Science.gov

Sample records for coil suspension system

  1. Change in the coil distribution of electrodynamic suspension system

    NASA Technical Reports Server (NTRS)

    Tanaka, Hisashi

    1992-01-01

    At the Miyazaki Maglev Test Center, the initial test runs were completed using a system design that required the superconducting coils to be parallel with the ground levitation coils. Recently, the coil distribution was changed to a system such that the two types of coils were perpendicular to each other. Further system changes will lead to the construction of a side wall levitation system. It is hoped that the development will culminate in a system whereby a superconducting coil will maintain all the functions: levitation, propulsion, and guidance.

  2. Magnetic damping forces in figure-eight-shaped null-flux coil suspension systems

    SciTech Connect

    He, Jianliang; Coffey, H.

    1997-08-01

    This paper discusses magnetic damping forces in figure-eight-shaped null-flux coil suspension systems, focusing on the Holloman maglev rocket system. The paper also discusses simulating the damping plate, which is attached to the superconducting magnet by two short-circuited loop coils in the guideway. Closed-form formulas for the magnetic damping coefficient as functions of heave-and-sway displacements are derived by using a dynamic circuit model. These formulas are useful for dynamic stability studies.

  3. Electrodynamic forces of the cross-connected figure-eight null-flux coil suspension system

    SciTech Connect

    He, J.L.; Rote, D.M.; Coffey, H.T.

    1993-01-01

    This paper analyzes the cross-connected figure-eight null-flux coil suspension system for maglev vehicles on the basis of dynamic circuit theory. The equivalent circuits and general magnetic force expressions for the system are developed. Simple analytical formulas for the magnetic force partitions on the basis of harmonic approximation are presented, and numerical results are also included.

  4. Study on figure-eight-shaped coil electrodynamic suspension magnetic levitation systems without cross-connection

    SciTech Connect

    Ribani, P.L.; Urbano, N.

    2000-01-01

    Two figure-eight-shaped coils for electrodynamic suspension (EDS) magnetic levitation (MAGLEV) systems without cross-connection are proposed and analyzed. The guideway coils are positioned under the MAGLEV vehicle; they are parallel to the horizontal plane. The interaction of a magnetic module on the vehicle, composed of three or four superconducting (SC) coils, with a guideway module, comprised of two figure-eight coils, is studied by means of the dynamic circuit theory. The currents in the SC coils are supposed to be constant in time while they move as a rigid body, with a constant velocity. Some results are presented and compared with those for a standard side-wall cross-connected system.

  5. Some Aspects of an Air-Core Single-Coil Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Hamlet, Irvin L.; Kilgore, Robert A.

    1966-01-01

    This paper presents some of the technical aspects in the development at the Langley Research Center of an air-cove, dual-wound, single-coil, magnetic-suspension system with one-dimensional control. Overall electrical system design features and techniques are discussed in addition to the problems of control and stability. Special treatment is given to the operation of a dual-wound, high-current support coil which provides the bias fields and superimposed modulated field. Other designs features include a six-phase, solid-state power stage for modulation of the relatively large magnitude control current, and an associated six-phase trigger circuit.

  6. Flux-Path Control Magnetic Suspension System Using Voice Coil Motors

    NASA Astrophysics Data System (ADS)

    Mizuno, Takeshi; Hirai, Yuzo; Ishino, Yuji; Takasaki, Masaya

    A novel magnetic suspension system with three flux-path control modules was developed. The module consists of a ferromagnetic plate, a voice coil motor (VCM) for driving the plate and a displacement sensor for detecting the position of the plate; the sensor is comprised of a V-shape plate spring and four strain gauges pasted on it. The ferromagnetic plate is inserted into the gap between a permanent magnet and a suspended object (floator). The lateral position of the plate is controlled by using the VCM and the sensor. Since the flux from the permanent magnet to the floator varies according to the position, the amplitude and direction of the attractive force acting on the floator can be adjusted with multiple modules. Stable suspension was achieved by applying PD control. A fluctuation was observed in the position of the floator. It was reduced by feeding back the lateral motions of the floator. The two-dimensional and three-dimensional noncontact manipulation of the floator was also achieved in the developed magnetic suspension system.

  7. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  8. Coil system for plasmoid thruster

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  9. Study of Japanese electrodynamic-suspension maglev systems

    SciTech Connect

    He, J.L.; Rote, D.M.; Coffey, H.T.

    1994-04-01

    This report presents the results of a study of the Japanese MLU magnetic-levitation (maglev) system. The development of the MLU system is reviewed, and the dynamic circuit model then is introduced and applied to the figure-eight-shaped null-flux coil suspension system. Three different types of figure-eight-shaped null-flux suspension systems are discussed in detail: (1) the figure-eight-shaped null-flux coil suspension system without cross-connection; (2) the combined suspension and guidance system; and (3) the combined propulsion, levitation, and guidance system. The electrodynamic-suspension maglev systems developed in Japan seem to be very promising and could result in a commercial application in the near future.

  10. Magnetic suspension and balance system study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1984-01-01

    A compact design for a superconducting magnetic suspension and balance system is developed for a 8 ft. x 8 ft. transonic wind tunnel. The main features of the design are: a compact superconducting solenoid in the suspended airplane model; permanent magnet wings; one common liquid helium dewar for all superconducting coils; efficient new race track coils for roll torques; use of established 11 kA cryostable AC conductor; acceptable AC losses during 10 Hz control even with all steel structure; and a 560 liter/hour helium liquefier. Considerable design simplicity, reduced magnet weights, and reduced heat leak results from using one common dewar which eliminates most heavy steel structure between coils and the suspended model. Operational availability is thought to approach 100% for such magnet systems. The weight and cost of the magnet system is approximately one-third that of previous less compact designs.

  11. Magnetic suspension and balance system advanced study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1985-01-01

    An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design.

  12. Controls of maglev suspension systems

    SciTech Connect

    Cai, Y.; Zhu, S.; Chen, S.S.; Rote, D.M.

    1993-06-01

    This study investigates alternative control designs of maglev vehicle suspension systems. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. A one-dimensional vehicle with two degrees of freedom, to simulate the German Transrapid Maglev System, is used for suspension control designs. The transient and frequency responses of suspension systems and PSDs of vehicle accelerations are calculated to evaluate different control designs. The results show that active and semi-active control designs indeed improve the response of vehicle and provide an acceptable ride comfort for maglev systems.

  13. Suspension Bridge Structural Systems: Cable Suspension & Anchorage; Warren Stiffening ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Suspension Bridge Structural Systems: Cable Suspension & Anchorage; Warren Stiffening Truss; Upper & Lower Decks; Assembled System - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  14. Undulator Long Coil Measurement System Tests

    SciTech Connect

    Wolf, Zachary; Levashov, Yurii; /SLAC

    2010-11-24

    The first and second field integrals in the LCLS undulators must be below a specified limit. To accurately measure the field integrals, a long coil system is used. This note describes a set of tests which were used to check the performance of the long coil system. A long coil system was constructed to measure the first and second field integrals of the LCLS undulators. The long coil measurements of the background fields were compared to field integrals obtained by sampling the background fields and numerically calculating the integrals. This test showed that the long coil has the sensitivity required to measure at the levels specified for the field integrals. Tests were also performed by making long coil measurements of short magnets of known strength placed at various positions The long coil measurements agreed with the known field integrals obtained by independent measurements and calculation. Our tests showed that the long coil measurements are a valid way to determine whether the LCLS undulator field integrals are below the specified limits.

  15. Applications of the dynamic circuit theory to maglev suspension systems

    SciTech Connect

    He, Jian Liang; Rote, D.M.; Coffey, H.T.

    1993-11-01

    This paper discusses the applications of dynamic circuit theory to electrodynamic suspension EDS systems. In particular, the paper focuses on the loop-shaped coil and the figure-eight-shaped null-flux coil suspension systems. Mathematical models, including very general force expressions that can be used for the development of computer codes, are provided for each of these suspension systems. General applications and advantages of the dynamic circuit model are summarized. The paper emphasizes the transient and dynamic analysis and computer simulation of maglev systems. In general, the method discussed here can be applied to many EDS maglev design concepts. It is also suited for the computation of the performance of maglev propulsion systems. Numerical examples are presented in the paper to demonstrate the capability of the model.

  16. Superconducting Electromagnetic Suspension (EMS) system for Grumman Maglev concept

    NASA Technical Reports Server (NTRS)

    Kalsi, Swarn S.

    1994-01-01

    The Grumman developed Electromagnetic Suspension (EMS) Maglev system has the following key characteristics: a large operating airgap--40 mm; levitation at all speeds; both high speed and low speed applications; no deleterious effects on SC coils at low vehicle speeds; low magnetic field at the SC coil--less than 0.35 T; no need to use non-magnetic/non-metallic rebar in the guideway structure; low magnetic field in passenger cabin--approximately 1 G; low forces on the SC coil; employs state-of-the-art NbTi wire; no need for an active magnet quench protection system; and lower weight than a magnet system with copper coils. The EMS Maglev described in this paper does not require development of any new technologies. The system could be built with the existing SC magnet technology.

  17. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  18. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  19. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  20. Stability considerations for magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Britcher, Colin P.

    1991-01-01

    Mathematical models of a 5, 6, 7, and 8 coil large gap magnetic suspension system (MSDS) are presented. Some of the topics covered include: force and torque equations, reduction of state-space form, natural modes, origins of modes, effect of rotation in azimuth (yaw), future work, and n-coil ring conclusions.

  1. Active damping control for electrodynamic suspension systems without mechanical transducers

    SciTech Connect

    Brunelli, B.; Casadei, D.; Serra, G.; Tani, A.

    1996-09-01

    In this paper an electrodynamic suspension system for maglev vehicles is analyzed, in which the active damping of the vertical oscillations is obtained without position, velocity and acceleration transducers. The damping effect is accomplished controlling the supply voltage of the damping coil to respond to current changes due to vertical oscillations. The stability of the suspension system is investigated by a linearized analysis of the model equations, emphasizing the influence of the voltage regulator parameters. The performance of the damping system, in terms of step response and ride quality, is also discussed.

  2. 49 CFR 570.61 - Suspension system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Suspension system. 570.61 Section 570.61... 10,000 Pounds § 570.61 Suspension system. (a) Suspension condition. Ball joint seals shall not be cut... bushings shall not be cracked, extruded out from or missing from suspension joints. Radius rods shall...

  3. 49 CFR 570.8 - Suspension systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Suspension systems. 570.8 Section 570.8... Pounds or Less § 570.8 Suspension systems. (a) Suspension condition. Ball joint seals shall not be cut or... out from or missing from suspension joints. Radius rods shall not be missing or damaged....

  4. 49 CFR 570.8 - Suspension systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Suspension systems. 570.8 Section 570.8... Pounds or Less § 570.8 Suspension systems. (a) Suspension condition. Ball joint seals shall not be cut or... out from or missing from suspension joints. Radius rods shall not be missing or damaged....

  5. 49 CFR 570.61 - Suspension system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Suspension system. 570.61 Section 570.61... 10,000 Pounds § 570.61 Suspension system. (a) Suspension condition. Ball joint seals shall not be cut... bushings shall not be cracked, extruded out from or missing from suspension joints. Radius rods shall...

  6. Measuring the orthogonality error of coil systems

    USGS Publications Warehouse

    Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.

    2012-01-01

    Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.

  7. Airfoil flutter model suspension system

    NASA Technical Reports Server (NTRS)

    Reed, Wilmer H. (Inventor)

    1987-01-01

    A wind tunnel suspension system for testing flutter models under various loads and at various angles of attack is described. The invention comprises a mounting bracket assembly affixing the suspension system to the wind tunnel, a drag-link assembly and a compound spring arrangement comprises a plunge spring working in opposition to a compressive spring so as to provide a high stiffness to trim out steady state loads and simultaneously a low stiffness to dynamic loads. By this arrangement an airfoil may be tested for oscillatory response in both plunge and pitch modes while being held under high lifting loads in a wind tunnel.

  8. Magnetic suspension and balance system advanced study, 1989 design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Eyssa, Y. M.; Abdelsalam, Moustafa K.; Mcintosh, Glen E.

    1991-01-01

    The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved.

  9. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process.

  10. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system.

    PubMed

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process. PMID:26852418

  11. 49 CFR 570.61 - Suspension system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... damaged. Stabilizer bars shall be connected. Springs shall not be broken and coil springs shall not be extended by spacers. Shock absorber mountings, shackles, and U-bolts shall be securely attached. Rubber bushings shall not be cracked, extruded out from or missing from suspension joints. Radius rods shall...

  12. 49 CFR 570.61 - Suspension system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... damaged. Stabilizer bars shall be connected. Springs shall not be broken and coil springs shall not be extended by spacers. Shock absorber mountings, shackles, and U-bolts shall be securely attached. Rubber bushings shall not be cracked, extruded out from or missing from suspension joints. Radius rods shall...

  13. 49 CFR 570.61 - Suspension system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... damaged. Stabilizer bars shall be connected. Springs shall not be broken and coil springs shall not be extended by spacers. Shock absorber mountings, shackles, and U-bolts shall be securely attached. Rubber bushings shall not be cracked, extruded out from or missing from suspension joints. Radius rods shall...

  14. Magnetic suspension and balance system advanced study, phase 2

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.

    1990-01-01

    The design improvements for the system encompass 14 or 18 external superconductive coils mounted on a 8 x 8 foot wind tunnel, a superconductive model core magnet on a holmium mandrel to fit an F-16 model, model wings of permanent magnet material Nd2Fe14B, and fiber glass epoxy structure. The Magnetic Suspension and Balance System (MSBS) advanced design is confirmed by the successful construction and test of a full size superconductive model core solenoid with holmium mandrel. The solenoid is 75 cm long and 12.6 cm in diameter and produces 6.1 tesla for a hold time of 47 minutes. An integrated coil system design of a new compact configuration without specific coils for roll or pitch shows promise of simplicity; magnet reductions of 30 percent compared to the most recent 1985 design are possible.

  15. Improved All-Terrain Suspension System

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.

    1994-01-01

    Redesigned suspension system for all-terrain vehicle exhibits enhanced ability to negotiate sand and rocks. Improved six-wheel suspension system includes only two links on each side. Bogie tends to pull rear wheels with it as it climbs. Designed for rover vehicle for exploration of Mars, also has potential application in off-road vehicles, military scout vehicles, robotic emergency vehicles, and toys. Predecessors of suspension system described in "Articulated Suspension Without Springs" (NPO-17354), "Four-Wheel Vehicle Suspension System" (NPO-17407), and "High-Clearance Six-Wheel Suspension" (NPO-17821).

  16. Designed Coiled-Coil Peptides Inhibit the Type Three Secretion System of Enteropathogenic Escherichia coli

    PubMed Central

    Larzábal, Mariano; Mercado, Elsa C.; Vilte, Daniel A.; Salazar-González, Hector; Cataldi, Angel; Navarro-Garcia, Fernando

    2010-01-01

    Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry. Methods/Principal Findings We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments. Conclusions Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis. PMID:20140230

  17. Design description of the Large Coil Test Facility pulse-coil support and transport system

    SciTech Connect

    Queen, C.C.

    1981-01-01

    In order to simulate the transient fields which would be imposed on superconducting toroidal field coils in an operating tokamak reactor, the Large Coil Test Facility (LCTF) test stand includes a set of pulse coils. This set of pulse coils is designed to be moved from one test location to another within the LCTF vacuum vessel while the vessel is operating under vacuum and the test stand and test coils are at an operating temperature of 4.2K. This operating environment and the extremely high magnetic loads have necessitated some unique design features for the pulse coil support and transport system. The support structure for the pulse coil must react high overturning moments and axial loads induced on the pulse coil by the interaction of the pulse field with the field generated by the large test coils. These loads are reacted into the test stand support structure or spider frame by an arrangement of six pedestals and a support beam. In order to move the pulse coil set from one test location to another, the support beam containing the pulse coils must be driven across rollers mounted on the pedestals, then clamped securely to react the loads. Because these operations must be performed in a vacuum environment at cryogenic tmperature, special consideration was given to component design.

  18. A Wide Linear Range Eddy Current Displacement Sensor Equipped with Dual-Coil Probe Applied in the Magnetic Suspension Flywheel

    PubMed Central

    Fang, Jiancheng; Wen, Tong

    2012-01-01

    The Eddy Current Displacement Sensor (ECDS) is widely used in the Magnetic Suspension Flywheel (MSFW) to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced eddy current and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW. PMID:23112623

  19. A wide linear range Eddy Current Displacement Sensor equipped with dual-coil probe applied in the Magnetic Suspension Flywheel.

    PubMed

    Fang, Jiancheng; Wen, Tong

    2012-01-01

    The Eddy Current Displacement Sensor (ECDS) is widely used in the Magnetic Suspension Flywheel (MSFW) to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced eddy current and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.

  20. A wide linear range Eddy Current Displacement Sensor equipped with dual-coil probe applied in the Magnetic Suspension Flywheel.

    PubMed

    Fang, Jiancheng; Wen, Tong

    2012-01-01

    The Eddy Current Displacement Sensor (ECDS) is widely used in the Magnetic Suspension Flywheel (MSFW) to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced eddy current and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW. PMID:23112623

  1. Four-Wheel Vehicle Suspension System

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.

    1990-01-01

    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).

  2. Common Coil Magnet System for VLHC

    SciTech Connect

    Gupta, R.

    1999-02-12

    This paper introduces the common coil magnet system for the proposed very large hadron collider (VLHC). In this system, the high energy booster (HEB), the injector to VLHC, is integrated as the iron dominated low field aperture within the coldmass of the common coil magnet design introduced earlier. This 4-in-1 magnet concept for a 2-in-1 machine should provide a major cost reduction in building and operating VLHC. Moreover, the proposed design reduces the field quality problems associated with the large persistent currents in Nb{sub 3}Sn magnets. The paper also shows that the geometric field harmonics can be made small. In this preliminary magnetic design. the current dependence in harmonics is significant but not umnanageable.

  3. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  4. 49 CFR 393.207 - Suspension systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure regulator valve shall not allow air into the suspension system until at least 55 psi is in the... greater than 3 psi in a 5-minute time period when the vehicle's air pressure gauge shows normal operating pressure. (g) Air suspension exhaust controls. The air suspension exhaust controls must not have...

  5. 49 CFR 393.207 - Suspension systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pressure regulator valve shall not allow air into the suspension system until at least 55 psi is in the... greater than 3 psi in a 5-minute time period when the vehicle's air pressure gauge shows normal operating pressure. (g) Air suspension exhaust controls. The air suspension exhaust controls must not have...

  6. 49 CFR 393.207 - Suspension systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure regulator valve shall not allow air into the suspension system until at least 55 psi is in the... greater than 3 psi in a 5-minute time period when the vehicle's air pressure gauge shows normal operating pressure. (g) Air suspension exhaust controls. The air suspension exhaust controls must not have...

  7. 49 CFR 393.207 - Suspension systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure regulator valve shall not allow air into the suspension system until at least 55 psi is in the... greater than 3 psi in a 5-minute time period when the vehicle's air pressure gauge shows normal operating pressure. (g) Air suspension exhaust controls. The air suspension exhaust controls must not have...

  8. 49 CFR 393.207 - Suspension systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pressure regulator valve shall not allow air into the suspension system until at least 55 psi is in the... greater than 3 psi in a 5-minute time period when the vehicle's air pressure gauge shows normal operating pressure. (g) Air suspension exhaust controls. The air suspension exhaust controls must not have...

  9. Attractive and repulsive magnetic suspension systems overview

    NASA Astrophysics Data System (ADS)

    Cope, David B.; Fontana, Richard R.

    1992-05-01

    Magnetic suspension systems can be used in a wide variety of applications. The decision of whether to use an attractive or repulsive suspension system for a particular application is a fundamental one which must be made during the design process. As an aid to the designer, we compare and contrast attractive and repulsive magnetic suspension systems and indicate whether and under what conditions one or the other system is preferred.

  10. Attractive and repulsive magnetic suspension systems overview

    NASA Technical Reports Server (NTRS)

    Cope, David B.; Fontana, Richard R.

    1992-01-01

    Magnetic suspension systems can be used in a wide variety of applications. The decision of whether to use an attractive or repulsive suspension system for a particular application is a fundamental one which must be made during the design process. As an aid to the designer, we compare and contrast attractive and repulsive magnetic suspension systems and indicate whether and under what conditions one or the other system is preferred.

  11. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  12. Conceptual Design of Alborz Tokamak Poloidal Coils System

    NASA Astrophysics Data System (ADS)

    Mardani, M.; Amrollahi, R.

    2013-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. One of the most important parts of tokamak design is the design of the poloidal field system. This part includes the numbers, individual position, currents and number of coil turns of the magnetic field coils. Circular cross section tokamaks have Vertical Field system but since the elongation and triangularity of plasma cross section shaping are important in improving the plasma performance and stability, the poloidal field coils are designed to have a shaped plasma configuration. In this paper the design of vertical field system and the magnetohydrodynamic equilibrium of axisymmetric plasma, as given by the Grad-Shafranov equation will be discussed. The poloidal field coils system consists of 12 circular coils located symmetrically about the equator plane, six inner PF coils and six outer PF coils. Six outer poloidal field coils (PF) are located outside of the toroidal field coils (TF), and six inner poloidal field coils are wound on the inner legs and are located outside of a vacuum vessel.

  13. 49 CFR 238.227 - Suspension system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Suspension system. 238.227 Section 238.227 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 238.227 Suspension system. On or after November 8, 1999— (a) All passenger equipment...

  14. 49 CFR 238.227 - Suspension system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Suspension system. 238.227 Section 238.227 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 238.227 Suspension system. On or after November 8, 1999— (a) All passenger equipment...

