a scale on the psychosocial dimension the higher was its correlation to the sense of coherence. This is in contrast to the idea of Antonovsky who predicted high associations with both mental and physical health.
NASA Astrophysics Data System (ADS)
Mileham, Jeffrey; Tanaka, Yasushi; Anberg, Doug; Owen, David M.; Lee, Byoung-Ho; Bouche, Eric
2016-03-01
Within the semiconductor lithographic process, alignment control is one of the most critical considerations. In order to realize high device performance, semiconductor technology is approaching the 10 nm design rule, which requires progressively smaller overlay budgets. Simultaneously, structures are expanding in the 3rd dimension, thereby increasing the potential for inter-layer distortion. For these reasons, device patterning is becoming increasingly difficult as the portion of the overlay budget attributed to process-induced variation increases. After lithography, overlay gives valuable feedback to the lithography tool; however overlay measurements typically have limited density, especially at the wafer edge, due to throughput considerations. Moreover, since overlay is measured after lithography, it can only react to, but not predict the process-induced overlay. This study is a joint investigation in a high-volume manufacturing environment of the portion of overlay associated with displacement induced by a single process across many chambers. Displacement measurements are measured by Coherent Gradient Sensing (CGS) interferometry, which generates high-density displacement maps (>3 million points on a 300 mm wafer) such that the stresses induced die-by-die and process-by-process can be tracked in detail. The results indicate the relationship between displacement and overlay shows the ability to forecast overlay values before the lithographic process. Details of the correlation including overlay/displacement range, and lot-to-lot displacement variability are considered.
B1 gradient coherence selection using a tapered stripline.
van Meerten, S G J; Tijssen, K C H; van Bentum, P J M; Kentgens, A P M
2018-01-01
Pulsed-field gradients are common in modern liquid state NMR pulse sequences. They are often used instead of phase cycles for the selection of coherence pathways, thereby decreasing the time required for the NMR experiment. Soft off-resonance pulses with a B 1 gradient result in a spatial encoding similar to that created by pulsed-field (B 0 ) gradients. In this manuscript we show that pulse sequences with pulsed-field gradients can easily be converted to one which uses off-resonance B 1 field gradient (OFFBEAT) pulses. The advantage of B 1 gradient pulses for coherence selection is that the chemical shift evolution during the pulses is (partially) suppressed. Therefore no refocusing echos are required to correct for evolution during the gradient pulses. A tapered stripline is shown to be a convenient tool for creating a well-defined gradient in the B 1 field strength. B 1 gradient coherence selection using a tapered stripline is a simple and cheap alternative to B 0 pulsed-field gradients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na
2014-01-27
In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.
Langham, Erika; Russell, Alex M T; Hing, Nerilee; Gainsbury, Sally M
2017-06-01
Understanding why some people experience problems with gambling whilst others are able to restrict gambling to recreational levels is still largely unexplained. One potential explanation is through salutogenesis, which is a health promotion approach of understanding factors which move people towards health rather than disease. An important aspect of salutogenesis is sense of coherence. Individuals with stronger sense of coherence perceive their environment as comprehensible, manageable and meaningful. The present study examined the relationship of individuals' sense of coherence on their gambling behaviour and experience of gambling related harm. This exploratory study utilised an archival dataset (n = 1236) from an online, cross sectional survey of people who had experienced negative consequences from gambling. In general, a stronger sense of coherence was related to lower problem gambling severity. When gambling behaviour was controlled for, sense of coherence was significantly related to the experience of individual gambling harms. A strong sense of coherence can be seen as a protective factor against problematic gambling behaviour, and subsequent gambling related harms. These findings support the value of both primary and tertiary prevention strategies that strengthen sense of coherence as a harm minimisation strategy. The present study demonstrates the potential value of, and provides clear direction for, considering sense of coherence in order to understand gambling-related issues.
Sense of coherence and mental health rehabilitation.
Griffiths, Christopher Alan
2009-01-01
To provide an understanding of Antonovsky's sense of coherence theory in relation to rehabilitation and to explain how applying his theory in rehabilitation practice can be beneficial. The focus of this paper will be on the rehabilitation and recovery of those with mental health issues. Sense of coherence theory helps explain the process of recovery for those with mental health issues. There is substantial evidence that sense of coherence plays a central role in coping with stressors in the rehabilitation/recovery process and that it contributes to mental health and psychosocial functioning. If rehabilitation services adopt a salutogenic approach and seek to enhance a client's sense of coherence then this can be beneficial in terms of the client's rehabilitation and recovery. Rehabilitation services should ensure that they have rehabilitation goals that strengthen individuals' sense of coherence. Further investigation is required into the development of rehabilitation programmes with sense of coherence theory as part of their foundation.
Oztekin, Ceyda; Tezer, Esin
2009-01-01
This study investigated the role of sense of coherence and total physical activity in positive and negative affect. Participants were 376 (169 female, 206 male, and 1 missing value) student volunteers from different faculties of Middle East Technical University. Three questionnaires: Sense of Coherence Scale (SOC), Physical Activity Assessment Questionnaire (PAAQ), and Positive and Negative Affect Schedule (PANAS) were administered to the students together with the demographic information sheet. Two separate stepwise multiple linear regression analyses were conducted to examine the predictive power of sense of coherence and total physical activity on positive and negative affect scores. Results revealed that both sense of coherence and total physical activity predicted the positive affect whereas only the sense of coherence predicted the negative affect on university students. Findings are discussed in light of sense of coherence, physical activity, and positive and negative affect literature.
Computational and Theoretical Study of the Physical Constraints on Chemotaxis
NASA Astrophysics Data System (ADS)
Varennes, Julien
Cell chemotaxis is crucial to many biological functions including development, wound healing, and cancer metastasis. Chemotaxis is the process in which cells migrate in response to chemical concentration gradients. Recent experiments show that cells are capable of detecting shallow gradients as small as a 1% concentration difference, and multicellular groups can improve on this by an additional order of magnitude. Examples from morphogenesis and metastasis demonstrate collective response to gradients equivalent to a 1 molecule difference in concentration across a cell body. While the physical constraints to cell gradient sensing are well understood, how the sensory information leads to cell migration, and coherent multicellular movement in the case of collectives, remains poorly understood. Here we examine how extrinsic sensory noise leads to error in chemotactic performance. First, we study single cell chemotaxis and use both simulations and analytical models to place physical constraints on chemotactic performance. Next we turn our attention to collective chemotaxis. We examine how collective cell interactions can improve chemotactic performance. We develop a novel model for quantifying the physical limit to chemotactic precision for two stereotypical modes of collective chemotaxis. Finally, we conclude by examining the effects of intercellular communication on collective chemotaxis. We use simulations to test how well collectives can chemotax through very shallow gradients with the help of communication. By studying these computational and theoretical models of individual and collective chemotaxis, we address the gap in knowledge between chemical sensing and directed migration.
Pasek, Małgorzata; Dębska, Grażyna; Wojtyna, Ewa
2017-12-01
Acceptance of illness is a significant determinant of further coping with a disease. Development of illness acceptance may be associated with the sense of coherence and perception of social support. Cancer is an example of a crisis situation, which affects both the patient and his/her close relatives. Consequently, acceptance of illness may be influenced by factors originating from both sides of caregiver-patient dyad. The aim of this study was to analyse direct and indirect interrelationships between perceived support and the sense of coherence in patient-caregiver dyad, and acceptance of illness in cancer patients. Cross-sectional study. The study included 80 dyads composed of cancer patients and their caregivers. Only cancer patients undergoing oncological treatment at the time of the study, for at least 3 months but no longer than 12 months, were enrolled. All subjects completed perceived support subscale included in the Berlin Social Support Scales, sense of coherence-29 questionnaire to determine the sense of coherence and Acceptance of Illness Scale. Compared to cancer patients, their caregivers presented with significantly lower levels of perceived social support and weaker sense of coherence. The sense of coherence in caregivers and patients was determined by their perceived support levels. The sense of coherence in caregivers turned out to be a key resource influencing acceptance of illness in cancer patients, both directly and indirectly, via their perceived social support and their sense of coherence. The sense of coherence, an intrinsic psychological factor determined by social support, is an important determinant of illness acceptance. Functioning of cancer patients is also modulated by psychosocial characteristics of their caregivers. Greater support offered to caregivers may substantially strengthen the sense of coherence in caregivers and cancer patients and, therefore, may improve the functioning of patient-caregiver dyad in a situation of neoplastic disease. © 2017 John Wiley & Sons Ltd.
Drageset, Jorunn; Espehaug, Birgitte; Kirkevold, Marit
2012-04-01
To analyse the relationships between depressive symptoms, sense of coherence and emotional and social loneliness among nursing home residents without cognitive impairment. Depression symptoms and loneliness are major health problems for older people. Sense of coherence, which is based on a salutogenic theoretical framework, is a strong determinant of positive health and successful coping and is associated with well-being and depression among older people. Few studies have explored the relationships between depression symptoms, sense of coherence and emotional and social loneliness among nursing home residents. A cross-sectional, descriptive, correlational design. Sample - 227 residents 65-102 years old from 30 nursing home residing ≥ six months. All had a Clinical Dementia Rating ≤ 0·5 and could converse. Residents were interviewed using the Social Provisions Scale, Geriatric Depression Scale and Sense of Coherence Scale (SOC-13). Possible relationships between these were analysed, controlled for sex, age, marital status, education, length of stay and comorbidity. Before adjustment, Geriatric Depression Scale was associated with attachment and social integration. After adjustment, Geriatric Depression Scale was still associated with attachment and social integration. Further adjusting for Sense of Coherence Scale reduced the association between Geriatric Depression Scale and attachment and even more so for the association between Geriatric Depression Scale and social integration. Sense of coherence and Geriatric Depression Scale did not interact, and SOC-13 was associated with attachment and social integration. Depression symptoms contribute to emotional and social loneliness. Independent of sense of coherence, depression symptoms are associated with emotional loneliness, sense of coherence influence emotional and social loneliness. Clinical nurses should observe residents closely for signs of depression and loneliness and support their sense of coherence to reduce emotional and social loneliness. © 2012 Blackwell Publishing Ltd.
Near-surface coherent structures explored by large eddy simulation of entire tropical cyclones.
Ito, Junshi; Oizumi, Tsutao; Niino, Hiroshi
2017-06-19
Taking advantage of the huge computational power of a massive parallel supercomputer (K-supercomputer), this study conducts large eddy simulations of entire tropical cyclones by employing a numerical weather prediction model, and explores near-surface coherent structures. The maximum of the near-surface wind changes little from that simulated based on coarse-resolution runs. Three kinds of coherent structures appeared inside the boundary layer. The first is a Type-A roll, which is caused by an inflection-point instability of the radial flow and prevails outside the radius of maximum wind. The second is a Type-B roll that also appears to be caused by an inflection-point instability but of both radial and tangential winds. Its roll axis is almost orthogonal to the Type-A roll. The third is a Type-C roll, which occurs inside the radius of maximum wind and only near the surface. It transports horizontal momentum in an up-gradient sense and causes the largest gusts.
Vifladt, Anne; Simonsen, Bjoerg O; Lydersen, Stian; Farup, Per G
2016-10-01
To study the associations between registered nurses' (RNs) perception of the patient safety culture (safety culture) and burnout and sense of coherence, and to compare the burnout and sense of coherence in restructured and not restructured intensive care units (ICUs). Cross-sectional study. RNs employed at seven ICUs in six hospitals at a Norwegian Hospital Trust. One to four years before the study, three hospitals merged their general and medical ICUs into one general mixed ICU. The safety culture, burnout and sense of coherence were measured with the questionnaires Hospital Survey on Patient Safety Culture, Bergen Burnout Indicator and Sense of Coherence. Participant characteristics and working in restructured and not restructured ICUs were registered. In total, 143/289(49.5%) RNs participated. A positive safety culture was statistically significantly associated with a low score for burnout and a strong sense of coherence. No statistically significant differences were found in burnout and sense of coherence between RNs in the restructured and not restructured ICUs. In this study, a positive safety culture was associated with absence of burnout and high ability to cope with stressful situations. Burnout and sense of coherence were independent of the restructuring process. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Mojica, Edson; Pertuz, Said; Arguello, Henry
2017-12-01
One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.
Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits
NASA Astrophysics Data System (ADS)
Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.
2018-04-01
Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.
Explaining the sense of family coherence among husbands and wives: the Israeli case.
Kulik, Liat
2009-12-01
This study examined variables belonging to the family environment that explain the sense of family coherence among husbands (n = 133) and wives (n = 133) in Israel. Specifically, the explanatory variables tested were spousal power relations (as expressed in equality in the division of household labor and decision making), and perceived family conflict. In general, the sense of family coherence among spouses was found to be high. Perceived family conflict contributed to explaining the sense of family coherence for both husbands and wives. Equality in the division of household labor and in decision making had a greater impact on husbands than wives. Family coherence correlated negatively with age for husbands and positively with income for wives. The explanatory variables had a greater impact on the sense of family coherence among husbands than among wives.
Fujitani, Tomoko; Ohara, Kumiko; Kouda, Katsuyasu; Mase, Tomoki; Miyawaki, Chiemi; Momoi, Katsumasa; Okita, Yoshimitsu; Furutani, Maki; Nakamura, Harunobu
2017-01-01
Recent studies have shown that perceived social support is associated with gratitude and sense of coherence, but evidence for this concept remains scarce. In the present study, we investigated relationships between social support, gratitude, and sense of coherence, focusing on the construct of and source of social support among young women. The study was conducted in 2014 in Japan. Participants comprised 208 female university students (aged 19.9 ± 1.1 years), who completed a self-administered anonymous questionnaire regarding perceived social support, gratitude, and sense of coherence. Emotional and instrumental social support from acquaintances were found to be lower than those from family and friends. Gratitude was positively correlated with all forms of social support except instrumental social support from acquaintances. However, sense of coherence was positively correlated with both emotional and instrumental social support from family and only emotional social support from acquaintances. Multiple regression analysis showed that emotional support from family and emotional support from acquaintances were positively associated with gratitude whereas emotional support from family was associated with sense of coherence. These results indicate that emotional social support from family was related to both gratitude and sense of coherence.
Relationships between flow experience, IKIGAI, and sense of coherence in Tai chi practitioners.
Iida, Kenji; Oguma, Yuko
2013-01-01
The purpose of this study was to examine the mental health effects of Tai chi on regular practitioners by investigating the relationships between flow experience, IKIGAI (Japanese: "Life worth living"), and sense of coherence. The results indicated that flow experience may influence IKIGAI and IKIGAI may influence sense of coherence; this suggests that IKIGAI may act as an intermediary between flow experience and sense of coherence. The results also indicated that the longer the Tai chi experience, the higher was the flow experience.
Pham, Phuong N; Vinck, Patrick; Kinkodi, Didine Kaba; Weinstein, Harvey M
2010-06-01
The Democratic Republic of Congo is the scene of some of the worst atrocities in recent history. However, in the face of traumatic experience, only a minority of people develops symptoms that impair their functioning. The sense of coherence proposed by Antonovsky (1987) is a theoretical construct reflecting an individual's overall wellbeing and ability to cope with stress. This study explores the relationships between sense of coherence, exposure to traumatic events, symptoms of posttraumatic stress disorder (PTSD), and depression. Results suggest an association between a high sense of coherence and high education levels, high income, and positive social relationships. Furthermore, the study found that sense of coherence is inversely correlated with cumulative exposure to violence and symptoms of PTSD and depression.
Fujitani, Tomoko; Ohara, Kumiko; Kouda, Katsuyasu; Mase, Tomoki; Miyawaki, Chiemi; Momoi, Katsumasa; Okita, Yoshimitsu; Furutani, Maki; Nakamura, Harunobu
2017-01-01
Purpose Recent studies have shown that perceived social support is associated with gratitude and sense of coherence, but evidence for this concept remains scarce. In the present study, we investigated relationships between social support, gratitude, and sense of coherence, focusing on the construct of and source of social support among young women. Methods The study was conducted in 2014 in Japan. Participants comprised 208 female university students (aged 19.9 ± 1.1 years), who completed a self-administered anonymous questionnaire regarding perceived social support, gratitude, and sense of coherence. Results Emotional and instrumental social support from acquaintances were found to be lower than those from family and friends. Gratitude was positively correlated with all forms of social support except instrumental social support from acquaintances. However, sense of coherence was positively correlated with both emotional and instrumental social support from family and only emotional social support from acquaintances. Multiple regression analysis showed that emotional support from family and emotional support from acquaintances were positively associated with gratitude whereas emotional support from family was associated with sense of coherence. Conclusion These results indicate that emotional social support from family was related to both gratitude and sense of coherence. PMID:28721109
Role of spatial averaging in multicellular gradient sensing.
Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew
2016-05-20
Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.
Role of spatial averaging in multicellular gradient sensing
NASA Astrophysics Data System (ADS)
Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew
2016-06-01
Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.
Variable density randomized stack of spirals (VDR-SoS) for compressive sensing MRI.
Valvano, Giuseppe; Martini, Nicola; Landini, Luigi; Santarelli, Maria Filomena
2016-07-01
To develop a 3D sampling strategy based on a stack of variable density spirals for compressive sensing MRI. A random sampling pattern was obtained by rotating each spiral by a random angle and by delaying for few time steps the gradient waveforms of the different interleaves. A three-dimensional (3D) variable sampling density was obtained by designing different variable density spirals for each slice encoding. The proposed approach was tested with phantom simulations up to a five-fold undersampling factor. Fully sampled 3D dataset of a human knee, and of a human brain, were obtained from a healthy volunteer. The proposed approach was tested with off-line reconstructions of the knee dataset up to a four-fold acceleration and compared with other noncoherent trajectories. The proposed approach outperformed the standard stack of spirals for various undersampling factors. The level of coherence and the reconstruction quality of the proposed approach were similar to those of other trajectories that, however, require 3D gridding for the reconstruction. The variable density randomized stack of spirals (VDR-SoS) is an easily implementable trajectory that could represent a valid sampling strategy for 3D compressive sensing MRI. It guarantees low levels of coherence without requiring 3D gridding. Magn Reson Med 76:59-69, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Alsén, Pia; Eriksson, Monica
2016-02-01
To explore the associations between illness perceptions of fatigue, sense of coherence and stress in patients one year after myocardial infarction. Post-myocardial infarction fatigue is a stressful symptom that is difficult to cope with. Patients' illness perceptions of fatigue guide professionals in predicting how individuals will respond emotionally and cognitively to symptoms. Individuals' sense of coherence can be seen as a coping resource in managing stressors. A cross-sectional study design was used. One year post-myocardial infarction, a total of 74 patients still experiencing fatigue completed four questionnaires: the Multidimensional Fatigue Scale Inventory-20, the Brief Illness Perception Questionnaire, the Sense of Coherence scale (sense of coherence-13) and a single-item measure of stress symptoms. Descriptive statistics, correlations and stepwise regression analysis were carried out. Strong negative associations were found between illness perceptions of fatigue, sense of coherence and stress. Sense of coherence has an impact on illness perceptions of fatigue. Of the dimensions of sense of coherence, comprehensibility seemed to play the greatest role in explaining illness perceptions of fatigue one year after myocardial infarction. To strengthen patients' coping resources, health-care professionals should create opportunities for patients to gain individual-level knowledge that allows them to distinguish between common fatigue symptoms and warning signs for myocardial infarction. There is a need to improve strategies for coping with fatigue. It is also essential to identify patients with fatigue after myocardial infarction, as they need explanations for their symptoms and extra support. © 2016 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Seo, Wonsun
2010-01-01
This study examined the relationship between sense of coherence, demographic characteristics, and career thought processes among college students with disabilities based on Antonovsky's conceptual framework of sense of coherence. Participants were college students with disabilities collected through the Resource Center for Persons with…
Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.
2014-12-01
The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.
The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less
Nilsen, Charlotta; Andel, Ross; Fritzell, Johan; Kåreholt, Ingemar
2016-12-01
Survival reflects the accumulation of multiple influences experienced over the life course. Given the amount of time usually spent at work, the influence of work may be particularly important. We examined the association between work-related stress in midlife and subsequent mortality, investigating whether sense of coherence modified the association. Self-reported work-related stress was assessed in 1393 Swedish workers aged 42-65 who participated in the nationally representative Level of Living Survey in 1991. An established psychosocial job exposure matrix was applied to measure occupation-based stress. Sense of coherence was measured as meaningfulness, manageability and comprehensibility. Mortality data were collected from the Swedish National Cause of Death Register. Data were analyzed with hazard regression with Gompertz distributed baseline intensity. After adjustment for socioeconomic position, occupation-based high job strain was associated with higher mortality in the presence of a weak sense of coherence (HR, 3.15; 1.62-6.13), a result that was stronger in women (HR, 4.48; 1.64-12.26) than in men (HR, 2.90; 1.12-7.49). Self-reported passive jobs were associated with higher mortality in the presence of a weak sense of coherence in men (HR, 2.76; 1.16-6.59). The link between work stress and mortality was not significant in the presence of a strong sense of coherence, indicating that a strong sense of coherence buffered the negative effects of work-related stress on mortality. Modifications to work environments that reduce work-related stress may contribute to better health and longer lives, especially in combination with promoting a sense of coherence among workers. © The Author 2016. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Pu; Wang, Xiaolin; Li, Xiao; Chen, Zilum; Xu, Xiaojun; Liu, Zejin
2009-10-01
Coherent summation of fibre laser beams, which can be scaled to a relatively large number of elements, is simulated by using the stochastic parallel gradient descent (SPGD) algorithm. The applicability of this algorithm for coherent summation is analysed and its optimisaton parameters and bandwidth limitations are studied.
Ren, Aixia; Moon, Changsuk; Zhang, Weiqiang; Sinha, Chandrima; Yarlagadda, Sunitha; Arora, Kavisha; Wang, Xusheng; Yue, Junming; Parthasarathi, Kaushik; Heil-Chapdelaine, Rick; Tigyi, Gabor; Naren, Anjaparavanda P.
2014-01-01
Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca2+ puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca2+ puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts. PMID:25542932
Mismatch and resolution in compressive imaging
NASA Astrophysics Data System (ADS)
Fannjiang, Albert; Liao, Wenjing
2011-09-01
Highly coherent sensing matrices arise in discretization of continuum problems such as radar and medical imaging when the grid spacing is below the Rayleigh threshold as well as in using highly coherent, redundant dictionaries as sparsifying operators. Algorithms (BOMP, BLOOMP) based on techniques of band exclusion and local optimization are proposed to enhance Orthogonal Matching Pursuit (OMP) and deal with such coherent sensing matrices. BOMP and BLOOMP have provably performance guarantee of reconstructing sparse, widely separated objects independent of the redundancy and have a sparsity constraint and computational cost similar to OMP's. Numerical study demonstrates the effectiveness of BLOOMP for compressed sensing with highly coherent, redundant sensing matrices.
Norekvål, Tone M; Fridlund, Bengt; Moons, Philip; Nordrehaug, Jan E; Saevareid, Hans I; Wentzel-Larsen, Tore; Hanestad, Berit R
2010-03-01
To determine the relationships between different sense of coherence levels and quality of life, and in older female myocardial infarction survivors; to investigate how socio-demographic, clinical characteristics, sense of coherence self-reported symptoms and function affect quality of life; and to determine whether sense of coherence and quality of life are stable during a six-month follow-up. Myocardial infraction confers new physical and mental challenges. However, research on sense of coherence and other factors involved in maintaining physical, psychosocial and environmental aspects of quality of life in older female myocardial infraction survivors is scant. Survey. A postal survey was conducted of 145 women, aged 62-80 years, three months to five years after myocardial infarction (T1), with a follow-up after six months (T2). Self-reported socio-demographic and clinical data and hospital medical records data were collected. The sense of coherence scale (SOC-29) and the World Health Organization Quality of Life Instrument Abbreviated (WHOQOL-BREF) were used. We found a significant difference in quality of life between weak, moderate, and strong sense of coherence groups (p<0.001). Sense of coherence contributed to the level of all quality of life domains (p<0.001). Several clinical characteristics contributed to quality of life: (1) physical domain: comorbidities (p<0.001), previous myocardial infarction (p = 0.013), ejection fraction (p<0.011), length of hospital stay (p = 0.005) symptoms and function (p<0.001); (2) psychological domain: previous myocardial infarction (p = 0.031) and symptoms and function (p<0.001); and (3) environmental domain: education (p = 0.033) and symptoms and function (p = 0.003). On group level, both sense of coherence and quality of life were stable. Experiencing specific health changes (p<0.001), not major life events, influenced quality of life during the six-month follow-up. Sense of coherence was an important stable determinant of quality of life domains in female myocardial infarction survivors. Although other factors were identified, further research is needed to elucidate additional determinants of quality of life. These specific factors could guide clinicians in making treatment decisions that optimize the quality of life of their patients. Applying a salutogenic perspective through patient education may be important.
Stensletten, Kari; Bruvik, Frøydis; Espehaug, Birgitte; Drageset, Jorunn
2016-11-01
Family members are often the care providers of individuals with dementia, and it is assumed that the need for this will increase. There has been little research into the association between the burden of care and the caregiver's sense of coherence or receipt of social support. This study examined the relationship between the social support subdimensions and sense of coherence and the burden of care among older people giving care to a partner with dementia. The study was a cross-sectional observation study of 97 individuals, ≥65 years old and living with a partner who had symptoms of dementia. We used the Informant Questionnaire on Cognitive Decline in the Elderly, the Relative Stress Scale, the Social Provisions Scale, the Sense of Coherence Scale, and a questionnaire on sociodemographic variables. We used multiple regression analysis in a general linear model procedure. We defined statistical significance as p < 0.05. With adjustments for sociodemographic variables, the association with burden of care was statistically significant for the subdimension attachment (p < 0.01) and for sense of coherence (p < 0.001). The burden of care was associated with attachment and with sense of coherence. Community nurses and other health professionals should take necessary action to strengthen attachment and sense of coherence among the caregivers of people with dementia. Qualitative studies could provide deeper understanding of the variation informal caregivers experience when living together with their partner with dementia. © The Author(s) 2014.
Kazlauskas, Evaldas; Gailiene, Danute; Vaskeliene, Ieva; Skeryte-Kazlauskiene, Monika
2017-01-01
Little is known about intergeneration effects on mental health in the families of survivors of political oppression of communist regime in Central and Eastern Europe. We aimed to explore post-traumatic stress in the second generation of the Lithuanian survivors of political violence, and analyze links between parental and adult offsprings' sense of coherence in the families exposed to political violence during the oppressive communist regime in Lithuania. A total of 110 matched pairs of communist regime political violence survivors (mean age = 73.22 years) and their adult offspring (mean age = 44.65 years) participated in this study. Life-time traumatic experiences and sense of coherence were measured in both parents and their offspring. Post-traumatic stress symptoms were assessed in the second generation of survivors. We found a high vulnerability in the second generation of the Lithuanian families of political violence survivors, with a 29% of probable PTSD in the second generation based on self-report measures. A significant positive correlation between parental and adult offsprings' sense of coherence was found. Post-traumatic stress symptoms were associated negatively with a sense of coherence in the second generation. Our study indicates the links between parental and the second generation's sense of coherence in the families of survivors of political violence. The study raises broader questions about the intergenerational aspects of resilience. Further studies are needed to explore the links between parental and child sense of coherence in other samples.
Stefanaki, Ioanna N; Shea, Sue; Linardakis, Manolis; Symvoulakis, Emmanouil K; Wynyard, Robin; Lionis, Christos
2014-01-01
This article reports the results of an observation study, aimed at exploring an association between spirituality, religiousness, and sense of coherence in a population group residing in a rural area of Crete, Greece. The study was conducted during the period 2007-2009. Subjects aged 65 years and older (n = 118) living in two remote and rural villages in the Heraklion county (Crete) were eligible. Eighty-nine people (51 women and 38 men) participated. Demographic data were obtained, and all participants were asked to complete the Greek version of the self-reported Royal Free Interview for Spiritual and Religious Beliefs, and the Sense of Coherence Scale. Most participants reported strong religious beliefs and this was found to be related with increased age. Widowed participants expressed greater religiousness and spirituality (p = 0.029). The total score for Sense of Coherence was negatively correlated with gender (women have lower scores, p < 0.05), marital status (widows presented lower scores, p < 0.001), and increased age. A strong positive correlation of the Sense of Coherence score with the Spiritual Scale as measured by three questions of the Royal Free Interview was also identified (p = 0.039). The impact of gender and marital status seem to be emerging determinants in defining sense of coherence among inhabitants of rural Crete. The positive association between religious/spiritual beliefs and sense of coherence deserves further attention to promote a multidimensional approach in its study.
Diallo, A.; Groebner, R. J.; Rhodes, T. L.; ...
2015-05-15
Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. When using fast Thomson scattering measurements, we found that the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution includingmore » its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. Moreover, the saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Finally, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.« less
Sensing coherent phonons with two-photon interference
NASA Astrophysics Data System (ADS)
Ding, Ding; Yin, Xiaobo; Li, Baowen
2018-02-01
Detecting coherent phonons pose different challenges compared to coherent photons due to the much stronger interaction between phonons and matter. This is especially true for high frequency heat carrying phonons, which are intrinsic lattice vibrations experiencing many decoherence events with the environment, and are thus generally assumed to be incoherent. Two photon interference techniques, especially coherent population trapping (CPT) and electromagnetically induced transparency (EIT), have led to extremely sensitive detection, spectroscopy and metrology. Here, we propose the use of two photon interference in a three-level system to sense coherent phonons. Unlike prior works which have treated phonon coupling as damping, we account for coherent phonon coupling using a full quantum-mechanical treatment. We observe strong asymmetry in absorption spectrum in CPT and negative dispersion in EIT susceptibility in the presence of coherent phonon coupling which cannot be accounted for if only pure phonon damping is considered. Our proposal has application in sensing heat carrying coherent phonons effects and understanding coherent bosonic multi-pathway interference effects in three coupled oscillator systems.
Drageset, Jorunn; Eide, Geir Egil; Nygaard, Harald A; Bondevik, Margareth; Nortvedt, Monica W; Natvig, Gerd Karin
2009-01-01
Few studies have examined the association between social support and health-related quality of life (HRQOL) among nursing home residents and whether the sense of coherence (SOC) modifies the effect of social support on health-related quality of life. The main aims of this study were to determine the relationship between social support and HRQOL and to investigate whether the SOC modifies the effect of social support on HRQOL. A cross-sectional, descriptive, correlational design. All 30 nursing homes in Bergen in western Norway. Two hundred and twenty-seven mentally intact long-term nursing home residents 65 years and older. Data were obtained through face-to-face interviews using the SF-36 Health Survey, Social Provisions Scale and Sense of Coherence Scale. Possible relationships between the Social Provisions Scale and the eight SF-36 subdimensions were analysed using multiple linear regression while controlling for age, sex, marital status, education and comorbid illness. Interactions between the Sense of Coherence Scale and Social Provisions Scale were investigated. Attachment affected the mental health subdimension (p=0.001), opportunity for nurturance affected social functioning (p=0.003) and reassurance of worth affected vitality (p=0.001) after adjustment for demographic variables and comorbid illness. After the analysis included the sense of coherence, nurturance still significantly affected social functioning and reassurance of worth still significantly affected vitality. No interaction with sense of coherence was found, and sense of coherence significantly affected all SF-36 subdimensions. The opportunity to provide nurturance for others appears to be important for social functioning, and sense of competence and sense of self-esteem appear to be important for vitality. Further, the residents' relationships with significant others comprise an important component of mental health. Finally, independent of the level of sense of coherence, social support is an important resource for better health-related quality of life. Clinical nurses should recognize that social support is associated with health-related quality of life and pay attention to the importance of social support for the residents in daily practice.
Ekelin, M; Crang Svalenius, E; Larsson, A-K; Nyberg, P; Marsál, K; Dykes, A-K
2009-10-01
To investigate parents' expectations, experiences and reactions, sense of coherence and anxiety before and after a second-trimester routine ultrasound examination, with normal findings. Before and after ultrasound questionnaires including the scales parents' expectations, experiences and reactions to routine ultrasound examination (PEER-U state of mind index), sense of coherence (SOC) and state and trait anxiety inventory (STAI), were sent to a 1-year cohort of women and their partners. Replies received were 2183. Both parents had significantly less worried state of mind (PEER-U) after the examination than before. Women had a lower grade of state anxiety after than before, but for men there was no significant change. Before the ultrasound, women had a higher degree of worried state of mind, as well as a higher grade of state and trait anxiety and a lower sense of coherence, than men. The women showed a greater reduction in worried state of mind than the men after the ultrasound examination. There were no significant differences in sense of coherence before and after ultrasound. Women and men are affected in their psychological well-being in relation to a routine ultrasound examination, but their sense of coherence remains stable.
Larm, Peter; Åslund, Cecilia; Starrin, Bengt; Nilsson, K W
2016-07-01
This study examined whether social capital and a sense of coherence are associated with hazardous alcohol use in a large population-based Swedish sample. In particular, the objectives were (a) to examine which of five subdimensions of social capital is associated with hazardous alcohol use, (b) to investigate the moderating role of sense of coherence and (c) to examine possible sex differences. A postal survey was distributed to a sample of respondents (aged 18-84 years) from five Swedish counties that was stratified by sex, age and city; 40,674 (59.2%) participants responded, of which 45.5% were men and 54.5% were women with a mean±SD age of 53.8±17.9 years. Structural dimensions of social capital were associated with an increased probability of hazardous alcohol use among both men and women, whereas the increased probability associated with cognitive dimensions occurred mostly among women. Sense of coherence was robustly associated with a decreased probability of hazardous alcohol use among both men and women. There were few moderating effects of sense of coherence and sex differences emerged mainly for the cognitive dimension of social capital. CONCLUSIONS ASSOCIATIONS BETWEEN SOCIAL CAPITAL DIMENSIONS AND HAZARDOUS ALCOHOL USE WERE PARTLY SEX-SPECIFIC, WHEREAS THE BENEFITS OF A SENSE OF COHERENCE ACCRUED TO BOTH SEXES SOCIAL CAPITAL DIMENSIONS AND SENSE OF COHERENCE WERE GENERALLY UNRELATED TO EACH OTHER ONLY ASSOCIATIONS BETWEEN THE COGNITIVE DIMENSIONS OF SOCIAL CAPITAL AND HAZARDOUS ALCOHOL USE DIFFERED BY SEX. © 2016 the Nordic Societies of Public Health.
Liquid in a tube oscillating along its axis
NASA Astrophysics Data System (ADS)
Zhdanov, Vladimir P.; Kasemo, Bengt
2015-06-01
The Quartz Crystal Microbalance with Dissipation (QCM-D) sensing technique has become widely used to study various supported thin films and adsorption of biological macromolecules, nanoparticles, aggregates, and cells. Such sensing, based on tracking shear oscillations of a piezoelectric crystal, can be employed in situations which are far beyond conventional ones. For example, one can deposit tubes on the surface of a sensor, orient them along the direction of the sensor surface oscillations, and study liquid oscillations inside the oscillating tubes. Herein, we illustrate and classify theoretically the regimes of liquid oscillations in this case. In particular, we identify and scrutinize the transition from the regime with appreciable gradients along the radial coordinate, which are qualitatively similar to those near the oscillating flat interface, to the regime where the liquid oscillates nearly coherently in the whole tube. The results are not only of relevance for the specific case of nanotubes but also for studies of certain mesoporous samples.
Løvlien, Mona; Mundal, Liv; Hall-Lord, Marie-Louise
2017-04-01
To examine the relationship between leisure-time physical activity, health-related quality of life and sense of coherence in women after an acute myocardial infarction, and further to investigate whether these aspects were associated with age. Physical activity and health-related quality of life are vital aspects for patients after an acute myocardial infarction. Cross-sectional. All eligible women diagnosed with acute myocardial infarction received a postal questionnaire two to three months after hospital discharge, and 142 women were included. To measure health-related quality of life and sense of coherence, The MacNew Heart disease questionnaire and the Sense of coherence-13 scale was used. Respondents reporting at least one type of physical activity had significantly higher health-related quality of life as compared to respondents reporting no kind of physical activity. Respondents reporting physical activity for at least 30 minutes twice a week had significantly higher health-related quality of life scores than respondents being active less than twice a week. A weak association was found between physical activity level and sense of coherence. Reduction in physical activity after the acute myocardial infarction was associated with reduced health-related quality of life and sense of coherence. Sense of coherence was significantly associated with age, as respondents 75 years and older had significantly higher scores than respondents younger than 75 years. Physical activity, even at a low level, is significantly associated with increased health-related quality of life and to some extent to sense of coherence. Tailoring women after an acute myocardial infarction about lifestyle changes must include knowledge about the benefits of leisure-time physical activity, and that even a small amount of activity is associated with a better health-related quality of life. The utmost important assignment is to motivate the women for regular physical activity in their leisure-time. Older women need special attention. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Aleksandr A.; Vitkin, Alex
2016-11-01
In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values < to 10-3, with the caveat that such weak phase gradients may become corrupted by stronger measurement noises. Here, we extend the OCT phase-resolved elastographic methodology by (1) showing that an order of magnitude greater strains can significantly increase the accuracy of derived phase-gradient differences, while also avoiding error-phone phase-unwrapping procedures and minimizing the influence of decorrelation noise caused by suprapixel displacements, (2) discussing the appearance of artifactual stiff inclusions in resultant OCT elastograms in the vicinity of bright scatterers due to the amplitude-phase interplay in phase-variation measurements, and (3) deriving/evaluating methods of phase-gradient estimation that can outperform conventionally used least-square gradient fitting. We present analytical arguments, numerical simulations, and experimental examples to demonstrate the advantages of the proposed optimized phase-variation methodology.
Increased dimensionality of cell-cell communication can decrease the precision of gradient sensing
NASA Astrophysics Data System (ADS)
Smith, Tyler; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew
Gradient sensing is a biological computation that involves comparison of concentrations measured in at least two different locations. As such, the pre- cision of gradient sensing is limited by the intrinsic stochasticity in the com- munication that brings such distributed information to the same location. We have recently analyzed such limitations experimentally and theoretically in multicellular gradient sensing in mammary epithelial cell organoids. For 1d chains of collectively sensing cells, the communication noise puts a se- vere constraint on how the accuracy of gradient sensing increases with the number of cells in the sensor. A question remains as to whether the effect of the noise can be mitigated by the extra spatial averaging allowed in sensing by 2d and 3d cellular organoids. Here we show using computer simulations that, counterintuitively, such spatial averaging decreases gradient sensitiv- ity (while it increases concentration sensitivity). We explain the findings analytically and propose that a recently introduced Regional Excitation - Global Inhibition model of gradient sensing can overcome this limitation and use 2d or 3d spatial averaging to improve the sensing accuracy. Supported by NSF Grant PHY/1410978 and James S. McDonnell Foundation Grant # 220020321.
Tolerant compressed sensing with partially coherent sensing matrices
NASA Astrophysics Data System (ADS)
Birnbaum, Tobias; Eldar, Yonina C.; Needell, Deanna
2017-08-01
Most of compressed sensing (CS) theory to date is focused on incoherent sensing, that is, columns from the sensing matrix are highly uncorrelated. However, sensing systems with naturally occurring correlations arise in many applications, such as signal detection, motion detection and radar. Moreover, in these applications it is often not necessary to know the support of the signal exactly, but instead small errors in the support and signal are tolerable. Despite the abundance of work utilizing incoherent sensing matrices, for this type of tolerant recovery we suggest that coherence is actually beneficial . We promote the use of coherent sampling when tolerant support recovery is acceptable, and demonstrate its advantages empirically. In addition, we provide a first step towards theoretical analysis by considering a specific reconstruction method for selected signal classes.
Sensors research and technology
NASA Technical Reports Server (NTRS)
Cutts, James A.
1988-01-01
Information on sensors research and technology is given in viewgraph form. Information is given on sensing techniques for space science, passive remote sensing techniques and applications, submillimeter coherent sensing, submillimeter mixers and local oscillator sources, non-coherent sensors, active remote sensing, solid state laser development, a low vibration cooler, separation of liquid helium and vapor phase in zero gravity, and future plans.
ERIC Educational Resources Information Center
Luyckx, Koen; Schwartz, Seth J.; Goossens, Luc; Pollock, Sophie
2008-01-01
The present study investigated the influence of contextual (i.e., being in college vs. being employed) and psychological (i.e., sense of coherence) processes on achieving a sense of adulthood in a sample of 317 emerging adults. Identity formation, conceptualized as multiple dimensions of exploration and of commitment, was conceived of as a…
NASA Astrophysics Data System (ADS)
Li, Jia; Wang, Qiang; Yan, Wenjie; Shen, Yi
2015-12-01
Cooperative spectrum sensing exploits the spatial diversity to improve the detection of occupied channels in cognitive radio networks (CRNs). Cooperative compressive spectrum sensing (CCSS) utilizing the sparsity of channel occupancy further improves the efficiency by reducing the number of reports without degrading detection performance. In this paper, we firstly and mainly propose the referred multi-candidate orthogonal matrix matching pursuit (MOMMP) algorithms to efficiently and effectively detect occupied channels at fusion center (FC), where multi-candidate identification and orthogonal projection are utilized to respectively reduce the number of required iterations and improve the probability of exact identification. Secondly, two common but different approaches based on threshold and Gaussian distribution are introduced to realize the multi-candidate identification. Moreover, to improve the detection accuracy and energy efficiency, we propose the matrix construction based on shrinkage and gradient descent (MCSGD) algorithm to provide a deterministic filter coefficient matrix of low t-average coherence. Finally, several numerical simulations validate that our proposals provide satisfactory performance with higher probability of detection, lower probability of false alarm and less detection time.
Moons, Philip; Norekvål, Tone M
2006-03-01
A recent study indicated that the quality of life in adult patients with congenital heart disease was better than that of their healthy counterparts. A possible explanation for this is that these patients have a stronger sense of coherence than do their healthy counterparts. This enhanced sense of coherence develops in childhood through the successful application of generalized resistance resources. Here, we advance the hypothesis that sense of coherence may be a potential pathway for improving the quality of life in patients who grow up with a chronic health condition. This hypothesis needs to be tested in long-term longitudinal studies. If such studies can confirm the hypothesis, SOC can be an important target for interventions in childhood to improve patients' quality of life during adulthood.
Controlling heat and particle currents in nanodevices by quantum observation
NASA Astrophysics Data System (ADS)
Biele, Robert; Rodríguez-Rosario, César A.; Frauenheim, Thomas; Rubio, Angel
2017-07-01
We demonstrate that in a standard thermo-electric nanodevice the current and heat flows are not only dictated by the temperature and potential gradient, but also by the external action of a local quantum observer that controls the coherence of the device. Depending on how and where the observation takes place, the direction of heat and particle currents can be independently controlled. In fact, we show that the current and heat flow in a quantum material can go against the natural temperature and voltage gradients. Dynamical quantum observation offers new possibilities for the control of quantum transport far beyond classical thermal reservoirs. Through the concept of local projections, we illustrate how we can create and directionality control the injection of currents (electronic and heat) in nanodevices. This scheme provides novel strategies to construct quantum devices with application in thermoelectrics, spintronic injection, phononics, and sensing among others. In particular, highly efficient and selective spin injection might be achieved by local spin projection techniques.
Smith, L O; Elder, J H; Storch, E A; Rowe, M A
2015-01-01
Children with autism spectrum disorder (ASD) may be a stressor for family members yet there is little published research on the impact of having a child with ASD on their typically developing (TD) adolescent siblings. According to Antonovsky's salutogenic model, a strong sense of coherence leads to the view that the stressor is a manageable challenge rather than a burden and promotes healthier adaptation. This study examines the relationship between stress, TD sibling resources and the sense of coherence in TD siblings. This quantitative mail-based study uses a survey methodology, analysing the responses of TD adolescent siblings (n = 96) of individuals with autism, Asperger's syndrome, or pervasive developmental disorder - not otherwise specified to several rating scales. Adolescent siblings, ages 11 to 18 years, completed the Adolescent Coping Orientation for Problem Experience (ACOPE), Network of Relationship Inventory - Social Provision Version (NRI-SPV), Youth Self Report (YSR), and Sense of Coherence (SOC) instruments; parents completed the Child Autism Rating Scale - 2nd Edition (CARS-2). The salutogenesis model was used to guide and inform this research. Findings suggested the following: (a) the stress of ASD severity and resource of adjustment are related in TD adolescent siblings; (b) TD sibling adjustment has a strong relationship with sense of coherence levels; and (c) a greater number of positive coping strategies buffer TD sibling coherence levels when ASD severity scores are high. ASD severity and TD adolescent sibling resources influence sense of coherence in adolescent TD siblings of individuals with ASD. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
López-Martínez, Catalina; Frías-Osuna, Antonio; Del-Pino-Casado, Rafael
2017-11-23
To analyze the relationship between the sense of coherence and subjective overload, anxiety and depression in caregivers of dependent elderly relatives. Cross-sectional study in an area of the province of Jaén (Andalusia, Spain) with a probabilistic sample of 132 caregivers of dependent elderly. sense of coherence (Life Orientation Questionnaire), subjective burden (Caregiver Strain Index), anxiety and depression (Goldberg Scale), objective burden (Dedication to Care Scale), sex and kinship. Main analyses: bivariate analysis using the Pearson correlation coefficient and multivariate analysis using multiple linear regression. Most of the caregivers studied were women (86.4%), daughter or son of the care recipient (74.2%) and shared home with the latter (69.7%). When controlling for objective burden, sex and kinship, we found that the sense of coherence was inversely related to subjective burden (β = -0.46; p <0.001), anxiety (β = -0.57; p = 0.001) and depression (β = -0.66; p <0.001). The sense of coherence might be an important protective factor of subjective burden, anxiety and depression in caregivers of dependent elderly relatives. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Tselebis, A; Bratis, D; Pachi, A; Moussas, G; Karkanias, A; Harikiopoulou, M; Theodorakopoulou, E; Kosmas, E; Ilias, I; Siafakas, N; Vgontzas, A; Tzanakis, N
2013-01-01
Chronic Obstructive Pulmonary Disease (COPD) is mainly related to smoking habit and is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually both progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. Worldwide and in Greece, COPD constitutes a major epidemiological issue. Incidence of depression and anxiety is high in the COPD population. Most studies on depression and anxiety in COPD deal with factors that are positively correlated with both of these comorbidities. The aim of our study was to assess whether two variables, sense of coherence (SOC) and perception of family support (FS), are negatively correlated with depressive and anxiety symptoms in outpatients with COPD. According to Aaron Antonovsky, sense of coherence refers to the ability of individuals to make sense of and manage events. Studies in other diseases suggest that sense of family support has a significant impact on the course and outcome of the disease, yet a limited number of reports across literature addresses the role of family support in COPD patients. In our present study one hundred twenty two (98 men and 24 women) outpatients with pure COPD were included. Age and years of education were recorded. Severity of COPD was assessed with spirometry before and after bronchodilation. All patients replied to self- administered questionnaires on depression (Beck Depression Inventory, BDI), anxiety (Spielberger State-Trait Anxiety Scale, STAI), family support (Family Support Scale, FSS-13) and sense of coherence (Sense of Coherence Scale, SOC). According to our results the mean BDI depression score was 11.65 (SD 7.35), mean trait anxiety score was 40.69 (SD 11.19), mean SOC score was 54.62 (SD 7.40) and mean FS score was 64.58 (SD 11.63). Women patients had higher anxiety scores and lower sense of family support compared to men. Significant negative correlations were evidenced between depression and sense of coherence as well as between anxiety and family support. Step-wise multiple linear regression analysis verified the results and quantified the aforementioned correlations. Notably, raising scores in sense of family support by one point reduces anxiety scores by 0.14 points, and increasing sense of coherence scores by one point reduces depression scores by 0.21 points. In sum, our study confirms the presence of high levels of anxiety and depressive symptoms in COPD patients, with females being in a more disadvantaged position as they tend to have higher levels of both. Sense of coherence and family support are both protective psychological factors against the risk of developing anxiety and depressive symptoms in these patients.
Odajima, Yuki; Kawaharada, Mariko; Wada, Norio
2017-08-01
This study aimed to develop a group education program that facilitates a sense of coherence among patients with type 2 diabetes mellitus, which was provided four times, and to validate the effect of the program among the patients. Researchers allocated 40 patients with type 2 diabetes, who had been admitted to a general hospital in Japan for diabetes education for two weeks. Twenty-one patients were allocated to the intervention group and 19 to the control group. The control group undertook a lecture-based educational program that the facility offered. The intervention group received the program, in addition to the facility's educational program. The sense of coherence scale and the Problem Areas in Diabetes Survey were used as evaluation indices. The average age of the intervention group was 59.1 years and that of the control group was 59.5 years. The intervention group showed a between-group effect of improvement in the sense of coherence score. Additionally, the intervention group showed a within-group effect of improvement in the sense of coherence score, as well as the comprehensibility and manageability scores, which are subdomains, and the Problem Areas in Diabetes Survey score. The within-group comparison showed a significant decrease in the early-morning FPG at both groups by an effect of treatment. The program suggested the possibility of improving the sense of coherence and the Problem Areas in Diabetes Survey. In order to enhance general use of the program, it is necessary to reach out to participating facilities and verify the effect of the program.
