Sample records for coherent photon echo

  1. Watching the coherence of multiple vibrational states in organic dye molecules by using supercontinuum probing photon echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Song, Yunfei; Wang, Yang; He, Xing; Liu, Yuqiang; Liu, Weilong; Yang, Yanqiang

    2011-12-01

    A modified photon echo (PE) technique, the supercontinuum probing photon echo (SCPPE), is introduced and performed to investigate the vibrational coherence in organic dye IR780 perchlorate doped polyvinyl alcohol (PVA) film. The coherences of multiple vibrational states which belong to four vibrational modes create complex oscillations in SCPPE signal. The frequencies of vibrational modes are confirmed from the results of Raman calculation which accord fairly well with the results of Raman scattering experiment. Compared with conventional one-color PE, the SCPPE technique can realize broadband detection and make the experiment about vibrational coherence more efficient.

  2. Access to long-term optical memories using photon echoes retrieved from electron spins in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2016-10-01

    We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.

  3. Precision spectral manipulation of optical pulses using a coherent photon echo memory.

    PubMed

    Buchler, B C; Hosseini, M; Hétet, G; Sparkes, B M; Lam, P K

    2010-04-01

    Photon echo schemes are excellent candidates for high efficiency coherent optical memory. They are capable of high-bandwidth multipulse storage, pulse resequencing and have been shown theoretically to be compatible with quantum information applications. One particular photon echo scheme is the gradient echo memory (GEM). In this system, an atomic frequency gradient is induced in the direction of light propagation leading to a Fourier decomposition of the optical spectrum along the length of the storage medium. This Fourier encoding allows precision spectral manipulation of the stored light. In this Letter, we show frequency shifting, spectral compression, spectral splitting, and fine dispersion control of optical pulses using GEM.

  4. A controlled ac Stark echo for quantum memories.

    PubMed

    Ham, Byoung S

    2017-08-09

    A quantum memory protocol of controlled ac Stark echoes (CASE) based on a double rephasing photon echo scheme via controlled Rabi flopping is proposed. The double rephasing scheme of photon echoes inherently satisfies the no-population inversion requirement for quantum memories, but the resultant absorptive echo remains a fundamental problem. Herein, it is reported that the first echo in the double rephasing scheme can be dynamically controlled so that it does not affect the second echo, which is accomplished by using unbalanced ac Stark shifts. Then, the second echo is coherently controlled to be emissive via controlled coherence conversion. Finally a near perfect ultralong CASE is presented using a backward echo scheme. Compared with other methods such as dc Stark echoes, the present protocol is all-optical with advantages of wavelength-selective dynamic control of quantum processing for erasing, buffering, and channel multiplexing.

  5. Adiabatic passage in photon-echo quantum memories

    NASA Astrophysics Data System (ADS)

    Demeter, Gabor

    2013-11-01

    Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.

  6. Spectrally resolved femtosecond photon echo spectroscopy of astaxanthin

    NASA Astrophysics Data System (ADS)

    Kumar, Ajitesh; Karthick Kumar, S. K.; Gupta, Aditya; Goswami, Debabrata

    2010-12-01

    We have studied the coherence and population dynamics of Astaxanthin solution in methanol and acetonitrile by spectrally resolving their photon echo signals. Our experiments indicate that methanol has a much stronger interaction with the ultrafast dynamics of Astaxanthin in comparison to that of acetonitrile.

  7. Spectrally resolved femtosecond photon echo spectroscopy of astaxanthin

    NASA Astrophysics Data System (ADS)

    Kumar, Ajitesh; Karthick Kumar, S. K.; Gupta, Aditya; Goswami, Debabrata

    2011-08-01

    We have studied the coherence and population dynamics of Astaxanthin solution in methanol and acetonitrile by spectrally resolving their photon echo signals. Our experiments indicate that methanol has a much stronger interaction with the ultrafast dynamics of Astaxanthin in comparison to that of acetonitrile.

  8. Transient quantum coherent effects in the acetylene-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Rodríguez Casillas, N.; Ocegueda Miramontes, M.; Hernández Hernández, E.

    2017-02-01

    Low-pressure acetylene in the hollow-core photonic crystal structure fibers is an excellent medium for the room-temperature investigation of the coherent quantum effects in communication wavelength region. Pulsed excitation enables observation of new coherent phenomena like optical nutation or photon echo and evaluation of important temporal characteristics of the light-molecule interactions. We also report original experimental results on the pulsed excitation of the electromagnetically induced transparency in co- and counter-propagation configurations.

  9. Nanophotonic photon echo memory based on rare-earth-doped crystals

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan; Miyazono, Evan; Faraon, Andrei; Caltech nano quantum optics Team

    2015-03-01

    Rare earth ions (REIs) are promising candidates for implementing solid-state quantum memories and quantum repeater devices. Their high spectral stability and long coherence times make REIs a good choice for integration in an on-chip quantum nano-photonic platform. We report the coupling of the 883 nm transition of Neodymium (Nd) to a Yttrium orthosilicate (YSO) photonic crystal nano-beam resonator, achieving Purcell enhanced spontaneous emission by 21 times and increased optical absorption. Photon echoes were observed in nano-beams of different doping concentrations, yielding optical coherence times T2 up to 80 μs that are comparable to unprocessed bulk samples. This indicates the remarkable coherence properties of Nd are preserved during nanofabrication, therefore opening the possibility of efficient on-chip optical quantum memories. The nano-resonator with mode volume of 1 . 6(λ / n) 3 was fabricated using focused ion beam, and a quality factor of 3200 was measured. Purcell enhanced absorption of 80% by an ensemble of ~ 1 × 106 ions in the resonator was measured, which fulfills the cavity impedance matching condition that is necessary to achieve quantum storage of photons with unity efficiency.

  10. Coherence rephasing combined with spin-wave storage using chirped control pulses

    NASA Astrophysics Data System (ADS)

    Demeter, Gabor

    2014-06-01

    Photon-echo based optical quantum memory schemes often employ intermediate steps to transform optical coherences to spin coherences for longer storage times. We analyze a scheme that uses three identical chirped control pulses for coherence rephasing in an inhomogeneously broadened ensemble of three-level Λ systems. The pulses induce a cyclic permutation of the atomic populations in the adiabatic regime. Optical coherences created by a signal pulse are stored as spin coherences at an intermediate time interval, and are rephased for echo emission when the ensemble is returned to the initial state. Echo emission during a possible partial rephasing when the medium is inverted can be suppressed with an appropriate choice of control pulse wave vectors. We demonstrate that the scheme works in an optically dense ensemble, despite control pulse distortions during propagation. It integrates conveniently the spin-wave storage step into memory schemes based on a second rephasing of the atomic coherences.

  11. Transfer and retrieval of optical coherence to strain-compensated quantum dots using a heterodyne photon-echo technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kazumasa; Ishi-Hayase, Junko; Akahane, Kouichi

    2013-12-04

    We performed the proof-of-principle demonstration of photon-echo quantum memory using strain-compensated InAs quantum dot ensemble in the telecommunication wavelength range. We succeeded in transfer and retrieval of relative phase of a time-bin pulse with a high fidelity. Our demonstration suggests the possibility of realizing ultrabroadband, high time-bandwidth products, multi-mode quantum memory which is operable at telecommunication wavelength.

  12. Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory

    NASA Astrophysics Data System (ADS)

    Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-09-01

    Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.

  13. Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers

    NASA Astrophysics Data System (ADS)

    Poltavtsev, S. V.; Kosarev, A. N.; Akimov, I. A.; Yakovlev, D. R.; Sadofev, S.; Puls, J.; Hoffmann, S. P.; Albert, M.; Meier, C.; Meier, T.; Bayer, M.

    2017-07-01

    The coherent optical response from 140 nm and 65 nm thick ZnO epitaxial layers is studied using four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D0XA ) at temperature of 1.8 K we evaluate optical coherence times T2=33 -50 ps corresponding to homogeneous line widths of 13 -19 μ eV , about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time T1=30 -40 ps, while pure dephasing is negligible. Temperature increase leads to a significant shortening of T2 due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D0XB ) is significantly faster (T2=3.6 ps ) and governed by pure dephasing processes.

  14. Electronic and Vibrational Coherence in Charge-Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Scherer, Norbert

    1996-03-01

    The ultrafast dynamics associated with optically-induced intervalence charge-transfer reactions in solution and protein environments are reported. These studies include the Fe^(II)-Fe^(III) MMCT complex Prussian blue and the mixed valence dimer (CN)_5Ru^(II)CNRuRu^(III)(NH_3)_5. The protein systems include blue copper proteins and the bacterial photosynthetic reaction center. The experimental approaches include photon echo, wavelength-resolved pump-probe and anisotropy measurements performed with 12-16fs duration optical pulses. Complicated time-domain waveforms reflect the several different p[rocesses and time scales for relaxation of coherences (both electronic and vibrational) and populations within these systems. The photon echo and anisotropy results probe electronic coherence and dephasing prior to back electron transfer. Wavelength-resolved pump-probe results reveal vibrational modes coupled to the CT-coordinate as well as formation of new product states or vibrational cooling in the ground state following back electron transfer.

  15. Coherent dynamics of localized excitons and trions in ZnO/(Zn,Mg)O quantum wells studied by photon echoes

    NASA Astrophysics Data System (ADS)

    Solovev, I. A.; Poltavtsev, S. V.; Kapitonov, Yu. V.; Akimov, I. A.; Sadofev, S.; Puls, J.; Yakovlev, D. R.; Bayer, M.

    2018-06-01

    We study optically the coherent evolution of trions and excitons in a δ -doped 3.5-nm-thick ZnO/Zn0.91Mg0.09O multiple quantum well by means of time-resolved four-wave mixing at a temperature of 1.5 K. Employing spectrally narrow picosecond laser pulses in the χ(3 ) regime allows us to address differently localized trion and exciton states, thereby avoiding many-body interactions and excitation-induced dephasing. The signal in the form of photon echoes from the negatively charged A excitons (TA, trions) decays with coherence times varying from 8 up to 60 ps, depending on the trion energy: more strongly localized trions reveal longer coherence dynamics. The localized neutral excitons decay on the picosecond time scale with coherence times up to T2=4.5 ps. The coherent dynamics of the XB exciton and TB trion are very short (T2<1 ps), which is attributed to the fast energy relaxation from the trion and exciton B states to the respective A states. The trion population dynamics is characterized by the decay time T1, rising from 30 to 100 ps with decreasing trion energy.

  16. Coherent optical pulse sequencer for quantum applications.

    PubMed

    Hosseini, Mahdi; Sparkes, Ben M; Hétet, Gabriel; Longdell, Jevon J; Lam, Ping Koy; Buchler, Ben C

    2009-09-10

    The bandwidth and versatility of optical devices have revolutionized information technology systems and communication networks. Precise and arbitrary control of an optical field that preserves optical coherence is an important requisite for many proposed photonic technologies. For quantum information applications, a device that allows storage and on-demand retrieval of arbitrary quantum states of light would form an ideal quantum optical memory. Recently, significant progress has been made in implementing atomic quantum memories using electromagnetically induced transparency, photon echo spectroscopy, off-resonance Raman spectroscopy and other atom-light interaction processes. Single-photon and bright-optical-field storage with quantum states have both been successfully demonstrated. Here we present a coherent optical memory based on photon echoes induced through controlled reversible inhomogeneous broadening. Our scheme allows storage of multiple pulses of light within a chosen frequency bandwidth, and stored pulses can be recalled in arbitrary order with any chosen delay between each recalled pulse. Furthermore, pulses can be time-compressed, time-stretched or split into multiple smaller pulses and recalled in several pieces at chosen times. Although our experimental results are so far limited to classical light pulses, our technique should enable the construction of an optical random-access memory for time-bin quantum information, and have potential applications in quantum information processing.

  17. Velocity-changing collisional effects in nonlinear atomic spectroscopy and photon echo decay in gases

    NASA Technical Reports Server (NTRS)

    Herman, R. M.

    1983-01-01

    A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.

  18. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Method for optical data processing based on a two-pulse photon echo

    NASA Astrophysics Data System (ADS)

    Zakharov, S. M.; Manykin, Eduard A.

    1995-02-01

    The principles of optical processing based on dynamic spatial—temporal properties of two-pulse photon echo signals are considered. The properties of a resonant medium as an on-line filter of temporal and spatial frequencies are discussed. These properties are due to the sensitivity of such a medium to the Fourier spectrum of the second exiting pulse. Degeneracy of quantum resonant systems, demonstrated by the coherent response dependence on the square of the amplitude of the second pulse, can be used for 'simultaneous' correlation processing of optical 'signals'. Various methods for the processing of the Fourier optical image are discussed.

  19. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    NASA Astrophysics Data System (ADS)

    Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper

    2017-12-01

    Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.

  20. A contradictory phenomenon of deshelving pulses in a dilute medium used for lengthened photon storage time.

    PubMed

    Ham, Byoung S

    2010-08-16

    Lengthening of photon storage time has been an important issue in quantum memories for long distance quantum communications utilizing quantum repeaters. Atom population transfer into an auxiliary spin state has been adapted to increase photon storage time of photon echoes. In this population transfer process phase shift to the collective atoms is inevitable, where the phase recovery condition must be multiple of 2pi to satisfy rephasing mechanism. Recent adaptation of the population transfer method to atomic frequency comb (AFC) echoes [Afzelius et al., Phys. Rev. Lett. 104, 040503 (2010)], where the population transfer method is originated in a controlled reversible inhomogeneous broadening technique [Moiseev and Kroll, Phys. Rev. Lett. 87, 173601 (2001)], however, shows contradictory phenomenon violating the phase recovery condition. This contradiction in AFC is reviewed as a general case of optical locking applied to a dilute medium for an optical depth-dependent coherence leakage resulting in partial retrieval efficiency.

  1. PREFACE: XVIII International Youth Scientific School "Coherent Optics and Optical Spectroscopy"

    NASA Astrophysics Data System (ADS)

    Salakhov, M. Kh; Samartsev, V. V.; Gainutdinov, R. Kh

    2015-05-01

    Kazan Federal University has held the annual International Youth School "Coherent Optics and Optical Spectroscopy" since 1997. The choice of the topic is not accidental. Kazan is the home of photon echo which was predicted at Kazan Physical-Technical Institute in 1963 by Prof. U.G. Kopvil'em and V.R. Nagibarov and observed in Columbia University by N.A. Kurnit, I.D. Abella, and S.R. Hartmann in 1964. Since then, photon echo has become a powerful tool of coherent optical spectroscopy and optical information processing, which have been developed here in Kazan in close collaboration between Kazan Physical-Technical Institute and Kazan Federal University. The main subjects of the XVIII International Youth School are: Nonlinear and coherent optics; Atomic and molecular spectroscopy; Coherent laser spectroscopy; Problems of quantum optics; Quantum theory of radiation; and Nanophotonics and Scanning Probe Microscopy. The unchallenged organizers of that school are Kazan Federal University and Kazan E.K. Zavoisky Physical-Technical Institute. The rector of the School is Professor Myakzyum Salakhov, and the vice-rector is Professor Vitaly Samartsev. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" follows the global pattern of comprehensive studies of matter properties and their interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from the USA, Germany, Ukraine, Belarus and Russia have given plenary lecture presentations. Here over 1000 young scientists had an opportunity to participate in lively discussions about the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the fullsize papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" was greatly supported by The Optical Society of America, the Russian Foundation for Basic Research, the non-profit Dynasty Foundation, the Tatarstan Academy of Science, and the Ministry of Education and Science of the Russian Federation. It is a pleasure to thank the sponsors and all the participants and contributors who made the International School meeting possible and interesting.

  2. Quantum teleportation from a propagating photon to a solid-state spin qubit

    NASA Astrophysics Data System (ADS)

    Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.

    2013-11-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  3. Quantum teleportation from a propagating photon to a solid-state spin qubit.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A

    2013-01-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  4. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion.

    PubMed

    Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R; Hildenbrand, Heiko; Engel, Volker

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  5. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  6. Properties of the Intergalactic Magnetic Field Constrained by Gamma-Ray Observations of Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veres, P.; Dermer, C. D.; Dhuga, K. S.

    The magnetic field in intergalactic space gives important information about magnetogenesis in the early universe. The properties of this field can be probed by searching for radiation of secondary e {sup +} e {sup −} pairs created by TeV photons that produce GeV range radiation by Compton-scattering cosmic microwave background photons. The arrival times of the GeV “echo” photons depend strongly on the magnetic field strength and coherence length. A Monte Carlo code that accurately treats pair creation is developed to simulate the spectrum and time-dependence of the echo radiation. The extrapolation of the spectrum of powerful gamma-ray bursts (GRBs)more » like GRB 130427A to TeV energies is used to demonstrate how the intergalactic magnetic field can be constrained if it falls in the 10{sup −21}–10{sup −17} G range for a 1 Mpc coherence length.« less

  7. Parallel and Multivalued Logic by the Two-Dimensional Photon-Echo Response of a Rhodamine–DNA Complex

    PubMed Central

    2015-01-01

    Implementing parallel and multivalued logic operations at the molecular scale has the potential to improve the miniaturization and efficiency of a new generation of nanoscale computing devices. Two-dimensional photon-echo spectroscopy is capable of resolving dynamical pathways on electronic and vibrational molecular states. We experimentally demonstrate the implementation of molecular decision trees, logic operations where all possible values of inputs are processed in parallel and the outputs are read simultaneously, by probing the laser-induced dynamics of populations and coherences in a rhodamine dye mounted on a short DNA duplex. The inputs are provided by the bilinear interactions between the molecule and the laser pulses, and the output values are read from the two-dimensional molecular response at specific frequencies. Our results highlights how ultrafast dynamics between multiple molecular states induced by light–matter interactions can be used as an advantage for performing complex logic operations in parallel, operations that are faster than electrical switching. PMID:25984269

  8. Dispersed three-pulse infrared photon echoes of nitrous oxide in water and octanol.

    PubMed

    Shattuck, J T; Schneck, J R; Chieffo, L R; Erramilli, S; Ziegler, L D

    2013-12-12

    Dispersed IR three-pulse photon echoes due to the antisymmetric (ν3) stretch mode of N2O dissolved in H2O and 1-octanol at room temperature are reported and analyzed. The experimentally determined transition frequency-frequency correlation function (FFCF) in these two solvents is explained in terms of inertial solvent contributions, hydrogen bond network fluctuations, and, for octanol, the motions of the alkyl chains. The H2O hydrogen bond fluctuations result in 1.5 ps FFCF decay, in agreement with relaxation rates determined from photon echo based measurements of other aqueous solutions including salt solutions. In octanol, hydrogen bond fluctuations decay on a slower time scale of 3.3 ps and alkyl chain motions result in an inhomogeneous broadening contribution to the ν3 absorption spectrum that decays on a 35 ps time scale. Rotational reorientation of N2O is nearly 3 times faster in octanol as compared to water. Although the vibrational ν3 N2O absorption line shapes in water and octanol are similar, the line widths result from different coherence loss mechanisms. A hot band contribution in the N2O in octanol solution is found to have a significant effect on the echo spectrum due to its correspondingly stronger transition moment than that of the fundamental transition. The dephasing dynamics of the N2O ν3 stretch mode is of interest as a probe in ultrafast studies of complex or nanoconfined systems with both hydrophobic and hydrophilic regions such as phospholipids, nucleic acids, and proteins. These results demonstrate the value of the N2O molecule to act as a reporter of equilibrium fluctuations in such complex systems particularly due to its solubility characteristics and long vibrational lifetime.

  9. Coherent Optical Transients and Spectral Line Narrowing Phenomena in Four Wave Mixing Spectroscopies: Theoretical and Experimental Studies.

    NASA Astrophysics Data System (ADS)

    Dugan, Mark Allen

    1990-08-01

    The theoretical basis for new signal transients and spectral features generated in field correlated four wave mixing (4WM) spectroscopies is developed. Special attention is given to those signal responses that are sensitive to phase/amplitude correlation among the input driving fields and not simply their intensity correlation. Thus, the cases of incoherent broadband excitation and of coherent short pulsed excitation will be discussed and compared. Applications to the coherent Raman spectroscopies, both electronically nonresonant and fully resonant, are analyzed. Novel interferometric oscillatory behavior is exposed in terms of field-matter detuning beats and matter-matter bi-level and tri-level quantum beats. In addition new detuning resonances are found that have sub-material linewidths and lock onto the mode frequency of the driven chromophore. These spectral features are a member of a class of bichromophore resonant lineshapes arising from nonlinear mixing with correlated driving fields. The origin of such bichromophore resonances can be based on a coupling between two field-matter superposition states driven by correlated fields on separate chromophores. Analytic results are presented and modelled to anticipate the experimental results presented in a following chapter. The onset of resolvable homogeneous electronic memory is reported in room temperature solutions of dye molecules. A narrowing of the homogeneous linewidths with increasing concentration of these dye solutions is observed in sub-picosecond photon echo experiments. This effect is attributed to aggregation which results in a delocalization of the electronic states over several molecules. Ultra -fast spectral diffusion in these dye aggregates is observed in stimulated photon echo measurements. Aggregate bands, seen in the linear absorption spectrum only at high concentrations, can be probed in more dilute solutions with nonlinear four wave mixing.

  10. Optical decoherence studies of Tm3 +:Y3Ga5O12

    NASA Astrophysics Data System (ADS)

    Thiel, C. W.; Sinclair, N.; Tittel, W.; Cone, R. L.

    2014-12-01

    Decoherence of the 795 nm 3H6 to 3H4 transition in 1 %Tm3 +:Y3Ga5O12 (Tm:YGG) is studied at temperatures as low as 1.2 K. The temperature, magnetic field, frequency, and time scale (spectral diffusion) dependence of the optical coherence lifetime is measured. Our results show that the coherence lifetime is impacted less by spectral diffusion than other known thulium-doped materials. Photon echo excitation and spectral hole burning methods reveal uniform decoherence properties and the possibility to produce full transparency for persistent spectral holes across the entire 56 GHz inhomogeneous bandwidth of the optical transition. Temperature-dependent decoherence is well described by elastic Raman scattering of phonons with an additional weaker component that may arise from a low density of glass-like dynamic disorder modes (two-level systems). Analysis of the observed behavior suggests that an optical coherence lifetime approaching 1 ms may be possible in this system at temperatures below 1 K for crystals grown with optimized properties. Overall, we find that Tm:YGG has superior decoherence properties compared to other Tm-doped crystals and is a promising candidate for applications that rely on long coherence lifetimes, such as optical quantum memories and photonic signal processing.

  11. Effect of subaperture beamforming on phase coherence imaging.

    PubMed

    Hasegawa, Hideyuki; Kanai, Hiroshi

    2014-11-01

    High-frame-rate echocardiography using unfocused transmit beams and parallel receive beamforming is a promising method for evaluation of cardiac function, such as imaging of rapid propagation of vibration of the heart wall resulting from electrical stimulation of the myocardium. In this technique, high temporal resolution is realized at the expense of spatial resolution and contrast. The phase coherence factor has been developed to improve spatial resolution and contrast in ultrasonography. It evaluates the variance in phases of echo signals received by individual transducer elements after delay compensation, as in the conventional delay-andsum beamforming process. However, the phase coherence factor suppresses speckle echoes because phases of speckle echoes fluctuate as a result of interference of echoes. In the present study, the receiving aperture was divided into several subapertures, and conventional delay-and-sum beamforming was performed with respect to each subaperture to suppress echoes from scatterers except for that at a focal point. After subaperture beamforming, the phase coherence factor was obtained from beamformed RF signals from respective subapertures. By means of this procedure, undesirable echoes, which can interfere with the echo from a focal point, can be suppressed by subaperture beamforming, and the suppression of the phase coherence factor resulting from phase fluctuation caused by such interference can be avoided. In the present study, the effect of subaperture beamforming in high-frame-rate echocardiography with the phase coherence factor was evaluated using a phantom. By applying subaperture beamforming, the average intensity of speckle echoes from a diffuse scattering medium was significantly higher (-39.9 dB) than that obtained without subaperture beamforming (-48.7 dB). As for spatial resolution, the width at half-maximum of the lateral echo amplitude profile obtained without the phase coherence factor was 1.06 mm. By using the phase coherence factor, spatial resolution was improved significantly, and subaperture beamforming achieved a better spatial resolution of 0.75 mm than that of 0.78 mm obtained without subaperture beamforming.

  12. How exciton-vibrational coherences control charge separation in the photosystem II reaction center.

    PubMed

    Novoderezhkin, Vladimir I; Romero, Elisabet; van Grondelle, Rienk

    2015-12-14

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-vibrational coherences observed in 2D photon echo of the photosystem II reaction center (PSII-RC). We find that the vibrations resonant with the exciton splittings can modify the delocalization of the exciton states and produce additional states, thus promoting directed energy transfer and allowing a switch between the two charge separation pathways. We conclude that the coincidence of the frequencies of the most intense vibrations with the splittings within the manifold of exciton and charge-transfer states in the PSII-RC is not occurring by chance, but reflects a fundamental principle of how energy conversion in photosynthesis was optimized.

  13. Fidelity of an optical memory based on stimulated photon echoes.

    PubMed

    Staudt, M U; Hastings-Simon, S R; Nilsson, M; Afzelius, M; Scarani, V; Ricken, R; Suche, H; Sohler, W; Tittel, W; Gisin, N

    2007-03-16

    We investigated the preservation of information encoded into the relative phase and amplitudes of optical pulses during storage and retrieval in an optical memory based on stimulated photon echo. By interfering photon echoes produced in a single-mode Ti:Er:LiNbO(3) waveguide, we found that decoherence in the medium translates only as loss and not as degradation of information. We measured a visibility for interfering echoes close to 100%. These results may have important implications for future long-distance quantum communication protocols.

  14. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer.

    PubMed

    Duan, Hong-Guang; Prokhorenko, Valentyn I; Cogdell, Richard J; Ashraf, Khuram; Stevens, Amy L; Thorwart, Michael; Miller, R J Dwayne

    2017-08-08

    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales [Formula: see text]100 fs. Today's understanding of the energy transfer includes the fact that the excitons are delocalized over a few neighboring sites, but the role of quantum coherence is considered as irrelevant for the transfer dynamics because it typically decays within a few tens of femtoseconds. This orthodox picture of incoherent energy transfer between clusters of a few pigments sharing delocalized excitons has been challenged by ultrafast optical spectroscopy experiments with the Fenna-Matthews-Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.

  15. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer

    NASA Astrophysics Data System (ADS)

    Duan, Hong-Guang; Prokhorenko, Valentyn I.; Cogdell, Richard J.; Ashraf, Khuram; Stevens, Amy L.; Thorwart, Michael; Miller, R. J. Dwayne

    2017-08-01

    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales <<100 fs. Today’s understanding of the energy transfer includes the fact that the excitons are delocalized over a few neighboring sites, but the role of quantum coherence is considered as irrelevant for the transfer dynamics because it typically decays within a few tens of femtoseconds. This orthodox picture of incoherent energy transfer between clusters of a few pigments sharing delocalized excitons has been challenged by ultrafast optical spectroscopy experiments with the Fenna-Matthews-Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.

  16. Polarization properties of long-lived stimulated photon echo

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.; Popov, E. N.

    2015-01-01

    The polarization properties of the long-lived stimulated photon echo formed on the transition ja → jb with the atomic levels degenerate in the projections of the angular momenta are studied theoretically. The two particular transitions ja = 1 → jb = 0 and ja = 1 → jb = 1 with degenerate ground state ja = 1 are discussed. For the transitions ja = 1 → jb = 1 the polarizations and areas of the first (‘write’) and the third (‘read’) excitation pulses are found when the echo polarization faithfully reproduces the arbitrary polarization of the weak (single-photon) second (‘information’) pulse, so that this echo scheme may implement the quantum memory for a single-photon polarization qubit, while for the transitions ja = 1 → jb = 0 it is shown, that the echo polarization differs from that of the second pulse at any conditions.

  17. Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface

    NASA Astrophysics Data System (ADS)

    Christle, David J.; Klimov, Paul V.; de las Casas, Charles F.; Szász, Krisztián; Ivády, Viktor; Jokubavicius, Valdas; Ul Hassan, Jawad; Syväjärvi, Mikael; Koehl, William F.; Ohshima, Takeshi; Son, Nguyen T.; Janzén, Erik; Gali, Ádám; Awschalom, David D.

    2017-04-01

    The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a high-fidelity spin-photon interface, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here, we demonstrate that such an interface exists in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have a millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on Si shows promise for future quantum networks based on SiC defects.

  18. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence

    NASA Astrophysics Data System (ADS)

    Plenio, M. B.; Almeida, J.; Huelga, S. F.

    2013-12-01

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  19. longitudinal space charge assisted echo seeding of a free electron laser

    NASA Astrophysics Data System (ADS)

    Hacker, Kirsten

    2015-05-01

    Seed lasers are employed to improve the temporal coherence of free-electron laser light. However, when seed pulses are short relative to the particle bunch, the noisy, temporally incoherent radiation from the un-seeded electrons can overwhelm the coherent, seeded radiation. In this paper a new seeding mechanism to improve the contrast between coherent and incoherent free electron laser radiation is employed together with a novel, simplified echo-seeding method. The concept relies on a combination of longitudinal space charge wakes and an echo-seeding technique to make a short, coherent pulse of FEL light together with noise background suppression. Several different simulation codes are used to illustrate the concept with conditions at the soft x-ray Free-electron LASer in Hamburg, FLASH. The impacts of coherent synchrotron radiation, intra beam scattering, and high peak current operation are investigated.

  20. Control of photon storage time using phase locking.

    PubMed

    Ham, Byoung S

    2010-01-18

    A photon echo storage-time extension protocol is presented by using a phase locking method in a three-level backward propagation scheme, where phase locking serves as a conditional stopper of the rephasing process in conventional two-pulse photon echoes. The backward propagation scheme solves the critical problems of extremely low retrieval efficiency and pi rephasing pulse-caused spontaneous emission noise in photon echo based quantum memories. The physics of the storage time extension lies in the imminent population transfer from the excited state to an auxiliary spin state by a phase locking control pulse. We numerically demonstrate that the storage time is lengthened by spin dephasing time.

  1. Oscillations in two-dimensional photon-echo signals of excitonic and vibronic systems: Stick-spectrum analysis and its computational verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorova, Dassia

    2014-01-21

    Stick-spectrum expressions for electronic two-dimensional (2D) photon-echo (PE) signal of a generic multi-level system are presented and employed to interrelate oscillations in individual peaks of 2D PE signal and the underlying properties (eigenstates and coherent dynamics) of excitonic or vibronic systems. When focusing on the identification of the origin of oscillations in the rephasing part of 2D PE it is found, in particular, that multiple frequencies in the evolution of the individual peaks do not necessarily directly reflect the underlying system dynamics. They may originate from the excited-state absorption contribution to the signal, or arise due to multi-level vibrational structuremore » of the electronic ground state, and represent a superposition of system frequencies, while the latter may evolve independently. The analytical stick-spectrum predictions are verified and illustrated by numerical calculations of 2D PE signals of an excitonic trimer and of a displaced harmonic oscillator with unequal vibrational frequencies in the two electronic states. The excitonic trimer is the smallest excitonic oligomer where excited-state absorption may represent a superposition of excited-state coherences and significantly influence the phase of the observed oscillations. The displaced oscillator is used to distinguish between the frequencies of the ground-state and of the excited-state manifolds, and to demonstrate how the location of a cross peak in 2D pattern of the PE signal “predetermines” its oscillatory behavior. Although the considered models are kept as simple as possible for clarity, the stick-spectrum analysis provides a solid general basis for interpretation of oscillatory signatures in electronic 2D PE signals of much more complex systems with multi-level character of the electronic states.« less

  2. Coherent pump pulses in Double Electron Electron Resonance Spectroscopy

    PubMed Central

    Tait, Claudia E.; Stoll, Stefan

    2016-01-01

    The recent introduction of shaped pulses to Double Electron Electron Resonance (DEER) spectroscopy has led to significant enhancements in sensitivity through increased excitation bandwidths and improved control over spin dynamics. The application of DEER has so far relied on the presence of an incoherent pump channel to average out most undesired coherent effects of the pump pulse(s) on the observer spins. However, in fully coherent EPR spectrometers that are increasingly used to generate shaped pulses, the presence of coherent pump pulses means that these effects need to be explicitly considered. In this paper, we examine the effects of coherent rectangular and sech/tanh pump pulses in DEER experiments with up to three pump pulses. We show that, even in the absence of significant overlap of the observer and pump pulse excitation bandwidths, coherence transfer pathways involving both types of pulses generate spin echoes of considerable intensity. These echoes introduce artefacts, which, if not identified and removed, can easily lead to misinterpretation. We demonstrate that the observed echoes can be quantitatively modelled using a simple spin quantum dynamics approach that includes instrumental transfer functions. Based on an analysis of the echo crossing artefacts, we propose efficient phase cycling schemes for their suppression. This enables the use of advanced DEER experiments, characterized by high sensitivity and increased accuracy for long-distance measurements, on novel fully coherent EPR spectrometers. PMID:27339858

  3. J-Refocused Coherence Transfer Spectroscopic Imaging at 7 T in Human Brain

    PubMed Central

    Pan, J.W.; Avdievich, N.; Hetherington, H.P.

    2013-01-01

    Short echo spectroscopy is commonly used to minimize signal modulation due to J-evolution of the cerebral amino acids. However, short echo acquisitions suffer from high sensitivity to macromolecules which make accurate baseline determination difficult. In this report, we describe implementation at 7 T of a double echo J-refocused coherence transfer sequence at echo time (TE) of 34 msec to minimize J-modulation of amino acids while also decreasing interfering macromolecule signals. Simulation of the pulse sequence at 7 T shows excellent resolution of glutamate, glutamine, and N-acetyl aspartate. B1 sufficiency at 7 T for the double echo acquisition is achieved using a transceiver array with radiofrequency (RF) shimming. Using an alternate RF distribution to minimize receiver phase cancellation in the transceiver, accurate phase determination for the coherence transfer is achieved with rapid single scan calibration. This method is demonstrated in spectroscopic imaging mode with n = 5 healthy volunteers resulting in metabolite values consistent with literature and in a patient with epilepsy. PMID:20648684

  4. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.

    2015-09-01

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ˜40-60 fs.

  5. Collision-induced stimulated photon echoes in ‘strong’ magnetic field

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.

    2018-05-01

    Collision-induced stimulated photon echoes formed in a gaseous medium on the transition with the angular momentum change Ja=0 → Jb=1 under the action of ‘strong’ longitudinal magnetic field, when the echo pulse becomes unpolarized, are considered with an account of elastic depolarizing collisions. In the case of narrow spectral line the explicit expressions for the echo polarization density matrix and the degree of polarization are obtained. In the case of broad spectral line the results of the numeric calculations reproduce qualitatively the curve obtained in the experiments with ytterbium vapor.

  6. Longitudinal space charge assisted echo seeding of a free-electron laser with laser-spoiler noise suppression

    NASA Astrophysics Data System (ADS)

    Hacker, Kirsten

    2014-09-01

    Seed lasers are employed to improve the temporal coherence of free-electron laser (FEL) light. However, when these seed pulses are short relative to the particle bunch, the noisy, temporally incoherent radiation from the unseeded electrons can overwhelm the coherent, seeded radiation. In this paper, a technique to seed a particle bunch with an external laser is presented in which a new mechanism to improve the contrast between coherent and incoherent free electron laser radiation is employed together with a novel, simplified echo-seeding method. The concept relies on a combination of longitudinal space charge wakes and an echo-seeding technique to make a short, coherent pulse of FEL light together with noise background suppression. Several different simulation codes are used to illustrate the concept with conditions at the soft x-ray free-electron laser in Hamburg, FLASH.

  7. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Associative properties of a multichannel photon echo and optical memory

    NASA Astrophysics Data System (ADS)

    Bikbov, I. S.; Zuikov, V. A.; Popov, I. I.; Popova, G. L.; Samartsev, V. V.

    1995-10-01

    An analysis is made of the results of an investigation of the physical principles underlying the operation of an associative optical memory and of processors utilising the photon (optical) echo phenomenon. The feasibility of constructing such optical memories is considered.

  8. Effect of the depolarization field on coherent optical properties in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu

    2018-06-01

    We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.

  9. Photon catalysis acting as noiseless linear amplification and its application in coherence enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Shengli; Zhang, Xiangdong

    2018-04-01

    Photon catalysis is an intriguing quantum mechanical operation during which no photon is added to or subtracted from the relevant optical system. However, we prove that photon catalysis is in essence equivalent to the simpler but more efficient noiseless linear amplifier. This provides a simple and zero-energy-input method for enhancing quantum coherence. We show that the coherence enhancement holds both for a coherent state and a two-mode squeezed vacuum (TMSV) state. For the TMSV state, biside photon catalysis is shown to be equivalent to two times the single-side photon catalysis, and two times the photon catalysis does not provide a substantial enhancement of quantum coherence compared with single-side catalysis. We further extend our investigation to the performance of coherence enhancement with a more realistic photon catalysis scheme where a heralded approximated single-photon state and an on-off detector are exploited. Moreover, we investigate the influence of an imperfect photon detector and the result shows that the amplification effect of photon catalysis is insensitive to the detector inefficiency. Finally, we apply the coherence measure to quantum illumination and see the same trend of performance improvement as coherence enhancement is identified in practical quantum target detection.

  10. Ultrafast Dephasing and Incoherent Light Photon Echoes in Organic Amorphous Systems

    NASA Astrophysics Data System (ADS)

    Yano, Ryuzi; Matsumoto, Yoshinori; Tani, Toshiro; Nakatsuka, Hiroki

    1989-10-01

    Incoherent light photon echoes were observed in organic amorphous systems (cresyl violet in polyvinyl alcohol and 1,4-dihydroxyanthraquinone in polymethacrylic acid) by using temporally-incoherent nanosecond laser pulses. It was found that an echo decay curve of an organic amorphous system is composed of a sharp peak which decays very rapidly and a slowly decaying wing at the tail. We show that the persistent hole burning (PHB) spectra were reproduced by the Fourier-cosine transforms of the echo decay curves. We claim that in general, we must take into account the multi-level feature of the system in order to explain ultrafast dephasing at very low temperatures.

  11. Highly coherent vacuum ultraviolet radiation at the 15th harmonic with echo-enabled harmonic generation technique

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Dunning, M.; Hast, C.; Raubenheimer, T. O.; Weathersby, S.; Xiang, D.

    2014-07-01

    X-ray free-electron lasers are enabling access to new science by producing ultrafast and intense x rays that give researchers unparalleled power and precision in examining the fundamental nature of matter. In the quest for fully coherent x rays, the echo-enabled harmonic generation technique is one of the most promising methods. In this technique, coherent radiation at the high harmonic frequencies of two seed lasers is generated from the recoherence of electron beam phase space memory. Here we report on the generation of highly coherent and stable vacuum ultraviolet radiation at the 15th harmonic of an infrared seed laser with this technique. The experiment demonstrates two distinct advantages that are intrinsic to the highly nonlinear phase space gymnastics of echo-enabled harmonic generation in a new regime, i.e., high frequency up-conversion efficiency and insensitivity to electron beam phase space imperfections. Our results allow comparison and confirmation of predictive models and scaling laws, and mark a significant step towards fully coherent x-ray free-electron lasers that will open new scientific research.

  12. The Urbana coherent-scatter radar: Synthesis and first results

    NASA Technical Reports Server (NTRS)

    Gibbs, K. P.; Bowhill, S. A.

    1979-01-01

    A coherent scatter radar system was synthesized and several hundred hours of echo power and line of sight velocity data obtained. The coherent scatter radar utilizes a diode array and components from meteor radar. The receiving system permits a time resolution of one minute in the data. Echo power from the D region shows a high degree of variability from day to day. Examples of changes in power level at shorter time scales are observed. Velocity data show the existence of gravity waves and occasionally exhibit vertical standing wave characteristics.

  13. Refocused linewidths less than 10 Hz in 1H solid-state NMR.

    PubMed

    Paruzzo, Federico M; Stevanato, Gabriele; Halse, Meghan E; Schlagnitweit, Judith; Mammoli, Daniele; Lesage, Anne; Emsley, Lyndon

    2018-06-02

    Coherence lifetimes in homonuclear dipolar decoupled 1 H solid-state NMR experiments are usually on the order of a few ms. We discover an oscillation that limits the lifetime of the coherences by recording spin-echo dephasing curves. We find that this oscillation can be removed by the application of a double spin-echo experiment, leading to coherence lifetimes of more than 45 ms in adamantane and more that 22 ms in β-AspAla, corresponding to refocused linewidths of less than 7 and 14 Hz respectively. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. 174Yb 3P1 level relaxation found via weak magnetic field dependence of collision-induced stimulated photon echo

    NASA Astrophysics Data System (ADS)

    Rubtsova, N. N.; Gol’dort, V. G.; Khvorostov, E. B.; Kochubei, S. A.; Reshetov, V. A.

    2018-06-01

    Collision-induced stimulated photon echo generated at transition was analyzed theoretically and investigated experimentally in the gaseous mixture of ytterbium vapour diluted with a large amount of buffer gas xenon in the presence of a weak longitudinal magnetic field. The inter-combination transition of 174Yb (6s2) 1S(6s6p) 3P1 was used; all experimental parameters were carefully controlled for their correspondence to the broad spectral line conditions. The curve representing the collision-induced stimulated photon echo variations versus a weak magnetic field strength showed very good agreement with the corresponding theoretical curve; this agreement permitted getting the decay rates for 174Yb level 3P1 orientation and alignment in collisions with Xe.

  15. Collision-induced stimulated photon echo generated at transition 0-1 on broad spectral line conditions

    NASA Astrophysics Data System (ADS)

    Rubtsova, N. N.; Gol'dort, V. G.; Ishchenko, V. N.; Khvorostov, E. B.; Kochubei, S. A.; Borisov, G. M.; Ledovskikh, D. V.; Reshetov, V. A.

    2018-04-01

    For the first time, the collision induced stimulated photon echo generated at transition 1S0 → 3 P1 of 174Yb (type 0-1) in the mixture of gases Yb  +  Xe was investigated in the presence of weak longitudinal magnetic field, with experimental parameters corresponding to broad spectral line conditions. Comparison of the experimental echo amplitude versus magnetic field strength dependence with the theoretical curve shows a very good agreement, giving rise to an improved estimate for the difference between alignment and orientation decay rates.

  16. Spatial two-photon coherence of the entangled field produced by down-conversion using a partially spatially coherent pump beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Anand Kumar; Boyd, Robert W.

    2010-01-15

    We study the spatial coherence properties of the entangled two-photon field produced by parametric down-conversion (PDC) when the pump field is, spatially, a partially coherent beam. By explicitly treating the case of a pump beam of the Gaussian Schell-model type, we show that in PDC the spatial coherence properties of the pump field get entirely transferred to the spatial coherence properties of the down-converted two-photon field. As one important consequence of this study, we find that, for two-qubit states based on the position correlations of the two-photon field, the maximum achievable entanglement, as quantified by concurrence, is bounded by themore » degree of spatial coherence of the pump field. These results could be important by providing a means of controlling the entanglement of down-converted photons by tailoring the degree of coherence of the pump field.« less

  17. Stimulated emission from ladder-type two-photon coherent atomic ensemble.

    PubMed

    Park, Jiho; Moon, Han Seb

    2018-05-28

    We investigated the stimulated emission from a ladder-type two-photon coherent atomic ensemble, for the 5S 1/2 - 5P 3/2 - 5D 5/2 transition of 87 Rb atoms. Under the ladder-type two-photon resonance condition obtained using pump and coupling lasers, we observed broad four-wave mixing (FWM) light stimulated from two-photon coherence induced by the seed laser coupled between the ground state of 5S 1/2 and the first excited state of 5P 3/2 . A dip in the FWM spectrum was obtained for three-photon resonance due to V-type two-photon coherence using the pump and seed lasers. From the FWM spectra obtained for varying frequency detuning and seed-laser power, we determined that the seed laser acts as a stimulator for FWM generation, but also acts as a disturber of FWM due to V-type two-photon coherence.