  15. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    SciTech Connect

    He, J.; Rote, D.M.

    1994-12-31

    A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows form a magnetic rail. Levitation and lateral stability is provided when the induced field in the magnetic rails interacts with the superconducting magnets (SCM) mounted on the magnetic levitation vehicle. A multiphase propulsion system interconnects specific coils in a given magnetic rail and interacts with the SCM to produce a propulsion force to the vehicle.

  16. Magnetic suspension and balance systems (MSBSs)

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Kilgore, Robert A.

    1987-01-01

    The problems of wind tunnel testing are outlined, with attention given to the problems caused by mechanical support systems, such as support interference, dynamic-testing restrictions, and low productivity. The basic principles of magnetic suspension are highlighted, along with the history of magnetic suspension and balance systems. Roll control, size limitations, high angle of attack, reliability, position sensing, and calibration are discussed among the problems and limitations of the existing magnetic suspension and balance systems. Examples of the existing systems are presented, and design studies for future systems are outlined. Problems specific to large-scale magnetic suspension and balance systems, such as high model loads, requirements for high-power electromagnets, high-capacity power supplies, highly sophisticated control systems and position sensors, and high costs are assessed.

  17. Double-row loop-coil configuration for EDS maglev suspension, guidance, and electromagnetic guideway directional switching

    SciTech Connect

    He, J.L.; Rote, D.M. . Center for Transportation Research)

    1993-11-01

    This paper discusses a new suspension and guidance configuration for a high-speed, electrodynamic suspension (EDS) maglev system. The configuration can also be used to develop an electromagnetic guideway directional switch. The performance of the system Is predicted using the dynamic circuit model. General expressions of the magnetic forces based on the harmonic approximation are obtained. The principle of the electromagnetic guideway directional switch for the EDS maglev system is discussed.

  18. NSTX-U Digital Coil Protection System Software Detailed Design

    SciTech Connect

    2014-06-01

    The National Spherical Torus Experiment (NSTX) currently uses a collection of analog signal processing solutions for coil protection. Part of the NSTX Upgrade (NSTX-U) entails replacing these analog systems with a software solution running on a conventional computing platform. The new Digital Coil Protection System (DCPS) will replace the old systems entirely, while also providing an extensible framework that allows adding new functionality as desired.

  19. Torsional suspension system for testing space structures

    NASA Technical Reports Server (NTRS)

    Reed, Wilmer H., III (Inventor); Gold, Ronald R. (Inventor)

    1991-01-01

    A low frequency torsional suspension system for testing a space structure uses a plurality of suspension stations attached to the space structure along the length thereof in order to suspend the space structure from an overhead support. Each suspension station includes a disk pivotally mounted to the overhead support, and two cables which have upper ends connected to the disk and lower ends connected to the space structure. The two cables define a parallelogram with the center of gravity of the space structure being vertically beneath the pivot axis of the disk. The vertical distance between the points of attachment of the cables to the disk and the pivot axis of the disk is adjusted to lower the frequency of the suspension system to a level which does not interfere with frequency levels of the space structure, thereby enabling accurate measurement.

  20. Investigation of cryosorption vacuum system and operation process for COIL

    NASA Astrophysics Data System (ADS)

    Xia, Liang-zhi; Wang, Jin-qu; Sang, Feng-ting; Zhao, Su-qin; Jin, Yu-qi; Fang, Ben-jie

    2007-05-01

    Cryosorption vacuum system for COIL is researched and developed. Adsorption chiller has been proposed and developed by improving the heat exchanger chiller. Compared with the heat exchanger chiller, the volume and LN II consumption of the new chiller were favourably reduced. In the present work, the new adsorption operation process, cryogenic pressure swing adsorption is adopted. Compared with thermal swing adsorption, regeneration time is shortened and LN II consumption is saved at least 80% in the new operation process. The cryosorption vacuum system was integrated to COIL and tested successfully. The weight of sorbent in adsorption bed is 22Kg, the total gas flowrate is about 0.5mol/s, the COIL's power maintains over 2kW, the total COIL's working time accounts to 100 seconds. It is concluded that the cryosorption vacuum system has the same pressure recovery capability as the large vacuum tank.

  1. Techniques For Microfabricating Coils For Microelectromechanical Systems Applications

    SciTech Connect

    Woods, R. C.; Powell, A. L.

    2008-01-21

    The advanced technology necessary for building future space exploration vehicles includes microfabricated coils for making possible self-inductances integrated with other passive and active electronic components. Integrated inductances make possible significant improvements in reliability over the traditional arrangement of using external discrete inductances, as well as allowing significant size (volume) reductions (also important in space vehicles). Two possible fabrication techniques (one using proprietary branded 'Foturan' glass, the other using silicon wafer substrates) for microscopic coils are proposed, using electroplating into channels. The techniques have been evaluated for fabricating the planar electrical coils needed for typical microelectromechanical systems applications. There remain problems associated with processing using 'Foturan' glass, but coil fabrication on silicon wafers was successful. Fabrication methods such as these are expected to play an important part in the development of systems and subsystems for forthcoming space exploration missions.

  2. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    SciTech Connect

    He, J.; Rote, D.M.

    1996-05-21

    A stabilization and propulsion system are disclosed comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the superconducting magnets on the vehicle. 12 figs.

  3. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    DOEpatents

    He, Jianliang; Rote, Donald M.

    1996-01-01

    A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the super conducting magnets on the vehicle.

  4. Real-Time Coil Position Monitoring System for Biomagnetic Measurements

    NASA Astrophysics Data System (ADS)

    Oyama, Daisuke; Adachi, Yoshiaki; Higuchi, Masanori; Kawai, Jun; Kobayashi, Koichiro; Uehara, Gen

    In this paper, we propose a new method for monitoring the position of marker coils. The marker coil is used for indicating spatial relationship between subject's body and magnetic sensor arrays in biomagnetic measurements, such as magnetoencephalography (MEG) and magnetocardiography (MCG). We developed a real-time marker coil position monitoring system combined with a conventional MEG system. In order to achieve simultaneous measurement of MEG signals and marker signals, we separated their frequency bands. The frequency bands of flux-locked loop (FLL) circuits were separated into three parts by three integrators; low-band, mid-band, and high-band. The second and third bands were assigned for MEG signals and marker signals, respectively. This method can avoid the crosstalk of the marker signals to MEG signals. Marker signals were generated from five marker coils driven by five independent sinusoidal current generators. These signals were continuously measured by the high-band of FLL, and then the coils were localized by FFT processing and solving inverse problem. We succeeded in displaying the localized coil position on a PC monitor once per second in real-time.

  5. Open-loop characteristics of magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Britcher, Colin P.

    1992-01-01

    The open-loop characteristics of a Large-Gap Magnetic Suspension System (LGMSS) were studied and numerical results are presented. The LGMSS considered provides five-degree-of-freedom control. The suspended element is a cylinder that contains a core composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar array. Configurations utilizing five, six, seven, and eight electromagnets were investigated and all configurations were found to be controllable from coil currents and observable from suspended element positions. Results indicate that increasing the number of coils has an insignificant effect on mode shapes and frequencies.

  6. Design Optimization for a Maglev System Employing Flux Eliminating Coils

    NASA Technical Reports Server (NTRS)

    Davey, Kent R.

    1996-01-01

    Flux eliminating coils have received no little attention over the past thirty years as an alternative for realizing lift in a MAGLEV system. When the magnets on board the vehicle are displaced from the equilibrium or null flux point of these coils, they induce current in those coils which act to restore the coil to its null flux or centerline position. The question being addressed in this paper is that of how to choose the best coil for a given system. What appears at first glance to be an innocent question is in fact one that is actually quite involved, encompassing both the global economics and physics of the system. The real key in analyzing that question is to derive an optimization index or functional which represents the cost of the system subject to constraints, the primary constraint being that the vehicle lift itself at a certain threshold speed. Outlined in this paper is one scenario for realizing a total system design which uses sequential quadratic programming techniques.

  7. Electromagnetic free suspension system for space manufacturing. Volume 1: Technology department

    NASA Technical Reports Server (NTRS)

    Buerger, E. H.; Frost, R. T.; Lambert, R. H.; Oconnor, M. F.; Odell, E. L. G.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1972-01-01

    The technology developed in defining a facility to be used on the Skylab mission for electromagnetic suspension of small, molten spheres in the weightless space environment is described. The technologies discussed include: four-coil optimization, four-coil versus six-coil configuration comparison, four-coil position servocontrol, four-coil breadboard, position sensing and servosystem, two-color pyrometer, and specimen toration mode analysis.

  8. NSTX Protection And Interlock Systems For Coil And Powers Supply Systems

    SciTech Connect

    X. Zhao, S. Ramakrishnan, J. Lawson, C.Neumeyer, R. Marsala, H. Schneider, Engineering Operations

    2009-09-24

    NSTX at Princeton Plasma Physics Laboratory (PPPL) requires sophisticated plasma positioning control system for stable plasma operation. TF magnetic coils and PF magnetic coils provide electromagnetic fields to position and shape the plasma vertically and horizontally respectively. NSTX utilizes twenty six coil power supplies to establish and initiate electromagnetic fields through the coil system for plasma control. A power protection and interlock system is utilized to detect power system faults and protect the TF coils and PF coils against excessive electromechanical forces, overheating, and over current. Upon detecting any fault condition the power system is restricted, and it is either prevented from initializing or suppressed to de-energize coil power during pulsing. Power fault status is immediately reported to the computer system. This paper describes the design and operation of NSTX's protection and interlocking system and possible future expansion.

  9. The Annular Suspension and Pointing System /ASPS/

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Woolley, C. T.

    1978-01-01

    The Annular Suspension and Pointing System (ASPS) may be attached to a carrier vehicle for orientation, mechanical isolation, and fine pointing purposes applicable to space experiments. It has subassemblies for both coarse and vernier pointing. A fourteen-degree-of-freedom simulation of the ASPS mounted on a Space Shuttle has yielded initial performance data. The simulation describes: the magnetic actuators, payload sensors, coarse gimbal assemblies, control algorithms, rigid body dynamic models of the payload and Shuttle, and a control system firing model.

  10. GSA-Tuning IPD Control of a Field-Sensed Magnetic Suspension System

    PubMed Central

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-01-01

    The purpose of this paper is to propose a GSA-tuning IPD control technique for magnetic suspension systems. An educational demonstration on a magnetic-field sensed magnetic suspension system is examined for effectiveness. For the magnetic-field sensed magnetic suspension system (FSMSS), the current transducer is employed for measuring the electromagnetic coil current, and a Hall effect device is used for detecting the position of the suspended object. To achieve optimal performance, the gravitational search algorithm (GSA) is adopted for tuning the integral-proportional-derivative (IPD) controller. The IPD control includes the specified PD controller and an integrator. The specified PD control is employed for stabilizing the inherently unstable FSMSS, whereas the integral control is utilized for eliminating the steady-state error. The GSA can tune the IPD control parameters to enable optimal FSMSS performance. We achieved excellent results from the simulations and hands-on experiments for the proposed control strategies and structures. PMID:26694404

  11. 15 CFR 2011.207 - Suspension of the certificate system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OFFICE OF THE UNITED STATES TRADE REPRESENTATIVE ALLOCATION OF TARIFF-RATE QUOTA ON IMPORTED SUGARS, SYRUPS AND MOLASSES Specialty Sugar § 2011.207 Suspension of the certificate system. (a) Suspension....

  12. 15 CFR 2011.207 - Suspension of the certificate system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OFFICE OF THE UNITED STATES TRADE REPRESENTATIVE ALLOCATION OF TARIFF-RATE QUOTA ON IMPORTED SUGARS, SYRUPS AND MOLASSES Specialty Sugar § 2011.207 Suspension of the certificate system. (a) Suspension....

  13. Variable stiffness and damping suspension system for train

    NASA Astrophysics Data System (ADS)

    Sun, Shuaishuai; Deng, Huaxia; Li, Weihua

    2014-03-01

    As the vibration of high speed train becomes fierce when the train runs at high speed, it is crucial to develop a novel suspension system to negotiate train's vibration. This paper presents a novel suspension based on Magnetorheological fluid (MRF) damper and MRF based smart air spring. The MRF damper is used to generate variable damping while the smart air spring is used to generate field-dependent stiffness. In this paper, the two kind smart devices, MRF dampers and smart air spring, are developed firstly. Then the dynamic performances of these two devices are tested by MTS. Based on the testing results, the two devices are equipped to a high speed train which is built in ADAMS. The skyhook control algorithm is employed to control the novel suspension. In order to compare the vibration suppression capability of the novel suspension with other kind suspensions, three other different suspension systems are also considered and simulated in this paper. The other three kind suspensions are variable damping with fixed stiffness suspension, variable stiffness with fixed damping suspension and passive suspension. The simulation results indicate that the variable damping and stiffness suspension suppresses the vibration of high speed train better than the other three suspension systems.

  14. Functional specifications of the annular suspension pointing system, appendix A

    NASA Technical Reports Server (NTRS)

    Edwards, B.

    1980-01-01

    The Annular Suspension Pointing System is described. The Design Realization, Evaluation and Modelling (DREAM) system, and its design description technique, the DREAM Design Notation (DDN) is employed.

  15. Quench detection system for twin coils HTS SMES

    NASA Astrophysics Data System (ADS)

    Badel, A.; Tixador, P.; Simiand, G.; Exchaw, O.

    2010-10-01

    The quench detection and protection system is a critical element in superconducting magnets. After a short summary of the quench detection and protection issues in HTS magnets, an original detection system is presented. The main feature of this system is an active protection of the detection electronics during the discharges, making it possible to use standard electronics even if the discharge voltage is very high. The design of the detection system is therefore easier and it can be made very sensitive. An implementation example is presented for a twin coil HTS SMES prototype, showing the improvements when compared to classical detection systems during operation.

  16. Feasibility Study: Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  17. System and technique for ultrasonic characterization of settling suspensions

    DOEpatents

    Greenwood, Margaret S.; Panetta, Paul D.; Bamberger, Judith A.; Pappas, Richard A.

    2006-11-28

    A system for determining properties of settling suspensions includes a settling container, a mixer, and devices for ultrasonic interrogation transverse to the settling direction. A computer system controls operation of the mixer and the interrogation devices and records the response to the interrogating as a function of settling time, which is then used to determine suspension properties. Attenuation versus settling time for dilute suspensions, such as dilute wood pulp suspension, exhibits a peak at different settling times for suspensions having different properties, and the location of this peak is used as one mechanism for characterizing suspensions. Alternatively or in addition, a plurality of ultrasound receivers are arranged at different angles to a common transmitter to receive scattering responses at a variety of angles during particle settling. Angular differences in scattering as a function of settling time are also used to characterize the suspension.

  18. Suspension systems for ground testing large space structures

    NASA Technical Reports Server (NTRS)

    Gold, Ronald R.; Friedman, Inger P.; Reed, Wilmer H., III; Hallauer, W. L.

    1990-01-01

    A research program is documented for the development of improved suspension techniques for ground vibration testing of large, flexible space structures. The suspension system must support the weight of the structure and simultaneously allow simulation of the unconstrained rigid-body movement as in the space environment. Exploratory analytical and experimental studies were conducted for suspension systems designed to provide minimum vertical, horizontal, and rotational degrees of freedom. The effects of active feedback control added to the passive system were also investigated. An experimental suspension apparatus was designed, fabricated, and tested. This test apparatus included a zero spring rate mechanism (ZSRM) designed to support a range of weights from 50 to 300 lbs and provide vertical suspension mode frequencies less than 0.1 Hz. The lateral suspension consisted of a pendulum suspended from a moving cart (linear bearing) which served to increase the effective length of the pendulum. The torsion suspension concept involved dual pendulum cables attached from above to a pivoting support (bicycle wheel). A simple test structure having variable weight and stiffness characteristics was used to simulate the vibration characteristics of a large space structure. The suspension hardware for the individual degrees of freedom was analyzed and tested separately and then combined to achieve a 3 degree of freedom suspension system. Results from the exploratory studies should provide useful guidelines for the development of future suspension systems for ground vibration testing of large space structures.

  19. Flanged-edge transverse gradient coil design for a hybrid LINAC-MRI system.

    PubMed

    Liu, Limei; Sanchez-Lopez, Hector; Liu, Feng; Crozier, Stuart

    2013-01-01

    MRI can be combined with other systems, such as linear accelerators (LINACs) to provide image-guided therapy. However, in some configurations this requires splitting the MRI scanner to provide a central gap large enough to ensure dual access for the accelerator and the patient. This raises technical difficulties for maintaining a high gradient coil performance. In this research, a dedicated split transverse gradient coil was designed with a flange connected to the central coil end, which provided an additional surface for the current to flow. The coil was compared to existing designs, in terms of coil performance and eddy current effects. It was found that a flanged-edge coil design produced a better coil performance and more moderate eddy currents than those of the other designs. It is hoped that this study will help to inform the design of optimal gradient coils for split MRI systems with a large central gap. PMID:23220182

  20. Flanged-edge transverse gradient coil design for a hybrid LINAC-MRI system

    NASA Astrophysics Data System (ADS)

    Liu, Limei; Sanchez-Lopez, Hector; Liu, Feng; Crozier, Stuart

    2013-01-01

    MRI can be combined with other systems, such as linear accelerators (LINACs) to provide image-guided therapy. However, in some configurations this requires splitting the MRI scanner to provide a central gap large enough to ensure dual access for the accelerator and the patient. This raises technical difficulties for maintaining a high gradient coil performance. In this research, a dedicated split transverse gradient coil was designed with a flange connected to the central coil end, which provided an additional surface for the current to flow. The coil was compared to existing designs, in terms of coil performance and eddy current effects. It was found that a flanged-edge coil design produced a better coil performance and more moderate eddy currents than those of the other designs. It is hoped that this study will help to inform the design of optimal gradient coils for split MRI systems with a large central gap.

  1. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  2. Evaluation of new suspension system for limb prosthetics

    PubMed Central

    2014-01-01

    Background Good prosthetic suspension system secures the residual limb inside the prosthetic socket and enables easy donning and doffing. This study aimed to introduce, evaluate and compare a newly designed prosthetic suspension system (HOLO) with the current suspension systems (suction, pin/lock and magnetic systems). Methods All the suspension systems were tested (tensile testing machine) in terms of the degree of the shear strength and the patient’s comfort. Nine transtibial amputees participated in this study. The patients were asked to use four different suspension systems. Afterwards, each participant completed a questionnaire for each system to evaluate their comfort. Furthermore, the systems were compared in terms of the cost. Results The maximum tensile load that the new system could bear was 490 N (SD, 5.5) before the system failed. Pin/lock, magnetic and suction suspension systems could tolerate loads of580 N (SD, 8.5), 350.9 (SD, 7) and 310 N (SD, 8.4), respectively. Our subjects were satisfied with the new hook and loop system, particularly in terms of easy donning and doffing. Furthermore, the new system is considerably cheaper (35 times) than the current locking systems in the market. Conclusions The new suspension system could successfully retain the prosthesis on the residual limb as a good alternative for lower limb amputees. In addition, the new system addresses some problems of the existing systems and is more cost effective than its counterparts. PMID:24410918

  3. Replacement inhibitors for tank farm cooling coil systems

    SciTech Connect

    Hsu, T.C.

    1995-03-23

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems.

  4. Suspension System Provides Independent Translation And Rotation

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1994-01-01

    Spring suspension provides one translational and one rotational degree of freedom. Suspension used to provide for pitching and plunging movements of airfoil in wind tunnel. Translational freedom provided by two thin, flat steel spring tines, clamped at one end to stationary block fixed to ceiling of wind tunnel, and clamped to movable block at other end.

  5. Superconducting electromagnets for large wind tunnel magnetic suspension and balance systems

    SciTech Connect

    Boom, R.W.; Abdelsalam, M.K.; Bakerek, K.; Britcher, C.P.; Esking, J.; Eyssa, Y.M.; Goodyer, M.J.; McIntosh, G.E.; Scurlock, R.G.; Wu, Y.Y.

    1985-03-01

    This paper presents a new design study of a Magnetic Suspension and Balance System (MSBS) for airplane models in a large 8 ft x 8 ft wind tunnel. New developments in the design include: use of a superconducting solenoid as a model core instead of magnetized iron; combination of permanent magnet material in the model wings along with four race-track coils to produce the required roll torque; and mounting of all the magnets in an integral cold structure instead of in separate cryostats. Design of superconducting solenoid model cores and practical experience with a small-scale prototype are discussed.

  6. Thermal and mechanical characteristics of loudspeakers using a magnetic gap filled with a magnetorheological suspension

    SciTech Connect

    Shul'man, Z.P.; Kordonskii, V.I.; Khusid, B.M.; Voronovich, G.K.; Demchuk, S.A.; Kuz'min, V.A.

    1988-07-01

    This paper presents some theoretical and experimental results of a study of the heat-transfer characteristics of the voice coil of an electrodynamic loudspeaker and the mechanics of its movable system for a gap filled with a magnetorheological suspension. The heat transfer and motion of the voice coil of a type 4GD-35 electrodynamic loudspeaker were investigated experimentally at the resonance frequency. The coil was heated by a high-frequency signal which was delivered together with the low-frequency signal driving the coil. The motion of the coil under unsteady nonisothermal conditions was modeled under the assumption that the suspension undergoes Couette flow in the gap of the coil.

  7. Superconducting coil system and methods of assembling the same

    DOEpatents

    Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.

    2016-01-19

    A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.

  8. Magnetic suspension and balance system (MSBS) advanced study.I - System design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Abdelsalam, Mostafa K.; Eyssa, Yehia M.; Mcintosh, Glen E.