Testing the limits of gradient sensing
Lakhani, Vinal
2017-01-01
The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis) or grow (chemotropism) towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell’s accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts. PMID:28207738
Collective gradient sensing: fundamental bounds, cluster mechanics, and cell-to-cell variability
NASA Astrophysics Data System (ADS)
Camley, Brian
Many eukaryotic cells chemotax, sensing and following chemical gradients. However, experiments have shown that even under conditions when single cells do not chemotax, small clusters may still follow a gradient. Similar collective motion is also known to occur in response to gradients in substrate stiffness or electric potential (collective durotaxis or galvanotaxis). How can cell clusters sense a gradient that individual cells ignore? I discuss possible ``collective guidance'' mechanisms underlying this motion, where individual cells measure the mean value of the attractant, but need not measure its gradient to give rise to directional motility for a cell cluster. I show that the collective guidance hypothesis can be directly tested by looking for strong orientational effects in pairs of cells chemotaxing. Collective gradient sensing also has a new wrinkle in comparison to single-cell chemotaxis: to accurately determine a gradient direction, a cluster must integrate information from cells with highly variable properties. When is cell-to-cell variation a limiting factor in sensing accuracy? I provide some initial answers, and discuss how cell clusters can sense gradients in a way that is robust to cell-to-cell variation. Interestingly, these strategies may depend on the cluster's mechanics; I develop a bound that links the cluster's chemotactic accuracy and its rheology. This suggests that in some circumstances, mechanical transitions (e.g. unjamming) can control tactic accuracy. Work supported by NIH Grant No. P01 GM078586, NIH Grant No. F32GM110983.
Hsiao, Chiu-Yueh; Tsai, Yun-Fang
2015-06-01
To assess the degree of caregiver burden and family functioning among Taiwanese primary family caregivers of people with schizophrenia and to test its association with demographic characteristics, family demands, sense of coherence and family hardiness. Family caregiving is a great concern in mental illness. Yet, the correlates of caregiver burden and family functioning in primary family caregivers of individuals with schizophrenia still remain unclear. A cross-sectional descriptive study. A convenience sample of 137 primary family caregivers was recruited from two psychiatric outpatient clinics in Taiwan. Measures included a demographic information sheet and the Chinese versions of the Family Stressors Index, Family Strains Index, 13-item Sense of Coherence Scale, 18-item Caregiver Burden Scale, Family Hardiness Index and Family Adaptability, Partnership, Growth, Affection, and Resolve Index. Data analysis included descriptive statistics, Pearson's product-moment correlation coefficients, t-test, one-way analysis of variance and a stepwise multiple linear regression. Female caregivers, additional dependent relatives, increased family demands and decreased sense of coherence significantly increased caregiver burden, whereas siblings as caregivers reported lower degrees of burden than parental caregivers. Family caregivers with lower family demands, increased family hardiness and higher educational level had significantly enhanced family functioning. Sense of coherence was significantly correlated with family hardiness. Our findings highlighted the importance of sense of coherence and family hardiness in individual and family adaptation. Special attention needs to focus on therapeutic interventions that enhance sense of coherence and family hardiness, thereby improving the perception of burden of care and family functioning. Given the nature of family caregiving in schizophrenia, understanding of correlates of caregiver burden and family functioning would help provide useful avenues for the development of family-focused intervention in psychiatric mental health nursing practice. © 2014 John Wiley & Sons Ltd.
Apers, Silke; Sevenants, Lien; Budts, Werner; Luyckx, Koen; Moons, Philip
2016-12-01
Adults with congenital heart disease seem to be more distressed than their healthy counterparts, which might render them even more susceptible to developing detrimental health outcomes. Previous research has confirmed the relationship between the perceived impact of stress on health and self-rated health. However, it remains unknown whether sense of coherence, a person's capacity to cope with stressors, moderates this relationship. This cross-sectional study aims to explore: the relationship between demographic and clinical characteristics, sense of coherence, and the perceived impact of stress on health; the relationship between the perceived impact of stress on health and self-rated health; and the moderating effect of sense of coherence in a sample of adults with congenital heart disease. Patients were recruited from the database of congenital and structural cardiology of a university hospital. The analytic sample included 255 patients (median age 35 years; 50% men). Data were obtained using self-report questionnaires and through medical record view. Univariate analyses and multiple regression analysis were conducted. The perceived impact of stress on health was negatively associated with sense of coherence (P<0.01), but there was no significant association with demographic or clinical characteristics. The perceived impact of stress on health and self-rated health were negatively associated (P<0.001), but sense of coherence did not moderate this relationship. Our findings support the need for further research on the perceived impact of stress on health. Such insights can be valuable for developing interventions aimed at reducing the negative health consequences of stress in patients with congenital heart disease. © The European Society of Cardiology 2015.
Information surfing with the JHU/APL coherent imager
NASA Astrophysics Data System (ADS)
Ratto, Christopher R.; Shipley, Kara R.; Beagley, Nathaniel; Wolfe, Kevin C.
2015-05-01
The ability to perform remote forensics in situ is an important application of autonomous undersea vehicles (AUVs). Forensics objectives may include remediation of mines and/or unexploded ordnance, as well as monitoring of seafloor infrastructure. At JHU/APL, digital holography is being explored for the potential application to underwater imaging and integration with an AUV. In previous work, a feature-based approach was developed for processing the holographic imagery and performing object recognition. In this work, the results of the image processing method were incorporated into a Bayesian framework for autonomous path planning referred to as information surfing. The framework was derived assuming that the location of the object of interest is known a priori, but the type of object and its pose are unknown. The path-planning algorithm adaptively modifies the trajectory of the sensing platform based on historical performance of object and pose classification. The algorithm is called information surfing because the direction of motion is governed by the local information gradient. Simulation experiments were carried out using holographic imagery collected from submerged objects. The autonomous sensing algorithm was compared to a deterministic sensing CONOPS, and demonstrated improved accuracy and faster convergence in several cases.
Personal Strengths and Health Related Quality of Life in Dementia Caregivers from Latin America
Trapp, Stephen K.; Perrin, Paul B.; Aggarwal, Richa; Peralta, Silvina Victoria; Stolfi, Miriam E.; Morelli, Eliana; Peña Obeso, Leticia Aracely; Arango-Lasprilla, Juan Carlos
2015-01-01
The research literature has begun to demonstrate associations between personal strengths and enhanced psychosocial functioning of dementia caregivers, but these relationships have not been examined in the context of dementia caregivers in Latin America. The present study examined whether personal strengths, including resilience, optimism, and sense of coherence, were associated with mental and physical health related quality of life (HRQOL) in 130 dementia caregivers in Mexico and Argentina. Structural equation modeling found that the personal strengths collectively accounted for 58.4% of the variance in caregiver mental HRQOL, and resilience, sense of coherence, and optimism each had unique effects. In comparison, the personal strengths together accounted for 8.9% of the variance in caregiver physical HRQOL, and only sense of coherence yielded a unique effect. These results underscore the need to construct and disseminate empirically supported interventions based in part on important personal strengths, particularly sense of coherence, for this underrepresented group. PMID:26160998
Kristofferzon, Marja-Leena; Engström, Maria; Nilsson, Annika
2018-07-01
The aim of the present study was to investigate relationships between sense of coherence, emotion-focused coping, problem-focused coping, coping efficiency, and mental quality of life (QoL) in patients with chronic illness. A model based on Lazarus' and Folkman's stress and coping theory tested the specific hypothesis: Sense of coherence has a direct and indirect effect on mental QoL mediated by emotion-focused coping, problem-focused coping, and coping efficiency in serial adjusted for age, gender, educational level, comorbidity, and economic status. The study used a cross-sectional and correlational design. Patients (n = 292) with chronic diseases (chronic heart failure, end-stage renal disease, multiple sclerosis, stroke, and Parkinson) completed three questionnaires and provided background data. Data were collected in 2012, and a serial multiple mediator model was tested using PROCESS macro for SPSS. The test of the conceptual model confirmed the hypothesis. There was a significant direct and indirect effect of sense of coherence on mental QoL through the three mediators. The model explained 39% of the variance in mental QoL. Self-perceived effective coping strategies are the most important mediating factors between sense of coherence and QoL in patients with chronic illness, which supports Lazarus' and Folkman's stress and coping theory.
ERIC Educational Resources Information Center
Kimura, Miyako; Yamazaki, Yoshihiko
2016-01-01
Background: Although sense of coherence (SOC) moderates parental stress, the relationship between SOC, parental mental health and physical punishment of children with intellectual disabilities remains uncertain. The present authors describe parental physical punishment towards children with intellectual disabilities and investigate its related…
Sense of Coherence and Emotional Health in Adolescents
ERIC Educational Resources Information Center
Moksnes, Unni K.; Espnes, Geir A.; Lillefjell, Monica
2012-01-01
The present paper investigates possible gender and age differences on emotional states (state depression and state anxiety) and sense of coherence (SOC) as well as the association between SOC and emotional states. The cross-sectional sectional sample consists of 1209 adolescents 13-18 years from public elementary and secondary schools in…
Predictors of adaptation in Icelandic and American families of young children with chronic asthma.
Svavarsdottir, Erla Kolbrun; Rayens, Mary Kay; McCubbin, Marilyn
2005-01-01
The purposes of this international study were to determine the predictors of adaptation and to assess potential moderating effects of parents' sense of coherence and family hardiness on the relationship of severity of illness of a child with asthma and family and caregiving demands as predictors of family adaptation. For both parents, sense of coherence and family hardiness predicted family adaptation. Icelandic mothers perceived their family's adaptation more favorably than did their American counterparts. For the fathers, family demands predicted adaptation. Sense of coherence moderated the effect of family demands on adaptation for both parents. These findings underscore the importance of strengthening individual and family resiliency as a mechanism for improving family adaptation.
Parental bonding during childhood affects stress-coping ability and stress reaction.
Ohtaki, Yuh; Ohi, Yuichi; Suzuki, Shun; Usami, Kazuya; Sasahara, Shinichiro; Matsuzaki, Ichiyo
2017-07-01
An online survey examined the effects of parental bonding during childhood on adult workers' stress-coping ability (Sense of Coherence) and stress reactions (General Health Questionnaire and Self-Rating Depression Scale). Participants who completed the questionnaire were grouped into optimal bonding and poor bonding groups. Analyses of covariance by gender with age as a covariate were conducted for the Sense of Coherence, General Health Questionnaire, and Self-Rating Depression Scale scores for 9525 participants. For both genders, the scores of the poor bonding group were significantly lower for the Sense of Coherence and significantly higher for the General Health Questionnaire and Self-Rating Depression Scale compared to those of the optimal bonding group.
Coherent Two-Mode Dynamics of a Nanowire Force Sensor
NASA Astrophysics Data System (ADS)
Braakman, Floris R.; Rossi, Nicola; Tütüncüoglu, Gözde; Morral, Anna Fontcuberta i.; Poggio, Martino
2018-05-01
Classically coherent dynamics analogous to those of quantum two-level systems are studied in the setting of force sensing. We demonstrate quantitative control over the coupling between two orthogonal mechanical modes of a nanowire cantilever through measurement of avoided crossings as we deterministically position the nanowire inside an electric field. Furthermore, we demonstrate Rabi oscillations between the two mechanical modes in the strong-coupling regime. These results give prospects of implementing coherent two-mode control techniques for force-sensing signal enhancement.
Coherence Effects in L-Band Active and Passive Remote Sensing of Quasi-Periodic Corn Canopies
NASA Technical Reports Server (NTRS)
Utku, Cuneyt; Lang, Roger H.
2011-01-01
Due to their highly random nature, vegetation canopies can be modeled using the incoherent transport theory for active and passive remote sensing applications. Agricultural vegetation canopies however are generally more structured than natural vegetation. The inherent row structure in agricultural canopies induces coherence effects disregarded by the transport theory. The objective of this study is to demonstrate, via Monte-Carlo simulations, these coherence effects on L-band scattering and thermal emission from corn canopies consisting of only stalks.
NASA Technical Reports Server (NTRS)
Benediktsson, J. A.; Swain, P. H.; Ersoy, O. K.
1993-01-01
Application of neural networks to classification of remote sensing data is discussed. Conventional two-layer backpropagation is found to give good results in classification of remote sensing data but is not efficient in training. A more efficient variant, based on conjugate-gradient optimization, is used for classification of multisource remote sensing and geographic data and very-high-dimensional data. The conjugate-gradient neural networks give excellent performance in classification of multisource data, but do not compare as well with statistical methods in classification of very-high-dimentional data.
Sullivan, G C
1993-11-01
The multidisciplinary field of stress and stress-related health outcomes has generated theoretical and practical knowledge which is of interest to nurses. Theoretical developments which have assumed a prominent role in the study of stress, health and coping include the identification of various 'stress buffers' several of which bear a strong conceptual resemblance to one another. Antonovsky has developed a Salutogenic Model of stress and resistance, which is presented in this paper. The model's central concept, the sense of coherence, is described and analysed. The sense of coherence, with its three components (meaningfulness, comprehensibility and manageability), is then compared and contrasted with similar concepts. The convergent theoretical notions which are distinguished from Antonovsky's coherence are: will to meaning, locus of control, learned helplessness and hardiness. It is hoped that this analysis will provide greater conceptual clarity for nurses who study and use these concepts in education, practice or research.
Work Stressors, Health and Sense of Coherence in UK Academic Employees
ERIC Educational Resources Information Center
Kinman, Gail
2008-01-01
This cross-sectional study examined relationships between job-specific stressors and psychological and physical health symptoms in academic employees working in UK universities. The study also tests the main and moderating role played by sense of coherence (SOC: Antonovsky, 1987 in work stress process). SOC is described as a generalised resistance…
Cysarz, Daniel; Piwowarczyk, Apolonia; Czernikiewicz, Wiesław; Dulko, Stanisław; Kokoszka, Andrzej
2008-01-01
Assessment of body image satisfaction, sense of coherence and life satisfaction during the therapy of women with transsexualism. 27 women with transsexualism (before therapy--9; in therapy but before surgery--7; after surgery--11), in different stages of therapy and 15 women and 15 men from the control group participated in the study. The Body Image Scale, the Sense of Coherence- SOC 29 and Satisfaction with Life Scale-- SWLS. The results suggest that the increased satisfaction from the body image in the group of women with transsexualism is related with progress in therapy. Persons from the control group were significantly more satisfied form their own body image than persons with transexualism. The progress of therapy is related with the decrease of will to change the body. The mean scores on the meaningfulness subscale of Sense of Coherence Scale was significantly lower in the group of patients before the beginning of treatment than in the control group and in the group after surgery. There was no relation between the level of life satisfaction and stages of therapy.
On the use of variable coherence in inverse scattering problems
NASA Astrophysics Data System (ADS)
Baleine, Erwan
Even though most of the properties of optical fields, such as wavelength, polarization, wavefront curvature or angular spectrum, have been commonly manipulated in a variety of remote sensing procedures, controlling the degree of coherence of light did not find wide applications until recently. Since the emergence of optical coherence tomography, a growing number of scattering techniques have relied on temporal coherence gating which provides efficient target selectivity in a way achieved only by bulky short pulse measurements. The spatial counterpart of temporal coherence, however, has barely been exploited in sensing applications. This dissertation examines, in different scattering regimes, a variety of inverse scattering problems based on variable spatial coherence gating. Within the framework of the radiative transfer theory, this dissertation demonstrates that the short range correlation properties of a medium under test can be recovered by varying the size of the coherence volume of an illuminating beam. Nonetheless, the radiative transfer formalism does not account for long range correlations and current methods for retrieving the correlation function of the complex susceptibility require cumbersome cross-spectral density measurements. Instead, a variable coherence tomographic procedure is proposed where spatial coherence gating is used to probe the structural properties of single scattering media over an extended volume and with a very simple detection system. Enhanced backscattering is a coherent phenomenon that survives strong multiple scattering. The variable coherence tomography approach is extended in this context to diffusive media and it is demonstrated that specific photon trajectories can be selected in order to achieve depth-resolved sensing. Probing the scattering properties of shallow and deeper layers is of considerable interest in biological applications such as diagnosis of skin related diseases. The spatial coherence properties of an illuminating field can be manipulated over dimensions much larger than the wavelength thus providing a large effective sensing area. This is a practical advantage over many near-field microscopic techniques, which offer a spatial resolution beyond the classical diffraction limit but, at the expense of scanning a probe over a large area of a sample which is time consuming, and, sometimes, practically impossible. Taking advantage of the large field of view accessible when using the spatial coherence gating, this dissertation introduces the principle of variable coherence scattering microscopy. In this approach, a subwavelength resolution is achieved from simple far-zone intensity measurements by shaping the degree of spatial coherence of an evanescent field. Furthermore, tomographic techniques based on spatial coherence gating are especially attractive because they rely on simple detection schemes which, in principle, do not require any optical elements such as lenses. To demonstrate this capability, a correlated lensless imaging method is proposed and implemented, where both amplitude and phase information of an object are obtained by varying the degree of spatial coherence of the incident beam. Finally, it should be noted that the idea of using the spatial coherence properties of fields in a tomographic procedure is applicable to any type of electromagnetic radiation. Operating on principles of statistical optics, these sensing procedures can become alternatives for various target detection schemes, cutting-edge microscopies or x-ray imaging methods.
Factors supporting self-management in Parkinson's disease: implications for nursing practice.
Chenoweth, Lynn; Gallagher, Robyn; Sheriff, June N; Donoghue, Judith; Stein-Parbury, Jane
2008-09-01
Aim. To identify the factors associated with better self-management in people with moderate to high levels of Parkinson's disease following an acute illness event. Design and methods. A prospective, descriptive study conducted with 75 persons with Parkinson's disease over the age of 55, collected twice: within a week of an acute event and 1 month later, after resuming usual life at home. Participants completed a questionnaire on self-rated health status, self-efficacy, sense of coherence, symptom monitoring and medication and general self-management. Background. Parkinson's disease is a chronic neurological condition that affects many dimensions of life, including threats to self-identity and confidence in self-management. Self-management has the potential to reduce costs through decreased hospital admissions, disease progression and avoidance of complications. While evidence for the relationships between self-management and self-efficacy and sense of coherence has been demonstrated in some chronic illness groups, this has not previously been demonstrated in Parkinson's disease. Results. The independent predictors of better self-management were not being hospitalized in the last 6 months, more frequent symptom checking and better self-efficacy for self-management. The influence of other factors on self-management, such as sense of coherence, was mediated through self-efficacy. Support of family and others was associated with better self-efficacy both directly and through an improved sense of coherence. Conclusions and relevance to nursing practice. The presence of informal support plays an important role in sustaining self-efficacy and sense of coherence and hence self-management in persons with Parkinson's disease. Since these attributes are amenable to change, nurses are in a good position to encourage participation in Parkinson's support groups, teach self-management skills through regular symptom monitoring and to assess and promote self-efficacy and sense of coherence. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Reinink, Shawn K.; Yaras, Metin I.
2015-06-01
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinink, Shawn K.; Yaras, Metin I., E-mail: Metin.Yaras@carleton.ca
2015-06-15
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal propertymore » gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.« less
Enhancing quantum sensing sensitivity by a quantum memory
Zaiser, Sebastian; Rendler, Torsten; Jakobi, Ingmar; Wolf, Thomas; Lee, Sang-Yun; Wagner, Samuel; Bergholm, Ville; Schulte-Herbrüggen, Thomas; Neumann, Philipp; Wrachtrup, Jörg
2016-01-01
In quantum sensing, precision is typically limited by the maximum time interval over which phase can be accumulated. Memories have been used to enhance this time interval beyond the coherence lifetime and thus gain precision. Here, we demonstrate that by using a quantum memory an increased sensitivity can also be achieved. To this end, we use entanglement in a hybrid spin system comprising a sensing and a memory qubit associated with a single nitrogen-vacancy centre in diamond. With the memory we retain the full quantum state even after coherence decay of the sensor, which enables coherent interaction with distinct weakly coupled nuclear spin qubits. We benchmark the performance of our hybrid quantum system against use of the sensing qubit alone by gradually increasing the entanglement of sensor and memory. We further apply this quantum sensor-memory pair for high-resolution NMR spectroscopy of single 13C nuclear spins. PMID:27506596
Sense of Coherence, Hope and Values among Adolescents under Missile Attacks: A Longitudinal Study
ERIC Educational Resources Information Center
Braun-Lewensohn, Orna; Sagy, Shifra
2010-01-01
This study aimed to explore measures of spirituality--sense of coherence (SOC), hope and values--among adolescents living in a violent political area and experiencing missile attacks. The three variables represent attributes of spirituality, such as searching for meaning and purpose in life, hope and feelings about the future, as well as values…
ERIC Educational Resources Information Center
Mak, Winnie W. S.; Ho, Anna H. Y.; Law, Rita W.
2007-01-01
Background: The moderating and mediating relationships among sense of coherence, parental attitudes and parenting stress for caregiving parents of children with autism were tested. Materials and Methods: One hundred and fifty-seven mothers of children with autism recruited from representative community service centres in Hong Kong completed the…
Sammallahti, P R; Holi, M J; Komulainen, E J; Aalberg, V A
1996-09-01
Antonovsky's Sense of Coherence Scale (SOC) and Bond's Defense Style Questionnaire (DSQ) were compared in a sample of 334 community controls and 122 psychiatric outpatients. The major question was, whether the two coping inventories with different theoretical backgrounds-stress research vs. psycho-analysis-tap similar phenomena. The affinity of the two coping measures was evident: in multiple regression analysis defenses explained 68% of the variance in sense of coherence. Not surprisingly, the SOC scale-emerging out of the salutogenic orientation-showed more expertise in measuring how people manage when they do well, whereas the DSQ-with its theoretical roots deep in psychopathology-was most sensitive to how people manage when they do rather poorly.
Ellison, David; Mugler, Andrew; Brennan, Matthew D.; Lee, Sung Hoon; Huebner, Robert J.; Shamir, Eliah R.; Woo, Laura A.; Kim, Joseph; Amar, Patrick; Nemenman, Ilya; Ewald, Andrew J.; Levchenko, Andre
2016-01-01
Collective cell responses to exogenous cues depend on cell–cell interactions. In principle, these can result in enhanced sensitivity to weak and noisy stimuli. However, this has not yet been shown experimentally, and little is known about how multicellular signal processing modulates single-cell sensitivity to extracellular signaling inputs, including those guiding complex changes in the tissue form and function. Here we explored whether cell–cell communication can enhance the ability of cell ensembles to sense and respond to weak gradients of chemotactic cues. Using a combination of experiments with mammary epithelial cells and mathematical modeling, we find that multicellular sensing enables detection of and response to shallow epidermal growth factor (EGF) gradients that are undetectable by single cells. However, the advantage of this type of gradient sensing is limited by the noisiness of the signaling relay, necessary to integrate spatially distributed ligand concentration information. We calculate the fundamental sensory limits imposed by this communication noise and combine them with the experimental data to estimate the effective size of multicellular sensory groups involved in gradient sensing. Functional experiments strongly implicated intercellular communication through gap junctions and calcium release from intracellular stores as mediators of collective gradient sensing. The resulting integrative analysis provides a framework for understanding the advantages and limitations of sensory information processing by relays of chemically coupled cells. PMID:26792522
Yin, Jinde; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; Wu, Fan; Ding, Zhenyang
2013-10-01
We propose a new wavelength-division-multiplexing method for extrinsic fiber Fabry-Perot interferometric (EFPI) sensing in a polarized low-coherence interferometer configuration. In the proposed method, multiple LED sources are used with different center wavelengths, and each LED is used by a specific sensing channel, and therefore the spatial frequency of the low-coherence interferogram of each channel can be separated. A bandpass filter is used to extract the low-coherence interferogram of each EFPI channel, and thus the cavity length of each EFPI channel can be identified through demultiplexing. We successfully demonstrate the simultaneous demodulation of EFPI sensors with same nominal cavity length while maintaining high measurement precision.
Wavefront sensing and adaptive control in phased array of fiber collimators
NASA Astrophysics Data System (ADS)
Lachinova, Svetlana L.; Vorontsov, Mikhail A.
2011-03-01
A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change - scenarios when conventional target-in-the-loop phase-locking techniques fail.
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo; Bai, Yingxin; Koch, Grady; Chen, Songsheng; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey
2010-01-01
The design of a double pulsed, injection seeded, 2-micrometer compact coherent Differential absorption Lidar (DIAL) transmitter for CO2 sensing is presented. This system is hardened for ground and airborne applications. The design architecture includes three continuous wave lasers which provide controlled on and off line seeding, injection seeded power oscillator and a single amplifier operating in double pass configuration. As the derivative a coherent Doppler wind lidar, this instrument has the added benefit of providing wind information. The active laser material used for this application is a Ho: Tm:YLF crystal operates at the eye-safe wavelength. The 3-meter long folded ring resonator produces energy of 130-mJ (90/40) with a temporal pulse length around 220 nanoseconds and 530 nanosecond pulses for on and off lines respectively. The separation between the two pulses is on the order of 200 microseconds. The line width is in the order of 2.5MHz and the beam quality has an M(sup 2) of 1.1 times diffraction limited beam. A final output energy for a pair of both on and off pulses as high as 315 mJ (190/125) at a repetition rate of 10 Hz is achieved. The operating temperature is set around 20 C for the pump diode lasers and 10 C for the rod. Since the laser design has to meet high-energy as well as high beam quality requirements, close attention is paid to the laser head design to avoid thermal distortion in the rod. A side-pumped configuration is used and heat is removed uniformly by passing coolant through a tube slightly larger than the rod to reduce thermal gradient. This paper also discusses the advantage of using a long upper laser level life time laser crystal for DIAL application. In addition issues related to injection seeding with two different frequencies to achieve a transform limited line width will be presented.
Phase-tunable temperature amplifier
NASA Astrophysics Data System (ADS)
Paolucci, F.; Marchegiani, G.; Strambini, E.; Giazotto, F.
2017-06-01
Coherent caloritronics, the thermal counterpart of coherent electronics, has drawn growing attention since the discovery of heat interference in 2012. Thermal interferometers, diodes, transistors and nano-valves have been theoretically proposed and experimentally demonstrated by exploiting the quantum phase difference between two superconductors coupled through a Josephson junction. So far, the quantum-phase modulator has been realized in the form of a superconducting quantum interference device (SQUID) or a superconducting quantum interference proximity transistor (SQUIPT). Thence, an external magnetic field is necessary in order to manipulate the heat transport. Here, we theoretically propose the first on-chip fully thermal caloritronic device: the phase-tunable temperature amplifier (PTA). Taking advantage of a recently discovered thermoelectric effect in spin-split superconductors coupled to a spin-polarized system, we generate the magnetic flux controlling the transport through a temperature-biased SQUIPT by applying a temperature gradient. We simulate the behavior of the device and define a number of figures of merit in full analogy with voltage amplifiers. Notably, our architecture ensures almost infinite input thermal impedance, maximum gain of about 11 and efficiency reaching the 95%. This concept paves the way for applications in radiation sensing, thermal logics and quantum information.
ERIC Educational Resources Information Center
Londal, Knut
2010-01-01
This article is based on materials gathered from qualitative research interviews among eight-year-old and nine-year-old children participating in an after-school programme (ASP) in Oslo, and investigates how bodily play affects their sense of coherence (SOC). In line with Maurice Merleau-Ponty, children's lived experiences are regarded as layered…
ERIC Educational Resources Information Center
Al-Krenawi, Alean; Graham, John R.; Al Gharaibeh, Fakir
2011-01-01
The present article is the first to consider the impact of intellectual disability on Bedouin-Arab families' caregiver burden, family functioning, marital quality, and sense of coherence. A random sample of 300 Bedouin-Arab parents with one or more intellectually disabled children, and a control group (n = 100) completed the McMaster Family…
ERIC Educational Resources Information Center
Levi, Uzi; Einav, Michal; Raskind, Ilana; Ziv, Orit; Margalit, Malka
2013-01-01
Teachers play a critical role in facilitating the academic achievements of students with learning disabilities (LD). The personal resources of teachers, such as sense of coherence (SOC) and hopeful thinking, may predict self-perception of the competency and efficacy they possess to help students with LD acquire needed learning skills. Several…
ERIC Educational Resources Information Center
Braun-Lewensohn, Orna; Sagy, Shifra; Roth, Guy
2011-01-01
Employing the salutogenic approach (Antonovsky, 1987), this pilot study aimed at exploring the mediation effect of Sense of Coherence (SOC) on the relationships between exposure to missile attacks and stress-related reactions among adolescents. A strong SOC means a tendency to see the world as more comprehensible, manageable and meaningful. Data…
ERIC Educational Resources Information Center
Hover, Paige Amber
2014-01-01
This study compared first generation and non-first generation doctoral students' levels of perceived stress, sense of coherence, and mindfulness. These variables were assessed both separately for each trainee group and in hypothesized relationships with each other. In addition, moderator analyses were conducted to assess whether key relationships…
ERIC Educational Resources Information Center
García-Moya, Irene; Suominen, Sakari; Moreno, Carmen
2014-01-01
Background: The aim of this study was to examine the prevalence of bullying victimization and its impact on physical and psychological complaints in a representative sample of adolescents and to explore the role of sense of coherence (SOC) in victimization prevalence and consequences. Methods: A representative sample of Spanish adolescents (N =…
Sense of Coherence: Learning to Live with Chronic Illness through Health Education
ERIC Educational Resources Information Center
Førland, Georg; Eriksson, Monica; Silèn, Charlotte; Ringsberg, Karin
2018-01-01
Objective: This study examines people's experiences of how to live with a chronic disease, their learning needs and their reasons for participating in a health education programme. The aim of the study was to examine if and how a Sense of Coherence (SOC) might guide an understanding of learning processes in health education. Methods: This study…
Family Dynamics and Personal Strengths among Dementia Caregivers in Argentina
Elnasseh, Aaliah G.; Trujillo, Michael A.; Peralta, Silvina Victoria; Stolfi, Miriam E.; Morelli, Eliana; Perrin, Paul B.
2016-01-01
This study examined whether healthier family dynamics were associated with higher personal strengths of resilience, sense of coherence, and optimism among dementia caregivers in Argentina. Caregivers are usually required to assist individuals with dementia, and family members have typically fulfilled that role. Personal strengths such as resilience, sense of coherence, and optimism have been shown to protect caregivers from some of the negative experiences of providing care, though the family-related variables associated with these personal strengths are largely unknown. Hierarchical multiple regressions investigated the extent to which family dynamics variables are associated with each of the caregiver personal strengths after controlling for demographic and caregiver characteristics. A sample of 105 caregivers from Argentina completed a set of questionnaires during a neurologist visit. Family dynamics explained 32% of the variance in resilience and 39% of the variance in sense of coherence. Greater family empathy and decreased family problems were uniquely associated with higher resilience. Greater communication and decreased family problems were uniquely associated with higher sense of coherence. Optimism was not found to be significantly associated with family dynamics. These results suggest that caregiver intervention research focused on the family may help improve caregiver personal strengths in Argentina and other Latin American countries. PMID:27413574
Sharabi, Adi; Levi, Uzi; Margalit, Malka
2012-01-01
The study examined the contributions of individual and familial variables for the prediction of loneliness as a developmental risk and the sense of coherence as a protective factor. The sample consisted of 287 children from grades 5-6. Their loneliness, sense of coherence, hope, effort, and family climate were assessed. Separate hierarchical multiple regression analyses revealed that family cohesion and children's hope contributed to the explanation of the risk and protective outcomes. Yet, the contribution of the family adaptability was not significant. Cluster analysis of the family climate dimensions (i.e., cohesion and adaptability) was performed to clarify the interactive roles of family adaptability together with family cohesion. The authors identified 4 separate family profiles: Children in the 2 cohesive families' clusters (Cohesive Structured Families and Cohesive Adaptable Families) reported the lowest levels of loneliness and the highest levels of personal strengths. Children within rigid and noncohesive family cluster reported the highest levels of loneliness and the lowest levels of children's sense of coherence. The unique role of the family flexibility within nonsupportive family systems was demonstrated. The results further clarified the unique profiles' characteristics of the different family clusters and their adjustment indexes in terms of loneliness and personal strengths.
Robert E. Keane; Matthew G. Rollins; Cecilia H. McNicoll; Russell A. Parsons
2002-01-01
Presented is a prototype of the Landscape Ecosystem Inventory System (LEIS), a system for creating maps of important landscape characteristics for natural resource planning. This system uses gradient-based field inventories coupled with gradient modeling remote sensing, ecosystem simulation, and statistical analyses to derive spatial data layers required for ecosystem...
Intracellular diffusion of oxygen and hypoxic sensing: role of mitochondrial respiration.
Takahashi, Eiji; Sato, Michihiko
2010-01-01
In vivo, diffusional O(2) gradients from the capillary blood to the intracellular space determine O(2) availability at the O(2) sensing molecules in the cell. With a novel technique for imaging intracellular O(2) levels using green fluorescent protein (GFP), we examined the possibility that diffusional O(2) concentration gradients might be involved in the cellular hypoxic sensing in cultured Hep3B cells. In the present study, we failed to demonstrate significant gradients of intracellular O(2) when mitochondrial respiration was maximally elevated by an uncoupler of oxidative phosphorylation. Thus, we conclude that intracellular O(2) gradients may be negligible at normal mitochondrial O(2) demand in these cells.
Moore, Travis I.; Tanaka, Hiromasa; Kim, Hyung Joon; Jeon, Noo Li; Yi, Tau-Mu
2013-01-01
Yeast cells polarize by projecting up mating pheromone gradients, a classic cell polarity behavior. However, these chemical gradients may shift direction. We examine how yeast cells sense and respond to a 180o switch in the direction of microfluidically generated pheromone gradients. We identify two behaviors: at low concentrations of α-factor, the initial projection grows by bending, whereas at high concentrations, cells form a second projection toward the new source. Mutations that increase heterotrimeric G-protein activity expand the bending-growth morphology to high concentrations; mutations that increase Cdc42 activity result in second projections at low concentrations. Gradient-sensing projection bending requires interaction between Gβγ and Cdc24, whereas gradient-nonsensing projection extension is stimulated by Bem1 and hyperactivated Cdc42. Of interest, a mutation in Gα affects both bending and extension. Finally, we find a genetic perturbation that exhibits both behaviors. Overexpression of the formin Bni1, a component of the polarisome, makes both bending-growth projections and second projections at low and high α-factor concentrations, suggesting a role for Bni1 downstream of the heterotrimeric G-protein and Cdc42 during gradient sensing and response. Thus we demonstrate that G-proteins modulate in a ligand-dependent manner two fundamental cell-polarity behaviors in response to gradient directional change. PMID:23242998
Jabłoński, Marcin J; Szot-Parda, Magdalena; Grzegorek, Tomasz; Prusak, Jacek; Jach, Robert; Posadzka, Ewa
2016-01-01
Analysis and comparison of two types of motivation (autotelic and non-autotelic) which are behind the choice of medical specialisation by doctors in relation to their sense of coherence. Questionnaire method was used in the study. The study included a group of 86 graduates of the Faculty of Medicine of the Jagiellonian University, who have completed postgraduate internships at the Department of Haematology and Oncology, Department of Gynaecology of the Jagiellonian University and the L. Rydygier hospital in Krakow in 2010-2012. Statistical analyses were performed using the IBM SPSS Statistics 21. The level of significance was alpha = 0.05. It has been shown that doctors are more frequently characterised by the autotelic type of motivation. It has also been proven that there is a relationship between the male sex of the surveyed doctors and their autotelic type of motivation. Moreover, it has been demonstrated that there is a correlation between the comprehensibility component of the sense of coherence and the male sex. It has been also demonstrated that there is a correlation between meaningfulness component of the sense of coherence and the choice of surgical specialisation. Autotelic motivation prevails when choosing a medical specialty and this tendency is more noticeable in men than in women. The meaningfulness component of SoC plays a regulatory role in making career decisions related to the greater physical and mental pressure put on doctors. The observed differences in the types of motivation and the size of the components of the sense of coherence in groups of surveyed doctors - men and women - encourage further observations of these relationships on a larger population.
Lu, X Y; Dai, J M; Wu, N; Shu, C; Gao, J L; Fu, H
2016-10-20
Objective: To investigate understand the current status of the sense of coherence and occupational stress in modern service workers, and to analyze the association between occupational stress and the sense of coherence. Methods: From March to April, 2016, 834 modern service workers from 3 companies in Shanghai, China (in air transportation industry, marketing industry, and travel industry) were surveyed by non-ran-dom sampling. The self-completion questionnaires were filled out anonymously given the informed consent of the workers. The occupational stress questionnaire was used to evaluate occupational stress, and the Chinese version of the Sense of Coherence Scale (SOC-13) was used to assess the mental health. Results: The mean score for the sense of coherence of the respondents was 61.54±10.46, and 50.1% of them were self-rated as having occupational stress. There were significant differences in SOC score between groups with different ages, marital status, positions, lengths of service, family per capita monthly income, and weekly work hours ( P <0.05). The occupational stress score differed significantly across groups with different marital status, lengths of service, and weekly work hours ( P <0.05). The scores for working autonomy, social support, and occupational stress differed significantly between groups with different SOC levels ( P< 0.05). There were significant differences in SOC score and the distribution of low-SOC respondents between groups with different levels of working autonomy, social support, and occupational stress. High SOC is a protective factor for occupational stress ( OR =0.39, 95% CI 0.26~ 0.59). Conclusion: Modern service workers in Shanghai have high SOC and moderate occupational stress. Therefore, improving SOC may reduce occupational stress.
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1990-01-01
Laser development, high efficiency, high power second harmonic generation, operation of optical parametric oscillators for wavelength diversity and tunability, and studies in coherent communications are reviewed.
Optimal control of population and coherence in three-level Λ systems
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Malinovskaya, Svetlana A.; Malinovsky, Vladimir S.
2011-08-01
Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.
USDA-ARS?s Scientific Manuscript database
An improved coherent branching model for L-band radar remote sensing of soybean is proposed by taking into account the correlated scattering among scatterers. The novel feature of the analytic coherent model consists of conditional probability functions to eliminate the overlapping effects of branc...
Sundquist, J; Bayard-Burfield, L; Johansson, L M; Johansson, S E
2000-06-01
This study uses data collected in 1996 by the Swedish National Board of Health and Welfare. By means of interviews with 1980 foreign-born immigrants, an attempt was made to determine the impact of a) migration status (country of birth/ethnicity), b) exposure to violence, c) Antonovsky's sense of coherence, d) acculturation status (knowledge of Swedish), e) sense of control over one's life, f) economic difficulties, and g) education, both on psychological distress (using General Health Questionnaire 12) and psychosomatic complaints (daytime fatigue, sleeping difficulties, and headache/migraine). Iranians and Chileans (age-adjusted) were at great risk for psychological distress as compared with Poles, whereas Turks and Kurds exhibited no such risk. When the independent factors were included in the model, the migration status effect decreased to insignificance (with the exception of Iranian men). A low sense of coherence, poor acculturation (men only), poor sense of control, and economic difficulties were strongly associated with the outcomes, generally accounting for a convincing link between migration status and psychological distress. Furthermore, a low sense of coherence, poor acculturation (men only), poor sense of control, and economic difficulties in exile seemed to be stronger risk factors for psychological distress in this group than exposure to violence before migration.
Coarse graining Escherichia coli chemotaxis: from multi-flagella propulsion to logarithmic sensing.
Curk, Tine; Matthäus, Franziska; Brill-Karniely, Yifat; Dobnikar, Jure
2012-01-01
Various sensing mechanisms in nature can be described by the Weber-Fechner law stating that the response to varying stimuli is proportional to their relative rather than absolute changes. The chemotaxis of bacteria Escherichia coli is an example where such logarithmic sensing enables sensitivity over large range of concentrations. It has recently been experimentally demonstrated that under certain conditions E. coli indeed respond to relative gradients of ligands. We use numerical simulations of bacteria in food gradients to investigate the limits of validity of the logarithmic behavior. We model the chemotactic signaling pathway reactions, couple them to a multi-flagella model for propelling and take the effects of rotational diffusion into account to accurately reproduce the experimental observations of single cell swimming. Using this simulation scheme we analyze the type of response of bacteria subject to exponential ligand profiles and identify the regimes of absolute gradient sensing, relative gradient sensing, and a rotational diffusion dominated regime. We explore dependance of the swimming speed, average run time and the clockwise (CW) bias on ligand variation and derive a small set of relations that define a coarse grained model for bacterial chemotaxis. Simulations based on this coarse grained model compare well with microfluidic experiments on E. coli diffusion in linear and exponential gradients of aspartate.
Veronese, Guido; Pepe, Alessandro
2015-06-18
The present study aims to test whether sense of coherence (SOC) acts as a determinant of positive psychological functioning in aid workers directly exposed to warfare. Specifically, we performed multiple regression analyses to compare different groups of aid workers in terms of the effects of SOC and cumulative trauma on their psychological distress. Palestinian helpers, both professional and non-professional (N = 159) completed three self-reported measures: the General Health questionnaire, Sense of Coherence Scale, and Impact of Events Scale. The findings bear out the predictive power of SOC and posttraumatic stress disorder (PTSD) in relation to mental health across different professional groups. In particular, volunteers without a specific professional profile, psychiatrists, medical doctors, and less markedly counselors seemed to protect their mental health through a SOC. Clinical implications and recommendations for training and supervision are discussed. © The Author(s) 2015.
Persson, Roger; Høgh, Annie; Grynderup, Matias Brødsgaard; Willert, Morten Vejs; Gullander, Maria; Hansen, Åse Marie; Kolstad, Henrik Albert; Mors, Ole; Mikkelsen, Eva Gemzøe; Kristensen, Ann Suhl; Kaerlev, Linda; Rugulies, Reiner; Bonde, Jens Peter Ellekilde
2016-09-01
To examine whether a shift in work-related bullying status, from being non-bullied to being bullied or vice versa, was associated with changes in reporting of personality characteristics. Data on bullying and personality (neuroticism, extraversion, and sense of coherence) were collected in three waves approximately 2 years apart (N = 4947). Using a within-subjects design, personality change scores that followed altered bullying status were evaluated with one-sample t tests. Sensitivity analyses targeted depressive symptoms. Shifts from non-bullied to frequently bullied were associated with increased neuroticism or decreased sense of coherence manageability scores. Shifts from bullied to non-bullied were associated with decreasing neuroticism and increasing extraversion scores, or increasing sense of coherence meaningfulness and comprehensibility scores. Excluding depressive cases had minor effects. Bullying seems to some extent to affect personality scale scores, which thus seem sensitive to environmental and social circumstances.
Precision spectral manipulation of optical pulses using a coherent photon echo memory.
Buchler, B C; Hosseini, M; Hétet, G; Sparkes, B M; Lam, P K
2010-04-01
Photon echo schemes are excellent candidates for high efficiency coherent optical memory. They are capable of high-bandwidth multipulse storage, pulse resequencing and have been shown theoretically to be compatible with quantum information applications. One particular photon echo scheme is the gradient echo memory (GEM). In this system, an atomic frequency gradient is induced in the direction of light propagation leading to a Fourier decomposition of the optical spectrum along the length of the storage medium. This Fourier encoding allows precision spectral manipulation of the stored light. In this Letter, we show frequency shifting, spectral compression, spectral splitting, and fine dispersion control of optical pulses using GEM.
Osuchowska-Kościjańska, Anna; Charzyńska, Katarzyna; Chadzyńska, Małgorzata; Drozdzyńska, Anna; Kasperek-Zimowska, Beata; Bednarek, Agata; Sawicka, Maryla
2014-01-01
The aim of the present study was to investigate sense of coherence in healthy siblings of persons suffering from schizophrenia as well as their ways of coping in the relationship with ill brother or sister. 40 healthy brothers and sisters of persons with ICD- 10 diagnosis of F20 to F29 participated in the present study. Orientation to Life Scale (SOC- 29) was used to assess sense of coherence and Ways of Coping with Stress questionnaire (SRSS) was used to examine stress coping strategies. Mean global score of siblings of persons with schizophrenia was 111 points. Subjects used coping strategies focused on problem significantly more often than those focused on emotions. Therapeutic work with healthy siblings should focus on strengthening sense of personal competence, development of personal resources and different ways of coping with stress, investigation of emotions that healthy siblings experience in the relationship with ill brother or sister as well as supporting the process of accepting changes in the relationship with the ill sibling.
Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry
Zhang, Yiwei; Ye, Fei; Qi, Bing; ...
2016-07-12
We demonstrate that multiple-site sensing along an optical fiber can be done with incoherent continuous-wave light. Here, using a broadband low-coherence noise source, a slow detector, and an optical modulator, we construct a single-arm frequency-shifted interferometer (SA-FSI) capable of simultaneously sensing multiple weak-reflection sites distributed either in parallel or in series along fiber links. By scanning the driving frequency of an electro-optic amplitude modulator in the range of 2.7–3.2 GHz at steps of 41.7 KHz, we demonstrate a spatial resolution of 0.3 m and a measurement range of over 1 km.
ERIC Educational Resources Information Center
Zheng, Yanping
2009-01-01
In the thesis a coherent text is defined as a continuity of senses of the outcome of combining concepts and relations into a network composed of knowledge space centered around main topics. And the author maintains that in order to obtain the coherence of a target language text from a source text during the process of translation, a translator can…
Fundamental Principles of Coherent-Feedback Quantum Control
2014-12-08
in metrology (acceleration sensing, vibrometry, gravity wave detection) and in quantum information processing (continuous-variables quantum ...AFRL-OSR-VA-TR-2015-0009 FUNDAMENTAL PRINCIPLES OF COHERENT-FEEDBACK QUANTUM CONTROL Hideo Mabuchi LELAND STANFORD JUNIOR UNIV CA Final Report 12/08...foundations and potential applications of coherent-feedback quantum control. We have focused on potential applications in quantum -enhanced metrology and
Solid-state coherent laser radar wind shear measuring systems
NASA Technical Reports Server (NTRS)
Huffaker, R. Milton
1992-01-01
Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.
Optimized Projection Matrix for Compressive Sensing
NASA Astrophysics Data System (ADS)
Xu, Jianping; Pi, Yiming; Cao, Zongjie
2010-12-01
Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF) design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.
Temperature sensing by primary roots of maize
NASA Technical Reports Server (NTRS)
Poff, K. L.
1990-01-01
Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.
Tenth Biennial Coherent Laser Radar Technology and Applications Conference
NASA Technical Reports Server (NTRS)
Kavaya, Michael J. (Compiler)
1999-01-01
The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.
The Importance of Being Coherent: Category Coherence, Cross-Classification, and Reasoning
ERIC Educational Resources Information Center
Patalano, Andrea L.; Chin-Parker, Seth; Ross, Brian H.
2006-01-01
Category-based inference is crucial for using past experiences to make sense of new ones. One challenge to inference of this kind is that most entities in the world belong to multiple categories (e.g., a jogger, a professor, and a vegetarian). We tested the hypothesis that the "degree of coherence" of a category-the degree to which category…
Burnout Syndrome Among Health Care Students: The Role of Type D Personality.
Skodova, Zuzana; Lajciakova, Petra; Banovcinova, Lubica
2016-07-18
The aim of this study was to examine the effect of Type D personality, along with other personality traits (resilience and sense of coherence), on burnout syndrome and its counterpart, engagement, among students of nursing, midwifery, and psychology. A cross-sectional study was conducted on 97 university students (91.9% females; M age = 20.2 ± 1.49 years). A Type D personality subscale, School Burnout Inventory, Utrecht Work Engagement Scale, Sense of Coherence Questionnaire, and Baruth Protective Factor Inventory were used. Linear regression models, Student's t test, and Pearson's correlation analysis were employed. Negative affectivity, a dimension of Type D personality, was a significant personality predictor for burnout syndrome (β = .54; 95% CI = [0.33, 1.01]). The only significant personality predictor of engagement was a sense of coherence. Students who were identified as having Type D personality characteristics scored significantly higher on the burnout syndrome questionnaire (t = -2.58, p < .01). In health care professions, personality predictors should be addressed to prevent burnout. © The Author(s) 2016.
Sense of coherence and hardiness as predictors of the mental health of college students.
Knowlden, Adam P; Sharma, Manoj; Kanekar, Amar; Atri, Ashutosh
Psychological distress has a deleterious impact on the mental health of college students. The purpose of this study was to specify a theoretical, sense of coherence, and hardiness-based regression model to predict the mental health of college students. The instruments employed to build the model included the Kessler Psychological Distress Scale K-6, the Sense of Coherence-29, and the College Student Hardiness Measure. Data were collected from a sample of college students (n = 220) attending a Midwestern university. Each of the theoretical predictors regressed on mental health was deemed significant. Collectively, the significant predictors produced an R2 adjusted value of 0.434 (p < 0.001), suggesting the final specified model explained 43.4% of the variance in mental health in the sample of participants. Qualitative cut-points were developed for each scale to aid in measurement of health promotion and education interventions designed to improve the mental health of college students.