  18. Integrated and dispersed photon echo studies of nitrile stretching vibration of 4-cyanophenol in methanol.

    PubMed

    Ha, Jeong-Hyon; Lee, Kyung-Koo; Park, Kwang-Hee; Choi, Jun-Ho; Jeon, Seung-Joon; Cho, Minhaeng

    2009-05-28

    By means of integrated and dispersed IR photon echo measurement methods, the vibrational dynamics of C-N stretch modes in 4-cyanophenol and 4-cyanophenoxide in methanol is investigated. The vibrational frequency-frequency correlation function (FFCF) is retrieved from the integrated photon echo signals by assuming that the FFCF is described by two exponential functions with about 400 fs and a few picosecond components. The excited state lifetimes of the C-N stretch modes of neutral and anionic 4-cyanophenols are 1.45 and 0.91 ps, respectively, and the overtone anharmonic frequency shifts are 25 and 28 cm(-1). At short waiting times, a notable underdamped oscillation, which is attributed to a low-frequency intramolecular vibration coupled to the CN stretch, in the integrated and dispersed vibrational echo as well as transient grating signals was observed. The spectral bandwidths of IR absorption and dispersed vibrational echo spectra of the 4-cyanophenoxide are significantly larger than those of its neutral form, indicating that the strong interaction between phenoxide and methanol causes large frequency fluctuation and rapid population relaxation. The resonance effects in a paradisubstituted aromatic compound would be of interest in understanding the conjugation effects and their influences on chemical reactivity of various aromatic compounds in organic solvents.

  19. Quantum decoherence dynamics of divacancy spins in silicon carbide

    DOE PAGES

    Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; ...

    2016-09-29

    Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs aremore » both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Lastly, our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.« less

  20. Quantum decoherence dynamics of divacancy spins in silicon carbide.

    PubMed

    Seo, Hosung; Falk, Abram L; Klimov, Paul V; Miao, Kevin C; Galli, Giulia; Awschalom, David D

    2016-09-29

    Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the 29 Si and 13 C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.

  1. Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.

    PubMed

    Allodi, Marco A; Dahlberg, Peter D; Mazuski, Richard J; Davis, Hunter C; Otto, John P; Engel, Gregory S

    2016-12-21

    We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.

  2. Single-photon superradiant beating from a Doppler-broadened ladder-type atomic ensemble

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Seok; Lee, Sang Min; Kim, Heonoh; Moon, Han Seb

    2017-12-01

    We report on heralded-single-photon superradiant beating in the spontaneous four-wave mixing process of Doppler-broadened ladder-type 87Rb atoms. When Doppler-broadened atoms contribute to two-photon coherence, the detection probability amplitudes of the heralded single photons are coherently superposed despite inhomogeneous broadened atomic media. Single-photon superradiant beating is observed, which constitutes evidence for the coherent superposition of two-photon amplitudes from different velocity classes in the Doppler-broadened atomic ensemble. We present a theoretical model in which the single-photon superradiant beating originates from the interference between wavelength-separated two-photon amplitudes via the reabsorption filtering effect.

  3. All-optical central-frequency-programmable and bandwidth-tailorable radar

    PubMed Central

    Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution. PMID:26795596

  4. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    NASA Technical Reports Server (NTRS)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  5. Anisotropic Optical-Response of Eu-doped Yttrium Orthosilicate

    NASA Technical Reports Server (NTRS)

    Liu, Huimin; Santiago, Miguel; Jia, Weiyi; Zhang, Shoudu

    1998-01-01

    Eu-doped yttrium orthosilicate (Eu(3+) : Y2SiO5) had been a subject being investigated for coherent time-domain optical memory and information processing applications since its ultraslow optical dephasing was discovered several years ago. In this crystal the weakly allowed (7)F0 - (5)D0 transition of europium ions exhibits a sufficient long dephasing time and no spectral difli.usion on a time scale of several hours at low temperature, thus an information pattern or data can be stored as a population grating in the ground state hyperfine levels. On the other hand, the study on photon-echo relaxation shows that the dephasing time T2 of Eu (3+) and other rare-earth ions doped YAG, YAlO3 strongly depends on the intensity of the excitation pulses. In Eu (3+) :YAlO3, an exponential decay of photon-echo with T2 = 53 microseconds if the excitation pulses are weak (5 vJ/pulse) was observed. However, when the excitation pulses are strong (80 pJ/pulse) they observed a much shortened T2 with a highly nonexponential decay pattern. The conclusion they derived is that the intensity-dependent dephasing rate effects are quite general, and it depends on how much the excitation intensity varies. In this paper we use transient grating formation technique showing that a temporal lattice distortion may only occur along crystal c axis, caused by EU (3+) excitation. At high excitation level the produced exciton in conduction band may also couple to the dynamical lattice relaxation process, giving rise to an apparently much shortened dephasing time.

  6. Sensing coherent phonons with two-photon interference

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Yin, Xiaobo; Li, Baowen

    2018-02-01

    Detecting coherent phonons pose different challenges compared to coherent photons due to the much stronger interaction between phonons and matter. This is especially true for high frequency heat carrying phonons, which are intrinsic lattice vibrations experiencing many decoherence events with the environment, and are thus generally assumed to be incoherent. Two photon interference techniques, especially coherent population trapping (CPT) and electromagnetically induced transparency (EIT), have led to extremely sensitive detection, spectroscopy and metrology. Here, we propose the use of two photon interference in a three-level system to sense coherent phonons. Unlike prior works which have treated phonon coupling as damping, we account for coherent phonon coupling using a full quantum-mechanical treatment. We observe strong asymmetry in absorption spectrum in CPT and negative dispersion in EIT susceptibility in the presence of coherent phonon coupling which cannot be accounted for if only pure phonon damping is considered. Our proposal has application in sensing heat carrying coherent phonons effects and understanding coherent bosonic multi-pathway interference effects in three coupled oscillator systems.

  7. Velocities of Auroral Coherent Echoes At 12 and 144 Mhz

    NASA Astrophysics Data System (ADS)

    Koustov, A. V.; Danskin, D. W.; Makarevitch, R. A.; Uspensky, M. V.; Janhunen, P.; Nishitani, N.; Nozawa, N.; Lester, M.; Milan, S.

    Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at 144 MHz and 12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5 providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider one event when STARE radar echoes are detected t the same ranges as CUTLASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and elec- tron density behavior at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS- CAT measurements) while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUTLASS velocities agree well with the convection component along the CUTLASS radar beam while STARE velocities are sometimes smaller by a factor of 2-3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on range. Plasma physics of E- and F-region irregularities is dis- cussed in attempt to explain inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes.

  8. Observation of a new coherent transient in NMR -- nutational two-pulse stimulated echo in the angular distribution of γ-radiation from oriented nuclei

    NASA Astrophysics Data System (ADS)

    Shakhmuratova, L. N.; Hutchison, W. D.; Isbister, D. J.; Chaplin, D. H.

    1997-07-01

    A new coherent transient in pulsed NMR, the two-pulse nutational stimulated echo, is reported for the ferromagnetic system 60CoFe using resonant perturbations on the directional emission of anisotropic γ-radiation from thermally oriented nuclei. The new spin echo is a result of non-linear nuclear spin dynamics due to large Larmor inhomogeneity active during radiofrequency pulse application. It is made readily observable through the gross detuning between NMR radiofrequency excitation and gamma radiation detection, and inhomogeneity in the Rabi frequency caused by metallic skin-effect. The method of concatenation of perturbation factors in a statistical tensor formalism is quantitatively applied to successfully predict and then fit in detail the experimental time-domain data.

  9. Frequency dependence of coherently amplified two-photon emission from hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Hara, Hideaki; Miyamoto, Yuki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2017-12-01

    We investigate how the efficiency of coherently amplified two-photon emission depends on the frequency of one of the two emitted photons, namely the signal photon. This is done over the wavelength range of 5.048-10.21 μ m by using the vibrational transition of parahydrogen. The efficiency increases with the frequency of the signal photon. Considering experimental errors, our results are consistent with the theoretical prediction for the present experimental conditions. This study is an experimental demonstration of the frequency dependence of coherently amplified two-photon emission, and also presents its potential as a light source.

  10. All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.

    PubMed

    Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P

    2018-05-29

    Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.

  11. Turbulent upwelling of mid-latitude ionosphere. 1. Observational results by the MU radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukao, Shoichiro; Shirakawa, Tatsuya; Takami, Tomoyuki

    1991-03-01

    In this paper, the authors present the detailed results of a series of experiments designed to study the coherent backscatter of 50-MHz radar waves from the mid-latitude F region. Data were obtained with the active phased-array MU radar in Japan and include some auxiliary E region coherent echoes as well.The strongest echoes correspond to irregularities at least 20 dB stronger than thermal backscatter at the same frequency from typical F region densities at the same range. Simultaneous observations with ionosondes show that these echoes occur during strong mid-latitude spread F. As defined by ionosondes, the latter phenomenon is certainly muchmore » more widespread than the turbulent upwelling events described here, but they believe that in some sense these correspond to the most violent mid-latitude spread F. The strongest echoes occur in large patches which display away Doppler shifts corresponding to irregularity motion upward and northward from the radar. At the edges of these patches there is often a brief period of toward Doppler before the echoing region ceases. On rare occasions comparable patches of strong away and toward Doppler are detected, although in such cases the Doppler width of the toward echoes is much narrower than that of the away echoes. The multiple beam capability at MU allowed us to track the patches in the zonal direction on two days. The patches moved east to west in both cases at velocities of 125 m/s and 185 m/s, respectively. There is a distinct tendency for the bottom contour of the scattering region to be modulated at the same period as the patch occurence frequency as well as at higher frequencies. This higher-frequency component may correspond to substructures in the large patches and to the E region coherent scatter patches which were detected simultaneously in several multiple beam experiments.« less

  12. Equivalence of time and aperture domain additive noise in ultrasound coherence.

    PubMed

    Bottenus, Nick B; Trahey, Gregg E

    2015-01-01

    Ultrasonic echoes backscattered from diffuse media, recorded by an array transducer and appropriately focused, demonstrate coherence predicted by the van Cittert-Zernike theorem. Additive noise signals from off-axis scattering, reverberation, phase aberration, and electronic (thermal) noise can all superimpose incoherent or partially coherent signals onto the recorded echoes, altering the measured coherence. An expression is derived to describe the effect of uncorrelated random channel noise in terms of the noise-to-signal ratio. Equivalent descriptions are made in the aperture dimension to describe uncorrelated magnitude and phase apodizations of the array. Binary apodization is specifically described as an example of magnitude apodization and adjustments are presented to minimize the artifacts caused by finite signal length. The effects of additive noise are explored in short-lag spatial coherence imaging, an image formation technique that integrates the calculated coherence curve of acquired signals up to a small fraction of the array length for each lateral and axial location. A derivation of the expected contrast as a function of noise-to-signal ratio is provided and validation is performed in simulation.

  13. Security improvement by using a modified coherent state for quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.J.; Zhu, Luobei; Ou, Z.Y.

    2005-03-01

    Weak coherent states as a photon source for quantum cryptography have a limit in secure data rate and transmission distance because of the presence of multiphoton events and loss in transmission line. Two-photon events in a coherent state can be taken out by a two-photon interference scheme. We investigate the security issue of utilizing this modified coherent state in quantum cryptography. A 4-dB improvement in the secure data rate or a nearly twofold increase in transmission distance over the coherent state are found. With a recently proposed and improved encoding strategy, further improvement is possible.

  14. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Zhou, Kaishang; Feng, Chao; Wang, Dong

    2016-10-01

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the "water window" and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  15. Coherent perfect absorption in deeply subwavelength films in the single-photon regime

    PubMed Central

    Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele

    2015-01-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications. PMID:25991584

  16. Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser.

    PubMed

    Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho

    2009-07-20

    Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.

  17. Tunable Soft X-Ray Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixedmore » frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.« less

  18. Single spontaneous photon as a coherent beamsplitter for an atomic matter-wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomkovič, Jiří; Welte, Joachim; Oberthaler, Markus K.

    2014-12-04

    In free space the spontaneous emission of a single photon destroys motional coherence. Close to a mirror surface the reflection erases the which-path information and the single emitted photon can be regarded as a coherent beam splitter for an atomic matter-wavewhich can be verified by atom interferometry. Our experiment is a realization of the recoiling slit Gedanken experiment by Einstein.

  19. Quantum Discord in Photon-Added Glauber Coherent States of GHZ-Type

    NASA Astrophysics Data System (ADS)

    Daoud, M.; Kaydi, W.; El Hadfi, H.

    2015-11-01

    We investigate the influence of photon excitations on quantum correlations in tripartite Glauber coherent states of Greenberger-Horne-Zeilinger type (GHZ-type). The pairwise correlations are measured by means of the entropy-based quantum discord. We also analyze the monogamy property of quantum discord in this class of tripartite states in terms of the strength of Glauber coherent states and the photon excitation order.

  20. DC Stark addressing for quantum memory in Tm:YAG

    NASA Astrophysics Data System (ADS)

    Gerasimov, Konstantin; Minnegaliev, Mansur; Urmancheev, Ravil; Moiseev, Sergey

    2017-10-01

    We observed a linear DC Stark effect for 3H6 - 3H4 optical transition of Tm3+ ions in Y3Al5O12. We observed that application of electric field pulse suppresses the two-pulse photon echo signal. If we then apply a second electric pulse of opposite polarity the echo signal is restored again, which indicates the linear nature of the observed effect. The effect is present despite the D2 symmetry of the Tm3+ sites that prohibits a linear Stark effect. Experimental data analysis shows that the observed electric field influence can be attributed to defects that break the local crystal field symmetry near Tm3+ ions. Using this effect we demonstrate selective retrieval of light pulses in two-pulse photon echo.

  1. Coherent manipulation of a solid-state artificial atom with few photons.

    PubMed

    Giesz, V; Somaschi, N; Hornecker, G; Grange, T; Reznychenko, B; De Santis, L; Demory, J; Gomez, C; Sagnes, I; Lemaître, A; Krebs, O; Lanzillotti-Kimura, N D; Lanco, L; Auffeves, A; Senellart, P

    2016-06-17

    In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom-photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment.

  2. Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States

    NASA Astrophysics Data System (ADS)

    Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Wang, Zhen

    2018-04-01

    We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.

  3. Coupling Photonics and Coherent Spintronics for Low-Loss Flexible Optical Logic

    DTIC Science & Technology

    2015-12-02

    AFRL-AFOSR-VA-TR-2016-0055 Coupling photonics and coherent spintronics for low-loss flexible optical logic Jesse Berezovsky CASE WESTERN RESERVE UNIV...2012 - 14/06/2015 4. TITLE AND SUBTITLE Coupling photonics and coherent spintronics for low-loss flexible optical logic 5a. CONTRACT NUMBER 5b...into devices, ranging from macroscopic optical cavities, to arrays of microlens cavities, to quantum dot-impregnated integrated polymer waveguides

  4. Evolution of multiple quantum coherences with scaled dipolar Hamiltonian

    NASA Astrophysics Data System (ADS)

    Sánchez, Claudia M.; Buljubasich, Lisandro; Pastawski, Horacio M.; Chattah, Ana K.

    2017-08-01

    In this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters. In all cases, a strong dependence between the evolution rate and the weighting factor is observed. Remarkably, all the curves appeared overlapped in a single trend when plotted against the self-time, a new time scale that includes the scaling factor into the evolution time. In other words, the spin system displayed always the same quantum evolution, slowed down as the scaling factor decreases, confirming the high performance of the new pulse sequence.

  5. Techniques for measuring the atomic recoil frequency using a grating-echo atom interferometer

    NASA Astrophysics Data System (ADS)

    Barrett, Brynle

    I have developed three types of time-domain echo atom interferometer (AIs) that use either two or three standing-wave pulses in different configurations. Experiments approaching the transit time limit are achieved using samples of laser-cooled rubidium atoms with temperatures < 5 μK contained within a glass vacuum chamber—an environment that is largely free of both magnetic fields and field gradients. The principles of the atom-interferometric measurement of Eq can be understood based on a description of the "two-pulse" AI. This interferometer uses two standing-wave pulses applied at times t = 0 and t = T 21 to create a superposition of atomic momentum states differing by multiples of the two-photon momentum, ħq = 2 ħk where k is the optical wave number, that interfere in the vicinity of t = 2T 21. This interference or "echo" manifests itself as a density grating in the atomic sample, and is probed by applying a near-resonant traveling-wave "read-out" pulse and measuring the intensity of the coherent light Bragg-scattered in the backward direction. The scattered light from the grating is associated with a λ/2-periodic modulation produced by the interference of momentum states differing by ħq. Interfering states that differ by more than ħq—which produce higher-frequency spatial modulation within the sample—cannot be detected due to the nature of the Bragg scattering detection technique employed in the experiment. The intensity of the scattered light varies in a periodic manner as a function of the standing-wave pulse separation, T21. The fundamental frequency of this modulation is the two-photon atomic recoil frequency, ω q = ħq2/2M, where q = 2k and M is the mass of the atom (a rubidium isotope in this case). The recoil frequency, ω q, is related to the recoil energy, Eq = ħωq, which is the kinetic energy associated with the recoil of the atom after a coherent two-photon scattering process. By performing the experiment on a suitably long time scale ( T21 >> τq = π/ω q ˜32 μs), ωq can be measured precisely. Since ωq contains the ratio of Planck's constant to the mass of the atom, h/M, a precise measurement of ωq can be used as a strict test of quantum theories of the electromagnetic force. This two-pulse technique has a number of disadvantages for a precision measurement of ωq, such as a complicated functional dependence on T21 (due to the nature of Kapitza-Dirac diffraction, the level structure of the atom, and spontaneous emission). However, many of these difficulties can be avoided by using a three-pulse "perturbative" echo technique, where a third standing-wave pulse is applied at t = T21 + δT , with δT < T21. The function of the third pulse is to convert the difference between interfering momentum states from nħq (n > 1) to ħq. In this manner, interference between high-order momentum states contributes more significantly to the three-pulse echo than to the two-pulse echo. By fixing T21 and varying δT between the second standing-wave pulse and the echo time, the signal exhibits a simple shape with narrow fringes that revive periodically at the recoil period, τq. Using this technique, I have achieved a single measurement of ωq with a relative statistical uncertainty of ˜ 180 parts per 109 (ppb) on a time scale of 2T21 ˜ 72 ms in ˜ 15 minutes of data acquisition. Further improvements are anticipated by extending the experimental time scale and narrowing the signal fringe width. To demonstrate the final statistical uncertainty using the current configuration of the experiment, I acquired 82 individual measurements of ω q under the same experimental conditions. This resulted in a final measurement with a statistical precision of 37 ppb. However, this measurement is currently overwhelmed by systematic errors at the level of ˜ 5.7 parts per 106 (ppm). The first survey of systematic effects on the measurement of ωq with this technique has also been carried out, where individual measurements had relative statistical uncertainties of ≲ 1 ppm. These experimental studies, along with theoretical calculations, can be used to reduce and eliminate such effects in future rounds of experimentation. (Abstract shortened by UMI.).

  6. Observation and investigation of narrow optical transitions of 167Er3+ ions in femtosecond laser printed waveguides in 7LiYF4 crystal

    NASA Astrophysics Data System (ADS)

    Minnegaliev, M. M.; Dyakonov, I. V.; Gerasimov, K. I.; Kalinkin, A. A.; Kulik, S. P.; Moiseev, S. A.; Saygin, M. Yu; Urmancheev, R. V.

    2018-04-01

    We produced optical waveguides in the 167Er3+:7 LiYF4 crystal with diameters ranging from 30 to 100 μm by using the depressed-cladding approach with femtosecond laser. Stationary and coherent spectroscopy was performed on the 809 nm optical transitions between the hyperfine sublevels of 4I15/2 and 4I9/2 multiplets of 167Er3+ ions both inside and outside of waveguides. It was found that the spectra of 167Er3+ were slightly broadened and shifted inside the waveguides compared to the bulk crystal spectra. We managed to observe a two-pulse photon echo on this transition and determined phase relaxation times for each waveguide. The experimental results show that the created crystal waveguides doped by rare-earth ions can be used in optical quantum memory and integrated quantum schemes.

  7. Quantum memory with a controlled homogeneous splitting

    NASA Astrophysics Data System (ADS)

    Hétet, G.; Wilkowski, D.; Chanelière, T.

    2013-04-01

    We propose a quantum memory protocol where an input light field can be stored onto and released from a single ground state atomic ensemble by controlling dynamically the strength of an external static and homogeneous field. The technique relies on the adiabatic following of a polaritonic excitation onto a state for which the forward collective radiative emission is forbidden. The resemblance with the archetypal electromagnetically induced transparency is only formal because no ground state coherence-based slow-light propagation is considered here. As compared to the other grand category of protocols derived from the photon-echo technique, our approach only involves a homogeneous static field. We discuss two physical situations where the effect can be observed, and show that in the limit where the excited state lifetime is longer than the storage time; the protocols are perfectly efficient and noise free. We compare the technique with other quantum memories, and propose atomic systems where the experiment can be realized.

  8. Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity

    NASA Astrophysics Data System (ADS)

    Yadollahi, F.; Safaiee, R.; Golshan, M. M.

    2018-02-01

    In the present study, the standard Jaynes-Cummings model, in a lossy cavity, is employed to characterize the entanglement between atoms and photons when the former is initially in a thermal state (mixed ensemble) while the latter is described by either coherent or squeezed distributions. The whole system is thus assumed to be in equilibrium with a heat reservoir at a finite temperature T, and the measure of negativity is used to determine the time evolution of atom-photon entanglement. To this end, the master equation for the density matrix, in the secular approximation, is solved and a partial transposition of the result is made. The degree of atom-photon entanglement is then numerically computed, through the negativity, as a function of time and temperature. To justify the behavior of atom-photon entanglement, moreover, we employ the so obtained total density matrix to compute and analyze the time evolution of the initial photonic coherent or squeezed probability distributions and the squeezing parameters. On more practical points, our results demonstrate that as the initial photon mean number increases, the atom-photon entanglement decays at a faster pace for the coherent distribution compared to the squeezed one. Moreover, it is shown that the degree of atom-photon entanglement is much higher and more stable for the squeezed distribution than that for the coherent one. Consequently, we conclude that the time intervals during which the atom-photon entanglement is distillable is longer for the squeezed distribution. It is also illustrated that as the temperature increases the rate of approaching separability is faster for the coherent initial distribution. The novel point of the present report is the calculation of dynamical density matrix (containing all physical information) for the combined system of atom-photon in a lossy cavity, as well as the corresponding negativity, at a finite temperature.

  9. Optical communication with two-photon coherent stages. I - Quantum-state propagation and quantum-noise reduction

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Shapiro, J. H.

    1978-01-01

    To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.

  10. The influence of atmospheric turbulence on partially coherent two-photon entangled field

    NASA Astrophysics Data System (ADS)

    Qiu, Y.; She, W.

    2012-09-01

    The propagation of a two-photon field from down-conversion of a partially coherent Gaussian Schell-model (GSM) pump beam in free space has been reported. However, the propagation of this two-photon field through a turbulent atmosphere has not been investigated yet. In this paper, an analytical expression of the coincidence count rate of the two-photon entangled field is derived. Unlike what has been reported, the field is from a parameter down-conversion of a partially coherent dark hollow pump beam and propagates through a turbulent atmosphere. The effects of the propagation parameters on the coincidence count rate are evaluated and illustrated. The results show that the pump beam parameters and atmospheric turbulence can evidently affect the detection probability of the photon pair at two different positions. It is found that the detection probability of the two-photon field is higher, and thus less susceptible to turbulence, if the field is produced by a lower mode of partially coherent pump beam.

  11. On-line registration of femtosecond time intervals based on polarization properties of femtosecond stimulated photon echo generated on exciton states

    NASA Astrophysics Data System (ADS)

    Bakhodurov, A. U.; Vashourin, N. S.; Vinogradov, E. A.; Gazizov, K. Sh.; Kompanets, V. O.; Popov, I. I.; Putilin, S. E.; Chekalin, S. V.

    2017-10-01

    This paper reflects the results of the research on the character of the dependence of the non-Faraday rotation of the femtosecond stimulated photon echo polarization plane on the time interval between the second and third exciting pulses, discretely varying from 180 to 900 fs in increments 180 fs. The time interval between the first and second pulses was equal to zero. The echo signal was formed at room temperature on exciton states localized on the surface defects of a thin three-layer textured ZnO/Si(P)/Si(B) film in the presence of a homogeneous magnetic field of 0.25 mT applied longitudinally to the optical excitation axis. The qualitative coincidence of the investigated dependence with the theoretical prediction of the investigated effect for gaseous medium is shown.

  12. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom

    PubMed Central

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-01-01

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821

  13. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.

    PubMed

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-06-20

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.

  14. Understanding photon sideband statistics and correlation for determining phonon coherence

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Yin, Xiaobo; Li, Baowen

    2018-01-01

    Generating and detecting coherent high-frequency heat-carrying phonons have been topics of great interest in recent years. Although there have been successful attempts in generating and observing coherent phonons, rigorous techniques to characterize and detect phonon coherence in a crystalline material have been lagging compared to what has been achieved for photons. One main challenge is a lack of detailed understanding of how detection signals for phonons can be related to coherence. The quantum theory of photoelectric detection has greatly advanced the ability to characterize photon coherence in the past century, and a similar theory for phonon detection is necessary. Here, we reexamine the optical sideband fluorescence technique that has been used to detect high-frequency phonons in materials with optically active defects. We propose a quantum theory of phonon detection using the sideband technique and found that there are distinct differences in sideband counting statistics between thermal and coherent phonons. We further propose a second-order correlation function unique to sideband signals that allows for a rigorous distinction between thermal and coherent phonons. Our theory is relevant to a correlation measurement with nontrivial response functions at the quantum level and can potentially bridge the gap of experimentally determining phonon coherence to be on par with that of photons.

  15. Scalable Quantum Information Processing and Applications

    DTIC Science & Technology

    2008-01-19

    qubit logic gates, and finally emitting an entangled photon from the single- photon emitter. For the program, we proposed to demonstrate the...coherent, single photon transmitter/receiver system. These requirements included careful tailoring of the g factor for conduction band electrons in...physics required for the realization of a spin-coherent, single photon transmitter/receiver system. These requirements included careful tailoring of

  16. Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon

    NASA Astrophysics Data System (ADS)

    Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.

    2012-09-01

    We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.

  17. 2D THz-THz-Raman Photon-Echo Spectroscopy of Molecular Vibrations in Liquid Bromoform.

    PubMed

    Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A

    2017-09-21

    Fundamental properties of molecular liquids are governed by long-range interactions that most prominently manifest at terahertz (THz) frequencies. Here we report the detection of nonlinear THz photon-echo (rephasing) signals in liquid bromoform using THz-THz-Raman spectroscopy. Together, the many observed signatures span frequencies from 0.5 to 8.5 THz and result from couplings between thermally populated ladders of vibrational states. The strongest peaks in the spectrum are found to be multiquantum dipole and 1-quantum polarizability transitions and may arise from nonlinearities in the intramolecular dipole moment surface driven by intermolecular interactions.

  18. Gravitational lensing of photons coupled to massive particles

    NASA Astrophysics Data System (ADS)

    Glicenstein, J.-F.

    2018-04-01

    The gravitational deflection of massless and massive particles, both with and without spin, has been extensively studied. This paper discusses the lensing of a particle which oscillates between two interaction eigenstates. The deflection angle, lens equation and time delay between images are derived in a model of photon to hidden-photon oscillations. In the case of coherent oscillations, the coupled photon behaves as a massive particle with a mass equal to the product of the coupling constant and hidden-photon mass. The conditions for observing coherent photon-hidden photon lensing are discussed.

  19. Coherent photon scattering background in sub- GeV / c 2 direct dark matter searches

    DOE PAGES

    Robinson, Alan E.

    2017-01-18

    Here, proposed dark matter detectors with eV-scale sensitivities will detect a large background of atomic (nuclear) recoils from coherent photon scattering of MeV-scale photons. This background climbs steeply below ~10 eV, far exceeding the declining rate of low-energy Compton recoils. The upcoming generation of dark matter detectors will not be limited by this background, but further development of eV-scale and sub-eV detectors will require strategies, including the use of low nuclear mass target materials, to maximize dark matter sensitivity while minimizing the coherent photon scattering background.

  20. Coherent nature of the radiation emitted in delayed luminescence of leaves

    PubMed

    Bajpai

    1999-06-07

    After exposure to light, a living system emits a photon signal of characteristic shape. The signal has a small decay region and a long tail region. The flux of photons in the decay region changes by 2 to 3 orders of magnitude, but remains almost constant in the tail region. The decaying part is attributed to delayed luminescence and the constant part to ultra-weak luminescence. Biophoton emission is the common name given to both kinds of luminescence, and photons emitted are called biophotons. The decay character of the biophoton signal is not exponential, which is suggestive of a coherent signal. We sought to establish the coherent nature by measuring the conditional probability of zero photon detection in a small interval Delta. Our measurements establish the coherent nature of biophotons emitted by different leaves at various temperatures in the range 15-50 degrees C. Our set up could measure the conditional probability for Delta

  1. Two-photon interference and coherent control of single InAs quantum dot emissions in an Ag-embedded structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X., E-mail: iu.xiangming@nims.go.jp; National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044; Kumano, H.

    2014-07-28

    We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-typemore » two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g{sup (2)}(0) value of 0.008 is achieved with π-pulse quasi-resonant excitation.« less

  2. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  3. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    PubMed

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  4. Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Xiaoxin; Li Xiaoying; Cui Liang

    2011-08-15

    Temporal coherence of individual signal or idler beam, determined by the spectral correlation property of photon pairs, is important for realizing quantum interference among independent sources. Based on spontaneous four-wave mixing in optical fibers, we study the effect of chirp on the temporal coherence property by introducing a different amount of chirp into either the pulsed pump or individual signal (idler) beam. The investigation shows that the pump chirp induces additional frequency correlation into photon pairs; the mutual spectral correlation of photon pairs and the coherence of individual beam can be characterized by measuring the intensity correlation function g{sup (2)}more » of the individual beam. To improve the coherence degree, the pump chirp should be minimized. Moreover, a Hong-Ou-Mandel-type two-photon interference experiment with the signal beams generated in two different fibers illustrates that the chirp of the individual signal (idler) beam does not change the temporal coherence degree, but affects the temporal mode matching. To achieve high visibility among multiple sources, apart from improving the coherence degree, mode matching should be optimized by managing the chirps of individual beams.« less

  5. Role of initial coherence on entanglement dynamics of two qubit X states

    NASA Astrophysics Data System (ADS)

    V, Namitha C.; Satyanarayana, S. V. M.

    2018-02-01

    Bipartite entanglement is a necessary resource in most processes in quantum information science. Decoherence resulting from the interaction of the bipartite system with environment not only degrades the entanglement, but can result in abrupt disentanglement, known as entanglement sudden death (ESD). In some cases, a subsequent revival of entanglement is also possible. ESD is an undesirable feature for the state to be used as a resource in applications. In order to delay or avoid ESD, it is necessary to understand its origin. In this work we investigate the role of initial coherence on entanglement dynamics of a spatially separated two qubit system in a common vacuum reservoir with dipolar interaction. We construct two classes of X states, namely, states with one photon coherence (X 1) and states with two photon coherence (X 2). Considering them as initial states, we study entanglement dynamics under Markov approximation. We find for states in X 1, ESD time, revival time and time over which the state remains disentangled increase with increase in coherence. On the other hand for states in X 2, with increase in coherence ESD time increases, revival time remains same and time of disentanglement decreases. Thus, states with two photon coherence are better resources for applications since their entanglement is robust against decoherence compared to states with one photon coherence.

  6. Coherent lepton pair production in hadronic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Zha, W.; Ruan, L.; Tang, Z.; Xu, Z.; Yang, S.

    2018-06-01

    Recently, significant enhancements of e+e- pair production at very low transverse momentum (pT < 0.15 GeV/c) were observed by the STAR collaboration in peripheral hadronic A+A collisions. This excesses can not be described by the QGP thermal radiation and ρ in-medium broadening calculations. This is a sign of coherent photon-photon interactions, which were conventionally studied only in ultra-peripheral collisions. In this article, we present calculations of lepton pair (e+e- and μ+μ-) production from coherent photon-photon interactions in hadronic A+A collisions at RHIC and LHC energies within the STAR and ALICE acceptance.

  7. Coherent lepton pair production in hadronic heavy ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, W.; Ruan, L.; Tang, Z.

    Recently, significant enhancements of e +e - pair production at very low transverse momentum (p T < 0.15 GeV/c) were observed by the STAR collaboration in peripheral hadronic A+A collisions. This excesses can not be described by the QGP thermal radiation and Rho in-medium broadening calculations. This is a sign of coherent photon-photon interactions, which were conventionally studied only in ultra-peripheral collisions. Here in this article, we present calculations of lepton pair (e +e - and μ +μ -) production from coherent photon-photon interactions in hadronic A+A collisions at RHIC and LHC energies within the STAR and ALICE acceptance.

  8. Coherent lepton pair production in hadronic heavy ion collisions

    DOE PAGES

    Zha, W.; Ruan, L.; Tang, Z.; ...

    2018-04-06

    Recently, significant enhancements of e +e - pair production at very low transverse momentum (p T < 0.15 GeV/c) were observed by the STAR collaboration in peripheral hadronic A+A collisions. This excesses can not be described by the QGP thermal radiation and Rho in-medium broadening calculations. This is a sign of coherent photon-photon interactions, which were conventionally studied only in ultra-peripheral collisions. Here in this article, we present calculations of lepton pair (e +e - and μ +μ -) production from coherent photon-photon interactions in hadronic A+A collisions at RHIC and LHC energies within the STAR and ALICE acceptance.

  9. Verification of echo amplitude envelope analysis method in skin tissues for quantitative follow-up of healing ulcers

    NASA Astrophysics Data System (ADS)

    Omura, Masaaki; Yoshida, Kenji; Akita, Shinsuke; Yamaguchi, Tadashi

    2018-07-01

    We aim to develop an ultrasonic tissue characterization method for the follow-up of healing ulcers by diagnosing collagen fibers properties. In this paper, we demonstrated a computer simulation with simulation phantoms reflecting irregularly distributed collagen fibers to evaluate the relationship between physical properties, such as number density and periodicity, and the estimated characteristics of the echo amplitude envelope using the homodyned-K distribution. Moreover, the consistency between echo signal characteristics and the structures of ex vivo human tissues was verified from the measured data of normal skin and nonhealed ulcers. In the simulation study, speckle or coherent signal characteristics are identified as periodically or uniformly distributed collagen fibers with high number density and high periodicity. This result shows the effectiveness of the analysis using the homodyned-K distribution for tissues with complicated structures. Normal skin analysis results are characterized as including speckle or low-coherence signal components, and a nonhealed ulcer is different from normal skin with respect to the physical properties of collagen fibers.

  10. An investigation of turbulent scatter from the mesosphere as observed by coherent-scatter radar

    NASA Technical Reports Server (NTRS)

    Gibbs, K. P.; Bowhill, S. A.

    1983-01-01

    Turbulent scatter from he mesosphere is observed using the Urbana coherent-scatter radar. The variation in signal-to-noise ratio as a function of time-of-day is examined. The origin of scattering regions is investigated by comparing the variations in scattered power and Doppler velocity. Nighttime echoes are shown for periods of enhanced electron concentration. The spectrum of the returned signal is studied with a resolution of ten seconds. Spectral information is used to increase altitude resolution and observe the motion of scatterers. The expected variation in signal-to-noise ratio with solar flux is observed. It is found that variations in the scattered power generally do not correspond to the gravity waves which are simultaneously observed. Turbulent layers are observed at altitudes with high shear in the horizontal velocity and at altitudes with low shear. The ten-second resolution is necessary to distinguish meteor echoes from echoes produced by the advection of a scattering layer through the radar beam.

  11. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Poltavtsev, S. V.; Yugova, I. A.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Yakovlev, D. R.; Akimov, I. A.; Meier, T.; Bayer, M.

    2017-07-01

    Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n -type CdTe /(Cd ,Mg )Te quantum-well structure detected by a heterodyne technique. The difference in the sub-μ eV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  12. Coherent strong field interactions between a nanomagnet and a photonic cavity

    NASA Astrophysics Data System (ADS)

    Soykal, Oney Orhunc

    Strong coupling of light and matter is an essential element of cavity quantum electrodynamics (cavity-QED) and quantum optics, which may lead to novel mixed states of light and matter and to applications such as quantum computation. In the strong-coupling regime, where the coupling strength exceeds the dissipation, the light-matter interaction produces a characteristic vacuum Rabi splitting. Therefore, strong coupling can be utilized as an effective coherent interface between light and matter (in the form of electron charge, spin or superconducting Cooper pairs) to achieve components of quantum information technology including quantum memory, teleportation, and quantum repeaters. Semiconductor quantum dots, nuclear spins and paramagnetic spin systems are only some of the material systems under investigation for strong coupling in solid-state physics. Mixed states of light and matter coupled via electric dipole transitions often suffer from short coherence times (nanoseconds). Even though magnetic transitions appear to be intrinsically more quantum coherent than orbital transitions, their typical coupling strengths have been estimated to be much smaller. Hence, they have been neglected for the purposes of quantum information technology. However, we predict that strong coupling is feasible between photons and a ferromagnetic nanomagnet, due to exchange interactions that cause very large numbers of spins to coherently lock together with a significant increase in oscillator strength while still maintaining very long coherence times. In order to examine this new exciting possibility, the interaction of a ferromagnetic nanomagnet with a single photonic mode of a cavity is analyzed in a fully quantum-mechanical treatment. Exceptionally large quantum-coherent magnet-photon coupling with coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of ˜ 1 mm radius with a nanomagnet of ˜ 100 nm radius and ferromagnet resonance frequency of ˜ 200 GHz. This should substantially exceed the coupling observed in solids between orbital transitions and light. Eigenstates of the nanomagnet-photon system correspond to entangled states of spin orientation and photon number over 105 values of each quantum number. Initial coherent state of definite spin and photon number evolve dynamically to produce large coherent oscillations in the microwave power with exceptionally long dephasing times of few seconds. In addition to dephasing, several decoherence mechanisms including elementary excitation of magnons and crystalline magnetic anisotropy are investigated and shown to not substantially affect coherence upto room temperature. For small nanomagnets the crystalline magnetic anisotropy of the magnet strongly localize the eigenstates in photon and spin number, quenching the potential for coherent states and for a sufficiently large nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple separately to the photonic mode. Thus the optimal nanomagnet size is predicted to be just below the threshold for failure of the macrospin approximation. Moreover, it is shown that initially unentangled coherent states of light (cavity field) and spin (nanomagnet spin orientation) can be phase-locked to evolve into a coherent entangled states of the system under the influence of strong coupling.

  13. Integrated generation of complex optical quantum states and their coherent control

    NASA Astrophysics Data System (ADS)

    Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2018-01-01

    Complex optical quantum states based on entangled photons are essential for investigations of fundamental physics and are the heart of applications in quantum information science. Recently, integrated photonics has become a leading platform for the compact, cost-efficient, and stable generation and processing of optical quantum states. However, onchip sources are currently limited to basic two-dimensional (qubit) two-photon states, whereas scaling the state complexity requires access to states composed of several (<2) photons and/or exhibiting high photon dimensionality. Here we show that the use of integrated frequency combs (on-chip light sources with a broad spectrum of evenly-spaced frequency modes) based on high-Q nonlinear microring resonators can provide solutions for such scalable complex quantum state sources. In particular, by using spontaneous four-wave mixing within the resonators, we demonstrate the generation of bi- and multi-photon entangled qubit states over a broad comb of channels spanning the S, C, and L telecommunications bands, and control these states coherently to perform quantum interference measurements and state tomography. Furthermore, we demonstrate the on-chip generation of entangled high-dimensional (quDit) states, where the photons are created in a coherent superposition of multiple pure frequency modes. Specifically, we confirm the realization of a quantum system with at least one hundred dimensions. Moreover, using off-the-shelf telecommunications components, we introduce a platform for the coherent manipulation and control of frequencyentangled quDit states. Our results suggest that microcavity-based entangled photon state generation and the coherent control of states using accessible telecommunications infrastructure introduce a powerful and scalable platform for quantum information science.

  14. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine

    NASA Astrophysics Data System (ADS)

    Türkpençe, Deniz; Müstecaplıoǧlu, Özgür E.

    2016-01-01

    We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003), 10.1126/science.1078955], to the case of N +1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

  15. Quantum state engineering by a coherent superposition of photon subtraction and addition

    NASA Astrophysics Data System (ADS)

    Lee, Su-Yong; Nha, Hyunchul

    2011-10-01

    We study a coherent superposition tâ+r↠of field annihilation and creation operator acting on continuous variable systems and propose its application for quantum state engineering. We propose an experimental scheme to implement this elementary coherent operation and discuss its usefulness to produce an arbitrary superposition of number states involving up to two photons.

  16. New class of generalized photon-added coherent states and some of their non-classical properties

    NASA Astrophysics Data System (ADS)

    Mojaveri, B.; Dehghani, A.; Mahmoodi, S.

    2014-08-01

    In this paper, we construct a new class of generalized photon added coherent states (GPACSs), |z,m{{\\rangle }_{r}} by excitations on a newly introduced family of generalized coherent states (GCSs) |z{{\\rangle }_{r}} (A Dehghani and B Mojaveri 2012 J. Phys. A: Math. Theor. 45 095304), obtained via generalized hypergeometric type displacement operators acting on the vacuum state of the simple harmonic oscillator. We show that these states realize resolution of the identity property through positive definite measures on the complex plane. Meanwhile, we demonstrate that the introduced states can also be interpreted as nonlinear coherent states (NLCSs), with a spacial nonlinearity function. Finally, some of their non-classical features as well as their quantum statistical properties are compared with Agarwal's photon-added coherent states (PACSs), \\left| z,m \\right\\rangle .

  17. Lasing in strongly scattering dielectric microstructures

    NASA Astrophysics Data System (ADS)

    Florescu, Lucia

    In the first part of this thesis, a detailed analysis of lasing in random multiple-light-scattering media with gain is presented. Random laser emission is analyzed using a time-dependent diffusion model for light propagating in the medium containing active atoms. We demonstrate the effects of scatterers to narrow the emission spectral linewidth and to shorten the emitted pulse duration at a specific threshold pump intensity. This threshold pump intensity decreases with scatterer density and excitation spot diameter, in excellent agreement with experimental results. The coherence properties of the random laser are studied using a generalized master equation. The random laser medium is treated as a collection of low quality-factor cavities, coupled by random photon diffusion. Laser-like coherence, on average, is demonstrated above a specific pumping threshold. We demonstrate that with stronger scattering, the pumping threshold for the transition from chaotic to isotropic coherent light emission decreases and enhanced optical coherence for the emitted light is achieved above threshold. The second part of this thesis presents a study of lasing in photonic crystals (PCs). The emission from an incoherently pumped atomic system in interaction with the electro-magnetic reservoir of a PC is analyzed using a set of generalized semiclassical Maxwell-Bloch equations. We demonstrate that the photonic band edge facilitates the enhancement of stimulated emission and the reduction of internal losses, leading to an important lowering of the laser threshold. In addition, an increase of the laser output at a photonic band edge is demonstrated. We next develop a detailed quantum theory of a coherently pumped two-level atom in a photonic band gap material, coupled to both a multi-mode wave-guide channel and a high-quality micro-cavity embedded within the PC. The cavity field characteristics are highly distinct from that of a corresponding high-Q cavity in ordinary vacuum. We demonstrate enhanced, inversionless, and nearly coherent light generation when the photon density of states (DOS) jump between the Mollow spectral components of atomic resonance fluorescence is large. In the case of a vanishing photon DOS on the lower Mollow sideband and no dipolar dephasing, the emitted photon statistics is Poissonian and the cavity field exhibits quadrature coherence.