    1987-01-01

    A magnetic suspension and balance system is designed to support models of aircraft or other objects in wind tunnels by means of magnetic forces. Major design improvements have been achieved, resulting in reductions of the system size, weight, and cost. These improvements are due to: (1) the use of holmium in the model core to increase its magnetic moment, (2) the use of a powerful new permanent magnet material in the model wings, (3) a new arrangement for the roll coils, and (4) the use of a nonmetallic structure to eliminate eddy current losses. The conceptual design of the holmium core superconductive solenoid and of the new permanent magnet wing assembly is described in detail. The discussion includes comparisons of the pole strengths for different model core magnets, the design of a superconducting solenoid and cryostat, and the analysis of model wing magnetic requirements.

  9. Effect of the active damper coil system on the lateral displacement of the magnetically levitated bogie

    SciTech Connect

    Ohashi, S.; Ohsaki, H.; Masada, E.

    1999-09-01

    Numerical simulation of the superconducting magnetically levitated bogie (JR Maglev) has been studied. The active damper coil system is introduced. In this levitation system, the interaction between levitation and guidance is strong. This active damper coil system is designed for reducing the vertical vibration of the bogie. Using the numerical simulation, its effect on the lateral displacement of the bogie is assessed. The active damper coil system for the vertical vibration is shown to works as a passive damper for the lateral vibration.

  10. Integrated Design System of Toroidal Field Coil for CFETR

    NASA Astrophysics Data System (ADS)

    Luo, Zhiren; Liu, Xufeng; Du, Shuangsong; Wang, Zhongwei; Song, Yuntao

    2016-09-01

    Integrating engineering software is meaningful but challenging for a system code of a fusion device. This issue is seldom considered by system codes currently. Therefore, to discuss the issue, the Integrated Design System of TF Coil (IDS-TFC) has been worked out, which consists of physical calculation, CAD, and Finite Element Analysis (FEA). Furthermore, an Integrated and Automatically Optimized Method (IAOM) has been created to address the integration and interfaces. The method utilizes a geometry parameter to connect each design submodule and achieve automatic optimization. Double-objectives optimization has been realized, confirming it is feasible to integrate and optimize engineering design and physical calculation. Moreover, IDS-TFC can also serve as a useful reference of integrated design processing for subsequent fusion design. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB110000, 2014GB110002)

  11. System design of the annular suspension and pointing system /ASPS/

    NASA Technical Reports Server (NTRS)

    Cunningham, D. C.; Gismondi, T. P.; Wilson, G. W.

    1978-01-01

    This paper presents the control system design for the Annular Suspension and Pointing System. Actuator sizing and configuration of the system are explained, and the control laws developed for linearizing and compensating the magnetic bearings, roll induction motor and gimbal torquers are given. Decoupling, feedforward and error compensation for the vernier and gimbal controllers is developed. The algorithm for computing the strapdown attitude reference is derived, and the allowable sampling rates, time delays and quantization of control signals are specified.

  12. Application of a run around coil system to a roof fan house at Michoud Assembly Facility at New Orleans, Louisiana

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Analysis of the proposed run around coil system indicates that it offers a decrease in steam, electricity and water consumptions. The run around coil system consist of two coils, a precooling coil which will be located at up stream and a reheating coil which will be located at down stream of the chilled water spray chamber. This system will provide the necessary reheat in summer, spring and fall. At times, if the run around coil system can not provide the necessary reheat, the existing reheat coil could be utilized.

  13. Study on Dynamic Behaviour of Wishbone Suspension System

    NASA Astrophysics Data System (ADS)

    Kamal, M.; Rahman, M. M.

    2012-09-01

    This paper presents the characteristic model of the wishbone suspension system using the quarter car model approach. Suspension system in an automobile provides vehicle control and passenger comfort by providing isolation from road disturbances. This makes it essential that the detailed behavior of suspension should be known to optimize the performance. A kinetic study is performed using multi body system (MBS) analysis. The dirt road profile is considered as an applied loading. The spring constant, damping coefficient and sprung mass are studied on the performance of the suspension system. It can be observed that the spring constant is inversely related with time required to return to initial position and the amount of deformations. The damping ratio affects the suppression of spring oscillations, beyond a certain limit damping ration has the negligible effect. Sprung mass effected the equilibrium position of the suspension system with a small effect on its oscillation behavior. It is shown that the spring constant, damping ratio and sprung mass are significant parameters to design the suspension system. This study is essential for complete understanding of working of the suspension system and a future study with real geometries.

  14. A Kinematic, Kevlar(registered) Suspension System for an ADR

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Jackson, Michael L.; Shirron, Peter J.; Tuttle, James G.

    2003-01-01

    The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their bolometer detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar@ suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists or two parts that can be assembled and tensioned offline, and later bolted onto the salt pill. The resulting assembly constrains each degree of freedom only once, yielding a kinematic, tensile structure.

  15. A study of transient induced voltages on a MAGLEV train coil system

    SciTech Connect

    Ametani, A.; Kato, R.; Nishinaga, H.; Okai, M.

    1995-07-01

    The paper discusses transient induced voltages to a coil system of a magnetic-levitation (MAGLEV) train planned in Japan from an overhead ground wire (GW) which protects the coil system from a lightning stroke. A simplified lumped-circuit coil model is developed based on a two-port theory of an L equivalent circuit of a distributed-parameter line. Its impedances are evaluated from the impedance and admittance matrices of an overhead multiconductor system, which represents a coil, using the EMTP CABLE CONSTANTS. Calculated results of transient induced voltages by the proposed coil model agree satisfactorily with experimental results. It is made clear that the greater the ground resistance and the smaller the separation between the coil and the GW and the span length of grounding, the greater the induced voltage.

  16. Design of an Inductive Power Transfer System with Flexible Coils for Body-worn Applications

    NASA Astrophysics Data System (ADS)

    Clare, L. R.; Burrow, S. G.; Stark, B. H.; Grabham, N. J.; Beeby, S. P.

    2015-12-01

    This paper describes an IPT (Inductive Power Transfer) system for body worn electronics, and investigates the challenges for an IPT system that arise specifically in this scenario. Principally, these are: highly variable coil coupling through time-varying miss-alignment and coil separation; a requirement that one or both of the coils must be wearable and thus flexible; and proximity to the human body introducing limits on the maximum EM field. The highly variable coupling results in a system that must operate effectively with a large range of received powers, whilst the constraints on the realisation of the coils typically reduce the Q-factor; the human exposure considerations limit both the maximum field strengths that the wearer of a receiver coil might experience, and also the field strengths that a 3rd party might be exposed to, for instance when approaching the transmit coil.

  17. Analysis of Train Suspension System Using MR dampers

    NASA Astrophysics Data System (ADS)

    RamaSastry, DVA; Ramana, K. V.; Mohan Rao, N.; Siva Kumar, SVR; Priyanka, T. G. L.

    2016-09-01

    This paper deals with introducing MR dampers to the Train Suspension System for improving the ride comfort of the passengers. This type of suspension system comes under Semi-active suspension system which utilizes the properties of MR fluid to damp the vibrations. In case of high speed trains, the coach body is subjected to vibrations due to vertical displacement, yaw and pitch movements. When the body receives these disturbances from the ground,the transmission of vibrations to the passenger increases which affect the ride comfort. In this work, the equations of motion of suspension system are developed for both conventional passive system and semi-active system and are modelled in Matlab/Simulink and analysis has been carried out. The passive suspension system analysis shows that it is taking more time to damp the vibrations and at the same time the transmissibility of vibrations is more.Introducing MR dampers,vertical and angular displacements of the body are computed and compared. The results show that the introduction of MR dampers into the train suspension system improves ride comfort.

  18. Active seat suspension for a small vehicle: considerations for control system including observer

    NASA Astrophysics Data System (ADS)

    Katsumata, Hiroyuki; Shiino, Hiroshi; Oshinoya, Yasuo; Ishibashi, Kazuhisa; Ozaki, Koichi; Ogino, Hirohiko

    2007-12-01

    We have examined the improvement of ride quality and the reduction of riding fatigue brought about by the active control of the seat suspension of small vehicles such as one-seater electric automobiles. A small active seat suspension, which is easy to install, was designed and manufactured for one-seater electric automobiles. For the actuator, a maintenance-free voice coil motor used as a direct drive was adopted. For fundamental considerations, we designed a one-degree-of-freedom model for the active seat suspension system. Then, we designed a disturbance cancellation control system that includes the observer for a two-degree-of-freedom model. In an actual driving test, a test road, in which the concavity and convexity of an actual road surface were simulated using hard rubber, was prepared and the control performance of vertical vibrations of the seat surface during driving was examined. As a result, in comparison with the one-degree-of-freedom control system, it was confirmed that the control performance was improved by the two-degree-of-freedom control system that includes the observer.

  19. Anharmonic Oscillations of a Spring-Magnet System inside a Magnetic Coil

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo

    2012-01-01

    We consider the nonlinear oscillations of a simple spring-magnet system that oscillates in the magnetic field of an inductive coil excited with a dc current. Using the relations for the interaction of a coil and a magnet we obtain the motion equation of the system. The relative strengths of the terms of this equation can be adjusted easily by…

  20. 49 CFR 570.8 - Suspension systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cracked. Structural parts shall not be bent or damaged. Stabilizer bars shall be connected. Springs shall... mountings, shackles, and U-bolts shall be securely attached. Rubber bushings shall not be cracked, extruded out from or missing from suspension joints. Radius rods shall not be missing or damaged....

  1. 49 CFR 570.8 - Suspension systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cracked. Structural parts shall not be bent or damaged. Stabilizer bars shall be connected. Springs shall... mountings, shackles, and U-bolts shall be securely attached. Rubber bushings shall not be cracked, extruded out from or missing from suspension joints. Radius rods shall not be missing or damaged....

  2. 49 CFR 570.8 - Suspension systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cracked. Structural parts shall not be bent or damaged. Stabilizer bars shall be connected. Springs shall... mountings, shackles, and U-bolts shall be securely attached. Rubber bushings shall not be cracked, extruded out from or missing from suspension joints. Radius rods shall not be missing or damaged....

  3. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  4. A novel and inexpensive digital system for eye movement recordings using magnetic scleral search coils.

    PubMed

    Eibenberger, Karin; Eibenberger, Bernhard; Roberts, Dale C; Haslwanter, Thomas; Carey, John P

    2016-03-01

    After their introduction by Robinson (IEEE Trans Biomed Eng 10:137-145, 1963), magnetic scleral search coils quickly became an accepted standard for precise eye movement recordings. While other techniques such as video-oculography or electro-oculography may be more suitable for routine applications, search coils still provide the best low-noise and low-drift characteristics paired with the highest temporal and spatial resolution. The problem with search coils is that many research laboratories still have their large and expensive coil systems installed and are acquiring eye movement data with old, analog technology. Typically, the number of recording channels is limited and modifications to an existing search coil system can be difficult. We propose a system that allows to retro-fit an existing analog search coil system to become a digital recording system. The system includes digital data acquisition boards and a reference coil as the hardware part, receiver software, and a new calibration method. The circuit design has been kept simple and robust, and the proposed software calibration allows the calibration of a single coil within a few seconds.

  5. The Structures of Coiled-Coil Domains from Type III Secretion System Translocators Reveal Homology to Pore-Forming Toxins

    SciTech Connect

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V.

    2012-03-26

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 {angstrom} and 2.8 {angstrom} limiting resolution, respectively. These newly identified domains are composed of extended-length (114 {angstrom} in IpaB and 71 {angstrom} in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events.

  6. THE STRUCTURES OF COILED-COIL DOMAINS FROM TYPE THREE SECRETION SYSTEM TRANSLOCATORS REVEAL HOMOLOGY TO PORE-FORMING TOXINS

    PubMed Central

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V.

    2012-01-01

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SS) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) which is responsible for over one million deaths per year. The Shigella type III secretion apparatus (T3SA) is comprised of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 Å and 2.8 Å limiting resolution, respectively. These newly identified domains are comprised of extended length (114 Å in IpaB and 71 Å in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably colicin Ia. This suggests that these mechanistically-separate and functionally-distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events. PMID:22321794

  7. Superconducting electromagnets for large wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.; Scurlock, R. G.; Wu, Y. Y.; Goodyer, M. J.; Balcerek, K.; Eskins, J.; Britcher, C. P.

    1984-01-01

    A superconducting electromagnetic suspension and balance system for an 8 x 8-ft, Mach 0.9 wind tunnel is presented. The system uses a superconducting solenoid as a model core 70 cm long and with a 11.5 cm OD, and a combination of permanent magnet material in the model wings to produce the required roll torque. The design, which uses an integral cold structure rather than separate cryostats for mounting all control magnets, has 14 external magnets, including 4 racetrack-shaped roll coils. Helium capacity of the system is 3.0 to 3.5 l with idling boiloff rate predicted at 0.147 to 0.2 l/h. The improvements yielded a 50-percent reduction in the system size, weight, and cost.

  8. Optical position measurement for a Large Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Shelton, Kevin J.; Clemmons, James I.

    1991-01-01

    This paper describes the design of an optical position measurement system which is being built as part of the NASA Langley Large Gap Magnetic Suspension System (LGMSS). The LGMSS is a five degree-of-freedom, large-gap magnetic suspension system which is being built for Langley Research Center as part of the Advanced Controls Test Facility (ACTF). The LGMSS consists of a planar array of electromagnets which levitate and position a cylindrically shaped model containing a permanent magnet core. The optical position measurement system provides information on the location and orientation of the model to the LGMSS control system to stabilize levitation of the model.

  9. A Large Motion Suspension System for Simulation of Orbital Deployment

    NASA Technical Reports Server (NTRS)

    Straube, T. M.; Peterson, L. D.

    1994-01-01

    This paper describes the design and implementation of a vertical degree of freedom suspension system which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate the on-orbit deployment of spacecraft components. A unique aspect of this system is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing breakaway friction by an order of magnitude over the passive system alone. The paper describes the development of the suspension hardware and the feedback control algorithm. Experiments were performed to verify the suspensions system's ability to provide a gravity off-load as well as its effect on the modal characteristics of a test article.

  10. Development of an Air Pneumatic Suspension System for Transtibial Prostheses

    PubMed Central

    Pirouzi, Gholamhossein; Osman, Noor Azuan Abu; Oshkour, Azim Ataollahi; Ali, Sadeeq; Gholizadeh, Hossein; Wan Abas, Wan A. B.

    2014-01-01

    The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS) for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded. PMID:25207872

  11. Digital control of wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.

    1987-01-01

    Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.

  12. Magnetic energy coupling system based on micro-electro-mechanical system coils

    NASA Astrophysics Data System (ADS)

    Li, Xiuhan; Yuan, Quan; Yang, Tianyang; Liu, Jian; Zhang, Haixia

    2012-04-01

    In this paper, a high efficiency wireless energy transfer system based on MEMS coils is first developed. The permanent magnetic core used in the transmitting coil can not only enhance the magnetic flux but also applies a strong and uniform magnetic field distribution around the core. Ansoft hfss is then used to analyze the performance of two coupling coils designed to be resonated at the same frequency. The distribution of magnetic field strength and coupling efficiency is modeled and characterized. High-performance bio-compatible MEMS coils were fabricated on a glass wafer by thick glue photolithography and electroplating technique. We measured a peak value of energy transfer at the resonant frequency of 23 MHz, and the coupling efficiency is higher than 10% within the distance of 10-20 cm by sweeping frequencies from 1 MHz to 200 MHz. Experiments also show that the resonant coupling efficiency is not much affected by the relative position of the two coils in a large range.

  13. Transfemoral prosthesis suspension systems: a systematic review of the literature.

    PubMed

    Gholizadeh, Hossein; Abu Osman, Noor Azuan; Eshraghi, Arezoo; Ali, Sadeeq

    2014-09-01

    The purpose of this study was to find the scientific evidence pertaining to various transfemoral suspension systems to provide selection criteria for clinicians. To this end, databases of PubMed, Web of Science, and ScienceDirect were explored. The following key words, as well as their combinations and synonyms, were used for the search: transfemoral prosthesis, prosthetic suspension, lower limb prosthesis, above-knee prosthesis, prosthetic liner, transfemoral, and prosthetic socket. The study design, research instrument, sampling method, outcome measures, and protocols of articles were reviewed. On the basis of the selection criteria, 16 articles (11 prospective studies and 5 surveys) were reviewed. The main causes of reluctance to prosthesis, aside from energy expenditure, were socket-related problems such as discomfort, perspiration, and skin problems. Osseointegration was a suspension option, yet it is rarely applied because of several drawbacks, such as extended rehabilitation process, risk for fracture, and infection along with excessive cost. In conclusion, no clinical evidence was found as a "standard" system of suspension and socket design for all transfemoral amputees. However, among various suspension systems for transfemoral amputees, the soft insert or double socket was favored by most users in terms of function and comfort.

  14. Neurovascular embolization: in vitro evaluation of a mechanical detachable platinum coil system.

    PubMed

    Murphy, K J; Mandai, S; Gailloud, P; Clint, H; Szopinski, K; Quie, H; Martin, J B; Rüfenacht, D A

    2000-12-01

    The authors evaluated a mechanically detachable platinum coil system intended for neurovascular use. The introduction characteristics, ease of delivery, ease of retrieval, and detachability were studied with fluoroscopic guidance with in vitro silicone models. All the coils passed easily through the microcatheter. The detachment maneuver occurred within 20 seconds with 20 or fewer rotations of the pusher wire. One of 229 coils detached prematurely but only after deliberate and extreme manipulation. The detachment system is safe, reliable, and consistent and will be useful for interventional neuroradiologists.

  15. Asymptotic behavior of coupled linear systems modeling suspension bridges

    NASA Astrophysics Data System (ADS)

    Dell'Oro, Filippo; Giorgi, Claudio; Pata, Vittorino

    2015-06-01

    We consider the coupled linear system describing the vibrations of a string-beam system related to the well-known Lazer-McKenna suspension bridge model. For ɛ > 0 and k > 0, the decay properties of the solution semigroup are discussed in dependence of the nonnegative parameters γ and h, which are responsible for the damping effects.

  16. Optimal Design of Litz Wire Coils With Sandwich Structure Wirelessly Powering an Artificial Anal Sphincter System.

    PubMed

    Ke, Lei; Yan, Guozheng; Yan, Sheng; Wang, Zhiwu; Li, Xiaoyang

    2015-07-01

    Transcutaneous energy transfer system (TETS) is widely used to energize implantable biomedical devices. As a key part of the TETS, a pair of applicable coils with low losses, high unloaded Q factor, and strong coupling is required to realize an efficient TETS. This article presents an optimal design methodology of planar litz wire coils sandwiched between two ferrite substrates wirelessly powering a novel mechanical artificial anal sphincter system for treating severe fecal incontinence, with focus on the main parameters of the coils such as the wire diameter, number of turns, geometry, and the properties of the ferrite substrate. The theoretical basis of optimal power transfer efficiency in an inductive link was analyzed. A set of analytical expressions are outlined to calculate the winding resistance of a litz wire coil on ferrite substrate, taking into account eddy-current losses, including conduction losses and induction losses. Expressions that describe the geometrical dimension dependence of self- and mutual inductance are derived. The influence of ferrite substrate relative permeability and dimensions is also considered. We have used this foundation to devise an applicable coil design method that starts with a set of realistic constraints and ends with the optimal coil pair geometries. All theoretical predictions are verified with measurements using different types of fabricated coils. The results indicate that the analysis is useful for optimizing the geometry design of windings and the ferrite substrate in a sandwich structure as part of which, in addition to providing design insight, allows speeding up the system efficiency-optimizing design process.

  17. A Magnetic Suspension and Excitation System for Spin Vibration Testing of Turbomachinery Blades

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.; Mehmed, Oral

    1998-01-01

    The Dynamic Spin Rig (DSR) is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. A heteropolar radial active magnetic bearing was integrated into the DSR to provide non-contact magnetic suspension and mechanical excitation of the rotor to induce turbomachinery blade vibrations. The magnetic bearing replaces one of the two existing conventional radial ball bearings. Prior operation of the DSR used two voice-coil type linear electromagnetic shakers which provided axial excitation of the rotor. The new magnetic suspension and excitation system has provided enhanced testing capabilities. Tests were performed at high rotational speeds for longer duration and higher vibration amplitudes. Some characteristics of the system include magnetic bearing stiffness values up to 60,000 lb./in., closed loop control bandwidth around 500 Hz, and multi-directional radial excitation of the rotor. This paper reports on the implementation and operation of this system and presents some test results using this system.

  18. Optimization of guideway coil dimensions for a magnetic levitation system

    SciTech Connect

    Chen, Y.J.; Feng, J.

    1997-09-01

    A fast computer code that generates currents and forces for multiple magnetic levitation (MAGLEV) vehicle coils over a discrete guideway of arbitrary geometry has been developed, tested, and verified. A study of coil dimensions for overlapping loops, ladders, and discrete loops has been conducted to determine the optimal guideway design. A parameter known as figure of merit has been defined to assist in evaluating the level of merit for a particular track configuration. From this, it has been discovered that, for most cases, ladder tracks are a better configuration over both overlapping and discrete loops. On closer inspection, it was also discovered that an aspect ratio of unity for the dimensions of a ladder track yields the best overall results.

  19. Enhancing the design of a superconducting coil for magnetic energy storage systems

    NASA Astrophysics Data System (ADS)

    Indira, Gomathinayagam; UmaMaheswaraRao, Theru; Chandramohan, Sankaralingam

    2015-01-01

    Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  20. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    DOEpatents

    Post, Richard F.

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  1. Digital controller design: Analysis of the annular suspension pointing system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The annular suspension and pointing system (ASPS) a payload auxiliary pointing device of the space shuttle is briefly described along with the function of the digital controller. The equations of motion of a simplified plan planar model of the ASPS are derived. Results of computer simulations are discussed.