Zeidner, Moshe; Aharoni-David, Eynat
2015-01-01
This study explores the nexus of relationships between memories of Holocaust-related early traumatic events, survivors' sense of coherence (SOC), and subjective well-being (SWB) in late life. The basic design of this study, based 106 survivors (54% female), was cross-sectional. Participants underwent an extensive in-depth clinical interview relating to their Holocaust experiences and responded to measures of SOC and SWB. These data provided no evidence for the moderating or "buffering" effect of SOC but showed support for indirect effects of SOC in the relationship between memory traces of specific traumatic experiences and adaptive outcomes. The results of the present study provide support for Antonovsky's salutogenic perspective. It is highly plausible that survivors who underwent severe experiences during the Holocaust period were forced to call upon all their inner strengths and coping resources,and that their success in doing so and also surviving this horrendous period, might have contributed to the development of a stronger sense of meaning and coherence, which, in turn lead to a better sense of mental health as they approach the final season of their lives.
Sense of coherence as a protective factor in chronic urticaria
Miniszewska, Joanna; Pietrzak, Anna; Zalewska-Janowska, Anna
2017-01-01
Introduction Chronic urticaria (CU) seems to be perceived as a psychodermatological disorder. Different psychological factors play an important role in CU triggering and course. One of them is a sense of coherence (SOC), which is believed to be a protective factor against anxiety and depression. Aim To investigate quality of life (QoL) in CU patients and to compare selected psychological parameters (anxiety, depression and sense of coherence) between CU individuals and the control group. Material and methods The study comprised 46 female patients with chronic urticaria and 33 healthy females as a control group. The following methods were employed: Urticaria Activity Score (UAS), Hospital Anxiety and Depression Scale (HADS), Sense of Coherence Questionnaire (SOC-29) and Dermatology Life Quality Index (DLQI). Results The CU patients presented a significantly higher anxiety level in comparison to the control group (z = 4.488; p < 0.001). There were no statistically significant differences regarding depression intensity and SOC. In both groups anxiety and depression negatively correlated with global SOC and all its components. Disease severity positively correlated with QoL (ρ = 0.46, p < 0.01) and negatively with global SOC (ρ = –0.33, p < 0.05). Conclusions Bearing in mind higher prevalence of anxiety and depressive symptoms in our CU group, it would be useful to perform screening of these aspects in all CU patients and subsequently develop respective psychological interventions, based on enhancement of personal resources. PMID:28507497
Thermal convection currents in NMR: flow profiles and implications for coherence pathway selection
Jerschow
2000-07-01
Rayleigh-Benard convection currents are visualized in a vertical cylindrical tube by means of magnetic resonance imaging. Axially antisymmetric flow, multiple vertical rolls, and twisted node planes are observed. The flow can also be induced by strong RF irradiation. Its effects on the coherence pathways in NMR experiments employing field gradients are discussed. Copyright 2000 Academic Press.
Wang, Qifeng; Hay, Margaret; Clarke, David; Menahem, Samuel
2014-02-01
Advances in overall management have led to an increasing number of adolescents with congenital heart disease reaching adulthood. This study aimed to evaluate the health-related quality of life in adolescents with heart disease, and examine its relationship with the adolescents' knowledge and understanding of their congenital heart disease, its severity, and its relationship to the degree of anxiety and depression, feeling of optimism and sense of coherence experienced by the adolescents together with their social support. Adolescents with heart disease were recruited from an ambulatory setting at a tertiary centre. Patients completed self-report questionnaires including the Paediatric Quality of Life Inventory 3.0-Cardiac Module, a questionnaire assessing the adolescents' knowledge of their cardiac condition, the Hospital Anxiety and Depression Scale, Multidimensional Scale of Perceived Social Support, Life Orientation Test-Revised, and Sense of Coherence-13, supplemented by clinical information provided by the attending cardiologists. A total of 114 patients aged 12-20 years were recruited over 15 months. In all, 98% of patients were in New York Heart Association class I. Their health-related quality of life was found to positively correlate with a low level of anxiety and depression (Pearson correlation, r = -0.57, p < 0.001), a good knowledge of their cardiac condition (r = 0.31, p < 0.01), feelings of optimism (r = 0.39, p < 0.001), adequate social support (r = 0.27, p < 0.01), and a strong sense of coherence (r = 0.24, p < 0.01). Adolescents' knowledge and understanding of their cardiac abnormality together with an improved sense of well-being had a positive influence on their health-related quality of life.
Flux-induced Nernst effect in low-dimensional superconductors
NASA Astrophysics Data System (ADS)
Berger, Jorge
2017-02-01
A method is available that enables consistent study of the stochastic behavior of a system that obeys purely diffusive evolution equations. This method has been applied to a superconducting loop with nonuniform temperature, with average temperature close to Tc. It is found that a flux-dependent average potential difference arises along the loop, proportional to the temperature gradient and most pronounced in the direction perpendicular to this gradient. The largest voltages were obtained for fluxes close to 0.3Φ0, average temperatures slightly below the critical temperature, thermal coherence length of the order of the perimeter of the ring, BCS coherence length that is not negligible in comparison to the thermal coherence length, and short inelastic scattering time. This effect is entirely due to thermal fluctuations. It differs essentially from the usual Nernst effect in bulk superconductors, that is induced by magnetic field rather than by magnetic flux. We also study the effect of confinement in a 2D mesoscopic film.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Kobayashi, S.; Lu, X. X.; Kenmochi, N.; Ida, K.; Ohshima, S.; Yamamoto, S.; Kado, S.; Kokubu, D.; Nagasaki, K.; Okada, H.; Minami, T.; Otani, Y.; Mizuuchi, T.
2018-01-01
We report properties of a coherent density oscillation observed in the core region and its response to electron cyclotron resonance heating (ECH) in Heliotron J plasma. The measurement was performed using a multi-channel beam emission spectroscopy system. The density oscillation is observed in a radial region between the core and the half radius. The poloidal mode number is found to be 1 (or 2). By modulating the ECH power with 100 Hz, repetition of formation and deformation of a strong electron temperature gradient, which is likely ascribed to be an electron internal transport barrier, is realized. Amplitude and rotation frequency of the coherent density oscillation sitting at the strong electron temperature gradient location are modulated by the ECH, while the poloidal mode structure remains almost unchanged. The change in the rotation velocity in the laboratory frame is derived. Assuming that the change of the rotation velocity is given by the background E × B velocity, a possible time evolution of the radial electric field was deduced.
Mathematical Sense-Making in Quantum Mechanics: An Initial Peek
ERIC Educational Resources Information Center
Dreyfus, Benjamin W.; Elby, Andrew; Gupta, Ayush; Sohr, Erin Ronayne
2017-01-01
Mathematical sense-making--looking for coherence between the structure of the mathematical formalism and causal or functional relations in the world--is a core component of physics expertise. Some physics education research studies have explored what mathematical sense-making looks like at the introductory physics level, while some historians and…
Factors related to sense of coherence in adult patients with Type 2 diabetes.
Odajima, Yuki; Sumi, Naomi
2018-02-01
The influence of a diabetic person's sense of burden and blood sugar control through sense of coherence (SOC) on self-management has yet to be sufficiently clarified. The purpose of this study was to examine the utility of salutogenesis, which has sense of coherence at its core, for the self-management of patients with type 2 diabetes. A total of 258 questionnaires were distributed to patients who were seen at one of three hospitals in an urban area in Japan, after obtaining consent from the patient. They were between 20 and 75 years old and regularly received care. Of the 185 responses, 177 were valid. The responses were analyzed by referring to the framework of salutogenesis, and the relationship between patient characteristics, SOC, the Problem Areas In Diabetes survey (PAID), and glycosylated hemoglobin (HbA1c) were studied with structural equation modeling (SEM). SOC had a main effect on PAID scores and an indirect effect on HbA1c. Moreover, age influenced SOC positively. The SOC of patients with type 2 diabetes in the present study was comparatively high. These observations suggest a direct effect of SOC on reducing the sense of burden from having diabetes and an indirect effect on decreasing HbA1c. This research suggested the possibility that diabetes can be controlled by improving SOC.
Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm
Alvarez, Luis; Seifert, Reinhard; Gregor, Ingo; Jäckle, Oliver; Beyermann, Michael; Krause, Eberhard
2012-01-01
Sperm, navigating in a chemical gradient, are exposed to a periodic stream of chemoattractant molecules. The periodic stimulation entrains Ca2+ oscillations that control looping steering responses. It is not known how sperm sample chemoattractant molecules during periodic stimulation and adjust their sensitivity. We report that sea urchin sperm sampled molecules for 0.2–0.6 s before a Ca2+ response was produced. Additional molecules delivered during a Ca2+ response reset the cell by causing a pronounced Ca2+ drop that terminated the response; this reset was followed by a new Ca2+ rise. After stimulation, sperm adapted their sensitivity following the Weber–Fechner law. Taking into account the single-molecule sensitivity, we estimate that sperm can register a minimal gradient of 0.8 fM/µm and be attracted from as far away as 4.7 mm. Many microorganisms sense stimulus gradients along periodic paths to translate a spatial distribution of the stimulus into a temporal pattern of the cell response. Orchestration of temporal sampling, resetting, and adaptation might control gradient sensing in such organisms as well. PMID:22986497
Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm.
Kashikar, Nachiket D; Alvarez, Luis; Seifert, Reinhard; Gregor, Ingo; Jäckle, Oliver; Beyermann, Michael; Krause, Eberhard; Kaupp, U Benjamin
2012-09-17
Sperm, navigating in a chemical gradient, are exposed to a periodic stream of chemoattractant molecules. The periodic stimulation entrains Ca(2+) oscillations that control looping steering responses. It is not known how sperm sample chemoattractant molecules during periodic stimulation and adjust their sensitivity. We report that sea urchin sperm sampled molecules for 0.2-0.6 s before a Ca(2+) response was produced. Additional molecules delivered during a Ca(2+) response reset the cell by causing a pronounced Ca(2+) drop that terminated the response; this reset was followed by a new Ca(2+) rise. After stimulation, sperm adapted their sensitivity following the Weber-Fechner law. Taking into account the single-molecule sensitivity, we estimate that sperm can register a minimal gradient of 0.8 fM/µm and be attracted from as far away as 4.7 mm. Many microorganisms sense stimulus gradients along periodic paths to translate a spatial distribution of the stimulus into a temporal pattern of the cell response. Orchestration of temporal sampling, resetting, and adaptation might control gradient sensing in such organisms as well.
Gradient light interference microscopy (GLIM) for imaging thick specimens (Conference Presentation)
NASA Astrophysics Data System (ADS)
Nguyen, Tan H.; Kandel, Mikhail E.; Popescu, Gabriel
2016-03-01
Compared to the Phase Contrast, Differential Interference Contrast (DIC) has been known to give higher depth sectioning as well as a halo-free images when investigating transparent specimens. Thanks to relying on generating two slightly shifted replicas with a small amount of shift, within the coherence area, DIC is able to operate with very low coherence light. More importantly, the method is able to work with very large numerical aperture of the illumination, which offer comparable sectioning capability to bright field microscopy. However, DIC is still a qualitative method, which limits potential applications of the technique. In this paper, we introduce a method that extends the capability of DIC by combining it with a phase shifting module to extract the phase gradient information. A theoretical model of the image formation is developed and the possibility of integrating the gradient function is analyzed.. Our method is benchmarked on imaging embryos during their 7-day development, HeLa cells during mitosis, and control samples.
Operational Resource Theory of Coherence.
Winter, Andreas; Yang, Dong
2016-03-25
We establish an operational theory of coherence (or of superposition) in quantum systems, by focusing on the optimal rate of performance of certain tasks. Namely, we introduce the two basic concepts-"coherence distillation" and "coherence cost"-in the processing quantum states under so-called incoherent operations [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. We, then, show that, in the asymptotic limit of many copies of a state, both are given by simple single-letter formulas: the distillable coherence is given by the relative entropy of coherence (in other words, we give the relative entropy of coherence its operational interpretation), and the coherence cost by the coherence of formation, which is an optimization over convex decompositions of the state. An immediate corollary is that there exists no bound coherent state in the sense that one would need to consume coherence to create the state, but no coherence could be distilled from it. Further, we demonstrate that the coherence theory is generically an irreversible theory by a simple criterion that completely characterizes all reversible states.
Directional Bleb Formation in Spherical Cells under Temperature Gradient
Oyama, Kotaro; Arai, Tomomi; Isaka, Akira; Sekiguchi, Taku; Itoh, Hideki; Seto, Yusuke; Miyazaki, Makito; Itabashi, Takeshi; Ohki, Takashi; Suzuki, Madoka; Ishiwata, Shin'ichi
2015-01-01
Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm−1; 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients. PMID:26200871
Collective gradient sensing and chemotaxis: modeling and recent developments
NASA Astrophysics Data System (ADS)
Camley, Brian A.
2018-06-01
Cells measure a vast variety of signals, from their environment’s stiffness to chemical concentrations and gradients; physical principles strongly limit how accurately they can do this. However, when many cells work together, they can cooperate to exceed the accuracy of any single cell. In this topical review, I will discuss the experimental evidence showing that cells collectively sense gradients of many signal types, and the models and physical principles involved. I also propose new routes by which experiments and theory can expand our understanding of these problems.
Löffler, Sabine; Knappe, Rainer; Joraschky, Peter; Pöhlmann, Karin
2010-01-01
This study investigated differences in the personal meaning systems of psychotherapists and psychotherapy patients as well as correlations between meaning in life and mental health. We qualitatively assessed the content and structure of the personal meaning systems of 41 psychotherapists and 77 psychotherapy patients. In addition, the participants completed questionnaires measuring meaning in life (LRI-r-d), sense of coherence (SOC-9L), self-esteem (RSES), satisfaction with life (SWLS), self-efficacy (SWK), and depression (BDI). The personal meaning systems of psychotherapists were more complex and coherent compared to psychotherapy patients. In the group of psychotherapy patients, a more elaborate structure of the personal meaning system correlated with the subjective sense of meaning. We were able to confirm correlations between meaning in life and mental health for most of the instances. Psychotherapists had more elaborate and coherent meaning systems than psychotherapy patients. Especially for psychotherapy patients elaborate and coherent meaning systems turned out to be important for mental health.
Fast coarse-fine locating method for φ-OTDR.
Mei, Xuanwei; Pang, Fufei; Liu, Huanhuan; Yu, Guoqin; Shao, Yuying; Qian, Tianyu; Mou, Chengbo; Lv, Longbao; Wang, Tingyun
2018-02-05
We proposed and demonstrated a coarse-fine method to achieve fast locating of external vibration for the phase-sensitive optical time-domain reflectometer (φ-OTDR) sensing system. Firstly, the acquired backscattered traces from heterodyne coherent φ-OTDR systems are spatially divided into a few segments along a sensing fiber for coarse locating, and most of the acquired data can be excluded by comparing the phase difference between the endpoints in adjacent segments. Secondly, the amplitude-based locating is implemented within the target segments for fine locating. By using the proposed coarse-fine locating method, we have numerically and experimentally investigated a distributed vibration sensor based on the heterodyne coherent φ-OTDR system with a 50-km-long sensing fiber. We find that the computation cost of signal processing for locating is significantly reduced in the long-haul sensing fiber, showing a potential application in real-time locating of external vibration.
Various remote sensing approaches to understanding roughness in the marginal ice zone
NASA Astrophysics Data System (ADS)
Gupta, Mukesh
Multi-platform based measurement approaches to understanding complex marginal ice zone (MIZ) are suggested in this paper. Physical roughness measurements using ship- and helicopter-based laser systems combined with ship-based active microwave backscattering (C-band polarimetric coherences) and dual-polarized passive microwave emission (polarization ratio, PR and spectral gradient ratios, GR at 37 and 89 GHz) are presented to study diverse sea ice types found in the MIZ. Autocorrelation functions are investigated for different sea ice roughness types. Small-scale roughness classes were discriminated using data from a ship-based laser profiler. The polarimetric coherence parameter ρHHVH , is not found to exhibit any observable sensitivity to the surface roughness for all incidence angles. Rubble-ridges, pancake ice, snow-covered frost flowers, and dense frost flowers exhibit separable signatures using GR-H and GR-V at >70° incidence angles. This paper diagnosed changes in sea ice roughness on a spatial scale of ∼0.1-4000 m and on a temporal scale of ∼1-240 days (ice freeze-up to summer melt). The coupling of MIZ wave roughness and aerodynamic roughness in conjunction with microwave emission and backscattering are future avenues of research. Additionally, the integration of various datasets into thermodynamic evolution model of sea ice will open pathways to successful development of inversion models of MIZ behavior.
Nygren, B; Aléx, L; Jonsén, E; Gustafson, Y; Norberg, A; Lundman, B
2005-07-01
Different concepts have been presented which denote driving forces and strengths that contribute to a person's ability to meet and handle adversities, and keep or regain health. The aim of this study, which is a part of The Umeå 85+ study, was to describe resilience, sense of coherence, purpose in life and self-transcendence in relation to perceived physical and mental health in a sample of the oldest old. The study sample consisted of 125 participants 85 years of age or older, who ranked themselves on the Resilience Scale, Sense of Coherence Scale, Purpose in Life Scale and Self-Transcendence Scale and answered the SF-36 Health Survey questionnaire. The findings showed significant correlations between scores on the Resilience Scale, the Sense of Coherence Scale, the Purpose in Life Test, and the Self-Transcendence Scale. Significant correlations were also found between these scales and the SF-36 Mental Health Summary among women but not among men. There was no significant correlation between perceived physical and mental health. The mean values of the different scales showed that the oldest old have the same or higher scores than younger age groups. Regression analyses also revealed sex differences regarding mental health. The conclusions are that, the correlation between scores on the different scales suggests that the scales measure some dimension of inner strength and that the oldest old have this strength at least in the same extent as younger adults. Another conclusion is that the dimensions that constitute mental health differ between women and men.
NASA Astrophysics Data System (ADS)
Eguizabal, Alma; Real, Eusebio; Pontón, Alejandro; Calvo Diez, Marta; Val-Bernal, J. Fernando; Mayorga, Marta; Revuelta, José M.; López-Higuera, José M.; Conde, Olga M.
2014-05-01
Optical Coherence Tomography is a natural candidate for imaging biological structures just under tissue surface. Human thoracic aorta from aneurysms reveal elastin disorders and smooth muscle cell alterations when visualizing the media layer of the aortic wall, which is only some tens of microns in depth from surface. The resulting images require a suitable processing to enhance interesting disorder features and to use them as indicators for wall degradation, converting OCT into a hallmark for diagnosis of risk of aneurysm under intraoperative conditions. This work proposes gradient-based digital image processing approaches to conclude this risk. These techniques are believed to be useful in these applications as aortic wall disorders directly affect the refractive index of the tissue, having an effect on the gradient of the tissue reflectivity that conform the OCT image. Preliminary results show that the direction of the gradient contains information to estimate the tissue abnormality score. The detection of the edges of the OCT image is performed using the Canny algorithm. The edges delineate tissue disorders in the region of interest and isolate the abnormalities. These edges can be quantified to estimate a degradation score. Furthermore, the direction of the gradient seems to be a promising enhancement technique, as it detects areas of homogeneity in the region of interest. Automatic results from gradient-based strategies are finally compared to the histopathological global aortic score, which accounts for each risk factor presence and seriousness.
Optimal discrimination of M coherent states with a small quantum computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Marcus P. da; Guha, Saikat; Dutton, Zachary
2014-12-04
The ability to distinguish between coherent states optimally plays in important role in the efficient usage of quantum resources for classical communication and sensing applications. While it has been known since the early 1970’s how to optimally distinguish between two coherent states, generalizations to larger sets of coherent states have so far failed to reach optimality. In this work we outline how optimality can be achieved by using a small quantum computer, building on recent proposals for optimal qubit state discrimination with multiple copies.
Facilitating Coherence across Qualitative Research Papers
ERIC Educational Resources Information Center
Chenail, Ronald J.; Duffy, Maureen; St. George, Sally; Wulff, Dan
2011-01-01
Bringing the various elements of qualitative research papers into coherent textual patterns presents challenges for authors and editors alike. Although individual sections such as presentation of the problem, review of the literature, methodology, results, and discussion may each be constructed in a sound logical and structural sense, the…
[Protective factors for anxiety and depression in thyroid cancer patients].
Tagay, Sefik; Senf, Wolfgang; Schöpper, Nicole; Mewes, Ricarda; Bockisch, Andreas; Görges, Rainer
2007-01-01
Depression and anxiety are the most common mental symptoms in patients with thyroid cancer (DTC) and have an important influence on the quality of life. The aim of the current study was to identify protective factors of depression and anxiety in DTC patients. In a cross-sectional study 230 DTC patients were examined with Hospital Anxiety and Depression Scale (HADS-D), the Sense of Coherence Scale (SOC-13) and the Questionnaire of Social Support (F-SOZU). Depression correlated highly significantly with anxiety (r = .633, p = 0,001). Social support and sense of coherence correlated highly significantly negative with depression as well as with anxiety (both p < or = 0,001). Although still significant, the correlation between age and anxiety was lower (r = -.19; p < or = 0,005). The TSH level as an indicator of hypothyreodism did not correlate with depression or with anxiety on a significant statistical level. Furthermore, variables such as education, religiosity and elapsed time interval since initial diagnosis were not correlated with depression and anxiety. Our results support the thesis that low social support and low sense of coherence enhance vulnerability to depressive and anxiety symptoms.
Quantum coherence: Reciprocity and distribution
NASA Astrophysics Data System (ADS)
Kumar, Asutosh
2017-03-01
Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation-which we refer to as additivity relation-between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same.
Coherent and incoherent scattering by a plume of particles advected by turbulent velocity flow.
Palmer, David R
2009-08-01
Studies of acoustic remote sensing of the plumes that result from the injection of particulate matter in the ocean, either naturally or by dumping or dredging activities, have assumed the scattering is incoherent. These plumes are always turbulent, however. The particle density is a passive scalar that is advected by the turbulent velocity flow. The possibility exists, therefore, that the scattered waves from a significant number of particles add coherently as a result of Bragg scattering. In this paper, we investigate this possibility. We derive an expression for the ratio of the coherent intensity to the incoherent one in terms of the turbulent spectrum and the properties of the particles that make up the plume. The sonar is modeled as a high-Q, monostatic, pulsed sonar with arbitrary pulse envelope and arbitrary, but narrow, beam pattern. We apply the formalism to acoustic remote sensing of black smoker hydrothermal plumes. We find that, at most, the coherent intensity is less than 1% of the incoherent one. The implications are that Bragg scattering does not lead to a significant coherent component and in analyses of scattering from this type of plume, one can ignore the complications of turbulence altogether.
Szpringer, Monika; Oledzka, Marzena; Amann, Benedikt L.
2018-01-01
Glioblastoma multiforme (GBM) is a highly aggressive brain cancer and its survival after diagnosis is less than 2 years. Therefore, GBM patients are especially prone to co-occurring psychological conditions such as anxiety and depressive disorders. Furthermore, aggressive medical therapies affect patients’ lives, undermining their sense of meaning and coherence. The main aim of this study was to determine the effectiveness of Eye Movement Desensitization and Reprocessing (EMDR) therapy on anxiety, depression and sense of coherence in patients with GBM. Thirty-seven GBM-diagnosed women were included in this trial and received standard medical care. Of those, 18 patients were treated during 4 months with 10–12 individual EMDR sessions (60–90 minutes each). Nineteen GBM patients were used as a non-randomized control group as they consented to psychological evaluations but not to a psychotherapeutic intervention. The groups were homogeneous in terms of gender, age, educational level and treatment, but not in anxiety and depressive levels at baseline. All patients were evaluated at baseline, after treatment (4 months) and at follow-up (further 4 months) by the Hospital Anxiety and Depression Scale (HADS-M) and the Sense of Coherence Scale (SOC-29). Caregivers in both groups were interviewed by the Patient Caregiver Questionnaire after 4 months follow-up. Statistical analyses were conducted using ANOVA statistics, correlation and regression analysis. Results showed a statistically significant decrease in the EMDR group in anxiety, depression and anger, when compared to the experimental group. EMDR therapy also had a positive impact upon the sense of coherence level in the experimental group, whereas in the control group this declined. Finally, the caregivers reported beneficial outcomes of the EMDR therapy with less anxiety- and anger-related behaviors in patients in the experimental group compared to the control group. This study is the first to show beneficial effects of EMDR therapy in alleviating affective symptoms and improving coherence in a severe medically ill population with GBM. PMID:29892240
Szpringer, Monika; Oledzka, Marzena; Amann, Benedikt L
2018-01-01
Glioblastoma multiforme (GBM) is a highly aggressive brain cancer and its survival after diagnosis is less than 2 years. Therefore, GBM patients are especially prone to co-occurring psychological conditions such as anxiety and depressive disorders. Furthermore, aggressive medical therapies affect patients' lives, undermining their sense of meaning and coherence. The main aim of this study was to determine the effectiveness of Eye Movement Desensitization and Reprocessing (EMDR) therapy on anxiety, depression and sense of coherence in patients with GBM. Thirty-seven GBM-diagnosed women were included in this trial and received standard medical care. Of those, 18 patients were treated during 4 months with 10-12 individual EMDR sessions (60-90 minutes each). Nineteen GBM patients were used as a non-randomized control group as they consented to psychological evaluations but not to a psychotherapeutic intervention. The groups were homogeneous in terms of gender, age, educational level and treatment, but not in anxiety and depressive levels at baseline. All patients were evaluated at baseline, after treatment (4 months) and at follow-up (further 4 months) by the Hospital Anxiety and Depression Scale (HADS-M) and the Sense of Coherence Scale (SOC-29). Caregivers in both groups were interviewed by the Patient Caregiver Questionnaire after 4 months follow-up. Statistical analyses were conducted using ANOVA statistics, correlation and regression analysis. Results showed a statistically significant decrease in the EMDR group in anxiety, depression and anger, when compared to the experimental group. EMDR therapy also had a positive impact upon the sense of coherence level in the experimental group, whereas in the control group this declined. Finally, the caregivers reported beneficial outcomes of the EMDR therapy with less anxiety- and anger-related behaviors in patients in the experimental group compared to the control group. This study is the first to show beneficial effects of EMDR therapy in alleviating affective symptoms and improving coherence in a severe medically ill population with GBM.
Coherence, quantum Fisher information, superradiance, and entanglement as interconvertible resources
NASA Astrophysics Data System (ADS)
Tan, Kok Chuan; Choi, Seongjeon; Kwon, Hyukjoon; Jeong, Hyunseok
2018-05-01
We demonstrate that quantum Fisher information and superradiance can be formulated as coherence measures in accordance with the resource theory of coherence, thus establishing a direct link between metrological resources, superradiance, and coherence. The arguments are generalized to show that coherence may be considered as the underlying fundamental resource for any functional of state that is first of all faithful, and second, concave or linear. It is also shown that quantum Fisher information and the superradiant quantity are in fact antithetical resources in the sense that if coherence were directed to saturate one quantity, then it must come at the expense of the other. Finally, a key result of the paper is to demonstrate that coherence, quantum Fisher information, superradiant quantity, and entanglement are mutually interconvertible resources under incoherent operations.
NASA Technical Reports Server (NTRS)
Brown, R. A.
1984-01-01
Extensive comparison between surface measurements and satellite Scatt signal and predicted winds show successful wind and weather analysis comparable with conventional weather service analyses. However, in regions often of the most interest, e.g., fronts and local storms, inadequacies in the latter fields leaves an inability to establish the satellite sensor capabilities. Thus, comparisons must be made between wind detecting measurements and other satellite measurements of clouds, moisture, waves or any other parameter which responds to sharp gradients in the wind. At least for the windfields and the derived surface pressure field analysis, occasional surface measurements are required to anchor and monitor the satellite analyses. Their averaging times must be made compatible with the satellite sensor measurement. Careful attention must be paid to the complex fields which contain many scales of turbulence and coherent structures affecting the averaging process. The satellite microwave system is capable of replacing the conventional point observation/numerical analysis for the ocean weather.
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Scott, R. L.; Goulden, M.; Litvak, M. E.; Kolb, T.; Yepez, E. A.; Garatuza, J.; Oechel, W. C.; Krofcheck, D. J.; Ponce-Campos, G. E.; Bowling, D. R.; Meyers, T. P.; Maurer, G.
2016-12-01
Global carbon cycle studies reveal that semiarid ecosystems dominate the increasing trend and interannual variability of the land CO2 sink. However, the regional terrestrial biome models (TBM) and remote sensing products (RSP) used in large-scale analyses are poorly constrained by ecosystem flux measurements in semiarid regions, which are under-represented in global flux datasets. Here we present eddy covariance measurements from 25 diverse ecosystems in semiarid southwestern North America with ranges in annual precipitation of 100 - 1000 mm, annual temperatures of 2 - 25 °C, and records of 3 - 10 years each (150 site-years in total). We identified seven subregions with unique seasonal dynamics in climate and ecosystem-atmosphere exchange, including net and gross CO2 exchange (photosynthesis and respiration) and evapotranspiration (ET), and we evaluated how well measured dynamics were captured by satellite-based greenness observations of the Enhanced Vegetation Index (EVI). Annual flux integrals were calculated based on site-appropriate ecohydrologic years. Net ecosystem production (NEP) varied between -550 and + 420 g C m-2, highlighting the wide range of regional sink/source function. Annual photosynthesis and respiration were positively related to water availability but were suppressed in warmer years at a given site and at climatically warmer sites, in contrast to positive temperature responses at wetter sites. When precipitation anomalies were spatially coherent across sites (e.g. related to El Niño Southern Oscillation), we found large regional annual anomalies in net and gross CO2 uptake. TBM and RSP were less effective in capturing spatial gradients in mean ET and CO2 exchange across this semiarid region as compared to wetter regions. Measured interannual variability of ET and gross CO2 exchange was 3 - 5 times larger than estimates from TBM or RSP. These results suggest that semiarid regions play an even larger role in regulating interannual variability of the global carbon cycle than currently estimated by models and remote sensing. In on-going work, we expand this spatial-temporal analysis across a broader gradient of water availability using the Fluxnet 2015 dataset.
Coherent systems in the terahertz frequency range: Elements, operation, and examples
NASA Technical Reports Server (NTRS)
Goldsmith, Paul F.
1992-01-01
The topics are presented in viewgraph form and include the following: terahertz coherent systems applications; a brief overview of selected components; radiometry and spectroscopy--astronomy; radiometry--aircraft all weather landing system; radiometry--atmospheric remote sensing; plasma diagnostics; communications; radar systems; and materials measurement and manufacturing process control.
Migrating Myeloid Cells Sense Temporal Dynamics of Chemoattractant Concentrations.
Petrie Aronin, Caren E; Zhao, Yun M; Yoon, Justine S; Morgan, Nicole Y; Prüstel, Thorsten; Germain, Ronald N; Meier-Schellersheim, Martin
2017-11-21
Chemoattractant-mediated recruitment of hematopoietic cells to sites of pathogen growth or tissue damage is critical to host defense and organ homeostasis. Chemotaxis is typically considered to rely on spatial sensing, with cells following concentration gradients as long as these are present. Utilizing a microfluidic approach, we found that stable gradients of intermediate chemokines (CCL19 and CXCL12) failed to promote persistent directional migration of dendritic cells or neutrophils. Instead, rising chemokine concentrations were needed, implying that temporal sensing mechanisms controlled prolonged responses to these ligands. This behavior was found to depend on G-coupled receptor kinase-mediated negative regulation of receptor signaling and contrasted with responses to an end agonist chemoattractant (C5a), for which a stable gradient led to persistent migration. These findings identify temporal sensing as a key requirement for long-range myeloid cell migration to intermediate chemokines and provide insights into the mechanisms controlling immune cell motility in complex tissue environments. Published by Elsevier Inc.
Strain Wave Acquisition by a Fiber Optic Coherent Sensor for Impact Monitoring
Sbarufatti, Claudio; Beligni, Alessio; Gilioli, Andrea; Ferrario, Maddalena; Mattarei, Marco; Martinelli, Mario; Giglio, Marco
2017-01-01
A novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required. For active Lamb wave monitoring, this results in a sensing fiber arranged in multiple loops glued on an aluminum thin panel in order to increase the phase signal only in correspondence to the sensing points of interest. Instead, for passive impact identification, the required sensitivity is guaranteed by simply exploiting a longer gauge length glued to the structure. The fiber optic coherent (FOC) sensor is exploited to detect the strain waves emitted by a piezoelectric transducer placed on the aluminum panel or generated by an impulse hammer, respectively. The FOC sensor measurements have been compared with both a numerical model based on Finite Elements and traditional piezoelectric sensors, confirming a good agreement between experimental and simulated results for both active and passive impact monitoring scenarios. PMID:28773154
Generation of coherent two-color pulses at two adjacent harmonics in a seeded free-electron laser
NASA Astrophysics Data System (ADS)
Zhao, Zhouyu; Li, Heting; Jia, Qika
2018-02-01
The growing requirements of pump-probe techniques and nonlinear optics experiments greatly promote the studies of two-color free-electron lasers (FELs). We propose a new method to generate coherent two-color pulses in a high-gain harmonic generation (HGHG) FEL. In this scheme, an initial tilted electron beam is sent though the modulator and dispersive section of an HGHG FEL to generate the bunching at harmonics of the seed laser. Then a transverse gradient undulator (TGU) is adopted as the radiator and in such radiator, only two separated fractions of the tilted beam will resonate at two adjacent harmonics of the seed laser and are enabled to emit the coherent two-color pulses simultaneously. The time separation between the two pulses are on the order of hundreds of femtoseconds, and can be precisely controlled by varying the tilted amplitude of the electron beam and/or the transverse gradient of the TGU radiator. Numerical simulations confirm the validity and feasibility of this scheme in the extreme ultraviolet waveband.
EIT Noise Resonance Power Broadening: a probe for coherence dynamics
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; O'Leary, Shannon; Snider, Charles
2012-06-01
EIT noise correlation spectroscopy holds promise as a simple, robust method for performing high resolution spectroscopy used in devices as diverse as magnetometers and clocks. One useful feature of these noise correlation resonances is that they do not power broaden with the EIT window. We report on measurements of the eventual power broadening (at higher optical powers) of these resonances and a simple, quantitative theoretical model that relates the observed power broadening slope with processes such as two-photon detuning gradients and coherence diffusion. These processes reduce the ground state coherence relative to that of a homogeneous system, and thus the power broadening slope of the EIT noise correlation resonance may be a simple, useful probe for coherence dynamics.
NASA Astrophysics Data System (ADS)
Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.
2012-12-01
This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients defining species turnover and changes in functional diversity. The study will provide novel approaches to use detailed spatial information from remote sensing data to study relations between functional and taxonomic dimensions of diversity.
NASA Astrophysics Data System (ADS)
de Ysasa Pozzo, Liliana; Fontes, Adriana; de Thomaz, André A.; Barbosa, Luiz Carlos; Ayres, Diana Copi; Giorgio, Selma; Cesar, Carlos Lenz
2007-02-01
Chemotaxis is the mechanism microorganisms use to sense the environment surrounding them and to direct their movement towards attractive, or away from the repellent, chemicals. The biochemical sensing is almost the only way for communication between unicellular organisms. Prokaryote and Eukaryote chemotaxis has been mechanically studied mainly by observing the directionality and timing of the microorganisms movements subjected to a chemical gradient, but not through the directionality and strength of the forces it generates. To observe the vector force of microorganisms under a chemical gradient we developed a system composed of two large chambers connected by a tiny duct capable to keep the chemical gradient constant for more than ten hours. We also used the displacements of a microsphere trapped in an Optical Tweezers as the force transducer to measure the direction and the strength of the propulsion forces of flagellum of the microorganism under several gradient conditions. A 9μm diameter microsphere particle was trapped with a Nd:YAG laser and its movement was measured through the light scattered focused on a quadrant detector. We observed the behavior of the protozoa Leishmania amazonensis (eukaryote) under several glucose gradients. This protozoa senses the gradient around it by swimming in circles for three to five times following by tumbling, and not by the typical straight swimming/tumbling of bacteria. Our results also suggest that force direction and strength are also used to control its movement, not only the timing of swimming/tumbling, because we observed a higher force strength clearly directed towards the glucose gradient.
Risk factors for mental disorders develop early in German students of dentistry.
Scholz, M; Neumann, C; Ropohl, A; Paulsen, F; Burger, P H M
2016-11-01
We investigated mental risk factors such as symptoms of burnout and sense of coherence in students of dental medicine at the University of Erlangen in the context of a learning type survey. Our aim was to assess the presence of analogies to the results we had previously determined for students of human medicine. We surveyed a total of 163 dentistry students during the first 2.5 years, up to the first state examination. To ensure comparability, the data were collected from all students at the beginning of each semester. Standardized, validated questionnaires on burnout symptoms (Burnout Screening Scales; BOSS-II), sense of coherence (Sense of Coherence Scale; SOC-L9) and learning type according to Kolb were used in the survey. A total of about 90% of the students provided responses to the voluntary survey. The extent and manifest dynamics of the stress levels observed can be characterized as dramatic. Having started out at cognitive and emotional stress levels typical of the normal populace, a massive deterioration of these parameters was observed in the students by the time they were facing their first state examination in the 5th semester. At the same time, their sense of coherence also suffered a pronounced drop-off. No significant learning type-correlated differences were determined in a mean comparison of the measured parameters. Based on the results obtained, we see a need for preventive course offerings to students of dentistry to reduce the prevalence of mental disorders in this group. We discern additional potential for enhancement of mental health with courses more specifically geared to the different learning styles among the students. Copyright © 2016 Elsevier GmbH. All rights reserved.
Parental stress and dyadic consensus in early parenthood among mothers and fathers in Sweden.
Widarsson, Margareta; Engström, Gabriella; Berglund, Anders; Tydén, Tanja; Lundberg, Pranee
2014-12-01
Parental stress can negatively affect the parent-child relationship and reduce the well-being of the whole family. Family disagreement is associated with parental divorce and with psychological problems in children. The aim was to examine perceived parental stress and draw comparisons among mothers and among fathers, in relation to educational level, parental experience, existence of a parental role model and sense of coherence. The aim was also to examine perceived dyadic consensus and its association with perceived parental stress within couples. Questionnaires were completed by 320 mothers and 315 fathers at 1 week and 18 months post-partum. The Swedish Parenthood Stress Questionnaire, the Sense of Coherence Scale and the Dyadic Consensus Subscale were used. Low education, lack of a role model and poor sense of coherence promoted stress in mothers in the subareas social isolation and spouse relationship problems, while lack of a role model and poor sense of coherence promoted stress in fathers in the subarea social isolation. Furthermore, parental experiences promoted stress among mothers in the subarea incompetence while this was not seen among fathers. Mothers perceived a higher level of dyadic consensus than fathers in the items recreational activities, friends, aims and life goals, time spent together, and decisions regarding career and personal development. Household tasks was the only item where fathers perceived a higher level of dyadic consensus than mothers. Additionally, there were associations between perceived parental stress and dyadic consensus in several items and in the total score. To promote parents' health and family stability, health professionals should consider factors affecting stress and stress reactions, and take gender roles into account. © 2013 Nordic College of Caring Science.
Drageset, Jorunn; Eide, Geir Egil; Corbett, Anne
2017-01-01
Background Limited information exists regarding the natural development of health-related quality of life (HRQOL) and its determinants among mentally intact nursing home (NH) residents. We aimed to examine HRQOL over time during a 6-year period among residents of NHs, who are not cognitively impaired, and to examine whether sense of coherence and a diagnosis of cancer influence HRQOL. Methods The study was prospective and included baseline assessment and 6-year follow-up. After baseline assessment of 227 cognitively intact NH residents (Clinical Dementia Rating score ≤ 0.5), we interviewed 52 living respondents a second time at the 5-year follow-up and 18 respondents a third time at the 6-year follow-up. We recorded data from the interviews using the Short Form-36 (SF-36) Health Survey and the Sense of Coherence Scale. To study different developments over time for residents without and with cancer, we tested interactions between cancer and time. Results The subscores of physical functioning and role limitation–physical domains declined with time (P < 0.001 and P = 0.02, respectively). Having a diagnosis of cancer at baseline was negatively correlated with general health (P = 0.002). Sense of coherence at baseline was positively correlated with all the SF-36 subscores from baseline to follow-up (P < 0.001). Conclusion The study indicates that the HRQOL changed over time during the 6 years of follow-up, and the sense of coherence appeared to be an important component of the HRQOL. Finally, our results showed that having a diagnosis of cancer was associated with decline in the general health subdimension. PMID:28490913
Limits to the precision of gradient sensing with spatial communication and temporal integration.
Mugler, Andrew; Levchenko, Andre; Nemenman, Ilya
2016-02-09
Gradient sensing requires at least two measurements at different points in space. These measurements must then be communicated to a common location to be compared, which is unavoidably noisy. Although much is known about the limits of measurement precision by cells, the limits placed by the communication are not understood. Motivated by recent experiments, we derive the fundamental limits to the precision of gradient sensing in a multicellular system, accounting for communication and temporal integration. The gradient is estimated by comparing a "local" and a "global" molecular reporter of the external concentration, where the global reporter is exchanged between neighboring cells. Using the fluctuation-dissipation framework, we find, in contrast to the case when communication is ignored, that precision saturates with the number of cells independently of the measurement time duration, because communication establishes a maximum length scale over which sensory information can be reliably conveyed. Surprisingly, we also find that precision is improved if the local reporter is exchanged between cells as well, albeit more slowly than the global reporter. The reason is that whereas exchange of the local reporter weakens the comparison, it decreases the measurement noise. We term such a model "regional excitation-global inhibition." Our results demonstrate that fundamental sensing limits are necessarily sharpened when the need to communicate information is taken into account.
NASA Technical Reports Server (NTRS)
Poff, K. L.
1991-01-01
Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.
Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor
NASA Astrophysics Data System (ADS)
Schmitt, Simon; Gefen, Tuvia; Stürner, Felix M.; Unden, Thomas; Wolff, Gerhard; Müller, Christoph; Scheuer, Jochen; Naydenov, Boris; Markham, Matthew; Pezzagna, Sebastien; Meijer, Jan; Schwarz, Ilai; Plenio, Martin; Retzker, Alex; McGuinness, Liam P.; Jelezko, Fedor
2017-05-01
Precise timekeeping is critical to metrology, forming the basis by which standards of time, length, and fundamental constants are determined. Stable clocks are particularly valuable in spectroscopy because they define the ultimate frequency precision that can be reached. In quantum metrology, the qubit coherence time defines the clock stability, from which the spectral linewidth and frequency precision are determined. We demonstrate a quantum sensing protocol in which the spectral precision goes beyond the sensor coherence time and is limited by the stability of a classical clock. Using this technique, we observed a precision in frequency estimation scaling in time T as T-3/2 for classical oscillating fields. The narrow linewidth magnetometer based on single spins in diamond is used to sense nanoscale magnetic fields with an intrinsic frequency resolution of 607 microhertz, which is eight orders of magnitude narrower than the qubit coherence time.
Optical to optical interface device
NASA Technical Reports Server (NTRS)
Oliver, D. S.; Vohl, P.; Nisenson, P.
1972-01-01
The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.
Binder, Heinz P.; Mesenholl-Strehler, Elke; Paß, Paul; Endler, P. Christian
2006-01-01
The sense of coherence (according Aaron Antonovsky, 1923—1994, when a persons sense that his/her own life and the world are sufficiently comprehensible, manageable, and meaningful) of Austrian psychotherapists was assessed and compared with a standard sample, as well as with the sense of coherence (SOC) of members of other professions. In addition, the question as to whether psychotherapists who had completed more extensive individual training therapy/self-awareness sessions had a higher SOC than do those with fewer, was addressed. Forty psychotherapists who worked in private practices and various psychosocial health care institutions in Styria, Austria took part in the study. The investigation was conducted in the form of a questionnaire assessment. The evaluation showed that the overall SOC value of the professional group in question was significantly higher than that of the standard sample (162.3 vs. 145.7), as well as other samples (physicians: SOC = 153.8; teachers: SOC = 156.1; physiotherapists SOC = 158.1). Concerning whether psychotherapists who had completed more individual training therapy/self-awareness sessions had higher SOC values than did those with fewer, we found no difference in regard to the overall SOC score or SOC scores for individual components. The SOC of psychotherapists did not seem to depend on the number of additional training therapy/self-awareness sessions. PMID:17370015
Remote wind sensing with a CW diode laser lidar beyond the coherence regime.
Hu, Qi; Rodrigo, Peter John; Pedersen, Christian
2014-08-15
We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars at a sampling rate of 2 Hz. Based on our experimental results, we describe a practical guideline for designing a wind lidar operating beyond the coherence regime.
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.
1999-01-01
The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general/regional circulation models; obtain similar datasets to improve understanding and predictive capabilities for similarly-scaled processes and features; and simulate and validate the performance of prospective satellite Doppler lidars for global tropospheric wind measurement.
Cell-to-cell variation sets a tissue-rheology–dependent bound on collective gradient sensing
Camley, Brian A.; Rappel, Wouter-Jan
2017-01-01
When a single cell senses a chemical gradient and chemotaxes, stochastic receptor–ligand binding can be a fundamental limit to the cell’s accuracy. For clusters of cells responding to gradients, however, there is a critical difference: Even genetically identical cells have differing responses to chemical signals. With theory and simulation, we show collective chemotaxis is limited by cell-to-cell variation in signaling. We find that when different cells cooperate, the resulting bias can be much larger than the effects of ligand–receptor binding. Specifically, when a strongly responding cell is at one end of a cell cluster, cluster motion is biased toward that cell. These errors are mitigated if clusters average measurements over times long enough for cells to rearrange. In consequence, fluid clusters are better able to sense gradients: We derive a link between cluster accuracy, cell-to-cell variation, and the cluster rheology. Because of this connection, increasing the noisiness of individual cell motion can actually increase the collective accuracy of a cluster by improving fluidity. PMID:29114053
Neural representations of the sense of self
Klemm, William R.
2011-01-01
The brain constructs representations of what is sensed and thought about in the form of nerve impulses that propagate in circuits and network assemblies (Circuit Impulse Patterns, CIPs). CIP representations of which humans are consciously aware occur in the context of a sense of self. Thus, research on mechanisms of consciousness might benefit from a focus on how a conscious sense of self is represented in brain. Like all senses, the sense of self must be contained in patterns of nerve impulses. Unlike the traditional senses that are registered by impulse flow in relatively simple, pauci-synaptic projection pathways, the sense of self is a system- level phenomenon that may be generated by impulse patterns in widely distributed complex and interacting circuits. The problem for researchers then is to identify the CIPs that are unique to conscious experience. Also likely to be of great relevance to constructing the representation of self are the coherence shifts in activity timing relations among the circuits. Consider that an embodied sense of self is generated and contained as unique combinatorial temporal patterns across multiple neurons in each circuit that contributes to constructing the sense of self. As with other kinds of CIPs, those representing the sense of self can be learned from experience, stored in memory, modified by subsequent experiences, and expressed in the form of decisions, choices, and commands. These CIPs are proposed here to be the actual physical basis for conscious thought and the sense of self. When active in wakefulness or dream states, the CIP representations of self act as an agent of the brain, metaphorically as an avatar. Because the selfhood CIP patterns may only have to represent the self and not directly represent the inner and outer worlds of embodied brain, the self representation should have more degrees of freedom than subconscious mind and may therefore have some capacity for a free-will mind of its own. S everal lines of evidence for this theory are reviewed. Suggested new research includes identifying distinct combinatorially coded impulse patterns and their temporal coherence shifts in defined circuitry, such as neocortical microcolumns. This task might be facilitated by identifying the micro-topography of field-potential oscillatory coherences among various regions and between different frequencies associated with specific conscious mentation. Other approaches can include identifying the changes in discrete conscious operations produced by focal trans-cranial magnetic stimulation. PMID:21826192
Can partial coherence interferometry be used to determine retinal shape?
Atchison, David A; Charman, W Neil
2011-05-01
To determine likely errors in estimating retinal shape using partial coherence interferometric instruments when no allowance is made for optical distortion. Errors were estimated using Gullstrand no. 1 schematic eye and variants which included a 10 diopter (D) axial myopic eye, an emmetropic eye with a gradient-index lens, and a 10.9 D accommodating eye with a gradient-index lens. Performance was simulated for two commercial instruments, the IOLMaster (Carl Zeiss Meditec) and the Lenstar LS 900 (Haag-Streit AG). The incident beam was directed toward either the center of curvature of the anterior cornea (corneal-direction method) or the center of the entrance pupil (pupil-direction method). Simple trigonometry was used with the corneal intercept and the incident beam angle to estimate retinal contour. Conics were fitted to the estimated contours. The pupil-direction method gave estimates of retinal contour that were much too flat. The cornea-direction method gave similar results for IOLMaster and Lenstar approaches. The steepness of the retinal contour was slightly overestimated, the exact effects varying with the refractive error, gradient index, and accommodation. These theoretical results suggest that, for field angles ≤30°, partial coherence interferometric instruments are of use in estimating retinal shape by the corneal-direction method with the assumptions of a regular retinal shape and no optical distortion. It may be possible to improve on these estimates out to larger field angles by using optical modeling to correct for distortion.