  18. GENERAL: Teleportation of a Bipartite Entangled Coherent State via a Four-Partite Cluster-Type Entangled State

    NASA Astrophysics Data System (ADS)

    Chen, Hui-Na; Liu, Jin-Ming

    2009-10-01

    We present an optical scheme to almost completely teleport a bipartite entangled coherent state using a four-partite cluster-type entangled coherent state as quantum channel. The scheme is based on optical elements such as beam splitters, phase shifters, and photon detectors. We also obtain the average fidelity of the teleportation process. It is shown that the average fidelity is quite close to unity if the mean photon number of the coherent state is not too small.

  19. Two-way QKD with single-photon-added coherent states

    NASA Astrophysics Data System (ADS)

    Miranda, Mario; Mundarain, Douglas

    2017-12-01

    In this work we present a two-way quantum key distribution (QKD) scheme that uses single-photon-added coherent states and displacement operations. The first party randomly sends coherent states (CS) or single-photon-added coherent states (SPACS) to the second party. The latter sends back the same state it received. Both parties decide which kind of states they are receiving by detecting or not a photon on the received signal after displacement operations. The first party must determine whether its sent and received states are equal; otherwise, the case must be discarded. We are going to show that an eavesdropper provided with a beam splitter gets the same information in any of the non-discarded cases. The key can be obtained by assigning 0 to CS and 1 to SPACS in the non-discarded cases. This protocol guarantees keys' security in the presence of a beam splitter attack even for states with a high number of photons in the sent signal. It also works in a lossy quantum channel, becoming a good bet for improving long-distance QKD.

  20. Ultrafast Coherent Dynamics of a Photonic Crystal All-Optical Switch.

    PubMed

    Colman, Pierre; Lunnemann, Per; Yu, Yi; Mørk, Jesper

    2016-12-02

    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report the observation of an idler pulse and more than 10 dB parametric gain. The measurements are in good agreement with a theoretical model that ascribes the observation to oscillations of the free-carrier population in the nanocavity. The effect opens perspectives for the realization of new all-optical photonic crystal switches with unprecedented switching contrast.

  1. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  2. Reversal of photon-scattering errors in atomic qubits.

    PubMed

    Akerman, N; Kotler, S; Glickman, Y; Ozeri, R

    2012-09-07

    Spontaneous photon scattering by an atomic qubit is a notable example of environment-induced error and is a fundamental limit to the fidelity of quantum operations. In the scattering process, the qubit loses its distinctive and coherent character owing to its entanglement with the photon. Using a single trapped ion, we show that by utilizing the information carried by the photon, we are able to coherently reverse this process and correct for the scattering error. We further used quantum process tomography to characterize the photon-scattering error and its correction scheme and demonstrate a correction fidelity greater than 85% whenever a photon was measured.

  3. Coherent state amplification using frequency conversion and a single photon source

    NASA Astrophysics Data System (ADS)

    Kasture, Sachin

    2017-11-01

    Quantum state discrimination lies at the heart of quantum communication and quantum cryptography protocols. Quantum Key Distribution (QKD) using coherent states and homodyne detection has been shown to be a feasible method for quantum communication over long distances. However, this method is still limited because of optical losses. Noiseless coherent state amplification has been proposed as a way to overcome this. Photon addition using stimulated Spontaneous Parametric Down-conversion followed by photon subtraction has been used as a way to implement amplification. However, this process occurs with very low probability which makes it very difficult to implement cascaded stages of amplification due to dark count probability in the single photon detectors used to herald the addition and subtraction of single photons. We discuss a scheme using the χ (2) and χ (3) optical non-linearity and frequency conversion (sum and difference frequency generation) along with a single photon source to implement photon addition. Unlike the photon addition scheme using SPDC, this scheme allows us to tune the success probability at the cost of reduced amplification. The photon statistics of the converted field can be controlled using the power of the pump field and the interaction time.

  4. Distribution of geometric quantum discord in photon-added coherent states

    NASA Astrophysics Data System (ADS)

    Daoud, M.; Kaydi, W.; El Hadfi, H.

    2015-12-01

    In this paper, we examine the influence of photon excitation on the monogamy property of quantum discord in tripartite coherent states of Greenberger-Horne-Zeilinger (GHZ) type. The Hilbert-Schmidt norm is used as quantifier of pairwise quantum correlations. The geometric quantum discord in all bipartite subsystems are explicitly given. We show that the geometric discord is monogamous for any photon excitation order.

  5. Evaluation of an auditory model for echo delay accuracy in wideband biosonar.

    PubMed

    Sanderson, Mark I; Neretti, Nicola; Intrator, Nathan; Simmons, James A

    2003-09-01

    In a psychophysical task with echoes that jitter in delay, big brown bats can detect changes as small as 10-20 ns at an echo signal-to-noise ratio of approximately 49 dB and 40 ns at approximately 36 dB. This performance is possible to achieve with ideal coherent processing of the wideband echoes, but it is widely assumed that the bat's peripheral auditory system is incapable of encoding signal waveforms to represent delay with the requisite precision or phase at ultrasonic frequencies. This assumption was examined by modeling inner-ear transduction with a bank of parallel bandpass filters followed by low-pass smoothing. Several versions of the filterbank model were tested to learn how the smoothing filters, which are the most critical parameter for controlling the coherence of the representation, affect replication of the bat's performance. When tested at a signal-to-noise ratio of 36 dB, the model achieved a delay acuity of 83 ns using a second-order smoothing filter with a cutoff frequency of 8 kHz. The same model achieved a delay acuity of 17 ns when tested with a signal-to-noise ratio of 50 dB. Jitter detection thresholds were an order of magnitude worse than the bat for fifth-order smoothing or for lower cutoff frequencies. Most surprising is that effectively coherent reception is possible with filter cutoff frequencies well below any of the ultrasonic frequencies contained in the bat's sonar sounds. The results suggest that only a modest rise in the frequency response of smoothing in the bat's inner ear can confer full phase sensitivity on subsequent processing and account for the bat's fine acuity or delay.

  6. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine.

    PubMed

    Türkpençe, Deniz; Müstecaplıoğlu, Özgür E

    2016-01-01

    We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], to the case of N+1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

  7. Photon echo spectroscopy reveals structure-dynamics relationships in carotenoids

    NASA Astrophysics Data System (ADS)

    Christensson, N.; Polivka, T.; Yartsev, A.; Pullerits, T.

    2009-06-01

    Based on simultaneous analysis of the frequency-resolved transient grating, peak shift, and echo width signals, we present a model for the third-order optical response of carotenoids including population dynamics and system-bath interactions. Our frequency-resolved photon echo experiments show that the model needs to incorporate the excited-state absorption from both the S2 and the S1 states. We apply our model to analyze the experimental results on astaxanthin and lycopene, aiming to elucidate the relation between structure and system-bath interactions. Our analysis allows us to relate structural motifs to changes in the energy-gap correlation functions. We find that the terminal rings of astaxanthin lead to increased coupling between slow molecular motions and the electronic transition. We also find evidence for stronger coupling to higher frequency overdamped modes in astaxanthin, pointing to the importance of the functional groups in providing coupling to fluctuations influencing the dynamics in the passage through the conical intersection governing the S2-S1 relaxation.

  8. Single photon at a configurable quantum-memory-based beam splitter

    NASA Astrophysics Data System (ADS)

    Guo, Xianxin; Mei, Yefeng; Du, Shengwang

    2018-06-01

    We report the demonstration of a configurable coherent quantum-memory-based beam splitter (BS) for a single-photon wave packet making use of laser-cooled 85Rb atoms and electromagnetically induced transparency. The single-photon wave packet is converted (stored) into a collective atomic spin state and later retrieved (split) into two nearly opposing directions. The storage time, beam-splitting ratio, and relative phase are configurable and can be dynamically controlled. We experimentally confirm that such a BS preserves the quantum particle nature of the single photon and the coherence between the two split wave packets of the single photon.

  9. On Approaching the Ultimate Limits of Communication Using a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement scheme is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We analyze two binary modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with the state-of-the-art coherent-state on-off keying modulation. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  10. Phase-noise influence on coherent transients and hole burning

    NASA Astrophysics Data System (ADS)

    Shakhmuratov, R. N.; Szabo, Alex

    1998-10-01

    Resonant excitation of an inhomogeneously broadened ensemble of two-level atoms (TLA) by a stochastic field with phase noise is theoretically investigated. Free-induction decay (FID), hole burning (HB), and transient nutation (TN) are studied. We consider two kinds of driving fields, one with a free walking phase and another with the phase locked in a limited domain. It is shown that the resonant excitation behavior depends strongly on the noise property. Noise induced by a walking phase gives a simple contribution to the dephasing time, T2, of two-level atoms whereas phase locking qualitatively changes the laser-atom interaction. In the latter case, it is shown that even when the central part of the driving field spectrum is narrower than homogeneous absorption line of the TLA, the wide, low intensity wings of the spectrum (sidebands produced by the locked phase noise), have a strong effect on the FID, TN, and HB induced by the central, narrow part of the spectrum. The influence of sidebands on photon echoes is also discussed.

  11. SuperDARN HF Scattering and Propagation in the Presence of Polar Patches Imaged Using RISR

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Perry, G. W.; Varney, R. H.; Gillies, D. M.; Donovan, E.

    2017-12-01

    The global array of High Frequency (HF) Super Dual Auroral Radar Network (SuperDARN) radars continuously monitors ionospheric convection in the middle-to-high latitude region. The radars measure coherent backscatter from decameter scale field-aligned irregularities. One of the main generation mechanisms for these field-aligned irregularities is the gradient drift instability (GDI). The edges of ionospheric density structures, such as polar cap patches, provide ideal locations for GDI growth. The geometry required for GDI growth results in irregularities forming on the trailing edge of polar patches. However, irregularities generated by the non-linear evolution of the GDI can become prevalent throughout the patch within minutes. Modelling the irregularity growth and measurements of backscatter within patches have both confirmed this. One aspect that has often been overlooked in studies of coherent backscatter within patches is the effect of HF propagation on echo location. This study examines HF echo locations in the vicinity of patches that were imaged using the Resolute Bay Incoherent Scatter Radars (RISR). The effect of both vertical and lateral refraction of the HF wave on echo location is examined.

  12. Coherent spin control of a nanocavity-enhanced qubit in diamond

    DOE PAGES

    Li, Luozhou; Lu, Ming; Schroder, Tim; ...

    2015-01-28

    A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interfacemore » is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.« less

  13. Echo-Enabled X-Ray Vortex Generation

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Marinelli, A.

    2012-11-01

    A technique to generate high-brightness electromagnetic vortices with tunable topological charge at extreme ultraviolet and x-ray wavelengths is described. Based on a modified version of echo-enabled harmonic generation for free-electron lasers, the technique uses two lasers and two chicanes to produce high-harmonic microbunching of a relativistic electron beam with a corkscrew distribution that matches the instantaneous helical phase structure of the x-ray vortex. The strongly correlated electron distribution emerges from an efficient three-dimensional recoherence effect in the echo-enabled harmonic generation transport line and can emit fully coherent vortices in a downstream radiator for access to new research in x-ray science.

  14. Precise measurement of coupling strength and high temperature quantum effect in a nonlinearly coupled qubit-oscillator system

    NASA Astrophysics Data System (ADS)

    Ge, Li; Zhao, Nan

    2018-04-01

    We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.

  15. Extremely weak linear electron-phonon coupling in iron-free hemeproteins studied by phase-modulated photon echo

    NASA Astrophysics Data System (ADS)

    Lin, J. W.-I.; Tada, T.; Saikan, S.; Kushida, T.; Tani, T.

    1991-10-01

    The femtosecond accumulated photon echoes in iron-free myoglobin and iron-free cytochrome-C reveal that the linear electron-phonon coupling is extremely weak in these materials. This feature also manifests itself in the absence of the Stokes shift in the fluorescence spectrum over a wide range of temperatures from liquid-helium temperatures to near room temperatures. The origin of the weak coupling is attributed to the close packing of the porphyrin chromophores into a hydrophobic environment, which is constructed out of the polypeptide chain of the protein. The present results hint at the so-called hydrophobic compartmentalization of the chromophores as one of the important factors in reducing markedly the electron-phonon coupling in dye-polymer systems.

  16. Working Beyond Moore’s Limit - Coherent Nonlinear Optical Control of Individual and Coupled Single Electron Doped Quantum Dots

    DTIC Science & Technology

    2015-07-06

    preparation for deterministic spin-photon entanglement ; (3) Demonstration of initialization of the 2 qubit states; (4) Demonstration of nonlocal nuclear...Demonstration of a flying qubit by entanglement of the quantum dot spin polarization with the polarization of a spontaneously emitted photon. Future...coherent optical control steps in preparation for deterministic spin-photon entanglement ; (3) Demonstration of initialization of the 2 qubit states in

  17. Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues.

    PubMed

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-06-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as magnetic resonance diffusion tensor imaging (MR-DTI) or ultrasound elastic tensor imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in a clinical setting. In this study, we propose a new technique, backscatter tensor imaging (BTI), which enables determination of the fiber directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally because of the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotating phased-array probes or 2-D matrix probes for noninvasive evaluation of myocardial fibers.

  18. Ultrasound Backscatter Tensor Imaging (BTI): Analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues

    PubMed Central

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-01-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as Magnetic Resonance (MR) Diffusion Tensor Imaging or Ultrasound Elastic Tensor Imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in clinical setting. In this study, we propose a new technique, the Backscatter Tensor Imaging (BTI) which enables determining the fibers directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally due to the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotative phased-array probes or 2-D matrix probes for non-invasive evaluation of myocardial fibers. PMID:24859662

  19. Holding the Center while Prospecting at the Periphery: Domain Identity and Coherence in North American Information Studies Education

    ERIC Educational Resources Information Center

    Cronin, Blaise

    2002-01-01

    This paper offers an impressionistic assessment of the major centripetal and centrifugal forces recontouring the landscape of information studies education. The focus is North America, though some of the trends described find their echo in other contexts. The paper considers the health of the field in terms of its (a) critical mass, (b) coherence,…

  20. Energy spectrum analysis - A model of echolocation processing. [in animals

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Titlebaum, E. L.

    1976-01-01

    The paper proposes a frequency domain approach based on energy spectrum analysis of the combination of a signal and its echoes as the processing mechanism for the echolocation process used by bats and other animals. The mechanism is a generalized wide-band one and can account for the large diversity of wide-band signals used for orientation. The coherency in the spectrum of the signal-echo combination is shown to be equivalent to correlation.

  1. Efficient quantum computing using coherent photon conversion.

    PubMed

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting systems with extremely strong intrinsic nonlinearities. Furthermore, exploiting higher-order nonlinearities with multiple pump fields yields a mechanism for multiparty mediation of the complex, coherent dynamics.

  2. X-ray echo spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri V.

    2016-09-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.

  3. Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample

    NASA Astrophysics Data System (ADS)

    Popescu, Dan P.; Hewko, Mark D.; Sowa, Michael G.

    2007-01-01

    This study demonstrates a simple method for attenuating the speckle noise generated by coherent multiple-scattered photons in optical-coherence tomography images. The method could be included among the space-diversity techniques used for speckle reduction. It relies on displacing the sample along a weakly focused beam in the sample arm of the interferometer, acquiring a coherent image for each sample position and adding the individual images to form a compounded image. It is proven that the compounded image displays a reduction in the speckle noise generated by multiple scattered photons and an enhancement in the intensity signal caused by single-backscattered photons. To evaluate its potential biomedical applications, the method is used to investigate in vitro a caries lesion affecting the enamel layer of a wisdom tooth. Because of the uncorrelated nature of the speckle noise the compounded image provides a better mapping of the lesion compared to a single (coherent) image.

  4. Approaching the Ultimate Limits of Communication Efficiency with a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris; Moision, Bruce; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We first review the state-of-the-art coherent on-off-keying (OOK) with a photoncounting measurement, illustrating its asymptotic inefficiency relative to the Holevo limit. We show that a commonly made Poisson approximation in thermal noise leads to unbounded photon information efficiencies, violating the conjectured Holevo limit. We analyze two binary-modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with conventional OOK. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  5. Strong photon antibunching in weakly nonlinear two-dimensional exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Ryou, Albert; Rosser, David; Saxena, Abhi; Fryett, Taylor; Majumdar, Arka

    2018-06-01

    A deterministic and scalable array of single photon nonlinearities in the solid state holds great potential for both fundamental physics and technological applications, but its realization has proved extremely challenging. Despite significant advances, leading candidates such as quantum dots and group III-V quantum wells have yet to overcome their respective bottlenecks in random positioning and weak nonlinearity. Here we consider a hybrid light-matter platform, marrying an atomically thin two-dimensional material to a photonic crystal cavity, and analyze its second-order coherence function. We identify several mechanisms for photon antibunching under different system parameters, including one characterized by large dissipation and weak nonlinearity. Finally, we show that by patterning the two-dimensional material into different sizes, we can drive our system dynamics from a coherent state into a regime of strong antibunching with second-order coherence function g(2 )(0 ) ˜10-3 , opening a possible route to scalable, on-chip quantum simulations with correlated photons.

  6. Control of coherent information via on-chip photonic–phononic emitter–receivers

    DOE PAGES

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; ...

    2015-03-05

    We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction,more » which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.« less

  7. Multi-photon excited coherent random laser emission in ZnO powders

    NASA Astrophysics Data System (ADS)

    Tolentino Dominguez, Christian; Gomes, Maria De A.; Macedo, Zélia S.; de Araújo, Cid B.; Gomes, Anderson S. L.

    2014-11-01

    We report the observation and analysis of anti-Stokes coherent random laser (RL) emission from zinc oxide (ZnO) powders excited by one-, two- or three-photon femtosecond laser radiation. The ZnO powders were produced via a novel proteic sol-gel, low-cost and environmentally friendly route using coconut water in the polymerization step of the metal precursor. One- and two-photon excitation at 354 nm and 710 nm, respectively, generated single-band emissions centred at about 387 nm. For three-photon excitation, the emission spectra showed a strong ultraviolet (UV) band (380-396 nm) attributed to direct three-photon absorption from the valence band to the conduction band. The presence of an intensity threshold and a bandwidth narrowing of the UV band from about 20 to 4 nm are clear evidence of RL action. The observation of multiple sub-nanometre narrow peaks in the emission spectra for excitation above the RL threshold is consistent with random lasing by coherent feedback.

  8. Control of coherent information via on-chip photonic–phononic emitter–receivers

    PubMed Central

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2015-01-01

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405

  9. A preprocessor for the Urbana coherent-scatter radar

    NASA Technical Reports Server (NTRS)

    Zendt, F. T.; Bowhill, S. A.

    1982-01-01

    The design, interfacing, testing, and operation of a preprocessor to increase the altitude and temporal resolution of the present coherent-scatter system are described. This system upgrade requires an increase in the data collection rate. Replacing the present, relatively slow, ADC with two high speed ADCs achieves the increased echo sampling rate desired. To stay within the capabilities of the main computer's I/O and processing rate the data must be reduced before transfer to the main computer. Thus the preprocessor also coherently integrates the data before transfer.

  10. Retinotopic mapping with Spin Echo BOLD at 7 Tesla

    PubMed Central

    Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa

    2010-01-01

    For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431

  11. Coherent destruction of tunneling in two-level system driven across avoided crossing via photon statistics

    PubMed Central

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, the nature of the multi-order resonance and coherent destruction of tunneling (CDT) for two-level system driven cross avoided crossing is investigated by employing the emitted photons 〈N〉 and the Mandel’s Q parameter based on the photon counting statistics. An asymmetric feature of CDT is shown in the spectrum of Mandel’s Q parameter. Also, the CDT can be employed to suppress the spontaneous decay and prolong waiting time noticeably. The photon emission pattern is of monotonicity in strong relaxation, and homogeneity in pure dephasing regime, respectively. PMID:27353375

  12. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    PubMed

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  13. Photon statistics and speckle visibility spectroscopy with partially coherent X-rays.

    PubMed

    Li, Luxi; Kwaśniewski, Paweł; Orsi, Davide; Wiegart, Lutz; Cristofolini, Luigi; Caronna, Chiara; Fluerasu, Andrei

    2014-11-01

    A new approach is proposed for measuring structural dynamics in materials from multi-speckle scattering patterns obtained with partially coherent X-rays. Coherent X-ray scattering is already widely used at high-brightness synchrotron lightsources to measure dynamics using X-ray photon correlation spectroscopy, but in many situations this experimental approach based on recording long series of images (i.e. movies) is either not adequate or not practical. Following the development of visible-light speckle visibility spectroscopy, the dynamic information is obtained instead by analyzing the photon statistics and calculating the speckle contrast in single scattering patterns. This quantity, also referred to as the speckle visibility, is determined by the properties of the partially coherent beam and other experimental parameters, as well as the internal motions in the sample (dynamics). As a case study, Brownian dynamics in a low-density colloidal suspension is measured and an excellent agreement is found between correlation functions measured by X-ray photon correlation spectroscopy and the decay in speckle visibility with integration time obtained from the analysis presented here.

  14. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection

    PubMed Central

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications. PMID:26203382

  15. Definition of Shifts of Optical Transitions Frequencies due to Pulse Perturbation Action by the Photon Echo Signal Form

    NASA Astrophysics Data System (ADS)

    Lisin, V. N.; Shegeda, A. M.; Samartsev, V. V.

    2015-09-01

    A relative phase shift between the different groups of excited dipoles, which appears as result of its frequency splitting due to action of a pulse of electric or magnetic fields, depends on a time, if the pulse overlaps in time with echo-pulse. As а consequence, the echo waveform is changed. The echo time form is modulated. The inverse modulation period well enough approximates Zeeman and pseudo-Stark splitting in the cases of magnetic and, therefore, electrical fields. Thus the g-factors of ground 4I15/2 and excited 4F9/2 optical states of Er3+ ion in LuLiF4 and YLiF4 have been measured and pseudo-Stark shift of R1 line in ruby has been determined.

  16. Lineshape asymmetry for joint coherent population trapping and three-photon N resonances

    NASA Astrophysics Data System (ADS)

    Hancox, Cindy; Hohensee, Michael; Crescimanno, Michael; Phillips, David F.; Walsworth, Ronald L.

    2008-06-01

    We show that a characteristic two photon lineshape asymmetry arises in coherent population trapping (CPT) and three photon (N) resonances because both resonances are simultaneously induced by modulation sidebands in the interrogating laser light. The N resonance is a three-photon resonance in which a two-photon Raman excitation is combined with a resonant optical pumping field. This joint CPT and N resonance can be the dominant source of lineshape distortion, with direct relevance for the operation of miniaturized atomic frequency standards. We present the results of both an experimental study and theoretical treatment of the asymmetry of the joint CPT and N resonance under conditions typical to the operation of an N resonance clock.

  17. Non-Cooperative Target Imaging and Parameter Estimation with Narrowband Radar Echoes.

    PubMed

    Yeh, Chun-mao; Zhou, Wei; Lu, Yao-bing; Yang, Jian

    2016-01-20

    This study focuses on the rotating target imaging and parameter estimation with narrowband radar echoes, which is essential for radar target recognition. First, a two-dimensional (2D) imaging model with narrowband echoes is established in this paper, and two images of the target are formed on the velocity-acceleration plane at two neighboring coherent processing intervals (CPIs). Then, the rotating velocity (RV) is proposed to be estimated by utilizing the relationship between the positions of the scattering centers among two images. Finally, the target image is rescaled to the range-cross-range plane with the estimated rotational parameter. The validity of the proposed approach is confirmed using numerical simulations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesnokov, E. N., E-mail: chesnok@kinetics.nsc.ru; Novosibirsk State University, Novosibirsk 630090; Kubarev, V. V.

    Using the pulses of terahertz free electron laser and ultra-fast Schottky diode detectors, we observed the coherent transients within a free induction decay of gaseous nitrogen dioxide NO{sub 2}. The laser excited different sub-bands of rotation spectra of NO{sub 2} containing about 50–70 lines. The free induction signal continued more than 30 ns and consisted of many echo-like bursts duration about 0.2 ns. Unlike the similar effect observed previously for linear and symmetric top molecules, the sequence of echo bursts is not periodic. The values for delay of individual echo are stable, and the set of these delays can be considered asmore » a “molecular fingerprint” in the time domain.« less

  19. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    NASA Astrophysics Data System (ADS)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  20. Development and test of photon counting lidar

    NASA Astrophysics Data System (ADS)

    Wang, Chun-hui; Wang, Ao-you; Tao, Yu-liang; Li, Xu; Peng, Huan; Meng, Pei-bei

    2018-02-01

    In order to satisfy the application requirements of spaceborne three dimensional imaging lidar , a prototype of nonscanning multi-channel lidar based on receiver field of view segmentation was designed and developed. High repetition frequency micro-pulse lasers, optics fiber array and Geiger-mode APD, combination with time-correlated single photon counting technology, were adopted to achieve multi-channel detection. Ranging experiments were carried out outdoors. In low echo photon condition, target photon counting showed time correlated and noise photon counting were random. Detection probability and range precision versus threshold were described and range precision increased from 0.44 to 0.11 when threshold increased from 4 to 8.

  1. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Cho, Minhaeng

    2018-05-01

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  2. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion.

    PubMed

    Cho, Minhaeng

    2018-05-14

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  3. Observations of the upper troposphere and lower stratosphere using the urbana coherent-scatter radar

    NASA Technical Reports Server (NTRS)

    Goss, L. D.; Bowhill, S. A.

    1983-01-01

    The Urbana coherent-scatter radar was used to observe the upper troposphere and lower stratosphere, and 134 hours of data were collected. Horizontal wind measurements show good agreement with balloon-measured winds. Gravity waves were frequently observed, and were enhanced during convective activity. Updrafts and downdrafts were observed within thunderstorms. Power returns are related to hydrostatic stability, and changes in echo specularity are shown.

  4. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    PubMed Central

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  5. Coherence in the presence of absorption and heating in a molecule interferometer

    PubMed Central

    Cotter, J. P.; Eibenberger, S.; Mairhofer, L.; Cheng, X.; Asenbaum, P.; Arndt, M.; Walter, K.; Nimmrichter, S.; Hornberger, K.

    2015-01-01

    Matter-wave interferometry can be used to probe the foundations of physics and to enable precise measurements of particle properties and fundamental constants. It relies on beam splitters that coherently divide the wave function. In atom interferometers, such elements are often realised using lasers by exploiting the dipole interaction or through photon absorption. It is intriguing to extend these ideas to complex molecules where the energy of an absorbed photon can rapidly be redistributed across many internal degrees of freedom. Here, we provide evidence that center-of-mass coherence can be maintained even when the internal energy and entropy of the interfering particle are substantially increased by absorption of photons from a standing light wave. Each photon correlates the molecular center-of-mass wave function with its internal temperature and splits it into a superposition with opposite momenta in addition to the beam-splitting action of the optical dipole potential. PMID:26066053

  6. Effects of off-resonance spins on the performance of the modulated gradient spin echo sequence.

    PubMed

    Serša, Igor; Bajd, Franci; Mohorič, Aleš

    2016-09-01

    Translational molecular dynamics in various materials can also be studied by diffusion spectra. These can be measured by a constant gradient variant of the modulated gradient spin echo (MGSE) sequence which is composed of a CPMG RF pulse train superimposed to a constant magnetic field gradient. The application of the RF train makes the effective gradient oscillating thus enabling measurements of diffusion spectra in a wide range of frequencies. However, seemingly straightforward implementation of the MGSE sequence proved to be complicated and can give overestimated results for diffusion if not interpreted correctly. In this study, unrestricted diffusion in water and other characteristic materials was analyzed by the MGSE sequence in the frequency range 50-3000Hz using a 6T/m diffusion probe. First, it was shown that the MGSE echo train acquired from the entire sample decays faster than the train acquired only from a narrow band at zero frequency of the sample. Then, it was shown that the decay rate is dependent on the band's off-resonance characterized by the ratio Δω0/ω1 and that with higher off-resonances the decay is faster. The faster decay therefore corresponds to a higher diffusion coefficient if the diffusion is calculated using standard Stejskal-Tanner formula. The result can be explained by complex coherence pathways contributing to the MGSE echo signals when |Δω0|/ω1>0. In a magnetic field gradient, all the pathways are more diffusion attenuated than the direct coherence pathway and therefore decay faster, which leads to an overestimation of the diffusion coefficient. A solution to this problem was found in an efficient off-resonance signal reduction by using only zero frequency filtered MGSE echo train signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Coherent coupling between Vanadyl Phthalocyanine spin ensemble and microwave photons: towards integration of molecular spin qubits into quantum circuits.

    PubMed

    Bonizzoni, C; Ghirri, A; Atzori, M; Sorace, L; Sessoli, R; Affronte, M

    2017-10-12

    Electron spins are ideal two-level systems that may couple with microwave photons so that, under specific conditions, coherent spin-photon states can be realized. This represents a fundamental step for the transfer and the manipulation of quantum information. Along with spin impurities in solids, molecular spins in concentrated phases have recently shown coherent dynamics under microwave stimuli. Here we show that it is possible to obtain high cooperativity regime between a molecular Vanadyl Phthalocyanine (VOPc) spin ensemble and a high quality factor superconducting YBa 2 Cu 3 O 7 (YBCO) coplanar resonator at 0.5 K. This demonstrates that molecular spin centers can be successfully integrated in hybrid quantum devices.

  8. Improvement of Automated Identification of the Heart Wall in Echocardiography by Suppressing Clutter Component

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2013-07-01

    For the facilitation of analysis and elimination of the operator dependence in estimating the myocardial function in echocardiography, we have previously developed a method for automated identification of the heart wall. However, there are misclassified regions because the magnitude-squared coherence (MSC) function of echo signals, which is one of the features in the previous method, is sensitively affected by the clutter components such as multiple reflection and off-axis echo from external tissue or the nearby myocardium. The objective of the present study is to improve the performance of automated identification of the heart wall. For this purpose, we proposed a method to suppress the effect of the clutter components on the MSC of echo signals by applying an adaptive moving target indicator (MTI) filter to echo signals. In vivo experimental results showed that the misclassified regions were significantly reduced using our proposed method in the longitudinal axis view of the heart.

  9. Electrical detection of electron-spin-echo envelope modulations in thin-film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Fehr, M.; Behrends, J.; Haas, S.; Rech, B.; Lips, K.; Schnegg, A.

    2011-11-01

    Electrically detected electron-spin-echo envelope modulations (ED-ESEEM) were employed to detect hyperfine interactions between nuclear spins and paramagnetic sites, determining spin-dependent transport processes in multilayer thin-film microcrystalline silicon solar cells. Electrical detection in combination with a modified Hahn-echo sequence was used to measure echo modulations induced by 29Si, 31P, and 1H nuclei weakly coupled to electron spins of paramagnetic sites in the amorphous and microcrystalline solar cell layers. In the case of CE centers in the μc-Si:H i-layer, the absence of 1H ESEEM modulations indicates that the adjacencies of CE centers are depleted from hydrogen atoms. On the basis of this result, we discuss several models for the microscopic origin of the CE center and conclusively assign those centers to coherent twin boundaries inside of crystalline grains in μc-Si:H.

  10. Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence

    NASA Astrophysics Data System (ADS)

    Belli, F.; Abdolvand, A.; Travers, J. C.; Russell, P. St. J.

    2018-01-01

    We present the results of an experimental and numerical investigation into temporally nonlocal coherent interactions between ultrashort pulses, mediated by Raman coherence, in a gas-filled kagome-style hollow-core photonic-crystal fiber. A pump pulse first sets up the Raman coherence, creating a refractive index spatiotemporal grating in the gas that travels at the group velocity of the pump pulse. Varying the arrival time of a second, probe, pulse allows a high degree of control over its evolution as it propagates along the fiber through the grating. Of particular interest are soliton-driven effects such as self-compression and dispersive wave (DW) emission. In the experiments reported, a DW is emitted at ˜300 nm and exhibits a wiggling effect, with its central frequency oscillating periodically with pump-probe delay. The results demonstrate that a strong Raman coherence, created in a broadband guiding gas-filled kagome photonic-crystal fiber, can be used to control the nonlinear dynamics of ultrashort probe pulses, even in difficult-to-access spectral regions such as the deep and vacuum ultraviolet.

  11. Coherent dynamics of a telecom-wavelength entangled photon source.

    PubMed

    Ward, M B; Dean, M C; Stevenson, R M; Bennett, A J; Ellis, D J P; Cooper, K; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J

    2014-01-01

    Quantum networks can interconnect remote quantum information processors, allowing interaction between different architectures and increasing net computational power. Fibre-optic telecommunications technology offers a practical platform for routing weakly interacting photonic qubits, allowing quantum correlations and entanglement to be established between distant nodes. Although entangled photons have been produced at telecommunications wavelengths using spontaneous parametric downconversion in nonlinear media, as system complexity increases their inherent excess photon generation will become limiting. Here we demonstrate entangled photon pair generation from a semiconductor quantum dot at a telecommunications wavelength. Emitted photons are intrinsically anti-bunched and violate Bell's inequality by 17 standard deviations High-visibility oscillations of the biphoton polarization reveal the time evolution of the emitted state with exceptional clarity, exposing long coherence times. Furthermore, we introduce a method to evaluate the fidelity to a time-evolving Bell state, revealing entanglement between photons emitted up to 5 ns apart, exceeding the exciton lifetime.

  12. Quadrupolar transfer pathways

    NASA Astrophysics Data System (ADS)

    Antonijevic, Sasa; Bodenhausen, Geoffrey

    2006-06-01

    A set of graphical conventions called quadrupolar transfer pathways is proposed to describe a wide range of experiments designed for the study of quadrupolar nuclei with spin quantum numbers I = 1, 3/2, 2, 5/2, etc. These pathways, which inter alea allow one to appreciate the distinction between quadrupolar and Zeeman echoes, represent a generalization of the well-known coherence transfer pathways. Quadrupolar transfer pathways not merely distinguish coherences with different orders -2 I ⩽ p ⩽ +2 I, but allow one to follow the fate of coherences associated with single transitions that have the same coherence orderp=mIr-mIs but can be distinguished by a satellite orderq=(mIr)2-(mIs)2.

  13. Quadrupolar transfer pathways.

    PubMed

    Antonijevic, Sasa; Bodenhausen, Geoffrey

    2006-06-01

    A set of graphical conventions called quadrupolar transfer pathways is proposed to describe a wide range of experiments designed for the study of quadrupolar nuclei with spin quantum numbers I=1, 3/2, 2, 5/2, etc. These pathways, which inter alea allow one to appreciate the distinction between quadrupolar and Zeeman echoes, represent a generalization of the well-known coherence transfer pathways. Quadrupolar transfer pathways not merely distinguish coherences with different orders -2I < or = p< or = +2I, but allow one to follow the fate of coherences associated with single transitions that have the same coherence order p=m(I)(r)-m(I)(s) but can be distinguished by a satellite order q=(m(I)(r))(2)-(m(I)(s))(2).

  14. Mental health assessment: Inference, explanation, and coherence.

    PubMed

    Thagard, Paul; Larocque, Laurette

    2018-06-01

    Mental health professionals such as psychiatrists and psychotherapists assess their patients by identifying disorders that explain their symptoms. This assessment requires an inference to the best explanation that compares different disorders with respect to how well they explain the available evidence. Such comparisons are captured by the theory of explanatory coherence that states 7 principles for evaluating competing hypotheses in the light of evidence. The computational model ECHO shows how explanatory coherence can be efficiently computed. We show the applicability of explanatory coherence to mental health assessment by modelling a case of psychiatric interviewing and a case of psychotherapeutic evaluation. We argue that this approach is more plausible than Bayesian inference and hermeneutic interpretation. © 2018 John Wiley & Sons, Ltd.

  15. Optical Coherence Tomography

    PubMed Central

    Huang, David; Swanson, Eric A.; Lin, Charles P.; Schuman, Joel S.; Stinson, William G.; Chang, Warren; Hee, Michael R.; Flotte, Thomas; Gregory, Kenton; Puliafito, Carmen A.; Fujimoto, James G.

    2015-01-01

    A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as ~10−10 of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively. PMID:1957169

  16. Controlling the light propagation in one-dimensional photonic crystal via incoherent pump and interdot tunneling

    NASA Astrophysics Data System (ADS)

    Abbasabadi, Majid; Sahrai, Mostafa

    2018-01-01

    We investigated the propagation of an electromagnetic pulse through a one-dimensional photonic crystal doped with quantum-dot (QD) molecules in a defect layer. The QD molecules behave as a three-level quantum system and are driven by a coherent probe laser field and an incoherent pump field. No coherent coupling laser fields were introduced, and the coherence was created by the interdot tunnel effect. Further studied was the effect of tunneling and incoherent pumping on the group velocity of the transmitted and reflected probe pulse.

  17. Coherent manipulation of photons and electrons

    NASA Astrophysics Data System (ADS)

    Zhao, Lu

    In modern physics, coherent manipulation of photons and electrons has been intensively studied, and may have important applications in classical and quantum information processing. In this dissertation, we consider some interesting schemes to realize photonic and electronic coherent manipulation. In order to coherently manipulate photons, electromagnetically induced transparency (EIT) systems have been widely adopted because the optical response of EIT systems can be controlled by the laser-induced atomic coherence. In the second chapter, we theoretically investigate image storage in hot-vapor EIT media. A so-called 4f system is adopted for imaging, and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of "light storage". We investigate how the stored diffraction pattern evolves under diffusion and discuss the essence of the stability of its dark spots. Our result indicates under appropriate conditions that an image can be reconstructed with high fidelity. The main reason for this procedure is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively. In the third chapter, we show theoretical evidence that EIT systems can function as optically addressed spatial light modulators with megahertz modulation rates. The transverse spatial properties of continuous-wave probe fields can be modulated rapidly using two-dimensional optical patterns. To exemplify our proposal, we study real-time generation and manipulation of Laguerre-Gaussian beams by means of phase or amplitude modulation using flat-top image-bearing pulse trains as coupling fields in low-cost hot-vapor EIT systems. In order to coherently manipulate electrons, we consider graphene systems, including single-layer graphene and bilayer graphene, which have recently attracted considerable attention. Due to the long coherence length and electrically tunable Fermi levels, electrons in graphene systems have some photon-like behaviors, and could be coherently manipulated. Therefore, in the fourth chapter, we theorize that at a sharp electrostatic step potential in graphene massless Dirac fermions can obtain Goos-Hanchen-like shifts under total internal reflection. Also, we study coherent propagation of the quasiparticles along a sharp graphene p-n-p waveguide, and derive novel dispersion relations for the guided modes. Consequently, coherent graphene-based devices, e.g., movable mirrors, buffers and memories, induced only by the electric field effects may be proposed. Finally, we theoretically investigate the coherent propagation of massive chiral fermions along a sharp bilayer graphene p-n-p waveguide, and indicate that the guided quasiparticles can be coherently slowed, stored and retrieved based on tunable electric field effects. Controlling group velocity in the bilayer graphene p-n-p waveguide is accomplished via interband tunneling through the p-n interfaces, and does not depend on the bandgap opening.

  18. Ultrafast coherent excitation of a trapped ion qubit for fast gates and photon frequency qubits.

    PubMed

    Madsen, M J; Moehring, D L; Maunz, P; Kohn, R N; Duan, L-M; Monroe, C

    2006-07-28

    We demonstrate ultrafast coherent excitation of an atomic qubit stored in the hyperfine levels of a single trapped cadmium ion. Such ultrafast excitation is crucial for entangling networks of remotely located trapped ions through the interference of photon frequency qubits, and is also a key component for realizing ultrafast quantum gates between Coulomb-coupled ions.

  19. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum

    PubMed Central

    Seghilani, Mohamed S.; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-01-01

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here “orbital birefringence”, based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create “orbital gain dichroism” allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications. PMID:27917885

  20. Nonclassical features of trimodal excited coherent Greenberger - Horne - Zeilinger(GHZ) - type state

    NASA Astrophysics Data System (ADS)

    Merlin, J.; Ahmed, A. B. M.; Mohammed, S. Naina

    2017-06-01

    We examine the influence of photon excitation on each mode of the Glauber coherent GHZ type tripartite state. Concurrence is adopted as entanglement measure between bipartite entangled state. The pairwise concurrence is calculated and used as a quantifier of intermodal entanglement. The entanglement distribution among three modes is investigated using tangle as a measure and the residual entanglement is also calculated. The effect of the photon addition process on the quadrature squeezing is investigated. The higher order squeezing capacity of the photon addition process is also shown.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alan E.

    Here, proposed dark matter detectors with eV-scale sensitivities will detect a large background of atomic (nuclear) recoils from coherent photon scattering of MeV-scale photons. This background climbs steeply below ~10 eV, far exceeding the declining rate of low-energy Compton recoils. The upcoming generation of dark matter detectors will not be limited by this background, but further development of eV-scale and sub-eV detectors will require strategies, including the use of low nuclear mass target materials, to maximize dark matter sensitivity while minimizing the coherent photon scattering background.

  2. Decoherence in attosecond photoionization.

    PubMed

    Pabst, Stefan; Greenman, Loren; Ho, Phay J; Mazziotti, David A; Santra, Robin

    2011-02-04

    The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, but it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence, even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral bandwidth, the coherence can only be increased by increasing the mean photon energy.

  3. An atom interferometer inside a hollow-core photonic crystal fiber

    PubMed Central

    Xin, Mingjie; Leong, Wui Seng; Chen, Zilong; Lan, Shau-Yu

    2018-01-01

    Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light–based quantum systems. We use the optical fields in a hollow-core photonic crystal fiber to spatially split, reflect, and recombine a coherent superposition state of free-falling 85Rb atoms to realize an inertia-sensitive atom interferometer. The interferometer operates over a diffraction-free distance, and the contrasts and phase shifts at different distances agree within one standard error. The integration of phase coherent photonic and quantum systems here shows great promise to advance the capability of atom interferometers in the field of precision measurement and quantum sensing with miniature design of apparatus and high efficiency of laser power consumption. PMID:29372180

  4. State-projective scheme for generating pair coherent states in traveling-wave optical fields

    NASA Astrophysics Data System (ADS)

    Gerry, Christopher C.; Mimih, Jihane; Birrittella, Richard

    2011-08-01

    The pair coherent states of a two-mode quantized electromagnetic field introduced by Agarwal [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.57.827 57, 827 (1986)] have yet to be generated in the laboratory. The states can mathematically be obtained from a product of ordinary coherent states via projection onto a subspace wherein identical photon number states of each mode are paired. We propose a scheme by which this projection can be engineered. The scheme requires relatively weak cross-Kerr nonlinearities, the ability to perform a displacement operation on a beam mode, and photon detection ability able to distinguish between zero and any other number of photons. These requirements can be fulfilled with currently available technology or technology that is on the horizon.