  2. System for maintaining sediment suspensions during larval fish studies

    USGS Publications Warehouse

    Chilton, E.W.

    1991-01-01

    A new system was developed for maintaining suspensions of inorganic solids during laboratory studies on early life stages of fish. Microfine bentonite was successfully held in suspension in specially constructed units during a 21-d fishless test, a 28-d experiment with juvenile green sunfish (lepomis cyanellus), and four shorter experiments (5-9 d) with four species of larval fishes, white sucker (catostomus commersoni), northern pike (esox lucius), channel catfish (ictalurus punctatus), and walleye (stizostedion vitreum). Each experiment on larval fish was conducted until the yolk-sac had been absorbed. Concentrations of bentonite ranged from 0 to 728 mg/l. Each unit consisted of a holding chamber set in a stainless steel bowl and two submersible pumps that recirculated the suspension. Turbidity readings remained nearly constant throughout each experiment. Because the turbidity of suspensions was well correlated with bentonite concentration (r2 = 0.989) And easy to measure, turbidity was used as an indicator of concentration. The system is inexpensive, easy to assemble, and does not require a diluter system to maintain constant concentrations of suspended material.

  3. DESIGN NOTE: Design of convex-surface gradient coils for a vertical-field open MRI system

    NASA Astrophysics Data System (ADS)

    Moon, C. H.; Park, H. W.; Cho, M. H.; Lee, S. Y.

    2000-08-01

    Open MRI systems usually use vertical-field magnets because interventional studies can be performed more conveniently with them. In this paper, we have designed convex-surface gradient coils for a vertical-field open MRI system. To obtain stronger gradient field strength with a smaller coil inductance while maintaining enough space for interventional operations, we have designed gradient coils on convex, rather than planar, surfaces. The convex-surface gradient coils are designed using the finite element method where the convex surfaces are defined at the prolate spheroidal coordinate. We present evaluation results of the convex-surface gradient coils designed with various rates of convexity.

  4. A hybrid electromagnetic shock absorber for active vehicle suspension systems

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Babak; Bolandhemmat, Hamidreza; Behrad Khamesee, Mir; Golnaraghi, Farid

    2011-02-01

    The use of electromagnetic dampers (ED) in vehicle active suspension systems has drawn considerable attention in the past few years, attributed to the fact that active suspension systems have shown superior performance in improving ride comfort and road handling of terrain vehicles, compared with their passive and semi-active counterparts. Although demonstrating superb performance, active suspensions still have some shortcomings that must be overcome. They have high energy consumption, weight, and cost and are not fail-safe in case of a power breakdown. The novel hybrid ED, which is proposed in this paper, is a potential solution to the above-mentioned drawbacks of conventional active suspension systems. The proposed hybrid ED is designed to inherit the high-performance characteristics of an active ED with the reliability of a passive damper in a single package. The eddy current damping effect is utilised as a source of the passive damping. First, a prototype ED is designed and fabricated. The prototype ED is then utilised to experimentally establish the design requirements for a real-size active ED. This is accomplished by comparing its vibration isolation performance in a 1-DOF quarter-car test rig with that of a same-class semi-active damper. Then, after a real-size active ED is designed, the concept of hybrid damper is introduced to the damper design to address the drawbacks of the active ED. Finally, the finite-element method is used to accurately model and analyse the designed hybrid damper. It is demonstrated that by introducing the eddy current damping effect to the active part, a passive damping of approximately 1570 Ns/m is achieved. This amount of passive damping guarantees that the damper is fail-safe and reduces the power consumption more than 70%, compared with an active ED in an automotive active suspension system.

  5. Design of a Superconducting Magnetic Suspension System for a Liquid Helium Flow Experiment

    NASA Technical Reports Server (NTRS)

    Smith, Michael R.; Eyssa, Yehia M.; VanSciver, Steven W.

    1996-01-01

    We discuss a preliminary design for a superconducting magnetic suspension system for measurement of drag on rotationally symmetric bodies in liquid helium. Superconducting materials are a natural choice for liquid helium studies, since temperatures are well below most critical temperatures, so that the resulting heat load is negligible. Also, due to its diamagnetic properties, a superconducting model (for example made or coated with Nb) is inherently stable against disturbances. Issues which we consider include model placement during initial cool-down, maintaining placement during anticipated drag and lift forces, and force measurement. This later can be achieved by a passive technique, where the body is allowed to deflect under the influence of drag from its neutral position. The resulting shift in flux is detected via a superconducting pickup coil. The pickup coil may be connected either to a SQUID, or a secondary loop wound around a Hall probe. Both options are discussed. The objective of this work is to gain a better understanding of the nature of turbulent fields in normal and superfluid helium for potential application to problems in classical high Reynolds number turbulence.

  6. Development of a 60 cm Magnetic Suspension System

    NASA Astrophysics Data System (ADS)

    Sawada, Hideo; Kunimasu, Tetsuya

    A 60cm Magnetic Suspension Balance System (MSBS), which has been developed in the National Aerospace Laboratory of Japan (NAL), is described in detail. Magnetic field in the MSBS is evaluated analytically and is compared with measured one. Available magnet kinds for the MSBS are selected analytically. The optimum ratio of diameter to length of cylindrical magnet for the MSBS is also evaluated. A model position sensing and the control systems are described with calibration test results. A model holding system is also shown, which is necessary for worker’s safety at suspending a large and massive model. The control system is presented and the measured model position during suspension is examined. The balance accuracy is examined and its error of drag force can be improved by restricting the calibration test to an expected drag range. Flow of the 60cm low-speed wind tunnel equipped with the MSBS is examined to be available for wind tunnel tests.

  7. Annular suspension and pointing system with controlled DC electromagnets

    NASA Technical Reports Server (NTRS)

    Vu, Josephine Lynn; Tam, Kwok Hung

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.

  8. Design and analysis of an intelligent controller for active geometry suspension systems

    NASA Astrophysics Data System (ADS)

    Goodarzi, Avesta; Oloomi, Ehsan; Esmailzadeh, Ebrahim

    2011-02-01

    An active geometry suspension (AGS) system is a device to optimise suspension-related factors such as toe angle and roll centre height by controlling vehicle's suspension geometry. The suspension geometry could be changed through control of suspension mounting point's position. In this paper, analysis and control of an AGS system is addressed. First, the effects of suspension geometry change on roll centre height and toe angle are studied. Then, based on an analytical approach, the improvement of the vehicle's stability and handling due to the control of suspension geometry is investigated. In the next section, an eight-degree-of-freedom handling model of a sport utility vehicle equipped with an AGS system is introduced. Finally, a self-tuning proportional-integral controller has been designed, using the fuzzy control theory, to control the actuator that changes the geometry of the suspension system. The simulation results show that an AGS system can improve the handling and stability of the vehicle.

  9. A superconducting large-angle magnetic suspension

    NASA Astrophysics Data System (ADS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  10. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  11. Optimal Design of Litz Wire Coils With Sandwich Structure Wirelessly Powering an Artificial Anal Sphincter System.

    PubMed

    Ke, Lei; Yan, Guozheng; Yan, Sheng; Wang, Zhiwu; Li, Xiaoyang

    2015-07-01

    Transcutaneous energy transfer system (TETS) is widely used to energize implantable biomedical devices. As a key part of the TETS, a pair of applicable coils with low losses, high unloaded Q factor, and strong coupling is required to realize an efficient TETS. This article presents an optimal design methodology of planar litz wire coils sandwiched between two ferrite substrates wirelessly powering a novel mechanical artificial anal sphincter system for treating severe fecal incontinence, with focus on the main parameters of the coils such as the wire diameter, number of turns, geometry, and the properties of the ferrite substrate. The theoretical basis of optimal power transfer efficiency in an inductive link was analyzed. A set of analytical expressions are outlined to calculate the winding resistance of a litz wire coil on ferrite substrate, taking into account eddy-current losses, including conduction losses and induction losses. Expressions that describe the geometrical dimension dependence of self- and mutual inductance are derived. The influence of ferrite substrate relative permeability and dimensions is also considered. We have used this foundation to devise an applicable coil design method that starts with a set of realistic constraints and ends with the optimal coil pair geometries. All theoretical predictions are verified with measurements using different types of fabricated coils. The results indicate that the analysis is useful for optimizing the geometry design of windings and the ferrite substrate in a sandwich structure as part of which, in addition to providing design insight, allows speeding up the system efficiency-optimizing design process. PMID:25808086

  12. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, R.F.

    1996-02-27

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.

  13. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, Richard F.

    1996-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.

  14. The 13-inch magnetic suspension and balance system wind tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, William G., Jr.; Dress, David A.

    1989-01-01

    NASA Langley has a small, subsonic wind tunnel in use with the 13-inch Magnetic Suspension and Balance System (MSBS). The tunnel is capable of speeds up to Mach 0.5. This report presents tunnel design and construction details. It includes flow uniformity, angularity, and velocity fluctuation data. It also compares experimental Mach number distribution data with computed results for the General Electric Streamtube Curvature Program.

  15. Dual objective active suspension system based on a novel nonlinear disturbance compensator

    NASA Astrophysics Data System (ADS)

    Deshpande, Vaijayanti S.; Shendge, P. D.; Phadke, S. B.

    2016-09-01

    This paper proposes an active suspension system to fulfil the dual objective of improving ride comfort while trying to keep the suspension deflection within the limits of the rattle space. The scheme is based on a novel nonlinear disturbance compensator which employs a nonlinear function of the suspension deflection. The scheme is analysed and validated by simulation and experimentation on a laboratory setup. The performance is compared with a passive suspension system for a variety of road profiles.

  16. An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils

    NASA Astrophysics Data System (ADS)

    Hua, Li; Shu-Lin, Zhang; Chao-Xiang, Zhang; Xiang-Yan, Kong; Xiao-Ming, Xie

    2016-06-01

    For a practical superconducting quantum interference device (SQUID) based measurement system, the Tesla/volt coefficient must be accurately calibrated. In this paper, we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils. The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil. By applying magnetic fields through a three-dimensional Helmholtz coil, the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields. Calibration with alternating current (AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current (DC) calibration to avoid possible effects due to eddy current. In our experiment, a calibration relative error of about 6.89 × 10-4 is obtained, and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils. The method does not need precise alignment of the magnetometer inside the Helmholtz coil. It can be used for the multichannel magnetometer system calibration effectively and accurately. Project supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04020200) and the Shanghai Municipal Science and Technology Commission Project, China (Grant No. 15DZ1940902).

  17. An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils

    NASA Astrophysics Data System (ADS)

    Hua, Li; Shu-Lin, Zhang; Chao-Xiang, Zhang; Xiang-Yan, Kong; Xiao-Ming, Xie

    2016-06-01

    For a practical superconducting quantum interference device (SQUID) based measurement system, the Tesla/volt coefficient must be accurately calibrated. In this paper, we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils. The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil. By applying magnetic fields through a three-dimensional Helmholtz coil, the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields. Calibration with alternating current (AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current (DC) calibration to avoid possible effects due to eddy current. In our experiment, a calibration relative error of about 6.89 × 10‑4 is obtained, and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils. The method does not need precise alignment of the magnetometer inside the Helmholtz coil. It can be used for the multichannel magnetometer system calibration effectively and accurately. Project supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04020200) and the Shanghai Municipal Science and Technology Commission Project, China (Grant No. 15DZ1940902).

  18. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  19. A voice coil motor based measuring force control system for tactile scanning profiler

    NASA Astrophysics Data System (ADS)

    Feng, Shengdong; Liu, Xiaojun; Chen, Liangzhou; Zhou, Liping; Lu, Wenlong

    2015-02-01

    In tactile scanning profiler, the measuring force would change in a wide range when it was used for profile measurement in a large range, which could possibly destroy the measured surface. To solve the problem, measuring force control system for tactile scanning profiler was needed. In the paper, a voice coil motor-based measuring force control system for tactile scanning profiler was designed. In the design, a low stiffness coefficient spring was used to provide contact force, while a voice coil motor (VCM) to balance the spring force so that the contact force could be kept for constant measuring force. A VCM was designed specially, and for active measuring force control, a precision current source circuit under the control of a DSP unit was designed to drive the VCM. The performance of voice coil motor based measuring force control system had been tested, and its good characteristics were verified.

  20. A magnetic suspension system with a large angular range

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Ghofrani, Mehran

    1993-01-01

    The paper describes a small-scale laboratory system, called the Large-Angle Magnetic Suspension Test Fixture (LAMSTF), constructed at NASA Langley Research Center in order to explore and develop technology required for the magnetic suspension of objects over large ranges of orientation. The LAMSTF hardware comprises five electromagnets in a circular arrangement, each driven from a separate bipolar power amplifier. The suspended element is a cylindrical axially magnetized permanent magnet core, within an aluminum tube. The element, which is 'levitated' by repulsive forces, is stabilized in five degrees-of-freedom, with rotation about the cylinder axis not controlled. The controller accommodates the changes in magnetic coupling between the electromagnets and the suspended element by real-time adaptation of a decoupling matrix. The paper presents performance measurements demonstrating that the major design objective of the 360 deg rotation was accomplished.

  1. Enhancing the coupling of a two-coil system using a superscatterer

    NASA Astrophysics Data System (ADS)

    Yao, Chen; Zhang, Yingyi; Ma, Dianguang; Tang, Houjun

    2016-01-01

    In an example scenario of magnetic energy harvesting, a spherical superscatterer is introduced to enhance coupling in a two-coil system. Although a three-dimensional (3D) model is preferred to fully model behavior in this example, to reduce computational complexity, an extension of transformation optics (TO) is proposed to reduce a 3D model to a two-dimensional (2D) axisymmetric model. The simulation results show details of a quasi-3D model of the superscatterer coupling enhancement of a two-coil system.

  2. On the analysis of using 3-coil wireless power transfer system in retinal prosthesis.

    PubMed

    Bai, Shun; Skafidas, Stan

    2014-01-01

    Designing a wireless power transmission system(WPTS) using inductive coupling has been investigated extensively in the last decade. Depending on the different configurations of the coupling system, there have been various designing methods to optimise the power transmission efficiency based on the tuning circuitry, quality factor optimisation and geometrical configuration. Recently, a 3-coil WPTS was introduced in retinal prosthesis to overcome the low power transferring efficiency due to low coupling coefficient. Here we present a method to analyse this 3-coil WPTS using the S-parameters to directly obtain maximum achievable power transferring efficiency. Through electromagnetic simulation, we brought a question on the condition of improvement using 3-coil WPTS in powering retinal prosthesis. PMID:25571390

  3. Low spring index, large displacement Shape Memory Alloy (SMA) coil actuators for use in macro- and micro-systems

    NASA Astrophysics Data System (ADS)

    Holschuh, Brad; Newman, Dava

    2014-03-01

    Shape memory alloys (SMA) offer unique shape changing characteristics that can be exploited to produce low­ mass, low-bulk, large-stroke actuators. We are investigating the use of low spring index (defined as the ratio of coil diameter to wire diameter) SMA coils for use as actuators in morphing aerospace systems. Specifically, we describe the development and characterization of minimum achievable spring index coiled actuators made from 0.3048 mm (0.012") diameter shape memory alloy (SMA) wire for integration in textile architectures for future compression space suit applications. Production and shape setting of the coiled actuators, as well as experimental test methods, are described. Force, length and voltage relationships for multiple coil actuators are reported and discussed. The actuators exhibit a highly linear (R2 < 0.99) relationship between isometric blocking force and coil displacement, which is consistent with current SMA coil models; and SMA coil actuators demonstrate the ability to produce significant linear forces (i.e., greater than 8 N per coil) at strains up to 3x their initial (i.e., fully coiled) length. Discussions of both the potential use of these actuators in future compression space suit designs, and the broader viability of these actuators in both macro- and micro-systems, are presented.

  4. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range

    SciTech Connect

    Lin, Tingting; Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho; Lin, Jun

    2014-11-15

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.

  5. Annular Suspension and Pointing System (ASPS) magnetic rotary joint

    NASA Technical Reports Server (NTRS)

    Smith, W. E.; Quach, W.; Thomas, W.

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) is a prototype of flight hardware for a high-accuracy space payload pointing mount. The long term project objective is to perform modifications and implement improvements to the existing ASPS in hopes of recommission. Also, new applications will be investigated for this technology. This report will focus on the first aspect of this overall goal, to establish operation of a single bearing station. Presented is an overview of the system history and bearing operation followed by the processes, results, and status of the single bearing study.

  6. Usefulness of the Guglielmi detachable coil for embolization of a systemic venous collateral after Fontan operation: A case report

    PubMed Central

    Sonomura, Tetsuo; Ikoma, Akira; Kawai, Nobuyuki; Suenaga, Tomohiro; Takeuchi, Takashi; Suzuki, Hiroyuki; Uchita, Shunji; Nakai, Motoki; Minamiguchi, Hiroki; Kishi, Kazushi; Sato, Morio

    2012-01-01

    Embolization of collateral veins is often treated with rigid coils (Gianturco and interlocking detachable coils type). However, when dealing with tortuous and dilated collateral veins, there is a high risk for technical failure and coil migration due to inflexibility of the coils. To safely and successfully solve this problem, Guglielmi detachable coils (GDC) can be used for embolization. Their flexibility allows for easy navigation in tortuous veins, low risk of unintended coil release or coil migration, and safe deployment. A 12-year-old girl with a single ventricle had severe cyanosis and a low exercise tolerance 5 years after Fontan procedure. The symptoms were caused by a tortuous and dilated collateral from the left phrenic vein into the left pulmonary vein, forming a right-to-left shunt. The collateral, which had a large diameter and high flow, and therefore a high risk of coil migration, was successfully embolized with 8 GDC. There were no complications such as coil migration or cerebral infarction. Transcatheter embolization increased her systemic oxygen saturation from 81%-84% to 94%-95%, and increased her ability to exercise. The embolization procedure using flexible GDC was low risk compared with other rigid coil embolization techniques when performing embolization of tortuous and dilated collateral veins. PMID:23024844

  7. A magnetic suspension system with a large angular range

    NASA Astrophysics Data System (ADS)

    Britcher, Colin P.; Ghofrani, Mehran

    1993-07-01

    In order to explore and develop technology required for the magnetic suspension of objects over large ranges of orientation, a small-scale laboratory system, the large-angle magnetic suspension test fixture (LAMSTF) has been constructed at NASA Langley Research Center. This apparatus falls into the category of large-gap, actively stabilized magnetic levitation systems. The hardware comprises five conventional electromagnets in a circular arrangement, each driven from a separate bipolar power amplifier. Electromagnet currents are commanded by a digital control system, implemented on a microcomputer, which in turn derives the position and attitude of the suspended element from an infrared optical system. The suspended element is a cylindrical, axially magnetized, permanent magnet core, within an aluminum tube. The element is ``levitated'' by repulsive forces, with its axis horizontal, 0.1 m above the top plane of the electromagnet conductor. The element is stabilized in five degrees-of-freedom, with rotation about the cylinder axis not controlled. By mechanical rotation of the sensor assembly, the suspended element can be made to undergo a full 360° rotation about the vertical axis. The controller accommodates the changes in magnetic coupling between the electromagnets and the suspended element by real-time adaptation of a decoupling matrix. This report presents a review of the background to the problem of magnetic suspension over large ranges of orientation. Next, the design and operation procedures adopted for LAMSTF, and the system hardware are described. Finally, some performance measurements are shown, together with illustration that the major design objective—the 360° rotation, has been accomplished.

  8. Failure Accommodation Tested in Magnetic Suspension Systems for Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Provenza, Andy J.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field and Texas A&M University are developing techniques for accommodating certain types of failures in magnetic suspension systems used in rotating machinery. In recent years, magnetic bearings have become a viable alternative to rolling element bearings for many applications. For example, industrial machinery such as machine tool spindles and turbomolecular pumps can today be bought off the shelf with magnetically supported rotating components. Nova Gas Transmission Ltd. has large gas compressors in Canada that have been running flawlessly for years on magnetic bearings. To help mature this technology and quiet concerns over the reliability of magnetic bearings, NASA researchers have been investigating ways of making the bearing system tolerant to faults. Since the potential benefits from an oil-free, actively controlled bearing system are so attractive, research that is focused on assuring system reliability and safety is justifiable. With support from the Fast Quiet Engine program, Glenn's Structural Mechanics and Dynamics Branch is working to demonstrate fault-tolerant magnetic suspension systems targeted for aerospace engine applications. The Flywheel Energy Storage Program is also helping to fund this research.

  9. Magnetic Suspension and Balance Systems: A Selected, Annotated Bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle Marie H.; Kilgore, Robert A.; Boyden, Richmond P.

    1983-01-01

    This publication, containing 206 entries, supersedes an earlier bibliography, NASA TM-80225 (April 1980). Citations for 18 documents have been added in this updated version. Most of the additions report results of recent studies aimed at increasing the research capabilities of magnetic suspension and balance systems, e.g., increasing force and torque capability, increasing angle of attack capability, and increasing overall system reliability. Some of the additions address the problem of scaling from the relatively small size of existing systems to much larger sizes. The purpose of this bibliography is to provide an up-to-date list of publications that might be helpful to persons interested in magnetic suspension and balance systems for use in wind tunnels. The arrangement is generally chronological by date of publication. However, papers presented at conferences or meetings are placed under dates of presentation. The numbers assigned to many of the citations have been changed from those used in the previous bibliography. This has been done in order to allow outdated citations to be removed and some recently discovered older works to be included in their proper chronological order.