Nonlinear Sensing With Collective States of Ultracold Atoms in Optical Lattices
2015-04-02
20) E. Tiesinga, “Particle-hole Pair Coherence in Mott insulator quench dynamics” at the June 2014, Division of atomic, molecular, and optical...Jian, Philip R. Johnson, Eite Tiesinga. Particle-Hole Pair Coherence in Mott Insulator Quench Dynamics, P H Y S I C A L R E V I EW L E T T E R S (01...lattices. We focused on techniques that make use of the coherent superposition states in atom number. These state are not unlike the photon number
DAWN Coherent Wind Profiling Lidar Flights on NASA's DC-8 During GRIP
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Beyon, Jeffrey Y.; Creary, Garfield A.; Koch, Grady J.; Petros, Mulugeta; Petzar, Paul J.; Singh, Upendra N.; Trieu, Bo C.; Yu, Jirong
2011-01-01
Almost from their invention, lasers have been used to measure the velocity of wind and objects; over distances of cm to 10s of km. Long distance (remote) sensing of wind has been accomplished with continuous-wave (CW), focused pulsed, and collimated pulsed lasers; with direct and coherent (heterodyne) optical detection; and with a multitude of laser wavelengths. Airborne measurement of wind with pulsed, coherent-detection lidar was first performed in 1971 with a CW CO2 laser1, in 1972 with a pulsed CO2 laser2, in 1993 with a pulsed 2-micron laser3, and in 1999 with a pulsed CO2 laser and nadir-centered conical scanning4. Of course there were many other firsts and many other groups doing lidar wind remote sensing with coherent and direct detection. A very large FOM coherent wind lidar has been built by LaRC and flown on a DC-8. However a burn on the telescope secondary mirror prevented the full demonstration of high FOM. Both the GRIP science product and the technology and technique demonstration from aircraft are important to NASA. The technology and technique demonstrations contribute to our readiness for the 3D Winds space mission. The data analysis is beginning and we hope to present results at the conference.
Zauszniewski, Jaclene A; Bekhet, Abir K; Suresky, M Jane
2009-12-01
This study examined the effects of risk and protective factors on resilience in 60 women family members of adults with serious mental illness. Both the risk factors constituting caregiver burden (strain, stigma, client dependence, and family disruption) and protective factors, including eight positive cognitions were found to predict two indicators of resilience: resourcefulness and sense of coherence. The effects of caregiver burden on resourcefulness and sense of coherence were mediated by positive cognitions, lending support to resilience theory and suggesting the need to develop interventions to encourage positive thinking among women caregivers of adults with mental illness.
Postolică, Roxana; Enea, Violeta; Dafinoiu, Ion; Petrov, Iuliana; Azoicăi, Doina
2018-02-02
The aim of this cross-sectional study was to examine the association of supernatural beliefs and sense of coherence with death anxiety and death depression in a Romanian sample of cancer patients. We found support for the terror management theory worldview defence hypothesis postulating the presence of a curvilinear relation between death anxiety and supernatural beliefs among cancer patients. Results conformed to an inverted U-shape quadratic regression, indicating that cancer patients who scored moderately on supernatural beliefs were afraid of death the most, while death anxiety was lowest for the extreme atheists and extreme believers in supernatural entities.
Remote Sensing of Multi-Level Wind Fields with High-Energy Airborne Scanning Coherent Doppler Lidar
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Olivier, Lisa D.; Banta, Robert M.; Hardesty, R. Michael; Howell, James N.; Cutten, Dean R.; Johnson, Steven C.; Menzies, Robert T.; Tratt, David M.
1997-01-01
The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the troposphere and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.
Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.
Rothermel, J; Olivier, L; Banta, R; Hardesty, R M; Howell, J; Cutten, D; Johnson, S; Menzies, R; Tratt, D M
1998-01-19
The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.
Unhealthy food in relation to posttraumatic stress symptoms among adolescents.
Vilija, Malinauskiene; Romualdas, Malinauskas
2014-03-01
The linkage between mood states and unhealthy food consumption has been under investigation in the recent years. This study aimed to evaluate the associations between posttraumatic stress (PTS) symptoms after lifetime traumatic experiences and daily unhealthy food consumption among adolescents, taking into account the possible effects of physical inactivity, smoking, and a sense of coherence. A self-administered questionnaire measured symptoms of PTS, lifetime traumatic experiences, food frequency scale, sense of coherence scale in a representative sample of eighth grade pupils of the Kaunas, Lithuania, secondary schools (N=1747; 49.3% girls and 50.7% boys). In the logistic regression models, all lifetime traumatic events were associated with PTS symptoms, as well as were unhealthy foods, (including light alcoholic drinks, spirits, soft and energy drinks, flavored milk, coffee, fast food, chips and salty snacks, frozen processed foods; excluding sweet snacks, biscuits and pastries) and sense of coherence weakened the strength of the associations. However, physical inactivity and smoking showed no mediating effect for the majority of unhealthy foods. In conclusion, we found that intervention and preventive programs on PTS symptoms may be beneficial while dealing with behavioral problems (unhealthy diet, smoking, alcohol, physical inactivity) among adolescents. Copyright © 2013 Elsevier Ltd. All rights reserved.
Morawa, Eva; Erim, Yesim
2015-06-01
Immigrants are faced with several impediments in the host country that may affect their quality of life (QoL), but little is known about the impact of these stressors as well as about the protective role of sense of coherence (SoC) in the context of Polish immigration to Germany. Health Related QoL (Short Form Health Survey SF-36) and SoC (Sense of Coherence Scale SOC-29) were assessed in a total sample consisting of 511 participants aged between 18 and 84 years (260 Polish immigrants in Germany and 251 indigenous Poles). Polish immigrants reported a significantly lower mental and physical health-related QoL than the German norm population, but they were comparable to native Poles. This result remained the same when the model was adjusted for age but physical health status was better for immigrants compared with indigenous Poles. Both groups scored significantly lower for SoC than Germans, but did not differ from each other. The main differences concerning the examined variables were with respect to the German norm population and are putatively shaped by culture. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Smith, Peter M; Breslin, F Curtis; Beaton, Dorcas E
2003-09-01
Much debate exists about the stability of the sense of coherence measure. This study examined changes in sense of coherence (SOC), and the variables associated with these changes, over a 4-year period, in a representative sample of the Canadian labour force (n=6,790). Two methods were used to assess change in SOC: (1) Change outside of that which could be considered as indistinguishable from measurement error, and (2) Change of more than 10%, which was originally proposed by Antonovksy, the scales designer. Over the study period, 35.4% of the population reported changes in SOC outside the range we consider possible due to measurement error, with 58% reporting change greater than 10%. Unskilled occupations were associated with declines in SOC, with household income demonstrating a curvilinear relationship with decline in SOC in the female population only. None of the variables used predicted increases in SOC. Given the degree of change in SOC, and the representativeness of the study sample, we suggest that SOC has a large state component. Given this lack of stability, we recommend caution if using the SOC to represent a stable global orientation within a causal context.
Quality of life among Iranian refugees resettled in Sweden.
Ghazinour, Mehdi; Richter, Jörg; Eisemann, Martin
2004-04-01
The relationships between quality of life, psychopathological manifestations and coping related variables (coping resources, social support, sense of coherence) were examined among individuals who have perceived several severe traumata. One hundred Iranian refugees resettled in Sweden have been investigated by the Symptom Checklist (SCL-90-R), the Beck Depression Inventory (BDI), the Coping Resources Inventory (CRI), and the Interview Schedule for Social Interaction (ISSI), the Sense of Coherence Scale (SOC), and the WHOQoL-100 questionnaire in a cross-sectional study. Individuals, traumatized by combat experiences as a soldier during the war, with low BDI scores showed on average the significantly highest overall quality of life, the best physical health, the highest scores according to the sense of coherence most pronounced for "Meaningfulness," and the best availability of social integration compared to participants who did not had these experiences in combats and those with the experience but scored high in the BDI. Quality of life, coping resources, and social support were found closely related to psychopathological manifestations. Motivational orientations (highly developed Meaningfulness-SOC) and various coping competencies probably enable some traumatized individuals to resist against several traumata and to live in a good quality of life without psychopathological disturbances.
ERIC Educational Resources Information Center
Turley, Renee; Trotochaud, Alan; Campbell, Todd
2016-01-01
Sense-making has been described as working on and with ideas--both students' ideas and authoritative ideas in texts--to build coherent storylines, models, and/or explanations. This article describes the process for developing storyline units to support students' making sense of and explaining a rocket launch. The storyline approach, which aligns…
NASA Technical Reports Server (NTRS)
Plotkin, Henry H.; Sokoloski, Martin M.; Rubin, Bernard
1991-01-01
Terrestrial and atmospheric missions of NASA's program to develop remote sensing instrumentation are described along with several of the instruments and related mission. Systems such as lidar and radar, passive coherent sensors, passive noncoherent sensors, as well as cryogenic cooler technology are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChant, Lawrence Justin; Smith, Justin A.
Here we discuss an improved Corcos (Corcos (1963), (1963)) style cross spectral density utilizing zero pressure gradient, supersonic (Beresh et. al. (2013)) data sets. Using the connection between narrow band measurements with broadband cross-spectral density, i.e. Γ(ξ ,η ,ω )= Φ (ω) A(ωη/U )exp (-i ωξ/U) we focus on estimating coherence expressions of the form: A (ξω nb/U) and B (ηω nb/ U) where ω nb denotes the narrow band frequency, i.e. the band center frequency value and ξ and η are sensors spacing in streamwise/longitudinal and cross-stream/lateral directions, respectively. A methodology to estimate the parameters which retains the Corcosmore » exponential functional form, A(ξω/U)=exp(-k lat ηω/U) but identifies new parameters (constants) consistent with the Beresh et. al. data sets is discussed. The Corcos result requires that the data be properly explained by self-similar variable: ξω/U and ηω/U. The longitudinal (streamwise) variable ξω/U tends to provide a better data collapse, while, consistent with the literature the lateral ηω/U is only successful for higher band center frequencies. Assuming the similarity variables provide a useful description of the data, the longitudinal coherence decay constant result using the Beresh et. al. data sets yields a value for the longitudinal constant k long≈0.36-0.28 that is approximately 3x larger than the “traditional” (low speed, large Reynolds number and zero pressure gradient) of k long≈0.11. We suggest that the most likely reason that the Beresh et. al. data sets incur increased longitudinal decay which results in reduced coherence lengths is due to wall shear induced compression causing an adverse pressure gradient. Focusing on the higher band center frequency measurements where the frequency dependent similarity variables are applicable, the lateral or transverse coherence decay constant k lat≈0.7 is consistent with the “traditional” (low speed, large Reynolds number and zero pressure gradient). It should be noted, that the longitudinal/streamwise coherence decay deviates from the value observed by other researchers while the lateral/ cross-stream value is consistent has been observed by other researchers. We believe that while the measurements used to obtain new decay constant estimates are from internal wind tunnel tests, they likely provide a useful estimate expected reentry flow behavior and are therefore recommended for use. These data could also be useful in determining the uncertainty of correlation length for a uncertainty quantification (UQ) analysis.« less
A new maximum-likelihood change estimator for two-pass SAR coherent change detection
Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.; ...
2016-01-11
In previous research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less
NASA Astrophysics Data System (ADS)
Azih, Chukwudi; Yaras, Metin I.
2018-01-01
The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism generates streamwise vorticity of the opposing sense of rotation in the close vicinity to the respective legs of the hairpin vortices causing a net reduction in thermal mixing. Finally, in the case of downstream-oriented gravitational acceleration, baroclinic vorticity generation as per spanwise density gradients causes additional wall-normal thermal mixing by promoting larger-scale ejection and sweep motions.
He, Tengyu; Lin, Chucheng; Shi, Liangjing; Wang, Ranran; Sun, Jing
2018-03-21
Recent years have witnessed a breathtaking development of wearable strain sensors. Coupling high sensitivity and stretchability in a strain sensor is greatly desired by emerging wearable applications but remains a big challenge. To tackle this issue, a through-layer buckle wavelength-gradient design is proposed and a facile and universal fabrication strategy is demonstrated to introduce such a gradient into the sensing film with multilayered sensing units. Following this strategy, strain sensors are fabricated using graphene woven fabrics (GWFs) as sensing units, which exhibit highly tunable electromechanical performances. Specifically, the sensor with 10-layer GWFs has a gauge factor (GF) of 2996 at a maximum strain of 242.74% and an average GF of 327. It also exhibits an extremely low minimum detection limit of 0.02% strain, a fast signal response of less than 90 ms, and a high cyclic durability through more than 10 000 cycling test. Such excellent performances qualify it in accurately monitoring full-range human activities, ranging from subtle stimuli (e.g., pulse, respiration, and voice recognition) to vigorous motions (finger bending, walking, jogging, and jumping). The combination of experimental observations and modeling study shows that the predesigned through-layer buckle wavelength gradient leads to a layer-by-layer crack propagation process, which accounts for the underlying working mechanism. Modeling study shows a great potential for further improvement of sensing performances by adjusting fabrication parameters such as layers of sensing units ( n) and step pre-strain (ε sp ). For one thing, when ε sp is fixed, the maximum sensing strain could be adjusted from >240% ( n = 10) to >450% ( n = 15) and >1200% ( n = 20). For the other, when n is fixed, the maximum sensing strain could be adjusted from >240% (ε sp = 13.2%) to >400% (ε sp = 18%) and >800% (ε sp = 25%).
Limits to the precision of gradient sensing with spatial communication and temporal integration
Mugler, Andrew; Levchenko, Andre; Nemenman, Ilya
2016-01-01
Gradient sensing requires at least two measurements at different points in space. These measurements must then be communicated to a common location to be compared, which is unavoidably noisy. Although much is known about the limits of measurement precision by cells, the limits placed by the communication are not understood. Motivated by recent experiments, we derive the fundamental limits to the precision of gradient sensing in a multicellular system, accounting for communication and temporal integration. The gradient is estimated by comparing a “local” and a “global” molecular reporter of the external concentration, where the global reporter is exchanged between neighboring cells. Using the fluctuation–dissipation framework, we find, in contrast to the case when communication is ignored, that precision saturates with the number of cells independently of the measurement time duration, because communication establishes a maximum length scale over which sensory information can be reliably conveyed. Surprisingly, we also find that precision is improved if the local reporter is exchanged between cells as well, albeit more slowly than the global reporter. The reason is that whereas exchange of the local reporter weakens the comparison, it decreases the measurement noise. We term such a model “regional excitation–global inhibition.” Our results demonstrate that fundamental sensing limits are necessarily sharpened when the need to communicate information is taken into account. PMID:26792517
Coherence area profiling in multi-spatial-mode squeezed states
Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.
2015-09-12
The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show thatmore » the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.
In previous research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less
Swaney, Kristen F.; Huang, Chuan-Hsiang; Devreotes, Peter N.
2015-01-01
Chemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton. Directional sensing is mediated by a system that detects temporal and spatial stimuli and biases motility toward the gradient. Polarity gives cells morphologically and functionally distinct leading and lagging edges by relocating proteins or their activities selectively to the poles. By exploiting the genetic advantages of Dictyostelium, investigators are working out the complex network of interactions between the proteins that have been implicated in the chemotactic processes of motility, directional sensing, and polarity. PMID:20192768
Effects of off-resonance spins on the performance of the modulated gradient spin echo sequence.
Serša, Igor; Bajd, Franci; Mohorič, Aleš
2016-09-01
Translational molecular dynamics in various materials can also be studied by diffusion spectra. These can be measured by a constant gradient variant of the modulated gradient spin echo (MGSE) sequence which is composed of a CPMG RF pulse train superimposed to a constant magnetic field gradient. The application of the RF train makes the effective gradient oscillating thus enabling measurements of diffusion spectra in a wide range of frequencies. However, seemingly straightforward implementation of the MGSE sequence proved to be complicated and can give overestimated results for diffusion if not interpreted correctly. In this study, unrestricted diffusion in water and other characteristic materials was analyzed by the MGSE sequence in the frequency range 50-3000Hz using a 6T/m diffusion probe. First, it was shown that the MGSE echo train acquired from the entire sample decays faster than the train acquired only from a narrow band at zero frequency of the sample. Then, it was shown that the decay rate is dependent on the band's off-resonance characterized by the ratio Δω0/ω1 and that with higher off-resonances the decay is faster. The faster decay therefore corresponds to a higher diffusion coefficient if the diffusion is calculated using standard Stejskal-Tanner formula. The result can be explained by complex coherence pathways contributing to the MGSE echo signals when |Δω0|/ω1>0. In a magnetic field gradient, all the pathways are more diffusion attenuated than the direct coherence pathway and therefore decay faster, which leads to an overestimation of the diffusion coefficient. A solution to this problem was found in an efficient off-resonance signal reduction by using only zero frequency filtered MGSE echo train signals. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Pretto, Lucas R., E-mail: lucas.de.pretto@usp.br; Nogueira, Gesse E. C.; Freitas, Anderson Z.
2016-04-28
Functional modalities of Optical Coherence Tomography (OCT) based on speckle analysis are emerging in the literature. We propose a simple approach to the autocorrelation of OCT signal to enable volumetric flow rate differentiation, based on decorrelation time. Our results show that this technique could distinguish flows separated by 3 μl/min, limited by the acquisition speed of the system. We further perform a B-scan of gradient flow inside a microchannel, enabling the visualization of the drag effect on the walls.
Magnon dark modes and gradient memory
Zhang, Xufeng; Zou, Chang-Ling; Zhu, Na; Marquardt, Florian; Jiang, Liang; Tang, Hong X.
2015-01-01
Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories. PMID:26568130
Magnon dark modes and gradient memory.
Zhang, Xufeng; Zou, Chang-Ling; Zhu, Na; Marquardt, Florian; Jiang, Liang; Tang, Hong X
2015-11-16
Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories.
Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material
Meemon, Panomsak; Yao, Jianing; Lee, Kye-Sung; Thompson, Kevin P.; Ponting, Michael; Baer, Eric; Rolland, Jannick P.
2013-01-01
Gradient Refractive INdex (GRIN) optical components have historically fallen short of theoretical expectations. A recent breakthrough is the manufacturing of nanolayered spherical GRIN (S-GRIN) polymer optical elements, where the construction method yields refractive index gradients that exceed 0.08. Here we report on the application of optical coherence tomography (OCT), including micron-class axial and lateral resolution advances, as effective, innovative methods for performing nondestructive diagnostic metrology on S-GRIN. We show that OCT can be used to visualize and quantify characteristics of the material throughout the manufacturing process. Specifically, internal film structure may be revealed and data are processed to extract sub-surface profiles of each internal film of the material to quantify 3D film thickness and homogeneity. The technique provides direct feedback into the fabrication process directed at optimizing the quality of the nanolayered S-GRIN polymer optical components.
Sperm navigation along helical paths in 3D chemoattractant landscapes
Jikeli, Jan F.; Alvarez, Luis; Friedrich, Benjamin M.; Wilson, Laurence G.; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U. Benjamin
2015-01-01
Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an ‘off' Ca2+ response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes. PMID:26278469
Sperm navigation along helical paths in 3D chemoattractant landscapes.
Jikeli, Jan F; Alvarez, Luis; Friedrich, Benjamin M; Wilson, Laurence G; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U Benjamin
2015-08-17
Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an 'off' Ca(2+) response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes.
Nonuniform distribution of phase noise in distributed acoustic sensing based on phase-sensitive OTDR
NASA Astrophysics Data System (ADS)
Yu, Zhijie; Lu, Yang; Meng, Zhou
2017-10-01
A phase-sensitive optical time-domain reflectometry (∅-OTDR) implements distributed acoustic sensing (DAS) due to its ability for high sensitivity vibration measurement. Phase information of acoustic vibration events can be acquired by interrogation of the vibration-induced phase change between coherent Rayleigh scattering light from two points of the sensing fiber. And DAS can be realized when applying phase generated carrier (PGC) algorithm to the whole sensing fiber while the sensing fiber is transformed into a series of virtual sensing channels. Minimum detectable vibration of a ∅-OTDR is limited by phase noise level. In this paper, nonuniform distribution of phase noise of virtual sensing channels in a ∅-OTDR is investigated theoretically and experimentally. Correspondence between the intensity of Rayleigh scattering light and interference fading as well as polarization fading is analyzed considering inner interference of coherent Rayleigh light scattered from a multitude of scatters within pulse duration, and intensity noise related to the intensity of Rayleigh scattering light can be converted to phase noise while measuring vibration-induced phase change. Experiments are performed and the results confirm the predictions of the theoretical analysis. This study is essential for acquiring insight into nonuniformity of phase noise in DAS based on a ∅-OTDR, and would put forward some feasible methods to eliminate the effect of interference fading and polarization fading and optimize the minimum detectable vibration of a ∅-OTDR.
Modeling of wave-coherent pressures in the turbulent boundary layer above water waves
NASA Technical Reports Server (NTRS)
Papadimitrakis, Yiannis ALEX.
1988-01-01
The behavior of air pressure fluctuations induced by progressive water waves generated mechanically in a laboratory tank was simulated by solving a modified Orr-Sommerfeld equation in a transformed Eulerian wave-following frame of reference. Solution is obtained by modeling the mean and wave-coherent turbulent Reynolds stresses, the behavior of which in the turbulent boundary layer above the waves was simulated using a turbulent kinetic energy-dissipation model, properly modified to account for free-surface proximity and favorable pressure gradient effects. The distribution of both the wave-coherent turbulent Reynolds stress and pressure amplitudes and their corresponding phase lags was found to agree reasonably well with available laboratory data.
Divin, Chris; Volker, Deborah L; Harrison, Tracie
2013-01-01
The aim of this qualitative descriptive study, guided by Antonovsky's salutogenic model, was to explore the manifestations of strength within the interviews of Spanish-speaking Mexican-American women aging with mobility impairments who also experienced intimate partner violence (IPV). IPV events gleaned from 26 audiotaped interviews from 7 Spanish-speaking Mexican-American women, who ranged in age from 55 to 75 years, constituted the sample for this secondary analysis. Five categories were identified: abuse from early on that shaped sense of coherence; violencia tan cruel--threatened sense of coherence; "salutogenic" choices within the context of IPV; a quest for peace; and strength amid struggle.
Divin, Chris; Volker, Deborah L.; Harrison, Tracie
2013-01-01
The aim of this qualitative descriptive study, guided by Antonovosky’s Salutogenic model, was to explore the manifestations of strength within the interviews of Spanish-speaking Mexican-American women aging with mobility impairments who also experienced intimate partner violence (IPV). IPV events gleaned from 26 audiotaped interviews from 7 Spanish-speaking Mexican-American women, who ranged in age from 55–75, constituted the sample for this secondary analysis. Five categories were identified: Abuse from early on that shaped sense of coherence; “Violencia tan cruel”: Threatened sense of coherence; “Salutogenic” choices within the context of IPV; A quest for peace; and Strength amidst struggle. PMID:23907305
Deconvolution from Wavefront Sensing Using Optimal Wavefront Estimators
1996-12-01
Error Results ....... ............................ 86 B.1 Introduction ................................ 86 B.1.1 Effect of Light Level, my...86 B.1.2 Effect of Atmospheric Coherence Diameter, r0 . . 86 B.1.3 Effect of Tilt Removal ................... 86 B.2 Summary... Effect of Light Level, my .................... 89 C.1.2 Effect of Atmospheric Coherence Diameter, r0 . . 89 C.1.3 Effect of Tilt Removal
Kosevich, Yuriy A; Gann, Vladimir V
2013-06-19
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.
A Salutogenic Analysis of Developmental Tasks and Ego Integrity vs. Despair
ERIC Educational Resources Information Center
Wiesmann, Ulrich; Hannich, Hans-Joachim
2011-01-01
This study examines the hypothesis that the outcome of the Eriksonian crisis of integrity vs. despair is dependent on successful coping with four developmental tasks: maintenance of active involvement, reevaluation of life satisfaction, developing a sense of health maintenance, and reevaluation of the sense of coherence (SOC). A selective sample…
NASA Astrophysics Data System (ADS)
Chen, X.; Park, J. J.
2012-12-01
The high uplift of the Tibet area is caused by the continental collision between the Indian plate and the Eurasian plate. The style of deformation along with the collision is still being debated, particularly whether the deformation is vertically coherent or not, i.e., whether the upper mantle deforms coherently with the crust. In this work, we have used quasi-Love (QL) waves to constrain the anisotropy pattern around the Tibet region. The existence of anisotropy gradients has been identified with the observations of QL waves, which is a converted Rayleigh-wave motion that follows the arrival of the Love wave. Further, the locations of the anisotropy gradients have been pinned with the delay time between the Love wave and the QL wave, which is determined from cross-correlation. Our results show that the frequency content of Tibetan QL wave is centered around 10 mHz, indicating the depth range of anisotropy should be in the asthenosphere. Most of the scatterers of QL wave that we can detect lie outside the Tibet Plateau. Their distribution correlates well with the boundary of the Persia-Tibet- Burma orogeny, which has been identified from surface geologic data. This correlation, between surface geology and upper mantle anisotropy inferred from QL observations at the orogenic boundary, suggests that the crust and upper mantle of the orogeny are deforming coherently. Other scatterers that are off the Persia-Tibet-Burma orogenic boundary mostly cluster in two locations, the Tarim Basin, and the Bangong-Nujiang Suture, where there could exist contrasting anisotropy patterns in the upper mantle. The deformation in the Tibet region is complicated, yet our research suggests a vertically coherent deformation style of the upper mantle in Tibet.
Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang
2012-04-23
The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams. © 2012 Optical Society of America
Burger, Pascal H; Scholz, Michael
2014-01-01
Theories on learning styles and types have been integral to discussions on the basics of teaching for nearly 40 years. The learning style typology of Kolb divides learners into four groups (Diverger, Assimilator, Converger and Accomodator), which differ both in terms of their learning behaviour as well as personality and preferences. We studied the sense of coherence and burnout symptoms in medical students of the preclinical semesters (1(st) to 4(th) semester) at the Friedrich-Alexander University of Erlangen within the context of the observed learning styles. A total of 530 students were interviewed in winter semester 2012/13 using standardized psychometric questionnaires. Our students showed a significant correlation between the respective learning styles and expression of a sense of coherence, as well as cognitive and emotional burnout symptoms. The learning styles of the students differed significantly within these same parameters. We also demonstrated that learning styles and types not only influence study performance, but that there are also relationships to sense of coherence and psychological ailments. A more forward-looking integration of the theory of learning types in the medical education curriculum could positively influence both the performance and psychological well-being of the students.
Determinants of quality of life in adults with CHD: an Australian cohort.
Eaton, Sarah L; Wang, QiFeng; Menahem, Samuel
2017-10-01
Following improved survival rates in children with CHD, their quality of life and its determinants have become increasingly important. As part of a multicentre study entitled "Assessment of Patterns of Patient-Reported Outcomes in Adults with Congenital Heart Disease - International Study", this article reviews the relationships among quality of life, anxiety and depression, sense of coherence, and severity of disease in an Australian cohort of adults with CHD. Methods and results Adults with CHD were recruited from a single, community-based cardiology practice. All patients completed a self-reported questionnaire. A total of 135 patients, 71 males and 64 females, were recruited with a mean age of 26 years. The median quality of life in this cohort was 90; one-fifth of the patients experienced symptoms of anxiety. There was a significant negative correlation between quality of life and symptoms of anxiety and depression and a positive correlation between quality of life and sense of coherence. The quality of life of this cohort was generally excellent; however, one-fifth of them experienced symptoms of anxiety. Those with less anxiety and depression symptoms appeared to have a better quality of life, as did those who reported a higher sense of coherence. Interestingly, there was no significant relationship between complexity of CHD and quality of life.
Lerdal, Anners; Andenæs, Randi; Bjørnsborg, Eva; Bonsaksen, Tore; Borge, Lisbet; Christiansen, Bjørg; Eide, Hilde; Hvinden, Kari; Fagermoen, May Solveig
2011-10-01
To explore relationships of socio-demographic variables, health behaviours, environmental characteristics and personal factors, with physical and mental health variables in persons with morbid obesity, and to compare their health-related quality of life (HRQoL) scores with scores from the general population. A cross-sectional correlation study design was used. Data were collected by self-reported questionnaire from adult patients within the first 2 days of commencement of a mandatory educational course. Of 185 course attendees, 142 (76.8%) volunteered to participate in the study. Valid responses on all items were recorded for 128 participants. HRQoL was measured with the Short Form 12v2 from which physical (PCS) and mental component summary (MCS) scores were computed. Other standardized instruments measured regular physical activity, social support, self-esteem, sense of coherence, self-efficacy and coping style. Respondents scored lower on all the HRQoL sub-domains compared with norms. Linear regression analyses showed that personal factors that included self-esteem, self-efficacy, sense of coherence and coping style explained 3.6% of the variance in PCS scores and 41.6% in MCS scores. Personal factors such as self-esteem, sense of coherence and a high approaching coping style are strongly related to mental health in obese persons.
Staneva, Aleksandra; Morawska, Alina; Bogossian, Fiona; Wittkowski, Anja
2016-10-01
Maternal mental health during pregnancy has been identified as a key factor in the future physiological, emotional and social development of both the mother and her baby. Yet little is known about the factors that contribute to increased levels of pregnancy-specific distress. The present study investigated the role of two psychosocial and personality-based constructs, namely women's sense of coherence (SoC) and their mothering orientations, on their pregnancy-specific distress. During their second trimester of pregnancy, 293 Australian and New Zealand women participated in an online study. Hierarchical multiple regression analysis was used to determine the unique contribution of women's SoC (Sense of Coherence Scale, SoC 13) and their antenatal mothering orientation (Antenatal Mothering Orientation Measure-Revised, AMOM-R) to pregnancy-specific distress (Revised Prenatal Distress Questionnaire, NuPDQ). Low SoC was the best determinant of women's pregnancy-specific distress, accounting for over 45% of the variance (β = -0.33, p < 0.001, 95% CI [-0.43, -0.23]). A Regulator mothering orientation was correlated with distress but did not have a unique contribution in the final model. This study further highlights the importance of better understanding women's perceptions of emotional health and their mothering role while taking into consideration their wider social context.
Braun-Lewensohn, Orna; Sagy, Shifra
2014-02-01
Based on the salutogenic theory, the aim of this study was to examine sense of coherence and communal resiliency as related to stress reactions during missile attacks. Data were gathered in August 2011 while missiles were being shot from Gaza to the Negev communities in Israel from approximately 150 participants, aged 15-85. Participants lived in cities and different types of small rural villages. Self reported questionnaires were administered via the internet and included demographic data, coping resource of sense of coherence and community resiliency as coping resources, as well as state anxiety, state anger and psychological distress as stress reaction outcomes. Overall, the participants in our study reported strong personal and communal resources and relatively low levels of stress reactions. Personal and communal resources were linked negatively to the different stress reactions. However, some differences emerged when we compared participants from different types of communities. The most resilient group was composed of people who lived in the rural and communal communities. Differences also emerged on patterns of relationships between the community resource and state anxiety. While among the rural citizens, community resilience was strongly linked to anxiety, no relationships were revealed in the urban citizens group.
Is family sense of coherence a protective factor against the obesogenic environment?
Speirs, Katherine E; Hayes, Jenna T; Musaad, Salma; VanBrackle, Angela; Sigman-Grant, Madeleine
2016-04-01
Despite greater risk for poor nutrition, inactivity, and overweight, some low-income children are able to maintain a healthy weight. We explore if a strong family sense of coherence (FSOC) acts as a protective factor against childhood obesity for low-income preschool children. Families with a strong FSOC view challenges as predictable, understandable, worthy of engaging, and surmountable. Data were collected from 321 low-income mothers and their preschool children in five states between March 2011 and May 2013. FSOC was assessed using the Family Sense of Coherence Scale. A 16-item checklist was used to assess practicing healthy child behaviors (fruit and vegetable consumption and availability, physical activity, and family meals) and limiting unhealthy child behaviors (sweetened beverage and fast food consumption, energy dense snack availability, and screen time). Child body mass index (BMI) z-scores were calculated from measured height and weight. FSOC was significantly associated with practicing healthy child behaviors (β = 0.32, p < .001). We did not find a statistically significant association between FSOC and limiting unhealthy child behaviors or child BMI z-scores in fully adjusted models. Our results suggest the importance of family functioning in predicting health behaviors around food consumption and availability, physical activity, and family meals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Burger, Pascal H.; Scholz, Michael
2014-01-01
Theories on learning styles and types have been integral to discussions on the basics of teaching for nearly 40 years. The learning style typology of Kolb divides learners into four groups (Diverger, Assimilator, Converger and Accomodator), which differ both in terms of their learning behaviour as well as personality and preferences. We studied the sense of coherence and burnout symptoms in medical students of the preclinical semesters (1st to 4th semester) at the Friedrich-Alexander University of Erlangen within the context of the observed learning styles. A total of 530 students were interviewed in winter semester 2012/13 using standardized psychometric questionnaires. Our students showed a significant correlation between the respective learning styles and expression of a sense of coherence, as well as cognitive and emotional burnout symptoms. The learning styles of the students differed significantly within these same parameters. We also demonstrated that learning styles and types not only influence study performance, but that there are also relationships to sense of coherence and psychological ailments. A more forward-looking integration of the theory of learning types in the medical education curriculum could positively influence both the performance and psychological well-being of the students. PMID:25489342
Feigin, Rena; Sapir, Yaffa
2005-03-01
The present study deals with personal and psychological characteristics of addicts coping with abstinence from drugs in various stages of recovery. The study focuses primarily on two personal variables: attribution of responsibility for the problem and its solution, and the sense of coherence. Additional factors that were examined in the study are demographic variables, which include those related to drug addiction. The sample included 128 short-term abstinent patients in the early stages of recovery after detoxification, and 40 long-term abstinent former addicts, who have abstained from the use of drugs for two to eight years. The results indicate a higher level of sense of coherence among the long-term abstinent subjects relating to their inner resources. On the other hand, much similarity was found between the groups in relation to the attribution of responsibility variable. In both groups, the majority reports that they attribute responsibility for the solution of the problem to themselves. The findings underscored the significant link between personality variables and coping with the processes of recovery, while an analysis of demographic and addiction variables did not show a significant distinction between the group of long-term abstinent subjects and the short-term abstinent subjects.
Sense of coherence moderates late effects of early childhood Holocaust exposure.
van der Hal-van Raalte, Elisheva A M; van IJzendoorn, Marinus H; Bakermans-Kranenburg, Marian J
2008-12-01
This study evaluated child Holocaust survivors with an emphasis on potential protective factors facilitating participants' adaptation to post-Holocaust life. We examined Antonovsky's (1979, 1987) salutogenic paradigm, testing the mediating and moderating effect of participants' sense of coherence (SOC) on the association between early childhood deprivation due to Holocaust persecution and posttraumatic stress later in life. The nonclinical sample, composed of 203 child Holocaust survivors born between 1935 and 1944 completed questionnaires on Holocaust survival exposure, inventories on current health, posttraumatic stress, and SOC. The results indicated that SOC moderates the association between traumatic experiences during the war and posttraumatic stress, and SOC acts as a protective factor, buffering the impact of traumatic Holocaust experiences on child survivors in old age. Survivors with a less coherent perspective on the meaning of their life showed greater vulnerability for posttraumatic complaints. The moderating role of the SOC may suggest promising avenues of therapeutic interventions for child Holocaust survivors and other adults with early childhood trauma. (c) 2008 Wiley Periodicals, Inc.
Surface Profile and Stress Field Evaluation using Digital Gradient Sensing Method
Miao, C.; Sundaram, B. M.; Huang, L.; ...
2016-08-09
Shape and surface topography evaluation from measured orthogonal slope/gradient data is of considerable engineering significance since many full-field optical sensors and interferometers readily output accurate data of that kind. This has applications ranging from metrology of optical and electronic elements (lenses, silicon wafers, thin film coatings), surface profile estimation, wave front and shape reconstruction, to name a few. In this context, a new methodology for surface profile and stress field determination based on a recently introduced non-contact, full-field optical method called digital gradient sensing (DGS) capable of measuring small angular deflections of light rays coupled with a robust finite-difference-based least-squaresmore » integration (HFLI) scheme in the Southwell configuration is advanced here. The method is demonstrated by evaluating (a) surface profiles of mechanically warped silicon wafers and (b) stress gradients near growing cracks in planar phase objects.« less
Identity and the Military Profession: An Eriksonian Perspective
1986-04-01
psychosocial development , Erlk Erikson ascribes great importance to achieving a sense of identity. First, he believes that "a firm sense of inner identity marks...nent psychoanalyst, Erik Erikson , as a conceptual Framework for analyzing how an Army officer’s individual and profes- sional identity develops . It...noted psychoanalyst Erik Erikson provide an ideal framework For studying the growth of identity and the problems in developing a coherent sense of self
[Analysis of related factors of slope plant hyperspectral remote sensing].
Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling
2014-09-01
In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.
The evolution of distributed sensing and collective computation in animal populations
Hein, Andrew M; Rosenthal, Sara Brin; Hagstrom, George I; Berdahl, Andrew; Torney, Colin J; Couzin, Iain D
2015-01-01
Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here, we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature. DOI: http://dx.doi.org/10.7554/eLife.10955.001 PMID:26652003
Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery
NASA Technical Reports Server (NTRS)
Pope, P. A.; Emery, W. J.; Radebaugh, M.
1992-01-01
High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared brightness temperature imagery yielded a velocity field which did agree with the subjective analysis of the motion and that derived from the visible gradient imagery. Differences between the visible and infrared derived velocities were 14.9 cm/s in speed and 56.7 degrees in direction. Both of these velocity fields also agreed well with the motion expected from considerations of the ocean bottom topography and wind and tidal forcing in the study area during the 2.175 hour time interval.
ERIC Educational Resources Information Center
Erickson, Jane E.; Keil, Frank C.; Lockhart, Kristi L.
2010-01-01
To what extent do children understand that biological processes fall into 1 coherent domain unified by distinct causal principles? In Experiments 1 and 2 (N = 125) kindergartners are given triads of biological and psychological processes and asked to identify which 2 members of the triad belong together. Results show that 5-year-olds correctly…
Mazzucato, E; Smith, D R; Bell, R E; Kaye, S M; Hosea, J C; LeBlanc, B P; Wilson, J R; Ryan, P M; Domier, C W; Luhmann, N C; Yuh, H; Lee, W; Park, H
2008-08-15
Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k perpendicular rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1982-01-01
Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.
NASA Astrophysics Data System (ADS)
Chandrasekharan, Anita; Ramsankaran, Raaj
2017-04-01
The current study aims at modelling glacier mass balances over Chhota Shigiri glacier (32.28o N; 77.58° E) in Himachal Pradesh, India using the Equilibrium Line Altitude (ELA) gradient approach proposed by Rabatel et al. (2005). The model requires yearly ELA, average mass balance and mass balance gradient to estimate annual mass balance of a glacier which can be obtained either through field measurements or remote sensing observations. However, in view of the general scenario of lack of field data for Himalayan glaciers, in this study the model has been applied only using the inputs derived through multi-temporal satellite remote sensing observations thus eliminating the need for any field measurements. Preliminary analysis show that the obtained results are comparable with the observed field mass balance. The results also demonstrate that this approach with remote sensing inputs has potential to be used for glacier mass balance estimations provided good quality multi-temporal remote sensing dataset are available.
Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A. Claude; Gigan, Sylvain; Bourdieu, Laurent
2012-01-01
Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm. PMID:23082292
Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent
2012-10-01
Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.
Community Resilience of Civilians at War: A New Perspective.
Eshel, Yohanan; Kimhi, Shaul
2016-01-01
A new concept of community resilience pertaining to the community's post adversity strength to vulnerability ratio was associated with five determinants: individual resilience, national resilience, well-being, community size, and sense of coherence. The data was collected four months after Israel's war in the Gaza Strip in 2014. Participants were 251 adult civilians living in southern Israel who have recently been threatened by massive missile attacks, and 259 adults living in northern Israel, which has not been under missile fire recently. The investigated variables predicted community resilience, and their effects were mediated by sense of coherence. Results which were similar for both samples were discussed in terms of the nature of resilience and in terms of proximal and distal exposure to war.
Two-Photon Infrared Resonance Can Enhance Coherent Raman Scattering
NASA Astrophysics Data System (ADS)
Traverso, Andrew J.; Hokr, Brett; Yi, Zhenhuan; Yuan, Luqi; Yamaguchi, Shoichi; Scully, Marlan O.; Yakovlev, Vladislav V.
2018-02-01
In this Letter we present a new technique for attaining efficient low-background coherent Raman scattering where the Raman coherence is mediated by a tunable infrared laser in two-photon resonance with a chosen vibrational transition. In addition to the traditional benefits of conventional coherent Raman schemes, this approach offers a number of advantages including potentially higher emission intensity, reduction of nonresonant four-wave mixing background, preferential excitation of the anti-Stokes field, and simplified phase matching conditions. In particular, this is demonstrated in gaseous methane along the ν1 (A1) and ν3 (T2) vibrational levels using an infrared field tuned between 1400 and 1600 cm-1 and a 532-nm pump field. This approach has broad applications, from coherent light generation to spectroscopic remote sensing and chemically specific imaging in microscopy.
Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km.
Weyrauch, Thomas; Vorontsov, Mikhail; Mangano, Joseph; Ovchinnikov, Vladimir; Bricker, David; Polnau, Ernst; Rostov, Andrey
2016-02-15
We demonstrate coherent beam combining and adaptive mitigation of atmospheric turbulence effects over 7 km under strong scintillation conditions using a coherent fiber array laser transmitter operating in a target-in-the-loop setting. The transmitter system is composed of a densely packed array of 21 fiber collimators with integrated capabilities for piston, tip, and tilt control of the outgoing beams wavefront phases. A small cat's-eye retro reflector was used for evaluation of beam combining and turbulence compensation performance at the target plane, and to provide the feedback signal for control of piston and tip/tilt phases of the transmitted beams using the stochastic parallel gradient descent maximization of the power-in-the-bucket metric.
NASA Astrophysics Data System (ADS)
Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong
2017-04-01
A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.
Manor-Binyamini, Iris; Nator, Maha
2016-08-01
Many studies have examined the coping resources of parents of children with disabilities but most have involved Western families and only a few refer to unique and traditional cultures. This study sought to compare Druze parents of adolescents with and without developmental disabilities (DD) in the context of Druze traditions and beliefs and whether they may lead to better coping by parents of a child with DD. The study used the measures of stress; sense of coherence (SOC) - an orientation towards the world which reflects an ongoing confidence that things fall into place in a logical and meaningful way; and hope. The sample group consisted of 99 Druze parents of adolescents with and without DD enrolled in regular and special schools in Israel. The parents were asked to complete four questionnaires on demography, stress, SOC (Sense of coherence) and hope. The research findings indicate a higher sense of parental stress and a lower overall SOC, particularly meaningfulness, and hope among parents of adolescents with DD. There was no difference between the two groups of parents with respect to marital, economic and overall stress or in the other two components of SOC. The results of the study partly contradict the assumption in the limited literature about Druze that they may cope better with life stressors as a result of their traditions and beliefs. The results also indicate the need for further research and culturally-based intervention programs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of Lidar Remote Sensing Concepts
NASA Technical Reports Server (NTRS)
Spiers, Gary D.
1999-01-01
Line of sight velocity and measurement position sensitivity analyses for an orbiting coherent Doppler lidar are developed and applied to two lidars, one with a nadir angle of 30 deg. in a 300 km altitude, 58 deg. inclination orbit and the second for a 45 deg. nadir angle instrument in a 833 km altitude, 89 deg. inclination orbit. The effect of orbit related effects on the backscatter sensitivity of a coherent Doppler lidar is also discussed. Draft performance estimate, error budgets and payload accommodation requirements for the SPARCLE (Space Readiness Coherent Lidar) instrument were also developed and documented.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.
2009-01-01
NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.
Dental optical coherence domain reflectometry explorer
Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.
2001-01-01
A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.
Coherent frequency combs produced by self frequency modulation in quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khurgin, J. B.; Dikmelik, Y.; Hugi, A.
2014-02-24
One salient characteristic of Quantum Cascade Laser (QCL) is its very short τ ∼ 1 ps gain recovery time that so far thwarted the attempts to achieve self-mode locking of the device into a train of single pulses. We show theoretically that four wave mixing, combined with the short gain recovery time causes QCL to operate in the self-frequency-modulated regime characterized by a constant power in time domain and stable coherent comb in the frequency domain. Coherent frequency comb may enable many potential applications of QCL's in sensing and measurement.
Vector method for strain estimation in phase-sensitive optical coherence elastography
NASA Astrophysics Data System (ADS)
Matveyev, A. L.; Matveev, L. A.; Sovetsky, A. A.; Gelikonov, G. V.; Moiseev, A. A.; Zaitsev, V. Y.
2018-06-01
A noise-tolerant approach to strain estimation in phase-sensitive optical coherence elastography, robust to decorrelation distortions, is discussed. The method is based on evaluation of interframe phase-variation gradient, but its main feature is that the phase is singled out at the very last step of the gradient estimation. All intermediate steps operate with complex-valued optical coherence tomography (OCT) signals represented as vectors in the complex plane (hence, we call this approach the ‘vector’ method). In comparison with such a popular method as least-square fitting of the phase-difference slope over a selected region (even in the improved variant with amplitude weighting for suppressing small-amplitude noisy pixels), the vector approach demonstrates superior tolerance to both additive noise in the receiving system and speckle-decorrelation caused by tissue straining. Another advantage of the vector approach is that it obviates the usual necessity of error-prone phase unwrapping. Here, special attention is paid to modifications of the vector method that make it especially suitable for processing deformations with significant lateral inhomogeneity, which often occur in real situations. The method’s advantages are demonstrated using both simulated and real OCT scans obtained during reshaping of a collagenous tissue sample irradiated by an IR laser beam producing complex spatially inhomogeneous deformations.
Sadeghi, S M
2014-09-01
When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.
Proton-Detected 15N NMR-Spectroscopy and Imaging
NASA Astrophysics Data System (ADS)
Freeman, D.; Sailasuta, N.; Sukumar, S.; Hurd, R. E.
1993-10-01
Proton detection of nitrogen-15, using gradients for coherence selection, was determined to be an effective method for obtaining spectra of 15N-labeled metabolites from extracts and biopsies of tissue infused with [15N] ammonium chloride. The advantage of gradient selection of coherence was best demonstrated by the almost complete single-shot elimination of solvent water in extracts and tissue water in biopsies. As a single-acquisition editing method in which only protons attached to 15N are detected, the potential limitations of dynamic range and motion are also reduced. Gradient-enhanced heteronuclear multiple-quantum coherence (1H[15N] HMQC) was compared with conventional HMQC, and despite selection of only one of the two heteronuclear pathways, GE-HMQC was found to be more effective for resolving the desired signal for dilute solutions; and with a single scan. In addition, effective water elimination made it possible to use the resolution advantage of a frequency-encoding dimension in proton-detected 15N imaging experiments. The limit of detection of the method at 500 MHz was 0.7 mM in 16 scans from a total volume of 400 μl. Signals from tissue extracts were observable in less than one minute for kidney, heart, brain, and muscle. Proton-detected 15N GE-HMQC images with a voxel size of 39 × 78 × 625 μm were obtained at 600 MHz from a 4 mM (1.6 μmol) 15N urea sample in less than four hours. Distribution of [15N] urea in the kidney was observed in a 600 MHz GE-HMQC image of the papilla and some cortical structures.
NASA Astrophysics Data System (ADS)
Ma, Wen-Long; Liu, Ren-Bao
2016-08-01
Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.
González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R
2015-01-01
Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni80Fe20) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients. PMID:25478682
González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R
2015-06-01
Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni(80)Fe(20)) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients.
Burger, Pascal H M; Tektas, Ozan Y; Paulsen, Friedrich; Scholz, Michael
2014-08-01
Psychiatric disorders (Burnout, depression, anxiety disorders) are common among medical students with a distinctly higher prevalence compared to the general public. Although medi-cal students show a normal health status at the beginning of their university study period, a deterioration of these aspects in higher semesters is evident and continues when they become residents. In our study ESTRELLAS we examined 530 medical students in the preclinical semesters (1st-4th) before their first "Staatsexamen" with validated psychological questionnaires for depression, anxiety, quality of life and sense of coherence. Students in their 1st semester show normal values like the general public. During the 4 semesters a slow and continuous rise of depressive symptoms and anxiety was detected. Quality of life and sense of coherence constantly deteriorated. An increase of physical symptoms was not detected. In the 4th semester the number of depressive students had already doubled. The development of worsening psychological problems and resulting psychiatric disorders seems to be a continuous process, starting with the beginning of the medical studies and growing continuously during the preclinical semesters. Effect-ive strategies for coping with distress should be integrated in the medical curriculum at universities from the very first semester on. Relaxation techniques could thus be an opportunity. © Georg Thieme Verlag KG Stuttgart · New York.