  5. Qudit-Basis Universal Quantum Computation Using χ^{(2)} Interactions.

    PubMed

    Niu, Murphy Yuezhen; Chuang, Isaac L; Shapiro, Jeffrey H

    2018-04-20

    We prove that universal quantum computation can be realized-using only linear optics and χ^{(2)} (three-wave mixing) interactions-in any (n+1)-dimensional qudit basis of the n-pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ^{(2)} Hamiltonians and photon-number operators generate the full u(3) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ^{(2)} interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ^{(2)} interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.

  6. Qudit-Basis Universal Quantum Computation Using χ(2 ) Interactions

    NASA Astrophysics Data System (ADS)

    Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.

    2018-04-01

    We prove that universal quantum computation can be realized—using only linear optics and χ(2 ) (three-wave mixing) interactions—in any (n +1 )-dimensional qudit basis of the n -pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ(2 ) Hamiltonians and photon-number operators generate the full u (3 ) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ(2 ) interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ(2 ) interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.

  7. Conditionally prepared photon and quantum imaging

    NASA Astrophysics Data System (ADS)

    Lvovsky, Alexander I.; Aichele, Thomas

    2004-10-01

    We discuss a classical model allowing one to visualize and characterize the optical mode of the single photon generated by means of a conditional measurement on a biphoton produced in parametric down-conversion. The model is based on Klyshko's advanced wave interpretation, but extends beyond it, providing a precise mathematical description of the advanced wave. The optical mode of the conditional photon is shown to be identical to the mode of the classical difference-frequency field generated due to nonlinear interaction of the partially coherent advanced wave with the pump pulse. With this "nonlinear advanced wave model" most coherence properties of the conditional photon become manifest, which permits one to intuitively understand many recent results, in particular, in quantum imaging.

  8. Quantum coherence of biophotons and living systems.

    PubMed

    Bajpai, R P

    2003-05-01

    Coherence is a property of the description of the system in the classical framework in which the subunits of a system act in a cooperative manner. Coherence becomes classical if the agent causing cooperation is discernible otherwise it is quantum coherence. Both stimulated and spontaneous biophoton signals show properties that can be attributed to the cooperative actions of many photon-emitting units. But the agents responsible for the cooperative actions of units have not been discovered so far. The stimulated signal decays with non-exponential character. It is system and situation specific and sensitive to many physiological and environmental factors. Its measurable holistic parameters are strength, shape, relative strengths of spectral components, and excitation curve. The spontaneous signal is non-decaying with the probabilities of detecting various number of photons to be neither normal nor Poisson. The detected probabilities in a signal of Parmelia tinctorum match with probabilities expected in a squeezed state of photons. It is speculated that an in vivo nucleic acid molecule is an assembly of intermittent quantum patches that emit biophoton in quantum transitions. The distributions of quantum patches and their lifetimes determine the holistic features of biophoton signals, so that the coherence of biophotons is merely a manifestation of the coherence of living systems.

  9. Notch filtering the nuclear environment of a spin qubit.

    PubMed

    Malinowski, Filip K; Martins, Frederico; Nissen, Peter D; Barnes, Edwin; Cywiński, Łukasz; Rudner, Mark S; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand

    2017-01-01

    Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots and accurate qubit operations. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence. Low-frequency nuclear noise, responsible for fast (10 ns) inhomogeneous dephasing, can be removed by echo techniques. High-frequency nuclear noise, recently studied via echo revivals, occurs in narrow-frequency bands related to differences in Larmor precession of the three isotopes 69 Ga, 71 Ga and 75 As (refs 15,16,17). Here, we show that both low- and high-frequency nuclear noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a spin coherence time (T 2 ) of 0.87 ms, five orders of magnitude longer than typical exchange gate times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum dots.

  10. Photoproduction of dileptons and photons in p -p collisions at the Large Hadron Collider energies

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Lei; Zhu, Jia-Qing

    2018-03-01

    The production of large pT dileptons and photons originating from photoproduction processes in p-p collisions at Large Hadron Collider energies is calculated. The comparisons between the exact treatment results and the ones of the equivalent photon approximation approach are expressed as the Q2 (the virtuality of photon) and pT distributions. The method developed by Martin and Ryskin is used for avoiding double counting when the coherent and incoherent contributions are considered simultaneously. The numerical results indicate that the equivalent photon approximation is only effective in small Q2 region and can be used for coherent photoproduction processes with proper choice of Qmax2 (the choices Qmax2˜s ^ or ∞ will cause obvious errors), but cannot be used for incoherent photoproduction processes. The exact treatment is needed to deal accurately with the photoproduction of large pT dileptons and photons.

  11. Two-Photon Infrared Resonance Can Enhance Coherent Raman Scattering

    NASA Astrophysics Data System (ADS)

    Traverso, Andrew J.; Hokr, Brett; Yi, Zhenhuan; Yuan, Luqi; Yamaguchi, Shoichi; Scully, Marlan O.; Yakovlev, Vladislav V.

    2018-02-01

    In this Letter we present a new technique for attaining efficient low-background coherent Raman scattering where the Raman coherence is mediated by a tunable infrared laser in two-photon resonance with a chosen vibrational transition. In addition to the traditional benefits of conventional coherent Raman schemes, this approach offers a number of advantages including potentially higher emission intensity, reduction of nonresonant four-wave mixing background, preferential excitation of the anti-Stokes field, and simplified phase matching conditions. In particular, this is demonstrated in gaseous methane along the ν1 (A1) and ν3 (T2) vibrational levels using an infrared field tuned between 1400 and 1600 cm-1 and a 532-nm pump field. This approach has broad applications, from coherent light generation to spectroscopic remote sensing and chemically specific imaging in microscopy.

  12. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    DOE PAGES

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; ...

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  13. Coherent control with optical pulses for deterministic spin-photon entanglement

    NASA Astrophysics Data System (ADS)

    Truex, Katherine; Webster, L. A.; Duan, L.-M.; Sham, L. J.; Steel, D. G.

    2013-11-01

    We present a procedure for the optical coherent control of quantum bits within a quantum dot spin-exciton system, as a preliminary step to implementing a proposal by Yao, Liu, and Sham [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.030504 95, 030504 (2005)] for deterministic spin-photon entanglement. The experiment proposed here utilizes a series of picosecond optical pulses from a single laser to coherently control a single self-assembled quantum dot in a magnetic field, creating the precursor state in 25 ps with a predicted fidelity of 0.991. If allowed to decay in an appropriate cavity, the ideal precursor superposition state would create maximum spin-photon entanglement. Numerical simulations using values typical of InAs quantum dots give a predicted entropy of entanglement of 0.929, largely limited by radiative decay and electron spin flips.

  14. Coherent properties of ultraweak photon emission from biological system and its application in medicine

    NASA Astrophysics Data System (ADS)

    Zhu, Yanbin; Ma, Junfu; Guo, Zhouyi

    2001-10-01

    In the paper the research status and viewpoints about the coherent of the ultra-weak photon emission from biological system (UPE) were simply introduced. For proving the biophotons indeed have coherent from another side, an experimental setup for testing UPE in different spectral region was designed. Using the experimental setup the test data of different several spectral regions from 300nm to 1060nm has been got. These test results show that UPE of living biological system exists in wide spectra region from UV-visible to infrared. Using the test data, we also can obtain the important conclusion of UPE has coherence. In the end of this paper, the UPE's application in medicine was discussed.

  15. Generation, storage, and retrieval of nonclassical states of light using atomic ensembles

    NASA Astrophysics Data System (ADS)

    Eisaman, Matthew D.

    This thesis presents the experimental demonstration of several novel methods for generating, storing, and retrieving nonclassical states of light using atomic ensembles, and describes applications of these methods to frequency-tunable single-photon generation, single-photon memory, quantum networks, and long-distance quantum communication. We first demonstrate emission of quantum-mechanically correlated pulses of light with a time delay between the pulses that is coherently controlled by utilizing 87Rb atoms. The experiment is based on Raman scattering, which produces correlated pairs of excited atoms and photons, followed by coherent conversion of the atomic states into a different photon field after a controllable delay. We then describe experiments demonstrating a novel approach for conditionally generating nonclassical pulses of light with controllable photon numbers, propagation direction, timing, and pulse shapes. We observe nonclassical correlations in relative photon number between correlated pairs of photons, and create few-photon light pulses with sub-Poissonian photon-number statistics via conditional detection on one field of the pair. Spatio-temporal control over the pulses is obtained by exploiting long-lived coherent memory for photon states and electromagnetically induced transparency (EIT) in an optically dense atomic medium. Finally, we demonstrate the use of EIT for the controllable generation, transmission, and storage of single photons with tunable frequency, timing, and bandwidth. To this end, we study the interaction of single photons produced in a "source" ensemble of 87Rb atoms at room temperature with another "target" ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval. Together these experiments utilize atomic ensembles to realize a narrow-bandwidth single-photon source, single-photon memory that preserves the quantum nature of the single photons, and a primitive quantum network comprised of two atomic-ensemble quantum memories connected by a single photon in an optical fiber. Each of these experimental demonstrations represents an essential element for the realization of long-distance quantum communication.

  16. Electrical detection of nuclear spin-echo signals in an electron spin injection system

    NASA Astrophysics Data System (ADS)

    Lin, Zhichao; Rasly, Mahmoud; Uemura, Tetsuya

    2017-06-01

    We demonstrated spin echoes of nuclear spins in a spin injection device with a highly polarized spin source by nuclear magnetic resonance (NMR). Efficient spin injection into GaAs from a half-metallic spin source of Co2MnSi enabled efficient dynamic nuclear polarization (DNP) and sensitive detection of NMR signals even at a low magnetic field of ˜0.1 T and a relatively high temperature of 4.2 K. The intrinsic coherence time T2 of 69Ga nuclear spins was evaluated from the spin-echo signals. The relation between T2 and the decay time of the Rabi oscillation suggests that the inhomogeneous effects in our system are not obvious. This study provides an all-electrical NMR system for nuclear-spin-based qubits.

  17. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  18. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; Lademann, Jürgen; Darvin, Maxim E.; Sterry, Wolfram; König, Karsten

    2013-02-01

    We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented.

  19. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Keßler, Christian A; Kettler, Jan; Hepp, Christian; Arend, Carsten; Albrecht, Roland; Schulz, Wolfgang-Michael; Jetter, Michael; Michler, Peter; Becher, Christoph

    2012-10-05

    We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.

  20. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  1. Access to long-term optical memories using photon echoes retrieved from semiconductor spins

    NASA Astrophysics Data System (ADS)

    Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Salewski, M.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2014-11-01

    The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.

  2. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase.

    PubMed

    Lu, Jian; Zhang, Yaqing; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A

    2016-10-18

    Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.

  3. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064  nm wavelength.

    PubMed

    Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng

    2016-08-15

    Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit.

  4. Controlling coherence using the internal structure of hard pi pulses.

    PubMed

    Dong, Yanqun; Ramos, R G; Li, Dale; Barrett, S E

    2008-06-20

    The tiny difference between hard pi pulses and their delta-function approximation can be exploited to control coherence. Variants on the magic echo that work despite a large spread in resonance offsets are demonstrated using the zeroth- and first-order average Hamiltonian terms, for 13C NMR in 60C. The 29Si NMR linewidth of silicon has been reduced by a factor of about 70,00 using this approach, which also has potential applications in magnetic resonance microscopy and imaging of solids.

  5. Simultaneous dual contrast weighting using double echo rapid acquisition with relaxation enhancement (RARE) imaging.

    PubMed

    Fuchs, Katharina; Hezel, Fabian; Klix, Sabrina; Mekle, Ralf; Wuerfel, Jens; Niendorf, Thoralf

    2014-12-01

    This work proposes a dual contrast rapid acquisition with relaxation enhancement (RARE) variant (2in1-RARE), which provides simultaneous proton density (PD) and T2 * contrast in a single acquisition. The underlying concept of 2in1-RARE is the strict separation of spin echoes and stimulated echoes. This approach offers independent weighting of spin echoes and stimulated echoes. 2in1-RARE was evaluated in phantoms including signal-to-noise ratio (SNR) and point spread function assessment. 2in1-RARE was benchmarked versus coherent RARE and a split-echo RARE variant. The applicability of 2in1-RARE for brain imaging was demonstrated in a small cohort of healthy subjects (n = 10) and, exemplary, a multiple sclerosis patient at 3 Tesla as a precursor to a broader clinical study. 2in1-RARE enables the simultaneous acquisition of dual contrast weighted images without any significant image degradation and without sacrificing SNR versus split-echo RARE. This translates into a factor of two speed gain over multi-contrast, sequential split-echo RARE. A 15% broadening of the point spread function was observed in 2in1-RARE. T1 relaxation effects during the mixing time can be neglected for brain tissue. 2in1-RARE offers simultaneous acquisition of images of anatomical (PD) and functional (T2 *) contrast. It presents an alternative to address scan time constraints frequently encountered during sequential acquisition of T2 * or PD-weighted RARE. © 2013 Wiley Periodicals, Inc.

  6. Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism

    NASA Astrophysics Data System (ADS)

    Gong, Z. R.; Ian, H.; Zhou, Lan; Sun, C. P.

    2008-11-01

    We study the coherent scattering process of a single photon confined in an one-dimensional (1D) coupled cavity-array, where a Λ -type three-level atom is placed inside one of the cavities in the array and behaves as a functional quantum node (FQN). We show that, through the electromagnetically-induced-transparency mechanism, the Λ -type FQN bears complete control over the reflection and transmission of the incident photon along the cavity array. We also demonstrate the emergence of a quasibound state of the single photon inside a secondary cavity constructed by two distant FQN’s as two end mirrors, from which we are motivated to design an all-optical single photon storage device of quantum coherence.

  7. Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2006-04-18

    Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.

  8. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  9. Quantum key distribution using continuous-variable non-Gaussian states

    NASA Astrophysics Data System (ADS)

    Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.

    2016-02-01

    In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.

  10. X-ray optical simulations supporting advanced commissioning of the coherent hard x-ray beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Wiegart, L.; Rakitin, M.; Fluerasu, A.; Chubar, O.

    2017-08-01

    We present the application of fully- and partially-coherent synchrotron radiation wavefront propagation simulation functions, implemented in the "Synchrotron Radiation Workshop" computer code, to create a `virtual beamline' mimicking the Coherent Hard X-ray scattering beamline at NSLS-II. The beamline simulation includes all optical beamline components, such as the insertion device, mirror with metrology data, slits, double crystal monochromator and refractive focusing elements (compound refractive lenses and kinoform lenses). A feature of this beamline is the exploitation of X-ray beam coherence, boosted by the low-emittance NSLS-II storage-ring, for techniques such as X-ray Photon Correlation Spectroscopy or Coherent Diffraction Imaging. The key performance parameters are the degree of Xray beam coherence and photon flux, and the trade-off between them needs to guide the beamline settings for specific experimental requirements. Simulations of key performance parameters are compared to measurements obtained during beamline commissioning, and include the spectral flux of the undulator source, the degree of transverse coherence as well as focal spot sizes.

  11. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise.

    PubMed

    Brezinski, M E

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  12. Near- and Extended-Edge X-Ray-Absorption Fine-Structure Spectroscopy Using Ultrafast Coherent High-Order Harmonic Supercontinua

    NASA Astrophysics Data System (ADS)

    Popmintchev, Dimitar; Galloway, Benjamin R.; Chen, Ming-Chang; Dollar, Franklin; Mancuso, Christopher A.; Hankla, Amelia; Miaja-Avila, Luis; O'Neil, Galen; Shaw, Justin M.; Fan, Guangyu; Ališauskas, Skirmantas; Andriukaitis, Giedrius; Balčiunas, Tadas; Mücke, Oliver D.; Pugzlys, Audrius; Baltuška, Andrius; Kapteyn, Henry C.; Popmintchev, Tenio; Murnane, Margaret M.

    2018-03-01

    Recent advances in high-order harmonic generation have made it possible to use a tabletop-scale setup to produce spatially and temporally coherent beams of light with bandwidth spanning 12 octaves, from the ultraviolet up to x-ray photon energies >1.6 keV . Here we demonstrate the use of this light for x-ray-absorption spectroscopy at the K - and L -absorption edges of solids at photon energies near 1 keV. We also report x-ray-absorption spectroscopy in the water window spectral region (284-543 eV) using a high flux high-order harmonic generation x-ray supercontinuum with 109 photons/s in 1% bandwidth, 3 orders of magnitude larger than has previously been possible using tabletop sources. Since this x-ray radiation emerges as a single attosecond-to-femtosecond pulse with peak brightness exceeding 1026 photons/s /mrad2/mm2/1 % bandwidth, these novel coherent x-ray sources are ideal for probing the fastest molecular and materials processes on femtosecond-to-attosecond time scales and picometer length scales.

  13. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    PubMed Central

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric

    2015-01-01

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milli­seconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented. PMID:25931061

  14. Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy.

    PubMed

    Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen

    2014-08-25

    Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques.

  15. Holographic storage of biphoton entanglement.

    PubMed

    Dai, Han-Ning; Zhang, Han; Yang, Sheng-Jun; Zhao, Tian-Ming; Rui, Jun; Deng, You-Jin; Li, Li; Liu, Nai-Le; Chen, Shuai; Bao, Xiao-Hui; Jin, Xian-Min; Zhao, Bo; Pan, Jian-Wei

    2012-05-25

    Coherent and reversible storage of multiphoton entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although a single photon has been successfully stored in different quantum systems, storage of multiphoton entanglement remains challenging because of the critical requirement for coherent control of the photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates the Bell inequality for 1 μs storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

  16. An improved scheme on decoy-state method for measurement-device-independent quantum key distribution.

    PubMed

    Wang, Dong; Li, Mo; Guo, Guang-Can; Wang, Qin

    2015-10-14

    Quantum key distribution involving decoy-states is a significant application of quantum information. By using three-intensity decoy-states of single-photon-added coherent sources, we propose a practically realizable scheme on quantum key distribution which approaches very closely the ideal asymptotic case of an infinite number of decoy-states. We make a comparative study between this scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final key generation rate.

  17. Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective

    NASA Astrophysics Data System (ADS)

    Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.

    2017-12-01

    We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.

  18. Vibrational excitation of hydrogen molecules by two-photon absorption and third-harmonic generation

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuki; Hara, Hideaki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2018-01-01

    We report the coherent excitation of the vibrational state of hydrogen molecules by two-photon absorption and the resultant third-harmonic generation (THG). Parahydrogen molecules cooled by liquid nitrogen are irradiated by mid-infrared nanosecond pulses at 4.8 μm with a nearly Fourier-transform-limited linewidth. The first excited vibrational state of parahydrogen is populated by two-photon absorption of the mid-infrared photons. Because of the narrow linewidth of the mid-infrared pulses, coherence between the ground and excited states is sufficient to induce higher-order processes. Near-infrared photons from the THG are observed at 1.6 μm. The dependence of the intensity of the near-infrared radiation on mid-infrared pulse energy, target pressure, and cell length is determined. We used a simple formula for THG with consideration of realistic experimental conditions to explain the observed results.

  19. Transient ultrafast coherent spectroscopy of 2-propanol

    NASA Astrophysics Data System (ADS)

    Meiselman, Seth; Decamp, Matthew; Lorenz, Virginia

    We use transient coherent spontaneous Raman spectroscopy to measure the coherence lifetimes of vibrational states in liquid propanol. By creating single-photon-level collective excitations of the vibrational states in the system we observe coherence oscillations due to simultaneous excitation of the 2885 cm-1, 2938 cm-1, and 2976 cm-1 modes. These lifetimes and oscillation frequencies agree with frequency-domain lineshape measurements.

  20. A quantum radar detection protocol for fringe visibility enhancement

    NASA Astrophysics Data System (ADS)

    Koltenbah, Benjamin; Parazzoli, Claudio; Capron, Barbara

    2016-05-01

    We present analysis of a radar detection technique using a Photon Addition Homodyne Receiver (PAHR) that improves SNR of the interferometer fringes and reduces uncertainty of the phase measurement. This system uses the concept of Photon Addition (PA) in which the coherent photon distribution is altered. We discuss this process first as a purely mathematical concept to introduce PA and illustrate its effect on coherent photon distribution. We then present a notional proof-of-concept experiment involving a parametric down converter (PDC) and probabilistic post-selection of the results. We end with presentation of a more deterministic PAHR concept that is more suitable for development into a working system. Coherent light illuminates a target and the return signal interferes with the local oscillator reference photons to create the desired fringes. The PAHR alters the photon probability distribution of the returned light via interaction between the return photons and atoms. We refer to this technique as "Atom Interaction" or AI. The returning photons are focused at the properly prepared atomic system. The injected atoms into this region are prepared in the desired quantum state. During the interaction time, the initial quantum state evolves in such a way that the photon distribution function changes resulting in higher photon count, lower phase noise and an increase in fringe SNR. The result is a 3-5X increase of fringe SNR. This method is best suited for low light intensity (low photon count, 0.1-5) applications. The detection protocol could extend the range of existing systems without loss of accuracy, or conversely enhance a system's accuracy for given range. We present quantum mathematical analysis of the method to illustrate how both range and angular resolution improve in comparison with standard measurement techniques. We also suggest an experimental path to validate the method which also will lead toward deployment in the field.

  1. Nano-optomechanical system based on microwave frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tadesse, Semere Ayalew

    Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic echo-chamber, and interaction of a phonon pulse with the photonic nanocavity was investigated. Third, an effort was made to address a major limitation of the surface acoustic wave based optomechanical system - loss of acoustic energy into the oxidized silicon substrate. To circumvent this problem, the optomechanical system was implemented in a suspended aluminum nitride membrane. The system confined the optical and acoustic wave within the thickness of the membrane and led to a stronger optomechanical coupling. At the end a summary is given that highlights important features of the optmechanical system and its prospects in future fundamental research and application.

  2. Coherent beam control through inhomogeneous media in multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Paudel, Hari Prasad

    Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a relatively large axial misalignment of the conjugate planes of the CDM and the aberrating interface. This dissertation advances the field of microscopy by providing new models and techniques for imaging deeply within strongly scattering tissue, and by describing new adaptive optics approaches to extending imaging FOV due to sample aberrations.

  3. Setting a disordered password on a photonic memory

    NASA Astrophysics Data System (ADS)

    Su, Shih-Wei; Gou, Shih-Chuan; Chew, Lock Yue; Chang, Yu-Yen; Yu, Ite A.; Kalachev, Alexey; Liao, Wen-Te

    2017-06-01

    An all-optical method of setting a disordered password on different schemes of photonic memory is theoretically studied. While photons are regarded as ideal information carriers, it is imperative to implement such data protection on all-optical storage. However, we wish to address the intrinsic risk of data breaches in existing schemes of photonic memory. We theoretically demonstrate a protocol using spatially disordered laser fields to encrypt data stored on an optical memory, namely, encrypted photonic memory. To address the broadband storage, we also investigate a scheme of disordered echo memory with a high fidelity approaching unity. The proposed method increases the difficulty for the eavesdropper to retrieve the stored photon without the preset password even when the randomized and stored photon state is nearly perfectly cloned. Our results pave ways to significantly reduce the exposure of memories, required for long-distance communication, to eavesdropping and therefore restrict the optimal attack on communication protocols. The present scheme also increases the sensitivity of detecting any eavesdropper and so raises the security level of photonic information technology.

  4. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.

    PubMed

    Thyrrestrup, Henri; Kiršanskė, Gabija; Le Jeannic, Hanna; Pregnolato, Tommaso; Zhai, Liang; Raahauge, Laust; Midolo, Leonardo; Rotenberg, Nir; Javadi, Alisa; Schott, Rüdiger; Wieck, Andreas D; Ludwig, Arne; Löbl, Matthias C; Söllner, Immo; Warburton, Richard J; Lodahl, Peter

    2018-03-14

    Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

  5. Dynamic time-correlated single-photon counting laser ranging

    NASA Astrophysics Data System (ADS)

    Peng, Huan; Wang, Yu-rong; Meng, Wen-dong; Yan, Pei-qin; Li, Zhao-hui; Li, Chen; Pan, Hai-feng; Wu, Guang

    2018-03-01

    We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector (SPD). The multi-channel SPD improve the counting rate more than 4×107 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting (TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×107 cps.

  6. Light Echos in Kerr Geometry: A Source of High Frequency QPOs from Random X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Fukumura, K.; Kazanas, D.

    2008-01-01

    We propose that high frequency quasi-periodic oscillations (HFQPOs) can be produced from randomly-formed X-ray bursts (flashes) by plasma interior to the ergosphere of a rapidly-rotating black hole. We show by direct computation of their orbits that the photons comprising the observed X-ray light curves, if due to a multitude of such flashes, are affected significantly by the black hole's dragging of inertial frames; the photons of each such burst arrive to an observer at infinity in multiple (double or triple), distinct 'bunches' separated by a roughly constant time lag of t/M approximately equal to 14, regardless of the bursts' azimuthal position. We argue that every other such 'bunch' represents photons that follow trajectories with an additional orbit around the black hole at the photon circular orbit radius (a photon 'echo'). The presence of this constant lag in the response function of the system leads to a QPO feature in its power density spectra, even though the corresponding light curve consists of a totally stochastic signal. This effect is by and large due to the black hole spin and is shown to gradually diminish as the spin parameter a decreases or the radial position of the burst moves outside the static limit surface (ergosphere). Our calculations indicate that for a black hole with Kerr parameter of a/M=0.99 and mass of M=10*Msun the QPO is expected at a frequency of approximately 1.3-1.4 kHz. We discuss the plausibility and observational implications of our model/results as well as its limitations.

  7. An improved scheme on decoy-state method for measurement-device-independent quantum key distribution

    PubMed Central

    Wang, Dong; Li, Mo; Guo, Guang-Can; Wang, Qin

    2015-01-01

    Quantum key distribution involving decoy-states is a significant application of quantum information. By using three-intensity decoy-states of single-photon-added coherent sources, we propose a practically realizable scheme on quantum key distribution which approaches very closely the ideal asymptotic case of an infinite number of decoy-states. We make a comparative study between this scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final key generation rate. PMID:26463580

  8. Monte Carlo simulation for coherent backscattering with diverging illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Wenli; Radosevich, Andrew J.; Eshein, Adam; Nguyen, The-Quyen; Backman, Vadim

    2016-03-01

    Diverging beam illumination is widely used in many optical techniques especially in fiber optic applications and coherence phenomenon is one of the most important properties to consider for these applications. Until now, people have used Monte Carlo simulations to study the backscattering coherence phenomenon in collimated beam illumination only. We are the first one to study the coherence phenomenon under the exact diverging beam geometry by taking into account the impossibility of the existence for the exact time-reversed path pairs of photons, which is the main contribution to the backscattering coherence pattern in collimated beam. In this work, we present a Monte Carlo simulation that considers the influence of the illumination numerical aperture. The simulation tracks the electric field for the unique paths of forward path and reverse path in time-reversed pairs of photons as well as the same path shared by them. With this approach, we can model the coherence pattern formed between the pairs by considering their phase difference at the collection plane directly. To validate this model, we use the Low-coherence Enhanced Backscattering Spectroscopy, one of the instruments looking at the coherence pattern using diverging beam illumination, as the benchmark to compare with. In the end, we show how this diverging configuration would significantly change the coherent pattern under coherent light source and incoherent light source. This Monte Carlo model we developed can be used to study the backscattering phenomenon in both coherence and non-coherence situation with both collimated beam and diverging beam setups.

  9. Phase Properties of Photon-Added Coherent States for Nonharmonic Oscillators in a Nonlinear Kerr Medium

    NASA Astrophysics Data System (ADS)

    Jahanbakhsh, F.; Honarasa, G.

    2018-04-01

    The potential of nonharmonic systems has several applications in the field of quantum physics. The photon-added coherent states for annharmonic oscillators in a nonlinear Kerr medium can be used to describe some quantum systems. In this paper, the phase properties of these states including number-phase Wigner distribution function, Pegg-Barnett phase distribution function, number-phase squeezing and number-phase entropic uncertainty relations are investigated. It is found that these states can be considered as the nonclassical states.

  10. Demonstration of coherent-state discrimination using a displacement-controlled photon-number-resolving detector.

    PubMed

    Wittmann, Christoffer; Andersen, Ulrik L; Takeoka, Masahiro; Sych, Denis; Leuchs, Gerd

    2010-03-12

    We experimentally demonstrate a new measurement scheme for the discrimination of two coherent states. The measurement scheme is based on a displacement operation followed by a photon-number-resolving detector, and we show that it outperforms the standard homodyne detector which we, in addition, prove to be optimal within all Gaussian operations including conditional dynamics. We also show that the non-Gaussian detector is superior to the homodyne detector in a continuous variable quantum key distribution scheme.

  11. Freezing Coherent Field Growth in a Cavity by the Quantum Zeno Effect

    NASA Astrophysics Data System (ADS)

    Bernu, J.; Deléglise, S.; Sayrin, C.; Kuhr, S.; Dotsenko, I.; Brune, M.; Raimond, J. M.; Haroche, S.

    2008-10-01

    We have frozen the coherent evolution of a field in a cavity by repeated measurements of its photon number. We use circular Rydberg atoms dispersively coupled to the cavity mode for an absorption-free photon counting. These measurements inhibit the growth of a field injected in the cavity by a classical source. This manifestation of the quantum Zeno effect illustrates the backaction of the photon number determination onto the field phase. The residual growth of the field can be seen as a random walk of its amplitude in the two-dimensional phase space. This experiment sheds light onto the measurement process and opens perspectives for active quantum feedback.

  12. Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks

    NASA Astrophysics Data System (ADS)

    Acín, Antonio; Gisin, Nicolas; Scarani, Valerio

    2004-01-01

    We propose a class of quantum cryptography protocols that are robust against photon-number-splitting attacks (PNS) in a weak coherent-pulse implementation. We give a quite exhaustive analysis of several eavesdropping attacks on these schemes. The honest parties (Alice and Bob) use present-day technology, in particular an attenuated laser as an approximation of a single-photon source. The idea of the protocols is to exploit the nonorthogonality of quantum states to decrease the information accessible to Eve due to the multiphoton pulses produced by the imperfect source. The distance at which the key distribution becomes insecure due to the PNS attack is significantly increased compared to the existing schemes. We also show that strong-pulse implementations, where a strong pulse is included as a reference, allow for key distribution robust against photon-number-splitting attacks.

  13. Acoustic Guided Wave Testing of Pipes of Small Diameters

    NASA Astrophysics Data System (ADS)

    Muravev, V. V.; Muraveva, O. V.; Strizhak, V. A.; Myshkin, Y. V.

    2017-10-01

    Acoustic path is analyzed and main parameters of guided wave testing are substanti- ated applied to pipes of small diameters. The method is implemented using longitudinal L(0,1) and torsional T(0,1) waves based on electromagnetic-acoustic (EMA) transducers. The method of multiple reflections (MMR) combines echo-through, amplitude-shadow and time-shadow methods. Due to the effect of coherent amplification of echo-pulses from defects the sensitivity to the defects of small sizes at the signal analysis on the far reflections is increased. An oppor- tunity of detection of both local defects (dents, corrosion damages, rolling features, pitting, cracks) and defects extended along the pipe is shown.

  14. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise

    PubMed Central

    Brezinski, ME

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II. PMID:29863177

  15. Looking for Dust-Scattering Light Echoes

    NASA Astrophysics Data System (ADS)

    Mills, Brianna; Heinz, Sebastian; Corrales, Lia

    2018-01-01

    Galactic X-ray transient sources such as neutron stars or black holes sometimes undergo an outburst in X-rays. Ring structures have been observed around three such sources, produced by the X-ray photons being scattered by interstellar dust grains along our line of sight. These dust-scattering light echoes have proven to be a useful tool for measuring and constraining Galactic distances, mapping the dust structure of the Milky Way, and determining the dust composition in the clouds producing the echo. Detectable light echoes require a sufficient quantity of dust along our line of sight, as well as bright, short-lived Galactic X-ray flares. Using data from the Monitor of All-Sky X-ray Image (MAXI) on-board the International Space Station, we ran a peak finding algorithm in Python to look for characteristic flare events. Each flare was characterized by its fluence, the integrated flux of the flare over time. We measured the distribution of flare fluences to show how many observably bright flares were recorded by MAXI. This work provides a parent set for dust echo searches in archival X-ray data and will inform observing strategies with current and future X-ray missions such as Athena and Lynx.

  16. Electrical detection of nuclear spins in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.

    2014-03-01

    We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.

  17. Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory.

    PubMed

    Jobez, Pierre; Laplane, Cyril; Timoney, Nuala; Gisin, Nicolas; Ferrier, Alban; Goldner, Philippe; Afzelius, Mikael

    2015-06-12

    Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies suggest this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here, we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read-out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.

  18. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    PubMed

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences. Copyright 2000 Academic Press.

  19. Quantum heat engine power can be increased by noise-induced coherence

    PubMed Central

    Scully, Marlan O.; Chapin, Kimberly R.; Dorfman, Konstantin E.; Kim, Moochan Barnabas; Svidzinsky, Anatoly

    2011-01-01

    Laser and photocell quantum heat engines (QHEs) are powered by thermal light and governed by the laws of quantum thermodynamics. To appreciate the deep connection between quantum mechanics and thermodynamics we need only recall that in 1901 Planck introduced the quantum of action to calculate the entropy of thermal light, and in 1905 Einstein’s studies of the entropy of thermal light led him to introduce the photon. Then in 1917, he discovered stimulated emission by using detailed balance arguments. Half a century later, Scovil and Schulz-DuBois applied detailed balance ideas to show that maser photons were produced with Carnot quantum efficiency (see Fig. 1A). Furthermore, Shockley and Quiesser invoked detailed balance to obtain the efficiency of a photocell illuminated by “hot” thermal light (see Fig. 2A). To understand this detailed balance limit, we note that in the QHE, the incident light excites electrons, which can then deliver useful work to a load. However, the efficiency is limited by radiative recombination in which the excited electrons are returned to the ground state. But it has been proven that radiatively induced quantum coherence can break detailed balance and yield lasing without inversion. Here we show that noise-induced coherence enables us to break detailed balance and get more power out of a laser or photocell QHE. Surprisingly, this coherence can be induced by the same noisy (thermal) emission and absorption processes that drive the QHE (see Fig. 3A). Furthermore, this noise-induced coherence can be robust against environmental decoherence.Fig. 1.(A) Schematic of a laser pumped by hot photons at temperature Th (energy source, blue) and by cold photons at temperature Tc (entropy sink, red). The laser emits photons (green) such that at threshold the laser photon energy and pump photon energy is related by Carnot efficiency (4). (B) Schematic of atoms inside the cavity. Lower level b is coupled to the excited states a and β. The laser power is governed by the average number of hot and cold thermal photons, and . (C) Same as B but lower b level is replaced by two states b1 and b2, which can double the power when there is coherence between the levels.Fig. 2.(A) Schematic of a photocell consisting of quantum dots sandwiched between p and n doped semiconductors. Open circuit voltage and solar photon energy ℏνh are related by the Carnot efficiency factor where Tc is the ambient and Th is the solar temperature. (B) Schematic of a quantum dot solar cell in which state b is coupled to a via, e.g., solar radiation and coupled to the valence band reservoir state β via optical phonons. The electrons in conduction band reservoir state α pass to state β via an external circuit, which contains the load. (C) Same as B but lower level b is replaced by two states b1 and b2, and when coherently prepared can double the output power.Fig. 3.(A) Photocell current j = Γραα (laser photon flux Pl/ℏνl) (in arbitrary units) generated by the photovoltaic cell QHE (laser QHE) of Fig. 1C (Fig. 2C) as a function of maximum work (in electron volts) done by electron (laser photon) Eα - Eβ + kTc log(ραα/ρββ) with full (red line), partial (brown line), and no quantum interference (blue line). (B) Power of a photocell of Fig. 2C as a function of voltage for different decoherence rates , 100γ1c. Upper curve indicates power acquired from the sun. PMID:21876187

  20. Quantum heat engine power can be increased by noise-induced coherence.

    PubMed

    Scully, Marlan O; Chapin, Kimberly R; Dorfman, Konstantin E; Kim, Moochan Barnabas; Svidzinsky, Anatoly

    2011-09-13

    Laser and photocell quantum heat engines (QHEs) are powered by thermal light and governed by the laws of quantum thermodynamics. To appreciate the deep connection between quantum mechanics and thermodynamics we need only recall that in 1901 Planck introduced the quantum of action to calculate the entropy of thermal light, and in 1905 Einstein's studies of the entropy of thermal light led him to introduce the photon. Then in 1917, he discovered stimulated emission by using detailed balance arguments. Half a century later, Scovil and Schulz-DuBois applied detailed balance ideas to show that maser photons were produced with Carnot quantum efficiency (see Fig. 1A). Furthermore, Shockley and Quiesser invoked detailed balance to obtain the efficiency of a photocell illuminated by "hot" thermal light (see Fig. 2A). To understand this detailed balance limit, we note that in the QHE, the incident light excites electrons, which can then deliver useful work to a load. However, the efficiency is limited by radiative recombination in which the excited electrons are returned to the ground state. But it has been proven that radiatively induced quantum coherence can break detailed balance and yield lasing without inversion. Here we show that noise-induced coherence enables us to break detailed balance and get more power out of a laser or photocell QHE. Surprisingly, this coherence can be induced by the same noisy (thermal) emission and absorption processes that drive the QHE (see Fig. 3A). Furthermore, this noise-induced coherence can be robust against environmental decoherence.Fig. 1.(A) Schematic of a laser pumped by hot photons at temperature T(h) (energy source, blue) and by cold photons at temperature T(c) (entropy sink, red). The laser emits photons (green) such that at threshold the laser photon energy and pump photon energy is related by Carnot efficiency (4). (B) Schematic of atoms inside the cavity. Lower level b is coupled to the excited states a and β. The laser power is governed by the average number of hot and cold thermal photons, and . (C) Same as B but lower b level is replaced by two states b(1) and b(2), which can double the power when there is coherence between the levels.Fig. 2.(A) Schematic of a photocell consisting of quantum dots sandwiched between p and n doped semiconductors. Open circuit voltage and solar photon energy ℏν(h) are related by the Carnot efficiency factor where T(c) is the ambient and T(h) is the solar temperature. (B) Schematic of a quantum dot solar cell in which state b is coupled to a via, e.g., solar radiation and coupled to the valence band reservoir state β via optical phonons. The electrons in conduction band reservoir state α pass to state β via an external circuit, which contains the load. (C) Same as B but lower level b is replaced by two states b(1) and b(2), and when coherently prepared can double the output power.Fig. 3.(A) Photocell current j = Γρ(αα) (laser photon flux P(l)/ℏ(ν(l))) (in arbitrary units) generated by the photovoltaic cell QHE (laser QHE) of Fig. 1C (Fig. 2C) as a function of maximum work (in electron volts) done by electron (laser photon) E(α) - E(β) + kT(c) log(ρ(αα)/ρ(ββ)) with full (red line), partial (brown line), and no quantum interference (blue line). (B) Power of a photocell of Fig. 2C as a function of voltage for different decoherence rates , 100γ(1c). Upper curve indicates power acquired from the sun.

  1. Micromachined Integrated Quantum Circuit Containing a Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Brecht, T.; Chu, Y.; Axline, C.; Pfaff, W.; Blumoff, J. Z.; Chou, K.; Krayzman, L.; Frunzio, L.; Schoelkopf, R. J.

    2017-04-01

    We present a device demonstrating a lithographically patterned transmon integrated with a micromachined cavity resonator. Our two-cavity, one-qubit device is a multilayer microwave-integrated quantum circuit (MMIQC), comprising a basic unit capable of performing circuit-QED operations. We describe the qubit-cavity coupling mechanism of a specialized geometry using an electric-field picture and a circuit model, and obtain specific system parameters using simulations. Fabrication of the MMIQC includes lithography, etching, and metallic bonding of silicon wafers. Superconducting wafer bonding is a critical capability that is demonstrated by a micromachined storage-cavity lifetime of 34.3 μ s , corresponding to a quality factor of 2 ×106 at single-photon energies. The transmon coherence times are T1=6.4 μ s , and T2echo=11.7 μ s . We measure qubit-cavity dispersive coupling with a rate χq μ/2 π =-1.17 MHz , constituting a Jaynes-Cummings system with an interaction strength g /2 π =49 MHz . With these parameters we are able to demonstrate circuit-QED operations in the strong dispersive regime with ease. Finally, we highlight several improvements and anticipated extensions of the technology to complex MMIQCs.

  2. Sub-poissonian photon statistics in the coherent state Jaynes-Cummings model in non-resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-tai; Fan, An-fu

    1992-03-01

    We study a model with a two-level atom (TLA) non-resonance interacting with a single-mode quantized cavity field (QCF). The photon number probability function, the mean photon number and Mandel's fluctuation parameter are calculated. The sub-Poissonian distributions of the photon statistics are obtained in non-resonance interaction. This statistical properties are strongly dependent on the detuning parameters.

  3. Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies.

    PubMed

    Zürch, M; Jung, R; Späth, C; Tümmler, J; Guggenmos, A; Attwood, D; Kleineberg, U; Stiel, H; Spielmann, C

    2017-07-13

    Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12 | ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.

  4. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    PubMed Central

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  5. High-security communication by coherence modulation at the photon-counting level.

    PubMed

    Rhodes, William T; Boughanmi, Abdellatif; Moreno, Yezid Torres

    2016-05-20

    We show that key-specified interferometer path-length difference modulation (often referred to as coherence modulation), operating in the photon-counting regime with a broadband source, can provide a quantifiably high level of physics-guaranteed security for binary signal transmission. Each signal bit is associated with many photocounts, perhaps numbering in the thousands. Of great importance, the presence of an eavesdropper can be quickly detected. We first review the operation of key-specified coherence modulation at high light levels, illustrating by means of an example its lack of security against attack. We then show, using the same example, that, through the reduction of light intensities to photon-counting levels, a high level of security can be attained. A particular attack on the system is analyzed to demonstrate the quantifiability of the scheme's security, and various remaining research issues are discussed. A potential weakness of the scheme lies in a possible vulnerability to light amplification by an attacker.

  6. Can quantum coherent solar cells break detailed balance?

    NASA Astrophysics Data System (ADS)

    Kirk, Alexander P.

    2015-07-01

    Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells.

  7. Evolution of Wigner function in laser process under the action of linear resonance force and its application

    NASA Astrophysics Data System (ADS)

    Dao-ming, Lu

    2018-05-01

    The negativity of Wigner function (WF) is one of the important symbols of non-classical properties of light field. Therefore, it is of great significance to study the evolution of WF in dissipative process. The evolution formula of WF in laser process under the action of linear resonance force is given by virtue of thermo entangled state representation and the technique of integration within an ordered product of operator. As its application, the evolution of WF of thermal field and that of single-photon-added coherent state are discussed. The results show that the WF of thermal field maintains its original character. On the other hand, the negative region size and the depth of negativity of WF of single- photon-added coherent state decrease until it vanishes with dissipation. This shows that the non-classical property of single-photon-added coherent state is weakened, until it disappears with dissipation time increasing.