  10. The Gravity Probe B electrostatic gyroscope suspension system (GSS)

    NASA Astrophysics Data System (ADS)

    Bencze, W. J.; Brumley, R. W.; Eglington, M. L.; Hipkins, D. N.; Holmes, T. J.; Parkinson, B. W.; Ohshima, Y.; Everitt, C. W. F.

    2015-11-01

    A spaceflight electrostatic suspension system was developed for the Gravity Probe B (GP-B) Relativity Mission’s cryogenic electrostatic vacuum gyroscopes which serve as an indicator of the local inertial frame about Earth. The Gyroscope Suspension System (GSS) regulates the translational position of the gyroscope rotors within their housings, while (1) minimizing classical electrostatic torques on the gyroscope to preserve the instrument’s sensitivity to effects of General Relativity, (2) handling the effects of external forces on the space vehicle, (3) providing a means of precisely aligning the spin axis of the gyroscopes after spin-up, and (4) acting as an accelerometer as part of the spacecraft’s drag-free control system. The flight design was tested using an innovative, precision gyroscope simulator Testbed that could faithfully mimic the behavior of a physical gyroscope under all operational conditions, from ground test to science data collection. Four GSS systems were built, tested, and operated successfully aboard the GP-B spacecraft from launch in 2004 to the end of the mission in 2008.

  11. Experimental study of thrusts of a cylindrical linear synchronous motor with an HTS coil magnet as the excitation system

    NASA Astrophysics Data System (ADS)

    Duan, Wanqing; Yan, Zhongming; Luo, Wenbo; Zhang, Peixing; Gui, Zhixing; Wang, Zhiquan; Wang, Yu

    2015-01-01

    The thrusts of a cylindrical linear synchronous motor with an HTS coil magnet as the excitation system were measured the first time and will be presented in this paper. The HTS coil magnet is made of second generation YBCO wire. The coil is a double pancake coil consisting of 34 turns wire. The inner diameter, outer diameter and height of the coil are 20, 30 and 13 mm, respectively. The armature of the motor is three phases, and the inner diameter is 40 mm. It is made of copper windings. With a direct current of 40 A for the HTS coil magnet and a RMS current of 10 A for the armature, a peak thrust of 3.8 N was measured at the temperature of 77 K and a radial gap of 5 mm between the armature and the excitation system. Effects of armature current, coil current, running time, magnetizers and seams between magnetizers were also studied. In the experiments, the peak thrusts of different types of HTS coil magnets were about from 1.3 times to 8 times as strong as the peak thrust of the coreless coil magnet under the same conditions.

  12. Fault detection in electromagnetic suspension systems with state estimation methods

    SciTech Connect

    Sinha, P.K.; Zhou, F.B.; Kutiyal, R.S. . Dept. of Engineering)

    1993-11-01

    High-speed maglev vehicles need a high level of safety that depends on the whole vehicle system's reliability. There are many ways of attaining high reliability for the system. Conventional method uses redundant hardware with majority vote logic circuits. Hardware redundancy costs more, weigh more and occupy more space than that of analytically redundant methods. Analytically redundant systems use parameter identification and state estimation methods based on the system models to detect and isolate the fault of instruments (sensors), actuator and components. In this paper the authors use the Luenberger observer to estimate three state variables of the electromagnetic suspension system: position (airgap), vehicle velocity, and vertical acceleration. These estimates are compared with the corresponding sensor outputs for fault detection. In this paper, they consider FDI of the accelerometer, the sensor which provides the ride quality.

  13. Dynamic stability of repulsive-force maglev suspension systems

    SciTech Connect

    Cai, Y.; Rote, D.M.; Mulcahy, T.M.; Wang, Z.

    1996-11-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also documents both measured and calculated magnetic-force data. Because dynamic instability is not acceptable for any commercial maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments on maglev systems and compares the results with predictions calculated by a nonlinear-dynamics computer code. Instabilities of an electrodynamic-suspension system type vehicle model were obtained by experimental observation and computer simulation of a five-degree-of-freedom maglev vehicle moving on a guideway that consists of a pair of L-shaped aluminum conductors attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of maglev systems.

  14. A magnetic induction heating system with multi-cascaded coils and adjustable magnetic circuit for hyperthermia.

    PubMed

    Huang, Chi-Fang; Chao, Hsuan-Yi; Chang, Hsun-Hao; Lin, Xi-Zhang

    2016-01-01

    Based on the characteristics of cancer cells that cannot survive in an environment with temperature over 42 °C, a magnetic induction heating system for cancer treatment is developed in this work. First, the methods and analyses for designing the multi-cascaded coils magnetic induction hyperthermia system are proposed, such as internal impedance measurement of power generator, impedance matching of coils, and analysis of the system. Besides, characteristics of the system are simulated by a full-wave package for engineering optimization. Furthermore, by considering the safety factor of patients, a two-sectional needle is designed for hyperthermia. Finally, this system is employed to test the liver of swine in ex-vivo experiments, and through Hematoxylin and Eosin (H&E) stain and NADPH oxidase activity assay, the feasibility of this system is verified.

  15. Gait Biomechanics of Individuals with Transtibial Amputation: Effect of Suspension System

    PubMed Central

    Eshraghi, Arezoo; Abu Osman, Noor Azuan; Karimi, Mohammad; Gholizadeh, Hossein; Soodmand, Ehsan; Abas, Wan Abu Bakar Wan

    2014-01-01

    Prosthetic suspension system is an important component of lower limb prostheses. Suspension efficiency can be best evaluated during one of the vital activities of daily living, i.e. walking. A new magnetic prosthetic suspension system has been developed, but its effects on gait biomechanics have not been studied. This study aimed to explore the effect of suspension type on kinetic and kinematic gait parameters during level walking with the new suspension system as well as two other commonly used systems (the Seal-In and pin/lock). Thirteen persons with transtibial amputation participated in this study. A Vicon motion system (six cameras, two force platforms) was utilized to obtain gait kinetic and kinematic variables, as well as pistoning within the prosthetic socket. The gait deviation index was also calculated based on the kinematic data. The findings indicated significant difference in the pistoning values among the three suspension systems. The Seal-In system resulted in the least pistoning compared with the other two systems. Several kinetic and kinematic variables were also affected by the suspension type. The ground reaction force data showed that lower load was applied to the limb joints with the magnetic suspension system compared with the pin/lock suspension. The gait deviation index showed significant deviation from the normal with all the systems, but the systems did not differ significantly. Main significant effects of the suspension type were seen in the GRF (vertical and fore-aft), knee and ankle angles. The new magnetic suspension system showed comparable effects in the remaining kinetic and kinematic gait parameters to the other studied systems. This study may have implications on the selection of suspension systems for transtibial prostheses. Trial Registration Iranian Registry of Clinical Trials IRCT2013061813706N1. PMID:24865351

  16. Digital Control Analysis and Design of a Field-Sensed Magnetic Suspension System

    PubMed Central

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-01-01

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems. PMID:25781508

  17. Digital control analysis and design of a field-sensed magnetic suspension system.

    PubMed

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-03-13

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems.

  18. Digital control analysis and design of a field-sensed magnetic suspension system.

    PubMed

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-01-01

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems. PMID:25781508

  19. Plate coil thermal test bench for the Daniel K. Inouye Solar Telescope (DKIST) carousel cooling system

    NASA Astrophysics Data System (ADS)

    Phelps, LeEllen; Murga, Gaizka; Montijo, Guillermo; Hauth, David

    2014-08-01

    Analyses have shown that even a white-painted enclosure requires active exterior skin-cooling systems to mitigate dome seeing which is driven by thermal nonuniformities that change the refractive index of the air. For the Daniel K. Inouye Solar Telescope (DKIST) Enclosure, this active surface temperature control will take the form of a system of water cooled plate coils integrated into the enclosure cladding system. The main objective of this system is to maintain the surface temperature of the enclosure as close as possible to, but always below, local ambient temperature in order to mitigate this effect. The results of analyses using a multi-layer cladding temperature model were applied to predict the behavior of the plate coil cladding system and ultimately, with safety margins incorporated into the resulting design thermal loads, the detailed designs. Construction drawings and specifications have been produced. Based on these designs and prior to procurement of the system components, a test system was constructed in order to measure actual system behavior. The data collected during seasonal test runs at the DKIST construction site on Haleakalā are used to validate and/or refine the design models and construction documents as appropriate. The test fixture was also used to compare competing hardware, software, components, control strategies, and configurations. This paper outlines the design, construction, test protocols, and results obtained of the plate coil thermal test bench for the DKIST carousel cooling system.

  20. Design, implementation, and testing of a single axis levitation system for the suspension of a platform.

    PubMed

    Banerjee, Subrata; Prasad, Dinkar; Pal, Jayanta

    2007-04-01

    This paper describes the design and implementation of a single axis DC attraction type suspension system, where a platform (vehicle structure) of around 14 kg mass is made to remain suspended at the desired operating gap under a ferromagnetic guide-way. The prototype has four electromagnetic actuators of attraction type and four inductive gap sensors, all located at the corners of the platform. The four actuators are controlled independently through four identical controllers, and the stable levitation of the platform is achieved through the single input and single output (SISO) control of each air-gap. The emphasis of this work is on the design and development of the switched mode power amplifier cum controller unit for the four actuators. The proposed single switch-based power circuit simplifies the overall hardware, and it can be extended to any number of magnet-coils. A cascade lead compensation control scheme utilizing an inner current loop and outer position loop has been designed and implemented for the stabilization of such a highly unstable and strongly nonlinear system. The prototype has been successfully tested, and stable levitation was demonstrated with the desired operating gap. PMID:17350630

  1. Research on automatic non-destructive testing system of oil coiled tubing

    NASA Astrophysics Data System (ADS)

    Guo, Rong; Qiu, Wenbin; Wang, Yuhui; Ren, Jianguang

    2010-10-01

    A method using ultrasonic devices for on-line measurement of oil coiled tubing was proposed. The principle of ultrasonic testing was analyzed. Then, the structure of the system consisting of mechanical system, coupling system, measuring system, control system and system software was determinated. Based on the analysis of technology requirement, measuring technique in which the coiled tubing did not rotate and the probe was static was chosen. The ultrasonic testing probes were triggered in turn. After signal sampling, digital filtering and A / D conversion signal processing, the received echo signals were sent to computer. Through analyzing and accounting, the test results were obtained. Based on VC++.net, A-type ultrasonic and C-type ultrasonic display software and the inspection data processing software were developed. Using Windows programming technology, the software structure and function library were totally open. Therefore, secondary development can be carried out conveniently. Based on the experimental studies, coiled tubing's ultrasonic testing system is developed. The testing results show that the system has specific advantages such as high-adaptation, highefficiency, high- stability, high reliability and can meet the need of the users. The ultrasonic testing technologies proposed in this paper can be applied extensively to other tubes.

  2. Variable-Tension-Cord Suspension/Vibration-Isolation System

    NASA Technical Reports Server (NTRS)

    Villemarette, Mark L.; Boston, Joshua; RInks, Judith; Felice, Pat; Stein, Tim; Payne, Patrick

    2006-01-01

    A system for mechanical suspension and vibration isolation of a machine or instrument is based on the use of Kevlar (or equivalent aromatic polyamide) cord held in variable tension between the machine or instrument and a surrounding frame. The basic concept of such a tensioned-cord suspension system (including one in which the cords are made of aromatic polyamide fibers) is not new by itself; what is new here is the additional provision for adjusting the tension during operation to optimize vibration- isolation properties. In the original application for which this system was conceived, the objective is to suspend a reciprocating cryocooler aboard a space shuttle and to prevent both (1) transmission of launch vibrations to the cryocooler and (2) transmission of vibrations from the cryocooler to samples in a chamber cooled by the cryocooler. The basic mechanical principle of this system can also be expected to be applicable to a variety of other systems in which there are requirements for cord suspension and vibration isolation. The reciprocating cryocooler of the original application is a generally axisymmetric object, and the surrounding frame is a generally axisymmetric object with windows (see figure). Two cords are threaded into a spoke-like pattern between attachment rings on the cryocooler, holes in the cage, and cord-tension- adjusting assemblies. Initially, the cord tensions are adjusted to at least the level necessary to suspend the cryocooler against gravitation. Accelerometers for measuring vibrations are mounted (1) on the cold tip of the cryocooler and (2) adjacent to the cage, on a structure that supports the cage. During operation, a technician observes the accelerometer outputs on an oscilloscope while manually adjusting the cord tensions in an effort to minimize the amount of vibration transmitted to and/or from the cryocooler. A contemplated future version of the system would include a microprocessor-based control subsystem that would include cord

  3. A sediment suspension system for bioassays with small aquatic organisms

    USGS Publications Warehouse

    Schmidt-Dallmier, M. J.; Atchison, G.J.; Steingraeber, M.T.; Knights, B.C.

    1992-01-01

    Exposure of aquatic organisms to suspended sediments can impair growth and survival and increase bioaccumulation of sediment-associated contaminants. However, evaluation of the effects of suspended sediments and their associated contaminants on aquatic organisms has been hampered by the lack of a practical and inexpensive exposure system for conducting bioassays. We present a cost-effective system for assessing the effects of suspended sediments and associated contaminants on small aquatic organisms. A 7-day suspension test was conducted with nominal sediment concentrations ranging from 0.0 To 5.0 g 1-1. The system maintained relatively constant suspended sediment concentrations, as measured by turbidity, and caused minimal mortality to test organisms.

  4. Modeling and Identification of a Large Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Cox, David E. (Editor); Groom, Nelson J. (Editor); Hsiao, Min-Hung; Huang, Jen-Kuang

    1996-01-01

    This paper presents the results of modeling and system identification efforts on the NASA Large-Angle Magnetic Suspension Test Fixture (LAMSTF). The LAMSTF consists of a cylindrical permanent magnet which is levitated above a planar array of five electromagnets mounted in a circular configuration. The analytical model is first developed and open-loop characteristics are described. The system is shown to be highly unstable and requires feedback control in order to apply system identification. Limitations on modeling accuracy due to the effect of eddy-currents on the system are discussed. An algorithm is derived to identify a state-space model for the system from input/output data acquired during closed-loop operation. The algorithm is tested on both the baseline system and a perturbed system which has an increased presence of eddy currents. It is found that for the baseline system the analytic model adequately captures the dynamics, although the identified model improves the simulation accuracy. For the system perturbed by additional unmodeled eddy-currents the analytic model is no longer adequate and a higher-order model, determined through system identification, is required to accurately predict the system's time response.

  5. A nonlinear kinematic and dynamic modeling of Macpherson suspension systems with a magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Dutta, Saikat; Choi, Seung-Bok

    2016-03-01

    It is well known that Macpherson strut suspension systems are widely used in light and medium weight vehicles. The performance of these suspension systems can be enriched by incorporating magneto-rheological (MR) dampers and an appropriate dynamic model is required in order to find out the ride comfort and other performances properly in the sense of practical environment conditions. Therefore, in this work the kinematic and dynamic modeling of Macpherson strut suspension system with MR damper is presented and its responses are evaluated. The governing equations are formulated using the kinematic properties of the suspension system and adopting Lagrange’s equation. In the formulation of the model, both the rotation of the wheel assembly and the lateral stiffness of the tire are considered to represent the nonlinear characteristic of Macpherson type suspension system. The formulated mathematical model is then compared with equivalent conventional quarter car suspension model and the different dynamic responses such as the displacement of the sprung mass are compared to emphasize the effectiveness of the proposed model. Additionally, in this work the important kinematic properties of suspension system such as camber angle, king-pin angle and track width alteration, which cannot be obtained from conventional quarter car suspension model, are evaluated in time and frequency domains. Finally, vibration control responses of the proposed suspension system are presented in time and frequency domains which are achieved from the semi-active sky-hook controller.

  6. Digital controller design: Analysis of the annular suspension pointing system

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.

    1979-01-01

    The Annular Suspension and Pointing System (ASPS) is a payload auxiliary pointing device of the Space Shuttle. The ASPS is comprised of two major subassemblies, a vernier and a coarse pointing subsystem. The experiment is attached to a mounting plate/rim combination which is suspended on magnetic bearing/actuators (MBA) strategically located about the rim. Fine pointing is achieved by gimballing the plate/rim within the MBA gaps. Control about the experiment line-of-sight is obtained through the use of a non-contacting rim drive and positioning torquer. All sensors used to close the servo loops on the vernier system are noncontacting elements. Therefore, the experiment is a free-flyer constrained only by the magnetic forces generated by the control loops.

  7. Strain-gage balance calibration of a magnetic suspension and balance system

    NASA Astrophysics Data System (ADS)

    Roberts, Paul W.; Tcheng, Ping

    A load calibration of the NASA 13-in magnetic suspension and balance system (MSBS) is described. The calibration procedure was originally intended to establish the empirical relationship between the coil currents and the external loads (forces and moments) applied to a magnetically suspended calibrator. However, it was discovered that the performance of a strain-gage balance is not affected when subjected to the magnetic environment of the MSBS. The use of strain-gage balances greatly reduces the effort required to perform a current-vs.-load calibration as external loads can be directly inferred from the balance outputs while a calibrator is suspended in MSBS. It is conceivable that in the future such a calibration could become unnecessary, since an even more important application for the use of a strain-gage balance in MSBS environment is the acquisition of precision aerodynamic force and moment data by telemetering the balance outputs from a suspended model/core/balance during wind tunnel tests.

  8. Strain-gage balance calibration of a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.; Tcheng, Ping

    1987-01-01

    A load calibration of the NASA 13-in magnetic suspension and balance system (MSBS) is described. The calibration procedure was originally intended to establish the empirical relationship between the coil currents and the external loads (forces and moments) applied to a magnetically suspended calibrator. However, it was discovered that the performance of a strain-gage balance is not affected when subjected to the magnetic environment of the MSBS. The use of strain-gage balances greatly reduces the effort required to perform a current-vs.-load calibration as external loads can be directly inferred from the balance outputs while a calibrator is suspended in MSBS. It is conceivable that in the future such a calibration could become unnecessary, since an even more important application for the use of a strain-gage balance in MSBS environment is the acquisition of precision aerodynamic force and moment data by telemetering the balance outputs from a suspended model/core/balance during wind tunnel tests.

  9. A Digital Control Algorithm for Magnetic Suspension Systems

    NASA Technical Reports Server (NTRS)

    Britton, Thomas C.

    1996-01-01

    An ongoing program exists to investigate and develop magnetic suspension technologies and modelling techniques at NASA Langley Research Center. Presently, there is a laboratory-scale large air-gap suspension system capable of five degree-of-freedom (DOF) control that is operational and a six DOF system that is under development. Those systems levitate a cylindrical element containing a permanent magnet core above a planar array of electromagnets, which are used for levitation and control purposes. In order to evaluate various control approaches with those systems, the Generic Real-Time State-Space Controller (GRTSSC) software package was developed. That control software package allows the user to implement multiple control methods and allows for varied input/output commands. The development of the control algorithm is presented. The desired functionality of the software is discussed, including the ability to inject noise on sensor inputs and/or actuator outputs. Various limitations, common issues, and trade-offs are discussed including data format precision; the drawbacks of using either Direct Memory Access (DMA), interrupts, or program control techniques for data acquisition; and platform dependent concerns related to the portability of the software, such as memory addressing formats. Efforts to minimize overall controller loop-rate and a comparison of achievable controller sample rates are discussed. The implementation of a modular code structure is presented. The format for the controller input data file and the noise information file is presented. Controller input vector information is available for post-processing by mathematical analysis software such as MATLAB1.

  10. Damping collaborative optimization of five-suspensions for driver-seat-cab coupled system

    NASA Astrophysics Data System (ADS)

    Zhao, Leilei; Zhou, Changcheng; Yu, Yuewei

    2016-07-01

    Both the seat and cab system of truck play a vital role in ride comfort. The damping matching methods of the two systems are studied separately at present. However, the driver, seat, and cab system are one inseparable whole. In order to further improve ride comfort, the seat suspension is regarded as the fifth suspension of the cab, a new idea of "Five-suspensions" is proposed. Based on this idea, a 4 degree-of-freedom driver-seat-cab coupled system model is presented. Using the tested cab suspensions excitations as inputs and seat acceleration response as compared output, the simulation model is built. Taking optimal ride comfort as target, a new method of damping collaborative optimization for Five-suspensions is proposed. With a practical example of seat and cab system, the damping parameters are optimized and validated by simulation and bench test. The results show the seat vertical frequency-weighted RMS acceleration values tested for the un-optimized and optimized Five-suspensions are 0.50 m/s2 and 0.39 m/s2, respectively, with a decrease by 22.0%, which proves the model and method proposed are correct and reliable. The idea of "Five-suspensions" and the method proposed provide a reference for achieving global optimal damping matching of seat suspension and cab suspensions.

  11. To the theory of rheological properties of magnetopolymer suspensions.

    PubMed

    Zubarev, Andrey Yu

    2013-10-28

    This paper deals with the theoretical study of the magnetorhelogical properties of dilute suspensions of polymer coils with ferromagnetic nanoparticles adsorbed on the macromolecules. The analysis shows that, under an applied magnetic field, these coils elongate in the field direction and swell. Both these factors lead to a significant increase in the effective viscosity of the system. Estimates show that in the magnetopolymer compositions, strong magnetoviscous effects are expected even though in standard ferrofluids these effects are negligible. PMID:26029780

  12. A Feasibility Study. Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  13. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device.