Association between dental caries experience and sense of coherence among adolescents and mothers.
Lage, Carolina Freitas; Fulgencio, Livia Bonfim; Corrêa-Faria, Patricia; Serra-Negra, Junia Maria; Paiva, Saul Martins; Pordeus, Isabela Almeida
2017-09-01
Sense of coherence (SOC) is associated with oral health. Investigate associations between dental caries experience and SOC among mothers and adolescents. A cross-sectional study was conducted with 1195 adolescents and their mothers. Data were collected through a questionnaire, the short version of the SOC and oral clinical examinations. The data were statistically analyzed using bivariate analysis, Poisson regression models with robust variance, and Spearman's correlation coefficient. The prevalence of dental caries experience was 41.8%. A moderate correlation was found between the SOC of mothers and adolescents (r = 0.563; P < 0.001). A higher mother's SOC (PR: 0.44; 95% CI: 0.36-0.53) and adolescent's SOC (PR: 0.46; 95% CI: 0.39-0.55) were protective factors against dental caries experience in the adolescents. The prevalence of dental caries experience was higher among adolescents with visible plaque (Model 1-PR: 1.77; 95% CI: 1.53-2.04; Model 2-PR: 1.59; 95% CI: 1.37-1.84) and those whose families were in a lower economic class (Model 1-PR: 1.56; 95% CI: 1.35-1.80; Model 2-PR: 1.57; 95% CI: 1.36-1.81). Dental caries in adolescents was associated with social determinants evaluated through the sense of coherence. © 2016 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lifetime Traumatic Experiences and Leisure Physical Inactivity among Adolescent Boys.
Malinauskas, Romualdas; Malinauskiene, Vilija; Malinauskas, Mindaugas
2018-03-01
The aim of this study was to examine the associations between lifetime traumatic experiences and leisure physical inactivity among adolescent boys and to determine to what extent those associations are mediated by posttraumatic stress symptoms, unhealthy behaviors (smoking, alcohol use), the daily consumption of fresh fruit, and sense of coherence. A self-administered questionnaire combining 3 instruments measured leisure physical activity level (Godin and Shephard), symptoms of posttraumatic stress (IES-revised), lifetime traumatic experiences, sense of coherence (SOC-13, from Antonovsky), and behavioral and dietary patterns in a representative sample of eighth grade boys from a number of Kaunas, Lithuania, secondary schools (N = 885; response rate 88.6%). Fifty-six point eight percent of boys had experienced at least 1 lifetime traumatic event, with a 20.5% prevalence of PTS symptoms, and 5.4% were inactive during leisure time. In the logistic regression models, leisure physical inactivity was associated with lifetime traumatic experiences (adjusted OR = 2.33; 95% CI: 1.09-4.98). Sense of coherence and posttraumatic stress symptoms did not mediate those associations. Less-than-daily consumption of fresh fruit showed an independent effect, while smoking and weekly consumption of alcohol did not. Consistent associations between lifetime traumatic experiences and leisure physical inactivity among adolescent boys indicate that the presence of lifetime traumatic events should be taken into account when employing intervention and prevention programs on unhealthy lifestyles (physical inactivity, smoking, and alcohol).
Hu, Bo; Tu, Yuhai
2013-01-01
It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional chemotactic strategy. Remarkably, Escherichia coli cells can perform such a precision sensing task in pH taxis by using the same chemotaxis machinery, but with opposite pH responses from two different chemoreceptors (Tar and Tsr). To understand bacterial pH sensing, we developed an Ising-type model for a mixed cluster of opposing receptors based on the push-pull mechanism. Our model can quantitatively explain experimental observations in pH taxis for various mutants and wild-type cells. We show how the preferred pH level depends on the relative abundance of the competing sensors and how the sensory activity regulates the behavioral response. Our model allows us to make quantitative predictions on signal integration of pH and chemoattractant stimuli. Our study reveals two general conditions and a robust push-pull scheme for precision sensing, which should be applicable in other adaptive sensory systems with opposing gradient sensors. PMID:23823247
"I Do but I Don't": The Search for Identity in Urban African American Adolescents
ERIC Educational Resources Information Center
Gullan, Rebecca Lakin; Hoffman, Beth Necowitz; Leff, Stephen S.
2011-01-01
Achievement of a coherent and strong sense of self is critical to positive academic outcomes for urban minority youth. The present study utilized a mixed-methods approach to explore key aspects of identity development for African American adolescents living in a high-poverty, urban neighborhood. Results suggest that efforts to develop a sense of…
NASA Astrophysics Data System (ADS)
Schlueter-Kuck, Kristy; Dabiri, John
2017-11-01
In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
NASA Astrophysics Data System (ADS)
Schlueter, Kristy; Dabiri, John
2016-11-01
Coherent structure identification is important in many fluid dynamics applications, including transport phenomena in ocean flows and mixing and diffusion in turbulence. However, many of the techniques currently available for measuring such flows, including ocean drifter datasets and particle tracking velocimetry, only result in sparse velocity data. This is often insufficient for the use of current coherent structure detection algorithms based on analysis of the deformation gradient. Here, we present a frame-invariant method for detecting coherent structures from Lagrangian flow trajectories that can be sparse in number. The method, based on principles used in graph coloring algorithms, examines a measure of the kinematic dissimilarity of all pairs of flow trajectories, either measured experimentally, e.g. using particle tracking velocimetry; or numerically, by advecting fluid particles in the Eulerian velocity field. Coherence is assigned to groups of particles whose kinematics remain similar throughout the time interval for which trajectory data is available, regardless of their physical proximity to one another. Through the use of several analytical and experimental validation cases, this algorithm is shown to robustly detect coherent structures using significantly less flow data than is required by existing methods. This research was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Discovering Coherent Structures Using Local Causal States
NASA Astrophysics Data System (ADS)
Rupe, Adam; Crutchfield, James P.; Kashinath, Karthik; Prabhat, Mr.
2017-11-01
Coherent structures were introduced in the study of fluid dynamics and were initially defined as regions characterized by high levels of coherent vorticity, i.e. regions where instantaneously space and phase correlated vorticity are high. In a more general spatiotemporal setting, coherent structures can be seen as localized broken symmetries which persist in time. Building off the computational mechanics framework, which integrates tools from computation and information theory to capture pattern and structure in nonlinear dynamical systems, we introduce a theory of coherent structures, in the more general sense. Central to computational mechanics is the causal equivalence relation, and a local spatiotemporal generalization of it is used to construct the local causal states, which are utilized to uncover a system's spatiotemporal symmetries. Coherent structures are then identified as persistent, localized deviations from these symmetries. We illustrate how novel patterns and structures can be discovered in cellular automata and outline the path from them to laminar, transitional and turbulent flows. Funded by Intel through the Big Data Center at LBNL and the IPCC at UC Davis.
Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C
2013-11-01
An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.
Crude Oil Remote Sensing, Characterization and Cleaning with CW and Pulsed Lasers
NASA Technical Reports Server (NTRS)
Kukhtareva, Tatiana; Chirita, Arc; Gallegos, Sonia C.
2014-01-01
For detection, identification and characterization of crude oil we combine several optical methods of remote sensing of crude oil films and emulsions (coherent fringe projection illumination (CFP), holographic in-line interferometry (HILI), and laser induced fluorescence). These methods allow the three-dimensional characterization of oil spills, important for practical applications. Combined methods of CFP and HILI are described in the frame of coherent superposition of partial interference patterns. It is shown, that in addition to detection/identification laser illumination in the green-blue region can also degrade oil slicks. Different types of surfaces contaminated by oil spills are tested: oil on the water, oil on the flat solid surfaces and oil on the curved surfaces of pipes. For the detection and monitoring of the laser-induced oil degradation in pipes, coherent fiber bundles were used. Both continuous-wave (CW) and pulsed lasers are tested using pump-probe schemes. This finding suggests that properly structured laser clean-up can be an alternative environmentally-friendly method of decontamination, as compared to the currently used chemical methods that are dangerous to environment.
NASA Astrophysics Data System (ADS)
Banet, Matthias T.; Spencer, Mark F.
2017-09-01
Spatial-heterodyne interferometry is a robust solution for deep-turbulence wavefront sensing. With that said, this paper analyzes the focal-plane array sampling requirements for spatial-heterodyne systems operating in the off-axis pupil plane recording geometry. To assess spatial-heterodyne performance, we use a metric referred to as the field-estimated Strehl ratio. We first develop an analytical description of performance with respect to the number of focal-plane array pixels across the Fried coherence diameter and then verify our results with wave-optics simulations. The analysis indicates that at approximately 5 focal-plane array pixels across the Fried coherence diameter, the field-estimated Strehl ratios begin to exceed 0:9 which is indicative of largely diffraction-limited results.
Remote-sensing gas measurements with coherent Rayleigh-Brillouin scattering
Gerakis, A.; Shneider, M. N.; Stratton, B. C.
2016-07-21
Here, we measure the coherent Rayleigh-Brillouin scattering (CRBS) signal integral as a function of the recorded gas pressure in He, Co 2, SF 6, and air, and confirm the already established quadratic dependence of the signal on the gas density. Finally, we propose the use of CRBS as an effective diagnostic for the remote measurement of gas' density (pressure) and temperature, as well as polarizability, for gases of known composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misyura, V.A.; Podnos, V.A.; Kapanin, I.I.
1973-01-01
Translated from Kosm. Issled.; 11: No. 4, 581-585(1973). The integrated electron content of the ionosphere up to the level of the recording satellite, and the horizontal gradients of the integrated electron content (total, latitudinal, and longitudinal components), was obtained at scattered observation points located at medium and high latitudes, on the basis of recordings made of Doppler and Faraday effects on coherent signals from the satellites Explorer-22, Explorer-27, Interkosmos-2, Kosmos321, Kosmos-356, and Kosmos-381. (auth)
Sensing of molecules using quantum dynamics
Migliore, Agostino; Naaman, Ron; Beratan, David N.
2015-01-01
We design sensors where information is transferred between the sensing event and the actuator via quantum relaxation processes, through distances of a few nanometers. We thus explore the possibility of sensing using intrinsically quantum mechanical phenomena that are also at play in photobiology, bioenergetics, and information processing. Specifically, we analyze schemes for sensing based on charge transfer and polarization (electronic relaxation) processes. These devices can have surprising properties. Their sensitivity can increase with increasing separation between the sites of sensing (the receptor) and the actuator (often a solid-state substrate). This counterintuitive response and other quantum features give these devices favorable characteristics, such as enhanced sensitivity and selectivity. Using coherent phenomena at the core of molecular sensing presents technical challenges but also suggests appealing schemes for molecular sensing and information transfer in supramolecular structures. PMID:25911636
Insufficiency of avoided crossings for witnessing large-scale quantum coherence in flux qubits
NASA Astrophysics Data System (ADS)
Fröwis, Florian; Yadin, Benjamin; Gisin, Nicolas
2018-04-01
Do experiments based on superconducting loops segmented with Josephson junctions (e.g., flux qubits) show macroscopic quantum behavior in the sense of Schrödinger's cat example? Various arguments based on microscopic and phenomenological models were recently adduced in this debate. We approach this problem by adapting (to flux qubits) the framework of large-scale quantum coherence, which was already successfully applied to spin ensembles and photonic systems. We show that contemporary experiments might show quantum coherence more than 100 times larger than experiments in the classical regime. However, we argue that the often-used demonstration of an avoided crossing in the energy spectrum is not sufficient to make a conclusion about the presence of large-scale quantum coherence. Alternative, rigorous witnesses are proposed.
Coherent and incoherent off-axis Hermite-Gaussian beam combinations.
Lü, B; Ma, H
2000-03-10
A detailed study of the coherent and the incoherent combinations of two-dimensional off-axis Hermite-Gaussian beams with rectangular symmetry is made. The closed-form propagation formulas of the resulting beam are derived, and the resulting beam quality in terms of the M(2) factor and power in the bucket is discussed and compared for the coherent and the incoherent combinations. In addition, it is shown that the resulting astigmatic beam can be symmetrized in the sense of the second-moment definition of beam width. However, the symmetrizing transformation of the resulting astigmatic beams is incomplete, because there exist different irradiance profiles.
Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui
2014-03-24
We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.
Investigating MAI's Precision: Single Interferogram and Time Series Filtering
NASA Astrophysics Data System (ADS)
Bechor Ben Dov, N.; Herring, T.
2010-12-01
Multiple aperture InSAR (MAI) is a technique to obtain along-track displacements from InSAR phase data. Because InSAR measurements are insensitive to along-track displacements, it is only possible to retrieve them using none-interferometric approaches, either pixel-offset tracking or using data from different orbital configurations and assuming continuity/ displacement model. These approaches are limited by precision and data acquisition conflicts, respectively. MAI is promising in this respect as its precision is better than the former and its data is available whether additional acquisitions are there or not. Here we study the MAI noise and develop a filter to reduce it. We test the filtering with empirical noise and simulated signal data. Below we describe the filtered results single interferogram precision, and a Kalman filter approach for MAI time series. We use 14 interferograms taken over the larger Los Angeles/San Gabrial Mountains area in CA. The interferograms include a variety of decorrelation sources, both terrain-related (topographic variations, vegetation and agriculture), and imaging-related (spatial and temporal baselines of 200-500m and 1-12 months, respectively). Most of the pixels are in the low to average coherence range (below 0.7). The data were collected by ESA and made available by the WInSAR consortium. We assume the data contain “zero” along-track signal (less then the theoretical 4 cm for our coherence range), and use the images as 14 dependent realizations of the MAI noise. We find a wide distribution of phase values σ = 2-3 radians (wrapped). We superimpose a signal on our MAI noise interferograms using along-track displacement (-88 - 143 cm) calculated for the 1812 Wrightwood earthquake. To analyze single MAI interferograms, we design an iterative quantile-based filter and test it on the noise+signal MAI interferograms. The residuals reveal the following MAI noise characteristics: (1) a constant noise term, up to 90 cm (2) a displacement gradient term, up to 0.75cm/km (3) a coherence dependent root residuals sum of squares (RRSS), down to 5 cm at 0.8 coherence In the figure we present two measures of the MAI rmse. Prior to phase gradient correction the RRSS follows the circled line. With the correction, the RRSS follows the solid line. We next evaluate MAI's precision given a time series. We use a Kalman Filter to estimate the spatially and temporally correlated components of the MAI data. We reference the displacements to a given area in the interferograms, weight the data with coherence, and model the reminder terms of the spatially correlated noise as a quadratic phase gradient across the image. The results (not displayed) again vary with coherence. MAI single interferogram precision
Hakkenberg, C R; Peet, R K; Urban, D L; Song, C
2018-01-01
In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling. © 2017 by the Ecological Society of America.
A scale-based connected coherence tree algorithm for image segmentation.
Ding, Jundi; Ma, Runing; Chen, Songcan
2008-02-01
This paper presents a connected coherence tree algorithm (CCTA) for image segmentation with no prior knowledge. It aims to find regions of semantic coherence based on the proposed epsilon-neighbor coherence segmentation criterion. More specifically, with an adaptive spatial scale and an appropriate intensity-difference scale, CCTA often achieves several sets of coherent neighboring pixels which maximize the probability of being a single image content (including kinds of complex backgrounds). In practice, each set of coherent neighboring pixels corresponds to a coherence class (CC). The fact that each CC just contains a single equivalence class (EC) ensures the separability of an arbitrary image theoretically. In addition, the resultant CCs are represented by tree-based data structures, named connected coherence tree (CCT)s. In this sense, CCTA is a graph-based image analysis algorithm, which expresses three advantages: 1) its fundamental idea, epsilon-neighbor coherence segmentation criterion, is easy to interpret and comprehend; 2) it is efficient due to a linear computational complexity in the number of image pixels; 3) both subjective comparisons and objective evaluation have shown that it is effective for the tasks of semantic object segmentation and figure-ground separation in a wide variety of images. Those images either contain tiny, long and thin objects or are severely degraded by noise, uneven lighting, occlusion, poor illumination, and shadow.
A pH-Sensing Optode for Mapping Spatiotemporal Gradients in 3D Paper-Based Cell Cultures.
Kenney, Rachael M; Boyce, Matthew W; Whitman, Nathan A; Kromhout, Brenden P; Lockett, Matthew R
2018-02-06
Paper-based cultures are an emerging platform for preparing 3D tissue-like structures. Chemical gradients can be imposed upon these cultures, generating microenvironments similar to those found in poorly vascularized tumors. There is increasing evidence that the tumor microenvironment is responsible for promoting drug resistance and increased invasiveness. Acidosis, or the acidification of the extracellular space, is particularly important in promoting these aggressive cancer phenotypes. To better understand how cells respond to acidosis there is a need for 3D culture platforms that not only model relevant disease states but also contain sensors capable of quantifying small molecules in the extracellular environment. In this work, we describe pH-sensing optodes that are capable of generating high spatial and temporal resolution maps of pH gradients in paper-based cultures. This sensor was fabricated by suspending microparticles containing pH-sensitive (fluorescein) and pH-insensitive (diphenylanthracene) dyes in a polyurethane hydrogel, which was then coated onto a transparent film. The pH-sensing films have a fast response time, are reversible, stable in long-term culture environments, have minimal photobleaching, and are not cytotoxic. These films have a pK a of 7.61 ± 0.04 and are sensitive in the pH range corresponding to normal and tumorigenic tissues. With these optodes, we measured the spatiotemporal evolution of pH gradients in paper-based tumor models.
Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet
Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale; ...
2016-10-03
The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less
Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale
The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less
Turbulence experiments on the PKU Plasma Test (PPT) device
NASA Astrophysics Data System (ADS)
Xu, Tianchao; Xiao, Chijie; Yang, Xiaoyi; Chen, Yihang; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The PKU Plasma Test (PPT) device is a linear plasma device in Peking University, China. It has a vacuum chamber with 1000mm length and 500mm diameter. A pair of Helmholtz coils can generate toroidal magnetic field up to 2000 Gauss, and plasma was generated by a helicon source. Probes and fast camera were used to diagnose the parameters and got the turbulence spectrums, coherent structure, etc. The dynamics of turbulence, coherent structure and parameter profiles have been analyzed, and it has been found that the turbulence states are related to the equilibrium profiles; Some coherent structures exist and show strongly interactions with the background turbulences; The spatial and temporal evolutions of these coherent structures are related to the amplitude of the density gradient and electric field. These results will help on further studies of plasma transport. This work was supported by the National Natural Science Foundation of China under 11575014 and 11375053, CHINA MOST under 2012YQ030142 and ITER-CHINA program 2015GB120001.
Coherent optical determination of the leaf angle distribution of corn
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Pihlman, M.
1981-01-01
A coherent optical technique for the diffraction analysis of an image is presented. Developments in radar remote sensing shows a need to understand plant geometry and its relationship to plant moisture, soil moisture, and the radar backscattering coefficient. A corn plant changes its leaf angle distribution, as a function of time, from a uniform distribution to one that is strongly vertical. It is shown that plant and soil moisture may have an effect on plant geometry.
3D-Web-GIS RFID location sensing system for construction objects.
Ko, Chien-Ho
2013-01-01
Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency.
3D-Web-GIS RFID Location Sensing System for Construction Objects
2013-01-01
Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency. PMID:23864821
Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana
2018-06-01
Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.
Hu, Bo; Tu, Yuhai
2013-07-02
It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional chemotactic strategy. Remarkably, Escherichia coli cells can perform such a precision sensing task in pH taxis by using the same chemotaxis machinery, but with opposite pH responses from two different chemoreceptors (Tar and Tsr). To understand bacterial pH sensing, we developed an Ising-type model for a mixed cluster of opposing receptors based on the push-pull mechanism. Our model can quantitatively explain experimental observations in pH taxis for various mutants and wild-type cells. We show how the preferred pH level depends on the relative abundance of the competing sensors and how the sensory activity regulates the behavioral response. Our model allows us to make quantitative predictions on signal integration of pH and chemoattractant stimuli. Our study reveals two general conditions and a robust push-pull scheme for precision sensing, which should be applicable in other adaptive sensory systems with opposing gradient sensors. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley
2015-11-01
Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.
[The sense of coherence among nurses].
Malagón-Aguilera, M Carmen; Fuentes-Pumarola, Concepció; Suñer-Soler, Rosa; Bonmatí-Tomàs, Anna; Fernández-Peña, Roser; Bosch-Farré, Cristina
2012-01-01
Through the construct "The sense of coherence" (SOC), the salutogenic model explains why people subjected to stressors are able to maintain good health. The SOC was defined by Antonovsky as a global orientation that expresses the extent to which a person has a highly internalized, permanent - but at the same time dynamic - feeling of confidence; this feeling of confidence is predictable and leads to a high probability that events will turn out well. The present article reviews the literature on the SOC in the nursing profession. The results show that the SOC is a protective factor against stressors in the work environment and in the work-life balance. Low SOC levels are associated with health problems such as burnout or depression, as well as certain personality traits. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Interferometer design and controls for pulse stacking in high power fiber lasers
NASA Astrophysics Data System (ADS)
Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul
2017-03-01
In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.
2003-10-01
Approximately 14 million people in the USA and more than 140 million people worldwide suffer from Diabetes Mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for chemical analysis. Recently we proposed to use optical coherence tomography (OCT) for continuous noninvasive blood glucose sensing through skin. In this paper we tested the OCT technique for noninvasive monitoring of blood glucose concentration in lip tissue of New Zealand rabbits and Yucatan micropigs during glucose clamping experiments. Obtained results show good agreement with results obtained in skin studies, good correlation of changes in the OCT signal slope measured at the depth of 250 to 500 μm with changes in blood glucose concentration, and higher stability of the OCT data points than that obtained from skin.
Paediatric occupational therapy: addressing parental stress with the sense of coherence.
Stokes, Rochelle H; Holsti, Liisa
2010-02-01
Families of children who have disabilities experience multiple stressors. "Sense of coherence" (SOC) reflects a person's view of life and his or her capacity to respond to stressful situations. The purposes of this paper are to (I) introduce the concept of SOC; (2) review the literature on the stresses experienced by parents of children with disabilities; and (3) discuss how SOC can be used to evaluate systematically and to address effectively parents' resiliency against stressors. The literature shows a strong correlation between parental stress, avoidantcoping, depression, and low SOC. Preliminary evidence suggests that an early intervention program can help increase parents' SOC. Occupational therapists can use the SOC as a framework from which to identify the strength of a parents' SOC, and, when deemed to be low, help create a process for enhancing resilience.
Coping resources, perceived stress and adjustment to divorce among Israeli women: assessing effects.
Kulik, Liat; Heine-Cohen, Etti
2011-01-01
The aim of this study was to examine how socioeconomic resources (level of education and evaluation of economic situation), cognitive resources (sense of coherence), emotional resources (the quality of relationship with the ex-spouse and the existence of a new romantic relationship), and perceived stress contribute to explaining the adjustment of Israeli women to divorce. Adjustment to divorce was examined along four dimensions: self-acceptance of divorce, disentanglement of the love relationship, symptoms of grief, and self-evaluation. The research sample consisted of 114 divorced Jewish women, all of whom had retained custody of their children. Among the resources examined, the contribution of sense of coherence to explaining adjustment to divorce was particularly significant, followed by the existence of a new romantic relationship. Furthermore, resources were found to interact with perceived stress in explaining women's adjustment to divorce.
Fatigue: a distressing symptom for patients with irritable bowel syndrome.
Frändemark, Å; Jakobsson Ung, E; Törnblom, H; Simrén, M; Jakobsson, S
2017-01-01
Fatigue is a frequent symptom in patients with irritable bowel syndrome (IBS), and is associated with poor quality of life. However, few studies have evaluated its impact on daily life or the perceived distress it can cause. Using a multi-methods approach, this study describes the impact and manifestations of fatigue in patients with IBS and investigates the relationship between fatigue severity and illness-related and health-promoting factors. A total of 160 patients with IBS completed self-reported questionnaires assessing fatigue, gastrointestinal symptoms, psychological distress, and sense of coherence. Fatigue was assessed with the Fatigue Impact Scale, which also includes structured and open-ended questions which were analyzed with a deductive qualitative analysis. Patients were classified as having severe, moderate, or mild fatigue based on frequency, distress and impact on daily life. The open-ended questions revealed a multidimensional impact on life. Fatigue mainly interfered with the ability to perform physical activities, work, and domestic work, and the ability to interact socially. Decreased stamina was evident, along with strategies to limit the bodily consequences of tiredness. Severe fatigue was accompanied by more severe IBS symptoms, anxiety and depression and lower sense of coherence. Fatigue is a distressing symptom which occurs in a sizeable proportion of patients with IBS. It affects life in a multidimensional way, with poor bodily stamina being the most prominent feature. Fatigue, along with sense of coherence, depression and anxiety, needs to be assessed, confirmed and targeted for interventions. © 2016 John Wiley & Sons Ltd.
Huhtala, Mira; Korja, Riikka; Lehtonen, Liisa; Haataja, Leena; Lapinleimu, Helena; Rautava, Päivi
2014-03-01
Preterm children are at risk for developing behavioral and emotional problems, as well as being less socially competent. Premature birth causes chronic distress in the parents. The aim of the paper is to discover whether parental psychological well-being is associated with the social, behavioral, and functional development of very low birth weight (VLBW, ≤1500g) children at 5years of age. A longitudinal prospective cohort study. A cohort of 201 VLBW infants (≤1500g, <37weeks of gestation) born during 2001-2006 in Turku University Hospital, Finland was studied. At 4-year chronological age of their child, parents independently completed validated questionnaires (Beck Depression Inventory, Parenting Stress Index and Sense of Coherence Scale). At 5years, parents and day-care providers evaluated the development of the child by completing the Five to Fifteen questionnaire. The parents of VLBW children reported significantly more problems in child development compared to the Finnish normative data. Depressive symptoms and weaker sense of coherence in mothers, but not in fathers, were associated with more problems in child development. Parenting stress, for both mothers and fathers, was associated with developmental problems in their child at 5years of age. Maternal depressive symptoms and parenting stress of both parents may be risk factors for the social, behavioral, and functional development of 5-year-old preterm children. On the other hand, stronger maternal sense of coherence may be a protective factor. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ferrajão, Paulo Correia; Oliveira, Rui Aragão
2016-01-01
We analyzed the effects of 3 war components-combat exposure (CES), observation of abusive violence (OBS), and participation in abusive violence (PARTC)-and sense of coherence (SOC) on the development of both posttraumatic stress disorder (PTSD) and depression among a sample of war veterans. We also analyzed the role of SOC as a mediator of the effects of CES, OBS, and PARTC on both depression and PTSD symptoms. Sample was composed of 120 Portuguese Colonial War veterans. A binomial logistic regression analysis was performed to determine the effects of these variables on depression and PTSD diagnosis. Mediation test was performed by conducting several hierarchical regression analyses. Results showed that OBS and PARTC, and lower levels of SOC were associated with increased odds for exceeding the clinical cutoff scores for diagnosis of depression. All variables were associated with increased odds for exceeding the clinical cutoff scores for diagnosis of PTSD. In mediation analysis, at first step, PARTC was not a significant predictor of both PTSD and depression symptoms, and PARTC did not enter in subsequent analysis. SOC was a full mediator of the effects of OBS and CES on both depression and PTSD symptoms. We propose that treatment of war veterans should aim the reconciliation of traumatic incongruent experiences in veterans' personal schemas to strengthen veterans' sense of coherence, especially for those exposed to acts of abusive violence. (c) 2016 APA, all rights reserved).
Sensing of molecules using quantum dynamics
Migliore, Agostino; Naaman, Ron; Beratan, David N.
2015-04-24
In this study, we design sensors where information is transferred between the sensing event and the actuator via quantum relaxation processes, through distances of a few nanometers. We thus explore the possibility of sensing using intrinsically quantum mechanical phenomena that are also at play in photobiology, bioenergetics, and information processing. Specifically, we analyze schemes for sensing based on charge transfer and polarization (electronic relaxation) processes. These devices can have surprising properties. Their sensitivity can increase with increasing separation between the sites of sensing (the receptor) and the actuator (often a solid-state substrate). This counterintuitive response and other quantum features givemore » these devices favorable characteristics, such as enhanced sensitivity and selectivity. Finally, using coherent phenomena at the core of molecular sensing presents technical challenges but also suggests appealing schemes for molecular sensing and information transfer in supramolecular structures.« less
NASA Astrophysics Data System (ADS)
Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.
2015-09-01
Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ˜40-60 fs.
Lu, Xin; Soto, Marcelo A; Thévenaz, Luc
2017-07-10
A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-maintaining fiber. A theoretical analysis, supported by experimental data, indicates that the proposed system for temperature-strain discrimination is intrinsically better conditioned than an equivalent existing approach that combines classical Brillouin sensing with Brillouin dynamic gratings. This is due to the higher sensitivity of coherent Rayleigh scatting compared to Brillouin scattering, thus offering better performance and lower temperature-strain uncertainties in the discrimination. Compared to the Brillouin-based approach, the ϕOTDR-based system here proposed requires access to only one fiber-end, and a much simpler experimental layout. Experimental results validate the full discrimination of temperature and strain along a 100 m-long elliptical-core polarization-maintaining fiber with measurement uncertainties of ~40 mK and ~0.5 με, respectively. These values agree very well with the theoretically expected measurand resolutions.
Compressive sensing for single-shot two-dimensional coherent spectroscopy
NASA Astrophysics Data System (ADS)
Harel, E.; Spencer, A.; Spokoyny, B.
2017-02-01
In this work, we explore the use of compressive sensing for the rapid acquisition of two-dimensional optical spectra that encodes the electronic structure and ultrafast dynamics of condensed-phase molecular species. Specifically, we have developed a means to combine multiplexed single-element detection and single-shot and phase-resolved two-dimensional coherent spectroscopy. The method described, which we call Single Point Array Reconstruction by Spatial Encoding (SPARSE) eliminates the need for costly array detectors while speeding up acquisition by several orders of magnitude compared to scanning methods. Physical implementation of SPARSE is facilitated by combining spatiotemporal encoding of the nonlinear optical response and signal modulation by a high-speed digital micromirror device. We demonstrate the approach by investigating a well-characterized cyanine molecule and a photosynthetic pigment-protein complex. Hadamard and compressive sensing algorithms are demonstrated, with the latter achieving compression factors as high as ten. Both show good agreement with directly detected spectra. We envision a myriad of applications in nonlinear spectroscopy using SPARSE with broadband femtosecond light sources in so-far unexplored regions of the electromagnetic spectrum.
Li, Jun; Lin, Qiu-Hua; Kang, Chun-Yu; Wang, Kai; Yang, Xiu-Ting
2018-03-18
Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets.
Reliable clarity automatic-evaluation method for optical remote sensing images
NASA Astrophysics Data System (ADS)
Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen
2015-10-01
Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.
Wave Scattering and Sensing Strategies in Intermittent Terrestrial Environments
2008-01-01
objects and signal coherence (a measure of sig- nal randomness, which usually determines the sensing sys- tem performance) is strongly degraded...3.1 What are Quasi-Wavelets? Until this point, the objects in the cascades have not been explicitly described. We now associate them with wavelet, or...unsupervised clas- sification scheme used the intensity of the lidar returns to map the material types. 4.2 Seismic Measurement Procedure Thirty-six
Salutogenesis, globalization, and communication.
Petzold, Theodor Dierk; Lehmann, Nadja
2011-12-01
Achieving successful communication in transcultural contexts means integrating emotional communication patterns into a global context. Professional, rational communication is characteristic of the cultural dimension, and emotions are characteristic of the direct, interpersonal dimension of human existence. Humans strive to achieve coherence in all dimensions of their lives; this goal is in the end the most essential aspect of psychophysical self-regulation. A major role in integrating emotional needs and cultural features in global coherence is played by the attractor 'global affinity'. The transitions from emotional coherence to cultural coherence, and likewise from cultural coherence to global coherence, can cause considerable insecurity as well as psychological problems, which previously went by the name 'adjustment disorders'. However, instead of pathologizing these processes, we should understand them in a salutogenic sense as challenges important for both individual and collective development. The development of more coherence is regulated by the neuropsychological approach and avoidance system. This system can be consciously fostered by directing our attention to the commonalities of all human beings. Such a global salutogenic orientation furthers both communication and creativity in teamwork. This article introduces a consequent salutogenic and evolutionary systemic view of transcultural communication and demonstrates its effectiveness in a number of case examples.
Fingerprint imaging from the inside of a finger with full-field optical coherence tomography
Auksorius, Egidijus; Boccara, A. Claude
2015-01-01
Imaging below fingertip surface might be a useful alternative to the traditional fingerprint sensing since the internal finger features are more reliable than the external ones. One of the most promising subsurface imaging technique is optical coherence tomography (OCT), which, however, has to acquire 3-D data even when a single en face image is required. This makes OCT inherently slow for en face imaging and produce unnecessary large data sets. Here we demonstrate that full-field optical coherence tomography (FF-OCT) can be used to produce en face images of sweat pores and internal fingerprints, which can be used for the identification purposes. PMID:26601009
Widely-Tunable Parametric Short-Wave Infrared Transmitter for CO2 Trace Detection (POSTPRINT)
2013-01-01
F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “ Coherent differential absorption lidar measurements of CO2... Doppler lidar system for wind sensing,” Appl. Opt. 46(11), 1953–1962 (2007). 1. Introduction Over the short-wave infrared (SWIR) spectrum, which is...fiber. References and links 1. M. Ebrahim-Zadeh, and I. T. Sorokina, eds., Mid-Infrared Coherent Sources and Applications (Springer, 2007). 2. C
Infrared lidars for atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Menzies, Robert T.
1991-01-01
Lidars using pulsed TEA-CO2 transmitters and coherent receivers have been developed at JPL and used to measure atmospheric backscatter and extinction at wavelengths in the 9-11 micron region. The global winds measurement application of coherent Doppler lidar requires intensive study of the global climatology of aerosol and cloud backscatter and extinction. An airborne lidar was recently flown on the NASA DC-8 research aircraft for operation during two Pacific circumnavigation missions. The instrument characteristics, as well as representative measurement results, are discussed.
Statistics of velocity gradients in two-dimensional Navier-Stokes and ocean turbulence.
Schorghofer, Norbert; Gille, Sarah T
2002-02-01
Probability density functions and conditional averages of velocity gradients derived from upper ocean observations are compared with results from forced simulations of the two-dimensional Navier-Stokes equations. Ocean data are derived from TOPEX satellite altimeter measurements. The simulations use rapid forcing on large scales, characteristic of surface winds. The probability distributions of transverse velocity derivatives from the ocean observations agree with the forced simulations, although they differ from unforced simulations reported elsewhere. The distribution and cross correlation of velocity derivatives provide clear evidence that large coherent eddies play only a minor role in generating the observed statistics.
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1992-01-01
Semiconductor-diode laser-pumped solid-state lasers have properties that are superior to other lasers for the applications of coherent communication and remote sensing. These properties include efficiency, reliability, stability, and capability to be scaled to higher powers. We have demonstrated that an optical phase-locked loop can be used to lock the frequency of two diode-pumped 1.06 micron Nd:YAG lasers to levels required for coherent communication. Monolithic nonplanar ring oscillators constructed from solid pieces of the laser material provide better than 10 kHz frequency stability over 0.1 sec intervals. We have used active feedback stabilization of the cavity length of these lasers to demonstrate 0.3 Hz frequency stabilization relative to a reference cavity. We have performed experiments and analysis to show that optical parametric oscillators (OPO's) reproduce the frequency stability of the pump laser in outputs that can be tuned to arbitrary wavelengths. Another measurement performed in this program has demonstrated the sub-shot-noise character of correlations of the fluctuations in the twin output of OPO's. Measurements of nonlinear optical coefficients by phase-matched second harmonic generation are helping to resolve inconsistency in these important parameters.
Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry.
Hua, Liwei; Song, Yang; Cheng, Baokai; Zhu, Wenge; Zhang, Qi; Xiao, Hai
2017-12-11
This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µε using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.
Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope
NASA Astrophysics Data System (ADS)
Wall, R. Andrew; Barton, Jennifer K.
2012-08-01
A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-μm lateral and 2.3-μm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.
NASA Astrophysics Data System (ADS)
Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong
2017-08-01
The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.
Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope
Wall, R. Andrew
2012-01-01
Abstract. A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-µm lateral and 2.3-µm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure. PMID:23224190
Liu, Tao; Qin, Weilun; Wang, Dong; ...
2017-08-02
The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability.more » This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. In conclusion, theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.« less
Multiple-Quantum Transitions and Charge-Induced Decoherence of Donor Nuclear Spins in Silicon
NASA Astrophysics Data System (ADS)
Franke, David P.; Pflüger, Moritz P. D.; Itoh, Kohei M.; Brandt, Martin S.
2017-06-01
We study single- and multiquantum transitions of the nuclear spins of an ensemble of ionized arsenic donors in silicon and find quadrupolar effects on the coherence times, which we link to fluctuating electrical field gradients present after the application of light and bias voltage pulses. To determine the coherence times of superpositions of all orders in the 4-dimensional Hilbert space, we use a phase-cycling technique and find that, when electrical effects were allowed to decay, these times scale as expected for a fieldlike decoherence mechanism such as the interaction with surrounding
Coherent feedback control of a single qubit in diamond
NASA Astrophysics Data System (ADS)
Hirose, Masashi; Cappellaro, Paola
2016-04-01
Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation after the feedback algorithm voids the protection, even if the rest of the dynamics is unchanged.
NASA Technical Reports Server (NTRS)
Tratt, David M.; Mansour, Kamjou; Menzies, Robert T.; Qiu, Yueming; Forouhar, Siamak; Maker, Paul D.; Muller, Richard E.
2001-01-01
The NASA Earth Science Enterprise Advanced Technology Initiatives Program is supporting a program for the development of semiconductor laser reference oscillators for application to coherent optical remote sensing from Earth orbit. Local oscillators provide the frequency reference required for active spaceborne optical remote sensing concepts that involve heterodyne (coherent) detection. Two recent examples of such schemes are Doppler wind lidar and tropospheric carbon dioxide measurement by laser absorption spectrometry, both of which are being proposed at a wavelength of 2.05 microns. Frequency-agile local oscillator technology is important to such applications because of the need to compensate for large platform-induced Doppler components that would otherwise interfere with data interpretation. Development of frequency-agile local oscillator approaches has heretofore utilized the same laser material as the transmitter laser (Tm,Ho:YLF in the case of the 2.05-micron wavelength mentioned above). However, a semiconductor laser-based frequency-agile local oscillator offers considerable scope for reduced mechanical complexity and improved frequency agility over equivalent crystal laser devices, while their potentially faster tuning capability suggest the potential for greater scanning versatility. The program we report on here is specifically tasked with the development of prototype novel architecture semiconductor lasers with the power, tunability, and spectral characteristics required for coherent Doppler lidar. The baseline approach for this work is the distributed feedback (DFB) laser, in which gratings are etched into the semiconductor waveguide structures along the entire length of the laser cavity. However, typical DFB lasers at the wavelength of interest have linewidths that exhibit unacceptable growth when driven at the high currents and powers that are required for the Doppler lidar application. Suppression of this behavior by means of corrugation pitch-modulation (using a detuned central section to prevent intensity peaking in the center of the cavity) is currently under investigation to achieve the required performance goals.
SAR Interferometry: On the Coherence Estimation in non Stationary Scenes
NASA Astrophysics Data System (ADS)
Ballatore, P.
2005-05-01
The possibility of producing good quality satellite SAR interferometry allows observations of terrain mass movement as small as millimetric scales, with applicability in researches about landslides, volcanoes, seismology and others. SAR interferometric images is characterized by the presence of random speckle, whose pattern does not correspond to the underlying image structure. However the local brightness of speckle reflects the local echogenicity of the underlying scatters. Specifically, the coherence between interferometric pair is generally considered as an indicator of interferogram quality. Moreover, it leads to useful image segmentations and it can be employed in data mining and database browsing algorithms. SAR coherence is generally computed by substituting the ensemble averages with the spatial averages, by assuming ergodicity in the estimation window sub-areas. Nevertheless, the actual results may depend on the spatial size scale of the sampling window used for the computation. This is especially true in the cases of fast coherence estimator algorithms, which make use of the correlation coefficient's square root (Rignon and van Zyl, IEEE Trans. Geosci.Remote Sensing, vol. 31, n. 4, pp. 896-906, 1993; Guarnieri and Prati, IEEE Trans. Geosci. Remote Sensing, vol. 35, n. 3, pp. 660-669, 1997). In fact, the correlation coefficient is increased by image texture, due to non stationary absolute values within single sample estimation windows. For example, this can happen in the case of mountainous lands, and, specifically, in the case of the Italian Southern Appennini region around Benevento city, which is of specific geophysical attention for its numerous seismic and landslide terrain movements. In these cases, dedicated techniques are applied for compensating texture effects. This presentation shows an example of interferometric coherence image depending on the spatial size of sampling window. Moreover, the different methodologies present in literature for texture effect control are briefly summarized and applied to our specific exemplary case. A quantitative comparison among resulting coherences is illustrated and discussed in terms of different experimental applicability.
Cavity optomechanical spring sensing of single molecules
NASA Astrophysics Data System (ADS)
Yu, Wenyan; Jiang, Wei C.; Lin, Qiang; Lu, Tao
2016-07-01
Label-free bio-sensing is a critical functionality underlying a variety of health- and security-related applications. Micro-/nano-photonic devices are well suited for this purpose and have emerged as promising platforms in recent years. Here we propose and demonstrate an approach that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional approaches, allowing us to detect single bovine serum albumin proteins with a molecular weight of 66 kDa at a signal-to-noise ratio of 16.8. The unique optical spring sensing approach opens up a distinctive avenue that not only enables biomolecule sensing and recognition at individual level, but is also of great promise for broad physical sensing applications that rely on sensitive detection of optical cavity resonance shift to probe external physical parameters.
Measurement of wall shear stress in chick embryonic heart using optical coherence tomography
NASA Astrophysics Data System (ADS)
Ma, Zhenhe; Dou, Shidan; Zhao, Yuqian; Wang, Yi; Suo, Yanyan; Wang, Fengwen
2015-03-01
The cardiac development is a complicated process affected by genetic and environmental factors. Wall shear stress (WSS) is one of the components which have been proved to influence the morphogenesis during early stages of cardiac development. To study the mechanism, WSS measurement is a step with significant importance. WSS is caused by blood flow imposed on the inner surface of the heart wall and it can be determined by calculating velocity gradients of blood flow in a direction perpendicular to the wall. However, the WSS of the early stage embryonic heart is difficult to measure since the embryonic heart is tiny and beating fast. Optical coherence tomography (OCT) is a non-invasive imaging modality with high spatial and temporal resolution, which is uniquely suitable for the study of early stage embryonic heart development. In this paper, we introduce a method to measure the WSS of early stage chick embryonic heart based on high speed spectral domain optical coherence tomography (SDOCT). 4D (x,y,z,t) scan was performed on the outflow tract (OFT) of HH18 (~3 days of incubation) chick embryonic heart. After phase synchronization, OFT boundary segmentation, and OFT center line calculation, Doppler angle of the blood flow in the OFT can be achieved (This method has been described in previous publications). Combining with the Doppler OCT results, we calculate absolute blood flow velocity distribution in the OFT. The boundary of the OFT was segmented at each cross-sectional structural image, then geometrical center of the OFT can be calculated. Thus, the gradients of blood flow in radial direction can be calculated. This velocity gradient near the wall is termed wall shear rate and the WSS value is proportional to the wall shear rate. Based on this method, the WSS at different heart beating phase are compare. The result demonstrates that OCT is capable of early stage chicken embryonic heart WSS study.
Cultural differences in responses to a Likert scale.
Lee, Jerry W; Jones, Patricia S; Mineyama, Yoshimitsu; Zhang, Xinwei Esther
2002-08-01
Cultural differences in responses to a Likert scale were examined. Self-identified Chinese, Japanese, and Americans (N=136, 323, and 160, respectively) recruited at ethnic or general supermarkets in Southern California completed a 13-question Sense of Coherence scale with a choice of either four, five, or seven responses in either Chinese, Japanese, or English. The Japanese respondents more frequently reported difficulty with the scale, the Chinese more frequently skipped questions, and both these groups selected the midpoint more frequently on items that involved admitting to a positive emotion than did the Americans, who were more likely to indicate a positive emotion. Construct validity of the scale tended to be better for the Chinese and the Americans when there were four response choices and for the Japanese when there were seven. Although culture affected response patterns, the association of sense of coherence and health was positive in all three cultural groups. Copyright 2002 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hirsch, Marzena; Wierzba, Paweł; Jedrzejewska-Szczerska, Małgorzata
2016-11-01
We examine the application of selected thin dielectric films, deposited by atomic layer deposition (ALD), in a low coherence fiber-optic Fabry-Pérot interferometer designed for sensing applications. Such films can be deposited on the end-face of a single mode optical fiber (SMF-28) in order to modify the reflectivity of the Fabry-Pérot cavity, to provide protection of the fibers from aggressive environments or to create a multi-cavity interferometric sensor. Spectral reflectance of films made from zinc oxide (ZnO), titanium dioxide (TiO2), aluminum oxide (Al2O3) and boron nitride (BN) was calculated for various thickness of the films and compared. The results show that the most promising materials for use in fiber-optic Fabry-Pérot interferometer are TiO2 and ZnO, although Al2O3 is also suitable for this application.
High precision position sensor based on CPA in a composite multi-layered system.
Dey, Sanjeeb; Singh, Suneel; Rao, Desai Narayana
2018-04-16
We propose a scheme for high precision position sensing based on coherent perfect absorption (CPA) in a five-layered structure comprising three layers of metal-dielectric composites and two spacer (air) layers. Both the outermost interfaces of the five layered medium are irradiated by two identical coherent light waves at the same angle of incidence. We first investigate the occurrence of CPA in a symmetric layered structure as a function of different system parameters for oblique incidence. Thereafter, by shifting the middle layer, beginning from one end of the structure to the other, we observe the periodic occurrence of extremely narrow CPA resonances at several positions of the middle layer. Moreover this phenomenon is seen to recur even at many other wavelengths. We discuss how the position sensitivity of this phenomenon can be utilized for designing a CPA based high precision position sensing device.
The boundary characteristics of lucid dreamers.
Galvin, F
1990-06-01
Based on the previously established personality correlates of frequent lucid dreaming and frequent nightmare dreaming, several hypotheses were generated regarding the boundary characteristics of these dreamers relative to each other and to a control group of non-lucid and comparatively nightmare-free dreamers. The data from Hartmann's Boundary Questionnaire obtained from 40 subjects in each dreamer group (who were individually matched for sex, age, and background as far as possible) were analyzed. The results of the study give evidence that lucid dreamers have "thin" boundaries in many of the same senses that nightmare sufferers do, but can be differentiated from nightmare dreamers by the greater degree of coherence of their psychological sense of self as measured on the Self-Coherence Subscale of the Boundary Questionnaire. The suggestion is made that, given the similarity of "thin" boundaries, perhaps nightmare sufferers could become lucid dreamers and possibly resolve their nightmare condition while in the dream state.
Coherent perfect absorption in deeply subwavelength films in the single-photon regime
Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele
2015-01-01
The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications. PMID:25991584
Dynamic coherent backscattering mirror
NASA Astrophysics Data System (ADS)
Zeylikovich, I.; Xu, M.
2016-02-01
The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.
QUANTUM CONTROL OF LIGHT: From Slow Light and FAST CARS to Nuclear γ-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Scully, Marlan
2007-06-01
In recent work we have demonstrated strong coherent backward wave oscillation using forward propagating fields only. This surprising result is achieved by applying laser fields to an ultra-dispersive medium with proper chosen detunings to excite a molecular vibrational coherence that corresponds to a backward propagating wave [PRL, 97, 113001 (2006)]. The physics then has much in common with propagation of ultra-slow light. Applications of coherent scattering and remote sensing to the detection of bio and chemical pathogens (e.g., anthrax) via Coherent Anti-Raman Scattering together with Femtosecond Adaptive Spectroscopic Techniques (FAST CARS [Opt. Comm., 244, 423 (2005)]) will be discussed. Furthermore, the interplay between quantum optics (Dicke super and sub-radiant states) and nuclear physics (forward scattering of γ radiation) provides interesting problems and insights into the quantum control of scattered light [PRL, 96, 010501 (2005)].
Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science
NASA Astrophysics Data System (ADS)
Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.
2017-09-01
Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.
Vision sensing techniques in aeronautics and astronautics
NASA Technical Reports Server (NTRS)
Hall, E. L.