  8. Realization of non-linear coherent states by photonic lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehdashti, Shahram, E-mail: shdehdashti@zju.edu.cn; Li, Rujiang; Chen, Hongsheng, E-mail: hansomchen@zju.edu.cn

    2015-06-15

    In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  9. Size of photons and the idea of coherence

    NASA Astrophysics Data System (ADS)

    Pandey, Rakesh Kumar

    2018-05-01

    Ever since behavior of photons were explained in terms of the matter-wave duality, mystery about the size of such a photon as it behaves like a particle has never slipped out from the scientific discussions. It is normally believed that the size of the photons is of the order of the wavelength of the electromagnetic wave. This paper addresses this scientific concern and attempts at opening the issue up for discussion after making a completely theoretical but consistent proposition. The argument presented here borrows the idea from the way particles have been conceptualized in quantum mechanics. In quantum mechanics it is argued that a particle gets represented not by a single wave but a group of waves in a way that the group velocity of such a group of waves exactly gives the velocity of the particle. Based on the same argument it is explained how the coherence length instead of the wavelength of the electromagnetic wave, must estimate the linear dimension of a photon. In the end, the discussion on the size of a photon in view of the special theory of relativity is also initiated in this paper.

  10. Interplay of coherent and dissipative dynamics in condensates of light

    NASA Astrophysics Data System (ADS)

    Radonjić, Milan; Kopylov, Wassilij; Balaž, Antun; Pelster, Axel

    2018-05-01

    Based on the Lindblad master equation approach we obtain a detailed microscopic model of photons in a dye-filled cavity, which features condensation of light. To this end we generalise a recent non-equilibrium approach of Kirton and Keeling such that the dye-mediated contribution to the photon–photon interaction in the light condensate is accessible due to an interplay of coherent and dissipative dynamics. We describe the steady-state properties of the system by analysing the resulting equations of motion of both photonic and matter degrees of freedom. In particular, we discuss the existence of two limiting cases for steady states: photon Bose–Einstein condensate and laser-like. In the former case, we determine the corresponding dimensionless photon–photon interaction strength by relying on realistic experimental data and find a good agreement with previous theoretical estimates. Furthermore, we investigate how the dimensionless interaction strength depends on the respective system parameters. This paper is dedicated to the memory of Tobias Brandes

  11. Coherent Effects in Tiny Optics: Tunneling Through the Looking Glass

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2003-01-01

    I will discuss two types of one-dimensional photonic bandgap (PBG) effects that can arise in systems of coupled spherical resonators: (1) nearly-free-photon Fabry-Perot photonic bands that arise in quarter-wave concentrically stratified spheres and, (2) tight- binding photonic bands that arise in weakly-coupled mutually-resonant spheres as a result of whispering-gallery mode splitting. These effects can be derived directly from Mie theory, in a more straightforward manner, by exploiting an analogy with stratified planar systems. For odd numbers of mutually-resonant lossless coupled ring resonators, the circulating intensity can increase exponentially with the number of resonators, which can potentially be exploited for the development of advanced sensors. For even numbers of resonators, mode splitting and classical destructive interference lead to a cancellation of absorption and slow light on-resonance, reminiscent of electromagnetic induced transparency. The analogy between these coherent photon trapping effects and population trapping in an atomic system will be explored.

  12. Nonclassical properties of coherent light in a pair of coupled anharmonic oscillators

    NASA Astrophysics Data System (ADS)

    Alam, Nasir; Mandal, Swapan

    2016-01-01

    The Hamiltonian and hence the equations of motion involving the field operators of two anharmonic oscillators coupled through a linear one is framed. It is found that these equations of motion involving the non-commuting field operators are nonlinear and are coupled to each other and hence pose a great problem for getting the solutions. In order to investigate the dynamics and hence the nonclassical properties of the radiation fields, we obtain approximate analytical solutions of these coupled nonlinear differential equations involving the non-commuting field operators up to the second orders in anharmonic and coupling constants. These solutions are found useful for investigating the squeezing of pure and mixed modes, amplitude squared squeezing, principal squeezing, and the photon antibunching of the input coherent radiation field. With the suitable choice of the parameters (photon number in various field modes, anharmonic, and coupling constants, etc.), we calculate the second order variances of field quadratures of various modes and hence the squeezing, amplitude squared, and mixed mode squeezing of the input coherent light. In the absence of anharmonicities, it is found that these nonlinear nonclassical phenomena (squeezing of pure and mixed modes, amplitude squared squeezing and photon antibunching) are completely absent. The percentage of squeezing, mixed mode squeezing, amplitude squared squeezing increase with the increase of photon number and the dimensionless interaction time. The collapse and revival phenomena in squeezing, mixed mode squeezing and amplitude squared squeezing are exhibited. With the increase of the interaction time, the monotonic increasing nature of the squeezing effects reveal the presence of unwanted secular terms. It is established that the mere coupling of two oscillators through a third one does not produces the squeezing effects of input coherent light. However, the pure nonclassical phenomena of antibunching of photons in vacuum field modes are obtained through the mere coupling and hence the transfers of photons from the remaining coupled mode.

  13. Coherent Control to Prepare an InAs Quantum Dot for Spin-Photon Entanglement

    NASA Astrophysics Data System (ADS)

    Webster, L. A.; Truex, K.; Duan, L.-M.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2014-03-01

    We optically generated an electronic state in a single InAs /GaAs self-assembled quantum dot that is a precursor to the deterministic entanglement of the spin of the electron with an emitted photon in the proposal of W. Yao, R.-B. Liu, and L. J. Sham [Phys. Rev. Lett. 95, 030504 (2005).]. A superposition state is prepared by optical pumping to a pure state followed by an initial pulse. By modulating the subsequent pulse arrival times and precisely controlling them using interferometric measurement of path length differences, we are able to implement a coherent control technique to selectively drive exactly one of the two components of the superposition to the ground state. This optical transition contingent on spin was driven with the same broadband pulses that created the superposition through the use of a two pulse coherent control sequence. A final pulse affords measurement of the coherence of this "preentangled" state.

  14. Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.

    PubMed

    Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping

    2017-02-08

    Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQ m ∼ 2 × 10 12 Hz achieved here is larger than k B T base /h, which may enable the future realization of Rabi oscillations in the quantum regime.

  15. Coherent control of optical polarization effects in metamaterials

    PubMed Central

    Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.

    2015-01-01

    Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071

  16. 3D coherent X-ray diffractive imaging of an Individual colloidal crystal grain

    NASA Astrophysics Data System (ADS)

    Shabalin, A.; Meijer, J.-M.; Sprung, M.; Petukhov, A. V.; Vartanyants, I. A.

    Self-assembled colloidal crystals represent an important model system to study nucleation phenomena and solid-solid phase transitions. They are attractive for applications in photonics and sensorics. We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. We identified an exact stacking sequence of hexagonal close-packed layers including planar and linear defects. Our results open up a breakthrough in applications of coherent x-ray diffraction for visualization of the inner 3D structure of different mesoscopic materials, such as photonic crystals. Present address: University of California - San Diego, USA.

  17. Optical sectioning in induced coherence tomography with frequency-entangled photons

    NASA Astrophysics Data System (ADS)

    Vallés, Adam; Jiménez, Gerard; Salazar-Serrano, Luis José; Torres, Juan P.

    2018-02-01

    We demonstrate a different scheme to perform optical sectioning of a sample based on the concept of induced coherence [Zou et al., Phys. Rev. Lett. 67, 318 (1991), 10.1103/PhysRevLett.67.318]. This can be viewed as a different type of optical coherence tomography scheme where the varying reflectivity of the sample along the direction of propagation of an optical beam translates into changes of the degree of first-order coherence between two beams. As a practical advantage the scheme allows probing the sample with one wavelength and measuring photons with another wavelength. In a bio-imaging scenario, this would result in a deeper penetration into the sample because of probing with longer wavelengths, while still using the optimum wavelength for detection. The scheme proposed here could achieve submicron axial resolution by making use of nonlinear parametric sources with broad spectral bandwidth emission.

  18. Pulsed holographic system for imaging through spatially extended scattering media

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.; Judd, K. P.; Lebow, P.; Watnik, A. T.; Novak, K. M.; Lindle, J. R.

    2017-10-01

    Imaging through scattering media is a highly sought capability for military, industrial, and medical applications. Unfortunately, nearly all recent progress was achieved in microscopic light propagation and/or light propagation through thin or weak scatterers which is mostly pertinent to medical research field. Sensing at long ranges through extended scattering media, for example turbid water or dense fog, still represents significant challenge and the best results are demonstrated using conventional approaches of time- or range-gating. The imaging range of such systems is constrained by their ability to distinguish a few ballistic photons that reach the detector from the background, scattered, and ambient photons, as well as from detector noise. Holography can potentially enhance time-gating by taking advantage of extra signal filtering based on coherence properties of the ballistic photons as well as by employing coherent addition of multiple frames. In a holographic imaging scheme ballistic photons of the imaging pulse are reflected from a target and interfered with the reference pulse at the detector creating a hologram. Related approaches were demonstrated previously in one-way imaging through thin biological samples and other microscopic scale scatterers. In this work, we investigate performance of holographic imaging systems under conditions of extreme scattering (less than one signal photon per pixel signal), demonstrate advantages of coherent addition of images recovered from holograms, and discuss image quality dependence on the ratio of the signal and reference beam power.

  19. Coherence properties of nanofiber-trapped cesium atoms.

    PubMed

    Reitz, D; Sayrin, C; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A

    2013-06-14

    We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ∼ 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T(2)(*) = 0.6 ms and an irreversible dephasing time of T(2)(') = 3.7 ms. By modeling the signals, we find that, for our experimental parameters, T(2)(*) and T(2)(') are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.

  20. On-demand generation of background-free single photons from a solid-state source

    NASA Astrophysics Data System (ADS)

    Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val

    2018-02-01

    True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g(2 )(0 )=(7.5 ±1.6 )×10-5 without any background subtraction or data processing. To this date, this is the lowest value of g(2 )(0 ) reported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 ±0.0007 ) s-1 and (0.017 ±0.001 ) s-1, respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.

  1. Demonstration of an ac Josephson junction laser

    NASA Astrophysics Data System (ADS)

    Cassidy, M. C.; Bruno, A.; Rubbert, S.; Irfan, M.; Kammhuber, J.; Schouten, R. N.; Akhmerov, A. R.; Kouwenhoven, L. P.

    2017-03-01

    Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.

  2. Improved spatial and temporal characteristics of ionospheric irregularities and polar mesospheric summer echoes using coherent MIMO and aperture synthesis radar imaging

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Urco, J. M.; Milla, M. A.; Vierinen, J.

    2017-12-01

    We have recently implemented Multiple-input multiple-output (MIMO) radar techniques to resolve temporal and spatial ambiguities of ionospheric and atmospheric irregularities, with improve capabilities than previously experiments using single-input multi-output (SIMO) techniques. SIMO techniques in the atmospheric and ionospheric coherent scatter radar field are usually called aperture synthesis radar imaging. Our implementations have done at the Jicamarca Radio Observatory (JRO) in Lima, Peru, and at the Middle Atmosphere Alomar Radar System (MAARSY) in Andenes, Norway, to study equatorial electrojet (EEJ) field-aligned irregularities and polar mesospheric summer echoes (PMSE), respectively. Figure 1 shows an example of a configuration used at MAARSY and the comparison between the SIMO and MIMO resulting antenna point spread functions, respectively. Although in this work we present the details of the implementations at each facility, we will focus on the observed peculiarities of each phenomenon, making emphasis in the underlying physical mechanisms that govern their existence and their spatial and temporal modulation. For example, what are the typical horizontal scales of PMSE variability in both intensity and wind field?

  3. Cavity magnomechanics

    PubMed Central

    Zhang, Xufeng; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2016-01-01

    A dielectric body couples with electromagnetic fields through radiation pressure and electrostrictive forces, which mediate phonon-photon coupling in cavity optomechanics. In a magnetic medium, according to the Korteweg-Helmholtz formula, which describes the electromagnetic force density acting on a medium, magneostrictive forces should arise and lead to phonon-magnon interaction. We report such a coupled phonon-magnon system based on ferrimagnetic spheres, which we term as cavity magnomechanics, by analogy to cavity optomechanics. Coherent phonon-magnon interactions, including electromagnetically induced transparency and absorption, are demonstrated. Because of the strong hybridization of magnon and microwave photon modes and their high tunability, our platform exhibits new features including parametric amplification of magnons and phonons, triple-resonant photon-magnon-phonon coupling, and phonon lasing. Our work demonstrates the fundamental principle of cavity magnomechanics and its application as a new information transduction platform based on coherent coupling between photons, phonons, and magnons. PMID:27034983

  4. Monte Carlo Simulations of Arterial Imaging with Optical Coherence Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amendt, P.; Estabrook, K.; Everett, M.

    2000-02-01

    The laser-tissue interaction code LATIS [London et al., Appl. Optics 36, 9068 ( 1998)] is used to analyze photon scattering histories representative of optical coherence tomography (OCT) experiment performed at Lawrence Livermore National Laboratory. Monte Carlo photonics with Henyey-Greenstein anisotropic scattering is implemented and used to simulate signal discrimination of intravascular structure. An analytic model is developed and used to obtain a scaling law relation for optimization of the OCT signal and to validate Monte Carlo photonics. The appropriateness of the Henyey-Greenstein phase function is studied by direct comparison with more detailed Mie scattering theory using an ensemble of sphericalmore » dielectric scatterers. Modest differences are found between the two prescriptions for describing photon angular scattering in tissue. In particular, the Mie scattering phase functions provide less overall reflectance signal but more signal contrast compared to the Henyey-Greenstein formulation.« less

  5. Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acin, Antonio; Gisin, Nicolas; Scarani, Valerio

    2004-01-01

    We propose a class of quantum cryptography protocols that are robust against photon-number-splitting attacks (PNS) in a weak coherent-pulse implementation. We give a quite exhaustive analysis of several eavesdropping attacks on these schemes. The honest parties (Alice and Bob) use present-day technology, in particular an attenuated laser as an approximation of a single-photon source. The idea of the protocols is to exploit the nonorthogonality of quantum states to decrease the information accessible to Eve due to the multiphoton pulses produced by the imperfect source. The distance at which the key distribution becomes insecure due to the PNS attack is significantlymore » increased compared to the existing schemes. We also show that strong-pulse implementations, where a strong pulse is included as a reference, allow for key distribution robust against photon-number-splitting attacks.« less

  6. Generation of maximally entangled states and coherent control in quantum dot microlenses

    NASA Astrophysics Data System (ADS)

    Bounouar, Samir; de la Haye, Christoph; Strauß, Max; Schnauber, Peter; Thoma, Alexander; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, André; Rodt, Sven; Reitzenstein, Stephan

    2018-04-01

    The integration of entangled photon emitters in nanophotonic structures designed for the broadband enhancement of photon extraction is a major challenge for quantum information technologies. We study the potential of quantum dot (QD) microlenses as efficient emitters of maximally entangled photons. For this purpose, we perform quantum tomography measurements on InGaAs QDs integrated deterministically into microlenses. Even though the studied QDs show non-zero excitonic fine-structure splitting (FSS), polarization entanglement can be prepared with a fidelity close to unity. The quality of the measured entanglement is only dependent on the temporal resolution of the applied single-photon detectors compared to the period of the excitonic phase precession imposed by the FSS. Interestingly, entanglement is kept along the full excitonic wave-packet and is not affected by decoherence. Furthermore, coherent control of the upper biexcitonic state is demonstrated.

  7. Tunable optical coherence tomography in the infrared range using visible photons

    NASA Astrophysics Data System (ADS)

    Paterova, Anna V.; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.

    2018-04-01

    Optical coherence tomography (OCT) is an appealing technique for bio-imaging, medicine, and material analysis. For many applications, OCT in mid- and far-infrared (IR) leads to significantly more accurate results. Reported mid-IR OCT systems require light sources and photodetectors which operate in mid-IR range. These devices are expensive and need cryogenic cooling. Here, we report a proof-of-concept demonstration of a wavelength tunable IR OCT technique with detection of only visible range photons. Our method is based on the nonlinear interference of frequency correlated photon pairs. The nonlinear crystal, introduced in the Michelson-type interferometer, generates photon pairs with one photon in the visible and another in the IR range. The intensity of detected visible photons depends on the phase and loss of IR photons, which interact with the sample under study. This enables us to characterize sample properties and perform imaging in the IR range by detecting visible photons. The technique possesses broad wavelength tunability and yields a fair axial and lateral resolution, which can be tailored to the specific application. The work contributes to the development of versatile 3D imaging and material characterization systems working in a broad range of IR wavelengths, which do not require the use of IR-range light sources and photodetectors.

  8. Microwave-induced three-photon coherence of Rydberg atomic states

    NASA Astrophysics Data System (ADS)

    Kwak, Hyo Min; Jeong, Taek; Lee, Yoon-Seok; Moon, Han Seb

    2016-12-01

    We investigate the three-photon coherence (TPC) effects of the Rydberg state in a Doppler-broadened four-level ladder-type atomic system for the 5S1/2(F=3)-5P3/2(F‧=4)-50D5/2-51P3/2 transition of 85Rb atoms. Upon interaction of the Rydberg Rb atom of the ladder-type electromagnetically induced transparency (EIT) scheme with a resonant microwave (MW) field, we numerically analyze the spectral features of the Rydberg TPC from two viewpoints, Autler-Townes splitting (AT-splitting) of the Rydberg EIT and three-photon electromagnetically induced absorption (TPEIA). We determine the criterion to differentiate between AT-splitting of the Rydberg EIT and TPEIA in the Doppler-broadened ladder-type atomic system.

  9. Classical analogues of two-photon quantum interference.

    PubMed

    Kaltenbaek, R; Lavoie, J; Resch, K J

    2009-06-19

    Chirped-pulse interferometry (CPI) captures the metrological advantages of quantum Hong-Ou-Mandel (HOM) interferometry in a completely classical system. Modified HOM interferometers are the basis for a number of seminal quantum-interference effects. Here, the corresponding modifications to CPI allow for the first observation of classical analogues to the HOM peak and quantum beating. They also allow a new classical technique for generating phase super-resolution exhibiting a coherence length dramatically longer than that of the laser light, analogous to increased two-photon coherence lengths in entangled states.

  10. Resonant optical scattering in nanoparticle-doped polymer photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumberg, J. J.; Pursiainen, O. L.; Spahn, P.

    2009-11-15

    A broadband hyperspectral technique is used to measure the coherent optical backscatter across a wide spectral bandwidth, showing the resonant suppression of the photon transport mean free path around the photonic bandgap of a shear-assembled polymer photonic crystal. By doping with carbon nanoscale scatterers that reside at specific points within the photonic crystal lattice, the ratio between photon mean free path and optical penetration is tuned from 10 to 1, enhancing forward scatter at the expense of back-scatter. The back-scattering strength of different polarisations is not explained by any current theory.

  11. Phase dependence of the unnormalized second-order photon correlation function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciornea, V.; Bardetski, P.; Macovei, M. A., E-mail: macovei@phys.asm.md

    2016-10-15

    We investigate the resonant quantum dynamics of a multi-qubit ensemble in a microcavity. Both the quantum-dot subsystem and the microcavity mode are pumped coherently. We find that the microcavity photon statistics depends on the phase difference of the driving lasers, which is not the case for the photon intensity at resonant driving. This way, one can manipulate the two-photon correlations. In particular, higher degrees of photon correlations and, eventually, stronger intensities are obtained. Furthermore, the microcavity photon statistics exhibits steady-state oscillatory behaviors as well as asymmetries.

  12. Light Echoes in Kerr Geometry: A Source of High Frequency QPOs from Random X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Fukumura, Keigo; Kazanas, Demosthenes

    2008-01-01

    We propose that high frequency quasi-periodic oscillations (HFQPOs) can be produced from randomly-formed X-ray bursts (flashes) by plasma interior to the ergosphere of a rapidly-rotating black hole. We show by direct computation of their orbits that the photons comprising the observed X-ray light curves, if due to a multitude of such flashes, are affected significantly by the black hole's dragging of inertial frames; the photons of each such burst arrive to an observer at infinity in multiple (double or triple), distinct "bunches" separated by a roughly constant time lag of Deltat(t(sub lag))/M approx. 14, regardless of the bursts' azimuthal position. We argue that every other such "bunch" represents photons that follow trajectories with an additional orbit around the black hole at the photon circular orbit radius (a photon "echo"). The presence of this constant lag in the response function of the system leads to a QPO feature in its power density spectra, even though the corresponding light curve consists of a totally stochastic signal. This effect is by and large due to the black hole spin and is shown to gradually diminish as the spin parameter a decreases or the radial position of the burst moves outside the static limit surface (ergosphere). Our calculations indicate that for a black hole with Kerr parameter of a/M = 0.99 and mass of M = 10Stellar Mass the QPO is expected at a frequency of v(sub QPO) approx. 1.3 - 1.4 kHz. We discuss the plausibility and observational implications of our model/results as well as its limitations. Subject headings: accretion, accretion disks - black hole physics - X-rays: galaxies - stars: oscillations

  13. Coherent photonic beamformer for a Ka-band phased array antenna receiver implemented in silicon photonic integrated circuit

    NASA Astrophysics Data System (ADS)

    Duarte, V. C.; Peczek, A.; Drummond, M. V.; Nogueira, R. N.; Winzer, G.; Petousi, D.; Zimmermann, L.

    2017-09-01

    The generation of satellite communications with flexible and efficient transmission of radio signals requires a large number of low interfering beams and a maximum exploitation of the available frequency spectrum.

  14. Integration of optically active Neodymium ions in Niobium devices (Nd:Nb): quantum memory for hybrid quantum entangled systems

    NASA Astrophysics Data System (ADS)

    Nayfeh, O. M.; Chao, D.; Djapic, N.; Sims, P.; Liu, B.; Sharma, S.; Lerum, L.; Fahem, M.; Dinh, V.; Zlatanovic, S.; Lynn, B.; Torres, C.; Higa, B.; Moore, J.; Upchurch, A.; Cothern, J.; Tukeman, M.; Barua, R.; Davidson, B.; Ramirez, A. D.; Rees, C. D.; Anant, V.; Kanter, G. S.

    2017-08-01

    Optically active rare-earth Neodymium (Nd) ions are integrated in Niobium (Nb) thin films forming a new quantum memory device (Nd:Nb) targeting long-lived coherence times and multi-functionality enabled by both spin and photon storage properties. Nb is implanted with Nd spanning 10-60 keV energy and 1013-1014 cm-2 dose producing a 1- 3% Nd:Nb concentration as confirmed by energy-dispersive X-ray spectroscopy. Scanning confocal photoluminescence (PL) at 785 nm excitation are made and sharp emission peaks from the 4F3/2 -< 4I11/2 Nd3+ transition at 1064-1070 nm are examined. In contrast, un-implanted Nb is void of any peaks. Line-shapes at room temperature are fit with Lorentzian profiles with line-widths of 4-5 nm and 1.3 THz bandwidth and the impacts of hyperfine splitting via the metallic crystal potential are apparent and the co-contribution of implant induced defects. With increasing Nd from 1% to 3%, there is a 0.3 nm red shift and increased broadening to a 4.8 nm linewidth. Nd:Nb is photoconductive and responds strongly to applied fields. Furthermore, optically detected magnetic resonance (ODMR) measurements are presented spanning near-infrared telecom band. The modulation of the emission intensity with magnetic field and microwave power by integration of these magnetic Kramer type Nd ions is quantified along with spin echoes under pulsed microwave π-π/2 excitation. A hybrid system architecture is proposed using spin and photon quantum information storage with the nuclear and electron states of the Nd3+ and neighboring Nb atoms that can couple qubit states to hyperfine 7/2 spin states of Nd:Nb and onto NIR optical levels excitable with entangled single photons, thus enabling implementation of computing and networking/internet protocols in a single platform.

  15. Frequency-resolved Monte Carlo.

    PubMed

    López Carreño, Juan Camilo; Del Valle, Elena; Laussy, Fabrice P

    2018-05-03

    We adapt the Quantum Monte Carlo method to the cascaded formalism of quantum optics, allowing us to simulate the emission of photons of known energy. Statistical processing of the photon clicks thus collected agrees with the theory of frequency-resolved photon correlations, extending the range of applications based on correlations of photons of prescribed energy, in particular those of a photon-counting character. We apply the technique to autocorrelations of photon streams from a two-level system under coherent and incoherent pumping, including the Mollow triplet regime where we demonstrate the direct manifestation of leapfrog processes in producing an increased rate of two-photon emission events.

  16. Characterization of the X-ray coherence properties of an undulator beamline at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Guangxu; Highland, Matthew J.; Thompson, Carol

    In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory tomore » obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator ('pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. As a result, the methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.« less

  17. Characterization of the X-ray coherence properties of an undulator beamline at the Advanced Photon Source

    DOE PAGES

    Ju, Guangxu; Highland, Matthew J.; Thompson, Carol; ...

    2018-06-13

    In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory tomore » obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator ('pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. As a result, the methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.« less

  18. Weak-field multiphoton femtosecond coherent control in the single-cycle regime.

    PubMed

    Chuntonov, Lev; Fleischer, Avner; Amitay, Zohar

    2011-03-28

    Weak-field coherent phase control of atomic non-resonant multiphoton excitation induced by shaped femtosecond pulses is studied theoretically in the single-cycle regime. The carrier-envelope phase (CEP) of the pulse, which in the multi-cycle regime does not play any control role, is shown here to be a new effective control parameter that its effect is highly sensitive to the spectral position of the ultrabroad spectrum. Rationally chosen position of the ultrabroadband spectrum coherently induces several groups of multiphoton transitions from the ground state to the excited state of the system: transitions involving only absorbed photons as well as Raman transitions involving both absorbed and emitted photons. The intra-group interference is controlled by the relative spectral phase of the different frequency components of the pulse, while the inter-group interference is controlled jointly by the CEP and the relative spectral phase. Specifically, non-resonant two- and three-photon excitation is studied in a simple model system within the perturbative frequency-domain framework. The developed intuition is then applied to weak-field multiphoton excitation of atomic cesium (Cs), where the simplified model is verified by non-perturbative numerical solution of the time-dependent Schrödinger equation. We expect this work to serve as a basis for a new line of femtosecond coherent control experiments.

  19. About the Nature of a Coherence of Light Waves

    NASA Astrophysics Data System (ADS)

    Demyaneko, P. O.; Zinkovskiy, Y. F.; Savenko, Y. V.

    The confrontation of corpuscular and wave hypotheses was not partly stacked in frameworks of the uniform theory. Fundamental works of Fresnel and Fraunhofer on a diffraction of light have erected a wave theory in a rank of dominant true. The wave theory did not so effectively explain developments of corpuscular properties of a light. Its feeble place was also necessity for concept "coherence", introduced for explanation of a light interference. The wave coherence is properly understood as waves ability to interfere. The problem of a light coherence continues to be interesting for investigators [L], but clear understanding of its nature is not yet appeared. Because, it is unconvincing to consider an attribution to the act of separate atom radiation of electromagnetic waves "zug" of a few meters length as explanation of the coherence nature, when it has become possible to generate light pulses by duration ˜ 10 -15 s. Let's note there is the spatial separation of a primary luminous flux on two secondary ones in a basis of all ways of deriving of coherent luminous fluxes. And these fluxes are able to interfere when are brought together. Their coherence was explained that at partitioning each "zug" was bisected, and at joining again met mutual coherent "its halves". There was not disputed the question, how happens " separation of each waves "zug" in halves". M. Plank postulated (1900) heated bodies radiate electromagnetic waves not continuously, but by separate portions he called "quantums" of energy. Its have a quantity is proportional to frequency of electromagnetic waves. A. Einstein has entered (1905) a hypothesis of light quantums -- light is indeed generated as quantums, and in further it exists as a flux of quantums and interacts with matter also, as a flux of separate quantums. The term "photon" was entered by G.N. Lewis (1929) properly for emphasising of light quantums and that one underlined corpuscularity of a light. At investigation of an atom structure there was set (E. Rutherford, N. Bohr, 1911) quantums are generated in atoms at transitions of excited electrons from higher energy levels onto lowest levels. At that, there are radiated quantums-waves of electromagnetic energy into environmental space. In different light sources "working body" has the "own" structure of energy levels defining spectral characteristics of these sources. So, the development of representations about the nature of a light returns to a corpuscular hypothesis. It has become clear, that the light organically combines in itself both property of waves and the properties of particles. It depends on requirements of experiment which one from developments will be prevalent. Inseparable unity of corpuscular and wave properties is proper for all microparticles (a hypothesis De Brogle, 1924) and has received a title of "wave-corpuscle dualism". Let's make a common view about "sizes" of a photon. As was mentioned, the light pulses can have duration ˜ 10 -15 s. Spatial length of such pulses in direction of motion ˜ 10 -6 m, that comparable with a light wavelength λ . It is possible to suspect that it will be a size of a photon in direction of its propagation. An estimate of "cross" of the sizes of a photon we shall obtain by analyzing of light diffraction on a narrow slot. The angular size of central diffraction peak at decreasing of width of a slot b is increased, and it reaches 180 at b = λ . Then the light intensity promptly impinges behind it. From this it is possible to assume, that the cross sectional dimensions of photon also is comparable with λ . It is necessary to clear understand, that photon, as the wave formation, does not have sharp borders. It is possible to speak only about the sizes of area containing a dominant share of photon energy. So, photon is a spatial localized electromagnetic perturbation, that allows to allot it with properties of a particle. Essential properties of a photon are indivisibility and existence only in a motion. So, the light is a photons flux: both light wave and light electromagnetic field consist of final number of photons. At that, it is important to remember that in any light source along with spontaneous mechanism it also operates a mechanism of induced radiation, generating identical (coherent) quantums. Due to it, there is radiated a partially coherent flux, consisting of large or small groups of quantums ("quantum packets"), from any light source. In limits of a separate packet its component quantums are coherent, because all of them are originated by one quantum which has appeared spontaneously, which induced occurrence of other quantums of this packet, passing by other excited atoms. The representation about quantum packets gives clear physical explanation to concept of "light waves zugs". Quantum packet is that "zug of waves". "Quality" of a light source (in sense of its coherence) is determined by sizes of quantum packets -- the larger they the more qualitative source, radiating them. There are understandable a better coherence of a gas light sources: the atoms in gas are arranged on large distances and do not hinder for spontaneously generated light quantum to overcome without absorption or dispersion that large distance, challenging on it an induced radiation of other excited atoms. The low coherence of glow-discharge tubes is stipulated by that the radiation in them goes only from surface layer of atoms and the requirements for development of the mechanism of induced radiation are unfavorable. It is also obvious the high coherence of a laser radiation due to a positive optical back coupling. The coherent quantums of one quantum packet exist a long time inside the resonator; they are reproducing there during all this time. Due to this the lasers are capable to generate multi-km quantum packets ("zugs"). By the way, it could not to explain "by emissive opportunities" of one atom. It is understandable a division of quantum packets on semi transparent mirrors: the part of quantums of each packet simply transits through a semi transparent mirrors, and remaining ones are simply reflected from it. The model of quantum packets gives clear explanation of coherence parameters of light flux. A length of coherence is a spatial extent of a quantum packet in direction of its propagation. A coherence time is a time of flight of quantum packet by a fixed spectator. A coherence radius (size) is a spatial extent of a quantum packet in direction, perpendicular to direction of its propagation. A volume of coherence is simply a volume of quantum packet. Separately it is necessary to tell about the fact of increasing of coherence radius of a light flux, propagating in space. Iterated, including by us, assertion: "at induced transitions there are generated the same quantums as ones induced them". It is not necessary to understand it too literally. What perfect was a light source, the spectral line of its radiation always has final width. That means, there is a certain frequency dispersion of quantums, generated by source, or modules of their wave vectors. Apparently, it is necessary to expect as well certain dispersion of particular straggling of wave vectors directions inside separate quantum packets. Beginning with experimentally obtained radius of sunlight coherence on surface of the Earth, it was determined a value of angular divergence of quantum packets. With the help of the obtained thus value, there were calculated values of coherence radiuses of light, coming on the Earth from more remote stars. Obtained calculated values are well compared with experimentally obtained values of light coherence radiuses for these stars. Starting from proposed concept of quantum packets, we have given explanation to such development of wave properties of the light as interference, in particular, its variety, when superimposed coherent fluxes interfere. It is not less important from a point of view of the coordination of their explanations with our representations about luminous flux structure, there is an analysis also such developments of wave properties of light, as its interference on thin films, "Newton's ringes", etc. For explanation of this variety of interference there is no need for concept coherence, as in such interference is watched always and for a light from any sources. There is a special interest to phenomenas bound with diffraction of light, from a point of view of quantum packets model. The prime task here is to give a corresponding explanation to the content both senses of Huygens' and Huygens-Fresnel principles. These problems will be considered in following our works. [L] Mandel L., Wolf E. Optical Coherence and Quantum Optics / Cambrige, 1995

  20. A chip-integrated coherent photonic-phononic memory.

    PubMed

    Merklein, Moritz; Stiller, Birgit; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J

    2017-09-18

    Controlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at five orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with gigahertz bandwidth and show operation at separate wavelengths with negligible cross-talk.Optical storage implementations based on optomechanical resonator are limited to one wavelength. Here, exploiting stimulated Brillouin scattering, the authors demonstrate a coherent optical memory based on a planar integrated waveguide, which can operate at different wavelengths without cross-talk.

  1. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.

    PubMed

    Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho

    2013-10-21

    Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.

  2. Coherent and dynamic beam splitting based on light storage in cold atoms

    PubMed Central

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457

  3. 3D integrated superconducting qubits

    NASA Astrophysics Data System (ADS)

    Rosenberg, D.; Kim, D.; Das, R.; Yost, D.; Gustavsson, S.; Hover, D.; Krantz, P.; Melville, A.; Racz, L.; Samach, G. O.; Weber, S. J.; Yan, F.; Yoder, J. L.; Kerman, A. J.; Oliver, W. D.

    2017-10-01

    As the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2,echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.

  4. One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires.

    PubMed

    van Vugt, Lambert K; Piccione, Brian; Cho, Chang-Hee; Nukala, Pavan; Agarwal, Ritesh

    2011-06-21

    Strong coupling of light with excitons in direct bandgap semiconductors leads to the formation of composite photonic-electronic quasi-particles (polaritons), in which energy oscillates coherently between the photonic and excitonic states with the vacuum Rabi frequency. The light-matter coherence is maintained until the oscillator dephases or the photon escapes. Exciton-polariton formation has enabled the observation of Bose-Einstein condensation in the solid-state, low-threshold polariton lasing and is also useful for terahertz and slow-light applications. However, maintaining coherence for higher carrier concentration and temperature applications still requires increased coupling strengths. Here, we report on size-tunable, exceptionally high exciton-polariton coupling strengths characterized by a vacuum Rabi splitting of up to 200 meV as well as a reduction in group velocity, in surface-passivated, self-assembled semiconductor nanowire cavities. These experiments represent systematic investigations on light-matter coupling in one-dimensional optical nanocavities, demonstrating the ability to engineer light-matter coupling strengths at the nanoscale, even in non-quantum-confined systems, to values much higher than in bulk.

  5. One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires

    PubMed Central

    van Vugt, Lambert K.; Piccione, Brian; Cho, Chang-Hee; Nukala, Pavan; Agarwal, Ritesh

    2011-01-01

    Strong coupling of light with excitons in direct bandgap semiconductors leads to the formation of composite photonic-electronic quasi-particles (polaritons), in which energy oscillates coherently between the photonic and excitonic states with the vacuum Rabi frequency. The light-matter coherence is maintained until the oscillator dephases or the photon escapes. Exciton-polariton formation has enabled the observation of Bose-Einstein condensation in the solid-state, low-threshold polariton lasing and is also useful for terahertz and slow-light applications. However, maintaining coherence for higher carrier concentration and temperature applications still requires increased coupling strengths. Here, we report on size-tunable, exceptionally high exciton-polariton coupling strengths characterized by a vacuum Rabi splitting of up to 200 meV as well as a reduction in group velocity, in surface-passivated, self-assembled semiconductor nanowire cavities. These experiments represent systematic investigations on light-matter coupling in one-dimensional optical nanocavities, demonstrating the ability to engineer light-matter coupling strengths at the nanoscale, even in non-quantum-confined systems, to values much higher than in bulk. PMID:21628582

  6. Counterfactual quantum cryptography based on weak coherent states

    NASA Astrophysics Data System (ADS)

    Yin, Zhen-Qiang; Li, Hong-Wei; Yao, Yao; Zhang, Chun-Mei; Wang, Shuang; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2012-08-01

    In the “counterfactual quantum cryptography” scheme [T.-G. Noh, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.230501 103, 230501 (2009)], two legitimate distant peers may share secret-key bits even when the information carriers do not travel in the quantum channel. The security of this protocol with an ideal single-photon source has been proved by Yin [Z.-Q. Yin, H. W. Li, W. Chen, Z. F. Han, and G. C. Guo, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.042335 82, 042335 (2010)]. In this paper, we prove the security of the counterfactual-quantum-cryptography scheme based on a commonly used weak-coherent-laser source by considering a general collective attack. The basic assumption of this proof is that the efficiency and dark-counting rate of a single-photon detector are consistent for any n-photon Fock states. Then through randomizing the phases of the encoding weak coherent states, Eve's ancilla will be transformed into a classical mixture. Finally, the lower bound of the secret-key-bit rate and a performance analysis for the practical implementation are both given.

  7. Experimental Implementation of a Quantum Optical State Comparison Amplifier

    NASA Astrophysics Data System (ADS)

    Donaldson, Ross J.; Collins, Robert J.; Eleftheriadou, Electra; Barnett, Stephen M.; Jeffers, John; Buller, Gerald S.

    2015-03-01

    We present an experimental demonstration of a practical nondeterministic quantum optical amplification scheme that employs two mature technologies, state comparison and photon subtraction, to achieve amplification of known sets of coherent states with high fidelity. The amplifier uses coherent states as a resource rather than single photons, which allows for a relatively simple light source, such as a diode laser, providing an increased rate of amplification. The amplifier is not restricted to low amplitude states. With respect to the two key parameters, fidelity and the amplified state production rate, we demonstrate significant improvements over previous experimental implementations, without the requirement of complex photonic components. Such a system may form the basis of trusted quantum repeaters in nonentanglement-based quantum communications systems with known phase alphabets, such as quantum key distribution or quantum digital signatures.

  8. Tuning the Photon Statistics of a Strongly Coupled Nanophotonic System

    NASA Astrophysics Data System (ADS)

    Dory, C.; Fischer, K. A.; Müller, K.; Lagoudakis, K. G.; Sarmiento, T.; Rundquist, A.; Zhang, J. L.; Kelaita, Y.; Sapra, N. V.; Vučković, J.

    Strongly coupled quantum-dot-photonic-crystal cavity systems provide a nonlinear ladder of hybridized light-matter states, which are a promising platform for non-classical light generation. The transmission of light through such systems enables light generation with tunable photon counting statistics. By detuning the frequencies of quantum emitter and cavity, we can tune the transmission of light to strongly enhance either single- or two-photon emission processes. However, these nanophotonic systems show a strongly dissipative nature and classical light obscures any quantum character of the emission. In this work, we utilize a self-homodyne interference technique combined with frequency-filtering to overcome this obstacle. This allows us to generate emission with a strong two-photon component in the multi-photon regime, where we measure a second-order coherence value of g (2) [ 0 ] = 1 . 490 +/- 0 . 034 . We propose rate equation models that capture the dominant processes of emission both in the single- and multi-photon regimes and support them by quantum-optical simulations that fully capture the frequency filtering of emission from our solid-state system. Finally, we simulate a third-order coherence value of g (3) [ 0 ] = 0 . 872 +/- 0 . 021 . Army Research Office (ARO) (W911NF1310309), National Science Foundation (1503759), Stanford Graduate Fellowship.

  9. Source of coherent short wavelength radiation

    DOEpatents

    Villa, Francesco

    1990-01-01

    An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

  10. Quantum correlations of lights in macroscopic environments

    NASA Astrophysics Data System (ADS)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear fiber (HNLF) at 77 K, we observed coincidence to accidental-coincidence ratio of 130+/-5 for correlated photon-pair and Two-Photon Interference visibility >98% entangled photon-pair. We also verified the non-local behavior of polarization-entangled photon pair by violating Clauser-Horne-Shimony-Holt Bell's inequality by more than 12 standard deviations. With the HNLF at 300 K (77 K), photon-pair production rate about factor 3(2) higher than a 300 m dispersion-shifted fiber is observed. Then, we studied quantum correlation and interference of photon-pairs; with one photon of the photon-pair experiencing multiple scattering in a random medium. We observed that depolarization noise photon in multiple scattering degrading the purity of photon-pair, and the existence of Raman noise photon in a photon-pair source will contribute to the depolarization affect. We found that quantum correlation of polarization-entangled photon-pair is better preserved than polarization-correlated photon-pair as one photon of the photon-pair scattered through a random medium. Our findings showed that high purity polarization-entangled photon-pair is better candidate for long distance quantum key distribution.

  11. Maximum-Likelihood Estimation for Frequency-Modulated Continuous-Wave Laser Ranging using Photon-Counting Detectors

    DTIC Science & Technology

    2013-03-21

    instruments where frequency estimates are calcu- lated from coherently detected fields, e.g., coherent Doppler LIDAR . Our CRB results reveal that the best...wave coherent lidar using an optical field correlation detection method,” Opt. Rev. 5, 310–314 (1998). 8. H. P. Yuen and V. W. S. Chan, “Noise in...2170–2180 (2007). 13. T. J. Karr, “Atmospheric phase error in coherent laser radar,” IEEE Trans. Antennas Propag. 55, 1122–1133 (2007). 14. Throughout

  12. Maximum-Likelihood Estimation for Frequency-Modulated Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    DTIC Science & Technology

    2013-01-01

    are calculated from coherently -detected fields, e.g., coherent Doppler lidar . Our CRB results reveal that the best-case mean-square error scales as 1...1088 (2001). 7. K. Asaka, Y. Hirano, K. Tatsumi, K. Kasahara, and T. Tajime, “A pseudo-random frequency modulation continuous wave coherent lidar using...multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007). 11. T. J. Karr, “Atmospheric phase error in coherent laser radar

  13. How a Photon is Created or Absorbed.

    ERIC Educational Resources Information Center

    Henderson, Giles

    1979-01-01

    Presents methods of illustrating the dynamics of spectroscopic transitions which reveal the quantum mechanical origin of oscillating transition moments and the characteristic resonance between the system and the radiation necessary for phase coherence during the creation or absorption of a photon. (Author/HM)

  14. Highly coherent octave-spanning supercontinuum generation in CS2-filled photonic crystal fiber with strong slow nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Liyun; Yuan, Jinhui; Wang, Kuiru; Kang, Zhe; Sang, Xinzhu; Yu, Chongxiu; Yan, Binbin

    2016-11-01

    In this paper, the supercontinuum (SC) generation in a carbon disulfide (CS2)-filled photonic crystal fiber (PCF) with strong slow nonlinearity is investigated. When the PCF is pumped at 1.55 μm in the anomalous dispersion region, we obtain highly coherent SC spanning from 0.99 to 2.32 μm, at -40 dB level. Moreover, the influences of the slow nonlinearity, the input pulse width, the pulse peak power, the fiber length, and the temperature on the supercontinuum generation (SCG) are studied. The role of the slow nonlinearity in enhancing the coherence of SC is proved. To our best knowledge, this is the first demonstration on generating the octave-spanning SC with high coherence using the slow nonlinearity of CS2. CS2 is a material that has high nonlinearity coefficient and well transparency in infrared. What's more, the slow nonlinearity is very strong in this material.

  15. Quantum coherence and entanglement control for atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have consistently solved the control dynamics of open quantum systems using this stochastic QSD approach. By implementing the QSD equation, our numerical results have revealed that how the control efficacy depends on the designed time points and shapes of the applied control pulses, and the environment memory time scale.