    PubMed

    Okamoto, Eiji; Yamamoto, Yoshiro; Akasaka, Yuhta; Motomura, Tadashi; Mitamura, Yoshinori; Nosé, Yukihiko

    2009-08-01

    We have developed a new transcutaneous energy transmission (TET) system for a totally implantable biventricular assist device (BVAD) system in the New Energy and Industrial Development Organization (NEDO) artificial heart project. The TET system mainly consists of an energy transmitter, a hybrid energy coil unit, an energy receiver, an internal battery system, and an optical telemetry system. The hybrid energy coil unit consists of an air-core energy transmission coil and an energy-receiving coil having a ferrite core. Internal units of the TET system are encapsulated in a titanium alloy casing, which has a size of 111 mm in width, 73 mm in length, and 25 mm in height. In in vitro experiments, the TET system can transmit a maximum electric energy of 60 Watts, and it has a maximum transmission efficiency of 87.3%. A maximum surface temperature of 46.1 degrees C was measured at the ferrite core of the energy-receiving coil during an energy transmission of 20 Watts in air. The long-term performance test shows that the TET system has been able to operate stably for over 4 years with a decrease of energy-transmission efficiency from 85% to 80%. In conclusion, the TET system with the hybrid energy coil can overcome the drawback of previously reported TET systems, and it promises to be the highest performance TET system in the world.

  14. A practical, low-noise coil system for magnetotellurics

    USGS Publications Warehouse

    Stanley, William D.; Tinkler, Richard D.

    1983-01-01

    Magnetotellurics is a geophysical technique which was developed by Cagnaird (1953) and Tikhonov (1950) and later refined by other scientists worldwide. The technique is a method of electromagnetic sounding of the Earth and is based upon the skin depth effect in conductive media. The electric and magnetic fields arising from natural sources are measured at the surface of the earth over broad frequency bands. An excellent review of the technique is provided in the paper by Vozoff (1972). The sources of the natural fields are found in two basic mechanisms. At frequencies above a few hertz, most of the energy arises from lightning in thunderstorm belts around the equatorial regions. This energy is propagated in a wave-guide formed by the earthionospheric cavity. Energy levels are higher at fundamental modes for this cavity, but sufficient energy exists over most of the audio range to be useful for sounding at these frequencies, in which case the technique is generally referred to as audio-magnetotellurics or AMT. At frequencies lower than audio, and in general below 1 Hz, the source of naturally occuring electromagnetic energy is found in ionospheric currents. Current systems flowing in the ionosphere generate EM waves which can be used in sounding of the earth. These fields generate a relatively complete spectrum of electromagnetic energy that extends from around 1 Hz to periods of one day. Figure 1 shows an amplitude spectrum characteristic of both the ionospheric and lightning sources, covering a frequency range from 0.0001 Hz to 1000 Hz. It can be seen that there is a minimum in signal levels that occurs at about 1 Hz, in the gap between the two sources, and that signal level increases with a decrease in frequency.

  15. NCSX Toroidal Field Coil Design

    SciTech Connect

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  16. A study on the operation analysis of the power conditioning system with real HTS SMES coil

    NASA Astrophysics Data System (ADS)

    Kim, A. R.; Jung, H. Y.; Kim, J. H.; Ali, Mohd. Hasan; Park, M.; Yu, I. K.; Kim, H. J.; Kim, S. H.; Seong, K. C.

    2008-09-01

    Voltage sag from sudden increasing loads is one of the major problems in the utility network. In order to compensate the voltage sag problem, power compensation devices have widely been developed. In the case of voltage sag, it needs an energy source to overcome the energy caused by voltage sag. According as the SMES device is characterized by its very high response time of charge and discharge, it has widely been researched and developed for more than 20 years. However, before the installation of SMES into utility, the system analysis has to be carried out with a certain simulation tool. This paper presents a real-time simulation algorithm for the SMES system by using the miniaturized SMES model coil whose properties are same as those of real size SMES coil. With this method, researchers can easily analyse the performance of SMES connected into utility network by abstracting the properties from the real modeled SMES coil and using the virtual simulated power network in RSCAD/RTDS.

  17. Active control of an innovative seat suspension system with acceleration measurement based friction estimation

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Li, Hongyi; Du, Haiping; Li, Weihua

    2016-12-01

    In this paper, an innovative active seat suspension system for vehicles is presented. This seat suspension prototype is built with two low cost actuators each of which has one rotary motor and one gear reducer. A H∞ controller with friction compensation is designed for the seat suspension control system where the friction is estimated and compensated based on the measurement of seat acceleration. This principal aim of this research was to control the low frequency vibration transferred or amplified by the vehicle (chassis) suspension, and to maintain the passivity of the seat suspension at high frequency (isolation vibration) while taking into consideration the trade-off between the active seat suspension cost and its high frequency performance. Sinusoidal excitations of 1-4.5 Hz were applied to test the active seat suspension both when controlled and when uncontrolled and this is compared with a well-tuned passive heavy duty vehicle seat suspension. The results indicate the effectiveness of the proposed control algorithm within the tested frequencies. Further tests were conducted using the excitations generated from a quarter-car model under bump and random road profiles. The bump road tests indicate the controlled active seat suspension has good transient response performance. The Power Spectral Density (PSD) method and ISO 2631-1 standards were applied to analyse the seat suspension's acceleration under random road conditions. Although some low magnitude and high frequency noise will inevitably be introduced by the active system, the weighted-frequency Root Mean Square (RMS) acceleration shows that this may not have a large effect on ride comfort. In fact, the ride comfort is improved from being an 'a little uncomfortable' to a 'not uncomfortable' level when compared with the well-tuned passive seat suspension. This low cost active seat suspension design and the proposed controller with the easily measured feedback signals are very practical for real

  18. Proposal of Electro-Magnetic-Suspension System with Tilting Control

    NASA Astrophysics Data System (ADS)

    Chuang, Chih-Chung; Suda, Yoshihiro; Komine, Hisanao; Iwasa, Takashi

    This paper proposes a new Electro-Magnetic-Suspension (EMS) system, which has the ability of self-banking in curve section. This new EMS system can tilt automatically corresponding to the magnitude of the centrifugal force. Four hybrid-magnets (HMs) ─ a combination of permanent and electro-magnets ─ are used to guide and suspend a vehicle simultaneously in a manner different from that of a conventional EMS system, which acquires the necessary force from a guidance system while running in a tight curve. The Nearly-Zero-Power control method is applied to minimize energy consumption of the HMs. Five degrees of freedom are considered during the simulation and the experiment. The results of the simulation and the experiment demonstrate that this new EMS system has the ability to tilt automatically corresponding to the magnitude of the centrifugal force and nullify the constant disturbance forces applied in five directions using only the attractive forces of the permanent magnets (PMs) in the HMs and the earth's gravity.

  19. Modelling and Optimization of the Half Model of a Passenger Car with Magnetorheological Suspension System

    NASA Astrophysics Data System (ADS)

    Segla, S.

    The paper deals with modelling and optimization of the half model of a passenger car with an ideal semi-active suspension, semi-active suspension equipped with magnetorheological dampers, passive suspension equipped with hydraulic dampers without control and compares their dynamic characteristics. The conventional skyhook control is used to control semi-active dampers taking into account the time delay. Selected parameters of the suspension systems are optimized for given road profiles using genetic algorithms. The results show that implementation of the magnetorheological dampers can lead to a significant improvement of the ride comfort and handling properties of passenger cars provided that the time delay is low enough.

  20. Effect of coiled-coil peptides on the function of the type III secretion system-dependent activity of enterohemorragic Escherichia coli O157:H7 and Citrobacter rodentium.

    PubMed

    Larzábal, Mariano; Zotta, Elsa; Ibarra, Cristina; Rabinovitz, Bettina C; Vilte, Daniel A; Mercado, Elsa C; Cataldi, Ángel

    2013-01-01

    Many animal and human pathogenic Gram-negative bacteria such as Salmonella, Yersinia, enterohemorrhagic Escherichia coli (EHEC), and enteropathogenic Escherichia coli (EPEC) possess a type III secretion system (TTSS) that is used to deliver virulence proteins directly into the host cell. Recent evidence has suggested that CoilA and CoilB, two synthetic peptides corresponding to coiled-coil domains of the translocator protein EspA, are effective in inhibiting the action of TTSS from EPEC. In the current study, the action of these coiled-coil peptides on the TTSS of EHEC O157:H7 and Citrobacter rodentium was examined. CoilA and CoilB showed to be effective in reducing the red blood cell lysis mediated by EHEC O157:H7 and the in vitro secretion of translocator proteins EspB and EspD by EHEC O157:H7 and EspD by C. rodentium. Treatment of mice with CoilA and CoilB peptides prevented colon damage when the animals were inoculated with C. rodentium. Colon samples of the non-treated group showed areas with loss of superficial epithelium, damaged cells, and endoluminal mononuclear inflammatory infiltrate, consistent with histological lesions induced by C. rodentium, whereas mice treated with the synthetic peptides displayed normal surface epithelium showing a similar structure as the uninfected control group. These encouraging results prompt us to test coiled-coil peptides as treatment or vaccines in other models of bacterial infections in future work. PMID:23312797

  1. Optimal secondary coil design for inductive powering of the Artificial Accommodation System.

    PubMed

    Nagel, J A; Krug, M; Gengenbach, U; Guth, H; Bretthauer, G; Guthoff, R F

    2011-01-01

    Age-related ailments like presbyopia and cataract are increasing concerns in the aging society. Both go along with a loss of ability to accommodate. A new approach to restore the patients' ability to accommodate is the Artificial Accommodation System. This micro mechatronic system will be implanted into the capsular bag to replace the human crystalline lens. Depending on the patients' actual need for accommodation, the Artificial Accommodation System autonomously adapts the refractive power of its integrated optical element in a way that the projection on the patients' retina results in a sharp image. As the Artificial Accommodation System is an active implant, its subsystems have to be supplied with electrical energy. Evolving technologies, like energy harvesting, which can potentially be used to power an implant like the Artificial Accommodation System are at the current state of art not sufficient to power the Artificial Accommodation System autonomously [1]. In the near future, therefore an inductive power supply system will be developed which includes an energy storage to power the Artificial Accommodation System autonomously over a period of 24 h and can be recharged wirelessly. This Paper describes a new possibility to optimize the secondary coil design in a solely analytical way, based on a new figure of merit. Within this paper the developed figure of merit is applied to optimize the secondary coil design for the Artificial Accommodation System.

  2. Model coil for the international thermonuclear experimental reactor (ITER) magnet systems

    NASA Astrophysics Data System (ADS)

    Okuno, K.

    1994-07-01

    The model coil program for the ITER EDA includes the manufacture and testing of one Central Solenoid (CS) model coil and one Toroidal Field (TF) model coil, and test facility preparations. The CS model coil has an inner diameter of 1.6 m and produces a full field of 13 T. The TF model coil is race-track shaped with an outer dimension of 3 m x 4 m. It will be tested in conjunction with an LCT coil to simulate mechanical load conditions. Different kinds of conductors can be tested as inserts to be placed in the bore of the CS model coil. Two facilities at JAERI and KfK can provide ITER-relevant conditions for testing the model coils and inserts. The model coil program will validate the ITER magnet design and the manufacturing feasibility.

  3. Gold enrichment in active geothermal systems by accumulating colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Hannington, Mark; Harðardóttir, Vigdis; Garbe-Schönberg, Dieter; Brown, Kevin L.

    2016-04-01

    The origins of high-grade hydrothermal ore deposits are debated, but active geothermal systems provide important clues to their formation. The highest concentrations of gold are found in geothermal systems with direct links to island arc magmatism. Yet, similar concentrations have also been found in the absence of any input from arc magmas, for example, in the Reykjanes geothermal field, Iceland. Here we analyse brine samples taken from deep wells at Reykjanes and find that gold concentrations in the reservoir zone have increased over the past seven years from an average of 3 ppb to 14 ppb. The metal concentrations greatly exceed the maximum solubility of gold in the reservoir under saturated conditions and are now nearly two orders of magnitude higher than in mid-ocean ridge black smoker fluids--the direct analogues of Reykjanes deep liquids. We suggest that ongoing extraction of brine, the resulting pressure drop, and increased boiling have caused gold to drop out of solution and become trapped in the reservoir as a colloidal suspension. This process may explain how the stock of metal in the reservoirs of fossil geothermal systems could have increased over time and thus become available for the formation of gold-rich ore deposits.

  4. 21 CFR 1404.110 - What is the purpose of the nonprocurement debarment and suspension system?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false What is the purpose of the nonprocurement debarment and suspension system? 1404.110 Section 1404.110 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) General § 1404.110 What is the purpose...

  5. Tests of Insulation Systems for Nb3SN Wind and React Coils

    NASA Astrophysics Data System (ADS)

    Bossert, R.; Ambrosio, G.; Andreev, N.; Whitson, G.; Zlobin, A.

    2008-03-01

    Tests were performed to assess the viability of several cable insulation systems for use in Nb3Sn accelerator magnets. Insulated stacks of cables were subjected to reaction cycles commonly used for Nb3Sn coils. After reaction and epoxy impregnation, current leakage between turns was measured at pressures up to 180 MPa and turn-to-turn potentials up to 500 V. Systems consisting of S-2 glass, ceramic fiber, and E-glass were tested. Several methods of applying the insulation were incorporated, including sleeves and various spiral wrapped configurations. Methods of sample preparation and testing are described and results are reported.

  6. Tests of insulation systems for Nb3Sn wind and react coils

    SciTech Connect

    Bossert, R.; Ambrosio, G; Andreev, N.; Whitson, G.; Zlobin, A.; /Fermilab

    2007-07-01

    Tests were performed to assess the viability of several cable insulation systems for use in Nb{sub 3}Sn accelerator magnets. Insulated stacks of cables were subjected to reaction cycles commonly used for Nb{sub 3}Sn coils. After reaction and epoxy impregnation, current leakage between turns was measured at pressures up to 180 MPa and turn-to-turn potentials up to 500V. Systems consisting of S-2 glass, ceramic fiber, and E-glass were tested. Several methods of applying the insulation were incorporated, including sleeves and various spiral wrapped configurations. Methods of sample preparation and testing are described and results are reported.

  7. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    NASA Astrophysics Data System (ADS)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  8. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    SciTech Connect

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-15

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  9. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class. PMID:23902112

  10. Comparison of digital controllers used in magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, William A.

    1990-01-01

    Dynamic systems that were once controlled by analog circuits are now controlled by digital computers. Presented is a comparison of the digital controllers presently used with magnetic suspension and balance systems. The overall responses of the systems are compared using a computer simulation of the magnetic suspension and balance system and the digital controllers. The comparisons include responses to both simulated force and position inputs. A preferred digital controller is determined from the simulated responses.

  11. Electromechanical design and construction of a rotating radio-frequency coil system for applications in magnetic resonance.

    PubMed

    Trakic, Adnan; Weber, Ewald; Li, Bing Keong; Wang, Hua; Liu, Feng; Engstrom, Craig; Crozier, Stuart

    2012-04-01

    While recent studies have shown that rotating a single radio-frequency (RF) coil during the acquisition of magnetic resonance (MR) images provides a number of hardware advantages (i.e., requires only one RF channel, avoids coil-coil coupling and facilitates large-scale multinuclear imaging), they did not describe in detail how to build a rotating RF coil system. This paper presents detailed engineering information on the electromechanical design and construction of a MR-compatible RRFC system for human head imaging at 2 T. A custom-made (bladeless) pneumatic Tesla turbine was used to rotate the RF coil at a constant velocity, while an infrared optical encoder measured the selected frequency of rotation. Once the rotating structure was mechanically balanced and the compressed air supply suitably regulated, the maximum frequency of rotation measured ~14.5 Hz with a 2.4% frequency variation over time. MR images of a water phantom and human head were obtained using the rotating RF head coil system.

  12. Electromechanical design and construction of a rotating radio-frequency coil system for applications in magnetic resonance.

    PubMed

    Trakic, Adnan; Weber, Ewald; Li, Bing Keong; Wang, Hua; Liu, Feng; Engstrom, Craig; Crozier, Stuart

    2012-04-01

    While recent studies have shown that rotating a single radio-frequency (RF) coil during the acquisition of magnetic resonance (MR) images provides a number of hardware advantages (i.e., requires only one RF channel, avoids coil-coil coupling and facilitates large-scale multinuclear imaging), they did not describe in detail how to build a rotating RF coil system. This paper presents detailed engineering information on the electromechanical design and construction of a MR-compatible RRFC system for human head imaging at 2 T. A custom-made (bladeless) pneumatic Tesla turbine was used to rotate the RF coil at a constant velocity, while an infrared optical encoder measured the selected frequency of rotation. Once the rotating structure was mechanically balanced and the compressed air supply suitably regulated, the maximum frequency of rotation measured ~14.5 Hz with a 2.4% frequency variation over time. MR images of a water phantom and human head were obtained using the rotating RF head coil system. PMID:22231668

  13. α/β coiled coils.

    PubMed

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-15

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold.

  14. Potential benefits of magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.; Dress, David A.; Kilgore, Robert A.

    1987-01-01

    The potential of Magnetic Suspension and Balance Systems (MSBS) to improve conventional wind tunnel testing techniques is discussed. Topics include: elimination of model geometry distortion and support interference to improve the measurement accuracy of aerodynamic coefficients; removal of testing restrictions due to supports; improved dynamic stability data; and stores separation testing. Substantial increases in wind tunnel productivity are anticipated due to the coalescence of these improvements. Specific improvements in testing methods for missiles, helicopters, fighter aircraft, twin fuselage transports and bombers, state separation, water tunnels, and automobiles are also forecast. In a more speculative vein, new wind tunnel test techniques are envisioned as a result of applying MSBS, including free-flight computer trajectories in the test section, pilot-in-the-loop and designer-in-the-loop testing, shipboard missile launch simulation, and optimization of hybrid hypersonic configurations. Also addressed are potential applications of MSBS to such diverse technologies as medical research and practice, industrial robotics, space weaponry, and ore processing in space.

  15. A new metal detection method based on balanced coil for mobile phone wireless charging system

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Liu, Z. Z.; Chen, H. X.; Zeng, H.; Hei, T.

    2016-08-01

    The wireless charging time of mobile phone will increase greatly if the metal objects mix in the magnetic field coupling area. In addition, the fire may be caused as for the high temperature of metal objects. The paper proposed an improved detecting method based on balance coil for mobile phone wireless charging system according to comparing the advantages and disadvantages of traditional metal detection methods. The circuit model was established, and hardware and software were optimized. At last, experimental results verified the theoretical analysis.

  16. Robust SMES controller design for stabilization of inter-area oscillation considering coil size and system uncertainties

    NASA Astrophysics Data System (ADS)

    Ngamroo, Issarachai

    2010-12-01

    It is well known that the superconducting magnetic energy storage (SMES) is able to quickly exchange active and reactive power with the power system. The SMES is expected to be the smart storage device for power system stabilization. Although the stabilizing effect of SMES is significant, the SMES is quite costly. Particularly, the superconducting magnetic coil size which is the essence of the SMES, must be carefully selected. On the other hand, various generation and load changes, unpredictable network structure, etc., cause system uncertainties. The power controller of SMES which is designed without considering such uncertainties, may not tolerate and loses stabilizing effect. To overcome these problems, this paper proposes the new design of robust SMES controller taking coil size and system uncertainties into account. The structure of the active and reactive power controllers is the 1st-order lead-lag compensator. No need for the exact mathematical representation, system uncertainties are modeled by the inverse input multiplicative perturbation. Without the difficulty of the trade-off of damping performance and robustness, the optimization problem of control parameters is formulated. The particle swarm optimization is used for solving the optimal parameters at each coil size automatically. Based on the normalized integral square error index and the consideration of coil current constraint, the robust SMES with the smallest coil size which still provides the satisfactory stabilizing effect, can be achieved. Simulation studies in the two-area four-machine interconnected power system show the superior robustness of the proposed robust SMES with the smallest coil size under various operating conditions over the non-robust SMES with large coil size.

  17. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  18. Rethinking Suspensions

    ERIC Educational Resources Information Center

    Stetson, Frank H.; Collins, Betty J.

    2010-01-01

    The overrepresentation of the Black and Hispanic subgroups in suspension data is a national problem and a troubling issue for schools and school systems across the United States. In Maryland, an analysis of student suspensions by school districts for the 2006-2007 school year revealed disproportionality issues. In 23 of the 24 jurisdictions,…

  19. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Torti, Richard

    1991-01-01

    The component technologies were developed required for an advanced control moment gyro (CMG) type of slewing actuator for large payloads. The key component of the CMG is a large-angle magnetic suspension (LAMS). The LAMS combines the functions of the gimbal structure, torque motors, and rotor bearings of a CMG. The LAMS uses a single superconducting source coil and an array of cryoresistive control coils to produce a specific output torque more than an order of magnitude greater than conventional devices. The designed and tested LAMS system is based around an available superconducting solenoid, an array of twelve room-temperature normal control coils, and a multi-input, multi-output control system. The control laws were demonstrated for stabilizing and controlling the LAMS system.

  20. A high temperature superconductor tape RF receiver coil for a low field magnetic resonance imaging system

    NASA Astrophysics Data System (ADS)

    Cheng, M. C.; Yan, B. P.; Lee, K. H.; Ma, Q. Y.; Yang, E. S.

    2005-08-01

    High temperature superconductor (HTS) thin films have been applied in making a low loss RF receiver coil for improving magnetic resonance imaging image quality. However, the application of these coils is severely limited by their limited field of view (FOV). Stringent fabrication environment requirements and high cost are further limitations. In this paper, we propose a simpler method for designing and fabricating HTS coils. Using industrial silver alloy sheathed Bi(2-x)PbxSr2Ca2Cu3O10 (Bi-2223) HTS tapes, a five-inch single-turn HTS solenoid coil has been developed, and human wrist images have been acquired with this coil. The HTS tape coil has demonstrated an enhanced FOV over a six-inch YBCO thin film surface coil at 77 K with comparable signal-to-noise ratio.