1988-01-01
The close relationship between sensing and other tasks in orbital space, and the integral role of vision sensing in practical aerospace applications, are illustrated. Typical space mission-vision tasks encompass the docking of space vehicles, the detection of unexpected objects, the diagnosis of spacecraft damage, and the inspection of critical spacecraft components. Attention is presently given to image functions, the 'windowing' of a view, the number of cameras required for inspection tasks, the choice of incoherent or coherent (laser) illumination, three-dimensional-to-two-dimensional model-matching, edge- and region-segmentation techniques, and motion analysis for tracking.
Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection
NASA Technical Reports Server (NTRS)
Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.
1999-01-01
LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.
NASA Astrophysics Data System (ADS)
Kosch, M.; Nielsen, E.
Two bi-static VHF radar systems STARE and SABRE have been employed to estimate ionospheric electric field distributions in the geomagnetic latitude range 61 1 - 69 3 degrees over Scandinavia corresponding to the global Region 2 current system 173 days of data from all four radars have been analysed during the period 1982 to 1986 The average magnetic field-aligned currents have been computed as a function of the Kp and Ae indices using an empirical model of ionospheric Pedersen and Hall conductance taking into account conductance gradients The divergence of horizontal Pedersen currents and Hall conductance gradients have approximately the same importance for generating the Region 2 field-aligned currents Pedersen conductance gradients have a significant modifying effect A case study of field-aligned currents has been performed using the STARE radar system to obtain the instantaneous ionospheric electric field distribution in the vicinity of an auroral arc The instantaneous Hall conductance was estimated from the Scandinavian Magnetometer Array This study clearly shows that even for quiet steady state geomagnetic conditions conductance gradients are important modifiers of magnetic field-aligned currents
k and q Dedicated to Paul Callaghan
NASA Astrophysics Data System (ADS)
Blümich, Bernhard
2016-06-01
The symbols k and q denote wave numbers in scattering experiments as well as in NMR imaging. Their exploration in NMR is intimately linked to the legacy of Paul Callaghan with his books Magnetic Resonance Microscopy and Translational Dynamics & Magnetic Resonance (Oxford University Press, Oxford 1991 and 2011) placing their focus with their titles on k and q, respectively. Some aspects of k and q have been revisited in the Paul Callaghan lecture of the author at the ISMAR Conference in Shanghai in 2015, which are reviewed here. In particular, there are two definitions of q, one relating to diffusive displacement (q) and the other to coherent flow (qv). Concerning the latter, it turns out, that in the short gradient pulse limit, the common anti-phase pulsed field-gradient scheme can be replaced with schemes employing three and more gradient pulses, which derive from differentiation rules in numerical analysis. Practical gradient modulation schemes with finite gradient pulse widths follow from these to measure velocity with improved accuracy. This approach can be expanded to acceleration and higher order transport coefficients with applications to measurements of flow and potentially also restricted diffusion.
Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.
Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W
2000-02-01
The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences. Copyright 2000 Academic Press.
Shadowgraph Study of Gradient Driven Fluctuations
NASA Technical Reports Server (NTRS)
Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William
2002-01-01
A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.
Shor, Vlada; Grinstein-Cohen, Orli; Reinshtein, Judith; Liberman, Orly; Delbar, Vered
2015-02-01
To compare HRQOL of husbands of women with non-metastatic breast cancer to husbands of healthy women. Additionally, to examine the impact of Sense of Coherence (SOC), socio-demographic, and clinical variables, on HRQOL of spouses in both groups. This study used a comparative, matched, convenience sample. Husbands of women with non-metastatic breast cancer (n = 50), undergoing chemotherapy during 3-6 months after diagnoses and spouses of healthy women (n = 50) participated in a study. HRQOL was measured using the Medical Outcomes Study (MOS SF-36), and coping characteristics were measured using the Short Sense of Coherence scale. Socio-demographic factors, cancer stage, and treatments were collected. The groups were matched by age, education, employment (working/not working). The physical and mental component summary scores were dependent variables in the regression analysis. Physical and Mental Component Summary indexes in the study group were significantly lower than in the control group. Higher education level, greater income, or more daily working hours were associated with better physical health index (added 30% to explaining the variance). The only personal variable predicting the mental component of QOL was financial situation (added 7%). Higher SOC was associated with higher HRQOL. Disease and treatment characteristics were found to have no influence upon the husbands' QOL. While the main influence found in this study of a woman's breast cancer on her partner's quality of life is on the mental component, the partner's physical health should also be taken into account. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kerstis, Birgitta; Nohlert, Eva; Öhrvik, John; Widarsson, Margareta
2016-01-01
Aim To determine whether there is an association between depressive symptoms and parental stress among mothers and fathers during early parenthood in Sweden. Methods In this study, 401 mothers and 396 fathers (393 couples) were included; the Edinburgh Postnatal Depression Scale and the Sense of Coherence Scale were measured 3 months after childbirth, and the Swedish Parenthood Stress Questionnaire and the Sense of Coherence Scale after 18 months. Complete data for multivariable analysis were available for 264 mothers and 252 fathers. Results The mothers estimated greater total depressive symptoms and parental stress than the fathers did. Both the mothers and the fathers had the greatest level of stress in the sub-area ‘Role restriction’. The mothers had the lowest level of stress in the sub-area ‘Social isolation’ and the fathers in the sub-area ‘Incompetence’. The mothers perceived greater levels of stress than the fathers did in all sub-areas except for ‘Social isolation’, where the fathers perceived higher stress. There was an association between the parents’ depressive symptoms and parental stress. The parents’ own depressive symptoms at 3 months and sense of coherence and the partners’ parental stress at 18 months were positively associated with the parental stress at 18 months in univariable and multivariable analyses. Conclusions Understanding the relationship between depressive symptoms and parental stress is important for health professionals so they can offer parents adequate support in early parenthood to optimize the conditions for raising a child. This knowledge should also be communicated to the parents. PMID:26947219
Tang, Lili; Fritzsche, Kurt; Leonhart, Rainer; Pang, Ying; Li, Jinjiang; Song, Lili; Fischer, Irmela; Koch, Maike; Wuensch, Alexander; Mewes, Ricarda; Schaefert, Rainer
2017-12-01
To evaluate the relationship between quality of life (QOL) and physical as well as psychological variables in Chinese breast cancer patients. This multicenter cross-sectional study enrolled 254 Chinese breast cancer patients in different stages and treatment phases. They answered standard instruments assessing QOL (EORTC), somatic symptom severity (PHQ-15), depression (PHQ-9), anxiety (GAD-7), health-related anxiety (WI-7), illness perception (BIPQ), and sense of coherence (SOC-9). Canonical correlation was applied to identify the strongest correlates between the physical, emotional and social QOL scales and the physical and psychological variables. In our sample, a low global QOL was significantly associated with the following physical and psychological variables: symptom-related disability (Karnofsky Index) (r = .211, p < .01), somatic symptom severity (r = -.391, p < .001), depression (r = -.488, p < .001), anxiety (r = -.439, p < .001), health-related anxiety (r = -.398, p < .001), dysfunctional illness perception (r = -.411, p < .001), and sense of coherence (r = .371, p < .001). In the canonical correlation analysis, high somatic symptom severity, depression, anxiety, dysfunctional illness perception, and low sense of coherence showed the strongest correlations with low physical, emotional and social functioning. The first three significant canonical correlations between these two sets of variables were .78, .56, and .45. QOL in Chinese breast cancer patients is strongly associated with psychological factors. Our results suggest that Chinese physicians and nurses should incorporate these factors into their care for women with breast cancer to improve patients' QOL.
Adolescents' responses to online peer conflict: How self‐evaluation and ethnicity matter
Bos, Marieke G.N.; Stevenson, Claire E.
2017-01-01
Abstract For parents, online platforms where their children interact with others often feel like a “black box” in terms of what exactly is happening. In this study, we developed an ecologically valid online computer game in which a (computer‐generated) peer teammate tried to provoke frustration, in order to examine (a) adolescents' responses and (b) how indices of self‐evaluation (i.e., sense of coherence and self‐esteem) and demographic variables (i.e., gender and ethnicity) matter to these responses. Like gender, being a member of a minority or majority group may influence how provocations by peers are interpreted, influencing how one responds. Fifteen‐year‐old Dutch and Moroccan‐Dutch adolescents (N = 167) completed self‐reports and played the online computer game. The game indeed elicited frustration, with increased self‐reported anger. Moreover, expressions of displeasure were much more common during and after provocation than before provocation. Crucially, perceived self‐evaluation mattered; higher levels of sense of coherence but lower levels of self‐esteem (only in Moroccan‐Dutch group) contributed to fewer expressions of displeasure. Gender did not play a moderating role. Our findings provide initial insights into individual differences in adolescents' responses in an online peer‐conflict situation. Highlights We studied Dutch and Moroccan-Dutch adolescents' responses during online peer provocation and how self-evaluation and demographic variables matter.Provocation by the (computer-generated) peer teammate increased expressions of displeasure.More sense of coherence but less self-esteem was associated with fewer expressions of displeasure, but ethnicity moderated the effect with self-esteem. PMID:29780286
Adolescents' responses to online peer conflict: How self-evaluation and ethnicity matter.
Novin, Sheida; Bos, Marieke G N; Stevenson, Claire E; Rieffe, Carolien
2018-01-01
For parents, online platforms where their children interact with others often feel like a "black box" in terms of what exactly is happening. In this study, we developed an ecologically valid online computer game in which a (computer-generated) peer teammate tried to provoke frustration, in order to examine (a) adolescents' responses and (b) how indices of self-evaluation (i.e., sense of coherence and self-esteem) and demographic variables (i.e., gender and ethnicity) matter to these responses. Like gender, being a member of a minority or majority group may influence how provocations by peers are interpreted, influencing how one responds. Fifteen-year-old Dutch and Moroccan-Dutch adolescents (N = 167) completed self-reports and played the online computer game. The game indeed elicited frustration, with increased self-reported anger. Moreover, expressions of displeasure were much more common during and after provocation than before provocation. Crucially, perceived self-evaluation mattered; higher levels of sense of coherence but lower levels of self-esteem (only in Moroccan-Dutch group) contributed to fewer expressions of displeasure. Gender did not play a moderating role. Our findings provide initial insights into individual differences in adolescents' responses in an online peer-conflict situation. We studied Dutch and Moroccan-Dutch adolescents' responses during online peer provocation and how self-evaluation and demographic variables matter.Provocation by the (computer-generated) peer teammate increased expressions of displeasure.More sense of coherence but less self-esteem was associated with fewer expressions of displeasure, but ethnicity moderated the effect with self-esteem.
[INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures
NASA Astrophysics Data System (ADS)
Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang
2018-05-01
Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.
Pulse-compression ghost imaging lidar via coherent detection.
Deng, Chenjin; Gong, Wenlin; Han, Shensheng
2016-11-14
Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.
Kindermann, David; Schmid, Carolin; Derreza-Greeven, Cassandra; Huhn, Daniel; Kohl, Rupert Maria; Junne, Florian; Schleyer, Maritta; Daniels, Judith K; Ditzen, Beate; Herzog, Wolfgang; Nikendei, Christoph
2017-01-01
A substantial proportion of refugees, fleeing persecution, torture, and war, are estimated to suffer from psychological traumatization. After being sheltered in reception centers, the refugees come in close contact with different occupational groups, e.g., physicians, social workers, and interpreters. Previous studies ascertained that such interpreters themselves often suffer from primary psychological traumatization. Moreover, through translating refugees' potentially traumatic depictions, the interpreters are in danger of developing a so-called secondary traumatization. The present study aimed (1) to analyze the prevalence rates of primary traumatization in interpreters, (2) to assess the prevalence of secondary traumatization, depression, anxiety, and stress symptoms, (3) to examine the association between secondary traumatization symptoms and resilience factors in terms of sense of coherence, social support, and attachment style, and (4) to test whether these resilience factors mediate the relationship between primary and secondary traumatization. Participating interpreters (n = 64) were assessed for past exposure to potentially traumatic events as well as symptoms of posttraumatic stress disorder (PTSD), secondary traumatization, depressive symptoms, anxiety, and subjective stress levels. Furthermore, we conducted psychometric surveys to measure interpreters' sense of coherence, degree of social support, and attachment style as potential predictors. (1) 9% of the interpreters fulfilled all criteria for PTSD and a further 33% had subclinical PTSD; (2) a secondary traumatization was present in 21% of the examined interpreters - of these, 6% showed very high total scores indicating a severe secondary traumatization; furthermore, we found higher scores for depression, anxiety, and stress as compared to representative population samples, especially for females; (3) a present sense of coherence, an existing social support network, and a secure or preoccupied attachment style correlated significantly with low scores for secondary traumatization; and (4) a significant correlation emerged between primary and secondary traumatization (r = 0.595, p < 0.001); a mediation analysis revealed that this effect is partially mediated by secure attachment. A substantial proportion of interpreters working with refugees suffer from primary as well as secondary traumatization. However, high scores for sense of coherence and social support, male gender, and especially a secure attachment style were identified as resilience factors for secondary traumatization. The results may have implications for the selection, training, and supervision of interpreters. © 2017 S. Karger AG, Basel.
Madarasova Geckova, Andrea; Tavel, Peter; van Dijk, Jitse P; Abel, Thomas; Reijneveld, Sijmen A
2010-03-24
Our study aims to follow this effort and to explore the association between health, socioeconomic background, school-related factors, social support and adolescents' sense of coherence and educational aspirations among adolescents from different educational tracks and to contribute to the existing body of knowledge on the role of educational aspirations in the social reproduction of health inequalities. We expect that socioeconomic background will contribute to the development of educational aspirations, but this association will be modified by available social and individual resources, which may be particularly favourable for the group of adolescents who are on lower educational tracks, since for them such resources may lead to gaining a higher educational level. We collected data on the socioeconomic background (mother's and father's education and employment status, doubts about affordability of future study), school-related factors (school atmosphere, school conditions, attitudes towards school), perceived social support, sense of coherence (manageability, comprehensibility, meaningfulness) and the self-rated health of a national sample of Slovak adolescents (n = 1992, 53.5% females, mean age 16.9 years). We assessed the association of these factors with educational aspirations, overall and by educational tracks (grammar schools, specialised secondary schools, vocational schools). We found statistically significant associations with educational aspirations for the factors parental educational level, father's unemployment, doubts about the affordability of future study, school atmosphere, attitude towards school, social support from the father and a sense of coherence. Social support from the mother and friends was not associated with educational aspiration, nor was self-rated health. Besides affinity towards school, the determinants of educational aspirations differed among adolescents on different educational tracks. Educational aspirations of grammar school students were associated with father's education, while the aspirations of their peers on lower educational tracks had a stronger association with mother's education and perceived social support from father and friends. Moreover, a sense of coherence contributes to the reporting of educational aspiration by students on different educational tracks. Characteristics of the school environment, the family and the individual adolescent are all associated with the level of educational aspiration, but in a different way for different educational tracks. Interventions aimed at reducing socioeconomic inequalities in health via the educational system should, therefore, take this variation and the rather pivotal role of the father into account.
2010-01-01
Background Our study aims to follow this effort and to explore the association between health, socioeconomic background, school-related factors, social support and adolescents' sense of coherence and educational aspirations among adolescents from different educational tracks and to contribute to the existing body of knowledge on the role of educational aspirations in the social reproduction of health inequalities. We expect that socioeconomic background will contribute to the development of educational aspirations, but this association will be modified by available social and individual resources, which may be particularly favourable for the group of adolescents who are on lower educational tracks, since for them such resources may lead to gaining a higher educational level. Methods We collected data on the socioeconomic background (mother's and father's education and employment status, doubts about affordability of future study), school-related factors (school atmosphere, school conditions, attitudes towards school), perceived social support, sense of coherence (manageability, comprehensibility, meaningfulness) and the self-rated health of a national sample of Slovak adolescents (n = 1992, 53.5% females, mean age 16.9 years). We assessed the association of these factors with educational aspirations, overall and by educational tracks (grammar schools, specialised secondary schools, vocational schools). Results We found statistically significant associations with educational aspirations for the factors parental educational level, father's unemployment, doubts about the affordability of future study, school atmosphere, attitude towards school, social support from the father and a sense of coherence. Social support from the mother and friends was not associated with educational aspiration, nor was self-rated health. Besides affinity towards school, the determinants of educational aspirations differed among adolescents on different educational tracks. Educational aspirations of grammar school students were associated with father's education, while the aspirations of their peers on lower educational tracks had a stronger association with mother's education and perceived social support from father and friends. Moreover, a sense of coherence contributes to the reporting of educational aspiration by students on different educational tracks. Conclusions Characteristics of the school environment, the family and the individual adolescent are all associated with the level of educational aspiration, but in a different way for different educational tracks. Interventions aimed at reducing socioeconomic inequalities in health via the educational system should, therefore, take this variation and the rather pivotal role of the father into account. PMID:20334644
Gradient effects in a new class of electro-elastic bodies
NASA Astrophysics Data System (ADS)
Arvanitakis, Antonios
2018-06-01
Continuum theories for electro-elastic solids suggest the development of electric field or polarization-based models. Advanced versions of these models are the so-called gradient models, i.e., polarization gradient and electric field gradient models, which prove to be more than capable of explaining the behavior of a continuum in a wider range of length scales. In this work, implicit constitutive relations for electro-elastic bodies are considered with the introduction of polarization and electric field gradient effects. In this sense, the new class of electro-elastic bodies extends even further to account for nonlocality in constitutive equations, besides strain-limiting behavior and polarization saturation for large values of stresses and electric field, respectively. Nonlocality in constitutive equations is essential in modeling various phenomena.
Modern fibre-optic coherent lidars for remote sensing
NASA Astrophysics Data System (ADS)
Hill, Chris
2015-10-01
This paper surveys some growth areas in optical sensing that exploit near-IR coherent laser sources and fibreoptic hardware from the telecoms industry. Advances in component availability and performance are promising benefits in several military and commercial applications. Previous work has emphasised Doppler wind speed measurements and wind / turbulence profiling for air safety, with recent sharp increases in numbers of lidar units sold and installed, and with wider recognition that different lidar / radar wavebands can and should complement each other. These advances are also enabling fields such as microDoppler measurement of sub-wavelength vibrations and acoustic waves, including non-lineof- sight acoustic sensing in challenging environments. To shed light on these different applications we review some fundamentals of coherent detection, measurement probe volume, and parameter estimation - starting with familiar similarities and differences between "radar" and "laser radar". The consequences of changing the operating wavelength by three or four orders of magnitude - from millimetric or centimetric radar to a typical fibre-optic lidar working near 1.5 μm - need regular review, partly because of continuing advances in telecoms technology and computing. Modern fibre-optic lidars tend to be less complicated, more reliable, and cheaper than their predecessors; and they more closely obey the textbook principles of easily adjusted and aligned Gaussian beams. The behaviours of noises and signals, and the appropriate processing strategies, are as expected different for the different wavelengths and applications. For example, the effective probe volumes are easily varied (e.g. by translating a fibre facet) through six or eight orders of magnitude; as the average number of contributing scatterers varies, from <<1 through ~1 to >>1, we should review any assumptions about "many" scatterers and Gaussian statistics. Finally, some much older but still relevant scientific work (by A G Bell, E H Armstrong and their colleagues) is recalled, in the context of remote sensing of acoustic vibrations.
Superconducting gravity gradiometer and a test of inverse square law
NASA Technical Reports Server (NTRS)
Moody, M. V.; Paik, Ho Jung
1989-01-01
The equivalence principle prohibits the distinction of gravity from acceleration by a local measurement. However, by making a differential measurement of acceleration over a baseline, platform accelerations can be cancelled and gravity gradients detected. In an in-line superconducting gravity gradiometer, this differencing is accomplished with two spring-mass accelerometers in which the proof masses are confined to motion in a single degree of freedom and are coupled together by superconducting circuits. Platform motions appear as common mode accelerations and are cancelled by adjusting the ratio of two persistent currents in the sensing circuit. The sensing circuit is connected to a commercial SQUID amplifier to sense changes in the persistent currents generated by differential accelerations, i.e., gravity gradients. A three-axis gravity gradiometer is formed by mounting six accelerometers on the faces of a precision cube, with the accelerometers on opposite faces of the cube forming one of three in-line gradiometers. A dedicated satellite mission for mapping the earth's gravity field is an important one. Additional scientific goals are a test of the inverse square law to a part in 10(exp 10) at 100 km, and a test of the Lense-Thirring effect by detecting the relativistic gravity magnetic terms in the gravity gradient tensor for the earth.
2018-01-01
Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets. PMID:29562642
1994-06-01
8217tonditional events" as well-defined ob- jects as in De Finetti [14];, Gilio t[15]L When the strength of the rule b-)a is computed in the context of...uncertain outcome (see, e.g., McGee [5]-) or a coherency argument inthe sense ’of De Finetti as employed by Gilio et al [15],([17J1 or Coletti et al. 118...probabil- ity through a scoring characterization, extending De Finetti’s coherency principle. (See also Gilio et al. [17] for additional results
A Two Micron Coherent Differential Absorption Lidar Development
NASA Technical Reports Server (NTRS)
Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo C.; Koch, Grady J.; Beyon, Jeffrey Y.; VanValkenburg, Randal L.; Kavaya, Michael J.;
2010-01-01
A pulsed, 2-micron coherent Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument measures atmospheric CO2 profiles (by DIAL) from a ground platform. It allows the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop. Keywords: Differential Absorption Lidar, Near Infrared Laser,
NASA Astrophysics Data System (ADS)
Cao, Hui; Knitter, Sebastian; Liu, Changgeng; Redding, Brandon; Khokha, Mustafa Kezar; Choma, Michael Andrew
2017-02-01
Speckle formation is a limiting factor when using coherent sources for imaging and sensing, but can provide useful information about the motion of an object. Illumination sources with tunable spatial coherence are therefore desirable as they can offer both speckled and speckle-free images. Efficient methods of coherence switching have been achieved with a solid-state degenerate laser, and here we demonstrate a semiconductor-based degenerate laser system that can be switched between a large number of mutually incoherent spatial modes and few-mode operation. Our system is designed around a semiconductor gain element, and overcomes barriers presented by previous low spatial coherence lasers. The gain medium is an electrically-pumped vertical external cavity surface emitting laser (VECSEL) with a large active area. The use of a degenerate external cavity enables either distributing the laser emission over a large ( 1000) number of mutually incoherent spatial modes or concentrating emission to few modes by using a pinhole in the Fourier plane of the self-imaging cavity. To demonstrate the unique potential of spatial coherence switching for multimodal biomedical imaging, we use both low and high spatial coherence light generated by our VECSEL-based degenerate laser for imaging embryo heart function in Xenopus, an important animal model of heart disease. The low-coherence illumination is used for high-speed (100 frames per second) speckle-free imaging of dynamic heart structure, while the high-coherence emission is used for laser speckle contrast imaging of the blood flow.
Compressed sensing with gradient total variation for low-dose CBCT reconstruction
NASA Astrophysics Data System (ADS)
Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Seongchae; Huh, Young; Park, Justin C.; Lee, Byeonghun; Baek, Junghee; Kim, Eunyoung
2015-06-01
This paper describes the improvement of convergence speed with gradient total variation (GTV) in compressed sensing (CS) for low-dose cone-beam computed tomography (CBCT) reconstruction. We derive a fast algorithm for the constrained total variation (TV)-based a minimum number of noisy projections. To achieve this task we combine the GTV with a TV-norm regularization term to promote an accelerated sparsity in the X-ray attenuation characteristics of the human body. The GTV is derived from a TV and enforces more efficient computationally and faster in convergence until a desired solution is achieved. The numerical algorithm is simple and derives relatively fast convergence. We apply a gradient projection algorithm that seeks a solution iteratively in the direction of the projected gradient while enforcing a non-negatively of the found solution. In comparison with the Feldkamp, Davis, and Kress (FDK) and conventional TV algorithms, the proposed GTV algorithm showed convergence in ≤18 iterations, whereas the original TV algorithm needs at least 34 iterations in reducing 50% of the projections compared with the FDK algorithm in order to reconstruct the chest phantom images. Future investigation includes improving imaging quality, particularly regarding X-ray cone-beam scatter, and motion artifacts of CBCT reconstruction.
Temporal coherence of two alpine lake basins of the Colorado Front Range, USA
Baron, Jill S.; Caine, N.
2000-01-01
1. Knowledge of synchrony in trends is important to determining regional responses of lakes to disturbances such as atmospheric deposition and climate change. We explored the temporal coherence of physical and chemical characteristics of two series of mostly alpine lakes in nearby basins of the Colorado Rocky Mountains. Using year-to-year variation over a 10-year period, we asked whether lakes more similar in exposure to the atmosphere be-haved more similarly than those with greater influence of catchment or in-lake processes.2. The Green Lakes Valley and Loch Vale Watershed are steeply incised basins with strong altitudinal gradients. There are glaciers at the heads of each catchment. The eight lakes studied are small, shallow and typically ice-covered for more than half the year. Snowmelt is the dominant hydrological event each year, flushing about 70% of the annual discharge from each lake between April and mid-July. The lakes do not thermally stratify during the period of open water. Data from these lakes included surface water temper-ature, sulphate, nitrate, calcium, silica, bicarbonate alkalinity and conductivity.3. Coherence was estimated by Pearson's correlation coefficient between lake pairs for each of the different variables. Despite close geographical proximity, there was not a strong direct signal from climatic or atmospheric conditions across all lakes in the study. Individual lake characteristics overwhelmed regional responses. Temporal coherence was higher for lakes within each basin than between basins and was highest for nearest neighbours.4. Among the Green Lakes, conductivity, alkalinity and temperature were temporally coherent, suggesting that these lakes were sensitive to climate fluctuations. Water tem-perature is indicative of air temperature, and conductivity and alkalinity concentrations are indicative of dilution from the amount of precipitation flushed through by snowmelt.5. In Loch Vale, calcium, conductivity, nitrate, sulphate and alkalinity were temporally coherent, while silica and temperature were not. This suggests that external influences are attenuated by internal catchment and lake processes in Loch Vale lakes. Calcium and sulphate are primarily weathering products, but sulphate derives both from deposition and from mineral weathering. Different proportions of snowmelt versus groundwater in different years could influence summer lake concentrations. Nitrate is elevated in lake waters from atmospheric deposition, but the internal dynamics of nitrate and silica may be controlled by lake food webs. Temperature is attenuated by inconsistently different climates across altitude and glacial meltwaters.6. It appears that, while the lakes in the two basins are topographically close, geologically and morphologically similar, and often connected by streams, only some attributes are temporally coherent. Catchment and in-lake processes influenced temporal patterns, especially for temperature, alkalinity and silica. Montane lakes with high altitudinal gradients may be particularly prone to local controls compared to systems where coherence is more obvious.
Fiber-based Coherent Lidar for Target Ranging, Velocimetry, and Atmospheric Wind Sensing
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierrottet, Diego
2006-01-01
By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable lidar suitable for operation in a space environment is being developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, Paul; Skeehan, Kirsten; Smith, Jerome
Report on the confirmation of Commercial Geothermal Resources in Colorado describing the on site testing and analysis to confirm remote sensing identified potential resources. A series of thermal gradient wells were drilled in the Pagosa Springs region and the data collected is analyzed within.
The laboratory demonstration and signal processing of the inverse synthetic aperture imaging ladar
NASA Astrophysics Data System (ADS)
Gao, Si; Zhang, ZengHui; Xu, XianWen; Yu, WenXian
2017-10-01
This paper presents a coherent inverse synthetic-aperture imaging ladar(ISAL)system to obtain high resolution images. A balanced coherent optics system in laboratory is built with binary phase coded modulation transmit waveform which is different from conventional chirp. A whole digital signal processing solution is proposed including both quality phase gradient autofocus(QPGA) algorithm and cubic phase function(CPF) algorithm. Some high-resolution well-focused ISAL images of retro-reflecting targets are shown to validate the concepts. It is shown that high resolution images can be achieved and the influences from vibrations of platform involving targets and radar can be automatically compensated by the distinctive laboratory system and digital signal process.
A review of quasi-coherent structures in a numerically simulated turbulent boundary layer
NASA Technical Reports Server (NTRS)
Robinson, S. K.; Kline, S. J.; Spalart, P. R.
1989-01-01
Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated.
NASA Astrophysics Data System (ADS)
Zheng, Maoteng; Zhang, Yongjun; Zhou, Shunping; Zhu, Junfeng; Xiong, Xiaodong
2016-07-01
In recent years, new platforms and sensors in photogrammetry, remote sensing and computer vision areas have become available, such as Unmanned Aircraft Vehicles (UAV), oblique camera systems, common digital cameras and even mobile phone cameras. Images collected by all these kinds of sensors could be used as remote sensing data sources. These sensors can obtain large-scale remote sensing data which consist of a great number of images. Bundle block adjustment of large-scale data with conventional algorithm is very time and space (memory) consuming due to the super large normal matrix arising from large-scale data. In this paper, an efficient Block-based Sparse Matrix Compression (BSMC) method combined with the Preconditioned Conjugate Gradient (PCG) algorithm is chosen to develop a stable and efficient bundle block adjustment system in order to deal with the large-scale remote sensing data. The main contribution of this work is the BSMC-based PCG algorithm which is more efficient in time and memory than the traditional algorithm without compromising the accuracy. Totally 8 datasets of real data are used to test our proposed method. Preliminary results have shown that the BSMC method can efficiently decrease the time and memory requirement of large-scale data.
Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy
Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.
2010-01-01
Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883
NASA Astrophysics Data System (ADS)
Green, David N.
2015-04-01
The spatial coherence structure of 30 infrasound array detections, with source-to-receiver ranges of 25-6500 km, has been measured within the 0.25-1 Hz passband. The data were recorded at International Monitoring System (IMS) microbarograph arrays with apertures of between 1 and 4 km. Such array detections are of interest for Comprehensive Nuclear-Test-Ban Treaty monitoring. The majority of array detections (e.g. 80 per cent of recordings in the third-octave passband centred on 0.63 Hz) exhibit spatial coherence loss anisotropy that is consistent with previous lower frequency atmospheric acoustic studies; coherence loss is more rapid perpendicular to the acoustic propagation direction than parallel to it. The thirty array detections display significant interdetection variation in the magnitude of spatial coherence loss. The measurements can be explained by the simultaneous arrival of wave fronts at the recording array with angular beamwidths of between 0.4 and 7° and velocity bandwidths of between 2 and 40 m s-1. There is a statistically significant positive correlation between source-to-receiver range and the magnitude of coherence loss. Acoustic multipathing generated by interactions with fine-scale wind and temperature gradients along stratospheric propagation paths is qualitatively consistent with the observations. In addition, the study indicates that to isolate coherence loss generated by propagation effects, analysis of signals exhibiting high signal-to-noise ratios (SNR) is required (SNR2 > 11 in this study). The rapid temporal variations in infrasonic noise observed in recordings at IMS arrays indicates that correcting measured coherence values for the effect of noise, using pre-signal estimates of noise power, is ineffective.
2013-03-01
holo- graphic recording on photo-thermo-plastic structure ,” J. Modern Opt. 57(10), 854–858 (2010). 6. N. Kukhtarev and T. Kukhtareva, “ Dynamic ...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 21-10-2013 Journal Article Remote Sensing and Characterization of Oil on Water Using...green-blue region can also degrade oil. This finding indicates that properly structured laser clean-up can be an alternative method of decontamination
2014-09-30
34Ecosystem scale acoustic sensing reveals humpback whale behavior synchronous with herring spawning processes and re-evaluation finds no effect of sonar...on humpback song occurrence in the Gulf of Maine in Fall 2006." PlosOne (accepted, in print for 2014). 2. D. Tran, W. Huang, A. Bohn, D. Wang, Z...Gong, N. Makris and P. Ratilal, "Using a coherent hydrophone array for observing sperm whale range, classification, and shallow-water dive profiles
An atom interferometer inside a hollow-core photonic crystal fiber
Xin, Mingjie; Leong, Wui Seng; Chen, Zilong; Lan, Shau-Yu
2018-01-01
Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light–based quantum systems. We use the optical fields in a hollow-core photonic crystal fiber to spatially split, reflect, and recombine a coherent superposition state of free-falling 85Rb atoms to realize an inertia-sensitive atom interferometer. The interferometer operates over a diffraction-free distance, and the contrasts and phase shifts at different distances agree within one standard error. The integration of phase coherent photonic and quantum systems here shows great promise to advance the capability of atom interferometers in the field of precision measurement and quantum sensing with miniature design of apparatus and high efficiency of laser power consumption. PMID:29372180
Kenneth B. Jr. Pierce; C. Kenneth Brewer; Janet L. Ohmann
2010-01-01
This study was designed to test the feasibility of combining a method designed to populate pixels with inventory plot data at the 30-m scale with a new national predictor data set. The new national predictor data set was developed by the USDA Forest Service Remote Sensing Applications Center (hereafter RSAC) at the 250-m scale. Gradient Nearest Neighbor (GNN)...
Thermotropism by primary roots of maize
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortin, M.-C.; Poff, K.L.
1990-05-01
Sensing in the roots of higher plants has long been recognized to be restricted mainly to gravitropism and thigmotropism. However, root responses to temperature gradients have not been extensively studied. We have designed experiments under controlled conditions to test if and how root direction of maize can be altered by thermal gradients perpendicular to the gravity vector. Primary roots of maize grown on agar plates exhibit positive thermotropism (curvature toward the warmer temperature) when exposed to gradients of 0.5 to 4.2{degree}C cm{sup {minus}1}. The extent of thermotropism depends on the temperature gradient and the temperature at which the root ismore » placed within the gradient. The curvature cannot be accounted for by differential growth as a direct effect of temperature on each side of the root.« less
Du, Shouqiang; Chen, Miao
2018-01-01
We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.
Microstructure actuation and gas sensing by the Knudsen thermal force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strongrich, Andrew; Alexeenko, Alina, E-mail: alexeenk@purdue.edu
2015-11-09
The generation of forces and moments on structures immersed in rarefied non-isothermal gas flows has received limited practical implementation since first being discovered over a century ago. The formation of significant thermal stresses requires both large thermal gradients and characteristic dimensions which are comparable to the gas molecular mean free path. For macroscopic geometries, this necessitates impractically high temperatures and very low pressures. At the microscale, however, these conditions are easily achieved, allowing the effects to be exploited, namely, for gas-property sensing and microstructure actuation. In this letter, we introduce and experimentally evaluate performance of a microelectromechanical in-plane Knudsen radiometricmore » actuator, a self-contained device having Knudsen thermal force generation, sensing, and tuning mechanisms integrated onto the same platform. Sensitivity to ambient pressure, temperature gradient, as well as gas composition is demonstrated. Results are presented in terms of a non-dimensional force coefficient, allowing measurements to be directly compared to the previous experimental and computational data on out-of-plane cantilevered configurations.« less
Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G
2014-01-27
Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.
Birmingham, C Laird; Touyz, Stephen; Harbottle, Jane
2009-01-01
Anorexia nervosa (AN) and bulimia nervosa (BN) are classified as separate and distinct clinical disorders. Recently, there has been support for a transdiagnostic theory of eating disorders, which would reclassify them as one disorder. To determine whether AN and BN are a single disorder with one cause or separate disorders with different causes. Hill's Criteria of Causation were used to test the hypothesis that AN and BN are one disorder with a single cause. Hill's Criteria of Causation demand that the minimal conditions are needed to establish a causal relationship between two items which include all of the following: strength of association, consistency, temporality, biological gradient, plausibility, coherence, experimental evidence and analogy. The hypothesis that AN and BN have a single cause did not meet all of Hill's Criteria of Causation. Strength of association, plausibility, analogy and some experimental evidence were met, but not consistency, specificity, temporality, biological gradient, coherence and most experimental evidence. The hypothesis that AN and BN are a single disorder with a common cause is not supported by Hill's Criteria of Causation. This argues against the notion of a transdiagnostic theory of eating disorders.
Turró Garriga, Oriol; Farrés Costa, Sílvia; Pérez Terré, Albert; Batlle Amat, Pau
2018-02-24
The care of dependent persons is arduous, and requires time, energy, and physical effort on the part of caregivers. Personal characteristics, such as the sense of coherence (SOC), can influence the perceived burden and care giving. To determine the impact of SOC on the perceived burden and to determine if these characteristics are associated with adherence to a psycho-educational program for informal caregivers. Prospective observational study of caregivers of dependent persons participating in the 'School of Caregivers', a psycho-educational program for family and paid caregivers. An analysis was made of the SOC-13 items and the results of the Zarit Burden Interview. The relationship between the SOC and the adherence to the program (≥50% sessions) was also analysed. The study included 96 participants, with 71.9% family carers. The higher burden was associated with a lower SOC meaningfulness factor (β=-0.388; P=.002), and to be a relative vs. paid carer (β=-0.300; P=.010). Just over half (52.1%) of carers completed 50% or more sessions, and in the case of the relatives, this adherence increased by higher SOC (OR: 1.1, P=.034), and lower burden (OR: 0.95, P=.032). The lack of adherence of paid caregivers was not associated with any of the analysed variables. The sense of coherence and mainly the meaning, is a characteristic to take into account for the adaptation of interventions in caregivers and provide them with greater equity working more on the people who need it the most (lower SOC and greater burden). Copyright © 2018 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.
Anyfantakis, Dimitrios; Symvoulakis, Emmanouil K; Panagiotakos, Demosthenes B; Tsetis, Dimitrios; Castanas, Elias; Shea, Sue; Venihaki, Maria; Lionis, Christos
2013-01-01
This study aimed at exploring to what extent psychosocial factors, such as religiosity/spirituality and sense of coherence, mediate the negative effects of stress on a variety of cardiometabolic indicators, i.e., hypertension, diabetes, cardiovascular and cerebrovascular disease, and atherosclerotic bio-clinical markers. A total of 220 subjects (66.2±16.0 years) of the SPILI III cohort (1988-2012) attending a primary care setting in Spili, a rural town in Crete, represented the target group for the present study. Of these, 195 (88.6%) participated in the re-examination (67.2±15.2 years). All participants underwent a standardized procedure including evaluation of anthropometric measurements, biochemical indicators of atherosclerosis, stress hormones, in parallel with ultrasound measurements of carotid intima media thickness (IMT). Religiosity, spirituality and sense of coherence were evaluated with the use of international questionnaires translated into the Greek language and linguistically validated. Participants with higher levels of religious and spiritual beliefs presented lower levels of carotid IMT (1.01±0.101 vs 1.53±0.502 mm, p<0.001). Patterns of inverse relationships were also observed between religiosity/spirituality and prevalence of diabetes (35.1% vs. 2%, p<0.001) with an estimated diabetes risk, fully adjusted odds ratio, 95% CI: 0.91 (0.87-0.94). Highly religious participants presented lower serum cortisol levels (12.3±5.8 vs. 18.2±5.1 μg/dl, p<0.001). Sense of coherence was positively associated with religiosity/spirituality [mean SOC (SD): 123±20 vs. 158±15) p<0.001]. These findings may be associated with a possible favourable effect of religiosity/spirituality on several cardio-metabolic determinants, therefore deserving further attention by healthcare practitioners and researchers.
Gui, Li; Gu, Shen; Barriball, K Louise; While, Alison E; Chen, Guoliang
2014-05-01
Nurse education has undergone considerable changes creating new opportunities and challenges for nurse teachers. Limited comparative research of the working lives of nurse teachers has been reported, thus similarities and differences that may exist are unidentified. This paper reports a study of the working lives of nurse teachers in mainland China and the United Kingdom. A cross-sectional questionnaire survey. Census sample of nurse teachers working in four nursing schools in mainland China (n=3) and the United Kingdom (n=1). The overall response rate was 56.8% (China=61, 61.0%, UK=60, 53.1%). Completion of questionnaire specifically developed for the study but comprising six validated tools to collecting data on: job satisfaction, sense of coherence, role conflict and role ambiguity, work empowerment and professional identification. Data on self-reported roles and personal details were also collected. Data were collected between September 2008 and January 2009. Both samples were satisfied with their jobs overall but reported low levels of satisfaction with promotion. Chinese nurse teachers working full-time reported the lowest level for sense of coherence and professional identification. Nurse teachers working full-time in the United Kingdom reported the highest role conflict score. Sense of coherence and work empowerment were significantly and positively correlated to job satisfaction. Role conflict and role ambiguity were negatively correlated (but not always significantly) to job satisfaction and its facets. For respondents in mainland China, professional identification was significantly and positively correlated with overall job satisfaction and its facets. Strategies to improve job satisfaction with promotion opportunities for both samples are indicated. Respondents working full-time in both mainland China and the United Kingdom experienced greater challenges at work than their part-time colleagues. © 2013.
Numerical simulations of electromagnetic scattering by Solar system objects
NASA Astrophysics Data System (ADS)
Dlugach, Janna M.
2016-11-01
Having been profoundly stimulated by the seminal work of Viktor V. Sobolev, I have been involved in multi-decadal research in the fields of radiative transfer, electromagnetic scattering by morphologically complex particles and particulate media, and planetary remote sensing. Much of this research has been done in close collaboration with other "descendants" of Academician Sobolev. This tutorial paper gives a representative overview of the results of extensive numerical simulations (in the vast majority carried out in collaboration with Michael Mishchenko) used to analyze remote-sensing observations of Solar system objects and based on highly accurate methods of the radiative transfer theory and direct computer solvers of the Maxwell equations. Using the atmosphere of Jupiter as a proving ground and performing T-matrix and radiative-transfer calculations helps demonstrate the strong effect of aerosol-particle shapes on the accuracy of remote-sensing retrievals. I then discuss the application of the T-matrix method, a numerically exact solution of the vector radiative transfer equation, and the theory of coherent backscattering to an analysis of polarimetric radar observations of Saturn's rings. Numerical modeling performed by using the superposition T-matrix method in application to cometary dust in the form of aggregates serves to reproduce the results of polarimetric observations of the distant comet C/2010 S1. On the basis of direct computer solutions of the Maxwell equations, it is demonstrated that all backscattering effects predicted by the low-density theories of radiative transfer and coherent backscattering can also be identified for media with volume packing densities typically encountered in natural and artificial environments. This result implies that spectacular opposition effects observed for some high-albedo atmoshereless Solar system bodies can be attributed to coherent backscattering of sunlight by regolith layers composed of microscopic particles.
Grodzinsky, Ewa; Walter, Susanna; Viktorsson, Lisa; Carlsson, Ann-Kristin; Jones, Michael P; Faresjö, Åshild
2015-01-28
Irritable Bowel Syndrome (IBS) is a chronic, relapsing gastrointestinal disorder, that affects approximately 10% of the general population and the majority are diagnosed in primary care. IBS has been reported to be associated with altered psychological and cognitive functioning such as mood disturbances, somatization, catastrophizing or altered visceral interoception by negative emotions and stress. The aim was to investigate the psychosocial constructs of self-esteem and sense of coherence among IBS patients compared to non-IBS patients in primary care. A case-control study in primary care setting among IBS patients meeting the ROME III criteria (n = 140) compared to controls i.e. non-IBS patients (n = 213) without any present or previous gastrointestinal complaints. The data were collected through self-reported questionnaires of psychosocial factors. IBS-patients reported significantly more negative self-esteem (p < 0.001), lower scores for positive self-esteem (p < 0.001), and lower sense of coherence (p < 0.001) than the controls. The IBS-cases were also less likely to report 'good' health status (p < 0.001) and less likely to report a positive belief in the future (p < 0.001). After controlling for relevant confounding factors in multiple regressions, the elevation in negative self-esteem among IBS patients remained statistically significant (p = 0.02), as did the lower scores for sense of coherence among IBS cases (p = 0.04). The more frequently reported negative self-esteem and inferior coping strategies among IBS patients found in this study suggest the possibility that psychological therapies might be helpful for these patients. However these data do not indicate the causal direction of the observed associations. More research is therefore warranted to determine whether these psychosocial constructs are more frequent in IBS patients.
A computational model for how cells choose temporal or spatial sensing during chemotaxis.
Tan, Rui Zhen; Chiam, Keng-Hwee
2018-03-01
Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits. Comprehensive computational search of three-node signaling circuits has identified the negative integral feedback (NFB) and incoherent feedforward (IFF) circuits as capable of adaptation, an important property for chemotaxis. Cells are modeled as one-dimensional circular system consisting of diffusible activator, inactivator and output proteins, traveling across a chemical gradient. From our simulations, we find that sensing outcomes are similar for NFB or IFF circuits. Rather than cell size, the relevant parameters are the 1) ratio of cell speed to the product of cell diameter and rate of signaling, 2) diffusivity of the output protein and 3) ratio of the diffusivities of the activator to inactivator protein. Spatial sensing is favored when all three parameters are low. This corresponds to a cell moving slower than the time it takes for signaling to propagate across the cell diameter, has an output protein that is polarizable and has a local-excitation global-inhibition system to amplify the chemical gradient. Temporal sensing is favored otherwise. We also find that temporal sensing is more robust to noise. By performing extensive literature search, we find that our prediction agrees with observation in a wide range of species and cell types ranging from E. coli to human Fibroblast cells and propose that our result is universally applicable.
A computational model for how cells choose temporal or spatial sensing during chemotaxis
Tan, Rui Zhen; Chiam, Keng-Hwee
2018-01-01
Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits. Comprehensive computational search of three-node signaling circuits has identified the negative integral feedback (NFB) and incoherent feedforward (IFF) circuits as capable of adaptation, an important property for chemotaxis. Cells are modeled as one-dimensional circular system consisting of diffusible activator, inactivator and output proteins, traveling across a chemical gradient. From our simulations, we find that sensing outcomes are similar for NFB or IFF circuits. Rather than cell size, the relevant parameters are the 1) ratio of cell speed to the product of cell diameter and rate of signaling, 2) diffusivity of the output protein and 3) ratio of the diffusivities of the activator to inactivator protein. Spatial sensing is favored when all three parameters are low. This corresponds to a cell moving slower than the time it takes for signaling to propagate across the cell diameter, has an output protein that is polarizable and has a local-excitation global-inhibition system to amplify the chemical gradient. Temporal sensing is favored otherwise. We also find that temporal sensing is more robust to noise. By performing extensive literature search, we find that our prediction agrees with observation in a wide range of species and cell types ranging from E. coli to human Fibroblast cells and propose that our result is universally applicable. PMID:29505572
NASA Astrophysics Data System (ADS)
Johnson, M.
2015-12-01
Animals make decisions about the suitability of habitat and their reaction to other organisms based on the sensory information that they first obtain. This information is transmitted, masked and filtered by fluvial processes, such as turbulent flow. Despite governing how animals interact with the environment, limited attention has been paid to the controls on the propagation of sensory signals through rivers. Some animals interpret hydraulic events and use the characteristics of wakes to sense the presence of other organisms. This implies that at least some animals can differentiate turbulent flow generated by the presence of living organisms from ambient environmental turbulence. We investigate whether there are specific flow characteristics, distinct from the ambient environment, that potentially flag the presence of organisms to other animals. ADV and PIV measurements in a series of laboratory flume experiments quantified the flow around living Signal Crayfish (Pacifastacus leniusculus) and two inanimate objects of equivalent shape and size. Experiments were repeated across a gradient of turbulence intensities generated over nine combinations of flow velocity and relative submergence. Flows downstream of living crayfish were distinct from inanimate objects, with greater turbulent intensities, higher energy in low- to intermediate frequencies, and flow structures that were less coherent in comparison to those measured downstream of inanimate objects. However, the hydrodynamic signature of crayfish became masked as the intensity of ambient turbulence exceeded that generated by living crayfish. These results demonstrate the importance of the fluvial processes in the transmission of sensory information and suggest that the ability of animals to perceive hydraulic signatures is likely to be limited in many situations in rivers. Thus, animals may need to rely on other senses, such as sight or hearing, especially where depth is shallow relative to grain size.
Maceo, Bianca M; Manns, Fabrice; Borja, David; Nankivil, Derek; Uhlhorn, Stephen; Arrieta, Esdras; Ho, Arthur; Augusteyn, Robert C; Parel, Jean-Marie
2011-11-30
The purpose of this study was to determine the contribution of the gradient refractive index to the change in lens power in hamadryas baboon and cynomolgus monkey lenses during simulated accommodation in a lens stretcher. Thirty-six monkey lenses (1.4-14.1 years) and twenty-five baboon lenses (1.8-28.0 years) were stretched in discrete steps. At each stretching step, the lens back vertex power was measured and the lens cross-section was imaged with optical coherence tomography. The radii of curvature for the lens anterior and posterior surfaces were calculated for each step. The power of each lens surface was determined using refractive indices of 1.365 for the outer cortex and 1.336 for the aqueous. The gradient contribution was calculated by subtracting the power of the surfaces from the measured lens power. In all lenses, the contribution of the surfaces and gradient increased linearly with the amplitude of accommodation. The gradient contributes on average 65 ± 3% for monkeys and 66 ± 3% for baboons to the total power change during accommodation. When expressed in percent of the total power change, the relative contribution of the gradient remains constant with accommodation and age in both species. These findings are consistent with Gullstrand's intracapsular theory of accommodation.