  16. Single photon ranging system using two wavelengths laser and analysis of precision

    NASA Astrophysics Data System (ADS)

    Chen, Yunfei; He, Weiji; Miao, Zhuang; Gu, Guohua; Chen, Qian

    2013-09-01

    The laser ranging system based on time correlation single photon counting technology and single photon detector has the feature of high precision and low emergent energy etc. In this paper, we established a single photon laser ranging system that use the supercontinuum laser as light source, and two wavelengths (532nm and 830nm) of echo signal as the stop signal. We propose a new method that is capable to improve the single photon ranging system performance. The method is implemented by using two single-photon detectors to receive respectively the two different wavelength signals at the same time. We extracted the firings of the two detectors triggered by the same laser pulse at the same time and then took mean time of the two firings as the combined detection time-of-flight. The detection by two channels using two wavelengths will effectively improve the detection precision and decrease the false alarm probability. Finally, an experimental single photon ranging system was established. Through a lot of experiments, we got the system precision using both single and two wavelengths and verified the effectiveness of the method.

  17. Dynamics of Topological Excitations in a Model Quantum Spin Ice

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Jiong; Deng, Youjin; Wan, Yuan; Meng, Zi Yang

    2018-04-01

    We study the quantum spin dynamics of a frustrated X X Z model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window. Our results provide experimentally relevant, quantitative information for the ongoing pursuit of quantum spin ice materials.

  18. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  19. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE PAGES

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.; ...

    2017-08-09

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  20. How many photons are needed to reconstruct random objects in coherent X-ray diffractive imaging?

    PubMed

    Jahn, T; Wilke, R N; Chushkin, Y; Salditt, T

    2017-01-01

    This paper presents an investigation of the reconstructibility of coherent X-ray diffractive imaging diffraction patterns for a class of binary random `bitmap' objects. Combining analytical results and numerical simulations, the critical fluence per bitmap pixel is determined, for arbitrary contrast values (absorption level and phase shift), both for the optical near- and far-field. This work extends previous investigations based on information theory, enabling a comparison of the amount of information carried by single photons in different diffraction regimes. The experimental results show an order-of-magnitude agreement.

  1. Site-specific vibrational dynamics of the CD3ζ membrane peptide using heterodyned two-dimensional infrared photon echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, Prabuddha; Krummel, Amber T.; Fulmer, Eric C.; Kass, Itamar; Arkin, Isaiah T.; Zanni, Martin T.

    2004-06-01

    Heterodyned two-dimensional infrared (2D IR) spectroscopy has been used to study the amide I vibrational dynamics of a 27-residue peptide in lipid vesicles that encompasses the transmembrane domain of the T-cell receptor CD3ζ. Using 1-13C=18O isotope labeling, the amide I mode of the 49-Leucine residue was spectroscopically isolated and the homogeneous and inhomogeneous linewidths of this mode were measured by fitting the 2D IR spectrum collected with a photon echo pulse sequence. The pure dephasing and inhomogeneous linewidths are 2 and 32 cm-1, respectively. The population relaxation time of the amide I band was measured with a transient grating, and it contributes 9 cm-1 to the linewidth. Comparison of the 49-Leucine amide I mode and the amide I band of the entire CD3ζ peptide reveals that the vibrational dynamics are not uniform along the length of the peptide. Possible origins for the large amount of inhomogeneity present at the 49-Leucine site are discussed.

  2. The extraordinary radar echoes from Europa, Ganymede, and Callisto: A geological perspective

    USGS Publications Warehouse

    Ostro, S.J.; Shoemaker, E.M.

    1990-01-01

    This outline of plausible geologic explanations for the icy Galilean satellites' radar properties takes into consideration electromagnetic scattering models for the echoes, available empirical and theoretical information about regolith formation, and ice physics. The strange radar signatures arise because (1) ice is electrically different from silicates and/or (2) icy regoliths contain bulk-density (and hence refractive-index) structures absent within silicate regoliths. Ice's relatively high radar-frequency transparency compared with that of silicates permits longer photon path lengths, deeper radar sounding, and a greater number of scattering events. Consequently, scattering mechanisms that cannot contribute significantly to lunar echoes can dominate icy-satellite echoes. Possible phenomena unique to icy regoliths include (1) smoothing out of discontinuities between solid ejecta fragments and more porous surroundings under the action of thermal annealing to form refraction-scattering (RS) "lenses" and (2) formation of density enhancements in the shape of crater floors that result in RS and/or total internal reflection (TIR). In either case, high-order multiple scattering is more likely to be responsible for the echoes than low-order scattering. Radar/radio observations can constrain the order of the scattering and the scale of the structures responsible for the echoes but might not determine whether TIR or RS dominates the scattering. Multiwavelength investigations of the degree of correlation between radar properties and geologic terrain type should prove most useful, because inter- and intrasatellite variations in radar properties probably correspond to variations in ice purity, regolith thickness, and regolith thermal history and age. ?? 1990.

  3. Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation.

    PubMed

    Poletto, S; Gambetta, Jay M; Merkel, Seth T; Smolin, John A; Chow, Jerry M; Córcoles, A D; Keefe, George A; Rothwell, Mary B; Rozen, J R; Abraham, D W; Rigetti, Chad; Steffen, M

    2012-12-14

    We report a system where fixed interactions between noncomputational levels make bright the otherwise forbidden two-photon |00}→|11} transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconducting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of F(g)=90% (unconstrained) and 86% (maximum likelihood estimator).

  4. Investigating Quantum Data Encrypted Modulation States

    DTIC Science & Technology

    2014-11-01

    propagation of entangled photon pairs through a hyper spectral filter device originally designed for multi-access laser communications between a hub...and multiple spokes. 15. SUBJECT TERMS Coherent optical detection, Long wavelength infrared, combined optical/RF link, entangled photon pairs , Lyot...Figure 36. Entangled photon pair amplitudes enter one port of a beam splitter (BS). There they split into two paths. They recombine when entering a

  5. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE PAGES

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; ...

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  6. Modification of optical properties by adiabatic shifting of resonances in a four-level atom

    NASA Astrophysics Data System (ADS)

    Dutta, Bibhas Kumar; Panchadhyayee, Pradipta

    2018-04-01

    We describe the linear and nonlinear optical properties of a four-level atomic system, after reducing it to an effective two-level atomic model under the condition of adiabatic shifting of resonances driven by two coherent off-resonant fields. The reduced form of the Hamiltonian corresponding to the two-level system is obtained by employing an adiabatic elimination procedure in the rate equations of the probability amplitudes for the proposed four-level model. For a weak probe field operating in the system, the nonlinear dependence of complex susceptibility on the Rabi frequencies and the detuning parameters of the off-resonant driving fields makes it possible to exhibit coherent control of single-photon and two-photon absorption and transparency, the evolution of enhanced Self-Kerr nonlinearity and noticeable dispersive switching. We have shown how the quantum interference results in the generic four-level model at the adiabatic limit. The present scheme describes the appearance of single-photon transparency without invoking any exact two-photon resonance.

  7. Design and analysis of coherent OCDM en/decoder based on photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun

    2008-08-01

    The design and performance analysis of a new coherent optical en/decoder based on photonic crystal (PhC) for optical code -division -multiple (OCDM) are presented in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by photonic crystal phase shifter and time delayer by using the appropriate design of fabrication. According to the PhC transmission matrix theorem, combination calculation of the impurity and normal period layers is applied, and performances of the PhC-based optical en/decoder are also analyzed. The reflection, transmission, time delay characteristic and optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by numerical calculation. Theoretical analysis and numerical results indicate that the optical pulse is achieved to properly phase modulation and time delay, and an auto-correlation of about 8 dB ration and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.

  8. Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P.; Araujo, D.; Bradford, K.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Kjellstrand, C. B.; Leduc, H.; Limon, M.; Luu, V.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.

    2016-02-01

    We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP≈2 ×10-17 W Hz-1 /2 , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP∝P for broadband (chaotic) illumination and NEP∝P1 /2 for continuous-wave (coherent) illumination.

  9. Coherent J / ψ photoproduction in hadronic heavy-ion collisions

    DOE PAGES

    Zha, W.; Klein, S. R.; Ma, R.; ...

    2018-04-19

    Significant excesses of J/ yield at very low transverse momentum (p T < 0:3 GeV/c) were observed by the ALICE and STAR collaborations in peripheral hadronic A+A collisions. This is a Sign of coherent photoproduction of J/ψ in violent hadronic interactions. Theoretically, the photoproduction of J= in hadronic collisions raises questions about how spectator and non-spectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs tomore » be included. This letter presents calculations of J/ψ production from coherent photon-nucleus (γ+A → J/ψ +A) interactions in hadronic A+A collisions at RHIC and LHC energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J/ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. Lastly, these predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.« less

  10. Coherent J /ψ photoproduction in hadronic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zha, W.; Klein, S. R.; Ma, R.; Ruan, L.; Todoroki, T.; Tang, Z.; Xu, Z.; Yang, C.; Yang, Q.; Yang, S.

    2018-04-01

    Significant excesses of J /ψ yield at very low transverse momentum (pT<0.3 GeV/c ) were observed by the ALICE and STAR collaborations in peripheral hadronic A +A collisions. This is a sign of coherent photoproduction of J /ψ in violent hadronic interactions. Theoretically, the photoproduction of J /ψ in hadronic collisions raises questions about how spectator and nonspectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs to be included. This paper presents calculations of J /ψ production from coherent photon-nucleus (γ +A →J /ψ +A ) interactions in hadronic A +A collisions at BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J /ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle, and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. These predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.

  11. Coherent J / ψ photoproduction in hadronic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, W.; Klein, S. R.; Ma, R.

    Significant excesses of J/ yield at very low transverse momentum (p T < 0:3 GeV/c) were observed by the ALICE and STAR collaborations in peripheral hadronic A+A collisions. This is a Sign of coherent photoproduction of J/ψ in violent hadronic interactions. Theoretically, the photoproduction of J= in hadronic collisions raises questions about how spectator and non-spectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs tomore » be included. This letter presents calculations of J/ψ production from coherent photon-nucleus (γ+A → J/ψ +A) interactions in hadronic A+A collisions at RHIC and LHC energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J/ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. Lastly, these predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.« less

  12. Coherent neutrinoproduction of photons and pions in a chiral effective field theory for nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Xilin; Serot, Brian D.

    2012-09-01

    Background: The neutrinoproduction of photons and pions from nucleons and nuclei is relevant to the background analysis in neutrino-oscillation experiments [for example, the MiniBooNE; MiniBooNE Collaboration, A. A. Aquilar-Arevalo , Phys. Rev. Lett.0031-900710.1103/PhysRevLett.100.032301 100, 032301 (2008)]. The production from nucleons and incoherent production with Eν⩽0.5GeV have been studied in B. D. Serot and X. Zhang, Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.86.015501 86, 015501 (2012); and X. Zhang and B. D. Serot, Phys. Rev. C1110-865710.1103/PhysRevC.86.035502 86, 035502 (2012).Purpose: Study coherent productions with Eν⩽0.5GeV. Also address the contributions of two contact terms in neutral current (NC) photon production that are partially related to the proposed anomalous ω(ρ), Z boson, and photon interactions.Methods: We work in the framework of a Lorentz-covariant effective field theory (EFT), which contains nucleons, pions, the Δ (1232) (Δs), isoscalar scalar (σ) and vector (ω) fields, and isovector vector (ρ) fields, and incorporates a nonlinear realization of (approximate) SU(2)L⊗SU(2)R chiral symmetry. A revised version of the so-called “optimal approximation” is applied, where one-nucleon interaction amplitude is factorized out and the medium-modifications and pion wave function distortion are included. The calculation is tested against the coherent pion photoproduction data.Results: The computation shows an agreement with the pion photoproduction data, although precisely determining the Δ modification is entangled with one mentioned contact term. The uncertainty in the Δ modification leads to uncertainties in both pion and photon neutrinoproductions. In addition, the contact term plays a significant role in NC photon production.Conclusions: First, the contact term increases NC photon production by ˜10% assuming a reasonable range of the contact coupling, which however seems not significant enough to explain the MiniBooNE excess. A high energy computation is needed to gain a firm conclusion and will be presented elsewhere. Second, the behavior of coherent neutrinoproductions computed here is significantly different from the expectation at high energy by ignoring the vector current contribution.

  13. How to Drive CARS in Reverse

    DTIC Science & Technology

    2013-11-07

    pulse . This pulse is then used to drive a coherent anti-Stokes Raman scattering scheme, resulting in a strong chemically specific signal propagating...generation of a backward propagating stimulated Raman pulse . This pulse is then used to drive a coherent anti-Stokes Raman scattering scheme, resulting in a...proposed to re- motely generate a spatially coherent backward propagating pulse . The first uses the impurities in air as a lasing medium [2]. Two photon

  14. Studies of electrode structures and dynamics using coherent X-ray scattering and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, H.; Liu, Y.; Ulvestad, A.

    2017-08-01

    Electrochemical systems studied in situ with advanced surface X-ray scattering techniques are reviewed. The electrochemical systems covered include interfaces of single-crystals and nanocrystals with respect to surface modification, aqueous dissolution, surface reconstruction, and electrochemical double layers. An emphasis will be given on recent results by coherent X-ray techniques such as X-ray photon correlation spectroscopy, Bragg coherent diffraction imaging, and surface ptychography.

  15. Zero-field optical magnetic resonance study of phosphorus donors in 28-silicon

    NASA Astrophysics Data System (ADS)

    Morse, Kevin J.; Dluhy, Phillip; Huber, Julian; Salvail, Jeff Z.; Saeedi, Kamyar; Riemann, Helge; Abrosimov, Nikolay V.; Becker, Peter; Pohl, Hans-Joachim; Simmons, S.; Thewalt, M. L. W.

    2018-03-01

    Donor spins in silicon are some of the most promising qubits for upcoming solid-state quantum technologies. The nuclear spins of phosphorus donors in enriched silicon have among the longest coherence times of any solid-state system as well as simultaneous high fidelity qubit initialization, manipulation, and readout. Here we characterize the phosphorus in silicon system in the regime of "zero" magnetic field, where a singlet-triplet spin clock transition can be accessed, using laser spectroscopy and magnetic resonance methods. We show the system can be optically hyperpolarized and has ˜10 s Hahn echo coherence times, even for applied static magnetic fields below Earth's field.

  16. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication.

    PubMed

    Guan, Hang; Novack, Ari; Galfsky, Tal; Ma, Yangjin; Fathololoumi, Saeed; Horth, Alexandre; Huynh, Tam N; Roman, Jose; Shi, Ruizhi; Caverley, Michael; Liu, Yang; Baehr-Jones, Thomas; Bergman, Keren; Hochberg, Michael

    2018-04-02

    We demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm at the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling the silicon chip through a Si 3 N 4 spot size converter. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. The laser has a largest output power of 11 mW with a maximum wall-plug efficiency of 4.2%, tunability of 60 nm (more than covering the C-band), and a side-mode suppression ratio of 55 dB (>46 dB across the C-band). The lowest measured linewidth is 37 kHz (<80 kHz across the C-band), which is the narrowest linewidth using a silicon-based external cavity. In addition, we successfully demonstrate all silicon-photonics-based transmission of 34 Gbaud (272 Gb/s) dual-polarization 16-QAM using our integrated laser and silicon photonic coherent transceiver. The results show no additional penalty compared to commercially available narrow linewidth tunable lasers. To the best of our knowledge, this is the first experimental demonstration of a complete silicon photonic based coherent link. This is also the first experimental demonstration of >250 Gb/s coherent optical transmission using a silicon micro-ring-based tunable laser.

  17. Temporal characteristics of coherent flow structures generated over alluvial sand dunes, Mississippi River, revealed by acoustic doppler current profiling and multibeam echo sounding

    USGS Publications Warehouse

    Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.

    2009-01-01

    This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.

  18. Arbitrary waveform modulated pulse EPR at 200 GHz

    NASA Astrophysics Data System (ADS)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 < 1 MHz phase-modulated pulses were sufficient to achieve significant improvements in broadband (>10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  19. The grand unified photon spectrum: A coherent view of the diffuse extragalactic background radiation

    NASA Technical Reports Server (NTRS)

    Ressell, M. Ted; Turner, Michael S.

    1989-01-01

    The spectrum of diffuse extragalactic background radiation (DEBRA) at wavelengths from 10(exp 5) to 10(exp -24) cm is presented in a coherent fashion. Each wavelength region, from the radio to ultra-high energy photons and cosmic rays, is treated both separately and as part of the grand unified photon spectrum (GUPS). A discussion of, and references to, the relevant literature for each wavelength region is included. This review should provide a useful tool for those interested in diffuse backgrounds, the epoch of galaxy formation, astrophysical/cosmological constraints to particle properties, exotic early Universe processes, and many other astrophysical and cosmological enterprises. As a worked example, researchers derive the cosmological constraints to an unstable-neutrino spies (with arbitrary branching ratio to a radiative decay mode) that follow from the GUPS.

  20. Unique concurrent observations of whistler mode hiss, chorus, and triggered emissions

    NASA Astrophysics Data System (ADS)

    Hosseini, Poorya; Gołkowski, Mark; Turner, Drew L.

    2017-06-01

    We present a unique 2 h ground-based observation of concurrent magnetospheric hiss, chorus, VLF triggered emissions as well as ELF/VLF signals generated locally by the High Frequency Active Auroral Research Program (HAARP) facility. Eccentricity of observed wave polarization is used as a criteria to identify magnetospheric emissions and estimate their ionospheric exit points. The observations of hiss and chorus in the unique background of coherent HAARP ELF/VLF waves and triggered emissions allow for more accurate characterization of hiss and chorus properties than in typical ground-based observations. Eccentricity and azimuth results suggest a moving ionospheric exit point associated with a single ducted path at L 5. The emissions exhibit dynamics in time suggesting an evolution of a magnetospheric source from hiss generation to chorus generation or a moving plasmapause location. We introduce a frequency band-limited autocorrelation method to quantify the relative coherency of the emissions. A range of coherency was observed from high order of coherency in local HAARP transmissions and their echoes to lower coherency in natural chorus and hiss emissions.

  1. Full Angular Profile of the Coherent Polarization Opposition Effect

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Luck, Jean-Marc; Nieuwenhuizen, Theo M.

    1999-01-01

    We use the rigorous vector theory of weak photon localization for a semi-infinite medium composed of nonabsorbing Rayleigh scatterers to compute the full angular profile of the polarization opposition effect. The latter is caused by coherent backscattering of unpolarized incident light and accompanies the renowned backscattering intensity peak.

  2. Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids.

    PubMed

    Car, B; Veissier, L; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T

    2018-05-11

    In Er^{3+}:Y_{2}SiO_{5}, we demonstrate the selective optical addressing of the ^{89}Y^{3+} nuclear spins through their superhyperfine coupling with the Er^{3+} electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.

  3. Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids

    NASA Astrophysics Data System (ADS)

    Car, B.; Veissier, L.; Louchet-Chauvet, A.; Le Gouët, J.-L.; Chanelière, T.

    2018-05-01

    In Er3 +:Y2SiO5 , we demonstrate the selective optical addressing of the Y89 3 + nuclear spins through their superhyperfine coupling with the Er3 + electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y3 + nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.

  4. Complete Quantum Control of a Single Silicon-Vacancy Center in a Diamond Nanopillar

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan-Kai; Dory, Constantin; Radulaski, Marina; Kelaita, Yousif; Shen, Zhi-Xun; Melosh, Nicholas A.; Chu, Steven; Vuckovic, Jelena

    Coherent quantum control of a quantum bit (qubit) is an important step towards its use in a quantum network. SiV- center in diamond offers excellent physical qualities such as low inhomogeneous broadening, fast photon emission, and a large Debye-Waller factor, while the fast spin manipulation and techniques to extend the spin coherence time are under active investigation. Here, we demonstrate full coherent control over the state of a single SiV- center in a diamond nanopillar using ultrafast optical pulses. The high quality of the chemical vapor deposition grown SiV- centers allows us to coherently manipulate and quasi-resonantly read out the state of the single SiV- center. Moreover, the SiV- centers being coherently controlled are integrated into diamond nanopillar arrays in a site-controlled, individually addressable manner with high yield, low strain, and high spectral stability, which paves the way for scalable on chip optically accessible quantum system in a quantum photonic network. Financial support is provided by the DOE Office of Basic Energy Sciences, Division of Materials Sciences through Stanford Institute for Materials and Energy Sciences (SIMES) under contract DE-AC02-76SF00515.

  5. Frequency conversion of structured light.

    PubMed

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  6. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  7. Homodyne versus photon-counting quantum trajectories for dissipative Kerr resonators with two-photon driving

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Minganti, Fabrizio; Lolli, Jared; Ciuti, Cristiano

    2017-07-01

    We investigate two different kinds of quantum trajectories for a nonlinear photon resonator subject to two-photon pumping, a configuration recently studied for the generation of photonic Schrödinger cat states. In the absence of feedback control and in the strong-driving limit, the steady-state density matrix is a statistical mixture of two states with equal weight. While along a single photon-counting trajectory the systems intermittently switches between an odd and an even cat state, we show that upon homodyne detection the situation is different. Indeed, homodyne quantum trajectories reveal switches between coherent states of opposite phase.

  8. Observation of two-photon interference with continuous variables by homodyne detection

    NASA Astrophysics Data System (ADS)

    Wu, Daohua; Kawamoto, Kota; Guo, Xiaomin; Kasai, Katsuyuki; Watanabe, Masayoshi; Zhang, Yun

    2017-10-01

    We experimentally observed a two-photon interference between a squeezed vacuum state from an optical parametric amplifier and a weak coherent state on a beam splitter with continuous variables. The photon statistics properties of the mixed field were investigated by calculating the correlations among four permutations of measured quadratures components, which were obtained by two homodyne detection systems. This also means that the two-photon interference occurred at analysis frequency differing from the previous two-photon interference reports. The nonclassical effect of photon anti-bunching occurred when an amplitude squeezed vacuum state acted as one of interference sources. On the other hand, the photon bunching effect appeared when a phase squeezed vacuum state was employed.

  9. Quantum Lidar - Remote Sensing at the Ultimate Limit

    DTIC Science & Technology

    2009-07-01

    of Lossy Propaga- tion of Non-Classical Dual-Mode Entangled Photon States 57 34 Decay of Coherence for a N00N State (N=10) as a Function of...resolution could be beaten by exploiting entangled photons [Boto2000, Kok2001]. This effect is now universally known as quantum super-resolution. We...spontaneous parametric down conversion (SPDC), optical parametric amplifier (OPA), optical parametric oscillator (OPO), and entangled - photon Laser (EPL

  10. DARPA Quantum Network Testbed

    DTIC Science & Technology

    2007-07-01

    End-to-End Security with Photonic Switching...............................28 8.4 Year 3 – Adding a Link that implements Entanglement -Based QKD... entangled photon pairs at 1550nm. • Built a highspeed (~10 MHz) physical random number generator, and integrated it into Bob. This design provides an...each kind of photonic setup in the Quantum Network, i.e., over time it will grow to include descriptions of the weak-coherent link, the entangled

  11. Quantum-Fluctuation-Initiated Coherence in Multioctave Raman Optical Frequency Combs

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Wu, Chunbai; Couny, F.; Raymer, M. G.; Benabid, F.

    2010-09-01

    We show experimentally and theoretically that the spectral components of a multioctave frequency comb spontaneously created by stimulated Raman scattering in a hydrogen-filled hollow-core photonic crystal fiber exhibit strong self-coherence and mutual coherence within each 12 ns driving laser pulse. This coherence arises in spite of the field’s initiation being from quantum zero-point fluctuations, which causes each spectral component to show large phase and energy fluctuations. This points to the possibility of an optical frequency comb with nonclassical correlations between all comb lines.

  12. Coherent Bragg nanodiffraction at the hard X-ray Nanoprobe beamline.

    PubMed

    Hruszkewycz, S O; Holt, M V; Maser, J; Murray, C E; Highland, M J; Folkman, C M; Fuoss, P H

    2014-03-06

    Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques.

  13. Coherent Bragg nanodiffraction at the hard X-ray Nanoprobe beamline

    PubMed Central

    Hruszkewycz, S. O.; Holt, M. V.; Maser, J.; Murray, C. E.; Highland, M. J.; Folkman, C. M.; Fuoss, P. H.

    2014-01-01

    Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques. PMID:24470418

  14. Conditional generation of an arbitrary superposition of coherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, Masahiro; Sasaki, Masahide

    2007-06-15

    We present a scheme to conditionally generate an arbitrary superposition of a pair of coherent states from a squeezed vacuum by means of the modified photon subtraction where a coherent state ancilla and two on/off type detectors are used. We show that, even including realistic imperfections of the detectors, our scheme can generate a target state with a high fidelity. The amplitude of the generated states can be amplified by conditional homodyne detections.

  15. Infrared receivers for low background astronomy: Incoherent detectors and coherent devices from one micrometer to one millimeter

    NASA Technical Reports Server (NTRS)

    Boggess, N. W.; Greenberg, L. T.; Hauser, M. G.; Houck, J. R.; Low, F. J.; Mccreight, C. R.; Rank, D. M.; Richards, P. L.; Weiss, R.

    1979-01-01

    The status of incoherent detectors and coherent receivers over the infrared wavelength range from one micrometer to one millimeter is described. General principles of infrared receivers are included, and photon detectors, bolometers, coherent receivers, and important supporting technologies are discussed, with emphasis on their suitability for low background astronomical applications. Broad recommendations are presented and specific opportunities are identified for development of improved devices.

  16. Antigravity Acts on Photons

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2002-04-01

    Einstein's general theory of relativity assumes that photons don't change frequency as they move from Sun to Earth. This assumption is correct in classical physics. All experiments proving the general relativity are in the domain of classical physics. This include the tests by Pound et al. of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo solar redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr's correspondence principle assures that quantum mechanical theory of general relativity agrees with Einstein's classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. When we treat photons as quantum mechanical particles; we find that gravitational force on photons is reversed (antigravity). This modified theory contradicts the equivalence principle, but is consistent with all experiments. Solar lines and distant stars are redshifted in accordance with author's plasma redshift theory. These changes result in a beautiful consistent cosmology.

  17. Physical properties of biophotons and their biological functions.

    PubMed

    Chang, Jiin-Ju

    2008-05-01

    Biophotons (BPHs) are weak photons within or emitted from living organisms. The intensities of BPHs range from a few to several hundred photons s(-1) x cm(-2). BPH emission originates from a de-localized coherent electromagnetic field within the living organisms and is regulated by the field. In this paper based on the experimental results of Poisson and sub-Poisson distributions of photocount statistics, the coherent properties of BPHs and their functions in cell communication are described. Discussions are made on functions which BPHs may play in DNA and proteins functioning including the process of DNA replication, protein synthesis and cell signalling and in oxidative phosporylation and photosynthesis.

  18. Coherent (photon) vs incoherent (current) detection of multidimensional optical signals from single molecules in open junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu

    2015-06-07

    The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.

  19. Study of inelastic e-Cd and e-Zn collisions

    NASA Astrophysics Data System (ADS)

    Piwinski, Mariusz; Klosowski, Lukasz; Dziczek, Darek; Chwirot, Stanislaw

    2016-09-01

    Electron-photon coincidence experiments are well known for providing more detailed information about electron-atom collision than any other technique. The Electron Impact Coherence Parameters (EICP) values obtained in such studies deliver the most complete characterization of the inelastic collision and allow for a verification of proposed theoretical models. We present the results of Stokes and EICP parameters characterising electronic excitation of the lowest singlet P-state of cadmium and zinc atoms for various collision energies. The experiments were performed using electron-photon coincidence technique in the coherence analysis version. The obtained data are presented and compared with existing CCC and RDWA theoretical predictions.

  20. Bose-Einstein condensation of light: general theory.

    PubMed

    Sob'yanin, Denis Nikolaevich

    2013-08-01

    A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.

  1. A variational eigenvalue solver on a photonic quantum processor

    PubMed Central

    Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L.

    2014-01-01

    Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future. PMID:25055053

  2. Coherent blue emission generated by Rb two-photon excitation using diode and femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Lopez, Jesus P.; Moreno, Marco P.; de Miranda, Marcio H. G.; Vianna, Sandra S.

    2017-04-01

    The coherent blue light generated in rubidium vapor due to the combined action of an ultrashort pulse train and a continuous wave diode laser is investigated. Each step of the two-photon transition 5S-5P{}3/2-5D is excited by one of the lasers, and the induced coherence between the 5S and 6P{}3/2 states is responsible for generating the blue beam. Measurements of the excitation spectrum reveal the frequency comb structure and allow us to identify the resonant modes responsible for inducing the nonlinear process. Further, each resonant mode excites a different group of atoms, making the process selective in atomic velocity. The signal dependency on the atomic density is characterized by a sharp growth and a rapid saturation. We also show that for high intensity of the diode laser, the Stark shift at resonance causes the signal suppression observed at low atomic density.

  3. Parabolic single-crystal diamond lenses for coherent x-ray imaging

    DOE PAGES

    Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey; ...

    2015-09-18

    We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic shapes with a ≃1 μm precision and surface roughness. The compound refractive lens comprised of six lenses with a radius of curvature R=200 μm at the vertex of the parabola and a geometrical aperture A=900 μm focuses 10 keVmore » x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of ≃20×90 μm 2 with a gain factor of ≃50-100.« less

  4. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-08-01

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.

  5. Characterizing Englacial Attenuation and Grounding Zone Geometry Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Blankenship, D. D.

    2014-12-01

    The impact of warm ocean water on ice sheet retreat and stability is a one of the primary drivers and sources of uncertainty for the rate of global sea level rise. One critical but challenging observation required to understand and model this impact is the location and extent of grounding ice sheet zones. However, existing surface topography based techniques do not directly detect the location where ocean water reaches (or breaches) grounded ice at the bed, which can significantly affect ice sheet stability. The primary geophysical tool for directly observing the basal properties of ice sheets is airborne radar sounding. However, uncertainty in englacial attenuation from unknown ice temperature and chemistry can lead to erroneous interpretation of subglacial conditions from bed echo strengths alone . Recently developed analysis techniques for radar sounding data have overcome this challenge by taking advantage of information in the angular distribution of bed echo energy and joint modeling of radar returns and water routing. We have developed similar approaches to analyze the spatial pattern and character of echoes to address the problems of improved characterization of grounding zone geometry and englacial attenuation. The spatial signal of the transition from an ice-bed interface to an ice-ocean interface is an increase in bed echo strength. However, rapidly changing attenuation near the grounding zone prevents the unambiguous interpretation of this signal in typical echo strength profiles and violates the assumptions of existing empirical attenuation correction techniques. We present a technique that treat bed echoes as continuous signals to take advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of attenuation and detect the grounding zone transition. The transition from an ice-bed interface to an ice-ocean interface will also result in a change in the processes that determine basal interface morphology (e.g. melt/freeze processes for floating ice vs. erosion/deformation processes for grounded ice). This morphology change will be expressed in the angular distribution and coherency of bed echo energy. We also present techniques that exploit this character of bed echoes to further improve the detection and characterization of grounding zones.

  6. Entanglement of Two Superconducting Qubits in a Waveguide Cavity via Monochromatic Two-Photon Excitation

    NASA Astrophysics Data System (ADS)

    Poletto, S.; Gambetta, Jay M.; Merkel, Seth T.; Smolin, John A.; Chow, Jerry M.; Córcoles, A. D.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Abraham, D. W.; Rigetti, Chad; Steffen, M.

    2012-12-01

    We report a system where fixed interactions between noncomputational levels make bright the otherwise forbidden two-photon |00⟩→|11⟩ transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconducting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of Fg=90% (unconstrained) and 86% (maximum likelihood estimator).

  7. The research of data acquisition system for Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Guo, Pan; Zhang, Yinchao; Chen, Siying; Chen, He; Chen, Wenbo

    2011-11-01

    Raman spectrometer has been widely used as an identification tool for analyzing material structure and composition in many fields. However, Raman scattering echo signal is very weak, about dozens of photons at most in one laser plus signal. Therefore, it is a great challenge to design a Raman spectrum data acquisition system which could accurately receive the weak echo signal. The system designed in this paper receives optical signals with the principle of photon counter and could detect single photon. The whole system consists of a photoelectric conversion module H7421-40 and a photo counting card including a field programmable gate array (FPGA) chip and a PCI9054 chip. The module H7421-40 including a PMT, an amplifier and a discriminator has high sensitivity on wavelength from 300nm to 720nm. The Center Wavelength is 580nm which is close to the excitation wavelength (532nm), QE 40% at peak wavelength, Count Sensitivity is 7.8*105(S-1PW-1) and Count Linearity is 1.5MHZ. In FPGA chip, the functions are divided into three parts: parameter setting module, controlling module, data collection and storage module. All the commands, parameters and data are transmitted between FPGA and computer by PCI9054 chip through the PCI interface. The result of experiment shows that the Raman spectrum data acquisition system is reasonable and efficient. There are three primary advantages of the data acquisition system: the first one is the high sensitivity with single photon detection capability; the second one is the high integrated level which means all the operation could be done by the photo counting card; and the last one is the high expansion ability because of the smart reconfigurability of FPGA chip.

  8. Teleportation of a Weak Coherent Cavity Field State

    NASA Astrophysics Data System (ADS)

    Cardoso, Wesley B.; Qiang, Wen-Chao; Avelar, Ardiley T.

    2016-07-01

    In this paper we propose a scheme to teleport a weak coherent cavity field state. The scheme relies on the resonant atom-field interaction inside a high-Q cavity. The mean photon-number of the cavity field is assumed much smaller than one, hence the field decay inside the cavity can be effectively suppressed.

  9. Study of VUV Generation by Coherent Resonant Frequency Mixing in Metal Vapors.

    DTIC Science & Technology

    1986-04-24

    measuroments of coherent two- dye-laser oscillator -2 mplifier system designed for ex- photon aborption in lithium demonstrate that this periments t res(ona-nt...Harmonic Vacuum-Ultraviolet Generation in Metal Vapors," Phys. Rev. A 19, 1589 (1979). 2. ,.-C. Diels. E. W. Van Strvhand. and D. Gold , in Picosecond

  10. Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittmann, Christoffer; Sych, Denis; Leuchs, Gerd

    2010-06-15

    We investigate quantum measurement strategies capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using nonprobabilistic state discrimination. We apply a postselection strategy to the measurement data of a homodyne detector as well as a photon number resolving detector in order to lower the error probability. We compare the two different receivers with an optimal intermediate measurement scheme where the error rate is minimized for a fixed rate of inconclusive results. The photon number resolving (PNR) receiver is experimentally demonstrated and compared to an experimental realization of a homodyne receiver with postselection. Inmore » the comparison, it becomes clear that the performance of the PNR receiver surpasses the performance of the homodyne receiver, which we prove to be optimal within any Gaussian operations and conditional dynamics.« less

  11. Coherent perfect absorption in a quantum nonlinear regime of cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Wei, Yang-hua; Gu, Wen-ju; Yang, Guoqing; Zhu, Yifu; Li, Gao-xiang

    2018-05-01

    Coherent perfect absorption (CPA) is investigated in the quantum nonlinear regime of cavity quantum electrodynamics (CQED), in which a single two-level atom couples to a single-mode cavity weakly driven by two identical laser fields. In the strong-coupling regime and due to the photon blockade effect, the weakly driven CQED system can be described as a quantum system with three polariton states. CPA is achieved at a critical input field strength when the frequency of the input fields matches the polariton transition frequency. In the quantum nonlinear regime, the incoherent dissipation processes such as atomic and photon decays place a lower bound for the purity of the intracavity quantum field. Our results show that under the CPA condition, the intracavity field always exhibits the quadrature squeezing property manifested by the quantum nonlinearity, and the outgoing photon flux displays the super-Poissonian distribution.

  12. Robust distant-entanglement generation using coherent multiphoton scattering

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Sham, L. J.

    2013-03-01

    The generation and controllability of entanglement between distant quantum states have been the heart of quantum computation and quantum information processing. Existing schemes for solid state qubit entanglement are based on the single-photon spectroscopy that has the merit of a high fidelity entanglement creation, but with a very limited efficiency. This severely restricts the scalability for a qubit network system. Here, we describe a new distant entanglement protocol using coherent multiphoton scattering. The scheme makes use of the postselection of large and distinguishable photon signals, and has both a high success probability and a high entanglement fidelity. Our result shows that the entanglement generation is robust against photon fluctuations, and has an average entanglement duration within the decoherence time in various qubit systems, based on existing experimental parameters. This research was supported by the U.S. Army Research Office MURI award W911NF0910406 and by NSF grant PHY-1104446.

  13. Research on System Coherence Evolution of Different Environmental Models

    NASA Astrophysics Data System (ADS)

    Zhang, Si-Qi; Lu, Jing-Bin; Li, Hong; Liu, Ji-Ping; Zhang, Xiao-Ru; Liu, Han; Liang, Yu; Ma, Ji; Liu, Xiao-Jing; Wu, Xiang-Yao

    2018-04-01

    In this paper, we have studied the evolution curve of two-level atomic system that the initial state is excited state. At the different of environmental reservoir models, which include the single Lorentzian, ideal photon band-gap, double Lorentzian and square Lorentzian reservoir, we researched the influence of these environmental reservoir models on the evolution of energy level population. At static no modulation, comparing the four environmental models, the atomic energy level population oscillation of square Lorentzian reservoir model is fastest, and the atomic system decoherence is slowest. Under dynamic modulation, comparing the photon band-gap model with the single Lorentzian reservoir model, no matter what form of dynamic modulation, the time of atoms decay to the ground state is longer for the photonic band-gap model. These conclusions make the idea of using the environmental change to modulate the coherent evolution of atomic system become true.

  14. Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device

    PubMed Central

    Huang, Yongyang; Badar, Mudabbir; Nitkowski, Arthur; Weinroth, Aaron; Tansu, Nelson; Zhou, Chao

    2017-01-01

    Space-division multiplexing optical coherence tomography (SDM-OCT) is a recently developed parallel OCT imaging method in order to achieve multi-fold speed improvement. However, the assembly of fiber optics components used in the first prototype system was labor-intensive and susceptible to errors. Here, we demonstrate a high-speed SDM-OCT system using an integrated photonic chip that can be reliably manufactured with high precisions and low per-unit cost. A three-layer cascade of 1 × 2 splitters was integrated in the photonic chip to split the incident light into 8 parallel imaging channels with ~3.7 mm optical delay in air between each channel. High-speed imaging (~1s/volume) of porcine eyes ex vivo and wide-field imaging (~18.0 × 14.3 mm2) of human fingers in vivo were demonstrated with the chip-based SDM-OCT system. PMID:28856055

  15. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

    PubMed

    Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2013-01-01

    Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic-phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized-with over 1,000 times larger nonlinearity than reported in previous systems-yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip.

  16. Spectroscopy of the three-photon laser excitation of cold Rubidium Rydberg atoms in a magneto-optical trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entin, V. M.; Yakshina, E. A.; Tretyakov, D. B.

    2013-05-15

    The spectra of the three-photon laser excitation 5S{sub 1/2} {yields} 5P{sub 3/2} {yields} 6S{sub 1/2}nP of cold Rb Rydberg atoms in an operating magneto-optical trap based on continuous single-frequency lasers at each stage are studied. These spectra contain two partly overlapping peaks of different amplitudes, which correspond to coherent three-photon excitation and incoherent three-step excitation due to the presence of two different ways of excitation through the dressed states of intermediate levels. A four-level theoretical model based on optical Bloch equations is developed to analyze these spectra. Good agreement between the experimental and calculated data is achieved by introducing additionalmore » decay of optical coherence induced by a finite laser line width and other broadening sources (stray electromagnetic fields, residual Doppler broadening, interatomic interactions) into the model.« less

  17. Photon energy lifter.

    PubMed

    Gaburro, Zeno; Ghulinyan, Mher; Riboli, Francesco; Pavesi, Lorenzo; Recati, Alessio; Carusotto, Iacopo

    2006-08-07

    We propose a time-dependent, spatially periodic photonic structure which is able to shift the carrier frequency of an optical pulse which propagates through it. Taking advantage of the slow group velocity of light in periodic photonic structures, the wavelength conversion process can be performed with an efficiency close to 1 and without affecting the shape and the coherence of the pulse. Quantitative Finite Difference Time Domain simulations are performed for realistic systems with optical parameters of conventional silicon technology.

  18. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    PubMed

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  19. Individual bioaerosol particle discrimination by multi-photon excited fluorescence.

    PubMed

    Kiselev, Denis; Bonacina, Luigi; Wolf, Jean-Pierre

    2011-11-21

    Femtosecond laser induced multi-photon excited fluorescence (MPEF) from individual airborne particles is tested for the first time for discriminating bioaerosols. The fluorescence spectra, analysed in 32 channels, exhibit a composite character originating from simultaneous two-photon and three-photon excitation at 790 nm. Simulants of bacteria aggregates (clusters of dyed polystyrene microspheres) and different pollen particles (Ragweed, Pecan, Mulberry) are clearly discriminated by their MPEF spectra. This demonstration experiment opens the way to more sophisticated spectroscopic schemes like pump-probe and coherent control. © 2011 Optical Society of America

  20. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osaka, Taito; Hirano, Takashi; Morioka, Yuki

    Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD) between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL) pulses by capturingmore » single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. In conclusion, this is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.« less

  1. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    DOE PAGES

    Osaka, Taito; Hirano, Takashi; Morioka, Yuki; ...

    2017-10-13

    Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD) between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL) pulses by capturingmore » single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. In conclusion, this is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.« less

  2. Teleportation of atomic and photonic states in low-Q cavity QED

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man

    2012-11-01

    We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.

  3. Experimental demonstration of a quantum router

    PubMed Central

    Yuan, X. X.; Ma, J.-J.; Hou, P.-Y.; Chang, X.-Y.; Zu, C.; Duan, L.-M.

    2015-01-01

    The router is a key element for a network. We describe a scheme to realize genuine quantum routing of single-photon pulses based on cascading of conditional quantum gates in a Mach-Zehnder interferometer and report a proof-of-principle experiment for its demonstration using linear optics quantum gates. The polarization of the control photon routes in a coherent way the path of the signal photon while preserving the qubit state of the signal photon represented by its polarization. We demonstrate quantum nature of this router by showing entanglement generated between the initially unentangled control and signal photons, and confirm that the qubit state of the signal photon is well preserved by the router through quantum process tomography. PMID:26197928

  4. Generalized quantum interference of correlated photon pairs.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-05-07

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.

  5. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    PubMed

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.