  1. Design and modeling of new suspension system using direct drive servo-valve system actuated by piezostack actuator

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Kim, Wan Ho; Choi, Seung-Bok

    2016-04-01

    This paper proposes a new type of a direct-drive valve (DDV) suspension system for vehicle controlled by the piezostack actuator associated with displacement amplifier. In order to achieve this goal, a new type of controllable piezostack DDV damper is designed and its performance evaluation of damping force is undertaken. Next, a full vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the governing equations of the motion for the proposed the piezostack DDV suspension system, the skyhook controller is implemented for the realization of the full vehicle. Analytical model of the whole suspension system is then derived and performance characteristics are analyzed through numerical simulation. Finally, vibration control responses of the vehicle suspension system such as vertical acceleration are evaluated under both bump and sine road conditions.

  2. 31 CFR 19.110 - What is the purpose of the nonprocurement debarment and suspension system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the purpose of the nonprocurement debarment and suspension system? (a) To protect the public interest... that a Federal agency may take only to protect the public interest. A Federal agency may not exclude...

  3. 2 CFR 180.125 - What is the purpose of the nonprocurement debarment and suspension system?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nonprocurement debarment and suspension system? (a) To protect the public interest, the Federal Government... take only to protect the public interest. A Federal agency may not exclude a person or commodity...

  4. 22 CFR 1006.110 - What is the purpose of the nonprocurement debarment and suspension system?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... nonprocurement debarment and suspension system? (a) To protect the public interest, the Federal Government... take only to protect the public interest. A Federal agency may not exclude a person or commodity...

  5. 22 CFR 1508.110 - What is the purpose of the nonprocurement debarment and suspension system?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... nonprocurement debarment and suspension system? (a) To protect the public interest, the Federal Government... take only to protect the public interest. A Federal agency may not exclude a person or commodity...

  6. 7 CFR 3017.110 - What is the purpose of the nonprocurement debarment and suspension system?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... debarment and suspension system? (a) To protect the public interest, the Federal Government ensures the... only to protect the public interest. A Federal agency may not exclude a person or commodity for...

  7. Design and vibration control of military vehicle suspension system using magnetorheological damper and disc spring

    NASA Astrophysics Data System (ADS)

    Ha, Sung Hoon; Seong, Min-Sang; Choi, Seung-Bok

    2013-06-01

    This paper proposes a new type of magnetorheological (MR) fluid based suspension system and applies it to military vehicles for vibration control. The suspension system consists of a gas spring, a MR damper and a safety passive damper (disc spring). Firstly, a dynamic model of the MR damper is derived by considering the pressure drop due to the viscosity and the yield stress of the MR fluid. A dynamic model of the disc spring is then established for its evaluation as a safety damper with respect to load and pressure. Secondly, a full military vehicle is adopted for the integration of the MR suspension system. A skyhook controller associated with a semi-active actuating condition is then designed to reduce the imposed vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, a computer simulation is undertaken showing the vibration control performance of such properties as vertical displacement and pitch angle, evaluated for a bumpy road profile.

  8. Vibration control of a nonlinear quarter-car active suspension system by reinforcement learning

    NASA Astrophysics Data System (ADS)

    Bucak, İ. Ö.; Öz, H. R.

    2012-06-01

    This article presents the investigation of performance of a nonlinear quarter-car active suspension system with a stochastic real-valued reinforcement learning control strategy. As an example, a model of a quarter car with a nonlinear suspension spring subjected to excitation from a road profile is considered. The excitation is realised by the roughness of the road. The quarter-car model to be considered here can be approximately described as a nonlinear two degrees of freedom system. The experimental results indicate that the proposed active suspension system suppresses the vibrations greatly. A simulation of a nonlinear quarter-car active suspension system is presented to demonstrate the effectiveness and examine the performance of the learning control algorithm.

  9. Performance analysis of a semiactive suspension system with particle swarm optimization and fuzzy logic control.

    PubMed

    Qazi, Abroon Jamal; de Silva, Clarence W; Khan, Afzal; Khan, Muhammad Tahir

    2014-01-01

    This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control.

  10. Performance Analysis of a Semiactive Suspension System with Particle Swarm Optimization and Fuzzy Logic Control

    PubMed Central

    Qazi, Abroon Jamal; de Silva, Clarence W.

    2014-01-01

    This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868

  11. Clinical implication of interface pressure for a new prosthetic suspension system

    PubMed Central

    2014-01-01

    Background Prosthesis suspension systems can alter the distribution of pressure within the prosthetic socket. This study evaluates a new suspension system for lower limb prostheses, and aims to compare the interface pressure and amputees’ satisfaction with the new system compared with a common prosthetic suspension system (pin/lock). Methods Ten transtibial amputees walked at a self-selected speed on a level ground with two different suspension systems, namely the pin/lock and HOLO system. The interface pressure was measured using the F-socket transducers at the proximal, middle and distal sites of residual limb. Furthermore, subjective feedback was logged to compare two systems. Results The pressure was significantly higher at the proximal and distal areas with the pin/lock suspension system during the swing phase of gait (P < 0.05). Subjective feedback also showed traction at the stump with the pin/lock system. There were no significant differences in the pressure applied to the mid-anterior and mid posterior stump for both suspension systems. However, the lateral and medial sides exhibited higher pressure with the new system during stance phase. Conclusions The intention of this study was to deepen understanding on the effect of suspension system on the load distribution over the residual limb. The new coupling system was proved compatible with the pin/lock system in terms of suspending the leg and amputee’s satisfaction. On the other hand, the HOLO system could distribute the pressure more uniformly over the residual limb. PMID:24981801

  12. Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    A simplified analytical model of a six-degree-of-freedom large-gap magnetic suspension system is presented. The suspended element is a cylindrical permanent magnet that is magnetized in a direction which is perpendicular to its axis of symmetry. The actuators are air core electromagnets mounted in a planar array. The analytical model consists of an open-loop representation of the magnetic suspension system with electromagnet currents as inputs.

  13. Expert diagnostic system for moving-coil loudspeakers using nonlinear modeling.

    PubMed

    Bai, Mingsian R; Huang, Chau-Min

    2009-02-01

    This work aims at the development of an expert diagnostic system for moving-coil loudspeakers. Special emphasis is placed on the defects resulting from loudspeaker nonlinearities. As a loudspeaker operates in the large signal domain, nonlinear distortions may arise and impair sound quality. Analysis of nonlinear responses can shed light on potential design faults of a loudspeaker. By exploiting this fact, this expert diagnostic system enables classification of design faults using a defect database alongside an intelligent fault inference module. Six types of defects are investigated in this paper. A large signal model based on electromechanical analogous circuits is employed for generating the defect database, through which a neural-fuzzy network is utilized for inferring the defect types. Numerical simulations and experimental investigations were undertaken for validating the loudspeaker diagnostic system.

  14. Random vibrations of quadratic damping systems. [optimum damping analysis for automobile suspension system

    NASA Technical Reports Server (NTRS)

    Sireteanu, T.

    1974-01-01

    An oscillating system with quadratic damping subjected to white noise excitation is replaced by a nonlinear, statistically equivalent system for which the associated Fokker-Planck equation can be exactly solved. The mean square responses are calculated and the optimum damping coefficient is determined with respect to the minimum mean square acceleration criteria. An application of these results to the optimization of automobile suspension damping is given.

  15. Simulation and comparison of quarter-car passive suspension system with Bingham and Bouc-Wen MR semi-active suspension models

    NASA Astrophysics Data System (ADS)

    Perescu, A.; Bereteu, L.

    2013-11-01

    In this paper we want to transposion the suspension system in MATLAB, Simulink®, based on equation of motion. Consider only vertical movement of the car, neglecting roll and pitch. All movements of the car axes are modeled as having equal amplitude. The characteristic equations that describe the behavior of dynamical systems based on FBD (Free Body Diagram) of automotive suspension. It will make two models, one passive and one Bingham semi-active. Their responses will be compared between them, and with another Bouc-Wen semi-active model, more complex. Semi-active suspension systems have received significant attention in recent years because they offer the adaptability of active control devices without requiring large power sources. Given that both passive and semi-active dampers are in mass production will follow the normal parameters and their economic efficiency. These models are used for initial design of suspension system.

  16. Growth factor identity is encoded by discrete coiled coil rotamers in the EGFR juxtamembrane region

    PubMed Central

    Doerner, Amy; Scheck, Rebecca; Schepartz, Alanna

    2015-01-01

    Summary Binding of the growth factor TGF-α to the EGFR extracellular domain is encoded through the formation of a unique anti-parallel coiled coil within the juxtamembrane segment. This new coiled coil is an ‘inside-out’ version of the coiled coil formed in the presence of EGF. A third, intermediary coiled coil interface is formed in the juxtamembrane segment when EGFR is stimulated with betacellulin. The seven growth factors that activate EGFR in mammalian systems (EGF, TGF-α, epigen, epiregulin, betacellulin, heparin-binding EGF, and amphiregulin) fall into distinct categories in which the structure of the coiled coil induced within the juxtamembrane segment correlates with cell state. The observation that coiled coil state tracks with the downstream signaling profiles for each ligand provides evidence for growth factor functional selectivity by EGFR. Encoding growth factor identity in alternative coiled coil rotamers provides a simple and elegant method for communicating chemical information across the plasma membrane. PMID:26091170

  17. Optimization of damping in the passive automotive suspension system with using two quarter-car models

    NASA Astrophysics Data System (ADS)

    Lozia, Z.; Zdanowicz, P.

    2016-09-01

    The paper presents the optimization of damping in the passive suspension system of a motor vehicle moving rectilinearly with a constant speed on a road with rough surface of random irregularities, described according to the ISO classification. Two quarter-car 2DoF models, linear and non-linear, were used; in the latter, nonlinearities of spring characteristics of the suspension system and pneumatic tyres, sliding friction in the suspension system, and wheel lift-off were taken into account. The smoothing properties of vehicle tyres were represented in both models. The calculations were carried out for three roads of different quality, with simulating four vehicle speeds. Statistical measures of vertical vehicle body vibrations and of changes in the vertical tyre/road contact force were used as the criteria of system optimization and model comparison. The design suspension displacement limit was also taken into account. The optimum suspension damping coefficient was determined and the impact of undesirable sliding friction in the suspension system on the calculation results was estimated. The results obtained make it possible to evaluate the impact of the structure and complexity of the model used on the results of the optimization.

  18. Development of Non-destructive Evaluation System Using an HTS-SQUID Gradiometer with an External Pickup Coil

    NASA Astrophysics Data System (ADS)

    Kawano, J.; Kawauchi, S.; Ishikawa, F.; Tanabe, K.

    We are developing a new eddy-current non-destructive evaluation (NDE) system using a high-temperature superconducting quantum interference device (HTS-SQUID) gradiometer with the aim of applying it to power plants. Electric power facilities such as ducts and vessels are generally untransportable because of their size, and thus it is difficult to apply a conventional SQUID NDE system. The new NDE system employs an external Cu pickup coil which is supposed to be driven flexibly by a robot arm at room temperature and an HTS-SQUID chip which is placed in a magnetically shielded vessel. In the present research, we investigated the performance of an HTS-SQUID sensor connected with external pickup coils before mounting them to a robot arm. By varying the Cu coil conditions such as their sizes, the number of turns, and the diameter of wire, we qualitatively evaluated the frequency dependence of the effective area and the cutoff frequency.

  19. Time response analysis in suspension system design of a high-speed car

    NASA Astrophysics Data System (ADS)

    Pagwiwoko, Cosmas Pandit

    2009-12-01

    A land speed record vehicle is designed to run on a flat surface like salt lake where the wheels are normally made from solid metal with a special suspension system. The suspension is designed to provide a stable platform to keep the wheel treads on tract, to insulate the car and the driver from the surface irregularities and to take part of good handling properties. The surface condition of the lake beds is basically flat without undulations but with inconsistent surface textures and ridges. Spring with nonlinear rate is used with the reason that the resistance builds up roughly proportional to the aerodynamic download for keeping the height more nearly constant. The objective of the work is to produce an efficient method for assisting the design of suspension system. At the initial step, the stiffness and the damping constants are determined based on RMS optimization by following the optimization strategy i.e. to minimize the absolute acceleration respect to the relative displacement of the suspension. Power bond graph technique is then used to model the nonlinearity of the components i.e. spring and dashpot of the suspension system. This technique also enables to incorporate the interactions of dynamic response of the vehicle's body with aerodynamic flow as a result of the base excitation of the ground to the wheels. The simulation is conducted on the platform of Simulink-MATLAB and the interactions amongst the components within the system are observed in time domain to evaluate the effectiveness of the suspension.

  20. Time response analysis in suspension system design of a high-speed car

    NASA Astrophysics Data System (ADS)

    Pagwiwoko, Cosmas Pandit

    2010-03-01

    A land speed record vehicle is designed to run on a flat surface like salt lake where the wheels are normally made from solid metal with a special suspension system. The suspension is designed to provide a stable platform to keep the wheel treads on tract, to insulate the car and the driver from the surface irregularities and to take part of good handling properties. The surface condition of the lake beds is basically flat without undulations but with inconsistent surface textures and ridges. Spring with nonlinear rate is used with the reason that the resistance builds up roughly proportional to the aerodynamic download for keeping the height more nearly constant. The objective of the work is to produce an efficient method for assisting the design of suspension system. At the initial step, the stiffness and the damping constants are determined based on RMS optimization by following the optimization strategy i.e. to minimize the absolute acceleration respect to the relative displacement of the suspension. Power bond graph technique is then used to model the nonlinearity of the components i.e. spring and dashpot of the suspension system. This technique also enables to incorporate the interactions of dynamic response of the vehicle's body with aerodynamic flow as a result of the base excitation of the ground to the wheels. The simulation is conducted on the platform of Simulink-MATLAB and the interactions amongst the components within the system are observed in time domain to evaluate the effectiveness of the suspension.

  1. A decoupled control approach for magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1993-01-01

    A decoupled control approach for a Large Gap Magnetic Suspension System (LGMSS) is presented. The control approach is developed for an LGMSS which provides five degree-of-freedom control of a cylindrical suspended element that contains a core composed of permanent magnet material. The suspended element is levitated above five electromagnets mounted in a planar array. Numerical results are obtained by using the parameters of the Large Angle Magnetic Suspension Test Fixture (LAMSTF) which is a small scale laboratory model LGMSS.

  2. Below knee prosthetic socket designs and suspension systems.

    PubMed

    Edwards, M L

    2000-08-01

    The prosthetic socket must act as a customized connection between the residual limb's surrounding tissues and the prosthetic components. The socket must be designed to control weight bearing, suspension, and ambulation stability. When making a below-the-knee socket, the prosthetist attempts to maximize loading and minimize displacements, such as vertical, transverse, or rotational. This article discusses the engineering designs or shapes of the two basic forms of below-the-knee prosthetic sockets used today.

  3. Lateral Vibration Attenuation by the Dynamic Adjustment of Bias Currents in Magnetic Suspension System

    NASA Astrophysics Data System (ADS)

    Mizuno, Takeshi; Takasaki, Masaya; Ishino, Yuji

    2016-09-01

    Switching stiffness control is applied to attenuate vibration in the lateral directions in an active magnetic suspension system with electromagnets operated in differential mode. The magnetic suspension system using the attractive force between magnetized bodies is inherently unstable in the normal direction so that feedback control is necessary to achieve stable suspension. In contrast, it can be stable in the lateral directions due to the edge effects in the magnetic circuits. In several applications, such passive suspension is used in combination with the active one to reduce cost and space. However, damping in the lateral directions is generally small. As a result, induced vibrations in these directions are hardly attenuated. To suppress such vibration without any additional actuator (electromagnet), switching stiffness control is applied to an magnetic suspension system operated in the differential mode. The stiffness in the lateral direction is adjusted by varying the bias currents of an opposed pair of electromagnets located in the normal direction simultaneously according to the motion of the suspended object. When the varied bias currents are adjusted for the additive normal forces cancel each other, such control does not affect the suspension in the normal direction. The effectiveness of the proposed control methods is confirmed experimentally.

  4. Optical position measurement for a large gap magnetic suspension system: Design and performance analysis

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Clemmons, James I., Jr.; Shelton, Kevin J.; Duncan, Walter C.

    1994-01-01

    An optical measurement system (OMS) has been designed and tested for a large gap magnetic suspension system (LGMSS). The LGMSS will be used to study control laws for magnetic suspension systems for vibration isolation and pointing applications. The LGMSS features six degrees of freedom and consists of a planar array of electromagnets that levitate and position a cylindrical element containing a permanent magnet core. The OMS provides information on the location and orientation of the element to the LGMSS control system to stabilize suspension. The hardware design of this optical sensing system and the tracking algorithms are presented. The results of analyses and experiments are presented that define the accuracy limits of the optical sensing system and that quantify the errors in position estimation.

  5. A liquid-helium-free superconducting coil system forming a flat minimum-magnetic-field distribution of an electron cyclotron resonance ion source

    SciTech Connect

    Yoshida, Ken-ichi Nara, Takayuki; Saitoh, Yuichi; Yokota, Watalu

    2014-02-15

    A flat distribution of the minimum magnetic field (flat-B{sub min}) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical B{sub min}. To form a flat-B{sub min} structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-B{sub min} structure even when the coil currents are changed for adjustment. This coil system can be operated with a helium-free cryostat, since the estimation of heat from the leads to the coils is nearly equivalent to the existing superconducting ECRIS of a similar type.

  6. Analysis of relay based valley coil system of K-130 Cyclotron and an approach to computer controlled system

    NASA Astrophysics Data System (ADS)

    Shoor, B.

    2016-09-01

    To overcome the first harmonic field imperfection in sector focused cyclotron, a set of coils placed in valleys are used to produce an opposite first harmonic effect. Usually, at the time of beam tuning the phase of the first harmonic is varied using a relay system. It can be shown analytically that magnitude of it changes simultaneously, when phase is changed. This is not desirable at the time of beam tuning. Moreover phase changes in long steps, which hampers accuracy of beam tuning. To overcome this, a computer controlled system is suggested where amplitude remains constant at the time of phase change. Moreover, phase can be changed continuously which gives better tuning accuracy.

  7. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    NASA Astrophysics Data System (ADS)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  8. α/β coiled coils

    PubMed Central

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-01

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold. DOI: http://dx.doi.org/10.7554/eLife.11861.001 PMID:26771248

  9. An isotropic suspension system for a biaxial accelerometer using electroplated thick metal with a HAR SU-8 mold

    NASA Astrophysics Data System (ADS)

    Lee, Jin Seung; Lee, Seung S.

    2008-02-01

    In this paper, a novel approach is developed to design an isotropic suspension system using thick metal freestanding micro-structures combining bulk micro-machining with electroplating based on a HAR SU-8 mold. An omega-shape isotropic suspension system composed of circular curved beams that have free switching of imaginary boundary conditions is proposed. This novel isotropic suspension design is not affected by geometric dimensional parameters and always achieves matching stiffness along the principle axes of elasticity. Using the finite element method, the isotropic suspension system was compared with an S-shaped meandering suspension system. In order to realize the suggested isotropic suspension system, a cost-effective fabrication process using electroplating with the SU-8 mold was developed to avoid expensive equipment and materials such as deep reactive-ion etching (DRIE) or a silicon-on-insulator (SOI) wafer. The fabricated isotropic suspension system was verified by electromagnetic actuation experiments. Finally, a biaxial accelerometer with isotropic suspension system was realized and tested using a vibration generator system. The proposed isotropic suspension system and the modified surface micro-machining technique based on electroplating with an SU-8 mold can contribute towards minimizing the system size, simplifying the system configuration, reducing the system price of and facilitating mass production of various types of low-cost sensors and actuators.

  10. EMAT weld inspection and weld machine diagnostic system for continuous coil processing lines

    NASA Astrophysics Data System (ADS)

    Latham, Wayne M.; MacLauchlan, Daniel T.; Geier, Dan P.; Lang, Dennis D.

    1996-11-01

    Weld breaks of steel coil during cold rolling and continuous pickling operations are a significant source of lost productivity and product yield. Babcock and Wilcox Innerspec Technologies has developed a weld process control system which monitors the key variables of the welding process and determines the quality of the welds generated by flash butt welding equipment. This system is known as the Temate 2000 Automated Flash Butt Weld Inspection and Weld Machine Diagnostic System. The Temate 2000 system utilizes electro- magnetic acoustic transducer (EMAT) technology as the basis for performing on-line, real-time, nondestructive weld quality evaluation. This technique accurately detects voids, laps, misalignment and over/under trim conditions in the weld. Results of the EMAT weld inspection are immediately presented to the weld machine operator for disposition. Welding process variables such as voltage, current, platen movements and upset pressures are monitored and collected with the high speed data acquisition system. This data is processed and presented in real-time display to indicate useful welding process information such as platen crabbing, upset force, peak upset current, and many others. Alarming for each variable is provided and allows detailed maintenance reports and summary information to be generated. All weld quality and process parameter data are stored, traceable to each unique weld, and available for post process evaluation. Installation of the Temate 2000 system in a major flat rolled steel mill has contributed to near elimination of weld breakage and increased productivity at this facility.

  11. A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers

    NASA Astrophysics Data System (ADS)

    Wei, Xiukun; Zhu, Ming; Jia, Limin

    2016-07-01

    The high-speed train has achieved great progress in the last decades. It is one of the most important modes of transportation between cities. With the rapid development of the high-speed train, its safety issue is paid much more attention than ever before. To improve the stability of the vehicle with high speed, extra dampers (i.e. anti-hunting damper) are used in the traditional bogies with passive suspension system. However, the curving performance of the vehicle is undermined due to the extra lateral force generated by the dampers. The active suspension systems proposed in the last decades attempt to solve the vehicle steering issue. However, the active suspension systems need extra actuators driven by electrical power or hydraulic power. There are some implementation and even safety issues which are not easy to be overcome. In this paper, an innovative semi-active controlled lateral suspension system for railway vehicles is proposed. Four magnetorheological fluid dampers are fixed to the primary suspension system of each bogie. They are controlled by online controllers for enhancing the running stability on the straight track line on the one hand and further improving the curving performance by controlling the damper force on the other hand. Two control strategies are proposed in the light of the pure rolling concept. The effectiveness of the proposed strategies is demonstrated by SIMPACK and Matlab co-simulation for a full railway vehicle with two conventional bogies.