Wang, Yejun; Kulatilaka, Waruna D
2017-04-10
In most coherent spectroscopic methods used in gas-phase laser diagnostics, multiple laser beams are focused and crossed at a specific location in space to form the probe region. The desired signal is then generated as a result of nonlinear interactions between the beams in this overlapped region. When such diagnostic schemes are implemented in practical devices having turbulent reacting flow fields with refractive index gradients, the resulting beam steering can give rise to large measurement uncertainties. The objective of this work is to simulate beam-steering effects arising from pressure and temperature gradients in gas-phase media using an optical ray tracing approach. The ZEMAX OpticStudio software package is used to simulate the beam crossing and uncrossing effects in the presence of pressure and temperature gradients, specifically the conditions present in high-pressure, high-temperature combustion devices such as gas turbine engines. Specific cases involving two-beam and three-beam crossing configurations are simulated. The model formulation, the effects of pressure and temperature gradients, and the resulting beam-steering effects are analyzed. The results show that thermal gradients in the range of 300-3000 K have minimal effects, while pressure gradients in the range of 1-50 atm result in pronounced beam steering and the resulting signal fluctuations in the geometries investigated. However, with increasing pressures, the temperature gradients can also have a pronounced effect on the resultant signal levels.
NASA Astrophysics Data System (ADS)
Liu, Wei; Yao, Kainan; Chen, Lu; Huang, Danian; Cao, Jingtai; Gu, Haijun
2018-03-01
Based-on the previous study on the theory of the sequential pyramid wavefront sensor (SPWFS), in this paper, the SPWFS is first applied to the coherent free space optical communications (FSOC) with more flexible spatial resolution and higher sensitivity than the Shack-Hartmann wavefront sensor, and with higher uniformity of intensity distribution and much simpler than the pyramid wavefront sensor. Then, the mixing efficiency (ME) and the bit error rate (BER) of the coherent FSOC are analyzed during the aberrations correction through numerical simulation with binary phase shift keying (BPSK) modulation. Finally, an experimental AO system based-on SPWFS is setup, and the experimental data is used to analyze the ME and BER of homodyne detection with BPSK modulation. The results show that the AO system based-on SPWFS can increase ME and decrease BER effectively. The conclusions of this paper provide a new method of wavefront sensing for designing the AO system for a coherent FSOC system.
Coherent perfect absorbers: linear control of light with light
NASA Astrophysics Data System (ADS)
Baranov, Denis G.; Krasnok, Alex; Shegai, Timur; Alù, Andrea; Chong, Yidong
2017-12-01
The absorption of electromagnetic energy by a material is a phenomenon that underlies many applications, including molecular sensing, photocurrent generation and photodetection. Typically, the incident energy is delivered to the system through a single channel, for example, by a plane wave incident on one side of an absorber. However, absorption can be made much more efficient by exploiting wave interference. A coherent perfect absorber is a system in which the complete absorption of electromagnetic radiation is achieved by controlling the interference of multiple incident waves. Here, we review recent advances in the design and applications of such devices. We present the theoretical principles underlying the phenomenon of coherent perfect absorption and give an overview of the photonic structures in which it can be realized, including planar and guided-mode structures, graphene-based systems, parity-symmetric and time-symmetric structures, 3D structures and quantum-mechanical systems. We then discuss possible applications of coherent perfect absorption in nanophotonics, and, finally, we survey the perspectives for the future of this field.
Hadjichristov, Georgi B; Marinov, Yordan G; Petrov, Alexander G
2011-06-01
The light modulating ability of gradient polymer-disposed liquid crystal (PDLC) single layer of large droplets formed by nematic E7 in UV-cured polymer NOA65 is studied. Operating at relatively low voltages, such PDLC film with a of thickness 10-25 μm and droplet size up to 50 μm exhibits a good contrast ratio and is capable of producing a large phase shift for the propagating coherent light. For a linearly polarized He-Ne laser (λ=633 nm), an electrically commanded phase shift as large as π/2 can be obtained by the large-droplet region of the film. The electrically produced phase shift and its spatial profile controlled by the thickness of the gradient PDLC single layers of large nematic droplets can be useful for tunable spatial light modulators and other devices for active control of laser light.
Coherence in the Visual Imagination.
Vertolli, Michael O; Kelly, Matthew A; Davies, Jim
2018-04-01
An incoherent visualization is when aspects of different senses of a word (e.g., the biological "mouse" vs. the computer "mouse") are present in the same visualization (e.g., a visualization of a biological mouse in the same image with a computer tower). We describe and implement a new model of creating contextual coherence in the visual imagination called Coherencer, based on the SOILIE model of imagination. We show that Coherencer is able to generate scene descriptions that are more coherent than SOILIE's original approach as well as a parallel connectionist algorithm that is considered competitive in the literature on general coherence. We also show that co-occurrence probabilities are a better association representation than holographic vectors and that better models of coherence improve the resulting output independent of the association type that is used. Theoretically, we show that Coherencer is consistent with other models of cognitive generation. In particular, Coherencer is a similar, but more cognitively plausible model than the C 3 model of concept combination created by Costello and Keane (2000). We show that Coherencer is also consistent with both the modal schematic indices of perceptual symbol systems theory (Barsalou, 1999) and the amodal contextual constraints of Thagard's (2002) theory of coherence. Finally, we describe how Coherencer is consistent with contemporary research on the hippocampus, and we show evidence that the process of making a visualization coherent is serial. Copyright © 2017 Cognitive Science Society, Inc.
0-π phase-controllable thermal Josephson junction
NASA Astrophysics Data System (ADS)
Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco
2017-05-01
Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| < π/2 (refs 2-4). The direction of both the Josephson charge and heat currents can be inverted by adding a π shift to ϕ. In the static electrical case, this effect has been obtained in a few systems, for example via a ferromagnetic coupling or a non-equilibrium distribution in the weak link. These structures opened new possibilities for superconducting quantum logic and ultralow-power superconducting computers. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 0 to π. This is obtained thanks to a superconducting quantum interferometer that allows full control of the direction of the coherent energy transfer through the junction. This possibility, in conjunction with the completely superconducting nature of our system, provides temperature modulations with an unprecedented amplitude of ∼100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.
The Theoretical Problem of Partial Coherence and Partial Polarization in PolSAR and PolInSAR
NASA Astrophysics Data System (ADS)
Alvarez-Perez, J. L.
2013-08-01
Coherence is a key concept in all aspects related to SAR, and it is also an essential ingredient not only of its signal processing and image formation but also of the data postprocessing stages of SAR data. Coherence is however a non-trivial concept that has been the subject of much debate in the last sixty years, even if its definition in the context of PolInSAR has been almost univocal. Nevertheless, the mutual relationships between coherence, polarization and statistical independence in PolSAR has recently been the subject of discussion in [1]. Some of these questions affect the eigenanalysis-based approach to PolInSAR, as developed by Cloude and Papathanassiou's foundational work. Coherence involves the behaviour of electromagnetic waves in at least a pair of points and in this sense it plays an important role in interferometry that is not present in non-interferometric radar polarimetry. PolInSAR inherits some of the difficulties found in [1], which stem from the controversial confusion between coherence and polarization as present in PolSAR, as well as the ability of separating different physical contributors to the scattering phenomenon through the use of eigenvalues and eigenvectors. Although these are also issues present in eigenanalysis-based PolInSAR, it is still possible to analyze a scene in terms of coherence and this very concept of coherence is the subject of this paper. A new analysis of the concept of coherence for interferometry is proposed, including multiple observation point configurations that bring about statistical moments whose order is higher than two.
Mayer, Claude-Hélène; Viviers, Rian; Flotman, Aden-Paul; Schneider-Stengel, Detlef
2016-12-01
Sense of coherence (SOC) and mindfulness (MI) are believed to promote the health and well-being of individuals and organisations. The aim of this longitudinal study was to contribute to the literature on the development of SOC through training and interventions and thereby explore the development of these constructs in a group of senior professionals in the German Catholic Church. A sample of eight participants voluntarily enrolled for a 12-day training programme spread over a period of nine months to develop intercultural and inter-religious competencies, SOC and MI. Quantitative scores of the pre- and post-test SOC and MI questionnaires were qualitatively analysed. Results indicate that the majority of participants scored lower in the post-test on SOC and slightly higher in MI. The discussion explores the pitfalls in the development of these constructs in the study's participants and highlights the implications for theory and practice. Practical training implications for developing SOC and MI are offered.
Kimura, Miyako; Yamazaki, Yoshihiko
2016-09-01
Although sense of coherence (SOC) moderates parental stress, the relationship between SOC, parental mental health and physical punishment of children with intellectual disabilities remains uncertain. The present authors describe parental physical punishment towards children with intellectual disabilities and investigate its related demographic characteristics, SOC and parental mental health. With the cooperation of Tokyo's 10 special needs schools, the present authors obtained 648 questionnaire responses from parents of children with intellectual disabilities. Of the parents, 69.7% reported having physically punished their children with intellectual disabilities. This was positively associated with parents' younger age, poorer mental health, lower SOC, children's younger age, birth order (firstborns) and disability type (autism/pervasive developmental disorder). This is the first study supporting the relationship between SOC, mental health and physical punishment use among parents of children with intellectual disabilities. It may assist the development of strategies to prevent physical abuse of children with disabilities. © 2015 John Wiley & Sons Ltd.
Ji, Juye; Brooks, Devon; Barth, Richard P; Kim, Hansung
2010-07-01
Adopted children often are exposed to preadoptive stressors--such as prenatal substance exposure, child maltreatment, and out-of-home placements--that increase their risks for psychosocial maladjustment. Psychosocial adjustment of adopted children emerges as the product of pre- and postadoptive factors. This study builds on previous research, which fails to simultaneously assess the influences of pre- and postadoptive factors, by examining the impact of adoptive family sense of coherence on adoptee's psychosocial adjustment beyond the effects of preadoptive risks. Using a sample of adoptive families (n = 385) taking part in the California Long Range Adoption Study, structural equation modeling analyses were performed. Results indicate a significant impact of family sense of coherence on adoptees' psychosocial adjustment and a considerably less significant role of preadoptive risks. The findings suggest the importance of assessing adoptive family's ability to respond to stress and of helping families to build and maintain their capacity to cope with stress despite the sometimes fractious pressures of adoption.
Hosokawa, Rikuya; Katsura, Toshiki; Shizawa, Miho
2017-01-01
We examined the relationships between mothers' sense of coherence (SOC) and their child's social skills development among preschool children, and how this relationship is mediated by mother's childrearing style. Mothers of 1341 Japanese children, aged 4-5 years, completed a self-report questionnaire on their SOC and childrearing style. The children's teachers evaluated their social skills using the social skills scale (SSS), which comprises three factors: cooperation, self-control, and assertion. Path analyses revealed that the mother's childrearing mediated the positive relationship between mother's SOC and the cooperation, self-control, and assertiveness aspects of children's social skills. Additionally, there was a significant direct path from mother's SOC to the self-control component of social skills. These findings suggest that mother's SOC may directly as well as indirectly influence children's social skills development through the mediating effect of childrearing. The results offer preliminary evidence that focusing on support to improve mothers' SOC may be an efficient and effective strategy for improving children's social skills development.
Bagaric, Mirko; Erbacher, Sharon
2011-06-01
Causation is one of the most esoteric and poorly defined legal principles. The common law standards of the "but for" test and common sense are, in reality, code for unconstrained judicial choice. This leads to a high degree of unpredictability in negligence cases. Changes to the causation standard following the torts reforms have done nothing to inject principle into this area of law: the concept of "appropriateness" is no more illuminating than common sense. Despite this, the trend of recent High Court decisions offers some prospect of clarifying the test for causation. Key themes to emerge are an increased emphasis on individual responsibility and the associated concept of coherency with other legal standards. This article examines the doctrinal reasons underpinning the increasingly important role of these ideals and suggests how they can be accommodated into the test for causation to inject greater coherence and predictability into this area of law.
NASA Astrophysics Data System (ADS)
Sassaroli, Angelo; Tgavalekos, Kristen; Pham, Thao; Krishnamurthy, Nishanth; Fantini, Sergio
2018-02-01
Hemodynamic-based neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) sense hemoglobin concentration in cerebral tissue. The local concentration of hemoglobin, which is differentiated into oxy- and deoxy-hemoglobin by NIRS, features spontaneous oscillations over time scales of 10-100 s in response to a number of local and systemic physiological processes. If one of such processes becomes the dominant source of cerebral hemodynamics, there is a high coherence between this process and the associated hemodynamics. In this work, we report a method to identify such conditions of coherent hemodynamics, which may be exploited to study and quantify microvasculature and microcirculation properties. We discuss how a critical value of significant coherence may depend on the specific data collection scheme (for example, the total acquisition time) and the nature of the hemodynamic data (in particular, oxy- and deoxy-hemoglobin concentrations measured with NIRS show an intrinsic level of correlation that must be taken into account). A frequency-resolved study of coherent hemodynamics is the basis for the new technique of coherent hemodynamics spectroscopy (CHS), which aims to provide measures of cerebral blood flow and cerebral autoregulation. While these concepts apply in principle to both fMRI and NIRS data, in this article we focus on NIRS data.
Time evolution of coherent structures in networks of Hindmarch Rose neurons
NASA Astrophysics Data System (ADS)
Mainieri, M. S.; Erichsen, R.; Brunnet, L. G.
2005-08-01
In the regime of partial synchronization, networks of diffusively coupled Hindmarch-Rose neurons show coherent structures developing in a region of the phase space which is wider than in the correspondent single neuron. Such structures are kept, without important changes, during several bursting periods. In this work, we study the time evolution of these structures and their dynamical stability under damage. This system may model the behavior of ensembles of neurons coupled through a bidirectional gap junction or, in a broader sense, it could also account for the molecular cascades present in the formation of flash and short time memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.; Miki, K.; Uzawa, K.
2006-11-30
During the past years the understanding of the multi scale interaction problems have increased significantly. However, at present there exists a flora of different analytical models for investigating multi scale interactions and hardly any specific comparisons have been performed among these models. In this work two different models for the generation of zonal flows from ion-temperature-gradient (ITG) background turbulence are discussed and compared. The methods used are the coherent mode coupling model and the wave kinetic equation model (WKE). It is shown that the two models give qualitatively the same results even though the assumption on the spectral difference ismore » used in the (WKE) approach.« less
NASA Astrophysics Data System (ADS)
Wang, Delin
In this thesis, we develop the basics of the Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) technique for the instantaneous continental-shelf scale detection, localization and species classification of marine mammal vocalizations. POAWRS uses a large-aperture, densely sampled coherent hydrophone array system with orders of magnitude higher array gain to enhance signal-to-noise ratios (SNR) by coherent beamforming, enabling detection of underwater acoustic signals either two orders of magnitude more distant in range or lower in SNR than a single hydrophone. The ability to employ coherent spatial processing of signals with the POAWRS technology significantly improves areal coverage, enabling detection of oceanic sound sources over instantaneous wide areas spanning 100 km or more in diameter. The POAWRS approach was applied to analyze marine mammal vocalizations from diverse species received on a 160-element Office Naval Research Five Octave Research Array (ONR-FORA) deployed during their feeding season in Fall 2006 in the Gulf of Maine. The species-dependent temporal-spatial distribution of marine mammal vocalizations and correlation to the prey fish distributions have been determined. Furthermore, the probability of detection regions, source level distributions and pulse compression gains of the vocalization signals from diverse marine mammal species have been estimated. We also develop an approach for enhancing the angular resolution and improving bearing estimates of acoustic signals received on a coherent hydrophone array with multiple-nested uniformly-spaced subapertures, such as the ONR-FORA, by nonuniform array beamforming. Finally we develop a low-cost non-oil-filled towable prototype hydrophone array that consists of eight hydrophone elements with real-time data acquisition and 100 m tow cable. The approach demonstrated here will be applied in the development of a full 160 element POAWRS-type low-cost coherent hydrophone array system in the future.
NASA Astrophysics Data System (ADS)
Williams, E. F.; Martin, E. R.; Biondi, B. C.; Lindsey, N.; Ajo Franklin, J. B.; Wagner, A. M.; Bjella, K.; Daley, T. M.; Dou, S.; Freifeld, B. M.; Robertson, M.; Ulrich, C.
2016-12-01
We analyze the impact of identifying and removing coherent anthropogenic noise on synthetic Green's functions extracted from ambient noise recorded on a dense linear distributed acoustic sensing (DAS) array. Low-cost, low-impact urban seismic surveys are possible with DAS, which uses dynamic strain sensing to record seismic waves incident to a buried fiber optic cable. However, interferometry and tomography of ambient noise data recorded in urban areas include coherent noise from near-field infrastructure such as cars and trains passing the array, in some cases causing artifacts in estimated Green's functions and potentially incorrect surface wave velocities. Based on our comparison of several methods, we propose an automated, real-time data processing workflow to detect and reduce the impact of these events on data from a dense array in an urban environment. We utilize a recursive STA/LTA (short-term average/long-term average) algorithm on each channel to identify sharp amplitude changes typically associated with an event arrival. In order to distinguish between optical noise and physical events, an event is cataloged only if STA/LTA is triggered on enough channels across the array in a short time window. For each event in the catalog, a conventional semblance analysis is performed across a straight segment of the array to determine whether the event has a coherent velocity signature. Events that demonstrate a semblance peak at low apparent velocities (5-50 m/s) are assumed to represent coherent transportation-related noise and are down-weighted in the time domain before cross-correlation. We show the impact of removing such noise on estimated Green's functions from ambient noise data recorded in Richmond, CA in December 2014. This method has been developed for use on a continuous time-lapse ambient noise survey collected with DAS near Fairbanks, AK, and an upcoming ambient noise survey on the Stanford University campus using DAS with a re-purposed telecommunications fiber optic cable.
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2015-01-01
A cross-power spectrum phase based adaptive technique is discussed which iteratively determines the time delay between two digitized signals that are coherent. The adaptive delay algorithm belongs to a class of algorithms that identifies a minimum of a pattern matching function. The algorithm uses a gradient technique to find the value of the adaptive delay that minimizes a cost function based in part on the slope of a linear function that fits the measured cross power spectrum phase and in part on the standard error of the curve fit. This procedure is applied to data from a Honeywell TECH977 static-engine test. Data was obtained using a combustor probe, two turbine exit probes, and far-field microphones. Signals from this instrumentation are used estimate the post-combustion residence time in the combustor. Comparison with previous studies of the post-combustion residence time validates this approach. In addition, the procedure removes the bias due to misalignment of signals in the calculation of coherence which is a first step in applying array processing methods to the magnitude squared coherence data. The procedure also provides an estimate of the cross-spectrum phase-offset.
Coherent coupling between a quantum dot and a donor in silicon
Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin; ...
2017-10-18
Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less
Catheter guided by optical coherence domain reflectometry
Everett, Matthew; Colston, Billy W.; Da Silva, Luiz B.; Matthews, Dennis
2002-01-01
A guidance and viewing system based on multiplexed optical coherence domain reflectometry is incorporated into a catheter, endoscope, or other medical device to measure the location, thickness, and structure of the arterial walls or other intra-cavity regions at discrete points on the medical device during minimally invasive medical procedures. The information will be used both to guide the device through the body and to evaluate the tissue through which the device is being passed. Multiple optical fibers are situated along the circumference of the device. Light from the distal end of each fiber is directed onto the interior cavity walls via small diameter optics (such as gradient index lenses and mirrored corner cubes). Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers and multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The system may also be implemented in a nonmedical inspection device.
Understanding Differences in Health Behaviors by Education
Cutler, David M.; Lleras-Muney, Adriana
2009-01-01
Using a variety of data sets from two countries, we examine possible explanations for the relationship between education and health behaviors, known as the education gradient. We show that income, health insurance, and family background can account for about 30 percent of the gradient. Knowledge and measures of cognitive ability explain an additional 30 percent. Social networks account for another 10 percent. Our proxies for discounting, risk aversion, or the value of future do not account for any of the education gradient, and neither do personality factors such as a sense of control of oneself or over one’s life. PMID:19963292
Gan, Yu; Fleming, Christine P.
2013-01-01
Abnormal changes in orientation of myofibers are associated with various cardiac diseases such as arrhythmia, irregular contraction, and cardiomyopathy. To extract fiber information, we present a method of quantifying fiber orientation and reconstructing three-dimensional tractography of myofibers using optical coherence tomography (OCT). A gradient based algorithm was developed to quantify fiber orientation in three dimensions and particle filtering technique was employed to track myofibers. Prior to image processing, three-dimensional image data set were acquired from all cardiac chambers and ventricular septum of swine hearts using OCT system without optical clearing. The algorithm was validated through rotation test and comparison with manual measurements. The experimental results demonstrate that we are able to visualize three-dimensional fiber tractography in myocardium tissues. PMID:24156071
Srinivasan, Pratul P.; Kim, Leo A.; Mettu, Priyatham S.; Cousins, Scott W.; Comer, Grant M.; Izatt, Joseph A.; Farsiu, Sina
2014-01-01
We present a novel fully automated algorithm for the detection of retinal diseases via optical coherence tomography (OCT) imaging. Our algorithm utilizes multiscale histograms of oriented gradient descriptors as feature vectors of a support vector machine based classifier. The spectral domain OCT data sets used for cross-validation consisted of volumetric scans acquired from 45 subjects: 15 normal subjects, 15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema (DME). Our classifier correctly identified 100% of cases with AMD, 100% cases with DME, and 86.67% cases of normal subjects. This algorithm is a potentially impactful tool for the remote diagnosis of ophthalmic diseases. PMID:25360373
NASA Technical Reports Server (NTRS)
Bell, T. F.
1984-01-01
A theory is presented of the nonlinear gyroresonance interaction that takes place in the magnetosphere between energetic electrons and coherent VLF waves propagating in the whistler mode at an arbitrary angle psi with respect to the earth's magnetic field B-sub-0. Particularly examined is the phase trapping (PT) mechanism believed to be responsible for the generation of VLF emissions. It is concluded that near the magnetic equatorial plane gradients of psi may play a very important part in the PT process for nonducted waves. Predictions of a higher threshold value for PT for nonducted waves generally agree with experimental data concerning VLF emission triggering by nonducted waves.
1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao
2015-02-01
A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.
NASA Astrophysics Data System (ADS)
Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun
2017-09-01
Seed germination rate differs based on chemical treatments, and nondestructive measurements of germination rate have become an essential requirement in the field of agriculture. Seed scientists and other biologists are interested in optical sensing technologies-based biological discoveries due to nondestructive detection capability. Optical coherence tomography (OCT) has recently emerged as a powerful method for biological and plant material discoveries. We report an extended application of OCT by monitoring the germination rate acceleration of chemically primed seeds. To validate the versatility of the method, Capsicum annum seeds were primed using three chemical compounds: sterile distilled water (SDW), butandiol, and 1-hexadecene. Monitoring was performed using a 1310-nm swept source OCT system. The results confirmed more rapid morphological variations in the seeds treated with 1-hexadecene medium than the seeds treated with SDW and butandiol within 8 consecutive days. In addition, fresh weight measurements (gold standard) of seeds were monitored for 15 days, and the obtained results were correlated with the OCT results. Thus, such a method can be used in various agricultural fields, and OCT shows potential as a rigorous sensing method for selecting the optimal plant growth-promoting chemical compounds rapidly, when compared with the gold standard methods.
NASA Astrophysics Data System (ADS)
Seddon, Angela B.
2016-10-01
The case for new, portable, real-time mid-infrared (MIR) molecular sensing and imaging is discussed. We set a record in demonstrating extreme broad-band supercontinuum (SC) generated light 1.4-13.3 μm in a specially engineered, step-index MIR optical fiber of high numerical aperture. This was the first experimental demonstration truly to reveal the potential of MIR fibers to emit across the MIR molecular "fingerprint spectral region" and a key first step towards bright, portable, broadband MIR sources for chemical and biomedical, molecular sensing and imaging in real-time. Potential applications are in the healthcare, security, energy, environmental monitoring, chemical-processing, manufacturing and the agriculture sectors. MIR narrow-line fiber lasers are now required to pump the fiber MIR-SC for a compact all-fiber solution. Rare-earth-ion (RE-) doped MIR fiber lasers are not yet demonstrated >=4 μm wavelength. We have fabricated small-core RE-fiber with photoluminescence across 3.5-6 μm, and long excited-state lifetimes. MIR-RE-fiber lasers are also applicable as discrete MIR fiber sensors in their own right, for applications including: ship-to-ship free-space communications, aircraft counter-measures, coherent MIR imaging, MIR-optical coherent tomography, laser-cutting/ patterning of soft materials and new wavelengths for fiber laser medical surgery.
Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients
NASA Astrophysics Data System (ADS)
Popescu, M. N.; Uspal, W. E.; Dietrich, S.
2017-04-01
Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g. the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate ‘point-particle’ analysis, we show analytically that—owing to this kind of induced active response (chemi-osmosis) of the wall—such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial ‘swimmers’ exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change in the environment. We show that the alignment with the surface-chemistry gradient is generic for chemically active colloids as long as they exhibit motility in an unbounded fluid, i.e. this phenomenon does not depend on the exact details of the propulsion mechanism. The results are discussed in the context of simple models of chemical activity, corresponding to Janus particles with ‘source’ chemical reactions on one half of the surface and either ‘inert’ or ‘sink’ reactions over the other half.
Stability of gradient semigroups under perturbations
NASA Astrophysics Data System (ADS)
Aragão-Costa, E. R.; Caraballo, T.; Carvalho, A. N.; Langa, J. A.
2011-07-01
In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).
The detection of objects in a turbid underwater medium using orbital angular momentum (OAM)
NASA Astrophysics Data System (ADS)
Cochenour, Brandon; Rodgers, Lila; Laux, Alan; Mullen, Linda; Morgan, Kaitlyn; Miller, Jerome K.; Johnson, Eric G.
2017-05-01
We present an investigation of the optical property of orbital angular momentum (OAM) for use in the detection of objects obscured by a turbid underwater channel. In our experiment, a target is illuminated by a Gaussian beam. An optical vortex is formed by passing the object-reflected and backscattered light through a diffractive spiral phase plate at the receiver, which allows for the spatial separation of coherent and non-coherent light. This provides a method for discriminating target from environment. Initial laboratory results show that the ballistic target return can be detected 2-3 orders of magnitude below the backscatter clutter level. Furthermore, the detection of this coherent component is accomplished with the use of a complicated optical heterodyning scheme. The results suggest new optical sensing techniques for underwater imaging or LIDAR.
Critical Thinking and the Kinesthetic Connection
NASA Technical Reports Server (NTRS)
Shope, R. E., III
1996-01-01
Kinesthetic refers to movement, the movement of the body as it senses its suroundings and respons to its urgings to discover and experience the world...Kinesthetic teaching focuses on instructional approaches that engage the body to integrate concepts, information, thoughts, feelings, and ideas into a coherent structure of knowledge.
Learning Communities: A Structure for Educational Coherence.
ERIC Educational Resources Information Center
Matthews, Roberta; And Others
1996-01-01
College and university learning communities build a sense of group identity. Institutions are establishing them for varied purposes and student populations, including first-year interest groups, general education core courses, gateway courses, developmental and basic studies, honors programs, and work in the major or minor. For implementation,…
Okada, Nagisa; Nakata, Akinori; Nakano, Masahiro; Sakai, Kumiko; Takai, Kiyako; Kodama, Hiromi; Kobayashi, Toshio
Many female nurses leave their jobs because of major life events. However, the mental health status and related factors among nurses who assume the roles of wives and/or mothers have been insufficiently examined. Therefore we examined the mental health levels and related factors among such nurse. We conducted a questionnaire survey on 763 female nurses working at general hospitals with over 200 beds in Fukuoka Prefecture. Of 402 responses, 108 were divided into two groups: nurses who had left because of marriage, childbirth, or childrearing (leaving group), and those who had not (non-leaving group). The following were assessed: work satisfaction level, the Brief Job Stress Questionnaire, The General Health Questionnaire (GHQ) 28, and the Sense of Coherence (SOC) scale. Results showed that nurses who had assumed the roles of wives and/or mothers had lower mental health status than general women, and nurses who retained their jobs had higher mental health status and sense of comprehensibility on the SOC scale than those who left. Multiple regression analyses using the total GHQ score as an objective variable showed that only the sense of comprehensibility on the SOC scale correlated with mental health status in the non-leaving group. For the leaving group, having support, high work and life satisfaction levels, and several work stressors were correlated. These findings strongly suggest that to maintain and improve the mental health of nurses who assume the role of wives and/or mothers, greater support, higher satisfaction, reduced stressors, and maintenance and improvement of the sense of comprehensibility are required.
Weiss, Christian; Zoubir, Abdelhak M
2017-05-01
We propose a compressed sampling and dictionary learning framework for fiber-optic sensing using wavelength-tunable lasers. A redundant dictionary is generated from a model for the reflected sensor signal. Imperfect prior knowledge is considered in terms of uncertain local and global parameters. To estimate a sparse representation and the dictionary parameters, we present an alternating minimization algorithm that is equipped with a preprocessing routine to handle dictionary coherence. The support of the obtained sparse signal indicates the reflection delays, which can be used to measure impairments along the sensing fiber. The performance is evaluated by simulations and experimental data for a fiber sensor system with common core architecture.
Kagawa, Yuki; Haraguchi, Yuji; Tsuneda, Satoshi; Shimizu, Tatsuya
2017-05-01
Recent progress in tissue engineering technology has enabled us to develop thick tissue constructs that can then be transplanted in regenerative therapies. In clinical situations, it is vital that the engineered tissues to be implanted are safe and functional before use. However, there is currently a limited number of studies on real-time quality evaluation of thick living tissue constructs. Here we developed a system for quantifying the internal activities of engineered tissues, from which we can evaluate its quality in real-time. The evaluation was achieved by measuring oxygen concentration profiles made along the vertical axis and the thickness of the tissues estimated from cross-sectional images obtained noninvasively by an optical coherence tomography system. Using our novel system, we obtained (i) oxygen concentration just above the tissues, (ii) gradient of oxygen along vertical axis formed above the tissues within culture medium, and (iii) gradient of oxygen formed within the tissues in real-time. Investigating whether these three parameters could be used to evaluate engineered tissues during culturing, we found that only the third parameter was a good candidate. This implies that the activity of living engineered tissues can be monitored in real-time by measuring the oxygen gradient within the tissues. The proposed measuring strategy can be applied to developing more efficient culturing methods to support the fabrication of engineered thick tissues, as well as providing methods to confirm the quality in real-time. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 855-864, 2017. © 2015 Wiley Periodicals, Inc.
Linear Fresnel Spectrometer Chip with Gradient Line Grating
NASA Technical Reports Server (NTRS)
Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)
2015-01-01
A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.
Coherence and Dynamics of a High- β Metallo-dielectric Nanolasers
NASA Astrophysics Data System (ADS)
Pan, Si Hui Athena
Metal-clad nanolasers with high spontaneous emission factors (β) represent a class of ultra-compact light emitters with applications in fiber-optic communications, optical computing, imaging and sensing. In-depth studies on both the coherence and dynamical properties of these emitters are necessary before practical applications can be realized. However, the coherence characterization of a high- β nanolaser using the conventional measurement of output versus input intensity (L-L curve) is inherently difficult. We conducted the second order intensity correlation measurement, or g2 (τ) - a more definitive method to confirm coherence - on a high- β metallo-dielectric nanolaser. Our result indicates that full coherence is achieved at three times the threshold conventionally defined by the kink in the L-L curve. Additionally, we observed that the g2 (τ) peak width shrinks below and broadens above threshold. Rate-equation analyses reveal that the above-threshold broadening is due to dynamical hysteresis. We propose that this dynamical phenomenon can be exploited to determine the lasing regimes of a unity- β nanolaser, whose threshold is inherently ambiguous and difficult to observe. National Science Foundation (NSF); Office of Naval Research; Army Research Office; Cymer; NSF Graduate Research Fellowship (DGE-1144086).
Coupling fine-scale root and canopy structure using ground-based remote sensing
Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.; ...
2017-02-21
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less
Coupling fine-scale root and canopy structure using ground-based remote sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less
NASA Astrophysics Data System (ADS)
Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang
2017-08-01
According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.
Intracellular dynamics during directional sensing of chemotactic cells
NASA Astrophysics Data System (ADS)
Amselem, Gabriel; Bodenschatz, Eberhard; Beta, Carsten
2007-03-01
We use an experimental approach based on the photo-chemical release of signaling molecules in microfluidic environments to expose chemotactic cells to well controlled chemoattractant stimuli. We apply this technique to study intracellular translocation of fluorescently labeled PH-domain proteins in the social ameba Dictyostelium discoideum. Single chemotactic Dictyostelium cells are exposed to localized, well defined gradients in the chemoattractant cAMP and their translocation response is quantified as a function of the external gradient.
Women with Chronic Physical Disabilities: Correlates of Their Long-Term Psychosocial Adaptation.
ERIC Educational Resources Information Center
Dangoor, Nira; Florian, Victor
1994-01-01
This study examined the effects of demographic factors, disability status, and individual internal resources to the long-term psychosocial adjustment of 88 married women with orthopedic, neurological, and internal chronic diseases. Results suggest that sense of coherence and socioeconomic status, rather than disability status variables, accounted…
Maternal Personal Resources and Children's Socioemotional and Behavioral Adjustment
ERIC Educational Resources Information Center
Al-Yagon, Michal
2008-01-01
The study examined the role of three maternal personal resources [sense of coherence (SOC), attachment style, and social/emotional feelings of loneliness] in explaining children's socioemotional adjustment (self-rated loneliness and SOC, and mother-rated child behavior) and children's (self-rated) secure attachment. The sample included 58…
DARLA: Data Assimilation and Remote Sensing for Littoral Applications
2017-03-01
in the surf zone. The foam produced in an actively breaking crest, or wave roller, has a distinct signature in IR imagery. A retrieval algorithm is...the surface. The velocity profiles are obtained from a pulse-coherent acoustic Doppler sonar on a wave-following platform, termed a Surface Wave
Coherent Control of Diamond Defects for Quantum Information Science and Quantum Sensing
2014-04-18
beam steering in micromirror systems [192]. Furthermore, by eliminating require- ments for cryogenic temperatures, our blueprint aims to make the...Isenhower, A. T. Gill, F. P. Lu, M. Saffman, and J. Kim. Independent individual addressing of multiple neutral atom qubits with a micromirror -based
Defining Intercultural Education for Social Cohesion in Malaysian Context
ERIC Educational Resources Information Center
Kaur, Amrita; Awang-Hashim, Rosna; Noman, Mohammad
2017-01-01
Schools are considered as powerful institutions that are capable of fostering a sense of coherence and common identity to integrate students of different ethnic, social, and cultural origins. Effective implementation of intercultural education at schools can facilitate social integration. However, it is important that the design and implementation…
Natural Recovery from Drug and Alcohol Addiction among Israeli Prisoners
ERIC Educational Resources Information Center
Chen, Gila
2006-01-01
This study examined differences in the sense of coherence, anxiety, depression, hostility, behavior, and meaning in life among Israeli prisoners recovering from drug and alcohol addiction over various time periods (6-24 months), and without therapeutic intervention (natural recovery). Ninety-eight abstinent prisoners were divided into two groups:…
Principals and Teachers "Craft Coherence" among Accountability Policies
ERIC Educational Resources Information Center
Stosich, Elizabeth Leisy
2018-01-01
Purpose: The purpose of this paper is to examine how US school leaders and teachers make sense of multiple accountability policies, including the Common Core State Standards and teacher evaluation, and how this process relates to school priorities and classroom practice. Design/methodology/approach: This study uses a comparative case study…
Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy
NASA Astrophysics Data System (ADS)
Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan
2018-02-01
Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.
Maceo, Bianca M.; Manns, Fabrice; Borja, David; Nankivil, Derek; Uhlhorn, Stephen; Arrieta, Esdras; Ho, Arthur; Augusteyn, Robert C.; Parel, Jean-Marie
2012-01-01
The purpose of this study was to determine the contribution of the gradient refractive index to the change in lens power in hamadryas baboon and cynomolgus monkey lenses during simulated accommodation in a lens stretcher. Thirty-six monkey lenses (1.4–14.1 years) and twenty-five baboon lenses (1.8–28.0 years) were stretched in discrete steps. At each stretching step, the lens back vertex power was measured and the lens cross-section was imaged with optical coherence tomography. The radii of curvature for the lens anterior and posterior surfaces were calculated for each step. The power of each lens surface was determined using refractive indices of 1.365 for the outer cortex and 1.336 for the aqueous. The gradient contribution was calculated by subtracting the power of the surfaces from the measured lens power. In all lenses, the contribution of the surfaces and gradient increased linearly with the amplitude of accommodation. The gradient contributes on average 65 ± 3% for monkeys and 66 ± 3% for baboons to the total power change during accommodation. When expressed in percent of the total power change, the relative contribution of the gradient remains constant with accommodation and age in both species. These findings are consistent with Gullstrand’s intracapsular theory of accommodation. PMID:22131444
Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan
2017-01-01
The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width. PMID:28796167
Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan
2017-08-10
The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.
Novel Raman Techniques for Imaging and Sensing
NASA Astrophysics Data System (ADS)
Edwards, Perry S.
Raman scattering spectroscopy is extensively demonstrated as a label-free, chemically selective sensing and imaging technique for a multitude of chemical and biological applications. The ability to detect "fingerprint" spectral signatures of individual molecules, without the need to introduce chemical labelers, makes Raman scattering a powerful sensing technique. However, spectroscopy based on spontaneous Raman scattering traditionally suffers from inherently weak signals due to small Raman scattering cross-sections. Thus, considerable efforts have been put forth to find pathways towards enhancing Raman signals to bolster sensitivity for detecting small concentrations of molecules or particles. The development of coherent Raman techniques that can offer orders of magnitude increase in signal have garnered significant interest in recent years for their application in imaging; such techniques include coherent anti-Stokes Raman scattering and stimulated Raman scattering. Additionally, methods to enhance the local field of either the pump or generated Raman signal, such as through surface enhanced Raman scattering, have been investigated for their orders of magnitude improvement in sensitivity and single molecule sensing capability. The work presented in this dissertation describes novel techniques for performing high speed and highly sensitive Raman imaging as well as sensing applications towards bioimaging and biosensing. Coherent anti-Stokes Raman scattering (CARS) is combined with holography to enable recording of high-speed (single laser shot), wide field CARS holograms which can be used to reconstruct the both the amplitude and the phase of the anti-Stokes field therefore allowing 3D imaging. This dissertation explores CARS holography as a viable label-free bio-imaging technique. A Raman scattering particle sensing system is also developed that utilizes wave guide properties of optical fibers and ring-resonators to perform enhanced particle sensing. Resonator-enhanced particle sensing is experimentally examined as a new method for enhancing Raman scattering from particles interacting with circulating optical fields within both a fiber ring-cavity and whispering gallery mode microtoroid microresonators. The achievements described in this dissertation include: (1) Demonstration of the bio-imaging capability of CARS holography by recording of CARS holograms of subcellular components in live cancer (HeLa) cells. (2) Label-free Raman microparticle sensing using a tapered optical fibers. A tapered fiber can guide light to particles adsorbed on the surface of the taper to generate scattered Raman signal which can be collected by a microRaman detection system. (3) Demonstration of the proof of concept of resonator-enhanced Raman spectroscopy in a fiber ring resonator consisting of a section of fiber taper. (4) A method for locking the pump laser to the resonate frequencies of a resonator. This is demonstrated using a fiber ring resonator and microtoroid microresonators. (5) Raman scattered signal from particles adhered to microtoroid microresonators is acquired using 5 seconds of signal integration time and with the pump laser locked to a cavity resonance. (6) Theoretical analysis is performed that indicates resonator-enhanced Raman scattering from microparticles adhered to microresonators can be achieved with the pump laser locked to the frequency of a high-Q cavity resonant mode.
Robustness of predator-prey models for confinement regime transitions in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, H.; Chapman, S. C.; Department of Mathematics and Statistics, University of Tromso
2013-04-15
Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond,more » Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as 'robustness' for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas.« less
Modeling Yeast Cell Polarization Induced by Pheromone Gradients
NASA Astrophysics Data System (ADS)
Yi, Tau-Mu; Chen, Shanqin; Chou, Ching-Shan; Nie, Qing
2007-07-01
Yeast cells respond to spatial gradients of mating pheromones by polarizing and projecting up the gradient toward the source. It is thought that they employ a spatial sensing mechanism in which the cell compares the concentration of pheromone at different points on the cell surface and determines the maximum point, where the projection forms. Here we constructed the first spatial mathematical model of the yeast pheromone response that describes the dynamics of the heterotrimeric and Cdc42p G-protein cycles, which are linked in a cascade. Two key performance objectives of this system are (1) amplification—converting a shallow external gradient of ligand to a steep internal gradient of protein components and (2) tracking—following changes in gradient direction. We used simulations to investigate amplification mechanisms that allow tracking. We identified specific strategies for regulating the spatial dynamics of the protein components (i.e. their changing location in the cell) that would enable the cell to achieve both objectives.
Electrical Field Guided Electrospray Deposition for Production of Gradient Particle Patterns.
Yan, Wei-Cheng; Xie, Jingwei; Wang, Chi-Hwa
2018-06-06
Our previous work demonstrated the uniform particle pattern formation on the substrates using electrical field guided electrospray deposition. In this work, we reported for the first time the fabrication of gradient particle patterns on glass slides using an additional point, line, or bar electrode based on our previous electrospray deposition configuration. We also demonstrated that the polydimethylsiloxane (PDMS) coating could result in the formation of uniform particle patterns instead of gradient particle patterns on glass slides using the same experimental setup. Meanwhile, we investigated the effect of experimental configurations on the gradient particle pattern formation by computational simulation. The simulation results are in line with experimental observations. The formation of gradient particle patterns was ascribed to the gradient of electric field and the corresponding focusing effect. Cell patterns can be formed on the particle patterns deposited on PDMS-coated glass slides. The formed particle patterns hold great promise for high-throughput screening of biomaterial-cell interactions and sensing.
Mini-batch optimized full waveform inversion with geological constrained gradient filtering
NASA Astrophysics Data System (ADS)
Yang, Hui; Jia, Junxiong; Wu, Bangyu; Gao, Jinghuai
2018-05-01
High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.
Quantification and Reconstruction in Photoacoustic Tomography
NASA Astrophysics Data System (ADS)
Guo, Zijian
Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin. Conventionally, accurate quantification in PAT requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. We demonstrate the method using the optical-resolution photoacoustic microscopy (OR-PAM) and the acoustical-resolution photoacoustic microscopy (AR-PAM) in the optical ballistic regime and in the optical diffusive regime, respectively. The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing an image with fewer measurements can effectively accelerate the data acquisition and reduce the system cost. We adapted Compressed Sensing (CS) for the reconstruction in PACT. CS-based PACT was implemented as a non-linear conjugate gradient descent algorithm and tested with both phantom and in vivo experiments. Speckles have been considered ubiquitous in all scattering-based coherent imaging technologies. As a coherent imaging modality based on optical absorption, photoacoustic (PA) tomography (PAT) is generally devoid of speckles. PAT suppresses speckles by building up prominent boundary signals, via a mechanism similar to that of specular reflection. When imaging smooth boundary absorbing targets, the speckle visibility in PAT, which is defined as the ratio of the square root of the average power of speckles to that of boundaries, is inversely proportional to the square root of the absorber density. If the surfaces of the absorbing targets have uncorrelated height fluctuations, however, the boundary features may become fully developed speckles. The findings were validated by simulations and experiments. The first- and second-order statistics of PAT speckles were also studied experimentally. While the amplitude of the speckles follows a Gaussian distribution, the autocorrelation of the speckle patterns tracks that of the system point spread function.
NASA Astrophysics Data System (ADS)
Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan
2017-04-01
Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.
An optical system to transform the output beam of a quantum cascade laser to be uniform
NASA Astrophysics Data System (ADS)
Jacobson, Jordan M.
Quantum cascade lasers (QCLs) are a candidate for calibration sources in space-based remote sensing applications. However, the output beam from a QCL has some characteris- tics that are undesirable in a calibration source. The output beam from a QCL is polarized, both temporally and spatially coherent, and has a non-uniform bivariate Gaussian prole. These characteristics need to be mitigated before QCLs can be used as calibration sources. This study presents the design and implementation of an optical system that manipulates the output beam from a QCL so that it is spatially and angularly uniform with reduced coherence and polarization. (85 pages).
NASA Astrophysics Data System (ADS)
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan; Zhao, Bofu; Xue, Lei; Mei, Yunqiao; Wu, Zhenhai
2013-12-01
We present an effective method to compensate the spatial-frequency nonlinearity for polarized low-coherence interferometer with location-dependent dispersion element. Through the use of location-dependent dispersive characteristics, the method establishes the exact relationship between wave number and discrete Fourier transform (DFT) serial number. The jump errors in traditional absolute phase algorithm are also avoided with nonlinearity compensation. We carried out experiments with an optical fiber Fabry-Perot (F-P) pressure sensing system to verify the effectiveness. The demodulated error is less than 0.139kPa in the range of 170kPa when using our nonlinearity compensation process in the demodulation.
Prospects for Nonlinear Laser Diagnostics in the Jet Noise Laboratory
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; Hart, Roger C.; Fletcher, mark T.; Balla, R. Jeffrey; Henderson, Brenda S.
2007-01-01
Two experiments were conducted to test whether optical methods, which rely on laser beam coherence, would be viable for off-body flow measurement in high-density, compressible-flow wind tunnels. These tests measured the effects of large, unsteady density gradients on laser diagnostics like laser-induced thermal acoustics (LITA). The first test was performed in the Low Speed Aeroacoustics Wind Tunnel (LSAWT) of NASA Langley Research Center's Jet Noise Laboratory (JNL). This flow facility consists of a dual-stream jet engine simulator (with electric heat and propane burners) exhausting into a simulated flight stream, reaching Mach numbers up to 0.32. A laser beam transited the LSAWT flow field and was imaged with a high-speed gated camera to measure beam steering and transverse mode distortion. A second, independent test was performed on a smaller laboratory jet (Mach number < 1.2 and mass flow rate < 0.1 kg/sec). In this test, time-averaged LITA velocimetry and thermometry were performed at the jet exit plane, where the effect of unsteady density gradients is observed on the LITA signal. Both experiments show that LITA (and other diagnostics relying on beam overlap or coherence) faces significant hurdles in the high-density, compressible, and turbulent flow environments similar to those of the JNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu
The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyzemore » theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.« less
Sensing spontaneous collapse and decoherence with interfering Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Schrinski, Björn; Hornberger, Klaus; Nimmrichter, Stefan
2017-12-01
We study how matter-wave interferometry with Bose-Einstein condensates is affected by hypothetical collapse models and by environmental decoherence processes. Motivated by recent atom fountain experiments with macroscopic arm separations, we focus on the observable signatures of first-order and higher-order coherence for different two-mode superposition states, and on their scaling with particle number. This can be used not only to assess the impact of environmental decoherence on many-body coherence, but also to quantify the extent to which macrorealistic collapse models are ruled out by such experiments. We find that interference fringes of phase-coherently split condensates are most strongly affected by decoherence, whereas the quantum signatures of independent interfering condensates are more immune against macrorealistic collapse. A many-body enhanced decoherence effect beyond the level of a single atom can be probed if higher-order correlations are resolved in the interferogram.
Control of coherent information via on-chip photonic-phononic emitter-receivers.
Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T
2015-03-05
Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.
Nagler, Bob; Aquila, Andrew; Boutet, Sebastien; ...
2017-10-20
The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterisemore » this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.« less
Hydrodynamics of confined active fluids.
Brotto, Tommaso; Caussin, Jean-Baptiste; Lauga, Eric; Bartolo, Denis
2013-01-18
We theoretically describe the dynamics of swimmer populations in rigidly confined thin liquid films. We first demonstrate that hydrodynamic interactions between confined swimmers depend solely on their shape and are independent of their specific swimming mechanism. We also show that, due to friction with the nearby rigid walls, confined swimmers do not just reorient in flow gradients but also in uniform flows. We then quantify the consequences of these microscopic interaction rules on the large-scale hydrodynamics of isotropic populations. We investigate in detail their stability and the resulting phase behavior, highlighting the differences with conventional active, three-dimensional suspensions. Two classes of polar swimmers are distinguished depending on their geometrical polarity. The first class gives rise to coherent directed motion at all scales, whereas for the second class we predict the spontaneous formation of coherent clusters (swarms).
Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H; Azad, Abul; Marshall, Bruce; La Lone, Brandon M; Henson, Bryan; Smilowitz, Laura
2015-06-01
A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.
Atmospheric gradients from very long baseline interferometry observations
NASA Technical Reports Server (NTRS)
Macmillan, D. S.