  6. Spaceborne SAR Imaging Algorithm for Coherence Optimized

    PubMed Central

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446

  7. Nonlinear Optical Spectroscopy in the Time Domain: Studies of Ultrafast Molecular Processes in the Condensed Phase.

    NASA Astrophysics Data System (ADS)

    Joo, Taiha

    Ultrafast molecular processes in the condensed phase at room temperature are studied in the time domain by four wave mixing spectroscopy. The structure/dynamics of various quantum states can be studied by varying the time ordering of the incident fields, their polarization, their colors, etc. In one, time-resolved coherent Stokes Raman spectroscopy of benzene is investigated at room temperature. The reorientational correlation time of benzene as well as the T_2 time of the nu _1 ring-breathing mode have been measured by using two different polarization geometries. Bohr frequency difference beats have also been resolved between the nu_1 modes of ^ {12}C_6H_6 and ^{12}C_5^{13 }CH_6.. The dephasing dynamics of the nu _1 ring-breathing mode of neat benzene is studied by time-resolved coherent anti-Stokes Raman scattering. Ultrafast time resolution reveals deviation from the conventional exponential decay. The correlation time, tau _{rm c}, and the rms magnitude, Delta, of the Bohr frequency modulation are determined for the process responsible for the vibrational dephasing by Kubo dephasing function analysis. The electronic dephasing of two oxazine dyes in ethylene glycol at room temperature is investigated by photon echo experiments. It was found that at least two stochastic processes are responsible for the observed electronic dephasing. Both fast (homogeneous) and slow (inhomogeneous) dynamics are recovered using Kubo line shape analysis. Moreover, the slow dynamics is found to spectrally diffuse over the inhomogeneous distribution on the time scale around a picosecond. Time-resolved degenerate four wave mixing signal of dyes in a population measurement geometry is reported. The vibrational coherences both in the ground and excited electronic states produced strong oscillations in the signal together with the usual population decay from the excited electronic state. Absolute frequencies and their dephasing times of the vibrational modes at ~590 cm^{-1} are obtained. Finally, a new inverse transform procedure is presented that calculates the absorption band (ABS) from an experimental Raman excitation profile (REP). An iterative solution is sought for an integral Hilbert transform relation. An exact ABS is recovered regardless of the starting ABS when sufficient iterations are performed.

  8. Partially coherent wavefront propagation simulations: Mirror and monochromator crystal quality assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegart, L., E-mail: lwiegart@bnl.gov; Fluerasu, A.; Chubar, O.

    2016-07-27

    We have applied fully-and partially-coherent synchrotron radiation wavefront propagation simulations, implemented in the “Synchrotron Radiation Workshop” (SRW) computer code, to analyse the effects of imperfect mirrors and monochromator at the Coherent Hard X-ray beamline. This beamline is designed for X-ray Photon Correlation Spectroscopy, a technique that heavily relies on the partial coherence of the X-ray beam and benefits from a careful preservation of the X-ray wavefront. We present simulations and a comparison with the measured beam profile at the sample position, which show the impact of imperfect optics on the wavefront.

  9. Single-photon-level quantum image memory based on cold atomic ensembles

    PubMed Central

    Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2013-01-01

    A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711

  10. Morphology of the scattering targets: Fresnel and turbulent mechanisms, part 2.1A

    NASA Technical Reports Server (NTRS)

    Royrvik, O.

    1984-01-01

    Refractive index fluctuations cause coherent scattering and reflection of VHF radio waves from the clear air in the altitude region between 0 and approximately 90 km. Similar echoes from the stratosphere/troposphere and the mesosphere are observed at UHF and MF/HF frequencies, respectively. The nature of the refractive index fluctuations has been studied for many years without producing a clear consensus on what mechanism causes them. It is believed that the irregularities can originate from two different mechanisms: turbulent mixing of the gradient of refractive index, and stable horizontally stratified laminae of sharp gradients in the refractive index. In order to explain observations of volume dependence and aspect sensitivity of the echo power in the MST region, a diversity of submechanisms has been proposed. They include isotropic and anisotropic turbulent scattering, Fresnel scattering and reflection, and diffuse reflection. Isotropic turbulent scattering is believed to cause a majority of the clear air echoes observed by MST radars. The mechanism requires active turbulence mixing of a preexisting gradient in the refractive index profile.

  11. Atom-Resonant Heralded Single Photons by Interaction-Free Measurement

    NASA Astrophysics Data System (ADS)

    Wolfgramm, Florian; de Icaza Astiz, Yannick A.; Beduini, Federica A.; Cerè, Alessandro; Mitchell, Morgan W.

    2011-02-01

    We demonstrate the generation of rubidium-resonant heralded single photons for quantum memories. Photon pairs are created by cavity-enhanced down-conversion and narrowed in bandwidth to 7 MHz with a novel atom-based filter operating by “interaction-free measurement” principles. At least 94% of the heralded photons are atom-resonant as demonstrated by a direct absorption measurement with rubidium vapor. A heralded autocorrelation measurement shows gc(2)(0)=0.040±0.012, i.e., suppression of multiphoton contributions by a factor of 25 relative to a coherent state. The generated heralded photons can readily be used in quantum memories and quantum networks.

  12. Defect modes in photonic crystal slabs studied using terahertz time-domain spectroscopy.

    PubMed

    Jian, Zhongping; Pearce, Jeremy; Mittleman, Daniel M

    2004-09-01

    We describe broadband coherent transmission studies of two-dimensional photonic crystals consisting of a hexagonal array of air holes in a dielectric slab in a planar waveguide. By filling several of the air holes in the photonic crystal slab, we observe the signature of a defect mode within the stop band, in both the amplitude and phase spectra. The experimental results are in reasonable agreement with theoretical calculations using the transfer matrix method.

  13. Continuous Energy Photon Transport Implementation in MCATK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Terry R.; Trahan, Travis John; Sweezy, Jeremy Ed

    2016-10-31

    The Monte Carlo Application ToolKit (MCATK) code development team has implemented Monte Carlo photon transport into the MCATK software suite. The current particle transport capabilities in MCATK, which process the tracking and collision physics, have been extended to enable tracking of photons using the same continuous energy approximation. We describe the four photoatomic processes implemented, which are coherent scattering, incoherent scattering, pair-production, and photoelectric absorption. The accompanying background, implementation, and verification of these processes will be presented.

  14. Voigt spectral profiles in two-photon resonance fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexanian, Moorad; Bose, Subir K.; Department of Physics, University of Central Florida, Orlando, Florida 32816

    2007-11-15

    A recent work on two-photon fluorescence is extended by considering the pump field to be a coherent state, which represents a laser field operating well above threshold. The dynamical conditions are investigated under which the two-photon spectrum gives rise, in addition to a Lorentzian line shape at the pump frequency, to two Voigt spectral sideband profiles. Additional conditions are found under which the Voigt profile behaves like either a Gaussian or a Lorentzian line shape.

  15. Photon scattering from a system of multilevel quantum emitters. II. Application to emitters coupled to a one-dimensional waveguide

    NASA Astrophysics Data System (ADS)

    Das, Sumanta; Elfving, Vincent E.; Reiter, Florentin; Sørensen, Anders S.

    2018-04-01

    In a preceding paper we introduced a formalism to study the scattering of low-intensity fields from a system of multilevel emitters embedded in a three-dimensional (3 D ) dielectric medium. Here we show how this photon-scattering relation can be used to analyze the scattering of single photons and weak coherent states from any generic multilevel quantum emitter coupled to a one-dimensional (1 D ) waveguide. The reduction of the photon-scattering relation to 1 D waveguides provides a direct solution of the scattering problem involving low-intensity fields in the waveguide QED regime. To show how our formalism works, we consider examples of multilevel emitters and evaluate the transmitted and reflected field amplitude. Furthermore, we extend our study to include the dynamical response of the emitters for scattering of a weak coherent photon pulse. As our photon-scattering relation is based on the Heisenberg picture, it is quite useful for problems involving photodetection in the waveguide architecture. We show this by considering a specific problem of state generation by photodetection in a multilevel emitter, where our formalism exhibits its full potential. Since the considered emitters are generic, the 1 D results apply to a plethora of physical systems such as atoms, ions, quantum dots, superconducting qubits, and nitrogen-vacancy centers coupled to a 1 D waveguide or transmission line.

  16. Compact beam splitters with deep gratings for miniature photonic integrated circuits: design and implementation aspects.

    PubMed

    Chen, Chin-Hui; Klamkin, Jonathan; Nicholes, Steven C; Johansson, Leif A; Bowers, John E; Coldren, Larry A

    2009-09-01

    We present an extensive study of an ultracompact grating-based beam splitter suitable for photonic integrated circuits (PICs) that have stringent density requirements. The 10 microm long beam splitter exhibits equal splitting, low insertion loss, and also provides a high extinction ratio in an integrated coherent balanced receiver. We further present the design strategies for avoiding mode distortion in the beam splitter and discuss optimization of the widths of the detectors to improve insertion loss and extinction ratio of the coherent receiver circuit. In our study, we show that the grating-based beam splitter is a competitive technology having low fabrication complexity for ultracompact PICs.

  17. Multichannel modeling and two-photon coherent transfer paths in NaK

    NASA Astrophysics Data System (ADS)

    Schulze, T. A.; Temelkov, I. I.; Gempel, M. W.; Hartmann, T.; Knöckel, H.; Ospelkaus, S.; Tiemann, E.

    2013-08-01

    We explore possible pathways for the creation of ultracold polar NaK molecules in their absolute electronic and rovibrational ground state starting from ultracold Feshbach molecules. In particular, we present a multichannel analysis of the electronic ground and K(4p)+Na(3s) excited-state manifold of NaK, analyze the spin character of both the Feshbach molecular state and the electronically excited intermediate states and discuss possible coherent two-photon transfer paths from Feshbach molecules to rovibronic ground-state molecules. The theoretical study is complemented by the demonstration of stimulated Raman adiabatic passage from the X1Σ+(v=0) state to the a3Σ+ manifold on a molecular beam experiment.

  18. Many-body coherent destruction of tunneling in photonic lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano

    2011-03-15

    An optical realization of the phenomenon of many-body coherent destruction of tunneling, recently predicted for interacting many-boson systems by Gong, Molina, and Haenggi [Phys. Rev. Lett. 103, 133002 (2009)], is proposed for light transport in engineered waveguide arrays. The optical system enables a direct visualization in Fock space of the many-body tunneling control process.

  19. Coherent Transient Systems Evaluation

    DTIC Science & Technology

    1993-06-17

    europium doped yttrium silicate in collaboration with IBM Almaden Research Center. Research into divalent ion doped crystals as photon gated materials...noise limited model and ignore the non-ideal properties of the medium, nonlinear effects, spatial crosstalk, gating efficiencies, local heating, the...demonstration of the coherent transient continuous optical processor was performed in europium doped yttrium silicate. Though hyperfine split ground

  20. Nonlinear Sensing With Collective States of Ultracold Atoms in Optical Lattices

    DTIC Science & Technology

    2015-04-02

    20) E. Tiesinga, “Particle-hole Pair Coherence in Mott insulator quench dynamics” at the June 2014, Division of atomic, molecular, and optical...Jian, Philip R. Johnson, Eite Tiesinga. Particle-Hole Pair Coherence in Mott Insulator Quench Dynamics, P H Y S I C A L R E V I EW L E T T E R S (01...lattices. We focused on techniques that make use of the coherent superposition states in atom number. These state are not unlike the photon number

  1. OCT imaging with temporal dispersion induced intense and short coherence laser source

    NASA Astrophysics Data System (ADS)

    Manna, Suman K.; le Gall, Stephen; Li, Guoqiang

    2016-10-01

    Lower coherence length and higher intensity are two indispensable requirements on the light source for high resolution and large penetration depth OCT imaging. While tremendous interest is being paid on engineering various laser sources to enlarge their bandwidth and hence lowering the coherence length, here we demonstrate another approach by employing strong temporal dispersion onto the existing laser source. Cholesteric liquid crystal (CLC) cells with suitable dispersive slope at the edge of 1-D organic photonic band gap have been designed to provide maximum reduction in coherence volume while maintaining the intensity higher than 50%. As an example, the coherence length of a multimode He-Ne laser is reduced by more than 730 times.

  2. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation

    PubMed Central

    Wu, Yanling; Wu, Qiong; Sun, Fei; Cheng, Cai; Meng, Sheng; Zhao, Jimin

    2015-01-01

    Generating electron coherence in quantum materials is essential in optimal control of many-body interactions and correlations. In a multidomain system this signifies nonlocal coherence and emergence of collective phenomena, particularly in layered 2D quantum materials possessing novel electronic structures and high carrier mobilities. Here we report nonlocal ac electron coherence induced in dispersed MoS2 flake domains, using coherent spatial self-phase modulation (SSPM). The gap-dependent nonlinear dielectric susceptibility χ(3) measured is surprisingly large, where direct interband transition and two-photon SSPM are responsible for excitations above and below the bandgap, respectively. A wind-chime model is proposed to account for the emergence of the ac electron coherence. Furthermore, all-optical switching is achieved based on SSPM, especially with two-color intraband coherence, demonstrating that electron coherence generation is a ubiquitous property of layered quantum materials. PMID:26351696

  3. The Search for Missing Baryons with Linearly Polarized Photons at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Cole, Philip

    2006-05-01

    The set of experiments forming the g8 run took place in Hall B of Jefferson Lab during the summers of 2001 and 2005 These experiments made use of a beam of linearly-polarized photons produced through coherent bremsstrahlung and represent the first time such a probe has been employed at Jefferson Lab. The scientific purpose of g8 is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. With the high-quality beam of the tagged and collimated linearly-polarized photons and the nearly complete angular coverage of the Hall-B spectrometer, we seek to extract the differential cross sections and attendant polarization observables for the photoproduction of vector mesons and kaons at photon energies ranging between 1.3 and 2.2 GeV. We achieved polarizations exceeding 90% and collected over six billion events, which, after our data cuts and analysis, should give us well over 100 times the world's data set. I shall report on the experimental details of establishing the Coherent Bremsstrahlung Facility and present some preliminary results from our first run.

  4. Quantum squeezed state analysis of spontaneous ultra weak light photon emission of practitioners of meditation and control subjects.

    PubMed

    Van Wijk, Eduard P A; Van Wijk, Roeland; Bajpai, Rajendra P

    2008-05-01

    Research on human ultra-weak photon emission (UPE) has suggested a typical human emission anatomic percentage distribution pattern. It was demonstrated that emission intensities are lower in long-term practitioners of meditation as compared to control subjects. The percent contribution of emission from different anatomic locations was not significantly different for meditation practitioners and control subjects. Recently, a procedure was developed to analyze the fluctuations in the signals by measuring probabilities of detecting different numbers of photons in a bin and correct these for background noise. The procedure was tested utilizing the signal from three different body locations of a single subject, demonstrating that probabilities have non-classical features and are well described by the signal in a coherent state from the three body sites. The values indicate that the quantum state of photon emitted by the subject could be a coherent state in the subject being investigated. The objective in the present study was to systematically quantify, in subjects with long-term meditation experience and subjects without this experience, the photon count distribution of 12 different locations. Data show a variation in quantum state parameters within each individual subject as well as variation in quantum state parameters between the groups.

  5. Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Dong, Zhengchao; Zhao, Yonglin

    1996-01-01

    In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.

  6. High Frequency QPOs due to Black Hole Spin

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  7. Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, L.; Lindberg, R.; Kim, K. -J.

    The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considersmore » a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.« less

  8. Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser

    PubMed Central

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin; Turchinovich, Dmitry; Lægsgaard, Jesper; Boppart, Stephen A.

    2012-01-01

    Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10−5 profoundly affects the SC generation in a DFDD-ANDi photonic crystal fiber. Conventional simulations based on the scalar generalized nonlinear Schrödinger equation (GNLSE) fail to reproduce the prominent observed features of the SC generation in a short piece (9-cm) of this fiber. However, these features can be qualitatively or semi-quantitatively understood by the coupled GNLSE that takes into account the form-birefringence. The nonlinear polarization effects induced by the birefringence significantly distort the otherwise simple spectrotemporal field of the SC pulses. We therefore propose the fabrication of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser. PMID:22274457

  9. Slow Narrow Spectral Width E Region Echoes Observed During the March 17-2015 Storm and What They Reveal About the Disturbed Ionosphere.

    NASA Astrophysics Data System (ADS)

    St-Maurice, J. P.; Chau, J. L.

    2015-12-01

    As auroral-type disturbances moved equatorward during the March 17-2015 storm, coherent E region echoes were observed simultaneously with three radar links separated by 40 km each in the east-west direction in northern Germany. One radar operated at 36.2, and the other two at 32.55 MHz. One of the latter operated in a bistatic configuration. On each radar site five separate antennas were used to locate the echoes using interferometry. The unique configuration provided an unsurpassed opportunity to study the origin and evolution of ionospheric structures in a wide field of view during a strong storm. A most noticeable feature was that over a few time intervals, several minutes in duration each, very narrow spectra were observed, with Doppler shifts roughly 1/2 the ion-acoustic speed (often called "type III" echoes in the past). The inferred location indicated that the echoes came from below 100 km altitude. Echoes moving at the nominal ion-acoustic speed came from higher up and/or different flow angles. In one particularly clear instance the "Type III" echo region came from a region 50 to 75 km in extent drifting at roughly 1.5 km/s, while moving at some small (but non-zero) flow angle with respect to the line-of-sight. In view of the observations, a reevaluation of existing theories indicates that the echoes cannot be related to ion cyclotron waves. Instead, their low altitude and flow angle dependence reveal that they are the by-product of the ion Pedersen instability, which has been investigated by a few groups in relation to a non-isothermal treatment of the Farley-Buneman instability. In our present treatment of the problem, nonlinear effects are invoked to compute the final Doppler shift of the resulting structures. We find that the stronger the electric field is, the closer the region of slow echoes has to be to the ExB direction. In our most dramatic example of Type III structures, the size of the echo region pointed to a region of high energy precipitation 50 km by 50 km in size which was moving at a speed of 1.5 km/s. Without the high energy precipitation, there would have been no plasma produced below 100 km and therefore no "Type III" echoes. The high energy precipitation inference is reminiscent of previous "Type III" radar observations that associated their occurrence with regions of auroral precipitation.

  10. Quantum Probability Cancellation Due to a Single-Photon State

    NASA Technical Reports Server (NTRS)

    Ou, Z. Y.

    1996-01-01

    When an N-photon state enters a lossless symmetric beamsplitter from one input port, the photon distribution for the two output ports has the form of Bernouli Binormial, with highest probability at equal partition (N/2 at one outport and N/2 at the other). However, injection of a single photon state at the other input port can dramatically change the photon distribution at the outputs, resulting in zero probability at equal partition. Such a strong deviation from classical particle theory stems from quantum probability amplitude cancellation. The effect persists even if the N-photon state is replaced by an arbitrary state of light. A special case is the coherent state which corresponds to homodyne detection of a single photon state and can lead to the measurement of the wave function of a single photon state.

  11. Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.

    PubMed

    Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M

    2015-06-05

    We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.

  12. Photon Entanglement Through Brain Tissue.

    PubMed

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  13. Secured Optical Communications Using Quantum Entangled Two-Photon Transparency Modulation

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor); Lekki, John (Inventor)

    2015-01-01

    A system and method is disclosed wherein optical signals are coded in a transmitter by tuning or modulating the interbeam delay time (which modulates the fourth-order coherence) between pairs of entangled photons. The photon pairs are either absorbed or not absorbed (transparent) by an atomic or molecular fluorescer in a receiver, depending on the inter-beam delay that is introduced in the entangled photon pairs. Upon the absorption, corresponding fluorescent optical emissions follow at a certain wavelength, which are then detected by a photon detector. The advantage of the disclosed system is that it eliminates a need of a coincidence counter to realize the entanglement-based secure optical communications because the absorber acts as a coincidence counter for entangled photon pairs.

  14. Fiber-Coupled Cavity-QED Source of Identical Single Photons

    NASA Astrophysics Data System (ADS)

    Snijders, H.; Frey, J. A.; Norman, J.; Post, V. P.; Gossard, A. C.; Bowers, J. E.; van Exter, M. P.; Löffler, W.; Bouwmeester, D.

    2018-03-01

    We present a fully fiber-coupled source of high-fidelity single photons. An (In,Ga)As semiconductor quantum dot is embedded in an optical Fabry-Perot microcavity with a robust design and rigidly attached single-mode fibers, which enables through-fiber cross-polarized resonant laser excitation and photon extraction. Even without spectral filtering, we observe that the incident coherent light pulses are transformed into a stream of single photons with high purity (97%) and indistinguishability (90%), which is measured at an in-fiber brightness of 5% with an excellent cavity-mode-to-fiber coupling efficiency of 85%. Our results pave the way for fully fiber-integrated photonic quantum networks. Furthermore, our method is equally applicable to fiber-coupled solid-state cavity-QED-based photonic quantum gates.

  15. Photon Entanglement Through Brain Tissue

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-12-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  16. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes.

    PubMed

    Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J; Thayne, Iain G; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai

    2018-05-25

    Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130  μeV. Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

  17. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes

    NASA Astrophysics Data System (ADS)

    Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J.; Thayne, Iain G.; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai

    2018-05-01

    Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 μ eV . Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

  18. Coherent control of photoelectron wavepacket angular interferograms

    NASA Astrophysics Data System (ADS)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  19. Hybrid Photon-Plasmon Coupling and Ultrafast Control of Nanoantennas on a Silicon Photonic Chip.

    PubMed

    Chen, Bigeng; Bruck, Roman; Traviss, Daniel; Khokhar, Ali Z; Reynolds, Scott; Thomson, David J; Mashanovich, Goran Z; Reed, Graham T; Muskens, Otto L

    2018-01-10

    Hybrid integration of nanoplasmonic devices with silicon photonic circuits holds promise for a range of applications in on-chip sensing, field-enhanced and nonlinear spectroscopy, and integrated nanophotonic switches. Here, we demonstrate a new regime of photon-plasmon coupling by combining a silicon photonic resonator with plasmonic nanoantennas. Using principles from coherent perfect absorption, we make use of standing-wave light fields to maximize the photon-plasmon interaction strength. Precise placement of the broadband antennas with respect to the narrowband photonic racetrack modes results in controlled hybridization of only a subset of these modes. By combining antennas into groups of radiating dipoles with opposite phase, far-field scattering is effectively suppressed. We achieve ultrafast tuning of photon-plasmon hybridization including reconfigurable routing of the standing-wave input between two output ports. Hybrid photonic-plasmonic resonators provide conceptually new approaches for on-chip integrated nanophotonic devices.

  20. X-ray two-photon absorption with high fluence XFEL pulses

    DOE PAGES

    Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; ...

    2015-09-07

    Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~10 5 photons/Å 2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.

  1. Photon losses depending on polarization mixedness

    NASA Astrophysics Data System (ADS)

    Memarzadeh, L.; Mancini, S.

    2010-01-01

    We introduce a quantum channel describing photon losses depending on the degree of polarization mixedness. This can be regarded as a model of quantum channel with correlated errors between discrete and continuous degrees of freedom. We consider classical information over a continuous alphabet encoded on weak coherent states as well as classical information over a discrete alphabet encoded on single photons using dual rail representation. In both cases we study the one-shot capacity of the channel and its behaviour in terms of correlation between losses and polarization mixedness.

  2. Two-Photon Fluorescence Correlation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Fischer, David G.

    2002-01-01

    We will describe a two-photon microscope currently under development at the NASA Glenn Research Center. It is composed of a Coherent Mira 900 tunable, pulsed Titanium:Sapphire laser system, an Olympus Fluoview 300 confocal scanning head, and a Leica DM IRE inverted microscope. It will be used in conjunction with a technique known as fluorescence correlation spectroscopy (FCS) to study intracellular protein dynamics. We will briefly explain the advantages of the two-photon system over a conventional confocal microscope, and provide some preliminary experimental results.

  3. Photonic sensing based on variation of propagation properties of photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Rothwell, John H.; Flavin, Dónal A.; MacPherson, William N.; Jones, Julian D.; Knight, Jonathan C.; Russell, Philip St. J.

    2006-12-01

    We report on a low-coherence interferometric scheme for the measurement of the strain and temperature dependences of group delay and dispersion in short, index-guiding, 'endlessly-single-mode' photonic crystal fibre elements in the 840 nm and 1550 nm regions. Based on the measurements, we propose two schemes for simultaneous strain and temperature measurement using a single unmodified PCF element, without a requirement for any compensating components, and we project the measurement accuracies of these schemes.

  4. B1 gradient coherence selection using a tapered stripline.

    PubMed

    van Meerten, S G J; Tijssen, K C H; van Bentum, P J M; Kentgens, A P M

    2018-01-01

    Pulsed-field gradients are common in modern liquid state NMR pulse sequences. They are often used instead of phase cycles for the selection of coherence pathways, thereby decreasing the time required for the NMR experiment. Soft off-resonance pulses with a B 1 gradient result in a spatial encoding similar to that created by pulsed-field (B 0 ) gradients. In this manuscript we show that pulse sequences with pulsed-field gradients can easily be converted to one which uses off-resonance B 1 field gradient (OFFBEAT) pulses. The advantage of B 1 gradient pulses for coherence selection is that the chemical shift evolution during the pulses is (partially) suppressed. Therefore no refocusing echos are required to correct for evolution during the gradient pulses. A tapered stripline is shown to be a convenient tool for creating a well-defined gradient in the B 1 field strength. B 1 gradient coherence selection using a tapered stripline is a simple and cheap alternative to B 0 pulsed-field gradients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Large efficiency at telecom wavelength for optical quantum memories.

    PubMed

    Dajczgewand, Julián; Le Gouët, Jean-Louis; Louchet-Chauvet, Anne; Chanelière, Thierry

    2014-05-01

    We implement the ROSE protocol in an erbium-doped solid, compatible with the telecom range. The ROSE scheme is an adaptation of the standard two-pulse photon echo to make it suitable for a quantum memory. We observe a retrieval efficiency of 40% for a weak laser pulse in the forward direction by using specific orientations of the light polarizations, magnetic field, and crystal axes.

  6. Noninterferometric Two-Dimensional Fourier-Transform Spectroscopy of Multilevel Systems

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Dao, L. V.; Do, M. T.; Hannaford, P.; Nugent, K. A.; Quiney, H. M.

    2008-06-01

    We demonstrate a technique that determines the phase of the photon-echo emission from spectrally resolved intensity data without requiring phase-stabilized input pulses. The full complex polarization of the emission is determined from spectral intensity measurements. The validity of this technique is demonstrated using simulated data, and is then applied to the analysis of two-color data obtained from the light-harvesting molecule lycopene.

  7. Coherent states on the m-sheeted complex plane as m-photon states

    NASA Technical Reports Server (NTRS)

    Vourdas, Apostolos

    1994-01-01

    Coherent states on the m-sheeted complex plane are introduced and properties like overcompleteness and resolution of the identity are studied. They are eigenstates of the operators a(sub m)(+), a(sub m) which create and annihilate clusters of m-particles. Applications of this formalism in the study of Hamiltonians that describe m-particle clustering are also considered.

  8. Generation of excited coherent states for a charged particle in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Mojaveri, B.; Dehghani, A.

    2015-04-01

    We introduce excited coherent states, |β , α ; n| ≔ a† n | β , α|, where n is an integer and states |β , α| denote the coherent states of a charged particle in a uniform magnetic field. States |β , α| minimize the Schrödinger-Robertson uncertainty relation while having the nonclassical properties. It has been shown that the resolution of identity condition is realized with respect to an appropriate measure on the complex plane. Some of the nonclassical features such as sub-Poissonian statistics and quadrature squeezing of these states are investigated. Our results are compared with similar Agarwal's type photon added coherent states (PACSs) and it is shown that, while photon-counting statistics of |β , α , n| are the same as PACSs, their squeezing properties are different. It is also shown that for large values of |β|, while they are squeezed, they minimize the uncertainty condition. Additionally, it has been demonstrated that by changing the magnitude of the external magnetic field, Bext, the squeezing effect is transferred from one component to another. Finally, a new scheme is proposed to generate states |beta; , α ; n| in cavities.

  9. Optical communication with two-photon coherent states. II - Photoemissive detection and structured receiver performance

    NASA Technical Reports Server (NTRS)

    Shapiro, J. H.; Yuen, H. P.; Machado Mata, J. A.

    1979-01-01

    In a previous paper (1978), the authors developed a method of analyzing the performance of two-photon coherent state (TCS) systems for free-space optical communications. General theorems permitting application of classical point process results to detection and estimation of signals in arbitrary quantum states were derived. The present paper examines the general problem of photoemissive detection statistics. On the basis of the photocounting theory of Kelley and Kleiner (1964) it is shown that for arbitrary pure state illumination, the resulting photocurrent is in general a self-exciting point process. The photocount statistics for first-order coherent fields reduce to those of a special class of Markov birth processes, which the authors term single-mode birth processes. These general results are applied to the structure of TCS radiation, and it is shown that the use of TCS radiation with direct or heterodyne detection results in minimal performance increments over comparable coherent-state systems. However, significant performance advantages are offered by use of TCS radiation with homodyne detection. The abstract quantum descriptions of homodyne and heterodyne detection are derived and a synthesis procedure for obtaining quantum measurements described by arbitrary TCS is given.

  10. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    PubMed

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.

  11. Instrumentation of Molecular Imaging on Site-Specific Targeting Fluorescent Peptide for Early Detection of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Ma, Lixin

    2012-02-01

    In this work we developed two biomedical imaging techniques for early detection of breast cancer. Both image modalities provide molecular imaging capability to probe site-specific targeting dyes. The first technique, heterodyne CCD fluorescence mediated tomography, is a non-invasive biomedical imaging that uses fluorescent photons from the targeted dye on the tumor cells inside human breast tissue. The technique detects a large volume of tissue (20 cm) with a moderate resolution (1 mm) and provides the high sensitivity. The second technique, dual-band spectral-domain optical coherence tomography, is a high-resolution tissue imaging modality. It uses a low coherence interferometer to detect coherent photons hidden in the incoherent background. Due to the coherence detection, a high resolution (20 microns) is possible. We have finished prototype imaging systems for the development of both image modalities and performed imaging experiments on tumor tissues. The spectroscopic/tomographic images show contrasts of dense tumor tissues and tumor necrotic regions. In order to correlate the findings from our results, a diffusion-weighted magnetic resonance imaging (MRI) of the tumors was performed using a small animal 7-Telsa MRI and demonstrated excellent agreement.

  12. Resonant Pump-dump Quantum Control of Solvated Dye Molecules with Phase Jumps

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Lozovoy, Vadim; Dantus, Marcos

    2014-03-01

    Quantum coherent control of two photon and multiphoton excitation processes in atomic and condensed phase systems employing phase jumps has been well studied and understood. Here we demonstrate coherent quantum control of a two photon resonant pump-dump process in a complex solvated dye molecule. Phase jump in the frequency domain via a pulse shaper is employed to coherently enhance the stimulated emission by an order of magnitude when compared to transform limited pulses. Red shifted stimulated emission from successive low energy Stokes shifted excited states leading to narrowband emission are observed upon scanning the pi step across the excitation spectrum. A binary search space routine was also employed to investigate the effects of other types of phase jumps on stimulated emission and to determine the optimum phase that maximizes the emission. Understanding the underlying mechanism of this kind of enhancement will guide us in designing pulse shapes for enhancing stimulated emission, which can be further applied in the field of imaging.

  13. Generation and Coherent Control of Pulsed Quantum Frequency Combs.

    PubMed

    MacLellan, Benjamin; Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Zhang, Yanbing; Sciara, Stefania; Wetzel, Benjamin; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2018-06-08

    We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications components such as programmable filters and electro-optic modulators. In particular, we show in detail how to accomplish state characterization measurements such as density matrix reconstruction, coincidence detection, and single photon spectrum determination. The presented methods form an accessible, reconfigurable, and scalable foundation for complex high-dimensional state preparation and manipulation protocols in the frequency domain.

  14. Parabolic single-crystal diamond lenses for coherent x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey

    2015-09-14

    We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic with a similar or equal to 1 mu m precision and surface roughness. A compound refractive lens comprised of six lenses with a radius of curvature R = 200 mu m at the vertex of the parabola and amore » geometrical aperture A = 900 mu m focuses 10 keV x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of similar or equal to 20 x 90 mu m(2) with a gain factor of similar or equal to 50 - 100. (C) 2015 Author(s).« less

  15. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    PubMed Central

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-01-01

    The ability to generate efficient giga–terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493

  16. Single-electron pulses for ultrafast diffraction

    PubMed Central

    Aidelsburger, M.; Kirchner, F. O.; Krausz, F.; Baum, P.

    2010-01-01

    Visualization of atomic-scale structural motion by ultrafast electron diffraction and microscopy requires electron packets of shortest duration and highest coherence. We report on the generation and application of single-electron pulses for this purpose. Photoelectric emission from metal surfaces is studied with tunable ultraviolet pulses in the femtosecond regime. The bandwidth, efficiency, coherence, and electron pulse duration are investigated in dependence on excitation wavelength, intensity, and laser bandwidth. At photon energies close to the cathode’s work function, the electron pulse duration shortens significantly and approaches a threshold that is determined by interplay of the optical pulse width and the acceleration field. An optimized choice of laser wavelength and bandwidth results in sub-100-fs electron pulses. We demonstrate single-electron diffraction from polycrystalline diamond films and reveal the favorable influences of matched photon energies on the coherence volume of single-electron wave packets. We discuss the consequences of our findings for the physics of the photoelectric effect and for applications of single-electron pulses in ultrafast 4D imaging of structural dynamics. PMID:21041681

  17. Analysis of Raman lasing without inversion

    NASA Astrophysics Data System (ADS)

    Sheldon, Paul Martin

    1999-12-01

    Properties of lasing without inversion were studied analytically and numerically using Maple computer assisted algebra software. Gain for probe electromagnetic field without population inversion in detuned three level atomic schemes has been found. Matter density matrix dynamics and coherence is explored using Pauli matrices in 2-level systems and Gell-Mann matrices in 3-level systems. It is shown that extreme inversion produces no coherence and hence no lasing. Unitary transformation from the strict field-matter Hamiltonian to an effective two-photon Raman Hamiltonian for multilevel systems has been derived. Feynman diagrams inherent in the derivation show interesting physics. An additional picture change was achieved and showed cw gain possible. Properties of a Raman-like laser based on injection of 3- level coherently driven Λ-type atoms whose Hamiltonian contains the Raman Hamiltonian and microwave coupling the two bottom states have been studied in the limits of small and big photon numbers in the drive field. Another picture change removed the microwave coupler to all orders and simplified analysis. New possibilities of inversionless generation were found.

  18. Fundamental limits to single-photon detection determined by quantum coherence and backaction

    NASA Astrophysics Data System (ADS)

    Young, Steve M.; Sarovar, Mohan; Léonard, François

    2018-03-01

    Single-photon detectors have achieved impressive performance and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to trade-offs between detector metrics and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a ideal photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next-generation detectors.

  19. Resonance fluorescence spectrum in a two-band photonic bandgap crystal

    NASA Astrophysics Data System (ADS)

    Lee, Ray-Kuang; Lai, Yinchieh

    2003-05-01

    Steady state resonance fluorescence spectra from a two-level atom embedded in a photonic bandgap crystal and resonantly driven by a classical pump light are calculated. The photonic crystal is considered to be with a small bandgap which is in the order of magnitude of the Rabi frequency and is modeled by the anisotropic two-band dispersion relation. Non-Markovian noises caused by the non-uniform distribution of photon density states near the photonic bandgap are taken into account by a new approach which linearizes the optical Bloch equations by using the Liouville operator expansion. Fluorescence spectra that only exhibit sidebands of the Mollow triplet are found, indicating that there is no coherent Rayleigh scattering process.

  20. Coherent response of a semiconductor microcavity in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Cassabois, G.; Triques, A. L. C.; Ferreira, R.; Delalande, C.; Roussignol, Ph; Bogani, F.

    2000-05-01

    We have studied the coherent dynamics of a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond time resolution in a backscattering geometry. Evidence is brought of the resolution of a homogeneous polariton line in an inhomogeneously broadened exciton system. Surprisingly, photon-like polaritons exhibit an inhomogeneous dephasing. Moreover, we observe an unexpected stationary coherence up to 8 ps for the lower polariton branch close to resonance. All these experimental results are well reproduced within the framework of a linear dispersion theory assuming a coherent superposition of the reflectivity and resonant Rayleigh scattering signals with a well-defined relative phase.

  1. EISCAT observations during MAC/SINE and MAC/Epsilon

    NASA Technical Reports Server (NTRS)

    Roettger, J.; Hoppe, U.-P.; Hall, C.

    1989-01-01

    The EISCAT incoherent scatter radar facility in Tromsoe, Norway was operated during the MAC/SINE campaign for 78 hours in the period 10 June to 17 July 1987, and during the MAC/Epsilon campaign for 90 hours in the period 15 October to 5 November 1987. The VHF (224 MHz) radar operations during MAC/SINE yielded most interesting observations of strong coherent echoes from the mesopause region. Characteristic data of these polar mesospheric summer echoes are presented. The UHF (933 MHz) radar operations during MAC/Epsilon were done with 18 deg off zenith beam and allows the deduction of meridonal and horizontal wind components as well as radial velocity spectra in addition to the usual electron density profiles in the D and lower E regions. Some results from the VHF and UHF radars indicating the presence of gravity waves are examined.

  2. Photon correlation in single-photon frequency upconversion.

    PubMed

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  3. Generalized quantum interference of correlated photon pairs

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143

  4. Optical storage with electromagnetically induced transparency in cold atoms at a high optical depth

    NASA Astrophysics Data System (ADS)

    Zhang, Shanchao; Zhou, Shuyu; Liu, Chang; Chen, J. F.; Wen, Jianming; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang

    2012-06-01

    We report experimental demonstration of efficient optical storage with electromagnetically induced transparency (EIT) in a dense cold ^85Rb atomic ensemble trapped in a two-dimensional magneto-optical trap. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency for coherent optical pulses has a saturation value of 50% as OD > 50. Our result is consistent with that obtained from hot vapor cell experiments which suggest that a four-wave mixing nonlinear process degrades the EIT storage coherence and efficiency. We apply this EIT quantum memory for narrow-band single photons with controllable waveforms, and obtain an optimal storage efficiency of 49±3% for single-photon wave packets. This is the highest single-photon storage efficiency reported up to today and brings the EIT atomic quantum memory close to practical application because an efficiency of above 50% is necessary to operate the memory within non-cloning regime and beat the classical limit.

  5. Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation

    DOEpatents

    Glownia, James H.; Sander, Robert K.

    1985-01-01

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  6. Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation

    DOEpatents

    Glownia, J.H.; Sander, R.K.

    1982-06-29

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  7. The flux qubit revisited to enhance coherence and reproducibility

    PubMed Central

    Yan, Fei; Gustavsson, Simon; Kamal, Archana; Birenbaum, Jeffrey; Sears, Adam P; Hover, David; Gudmundsen, Ted J.; Rosenberg, Danna; Samach, Gabriel; Weber, S; Yoder, Jonilyn L.; Orlando, Terry P.; Clarke, John; Kerman, Andrew J.; Oliver, William D.

    2016-01-01

    The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, high reproducibility and relaxation times in excess of 40 μs at its flux-insensitive point. Qubit relaxation times T1 across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal-photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T2≈85 μs, approximately the 2T1 limit. In addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as limiting T2 in contemporary qubits based on transverse qubit–resonator interaction. PMID:27808092

  8. Femtosecond two-photon Rabi oscillations in excited He driven by ultrashort intense laser fields

    NASA Astrophysics Data System (ADS)

    Fushitani, M.; Liu, C.-N.; Matsuda, A.; Endo, T.; Toida, Y.; Nagasono, M.; Togashi, T.; Yabashi, M.; Ishikawa, T.; Hikosaka, Y.; Morishita, T.; Hishikawa, A.

    2016-02-01

    Coherent light-matter interaction provides powerful methods for manipulating quantum systems. Rabi oscillation is one such process. As it enables complete population transfer to a target state, it is thus routinely exploited in a variety of applications in photonics, notably quantum information processing. The extension of coherent control techniques to the multiphoton regime offers wider applicability, and access to highly excited or dipole-forbidden transition states. However, the multiphoton Rabi process is often disrupted by other competing nonlinear effects such as the a.c. Stark shift, especially at the high laser-field intensities necessary to achieve ultrafast Rabi oscillations. Here we demonstrate a new route to drive two-photon Rabi oscillations on timescales as short as tens of femtoseconds, by utilizing the strong-field phenomenon known as Freeman resonance. The scenario is not specific to atomic helium as investigated in the present study, but broadly applicable to other systems, thus opening new prospects for the ultrafast manipulation of Rydberg states.

  9. Coherent Radiation in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Sutherland, Robert Tyler

    Over the last century, quantum mechanics has dramatically altered our understanding of light and matter. Impressively, exploring the relationship between the two continues to provide important insights into the physics of many-body systems. In this thesis, we add to this still growing field of study. Specifically, we discuss superradiant line-broadening and cooperative dipole-dipole interactions for cold atom clouds in the linear-optics regime. We then discuss how coherent radiation changes both the photon scattering properties and the excitation distribution of atomic arrays. After that, we explore the nature of superradiance in initially inverted clouds of multi-level atoms. Finally, we explore the physics of clouds with degenerate Zeeman ground states, and show that this creates quantum effects that fundamentally change the photon scattering of atomic ensembles.

  10. Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout.

    PubMed

    Reim, K F; Nunn, J; Jin, X-M; Michelberger, P S; Champion, T F M; England, D G; Lee, K C; Kolthammer, W S; Langford, N K; Walmsley, I A

    2012-06-29

    Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand, the key element of all PQIP architectures is the beam splitter, which allows us to coherently couple optical modes. Here, we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long distance quantum communications and quantum metrology.

  11. Numerical simulation of a soft-x-ray Li laser pumped with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozsnyai, B.; Watanabe, H.; Csonka, P.L.

    1985-07-01

    Results of a computer simulation are reported for a lithium soft-x-ray laser pumped by synchro- tron radiation. Coherent stimulated emission of the photons of interest occurs in Li II 1s2p..-->..Li II 1s/sup 2/ transitions. Calculated results include the dominant ion and photon densities and the laser gain.

  12. Coherent interaction of single molecules and plasmonic nanowires

    NASA Astrophysics Data System (ADS)

    Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg

    2017-09-01

    Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.

  13. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography

    PubMed Central

    Yurtsever, Günay; Považay, Boris; Alex, Aneesh; Zabihian, Behrooz; Drexler, Wolfgang; Baets, Roel

    2014-01-01

    Optical coherence tomography (OCT) is a noninvasive, three-dimensional imaging modality with several medical and industrial applications. Integrated photonics has the potential to enable mass production of OCT devices to significantly reduce size and cost, which can increase its use in established fields as well as enable new applications. Using silicon nitride (Si3N4) and silicon dioxide (SiO2) waveguides, we fabricated an integrated interferometer for spectrometer-based OCT. The integrated photonic circuit consists of four splitters and a 190 mm long reference arm with a foot-print of only 10 × 33 mm2. It is used as the core of a spectral domain OCT system consisting of a superluminescent diode centered at 1320 nm with 100 nm bandwidth, a spectrometer with 1024 channels, and an x-y scanner. The sensitivity of the system was measured at 0.25 mm depth to be 65 dB with 0.1 mW on the sample. Using the system, we imaged human skin in vivo. With further optimization in design and fabrication technology, Si3N4/SiO2 waveguides have a potential to serve as a platform for passive photonic integrated circuits for OCT. PMID:24761288

  14. Simple model of a coherent molecular photocell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca; Bélanger, Marc-André; Mayou, Didier

    2016-04-07

    Electron transport in molecular electronic devices is often dominated by a coherent mechanism in which the wave function extends from the left contact over the molecule to the right contact. If the device is exposed to light, photon absorption in the molecule might occur, turning the device into a molecular photocell. The photon absorption promotes an electron to higher energy levels and thus modifies the electron transmission probability through the device. A model for such a molecular photocell is presented that minimizes the complexity of the problem while providing a non-trivial description of the device mechanism. In particular, the rolemore » of the molecule in the photocell is investigated. It is described within the Hückel method and the source-sink potential approach [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)] is used to eliminate the contacts in favor of complex-valued potentials. Furthermore, the photons are explicitly incorporated into the model through a second-quantized field. This facilitates the description of the photon absorption process with a stationary state calculation, where eigenvalues and eigenvectors are determined. The model developed is applied to various generic molecular photocells.« less

  15. Explanatory Coherence and Belief Revision in Naive Physics

    DTIC Science & Technology

    1988-07-01

    continental drift (Thagard & Nowak, 1988), and debates about why the dinosaurs became extinct . Application of ECHO to the belief revisions in Pat and Hal...rewono of nocuamy Idid 4onoly by bodck number) Students of reasoning have long tried to understand how people revise systems of beliefs. We maintain...Princeton University Students of reasoning have long tried to understand how people revise systems of beliefs (see Wertheimer, 1945, for example). We will

  16. Advanced Research Workshop on Fundamentals of Electronic Nanosystems Held in St. Petersburg, Russia on 25 June-1 July 2005

    DTIC Science & Technology

    2005-01-01

    qubits . Suppression of Superconductivity in Granular Metals Igor Beloborodov Argonne National Laboratory, USA We investigate the suppression of...Russia Various strategies for extending coherence times of superconducting qubits have been proposed. We analyze the effect of fluctuations on a... qubit operated at an optimal point in the free- induction decay and the spin-echo-like experiments. Motivated by the recent experimental findings we

  17. In vivo measurement of the trabecular bone mineral density by coherent and Compton. gamma. -ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karellas, A.

    1984-01-01

    A photon scattering method for measuring the mineral density of trabecular bone (BMD) is described. By computing the ratio of the coherent to Compton scattered photons, the BMD can be measured accurately and without any significant interference by the surrounding tissue. This study shows theoretically and experimentally that an increase in the scatter angle, when using 60 keV photons from Am-241, results in a stronger power dependence on Z. This implies that by increasing the scatter angle, smaller changes in BMD can be detected, thus improving the sensitivity of the measurement. The dependence of the sensitivity on the energy ofmore » the incident photons was also investigated. A collimated beam of photons from 1200 mCi of Am-241 (60 keV) was used and the scattered photons were detected at a scatter angle of 71/sup 0/. The system was calibrated by using a new standard which contains bone mineral mixed homogeneously with a marrow simulating substance. This method was applied for the measurement of the calcaneal BMD in 21 normal volunteers and seven paraplegic patients. The BMD values for the normal group ranged from 170-300 mg/cm/sup 3/. The BMD for the paraplegics with injuries older than one year ranged from 90-150 mg/cm/sup 3/. This measurement has potential application in the diagnosis of early osteopenia and in monitoring the effect of various treatment regimens.« less

  18. Mesoscopic quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com

    Since a strictly single-photon source is not yet available, in quantum cryptography systems, one uses, as information quantum states, coherent radiation of a laser with an average number of photons of μ ≈ 0.1–0.5 in a pulse, attenuated to the quasi-single-photon level. The linear independence of a set of coherent quasi-single-photon information states leads to the possibility of unambiguous measurements that, in the presence of losses in the line, restrict the transmission range of secret keys. Starting from a certain value of critical loss (the length of the line), the eavesdropper knows the entire key, does not make errors, andmore » is not detected—the distribution of secret keys becomes impossible. This problem is solved by introducing an additional reference state with an average number of photons of μ{sub cl} ≈ 10{sup 3}–10{sup 6}, depending on the length of the communication line. It is shown that the use of a reference state does not allow the eavesdropper to carry out measurements with conclusive outcome while remaining undetected. A reference state guarantees detecting an eavesdropper in a channel with high losses. In this case, information states may contain a mesoscopic average number of photons in the range of μ{sub q} ≈ 0.5–10{sup 2}. The protocol proposed is easy to implement technically, admits flexible adjustment of parameters to the length of the communication line, and is simple and transparent for proving the secrecy of keys.« less

  19. Microscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap

    NASA Astrophysics Data System (ADS)

    Roy, Chiranjeeb; John, Sajeev

    2010-02-01

    We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  20. Exact steady state of a Kerr resonator with one- and two-photon driving and dissipation: Controllable Wigner-function multimodality and dissipative phase transitions

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Minganti, Fabrizio; Casteels, Wim; Ciuti, Cristiano

    2016-09-01

    We present exact results for the steady-state density matrix of a general class of driven-dissipative systems consisting of a nonlinear Kerr resonator in the presence of both coherent (one-photon) and parametric (two-photon) driving and dissipation. Thanks to the analytical solution, obtained via the complex P -representation formalism, we are able to explore any regime, including photon blockade, multiphoton resonant effects, and a mesoscopic regime with large photon density and quantum correlations. We show how the interplay between one- and two-photon driving provides a way to control the multimodality of the Wigner function in regimes where the semiclassical theory exhibits multistability. We also study the emergence of dissipative phase transitions in the thermodynamic limit of large photon numbers.

  1. Challenges and solutions for high-volume testing of silicon photonics

    NASA Astrophysics Data System (ADS)

    Polster, Robert; Dai, Liang Yuan; Oikonomou, Michail; Cheng, Qixiang; Rumley, Sebastien; Bergman, Keren

    2018-02-01

    The first generation of silicon photonic products is now commercially available. While silicon photonics possesses key economic advantages over classical photonic platforms, it has yet to become a commercial success because these advantages can be fully realized only when high-volume testing of silicon photonic devices is made possible. We discuss the costs, challenges, and solutions of photonic chip testing as reported in the recent research literature. We define and propose three underlying paradigms that should be considered when creating photonic test structures: Design for Fast Coupling, Design for Minimal Taps, and Design for Parallel Testing. We underline that a coherent test methodology must be established prior to the design of test structures, and demonstrate how an optimized methodology dramatically reduces the burden when designing for test, by reducing the needed complexity of test structures.

  2. Quantum channel for the transmission of information

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-01-13

    Systems and methods are described for a quantum channel for the transmission of information. A method includes: down converting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometric multi-color entangled photon beam; combining the first interferometric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam within a single beam splitter; wherein combining includes erasing energy and momentum characteristics from both the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam; splitting the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam within the single beam splitter, wherein splitting yields a first output beam of multi-color entangled photons and a second output beam of multi-color entangled photons; and modulating the first output beam of multi-color entangled photons.

  3. Photon Entanglement Through Brain Tissue

    PubMed Central

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-01-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness. PMID:27995952

  4. A semiconductor photon-sorter

    NASA Astrophysics Data System (ADS)

    Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2016-10-01

    Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.

  5. Direct photonic coupling of a semiconductor quantum dot and a trapped ion.

    PubMed

    Meyer, H M; Stockill, R; Steiner, M; Le Gall, C; Matthiesen, C; Clarke, E; Ludwig, A; Reichel, J; Atatüre, M; Köhl, M

    2015-03-27

    Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb^{+} ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the σ_{z} projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network.

  6. Tissue characterization with ballistic photons: counting scattering and/or absorption centres

    NASA Astrophysics Data System (ADS)

    Corral, F.; Strojnik, M.; Paez, G.

    2015-03-01

    We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach-Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path-integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexanian, Moorad

    The fidelity for cloning coherent states is improved over that provided by optimal Gaussian and non-Gaussian cloners for the subset of coherent states that are prepared with known phases. Gaussian quantum cloning duplicates all coherent states with an optimal fidelity of 2/3. Non-Gaussian cloners give optimal single-clone fidelity for a symmetric 1-to-2 cloner of 0.6826. Coherent states that have known phases can be cloned with a fidelity of 4/5. The latter is realized by a combination of two beam splitters and a four-wave mixer operated in the nonlinear regime, all of which are realized by interaction Hamiltonians that are quadraticmore » in the photon operators. Therefore, the known Gaussian devices for cloning coherent states are extended when cloning coherent states with known phases by considering a nonbalanced beam splitter at the input side of the amplifier.« less

  8. Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength

    NASA Astrophysics Data System (ADS)

    Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver

    2017-09-01

    Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.

  9. High responsivity coherent photonic receiver integrating an SOA, a 90° hybrid, and high speed UTC photodiodes.

    PubMed

    Santini, Guillaume; Caillaud, Christophe; Paret, Jean-François; Pommereau, Frederic; Mekhazni, Karim; Calo, Cosimo; Achouche, Mohand

    2017-10-16

    We demonstrate a single polarization monolithically integrated coherent receiver on an InP substrate with a SOA preamplifier, a 90° optical hybrid, and four 40 GHz UTC photodiodes. Record performances with responsivity above 4 A/W with low imbalance <1 dB and error free detection of 32 Gbaud QPSK signals were simultaneously demonstrated.

  10. Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing

    2018-06-01

    We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.

  11. Evidence of the Dampening Effect of Dense E-region Structures on E-F Coupling

    NASA Astrophysics Data System (ADS)

    Helmboldt, J.

    2012-12-01

    Results from a combination of instruments including ionosondes, GPS receivers, the Very Large Array (VLA), and the Long Wavelength Array (LWA) are used to demonstrate the role structure within the E-region plays in coupling between instabilities within the E and F regions at midlatitudes. VLA observations of cosmic sources at 74 MHz during summer nighttime in 2002 detected northwest-to-southeast aligned wavefronts, consistent with medium-scale traveling ionospheric disturbances (MSTIDs). These waves were only found when contemporaneous observations from nearby ionosondes detected echoes from sporadic-E layers. However, when the peak density of these layers was high (foEs> 3 MHz), there were no MSTIDs detected. Similar results are presented using the first station of the LWA, LWA1, to perform all-sky imaging of dense E-region structures (sporadic-E "clouds") via coherent scattering of distant analog TV broadcasts at 55 MHz. These observations were conducted during summer/autumn 2012 and include simultaneous GPS-based observations of F-region disturbances.Left: LWA1 all-sky image of ionospheric echoes of analog TV transmissions at 55.25 MHz. Right: Doppler speed maps for the brightest echoes.

  12. Chirp echo Fourier transform EPR-detected NMR

    NASA Astrophysics Data System (ADS)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  13. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    PubMed Central

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  14. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector.

    PubMed

    Giewekemeyer, Klaus; Philipp, Hugh T; Wilke, Robin N; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W; Shanks, Katherine S; Zozulya, Alexey V; Salditt, Tim; Gruner, Sol M; Mancuso, Adrian P

    2014-09-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10(8) 8-keV photons pixel(-1) s(-1), and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10(10) photons µm(-2) s(-1) within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while `still' images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  15. A novel coherent optical en/decoder for optical label processing of OCDM-based optical packets switching networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun

    2007-11-01

    A coherent optical en/decoder based on photonic crystal (PhC) for optical code-division-multiple (OCDM)-based optical label (OCDM-OL) optical packets switching (OPS) networks is proposed in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by the photonic crystal phase shifter and delayer using the appropriate design of fabrication. In this design, the combination calculation of the impurity and normal period layers is applied, according to the PhC transmission matrix theorem. The design and theoretical analysis of the PhC-based optical coherent en/decoder is mainly focused. In addition, the performances of the PhC-based optical en/decoders are analyzed in detail. The reflection, the transmission, delay characteristic and the optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by the numerical calculation, taking into account 1-Dimension (1D) PhC. Theoretical analysis and numerical results show that optical pulse is achieved to properly phase modulation and time delay by the proposed scheme, optical label based on OCDM is rewrote successfully by new code for OCDM-based OPS (OCDM-OPS), and an over 8.5 dB ration of auto- and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.

  16. Tomography of a displacement photon counter for discrimination of single-rail optical qubits

    NASA Astrophysics Data System (ADS)

    Izumi, Shuro; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2018-04-01

    We investigate the performance of a detection strategy composed of a displacement operation and a photon counter, which is known as a beneficial tool in optical coherent communications, to the quantum state discrimination of the two superpositions of vacuum and single photon states corresponding to the {\\hat{σ }}x eigenstates in the single-rail encoding of photonic qubits. We experimentally characterize the detection strategy in vacuum-single photon two-dimensional space using quantum detector tomography and evaluate the achievable discrimination error probability from the reconstructed measurement operators. We furthermore derive the minimum error rate obtainable with Gaussian transformations and homodyne detection. Our proof-of-principle experiment shows that the proposed scheme can achieve a discrimination error surpassing homodyne detection.

  17. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOEpatents

    Bischel, William K. [Menlo Park, CA; Jacobs, Ralph R. [Livermore, CA; Prosnitz, Donald [Hamden, CT; Rhodes, Charles K. [Palo Alto, CA; Kelly, Patrick J. [Fort Lewis, WA

    1979-02-20

    Method and apparatus for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH.sub.3) or methyl fluoride (CH.sub.3 F) is optically pumped by a pair of CO.sub.2 lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level.

  18. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOEpatents

    Bischel, W.K.; Jacobs, R.R.; Prosnitz, D.P.; Rhodes, C.K.; Kelly, P.J.

    1979-02-20

    Method and apparatus are disclosed for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH[sub 3]) or methyl fluoride (CH[sub 3]F) is optically pumped by a pair of CO[sub 2] lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level. 3 figs.

  19. Optical pulse generation in a transistor laser via intra-cavity photon-assisted tunneling and excess base carrier redistribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, M.; Iverson, E. W.; Wang, C. Y.

    2015-11-02

    For a direct-gap semiconductor (e.g., a p-n junction), photon-assisted tunneling is known to exhibit a high nonlinear absorption. In a transistor laser, as discussed here, the coherent photons generated at the quantum well interact with the collector junction field and “assist” electron tunneling from base to collector, thus resulting in the nonlinear modulation of the laser and the realization of optical pulse generation. 1 and 2 GHz optical pulses are demonstrated in the transistor laser using collector voltage control.

  20. Counterfactual Measurements and the Quantum Zeno Effect

    NASA Astrophysics Data System (ADS)

    Russo, Onofrio; Jiang, Liang

    2014-03-01

    The apparent paradoxical paradigm of an interaction free measurement (counterfactual measurement) of the presence of a classical or quantum object without any scattering or absorption of photons is considered in light of the quantum Zeno effect. From one perspective, the counterfactual measurement in principle is consistent with minimizing the interaction between the object and the photon. However, the quantum Zeno effect mandates that repeated interactions with photons (although weakly coupled) are required and necessary to inhibit the coherent evolution of the state of the system. We consider and appraise these seemingly conflicting concepts.

  1. Strong-field two-photon transition by phase shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkyung; Lim, Jongseok; Ahn, Jaewook

    2010-08-15

    We demonstrate the ultrafast coherent control of a nonlinear two-photon absorption in a dynamically shifted energy level structure. We use a spectrotemporal laser-pulse shaping that is programed to preserve the resonant absorption condition during the intense laser-field interaction. Experiments carried out in the strong-field regime of two-photon absorption in the ground state of atomic cesium reveal that the analytically obtained offset and curvature of a laser spectrum compensate the effect of both static and dynamic energy shifts of the given light-atom interaction.

  2. More on molecular excitations: Dark matter detection in ice

    DOE PAGES

    Va'vra, J.

    2016-08-10

    In this paper we investigate di-atomic molecules embedded in ice crystals under strain. In this environment coherent vibrations of many OH-bonds may be generated by one WIMP collision. The detection of such multiple-photon signals may provide a signature of a 100 GeV/c 2 WIMP. To do a proper lab test of “WIMP-induced” multi-photon emission is very difficult. As a result, we suggest that Ice Cube make a search for multi-photon events, and investigate whether the rate of such events exhibits yearly modulation.

  3. Quantum light in novel systems

    NASA Astrophysics Data System (ADS)

    Rai, Amit

    2011-12-01

    In this thesis we have focused on the study of various systems which are presently widely studied in different areas of quantum optics and quantum information sciences. These, for example, include the coupled system of photonic waveguides which are known to be highly efficient in manipulating the flow of light. The Hamiltonian describing the evolution of field mode in coupled waveguides is effectively identical to the well-known tight binding Hamiltonian used in solid state physics. The advantage of waveguide system is the possibility to control various interactions by design and their low decoherence rate. The excellent stability offered by coupled waveguides has led to the observation of many key coherent effects such as quantum walk, Bloch oscillation, and discrete Talbot effect. For example, Bloch oscillations have been investigated in coupled waveguides using coherent beam of light. We wanted to inquire whether coherent phenomena such as Bloch oscillations can be possible with incoherent single photon sources. We discovered that Bloch oscillations are indeed possible with single photons provided we prepare single photons in a W state. Moreover, coupled waveguides also find applications in the field of quantum information processing. Since entanglement plays a prominent role in all these applications, it is important to understand the entanglement dynamics in these structures. We considered the case of squeezed input in one of the waveguide and showed that one can generate entanglement between the waveguide modes. We further continued our work on the entanglement generation in coupled waveguides by incorporating the effect of loss in the waveguide structure for the squeezed and photon number input states. We considered relevant experimental parameters and showed that waveguide structures are reasonably robust against the effect of loss. Another system which has attracted a great deal of interest is the optomechanical system. We consider an optomechanical system where an optical cavity mode is coupled to the square of the position of a mechanical oscillator. The optomechanical system can then be regarded as a quantum optical spring, i.e., a spring whose spring constant depends on the quantum state of another system. In particular, we consider the situation where the field inside the cavity is in a coherent state and the oscillator is prepared in its ground state. The quantized nature of the field produces new features in the optomechanical system.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podoshvedov, S. A., E-mail: podoshvedov@mail.ru

    A method to generate Schroedinger cat states in free propagating optical fields based on the use of displaced states (or displacement operators) is developed. Some optical schemes with photon-added coherent states are studied. The schemes are modifications of the general method based on a sequence of displacements and photon additions or subtractions adjusted to generate Schroedinger cat states of a larger size. The effects of detection inefficiency are taken into account.

  5. Reconfigurable Cellular Photonic Crystal Arrays (RCPA)

    DTIC Science & Technology

    2013-03-01

    signal processing based on reconfigurable integrated optics devices. This technology has the potential to revolutionize the design circle of optical...Accomplishments III.A. Design and fabrication of an accumulation-mode modulator Figure 1(a) shows the schematic of a compact resonator on the double-Si... integration of silicon nitride on silicon-on-insulator platform to enhance the arsenal of photonic circuit designers . The coherent integration of

  6. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.

    PubMed

    Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena

    2016-04-26

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  7. Coherent light squeezing states within a modified microring system

    NASA Astrophysics Data System (ADS)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Amiri, I. S.; Chaiwong, K.; Chiangga, S.; Singh, G.; Yupapin, P.

    2018-06-01

    We have proposed the simple method of the squeezed light generation in the modified microring resonator, which is known as the microring conjugate mirror (MCM). When the monochromatic light is input into the MCM, the general form of the squeezed coherent states for a quantum harmonic oscillator can be generated by controlling the additional two side rings, which are the phase modulators. By using the graphical method called the Optiwave program, the coherent squeezed states of coherent light within an MCM can be obtained and interpreted as the amplitude, phase, quadrature and photon number-squeezed states. This method has shown potentials for microring related device design, which can be used before practical applications.

  8. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    NASA Astrophysics Data System (ADS)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-04-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  9. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms

    NASA Astrophysics Data System (ADS)

    Rigetti, Chad; Gambetta, Jay M.; Poletto, Stefano; Plourde, B. L. T.; Chow, Jerry M.; Córcoles, A. D.; Smolin, John A.; Merkel, Seth T.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, M.

    2012-09-01

    We report a superconducting artificial atom with a coherence time of T2*=92 μs and energy relaxation time T1=70 μs. The system consists of a single Josephson junction transmon qubit on a sapphire substrate embedded in an otherwise empty copper waveguide cavity whose lowest eigenmode is dispersively coupled to the qubit transition. We attribute the factor of four increase in the coherence quality factor relative to previous reports to device modifications aimed at reducing qubit dephasing from residual cavity photons. This simple device holds promise as a robust and easily produced artificial quantum system whose intrinsic coherence properties are sufficient to allow tests of quantum error correction.

  10. Experimental tests of coherence and entanglement conservation under unitary evolutions

    NASA Astrophysics Data System (ADS)

    Černoch, Antonín; Bartkiewicz, Karol; Lemr, Karel; Soubusta, Jan

    2018-04-01

    We experimentally demonstrate the migration of coherence between composite quantum systems and their subsystems. The quantum systems are implemented using polarization states of photons in two experimental setups. The first setup is based on a linear optical controlled-phase quantum gate and the second scheme utilizes effects of nonlinear optics. Our experiment allows one to verify the relation between correlations of the subsystems and the coherence of the composite system, which was given in terms of a conservation law for maximal accessible coherence by Svozilík et al. [J. Svozilík et al., Phys. Rev. Lett. 115, 220501 (2015), 10.1103/PhysRevLett.115.220501]. We observe that the maximal accessible coherence is conserved for the implemented class of global evolutions of the composite system.

  11. Non-Gaussian statistics and optical rogue waves in stimulated Raman scattering.

    PubMed

    Monfared, Yashar E; Ponomarenko, Sergey A

    2017-03-20

    We explore theoretically and numerically optical rogue wave formation in stimulated Raman scattering inside a hydrogen filled hollow core photonic crystal fiber. We assume a weak noisy Stokes pulse input and explicitly construct the input Stokes pulse ensemble using the coherent mode representation of optical coherence theory, thereby providing a link between optical coherence and rogue wave theories. We show that the Stokes pulse peak power probability distribution function (PDF) acquires a long tail in the limit of nearly incoherent input Stokes pulses. We demonstrate a clear link between the PDF tail magnitude and the source coherence time. Thus, the latter can serve as a convenient parameter to control the former. We explain our findings qualitatively using the concepts of statistical granularity and global degree of coherence.

  12. Coherent Electron Transfer at the Ag / Graphite Heterojunction Interface

    NASA Astrophysics Data System (ADS)

    Tan, Shijing; Dai, Yanan; Zhang, Shengmin; Liu, Liming; Zhao, Jin; Petek, Hrvoje

    2018-03-01

    Charge transfer in transduction of light to electrical or chemical energy at heterojunctions of metals with semiconductors or semimetals is believed to occur by photogenerated hot electrons in metal undergoing incoherent internal photoemission through the heterojunction interface. Charge transfer, however, can also occur coherently by dipole coupling of electronic bands at the heterojunction interface. Microscopic physical insights into how transfer occurs can be elucidated by following the coherent polarization of the donor and acceptor states on the time scale of electronic dephasing. By time-resolved multiphoton photoemission spectroscopy (MPP), we investigate the coherent electron transfer from an interface state that forms upon chemisorption of Ag nanoclusters onto graphite to a σ symmetry interlayer band of graphite. Multidimensional MPP spectroscopy reveals a resonant two-photon transition, which dephases within 10 fs completing the coherent transfer.

  13. NMR polarization echoes in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Levstein, Patricia R.; Chattah, Ana K.; Pastawski, Horacio M.; Raya, Jésus; Hirschinger, Jérôme

    2004-10-01

    We have modified the polarization echo (PE) sequence through the incorporation of Lee-Goldburg cross polarization steps to quench the 1H-1H dipolar dynamics. In this way, the 13C becomes an ideal local probe to inject and detect polarization in the proton system. This improvement made possible the observation of the local polarization P00(t) and polarization echoes in the interphenyl proton of the liquid crystal N-(4-methoxybenzylidene)-4-butylaniline. The decay of P00(t) was well fitted to an exponential law with a characteristic time τC≈310 μs. The hierarchy of the intramolecular dipolar couplings determines a dynamical bottleneck that justifies the use of the Fermi Golden Rule to obtain a spectral density consistent with the structural parameters. The time evolution of P00(t) was reversed by the PE sequence generating echoes at the time expected by the scaling of the dipolar Hamiltonian. This indicates that the reversible 1H-1H dipolar interaction is the main contribution to the local polarization decrease and that the exponential decay for P00(t) does not imply irreversibility. The attenuation of the echoes follows a Gaussian law with a characteristic time τφ≈527 μs. The shape and magnitude of the characteristic time of the PE decay suggest that it is dominated by the unperturbed homonuclear dipolar Hamiltonian. This means that τφ is an intrinsic property of the dipolar coupled network and not of other degrees of freedom. In this case, one cannot unambiguously identify the mechanism that produces the decoherence of the dipolar order. This is because even weak interactions are able to break the fragile multiple coherences originated on the dipolar evolution, hindering its reversal. Other schemes to investigate these underlying mechanisms are proposed.

  14. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.

  15. Low Luminosity States of the Black Hole Candidate GX 339-4. 2; Timing Analysis

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wilms, Joern; Dove, James B.

    1999-01-01

    Here we present timing analysis of a set of eight Rossi X-ray Timing Explorer (RXTE) observations of the black hole candidate GX 339-4 that were taken during its hard/low state. On long time scales, the RXTE All Sky Monitor data reveal evidence of a 240 day periodicity, comparable to timescales expected from warped, precessing accretion disks. On short timescales all observations save one show evidence of a persistent f(qpo approximately equals 0.3 Hz quasi-periodic oscillations (QPO)). The broad band (10 (exp -3) to 10 (exp2) Hz) power appears to be dominated by two independent processes that can be modeled as very broad Lorentzians with Q approximately less than - 1. The coherence function between soft and hard photon variability shows that if these are truly independent processes, then they are individually coherent, but they are incoherent with one another. This is evidenced by the fact that the coherence function between the hard and soft variability is near unity between 5 x 10 (exp -3) but shows evidence of a dip at f approximately equals 1 Hz. This is the region of overlap between the broad Lorentzian fits to the Power Spectral Density (PSD). Similar to Cyg X-1, the coherence also drops dramatically at frequencies approximately greater than 1O Hz. Also similar to Cyg X-1, the hard photon variability is seen to lag the soft photon variability with the lag time increasing with decreasing Fourier frequency. The magnitude of this time lag appears to be positively correlated with the flux of GX 339-4. We discuss all of these observations in light of current theoretical models of both black hole spectra and temporal variability.

  16. The stonehenge technique: a new method of crystal alignment for coherent bremsstrahlung experiments

    NASA Astrophysics Data System (ADS)

    Livingston, Kenneth

    2005-08-01

    In the coherent bremsstrahlung technique a thin diamond crystal oriented correctly in an electron beam can produce photons with a high degree of linear polarization.1 The crystal is mounted on a goniometer to control its orientation and it is necessary to measure the angular offsets a) between the crystal axes and the goniometer axes and b) between the goniometer and the electron beam axis. A method for measuring these offsets and aligning the crystal was developed by Lohman et al, and has been used successfully in Mainz.2 However, recent attempts to investigate new crystals have shown that this approach has limitations which become more serious at higher beam energies where more accurate setting of the crystal angles, which scale with l/Ebeam, is required. (Eg. the recent installation of coherent bremsstrahlung facility at Jlab, with Ebeam = 6 GeV ) This paper describes a new, more general alignment technique, which overcomes these limitations. The technique is based on scans where the horizontal and vertical rotation axes of the goniometer are adjusted in a series of steps to make the normal to the crystal describe a cone of a given angle. For each step in the scan, the photon energy spectrum is measured using a tagging spectrometer, and the offsets between the electron beam and the crystal lattice are inferred from the resulting 2D plot. Using this method, it is possible to align the crystal with the beam quickly, and hence to set any desired orientation of the crystal relative to the beam. This is essential for any experiment requiring linearly polarized photons produced via coherent bremsstrahlung, and is also required for a systematic study of the channeling radiation produced by the electron beam incident on the crystal.

  17. Ultrahigh-resolution spectroscopy with atomic or molecular dark resonances: Exact steady-state line shapes and asymptotic profiles in the adiabatic pulsed regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanon-Willette, Thomas; Clercq, Emeric de; Arimondo, Ennio

    2011-12-15

    Exact and asymptotic line shape expressions are derived from the semiclassical density matrix representation describing a set of closed three-level {Lambda} atomic or molecular states including decoherences, relaxation rates, and light shifts. An accurate analysis of the exact steady-state dark-resonance profile describing the Autler-Townes doublet, the electromagnetically induced transparency or coherent population trapping resonance, and the Fano-Feshbach line shape leads to the linewidth expression of the two-photon Raman transition and frequency shifts associated to the clock transition. From an adiabatic analysis of the dynamical optical Bloch equations in the weak field limit, a pumping time required to efficiently trap amore » large number of atoms into a coherent superposition of long-lived states is established. For a highly asymmetrical configuration with different decay channels, a strong two-photon resonance based on a lower states population inversion is established when the driving continuous-wave laser fields are greatly unbalanced. When time separated resonant two-photon pulses are applied in the adiabatic pulsed regime for atomic or molecular clock engineering, where the first pulse is long enough to reach a coherent steady-state preparation and the second pulse is very short to avoid repumping into a new dark state, dark-resonance fringes mixing continuous-wave line shape properties and coherent Ramsey oscillations are created. Those fringes allow interrogation schemes bypassing the power broadening effect. Frequency shifts affecting the central clock fringe computed from asymptotic profiles and related to the Raman decoherence process exhibit nonlinear shapes with the three-level observable used for quantum measurement. We point out that different observables experience different shifts on the lower-state clock transition.« less

  18. Collection and processing of data from a phase-coherent meteor radar

    NASA Technical Reports Server (NTRS)

    Backof, C. A., Jr.; Bowhill, S. A.

    1974-01-01

    An analysis of the measurement accuracy requirement of a high resolution meteor radar for observing short period, atmospheric waves is presented, and a system which satisfies the requirements is described. A medium scale, real time computer is programmed to perform all echo recognition and coordinate measurement functions. The measurement algorithms are exercised on noisy data generated by a program which simulates the hardware system, in order to find the effects of noise on the measurement accuracies.

  19. Large conditional single-photon cross-phase modulation

    PubMed Central

    Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-01-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of π/6 (and up to π/3 by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  20. Noise pair velocity and range echo location system

    DOEpatents

    Erskine, D.J.

    1999-02-16

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution is disclosed. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna. 46 figs.

  1. Noise pair velocity and range echo location system

    DOEpatents

    Erskine, David J.

    1999-01-01

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna.

  2. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  3. Venus Express Bistatic Radar Over Maxwell Montes

    NASA Astrophysics Data System (ADS)

    Simpson, R. A.; Tyler, G. L.; Haeusler, B.; Paetzold, M.

    2006-12-01

    Toward the end of the Magellan mission, several bistatic radar experiments were conducted using the spacecraft's linearly polarized transmissions at 13 cm wavelength. Ground reception was in right- and left- circular polarizations (RCP and LCP, respectively). Echoes from Maxwell Montes showed unusual polarization properties, which were interpreted as coming from a surface with a complex dielectric constant (Pettengill et al., Science, 272, 1628-1631, 1996). On early orbits of Venus Express (VEX) similar experiments were carried out, albeit with VEX's more conventional RCP transmissions and at lower signal-to-noise ratio than for Magellan. As expected, dielectric constants from VEX are generally higher than for other bodies (such as the Moon and Mars), based on echo power ratios (RCP/LCP). At the time of this writing, however, the expected change in polarization from preliminary coherent processing of RCP and LCP over Maxwell has not been detected.

  4. Phase incremented echo train acquisition applied to magnetic resonance pore imaging

    NASA Astrophysics Data System (ADS)

    Hertel, S. A.; Galvosas, P.

    2017-02-01

    Efficient phase cycling schemes remain a challenge for NMR techniques if the pulse sequences involve a large number of rf-pulses. Especially complex is the Carr Purcell Meiboom Gill (CPMG) pulse sequence where the number of rf-pulses can range from hundreds to several thousands. Our recent implementation of Magnetic Resonance Pore Imaging (MRPI) is based on a CPMG rf-pulse sequence in order to refocus the effect of internal gradients inherent in porous media. While the spin dynamics for spin- 1 / 2 systems in CPMG like experiments are well understood it is still not straight forward to separate the desired pathway from the spectrum of unwanted coherence pathways. In this contribution we apply Phase Incremented Echo Train Acquisition (PIETA) to MRPI. We show how PIETA offers a convenient way to implement a working phase cycling scheme and how it allows one to gain deeper insights into the amplitudes of undesired pathways.

  5. The Calm Methane Northern Seas of Titan from Cassini Radio Science Observations

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; French, Richard G.; Wong, Kwok; Anabtawi, Aseel; Schinder, Paul J.; Cassini Radio Science Team

    2016-10-01

    We report on results from 3 bistatic scattering observations of Titan northern seas conducted by the Cassini spacecraft in 2014 ( flybys T101, T102, and T106). The onboard Radio Science instrument transmits 3 sinusoidal signals of 0.94, 3.6, and 13 cm wavelengths. The spacecraft is continuously maneuvered to point in incidence direction so that mirror-like reflections from Titan's surface are observed at the ground stations of the NASA Deep Space Network. The corresponding ground-track in all 3 cases crossed different regions of Kraken Mare, and in the case of T101 also crossed Ligeia Mare. A nearly pure sinusoidal reflected signal was clearly detectable in the observed echoes spectra over surface regions identified in the Cassini RADAR images as potential liquid regions. Weaker quasi-specular echoes were also evident over some intermediate dry land and near sea shores. Cassini transmits right-circularly-polarized (RCP) signals and both the RCP and LCP echo components are observed. Their spectral shape, bandwidth, and total power are the observables used to infer/constrain physical surface properties. Presented results are limited to the 3.6 cm wavelength signal which has the largest SNR. The remarkably preserved sinusoidal echo spectral shape and the little detectable Doppler broadening strongly suggest surface that is smooth on scales large compared to 3.6 cm. If long wavelength gravity waves are present, they must be very subtle. The measured RCP/LCP echo power ratio provides direct measurement of the surface dielectric constant and is diagnostic of the liquid composition. The power ratio measurements eliminate possible significant ethane contribution and strongly imply predominantly liquid methane and nitrogen composition. Carefully calibrated measurements of the absolute echo power and the inferred dielectric constant constrain the presence of any capillary waves of wavelength << 3.6 cm. The latter affect wave coherence across the Fresnel region, reducing the reflected sinusoidal component power. When detectable, the reduction implies an RMS ripples height of about 2 mm, otherwise the measurements place an upper bound of about 1 mm. The results appear consistent among the two polarized echo components.

  6. Vessel-wall imaging and quantification of flow-mediated dilation using water-selective 3D SSFP-echo.

    PubMed

    Langham, Michael C; Li, Cheng; Englund, Erin K; Chirico, Erica N; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W

    2013-10-30

    To introduce a new, efficient method for vessel-wall imaging of carotid and peripheral arteries by means of a flow-sensitive 3D water-selective SSFP-echo pulse sequence. Periodic applications of RF pulses will generate two transverse steady states, immediately after and before an RF pulse; the latter being referred to as the SSFP-echo. The SSFP-echo signal for water protons in blood is spoiled as a result of moving spins losing phase coherence in the presence of a gradient pulse along the flow direction. Bloch equation simulations were performed over a wide range of velocities to evaluate the flow sensitivity of the SSFP-echo signal. Vessel walls of carotid and femoral and popliteal arteries were imaged at 3 T. In two patients with peripheral artery disease the femoral arteries were imaged bilaterally to demonstrate method's potential to visualize atherosclerotic plaques. The method was also evaluated as a means to measure femoral artery flow-mediated dilation (FMD) in response to cuff-induced ischemia in four subjects. The SSFP-echo pulse sequence, which does not have a dedicated blood signal suppression preparation, achieved low blood signal permitting discrimination of the carotid and peripheral arterial walls with in-plane spatial resolution ranging from 0.5 to 0.69 mm and slice thickness of 2 to 3 mm, i.e. comparable to conventional 2D vessel-wall imaging techniques. The results of the simulations were in good agreement with analytical solution and observations for both vascular territories examined. Scan time ranged from 2.5 to 5 s per slice yielding a contrast-to-noise ratio between the vessel wall and lumen from 3.5 to 17. Mean femoral FMD in the four subjects was 9%, in good qualitative agreement with literature values. Water-selective 3D SSFP-echo pulse sequence is a potential alternative to 2D vessel-wall imaging. The proposed method is fast, robust, applicable to a wide range of flow velocities, and straightforward to implement.

  7. Photonic crystal fiber-generated coherent supercontinuum for fast stain-free histopathology and intraoperative multiphoton imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tu, Haohua; You, Sixian; Sun, Yi; Spillman, Darold R.; Ray, Partha S.; Liu, George; Boppart, Stephen A.

    2017-03-01

    In contrast to a broadband Ti:sapphire laser that mode locks a continuum of emission and enables broadband biophotonic applications, supercontinuum generation moves the spectral broadening outside the laser cavity into a nonlinear medium, and may thus improve environmental stability and more readily enable clinical translation. Using a photonic crystal fiber for passive spectral broadening, this technique becomes widely accessible from a narrowband fixed-wavelength mode-locked laser. Currently, fiber supercontinuum sources have benefited single-photon biological imaging modalities, including light-sheet or confocal microscopy, diffuse optical tomography, and retinal optical coherence tomography. However, they have not fully benefited multiphoton biological imaging modalities with proven capability for high-resolution label-free molecular imaging. The reason can be attributed to the amplitude/phase noise of fiber supercontinuum, which is amplified from the intrinsic noise of the input laser and responsible for spectral decoherence. This instability deteriorates the performance of multiphoton imaging modalities more than that of single-photon imaging modalities. Building upon a framework of coherent fiber supercontinuum generation, we have avoided this instability or decoherence, and balanced the often conflicting needs to generate strong signal, prevent sample photodamage, minimize background noise, accelerate imaging speed, improve imaging depth, accommodate different modalities, and provide user-friendly operation. Our prototypical platforms have enabled fast stain-free histopathology of fresh tissue in both laboratory and intraoperative settings to discover a wide variety of imaging-based cancer biomarkers, which may reduce the cost and waiting stress associated with disease/cancer diagnosis. A clear path toward intraoperative multiphoton imaging can be envisioned to help pathologists and surgeons improve cancer surgery.

  8. Universal quantum computation using all-optical hybrid encoding

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou

    2015-04-01

    By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing. Project supported by the National Natural Science Foundation of China (Grant Nos. 61465013, 11465020, and 11264042).

  9. Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses

    DOE PAGES

    Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao; ...

    2018-01-03

    X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less

  10. Using an atom interferometer to take the Gedanken out of Feynman's Gedankenexperiment

    NASA Astrophysics Data System (ADS)

    Pritchard, David E.; Hammond, Troy D.; Lenef, Alan; Rubenstein, Richard A.; Smith, Edward T.; Chapman, Michael S.; Schmiedmayer, Jörg

    1997-01-01

    We give a description of two experiments performed in an atom interferometer at MIT. By scattering a single photon off of the atom as it passes through the interferometer, we perform a version of a classic gedankenexperiment, a demonstration of a Feynman light microscope. As path information about the atom is gained, contrast in the atom fringes (coherence) is lost. The lost coherence is then recovered by observing only atoms which scatter photons into a particular final direction. This paper reflects the main emphasis of D. E. Pritchard's talk at the RIS meeting. Information about other topics covered in that talk, as well as a review of all of the published work performed with the MIT atom/molecule interferometer, is available on the world wide web at http://coffee.mit.edu/.

  11. Coherent single-atom superradiance

    NASA Astrophysics Data System (ADS)

    Kim, Junki; Yang, Daeho; Oh, Seung-hoon; An, Kyungwon

    2018-02-01

    Superradiance is a quantum phenomenon emerging in macroscopic systems whereby correlated single atoms cooperatively emit photons. Demonstration of controlled collective atom-field interactions has resulted from the ability to directly imprint correlations with an atomic ensemble. Here we report cavity-mediated coherent single-atom superradiance: Single atoms with predefined correlation traverse a high–quality factor cavity one by one, emitting photons cooperatively with the N atoms that have already gone through the cavity (N represents the number of atoms). Enhanced collective photoemission of N-squared dependence was observed even when the intracavity atom number was less than unity. The correlation among single atoms was achieved by nanometer-precision position control and phase-aligned state manipulation of atoms by using a nanohole-array aperture. Our results demonstrate a platform for phase-controlled atom-field interactions.

  12. Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao

    X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less

  13. Free-space coherent optical communication receivers implemented with photorefractive optical beam combiners

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.

    1992-01-01

    Performance measurements are reported concerning a coherent optical communication receiver that contained an iron doped indium phosphide photorefractive beam combiner, rather than a conventional optical beam splitter. The system obtained a bit error probability of 10(exp -6) at received signal powers corresponding to less than 100 detected photons per bit. The system used phase modulated Nd:YAG laser light at a wavelength of 1.06 microns.

  14. Numerical Simulation of Ultra-Fast Pulse Propagation in Two-Photon Absorbing Medium

    DTIC Science & Technology

    2011-08-01

    physical problems including coherent- and incoherent regimes of optical power limiting, saturation, CEP effects, soliton formation etc. It can be also...coherent- and incoherent regimes of optical power limiting, saturation, CEP effects, electromagnetically induced transparency, soliton formation etc...experimental data ( dark blue); Upper panel - 1PA spectrum; Lower panel - 2PA cross section spectrum. The parameter values used are shown in Table 1. 10

  15. Large conditional single-photon cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Beck, Kristin; Hosseini, Mahdi; Duan, Yiheng; Vuletic, Vladan

    2016-05-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π / 3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of p at low loss, enabling deterministic and universal photonic quantum logic. Preprint: arXiv:1512.02166 [quant-ph

  16. The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators

    NASA Astrophysics Data System (ADS)

    Livingston, Ken

    2009-05-01

    This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.

  17. Fault-tolerant linear optical quantum computing with small-amplitude coherent States.

    PubMed

    Lund, A P; Ralph, T C; Haselgrove, H L

    2008-01-25

    Quantum computing using two coherent states as a qubit basis is a proposed alternative architecture with lower overheads but has been questioned as a practical way of performing quantum computing due to the fragility of diagonal states with large coherent amplitudes. We show that using error correction only small amplitudes (alpha>1.2) are required for fault-tolerant quantum computing. We study fault tolerance under the effects of small amplitudes and loss using a Monte Carlo simulation. The first encoding level resources are orders of magnitude lower than the best single photon scheme.

  18. Single-pulse coherent diffraction imaging using soft x-ray laser.

    PubMed

    Kang, Hyon Chol; Kim, Hyung Taek; Kim, Sang Soo; Kim, Chan; Yu, Tae Jun; Lee, Seong Ku; Kim, Chul Min; Kim, I Jong; Sung, Jae Hee; Janulewicz, Karol A; Lee, Jongmin; Noh, Do Young

    2012-05-15

    We report a coherent diffraction imaging (CDI) using a single 8 ps soft x-ray laser pulse at a wavelength of 13.9 nm. The soft x-ray pulse was generated by a laboratory-scale intense pumping laser providing coherent x-ray pulses up to the level of 10(11) photons/pulse. A spatial resolution below 194 nm was achieved with a single pulse, and it was shown that a resolution below 55 nm is feasible with improved detector capability. The single-pulse CDI might provide a way to investigate dynamics of nanoscale molecules or particles.

  19. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  20. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Shengmei

    2017-04-01

    Round-robin differential-phase-shift (RRDPS) quantum key distribution (QKD) scheme provides an effective way to overcome the signal disturbance from the transmission process. However, most RRDPS-QKD schemes use weak coherent pulses (WCPs) as the replacement of the perfect single-photon source. Considering the heralded pair-coherent source (HPCS) can efficiently remove the shortcomings of WCPs, we propose a RRDPS-QKD scheme with HPCS in this paper. Both infinite-intensity decoy-state method and practical three-intensity decoy-state method are adopted to discuss the tight bound of the key rate of the proposed scheme. The results show that HPCS is a better candidate for the replacement of the perfect single-photon source, and both the key rate and the transmission distance are greatly increased in comparison with those results with WCPs when the length of the pulse trains is small. Simultaneously, the performance of the proposed scheme using three-intensity decoy states is close to that result using infinite-intensity decoy states when the length of pulse trains is small.

Top