1995-01-01
Azimuthal asymmetries in the atmospheric refractive index can lead to errors in estimated vertical and horizontal station coordinates. Daily average gradient effects can be as large as 50 mm of delay at a 7 deg elevation. To model gradients, the constrained estimation of gradient paramters was added to the standard VLBI solution procedure. Here the analysis of two sets of data is summarized: the set of all geodetic VLBI experiments from 1990-1993 and a series of 12 state-of-the-art R&D experiments run on consecutive days in January 1994. In both cases, when the gradient parameters are estimated, the overall fit of the geodetic solution is improved at greater than the 99% confidence level. Repeatabilities of baseline lengths ranging up to 11,000 km are improved by 1 to 8 mm in a root-sum-square sense. This varies from about 20% to 40% of the total baseline length scatter without gradient modeling for the 1990-1993 series and 40% to 50% for the January series. Gradients estimated independently for each day as a piecewise linear function are mostly continuous from day to day within their formal uncertainties.
Work-Family Relations among Mothers of Children with Learning Disorders
ERIC Educational Resources Information Center
Al-Yagon, Michal; Cinamon, Rachel Gali
2008-01-01
The study examined conflict and facilitation in work-family relations among working mothers of children with learning disorders (LD) or with typical development. The study also focused on three maternal personal resources (maternal anxious/avoidant attachment security, affect and sense of coherence) as antecedents of these work-family relations,…
Reinventing the Formal Definition of Limit: The Case of Amy and Mike
ERIC Educational Resources Information Center
Swinyard, Craig
2011-01-01
Relatively little is known about how students come to reason coherently about the formal definition of limit. While some have conjectured how students might think about limits formally, there is insufficient empirical evidence of students making sense of the conventional [superscript epsilon]-[delta] definition. This paper provides a detailed…
Academic Expectations and Actual Achievements: The Roles of Hope and Effort
ERIC Educational Resources Information Center
Levi, Uzi; Einav, Michal; Ziv, Orit; Raskind, Ilana; Margalit, Malka
2014-01-01
This study sought to extend the research on adolescents' hope, academic expectations, and average grades. The hope theory (Snyder, "Psychological Inquiry" 13(4):249-275, 2002), the salutogenic paradigm (with a focus on sense of coherence (SOC) (Antonovsky 1987)), and Bandura's ("Journal of Management" 38(1):9-44,…
The Regis Plan for Individualization.
ERIC Educational Resources Information Center
Newton, Robert R.
The trend away from closed teaching systems and toward open learning systems between 1965 and 1975 led to the introduction of a number of isolated innovations in Regis High School, a Catholic school in New York City. To provide a sense of coherence and direction to these changes, the faculty designed a comprehensive model for program development…
Automatic Rejection Of Multimode Laser Pulses
NASA Technical Reports Server (NTRS)
Tratt, David M.; Menzies, Robert T.; Esproles, Carlos
1991-01-01
Characteristic modulation detected, enabling rejection of multimode signals. Monitoring circuit senses multiple longitudinal mode oscillation of transversely excited, atmospheric-pressure (TEA) CO2 laser. Facility developed for inclusion into coherent detection laser radar (LIDAR) system. However, circuit described of use in any experiment where desireable to record data only when laser operates in single longitudinal mode.
Emotional Coherence in Primary School Headship
ERIC Educational Resources Information Center
Crawford, Megan
2007-01-01
This article reflects on emotion and leadership. It views emotions as the language of relationships, because it is through the language and experience of emotion that we contextualize not only our individuality but also our sense of belonging in a group. The article argues that emotion is inherent to the practice of leadership rather than separate…
The Music Goes Round and Round: How Music Means in School.
ERIC Educational Resources Information Center
Erickson, Frederick
1995-01-01
This essay shows how classroom conversation is musical and how this musicality is fundamental for one's sense of discourse coherence. To make its argument the paper looks at approaches to music and relationships between music and educational practice. Discussion covers symbols of affiliation and boundary, moral formation and discourse, and an…
Using Butler to Understand the Multiplicity and Variability of Policy Reception
ERIC Educational Resources Information Center
Gowlett, Christina; Keddie, Amanda; Mills, Martin; Renshaw, Peter; Christie, Pam; Geelan, David; Monk, Sue
2015-01-01
Understanding how teachers make sense of education policy is important. We argue that an exploration of teacher reactions to policy requires an engagement with theory focused on the formation of "the subject" since this form of theorisation addresses the creation of a seemingly coherent identity and attitude while acknowledging variation…
ERIC Educational Resources Information Center
Al-Yagon, Michal
2011-01-01
This study examined a cumulative model of risk/protective factors at the individual level (child's sense of coherence; attachment with father) and family level as manifested by fathers' emotional resources (fathers' negative/positive affect; attachment avoidance/anxiety), to explain socioemotional adjustment among children age 8-12 years with or…
Research on the space-borne coherent wind lidar technique and the prototype experiment
NASA Astrophysics Data System (ADS)
Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao
2016-10-01
Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.
Bian, Liheng; Suo, Jinli; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei; Chen, Feng; Dai, Qionghai
2016-06-10
Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, and aim to retrieve the complex HR spectrum. In real setups, the measurements always suffer from various degenerations such as Gaussian noise, Poisson noise, speckle noise and pupil location error, which would largely degrade the reconstruction. To efficiently address these degenerations, we propose a novel FP reconstruction method under a gradient descent optimization framework in this paper. The technique utilizes Poisson maximum likelihood for better signal modeling, and truncated Wirtinger gradient for effective error removal. Results on both simulated data and real data captured using our laser-illuminated FPM setup show that the proposed method outperforms other state-of-the-art algorithms. Also, we have released our source code for non-commercial use.
Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing
2015-03-01
Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.
Braun-Lewensohn, Orna; Sagy, Shifra
2011-12-01
The salutogenic theory considers sense of coherence (SOC) as a cross-cultural concept ( Antonovsky, 1987 ), meaning that in all cultures and at all stages of coping with a stressor, a person with a strong SOC is at an advantage in preventing tension from being transformed into stress. However, in seeking to understand how the SOC works, it is culture which seems to define which resources are appropriate. The aim of our paper is to examine this theoretical assumption of Antonovsky. Data on personal and community SOC as well as on stress reactions were gathered after the last fire in northern Israel (December 2010) among adolescents aged 12-18 belonging to three cultural groups (Jews, Druze, Muslims). We compared the pattern of personal versus community SOC in explaining stress reactions in the three cultures. Results indicate that personal SOC was the strongest predictor of stress reactions in all cultures. Community SOC, however, played a significant role mainly for Druze. Results are discussed relating to Antonovsky's theory and to adolescence as a 'universal' period, as well as considering the uniqueness of each culture separately.
Predictors of self-rated health: a 12-month prospective study of IT and media workers.
Hasson, Dan; Arnetz, Bengt B; Theorell, Töres; Anderberg, Ulla Maria
2006-07-31
The aim of the present study was to determine health-related risk and salutogenic factors and to use these to construct prediction models for future self-rated health (SRH), i.e. find possible characteristics predicting individuals improving or worsening in SRH over time (0-12 months). A prospective study was conducted with measurements (physiological markers and self-ratings) at 0, 6 and 12 months, involving 303 employees (187 men and 116 women, age 23-64) from four information technology and two media companies. There were a multitude of statistically significant cross-sectional correlations (Spearman's Rho) between SRH and other self-ratings as well as physiological markers. Predictors of future SRH were baseline ratings of SRH, self-esteem and social support (logistic regression), and SRH, sleep quality and sense of coherence (linear regression). The results of the present study indicate that baseline SRH and other self-ratings are predictive of future SRH. It is cautiously implied that SRH, self-esteem, social support, sleep quality and sense of coherence might be predictors of future SRH and therefore possibly also of various future health outcomes.
Kimhi, Shaul; Eshel, Yohanan; Zysberg, Leehu; Hantman, Shira; Enosh, Guy
2010-01-01
This study investigated the role of sense of coherence (SOC) as a mediator between demographic attributes of individuals (gender, age, economic situation, and exposure to traumatic events during the war) and two war outcomes (postwar stress symptoms and perceived posttraumatic recovery). The participants were 870 adults (ages ranged between 20 and 85), who were affected by the Second Lebanon War and were evacuated from their home town. They were administered the research questionnaire approximately one year after this war. Path analysis indicated the following: gender, age, economic situation, and exposure were significantly associated with level of symptoms as well as perceived recovery. However, three of these connections (age, economic, and exposure) were partially mediated by SOC which was linked with lower levels of stress symptoms and higher levels of perceived posttraumatic recovery. Unlike our hypothesis, exposure by age interaction was not significantly associated with SOC and the two war outcomes. Results supported the hypotheses that SOC mediates between demographic characteristics and negative (symptoms) as well as positive (perceived recovery) war outcomes.
Podoleanu, Adrian Gh; Bradu, Adrian
2013-08-12
Conventional spectral domain interferometry (SDI) methods suffer from the need of data linearization. When applied to optical coherence tomography (OCT), conventional SDI methods are limited in their 3D capability, as they cannot deliver direct en-face cuts. Here we introduce a novel SDI method, which eliminates these disadvantages. We denote this method as Master - Slave Interferometry (MSI), because a signal is acquired by a slave interferometer for an optical path difference (OPD) value determined by a master interferometer. The MSI method radically changes the main building block of an SDI sensor and of a spectral domain OCT set-up. The serially provided signal in conventional technology is replaced by multiple signals, a signal for each OPD point in the object investigated. This opens novel avenues in parallel sensing and in parallelization of signal processing in 3D-OCT, with applications in high- resolution medical imaging and microscopy investigation of biosamples. Eliminating the need of linearization leads to lower cost OCT systems and opens potential avenues in increasing the speed of production of en-face OCT images in comparison with conventional SDI.
The second law of thermodynamics and quantum heat engines: Is the law strictly enforced?
NASA Astrophysics Data System (ADS)
Keefe, Peter D.
2010-01-01
A quantum heat engine is a construct having a working medium which is cyclically processed through a pair of control variables of state involving a Bose-Einstein condensation (BEC) in which a heat input is converted into a work output. Of interest is a first species of quantum heat engine in which the working medium is macroscopic in the sense the size scale is sufficiently large that the BEC is not volumetrically coherent. In this first species of quantum heat engine, near Carnot efficiencies may be possible. Of particular interest is a second species of quantum heat engine in which the working medium is mesoscopic in the sense that the size scale is sufficiently small that the BEC is volumetrically coherent. In this second species of quantum heat engine, the resulting in-process non-equilibrium condition affects the finally arrived at control variables of state such that Carnot efficiencies and beyond may be possible. A Type I superconductor is used to model the first and second species of quantum heat engine.
Braun-Lewensohn, Orna; Sagy, Shifra; Roth, Guy
2011-05-01
This study aimed to explore the relationships between sense of coherence (SOC) and stress reactions as mediated by cognitive appraisal and coping strategies among adolescents facing the acute stressful situation of missile attacks. Employing the Salutogenic Model and the interactionist approach to coping, we asked what the roles of situational factors such as coping strategies and cognitive appraisal were in mediating the relationship between SOC and stress reactions. Data were gathered during January 2009 when hundreds of missiles fell in southern Israel. One hundred and thirty eight adolescents filled out questionnaires dealing with SOC, cognitive appraisal (endangerment feelings), Adolescent Coping Scale, state anxiety, state anger, and psychological distress. Overall, our model explained 55% of the variance in stress reactions. SOC had the strongest total direct and indirect effects. Previous findings have indicated SOC as playing only a limited role in explaining stress reactions in acute stress situations. The results of this study highlight the potential of SOC as a powerful resilience factor even in an acute situation, through mediation of situational factors.
Braun-Lewensohn, Orna; Sagy, Shifra
2011-06-01
The aim of this study was to explore coping resources as explanatory factors in reducing emotional distress of adolescents in an acute stress situation. We compared two ethnic groups-Jewish and Arab-Bedouin Israelis-during intensive missile attacks in January 2009. Data were gathered from 138 Israeli-Jews and 84 Israeli-Arab Bedouins, 12-18 years old, who filled out self reported questionnaires among which state anxiety, state anger, and psychological distress (SPD) were measures of emotional distress, and sense of coherence (SOC) and hope index served as measures of coping resources. Findings indicated no differences between the two groups on state anxiety, SPD and hope levels. Arab Bedouins reported higher levels of state anger and lower levels of sense of coherence. The coping resources, however, explained the stress reactions differently among the two groups. While SOC made a major contribution in explaining stress reactions among Jewish adolescents, hope index explained stress reactions only for the Arab group. The findings are discussed against the background of the salutogenic theory and the cultural differences between the two ethnic groups.
Lin, Guoxing
2016-11-21
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) techniques have been increasingly used to study anomalous diffusion in nuclear magnetic resonance and magnetic resonance imaging. However, the interpretation of PFG anomalous diffusion is complicated. Moreover, the exact signal attenuation expression including the finite gradient pulse width effect has not been obtained based on fractional derivatives for PFG anomalous diffusion. In this paper, a new method, a Mainardi-Luchko-Pagnini (MLP) phase distribution approximation, is proposed to describe PFG fractional diffusion. MLP phase distribution is a non-Gaussian phase distribution. From the fractional derivative model, both the probability density function (PDF) of a spin in real space and the PDF of the spin's accumulating phase shift in virtual phase space are MLP distributions. The MLP phase distribution leads to a Mittag-Leffler function based PFG signal attenuation, which differs significantly from the exponential attenuation for normal diffusion and from the stretched exponential attenuation for fractional diffusion based on the fractal derivative model. A complete signal attenuation expression E α (-D f b α,β * ) including the finite gradient pulse width effect was obtained and it can handle all three types of PFG fractional diffusions. The result was also extended in a straightforward way to give a signal attenuation expression of fractional diffusion in PFG intramolecular multiple quantum coherence experiments, which has an n β dependence upon the order of coherence which is different from the familiar n 2 dependence in normal diffusion. The results obtained in this study are in agreement with the results from the literature. The results in this paper provide a set of new, convenient approximation formalisms to interpret complex PFG fractional diffusion experiments.
Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.
2011-01-01
The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.
Volz, Kirsten G; Rübsamen, Rudolf; von Cramon, D Yves
2008-09-01
According to the Oxford English Dictionary, intuition is "the ability to understand or know something immediately, without conscious reasoning." In other words, people continuously, without conscious attention, recognize patterns in the stream of sensations that impinge upon them. The result is a vague perception of coherence, which subsequently biases thought and behavior accordingly. Within the visual domain, research using paradigms with difficult recognition has suggested that the orbitofrontal cortex (OFC) serves as a fast detector and predictor of potential content that utilizes coarse facets of the input. To investigate whether the OFC is crucial in biasing task-specific processing, and hence subserves intuitive judgments in various modalities, we used a difficult-recognition paradigm in the auditory domain. Participants were presented with short sequences of distorted, nonverbal, environmental sounds and had to perform a sound categorization task. Imaging results revealed rostral medial OFC activation for such auditory intuitive coherence judgments. By means of a conjunction analysis between the present results and those from a previous study on visual intuitive coherence judgments, the rostral medial OFC was shown to be activated via both modalities. We conclude that rostral OFC activation during intuitive coherence judgments subserves the detection of potential content on the basis of only coarse facets of the input.
Fractals, Coherence and Brain Dynamics
NASA Astrophysics Data System (ADS)
Vitiello, Giuseppe
2010-11-01
I show that the self-similarity property of deterministic fractals provides a direct connection with the space of the entire analytical functions. Fractals are thus described in terms of coherent states in the Fock-Bargmann representation. Conversely, my discussion also provides insights on the geometrical properties of coherent states: it allows to recognize, in some specific sense, fractal properties of coherent states. In particular, the relation is exhibited between fractals and q-deformed coherent states. The connection with the squeezed coherent states is also displayed. In this connection, the non-commutative geometry arising from the fractal relation with squeezed coherent states is discussed and the fractal spectral properties are identified. I also briefly discuss the description of neuro-phenomenological data in terms of squeezed coherent states provided by the dissipative model of brain and consider the fact that laboratory observations have shown evidence that self-similarity characterizes the brain background activity. This suggests that a connection can be established between brain dynamics and the fractal self-similarity properties on the basis of the relation discussed in this report between fractals and squeezed coherent states. Finally, I do not consider in this paper the so-called random fractals, namely those fractals obtained by randomization processes introduced in their iterative generation. Since self-similarity is still a characterizing property in many of such random fractals, my conjecture is that also in such cases there must exist a connection with the coherent state algebraic structure. In condensed matter physics, in many cases the generation by the microscopic dynamics of some kind of coherent states is involved in the process of the emergence of mesoscopic/macroscopic patterns. The discussion presented in this paper suggests that also fractal generation may provide an example of emergence of global features, namely long range correlation at mesoscopic/macroscopic level, from microscopic local deformation processes. In view of the wide spectrum of application of both, fractal studies and coherent state physics, spanning from solid state physics to laser physics, quantum optics, complex dynamical systems and biological systems, the results presented in the present report may lead to interesting practical developments in many research sectors.
Neutrophil migration under spatially-varying chemoattractant gradient profiles.
Halilovic, Iris; Wu, Jiandong; Alexander, Murray; Lin, Francis
2015-01-01
Chemotaxis plays an important role in biological processes such as cancer metastasis, embryogenesis, wound healing, and immune response. Neutrophils are the frontline defenders against invasion of foreign microorganisms into our bodies. To achieve this important immune function, a neutrophil can sense minute chemoattractant concentration differences across its cell body and effectively migrate toward the chemoattractant source. Furthermore, it has been demonstrated in various studies that neutrophils are highly sensitive to changes in the surrounding chemoattractant environments, suggesting the role of a chemotactic memory for processing the complex spatiotemporal chemical guiding signals. Using a microfluidic device, in the present study we characterized neutrophil migration under spatially varying profiles of interleukine-8 gradients, which consist of three spatially ordered regions of a shallow gradient, a steep gradient and a nearly saturated gradient. This design allowed us to examine how neutrophils migrate under different chemoattractant gradient profiles, and how the migratory response is affected when the cell moves from one gradient profile to another in a single experiment. Our results show robust neutrophil chemotaxis in the shallow and steep gradient, but not the saturated gradient. Furthermore, neutrophils display a transition from chemotaxis to flowtaxis when they migrate across the steep gradient interface, and the relative efficiency of this transition depends on the cell's chemotaxis history. Finally, some neutrophils were observed to adjust their morphology to different gradient profiles.
NASA Astrophysics Data System (ADS)
Jiang, Houjun; Feng, Guangcai; Wang, Teng; Bürgmann, Roland
2017-02-01
Sentinel-1's continuous observation program over all major plate boundary regions makes it well suited for earthquake studies. However, decorrelation due to large displacement gradients and limited azimuth resolution of the Terrain Observation by Progressive Scan (TOPS) data challenge acquiring measurements in the near field of many earthquake ruptures and prevent measurements of displacements in the along-track direction. Here we propose to fully exploit the coherent and incoherent information of TOPS data by using standard interferometric synthetic aperture radar (InSAR), split-bandwidth interferometry in range and azimuth, swath/burst-overlap interferometry, and amplitude cross correlation to map displacements in both the line-of-sight and the along-track directions. Application to the 2016 Kumamoto earthquake sequence reveals the coseismic displacements from the far field to the near field. By adding near-field constraints, the derived slip model reveals more shallow slip than obtained when only using far-field data from InSAR, highlighting the importance of exploiting all coherent and incoherent information in TOPS data.
NASA Technical Reports Server (NTRS)
Allario, Frank (Editor)
1988-01-01
The present conference on airborne and spaceborne remote sensing laser applications discusses topics in atmospheric and geophysical sciences-related sensors, lidar and DIAL component and subsystem technologies, and coherent laser experiments and semiconductor laser technologies. Attention is given to airborne lidar measurement of aerosols, a ground-based injection-locked pulsed TEA laser for wind measurements, chemical/biological agent standoff detection methods, lidars for wind shear erosion, laser tuning to selected gas absorption lines in the atmosphere, the NASA lidar-in-space technology experiment, and the Laser Atmospheric Wind Sounder.
Bayard-Burfield, L; Sundquist, J; Johansson, S E
2001-09-01
This study hypothesises that the presumed increased risk of self reported longstanding psychiatric illness and intake of psychotropic drugs among Iranian, Chilean, Turkish, and Kurdish adults, when these groups are compared with Polish adults, can be explained by living alone, poor acculturation, unemployment, and low sense of coherence. Data from a national sample of immigrants/refugees, who were between the ages of 20-44 years old, upon their arrival in Sweden between 1980 and 1989. Unconditional logistic regression was used in the statistical modelling. Sweden. 1059 female and 921 male migrants from Iran, Chile, Turkey, Kurdistan and Poland and a random sample of 3001 Swedes, all between the ages of 27-60 years, were interviewed in 1996 by Statistics Sweden. Compared with Swedes, all immigrants had an increased risk of self reported longstanding psychiatric illness and for intake of psychotropic drugs, with results for the Kurds being non-significant. Compared with Poles, Iranian and Chilean migrants had an increased risk of psychiatric illness, when seen in relation to a model in which adjustment was made for sex and age. The difference became non-significant for Chileans when marital status was taken into account. After including civil status and knowledge of the Swedish language, the increased risks for intake of psychotropic drugs for Chileans and Iranians disappeared. Living alone, poor knowledge of the Swedish language, non-employment, and low sense of coherence were strong risk factors for self reported longstanding psychiatric illness and for intake of psychotropic drugs. Iranian, Chilean, Turkish and Kurdish immigrants more frequently reported living in segregated neighbourhoods and having a greater desire to leave Sweden than their Polish counterparts. Evidence substantiates a strong association between ethnicity and self reported longstanding psychiatric illness, as well as intake of psychotropic drugs. This association is weakened by marital status, acculturation status, employment status, and sense of coherence.
Rohani, Camelia; Abedi, Heidar-Ali; Sundberg, Kay; Langius-Eklöf, Ann
2015-12-09
In our previous study, we found that the degree of sense of coherence (SOC) and baseline ratings of several dimensions of health-related quality of life (HRQoL) were the most important predictors of HRQoL changes 6 months after the pre-diagnosis period of breast cancer. To find a way to explain these findings, the aim of this study was to explore the mediating effect of the SOC between ratings of HRQoL dimensions before final diagnosis, and ratings of the same dimensions at the 6 months follow up, within a sample of women with breast cancer. A longitudinal study with a prospective design at baseline (T1) and 6 months later (T2) was conducted on 162 women with breast cancer. To measure HRQoL dimensions three different questionnaires, the European Organization for Research and Treatment of Cancer QLQ-30, the SF-12 Health Survey version 2 and the Health Index were applied at T1 and T2 to cover both diagnostic-specific and generic dimensions. Measurement of the SOC as a mediator was done by the SOC-13 scale. Mediational analyses on eight significant pairs of HRQoL dimensions showed that the degree of SOC totally mediated variations of global quality of life (p < 0.001) as well as cognitive and social functioning (p <0.05) scores between T1 to T2. Changes in the scores of emotional functioning (p < 0.01), fatigue (p < 0.05), financial difficulties (p < 0.05), well-being (p < 0.001), and mental health component (p < 0.001) were partially mediated. The degree of SOC explained 16% to 45% of the variances in HRQoL dimensions at T2. The mediating pathway of the SOC in the context of this study appears to be the key to understanding how a higher sense of coherence as an inner resource may serve as a protective psychological factor in the adaptation process of the patients. Clinicians might consider coherence-oriented structure of the SOC and the connection between the SOC and HRQoL data in intervention plans from the first visit onwards. It may assist the identification of women who are at greater risk for maladaptation to the breast cancer trajectory.
Complex physiological and molecular processes underlying root gravitropism
NASA Technical Reports Server (NTRS)
Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.
2002-01-01
Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.
Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano
2017-09-01
The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Pulsed field gradients in simulations of one- and two-dimensional NMR spectra.
Meresi, G H; Cuperlovic, M; Palke, W E; Gerig, J T
1999-03-01
A method for the inclusion of the effects of z-axis pulsed field gradients in computer simulations of an arbitrary pulsed NMR experiment with spin (1/2) nuclei is described. Recognizing that the phase acquired by a coherence following the application of a z-axis pulsed field gradient bears a fixed relation to its order and the spatial position of the spins in the sample tube, the sample is regarded as a collection of volume elements, each phase-encoded by a characteristic, spatially dependent precession frequency. The evolution of the sample's density matrix is thus obtained by computing the evolution of the density matrix for each volume element. Following the last gradient pulse, these density matrices are combined to form a composite density matrix which evolves through the rest of the experiment to yield the observable signal. This approach is implemented in a program which includes capabilities for rigorous inclusion of spin relaxation by dipole-dipole, chemical shift anisotropy, and random field mechanisms, plus the effects of arbitrary RF fields. Mathematical procedures for accelerating these calculations are described. The approach is illustrated by simulations of representative one- and two-dimensional NMR experiments. Copyright 1999 Academic Press.
Braun, M; Limbach, C
2006-12-01
Gravitropically tip-growing rhizoids and protonemata of characean algae are well-established unicellular plant model systems for research on gravitropism. In recent years, considerable progress has been made in the understanding of the cellular and molecular mechanisms underlying gravity sensing and gravity-oriented growth. While in higher-plant statocytes the role of cytoskeletal elements, especially the actin cytoskeleton, in the mechanisms of gravity sensing is still enigmatic, there is clear evidence that in the characean cells actin is intimately involved in polarized growth, gravity sensing, and the gravitropic response mechanisms. The multiple functions of actin are orchestrated by a variety of actin-binding proteins which control actin polymerisation, regulate the dynamic remodelling of the actin filament architecture, and mediate the transport of vesicles and organelles. Actin and a steep gradient of cytoplasmic free calcium are crucial components of a feedback mechanism that controls polarized growth. Experiments performed in microgravity provided evidence that actomyosin is a key player for gravity sensing: it coordinates the position of statoliths and, upon a change in the cell's orientation, directs sedimenting statoliths to specific areas of the plasma membrane, where contact with membrane-bound gravisensor molecules elicits short gravitropic pathways. In rhizoids, gravitropic signalling leads to a local reduction of cytoplasmic free calcium and results in differential growth of the opposite subapical cell flanks. The negative gravitropic response of protonemata involves actin-dependent relocation of the calcium gradient and displacement of the centre of maximal growth towards the upper flank. On the basis of the results obtained from the gravitropic model cells, a similar fine-tuning function of the actomyosin system is discussed for the early steps of gravity sensing in higher-plant statocytes.
Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung
2013-01-01
We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744
Poole, Zsolt L; Ohodnicki, Paul R; Yan, Aidong; Lin, Yuankun; Chen, Kevin P
2017-01-27
A distributed sensing capable high temperature D-shaped optical fiber modified with a palladium nanoparticle sensitized mesoporous (∼5 nm) TiO 2 film, is demonstrated. The refractive index of the TiO 2 film was reduced using block copolymer templating in order to realize a mesoporous matrix, accommodating integration with optical fiber. The constructed sensor was analyzed by performing direct transmission loss measurements, and by analyzing the behavior of an integrated fiber Bragg grating. The inscribed grating should reveal whether the refractive index of the composite film experiences changes upon exposure to hydrogen. In addition, with frequency domain reflectometry the distributed sensing potential of the developed sensor for hydrogen concentrations of up to 10% is examined. The results show the possibility of detecting chemical gradients with sub-cm resolution at temperatures greater than 500 °C.
Design considerations of manipulator and feel system characteristics in roll tracking
NASA Technical Reports Server (NTRS)
Johnston, Donald E.; Aponso, Bimal L.
1988-01-01
A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such control system features of typical modern fighter aircraft roll rate command mechanizations as: (1) force versus displacement sensing side-stick type manipulator, (2) feel force/displacement gradient, (3) feel system versus command prefilter dynamic lag, and (4) flight control system effective time delay. The experiment encompassed some 48 manipulator/filter/aircraft configurations. Displacement side-stick experiment results are given and compared with the previous force sidestick experiment results. Attention is focused on control bandwidth, excitement (peaking) of the neuromuscular mode, feel force/displacement gradient effects, time delay effects, etc. Section 5 is devoted to experiments with a center-stick in which force versus displacement sensing, feel system lag, and command prefilter lag influences on tracking performance and pilot preference are investigated.
NASA Astrophysics Data System (ADS)
Lea, D. M.; Legleiter, C. J.
2014-12-01
Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing. This study used remotely sensed data and field measurements to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to assess lateral channel mobility and develop a morphologic sediment budget for quantifying net sediment flux for a series of budget cells. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from LiDAR data were used to obtain the discharge and slope values, respectively, needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of channel mobility and sediment transfer. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volume of sediment eroded or deposited during each time increment. Our results indicated a lack of strong correlation between stream power gradients and sediment flux, which we attributed to the geomorphic complexity of the Soda Butte Creek watershed and the inability of our relatively simple statistical approach to link sediment dynamics expressed at a sub-budget cell scale to larger-scale driving forces such as stream power gradients. Future studies should compare the moderate spatial resolution techniques used in this study to very-high resolution data acquired from new fluvial remote sensing technologies to better understand the amount of error associated with stream power, sediment transport, and channel change calculated from historical datasets.
NASA Astrophysics Data System (ADS)
Lea, Devin M.
Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study used remote sensing and GIS tools along with field data to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from light detection and ranging (LiDAR) data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Results indicated a lack of strong correlation between stream power gradients and sediment response, highlighting the geomorphic complexity of Soda Butte Creek and the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote sensing could help improve understanding of the spatial organization of stream power, sediment transport, and channel change in dynamic natural rivers.
Test of Monin-Obukhov similarity theory using distributed temperature sensing
NASA Astrophysics Data System (ADS)
Cheng, Y.; Sayde, C.; Li, Q.; Gentine, P.
2017-12-01
Monin-Obukhov similarity theory [Monin and Obukhov, 1954] (MOST) has been widely used to calculate atmospheric surface fluxes applying the structure correction functions [Stull, 1988]. The exact forms of the structure correction functions for momentum and heat, which depend on the vertical gradient velocity and temperature, have been determined empirically mostly from the Kansas experiment [Kaimal et al., 1972]. However, due to the limitation of point measurement, the vertical gradient of temperature and horizontal wind speed are not well captured. Here we propose a way to measure the vertical gradient of temperature and horizontal wind speed with high resolution in space (every 12.7 cm) and time (every second) using the Distributed Temperature Sensing [Selker et al., 2006] (DTS), thus determining the exact form of the structure correction functions of MOST under various stability conditions. Two parallel vertical fiber optics will be placed on a tower at the central facility of ARM SGP site. Vertical air temperature will be measured every 12.7 cm by the fiber optics and horizontal wind speed along fiber will be measured. Then vertical gradient of temperature and horizontal wind speed will be calculated and stability correction functions for momentum and heat will be determined. ReferencesKaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R. (1972), Spectral characteristics of surface-layer turbulence, Quarterly Journal of the Royal Meteorological Society, 98(417), 563-589, doi: 10.1002/qj.49709841707. Monin, A., and Obukhov, A. (1954), Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24(151), 163-187. Selker, J., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., Stejskal, M., Zeman, J., Westhoff, M., and Parlange, M. B. (2006), Distributed fiber-optic temperature sensing for hydrologic systems, Water Resources Research, 42, W12202, doi: 10.1029/2006wr005326. Stull, R. (1988), An Introduction to Boundary Layer Meteorology, pp. 666, Kluwer Academic Publishers, Dordrecht.
Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.
Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q
2017-07-12
A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.
NASA Astrophysics Data System (ADS)
Shirai, Tomohiro; Friberg, Ari T.
2018-04-01
Dispersion-canceled optical coherence tomography (OCT) based on spectral intensity interferometry was devised as a classical counterpart of quantum OCT to enhance the basic performance of conventional OCT. In this paper, we demonstrate experimentally that an alternative method of realizing this kind of OCT by means of two optical fiber couplers and a single spectrometer is a more practical and reliable option than the existing methods proposed previously. Furthermore, we develop a recipe for reducing multiple artifacts simultaneously on the basis of simple averaging and verify experimentally that it works successfully in the sense that all the artifacts are mitigated effectively and only the true signals carrying structural information about the sample survive.
Ultrafast coherence transfer in DNA-templated silver nanoclusters
Thyrhaug, Erling; Bogh, Sidsel Ammitzbøll; Carro-Temboury, Miguel R; Madsen, Charlotte Stahl; Vosch, Tom; Zigmantas, Donatas
2017-01-01
DNA-templated silver nanoclusters of a few tens of atoms or less have come into prominence over the last several years due to very strong absorption and efficient emission. Applications in microscopy and sensing have already been realized, however little is known about the excited-state structure and dynamics in these clusters. Here we report on a multidimensional spectroscopy investigation of the energy-level structure and the early-time relaxation cascade, which eventually results in the population of an emitting state. We find that the ultrafast intramolecular relaxation is strongly coupled to a specific vibrational mode, resulting in the concerted transfer of population and coherence between excited states on a sub-100 fs timescale. PMID:28548085
Validation of buoyancy driven spectral tensor model using HATS data
NASA Astrophysics Data System (ADS)
Chougule, A.; Mann, J.; Kelly, M.; Larsen, G. C.
2016-09-01
We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper. The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model is described via five parameters: the dissipation rate (ɛ), length scale of energy-containing eddies (L), a turbulence anisotropy parameter (Γ), gradient Richardson number (Ri) representing the atmospheric stability and the rate of destruction of temperature variance (ηθ).
Gillison, Andrew N; Asner, Gregory P; Fernandes, Erick C M; Mafalacusser, Jacinto; Banze, Aurélio; Izidine, Samira; da Fonseca, Ambrósio R; Pacate, Hermenegildo
2016-07-15
Sustainable biodiversity and land management require a cost-effective means of forecasting landscape response to environmental change. Conventional species-based, regional biodiversity assessments are rarely adequate for policy planning and decision making. We show how new ground and remotely-sensed survey methods can be coordinated to help elucidate and predict relationships between biodiversity, land use and soil properties along complex biophysical gradients that typify many similar landscapes worldwide. In the lower Zambezi valley, Mozambique we used environmental, gradient-directed transects (gradsects) to sample vascular plant species, plant functional types, vegetation structure, soil properties and land-use characteristics. Soil fertility indices were derived using novel multidimensional scaling of soil properties. To facilitate spatial analysis, we applied a probabilistic remote sensing approach, analyzing Landsat 7 satellite imagery to map photosynthetically active and inactive vegetation and bare soil along each gradsect. Despite the relatively low sample number, we found highly significant correlations between single and combined sets of specific plant, soil and remotely sensed variables that permitted testable spatial projections of biodiversity and soil fertility across the regional land-use mosaic. This integrative and rapid approach provides a low-cost, high-return and readily transferable methodology that permits the ready identification of testable biodiversity indicators for adaptive management of biodiversity and potential agricultural productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kelvin wave-induced trace constituent oscillations in the equatorial stratosphere
NASA Technical Reports Server (NTRS)
Randel, William J.
1990-01-01
Kelvin wave induced oscillations in ozone (O3), water vapor (H2O), nitric acid (HNO3) and nitrogen dioxide (NO2) in the equatorial stratosphere are analyzed using Limb Infrared Monitor of the Stratosphere (LIMS) data. Power and cross-spectrum analyses reveal coherent eastward propagating zonal wave 1 and 2 constituent fluctuations, due to the influence of Kelvin waves previously documented in the LIMS data. Comparison is made between a preliminary and the archival versions of the LIMS data; significant differences are found, demonstrating the sensitivity of constituent retrievals to derived temperature profiles. Because Kelvin waves have vanishing meridional velocity, analysis of tracer transport in the meridional plane is substantially simplified. Kelvin wave vertical advection is demonstrated by coherent, in-phase temperature-tracer oscillations, co-located near regions of strong background vertical gradients.
Oh, Junghwan; Feldman, Marc D; Kim, Jihoon; Kang, Hyun Wook; Sanghi, Pramod; Milner, Thomas E
2007-03-01
A novel method to detect tissue-based macrophages using a combination of superparamagnetic iron oxide (SPIO) nanoparticles and differential phase optical coherence tomography (DP-OCT) with an external oscillating magnetic field is reported. Magnetic force acting on iron-laden tissue-based macrophages was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially focused and increased magnetic flux density. Nanoparticle motion was detected with DP-OCT, which can detect tissue movement with nanometer resolution. Frequency response of iron-laden tissue movement was twice the modulation frequency since the magnetic force is proportional to the product of magnetic flux density and gradient. Results of our experiments indicate that DP-OCT can be used to identify tissue-based macrophage when excited by an external focused oscillating magnetic field. (c) 2007 Wiley-Liss, Inc
Spin caloritronic nano-oscillator
Safranski, C.; Barsukov, I.; Lee, H. K.; ...
2017-07-18
Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here, we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in Y 3Fe 5O 12/Pt bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the Y 3Fe 5O 12 layer. This leads to excitation of auto-oscillations of the Ymore » 3Fe 5O 12 magnetization and generation of coherent microwave radiation. Thus, our work paves the way towards spin caloritronic devices for microwave and magnonic applications.« less
Spin caloritronic nano-oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safranski, C.; Barsukov, I.; Lee, H. K.
Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here, we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in Y 3Fe 5O 12/Pt bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the Y 3Fe 5O 12 layer. This leads to excitation of auto-oscillations of the Ymore » 3Fe 5O 12 magnetization and generation of coherent microwave radiation. Thus, our work paves the way towards spin caloritronic devices for microwave and magnonic applications.« less
NASA Astrophysics Data System (ADS)
Sapozhnikova, Veronika V.; Kutis, Irina S.; Kutis, Sergey D.; Kuranov, Roman V.; Gelikonov, Grigory V.; Shabanov, Dmitry V.; Kamensky, Vladislav A.
2004-07-01
First experimental results on OCT imaging of internal structure of plant tissues and in situ OCT monitoring of plant tissue regeneration at different water supply are reported. Experiments for evaluating OCT capabilities were performed on Tradescantia. The investigation of seeds swelling was performed on wheat seeds (Triticum L.), barley seeds (Hordeum L.), long-fibred flax seeds (Linum usitatissimum L.) and cucumber seeds (Cucumis sativus L.). These OCT images correlate with standard microscopy data from the same tissue regions. Seeds were exposed to a low-intensity physical factor-the pulsed gradient magnetic field (GMF) with pulse duration 0.1 s and maximum amplitude 5 mT (4 successive pulses during 0.4 s). OCT and OCM enable effective monitoring of fast reactions in plants and seeds at different water supply.
Logarithmic sensing in Bacillus subtilis aerotaxis.
Menolascina, Filippo; Rusconi, Roberto; Fernandez, Vicente I; Smriga, Steven; Aminzare, Zahra; Sontag, Eduardo D; Stocker, Roman
2017-01-01
Aerotaxis, the directed migration along oxygen gradients, allows many microorganisms to locate favorable oxygen concentrations. Despite oxygen's fundamental role for life, even key aspects of aerotaxis remain poorly understood. In Bacillus subtilis, for example, there is conflicting evidence of whether migration occurs to the maximal oxygen concentration available or to an optimal intermediate one, and how aerotaxis can be maintained over a broad range of conditions. Using precisely controlled oxygen gradients in a microfluidic device, spanning the full spectrum of conditions from quasi-anoxic to oxic (60 n mol/l-1 m mol/l), we resolved B. subtilis' 'oxygen preference conundrum' by demonstrating consistent migration towards maximum oxygen concentrations ('monotonic aerotaxis'). Surprisingly, the strength of aerotaxis was largely unchanged over three decades in oxygen concentration (131 n mol/l-196 μ mol/l). We discovered that in this range B. subtilis responds to the logarithm of the oxygen concentration gradient, a rescaling strategy called 'log-sensing' that affords organisms high sensitivity over a wide range of conditions. In these experiments, high-throughput single-cell imaging yielded the best signal-to-noise ratio of any microbial taxis study to date, enabling the robust identification of the first mathematical model for aerotaxis among a broad class of alternative models. The model passed the stringent test of predicting the transient aerotactic response despite being developed on steady-state data, and quantitatively captures both monotonic aerotaxis and log-sensing. Taken together, these results shed new light on the oxygen-seeking capabilities of B. subtilis and provide a blueprint for the quantitative investigation of the many other forms of microbial taxis.
Coherency of a Teacher's Proportional Reasoning Knowledge in and out of the Classroom
ERIC Educational Resources Information Center
Brown, Rachael Eriksen; Nagar, Gili Gal; Orrill, Chandra Hawley; Weiland, Travis; Burke, James
2016-01-01
In this exploratory study we considered how one teacher's understanding of proportional reasoning related to his teaching. We used Epistemic Network Analysis to consider the teachers' knowledge organization and connections between knowledge resources as a way to make sense of his understanding. Then, we examined how his understanding was reflected…
High-Energy 2-Micrometers Doppler Lidar for Wind Measurements
NASA Technical Reports Server (NTRS)
Koch, Grady J.; Beyon, Jeffrey Y.; Barnes, Bruce W.; Petros, Mulugeta; Yu, Jirong; Amzajerdian, Farzin; Kavaya, Michael J.; Singh, Upendra N.
2006-01-01
High-energy 2-micrometer wavelength lasers have been incorporated in a prototype coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Calibration tests and sample atmospheric data are presented on wind and aerosol profiling.
Disrupting Façades of Clarity in the Teaching and Learning of Qualitative Research
ERIC Educational Resources Information Center
Carducci, Rozana; Pasque, Penny A.; Kuntz, Aaron M.; Contreras-McGavin, Melissa
2013-01-01
In this article we examine two methodological façades of clarity that commonly shroud critical qualitative educational inquiry. More specifically, we interrogate discussions of reflexivity and positionality and explore the ways in which methodology curricula and instructional practices perpetuate façades of clarity, or a false sense of coherence,…
NASA Technical Reports Server (NTRS)
Tishkovets, Victor P.; Mishchenko, Michael
2010-01-01
Although the note by Hapke and Nelson has virtually no relevance to our original publication, it contains a number of statements that are misleading and/or wrong. We, therefore, use this opportunity to dispel several profound misconceptions that continue to hinder the progress in remote sensing of planetary surfaces.
ERIC Educational Resources Information Center
Coulter, Stephen
2014-01-01
This paper will consider the inter-relationship of a number of overlapping disciplinary theoretical concepts relevant to a strengths-based orientation, including well-being, salutogenesis, sense of coherence, quality of life and resilience. Psychological trauma will be referenced and the current evidence base for interventions with children and…
ERIC Educational Resources Information Center
Shepard, L. A.; Penuel, W. R.; Pellegrino, J. W.
2018-01-01
To support equitable and ambitious teaching practices, classroom assessment design must be grounded in a research-based theory of learning. Compared to other theories, sociocultural theory offers a more powerful, integrative account of how motivational aspects of learning--such as self-regulation, self-efficacy, sense of belonging, and…
Reed, Evan J.; Armstrong, Michael R.
2010-09-07
Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.
Making Sense of the "Public" in Public Education. Policy Report.
ERIC Educational Resources Information Center
Hess, Frederick M.
The purpose of this policy report is to bring coherence to discussions about school reform and to encourage policymakers to use a consistent metric when judging whether reform proposals are serving the needs of children and the nation. The current confusion and policy debates over what is a public school--brought about by recent educational…
Making Sense in a Fragmentary World: Communication in People with Autism and Learning Disability
ERIC Educational Resources Information Center
Noens, Ilse; van Berckelaer-Onnes, Ina
2004-01-01
The communicative capabilities of people with autism are impaired and limited in significant ways. The problems are characterized by a lack of intentionality and symbol formation, which indicates that the deviant development of communication in autism is associated with a specific cognitive style. The central coherence theory can offer insight…
Making Sense of Integrated Science: A Guide for High Schools.
ERIC Educational Resources Information Center
Biological Sciences Curriculum Study, Colorado Springs.
This guide outlines the initial work and includes recommendations for schools and districts on how to implement an integrated science program. Chapters include: (1) "What Is Integrated Science and What Does It Look Like at the High School Level?"; (2) "Coherence in High School Science" (F. James Rutherford); (3) "Thinking about Change: What Will…
Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data
NASA Astrophysics Data System (ADS)
Saibi, Hakim; Azizi, Masood; Mogren, Saad
2016-08-01
This study integrates potential gravity and magnetic field data with remotely sensed images and geological data in an effort to understand the subsurface major geological structures in Afghanistan. Integrated analysis of Landsat SRTM data was applied for extraction of geological lineaments. The potential field data were analyzed using gradient interpretation techniques, such as analytic signal (AS), tilt derivative (TDR), horizontal gradient of the tilt derivative (HG-TDR), Euler Deconvolution (ED) and power spectrum methods, and results were correlated with known geological structures. The analysis of remote sensing data and potential field data reveals the regional geological structural characteristics of Afghanistan. The power spectrum analysis of magnetic and gravity data suggests shallow basement rocks at around 1 to 1.5 km depth. The results of TDR of potential field data are in agreement with the location of the major regional fault structures and also the location of the basins and swells, except in the Helmand region (SW Afghanistan) where many high potential field anomalies are observed and attributed to batholiths and near-surface volcanic rocks intrusions. A high-resolution airborne geophysical survey in the data sparse region of eastern Afghanistan is recommended in order to have a complete image of the potential field anomalies.
Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; ...
2015-05-21
A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersivemore » line. Signals are recorded using a single 35 GHz photodetector and a 50 GSamples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO₃. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10⁻⁴) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. In conclusion, both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.« less
Analysis of magnetic gradients to study gravitropism.
Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan
2013-01-01
Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
Oh, Se Heang; Kang, Jun Goo; Kim, Tae Ho; Namgung, Uk; Song, Kyu Sang; Jeon, Byeong Hwa; Lee, Jin Ho
2018-01-01
In this study, we fabricated a nerve guide conduit (NGC) with nerve growth factor (NGF) gradient along the longitudinal direction by rolling a porous polycaprolactone membrane with NGF concentration gradient. The NGF immobilized on the membrane was continuously released for up to 35 days, and the released amount of the NGF from the membrane gradually increased from the proximal to distal NGF ends, which may allow a neurotrophic factor gradient in the tubular NGC for a sufficient period. From the in vitro cell culture experiment, it was observed that the PC12 cells sense the NGF concentration gradient on the membrane for the cell proliferation and differentiation. From the in vivo animal experiment using a long gap (20 mm) sciatic nerve defect model of rats, the NGC with NGF concentration gradient allowed more rapid nerve regeneration through the NGC than the NGC itself and NGC immobilized with uniformly distributed NGF. The NGC with NGF concentration gradient seems to be a promising strategy for the peripheral nerve regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 52-64, 2018. © 2017 Wiley Periodicals, Inc.
Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression.
Zhang, Mingji; Or, Siu Wing
2018-02-14
A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65-12.55 mV/A in the frequency range of 10 Hz-170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0-20 A, and a high common-mode noise rejection rate of 17-28 dB from multisource noises.
Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression
2018-01-01
A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65–12.55 mV/A in the frequency range of 10 Hz–170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0–20 A, and a high common-mode noise rejection rate of 17–28 dB from multisource noises. PMID:29443920
Svanberg, Jenny; Evans, Jonathan J
2014-01-01
This study aimed to investigate the impact of SenseCam, a wearable, automatic camera, on subjective mood and identity in a patient with severe memory impairment due to Korsakoff's syndrome. It was hypothesised that SenseCam would improve Ms A's mood and identity through enhancing recall of autobiographical memories of recent events, therefore supporting a coherent sense of self; the lack of which was contributing to Ms A's mood deterioration. An ABA single case experimental design investigated whether using SenseCam to record regular activities impacted on Ms A's mood and identity. Ms A experienced improved recall for events recorded using SenseCam, and showed improvement on subjective ratings of identity. However, a corresponding improvement in mood was not seen, and the study was ended early at Ms A's request. Qualitative information was gathered to explore Ms A's experience of the study, and investigate psychosocial factors that may have impacted on the use of SenseCam. SenseCam may be of significant use as a compensatory memory aid for people with Korsakoff's syndrome and other types of alcohol-related brain damage (ARBD), but acceptance of memory impairment and consistent support may be among the factors required to support the use of such assistive technologies in a community setting.
Eye investigation with optical microradar techniques
NASA Astrophysics Data System (ADS)
Molebny, Vasyl V.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.; Kurashov, Vitalij N.; Chyzh, Igor H.
1997-08-01
Many problems exist in ophthalmology, where accurate measurements of eye structure and its parameters can be provided using optical radar concept is of remote sensing. Coherent and non-coherent approaches are reviewed aiming cornea shape measurement and measurement of aberration distribution in the elements and media of an eye. Coherent radar techniques are analyzed taking into account non- reciprocity of eye media and anisoplanatism of the fovea, that results in an exiting image being not an auto- correlation of the point-spread function of a single pass, even in the approximation of spatial invariance of the system. It is found, that aberrations of the cornea and lens are not additive, and may not be brought to summary aberrations on the entrance aperture of the lens. Anisoplanatism of the fovea and its roughness lead to low degree of coherence in scattered light. To estimate the result of measurements, methodology has been developed using Zernike polynomials expansions. Aberration distributions were gotten from measurements in 16 points of an eye situated on two concentric circles. Wave aberration functions have been approximated using least-square criterion. Thus, all data were provided necessary for cornea ablation with PRK procedure.