  12. Electromagnetic thermotherapy for deep organ ablation by using a needle array under a synchronized-coil system.

    PubMed

    Huang, Sheng-Chieh; Kang, Jui-Wen; Tsai, Hung-Wen; Shan, Yan-Shen; Lin, Xi-Zhang; Lee, Gwo-Bin

    2014-11-01

    Thermal ablation by using electromagnetic thermotherapy (EMT) has been a promising cancer modality in recent years. It has relatively few side effects and has therefore been extensively investigated for a variety of medical applications in internal medicine and surgery. The EMT system applies a high-frequency alternating electromagnetic field to heat up the needles which are inserted into the target tumor to cause tumor ablation. In this study, a new synchronized-coil EMT system was demonstrated, which was equipped with two synchronized coils and magnetic field generators to provide a long-range, penetrated electromagnetic field to effectively heat up the needles. The heating effect of the needles at the center of the two coils was first explored. The newly designed two-section needle array combined with the synchronized-coil EMT system was thus demonstrated in the in vitro and in vivo animal experiments. Experimental data showed that the developed system is promising for minimally invasive surgery since it might provide superior performance for thermotherapy in cancer treatment.

  13. Computer program for investigating effects of nonlinear suspension-system elastic properties on parachute inflation loads and motions

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1972-01-01

    A computer program is presented by which the effects of nonlinear suspension-system elastic characteristics on parachute inflation loads and motions can be investigated. A mathematical elastic model of suspension-system geometry is coupled to the planar equations of motion of a general vehicle and canopy. Canopy geometry and aerodynamic drag characteristics and suspension-system elastic properties are tabular inputs. The equations of motion are numerically integrated by use of an equivalent fifth-order Runge-Kutta technique.

  14. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  15. 78 FR 58376 - Home System Group, Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... COMMISSION Home System Group, Order of Suspension of Trading September 19, 2013. It appears to the Securities... securities of Home System Group because Home System Group has not filed any periodic reports for any reporting period subsequent to December 31, 2011. The Commission is of the opinion that the public...

  16. Vibration control of an MR vehicle suspension system considering both hysteretic behavior and parameter variation

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Bok; Seong, Min-Sang; Ha, Sung-Hoon

    2009-12-01

    This paper presents vibration control responses of a controllable magnetorheological (MR) suspension system considering the two most important characteristics of the system; the field-dependent hysteretic behavior of the MR damper and the parameter variation of the suspension. In order to achieve this goal, a cylindrical MR damper which is applicable to a middle-sized passenger car is designed and manufactured. After verifying the damping force controllability, the field-dependent hysteretic behavior of the MR damper is identified using the Preisach hysteresis model. The full-vehicle suspension model is then derived by considering vertical, pitch and roll motions. An H_{\\infty } controller is designed by treating the sprung mass of the vehicle as a parameter variation and integrating it with the hysteretic compensator which produces additional control input. In order to demonstrate the effectiveness and robustness of the proposed control system, the hardware-in-the-loop simulation (HILS) methodology is adopted by integrating the suspension model with the proposed MR damper. Vibration control responses of the vehicle suspension system such as vertical acceleration are evaluated under both bump and random road conditions.

  17. Adaptive super-twisting observer for estimation of random road excitation profile in automotive suspension systems.

    PubMed

    Rath, J J; Veluvolu, K C; Defoort, M

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system. PMID:24683321

  18. Fuzzy and Internal Model Control of an Active Suspension System for a 2-DOF Vehicle Model

    NASA Astrophysics Data System (ADS)

    Demir, Özgür; Karakurt, Derya; Alarçin, Fuat

    2007-09-01

    In this study, Fuzzy-Logic-Based (FL) controller and Internal Model Control (IMC) scheme are designed for active suspension system. An aim of active suspension systems for a vehicle model is to provide good road handling and high passenger comfort by shaping the output function. The simulated system was considered to be a two-degree-of-freedom (2-DOF) model. The effectiveness of this Fuzzy Control is verified by comparison with Internal Model Control simulation results. Simulation results show that the effectiveness of the fuzzy controller is better than Internal Model Control under the same conditions.

  19. Adaptive super-twisting observer for estimation of random road excitation profile in automotive suspension systems.

    PubMed

    Rath, J J; Veluvolu, K C; Defoort, M

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system.

  20. Adaptive Super-Twisting Observer for Estimation of Random Road Excitation Profile in Automotive Suspension Systems

    PubMed Central

    Rath, J. J.; Veluvolu, K. C.; Defoort, M.

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system. PMID:24683321

  1. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  2. Borehole induction coil transmitter

    SciTech Connect

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  3. A new active variable stiffness suspension system using a nonlinear energy sink-based controller

    NASA Astrophysics Data System (ADS)

    Anubi, Olugbenga Moses; Crane, Carl D.

    2013-10-01

    This paper presents the active case of a variable stiffness suspension system. The central concept is based on a recently designed variable stiffness mechanism which consists of a horizontal control strut and a vertical strut. The horizontal strut is used to vary the load transfer ratio by actively controlling the location of the point of attachment of the vertical strut to the car body. The control algorithm, effected by a hydraulic actuator, uses the concept of nonlinear energy sink (NES) to effectively transfer the vibrational energy in the sprung mass to a control mass, thereby reducing the transfer of energy from road disturbance to the car body at a relatively lower cost compared to the traditional active suspension using the skyhook concept. The analyses and simulation results show that a better performance can be achieved by subjecting the point of attachment of a suspension system, to the chassis, to the influence of a horizontal NES system.

  4. Roll stabilisation of road vehicles using a variable stiffness suspension system

    NASA Astrophysics Data System (ADS)

    Anubi, Olugbenga Moses; Crane, Carl D., III

    2013-12-01

    A variable stiffness architecture is used in the suspension system to counteract the body roll moment, thereby enhancing the roll stability of the vehicle. The variation of stiffness concept uses the 'reciprocal actuation' to effectively transfer energy between a vertical traditional strut and a horizontal oscillating control mass, thereby improving the energy dissipation of the overall suspension. The lateral dynamics of the system is developed using a bicycle model. The accompanying roll dynamics are also developed and validated using experimental data. The positions of the left and right control masses are sequentially allocated to reduce the effective body roll and roll rate. Simulation results show that the resulting variable stiffness suspension system has more than 50% improvement in roll response over the traditional constant stiffness counterparts. The simulation scenarios examined is the fishhook manoeuvre.

  5. Experimental Robust Control Studies on an Unstable Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Cox, David E.

    1993-01-01

    This study is an experimental investigation of the robustness of various controllers designed for the Large Angle Magnetic Suspension Test Fixture (LAMSTF). Both analytical and identified nominal models are used for designing controllers along with two different types of uncertainty models. Robustness refers to maintain- ing tracking performance under analytical model errors and dynamically induced eddy currents, while external disturbances are not considered. Results show that incorporating robustness into analytical models gives significantly better results. However, incorporating incorrect uncertainty models may lead to poorer performance than not designing for robustness at all. Designing controllers based on accurate identified models gave the best performance. In fact, incorporating a significant level of robustness into an accurate nominal model resulted in reduced performance. This paper discusses an assortment of experimental results in a consistent manner using robust control theory.

  6. Application of metallic nanoparticle suspensions in advanced cooling systems

    SciTech Connect

    Lee, S.; Choi, S.U.S.

    1996-12-31

    In the development of energy-efficient heat transfer fluids that are required in many cooling applications, low thermal conductivity is a primary limitation. However, it is well known that at room temperature, metals in solid form have orders-of-magnitude higher thermal conductivities than those of fluids. Therefore, the thermal conductivities of fluids that contain suspended solid metallic particles are expected to be significantly enhanced over those of conventional heat transfer fluids. In fact, numerous theoretical and experimental studies of the effective thermal conductivity of dispersions that contain solid particles have been conducted since Maxwell`s theoretical was published more than 100 years ago. However, all of the studies on thermal conductivity of suspensions have been confined to millimeter- or micrometer-sized particles.

  7. An Aerodynamic Force Estimation Method for Winged Models at the JAXA 60cm Magnetic Suspension and Balance System

    NASA Astrophysics Data System (ADS)

    澤田, 秀夫

    The aerodynamic performance of an AGARD-B model, as an example of a winged model, was measured in a low-speed wind tunnel equipped with the JAXA 60cm Magnetic Suspension and Balance System (MSBS). The flow speed was in the range between 25m/s and 35m/s, and the angle of attack and the yaw angle were in the range of [- 8, 4] and [- 3, 3] degrees, respectively. Six components of the aerodynamic force were evaluated by using the control coil currents of the MSBS. In evaluating the drag, the effect of the lift on the drag must be evaluated at MSBS when the lift is much larger than drag. A new evaluation method for drag and lift was proposed and was examined successfully by subjecting the model to the same loads as in the wind tunnel test. The drag coefficient at zero lift and the derivatives of the lift and pitching moment coefficient with respect to the angle of attack were evaluated and compared with other source data sets. The obtained data agreed well with the corresponding values of the other sources. The side force, yawing moment and rolling moment coefficients were also evaluated on the basis of corresponding calibration test results, and reasonable results were obtained, although they could not be compared due to the lack of reliable data sets.

  8. Thermoeconomic Optimization of a Combined Heating and Humidification Coil for HVAC Systems

    NASA Astrophysics Data System (ADS)

    Teodoros, Liliana; Andresen, Bjarne

    2016-07-01

    The total cost of ownership is calculated for a combined heating and humidification coil of an air-handling unit taking into account investment and operation costs simultaneously. This total cost represents the optimization function for which the minimum is sought. The parameters for the cost dependencies are the physical dimensions of the coil: length, width and height. The term "coil" is used generically since in this setup it generates heating as well as humidification in a single unit. The first part of the paper deals with the constructive optimization and finds the relationship between the dimensions for a minimum cost. The second part of the paper takes the results of the constructive optimization further and, based on the data derived in our previous papers, analyzes the minimum total cost for the humidification coil while balancing the amount of water used to humidify the air and modify its temperature.

  9. Design of the Annular Suspension and Pointing System (ASPS) (including design addendum)

    NASA Technical Reports Server (NTRS)

    Cunningham, D.; Gismondi, T.; Hamilton, B.; Kendig, J.; Kiedrowski, J.; Vroman, A.; Wilson, G.

    1980-01-01

    The Annular Suspension and Pointing System is an experiment pointing mount designed for extremely precise 3 axis orientation of shuttle experiments. It utilizes actively controlled magnetic bearing to provide noncontacting vernier pointing and translational isolation of the experiment. The design of the system is presented and analyzed.

  10. 78 FR 37269 - Order of Suspension of Trading; iTrackr Systems, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... COMMISSION Order of Suspension of Trading; iTrackr Systems, Inc. June 18, 2013. It appears to the Securities... securities of iTrackr Systems, Inc. (``iTrackr'') because it has not filed a periodic report since it filed... trading in the securities of iTrackr. Therefore, it is ordered, pursuant to Section 12(k) of...

  11. 76 FR 41855 - Columbus Geographic Systems (GIS) Ltd.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Columbus Geographic Systems (GIS) Ltd.; Order of Suspension of Trading July 13, 2011. It appears... concerning the securities of Columbus Geographic Systems (GIS) Ltd. because it has not filed any...

  12. Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Fateh, Mohammad Mehdi; Moradi Zirkohi, Majid

    2011-12-01

    This paper presents a novel active control approach for a hydraulic suspension system subject to road disturbances. A novel impedance model is used as a model reference in a particular robust adaptive control which is applied for the first time to the hydraulic suspension system. A scheme is introduced for selecting the impedance parameters. The impedance model prescribes a desired behaviour of the active suspension system in a wide range of different road conditions. Moreover, performance of the control system is improved by applying a particle swarm optimisation algorithm for optimising control design parameters. Design of the control system consists of two interior loops. The inner loop is a force control of the hydraulic actuator, while the outer loop is a robust model reference adaptive control (MRAC). This type of MRAC has been applied for uncertain linear systems. As another novelty, despite nonlinearity of the hydraulic actuator, the suspension system and the force loop together are presented as an uncertain linear system to the MRAC. The proposed control method is simulated on a quarter-car model. Simulation results show effectiveness of the method.

  13. Analytical model of a five degree of freedom magnetic suspension and positioning system

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1989-01-01

    An analytical model of a five degree of freedom magnetic suspension and positioning system is presented. The suspended element is a cylinder which is composed of permanent magnet material and the magnetic actuators are air core electromagnets mounted in a planar array. The analytical model consists of an open loop representation of the suspension and positioning system with electromagnet currents as inputs and displacements and rates in inertial coordinates as outputs. The uncontrolled degree of freedom is rotation about the long axis of the suspended cylinder.

  14. Design approaches and parameters for magnetically levitated transport systems. [Null flux suspension (Maglev)

    SciTech Connect

    Danby, G.T.; Powell, J.R.

    1988-01-01

    Mechanically levitated transport system approaches are assessed with regard to thrust power needs, track cost, suspension stability, and safety. The null flux suspension appears as the favored approach, having the least thrust power requirements, highest stability, and lowest amount of track material. Various null flux configurations are described together with their operating parameters. The Linear Synchronous Motor (LSM) propulsion system is also described for propelling the suspended vehicles. Cryogenics and superconductivity aspects are discussed and the effect of high T/sub c/ superconductors evaluated. 13 refs., 16 figs., 2 tabs.

  15. Design and experiment study of a semi-active energy-regenerative suspension system

    NASA Astrophysics Data System (ADS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.

  16. An Optimized Air-Core Coil Sensor with a Magnetic Flux Compensation Structure Suitable to the Helicopter TEM System

    PubMed Central

    Chen, Chen; Liu, Fei; Lin, Jun; Zhu, Kaiguang; Wang, Yanzhang

    2016-01-01

    The air-core coil sensor (ACS) is widely used as a transducer to measure the variation in magnetic fields of a helicopter transient electromagnetic (TEM) system. A high periodic emitting current induces the magnetic field signal of the underground medium. However, such current also generates a high primary field signal that can affect the received signal of the ACS and even damage the receiver. To increase the dynamic range of the received signal and to protect the receiver when emitting current rises/falls, the combination of ACS with magnetic flux compensation structure (bucking coil) is necessary. Moreover, the optimized ACS, which is composed of an air-core coil and a differential pre-amplifier circuit, must be investigated to meet the requirements of the helicopter TEM system suited to rapid surveying for shallow buried metal mine in rough topography. Accordingly, two ACSs are fabricated in this study, and their performance is verified and compared inside a magnetic shielding room. Using the designed ACSs, field experiments are conducted in Baoqing County. The field experimental data show that the primary field response can be compensated when the bucking coil is placed at an appropriate point in the range of allowed shift distance beyond the center of the transmitting coil and that the damage to the receiver induced by the over-statured signal can be solved. In conclusion, a more suitable ACS is adopted and is shown to have better performance, with a mass of 2.5 kg, resultant effective area of 11.6 m2 (i.e., diameter of 0.496 m), 3 dB bandwidth of 66 kHz, signal-to-noise ratio of 4 (i.e., varying magnetic field strength of 0.2 nT/s), and normalized equivalent input noise of 3.62 nV/m2. PMID:27077862

  17. Semi-active control of automotive suspension systems with magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Lam, Hiu Fung; Liao, Wei-Hsin

    2001-08-01

    Vibration in today's increasingly high-speed vehicles including automobiles severely affects their ride comfort and safety. The objective of this paper is to develop and study automotive suspension systems with magneto-rheological (MR) fluid dampers for vibration control in order to improve the passenger's comfort and safety. A two degree-of-freedom quarter car model is considered. A mathematical model of MR fluid damper is adopted. In this study, a sliding mode controller is developed by considering loading uncertainty to result in a robust control system. Two kinds of excitations are inputted in order to investigate the performance of the suspension system. The vibration responses are evaluated in both time and frequency domains. Compared to the passive system, the acceleration of the sprung mass is significantly reduced for the system with a controlled MR damper. Under random excitation, the ability of the MR fluid damper to reduce both peak response and root-mean-square response is also shown. The effectiveness of the MR suspension system is also demonstrated via hardware-in-the-loop simulation. The results of this study can be used to develop guidelines to effectively integrate automotive suspensions with MR dampers.

  18. Eddy Current Influences on the Dynamic Behaviour of Magnetic Suspension Systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Bloodgood, Dale V.

    1998-01-01

    This report will summarize some results from a multi-year research effort at NASA Langley Research Center aimed at the development of an improved capability for practical modelling of eddy current effects in magnetic suspension systems. Particular attention is paid to large-gap systems, although generic results applicable to both large-gap and small-gap systems are presented. It is shown that eddy currents can significantly affect the dynamic behavior of magnetic suspension systems, but that these effects can be amenable to modelling and measurement. Theoretical frameworks are presented, together with comparisons of computed and experimental data particularly related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center, and the Annular Suspension and Pointing System at Old Dominion University. In both cases, practical computations are capable of providing reasonable estimates of important performance-related parameters. The most difficult case is seen to be that of eddy currents in highly permeable material, due to the low skin depths. Problems associated with specification of material properties and areas for future research are discussed.

  19. Design concepts and cost studies for magnetic suspension and balance systems. [wind tunnel apparatus

    NASA Technical Reports Server (NTRS)

    Bloom, H. L.

    1982-01-01

    The application of superconducting magnets for suspension and balance of wind tunnel models was studied. Conceptual designs are presented for magnetic suspension and balance system (MSBS) configurations compatible with three high Reynolds number cases representing specified combinations of test conditions and model sizes. Concepts in general met initially specified performance requirements such as duty cycle, force and moment levels, model angular displacement and positioning accuracy with nominal design requirements for support subsystems. Other performance requirements, such as forced model sinusoidal oscillations, and control force magnitude and frequency, were modified so as to alleviate the magnitude of magnet, power, and cryogenic design requirements.

  20. Application of Magnetic Suspension and Balance Systems to Ultra-High Reynolds Number Facilities

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1996-01-01

    The current status of wind tunnel magnetic suspension and balance system development is briefly reviewed. Technical work currently underway at NASA Langley Research Center is detailed, where it relates to the ultra-high Reynolds number application. The application itself is addressed, concluded to be quite feasible, and broad design recommendations given.

  1. 49 CFR Appendix C to Part 238 - Suspension System Safety Performance Standards

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Suspension System Safety Performance Standards C Appendix C to Part 238 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER EQUIPMENT SAFETY STANDARDS Pt. 238, App....

  2. 29 CFR 98.110 - What is the purpose of the nonprocurement debarment and suspension system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... suspension system? (a) To protect the public interest, the Federal Government ensures the integrity of... responsible. (c) An exclusion is a serious action that a Federal agency may take only to protect the public interest. A Federal agency may not exclude a person or commodity for the purposes of punishment....

  3. Wheeled Vehicle Drive Lines, Axles, and Suspension Systems. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle drive lines, axles, and suspension systems. It provides the basic…

  4. Designing an Acoustic Suspension Speaker System in the General Physics Laboratory: A Divergent experiment

    ERIC Educational Resources Information Center

    Horton, Philip B.

    1969-01-01

    Describes a student laboratory project involving the design of an "acoustic suspension speaker system. The characteristics of the loudspeaker used are measured as an extension of the inertia-balance experiment. The experiment may be extended to a study of Stelmholtz resonators, coupled oscillators, electromagnetic forces, thermodynamics and…

  5. 93. 22'X34' original blueprint, VariableAngle Launcher, 'OVERHEAD CAMERA SUSPENSION SYSTEM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. 22'X34' original blueprint, Variable-Angle Launcher, 'OVERHEAD CAMERA SUSPENSION SYSTEM, TOWER STAY CABLES' drawn at 3/4'=1'-0'. (BUORD Sketch # 208783). - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  6. Considerations in the design and optimization of coiled coil structures.

    PubMed

    Mason, Jody M; Müller, Kristian M; Arndt, Katja M

    2007-01-01

    Coiled coil motifs are, despite their apparent simplicity, highly specific, and play a significant role in the understanding of tertiary structure and its formation. The most commonly observed of the coiled coils, the parallel dimeric, is yet to be fully characterized for this structural class in general. Nonetheless, strict rules have emerged for the necessity of specific types of amino acids at specific positions. In this chapter, we discuss this system in light of existing coiled coil structures and in applying rules to coiled coils that are to be designed or optimized. Understanding and expanding on these rules is crucial in using these motifs, which play key roles in virtually every cellular process, to act as drug-delivery agents by sequestering other proteins that are not behaving natively or that have been upregulated (for example, by binding to coiled coil domains implicated in oncogenesis). The roles of the a and d "hydrophobic" core positions and the e and g "electrostatic" edge positions in directing oligomerization and pairing specificity are discussed. Also discussed is the role of these positions in concert with the b, c, and f positions in maintaining alpha-helical propensity, helix solubility, and dimer stability. PMID:17041258

  7. Considerations in the design and optimization of coiled coil structures.

    PubMed

    Mason, Jody M; Müller, Kristian M; Arndt, Katja M

    2007-01-01

    Coiled coil motifs are, despite their apparent simplicity, highly specific, and play a significant role in the understanding of tertiary structure and its formation. The most commonly observed of the coiled coils, the parallel dimeric, is yet to be fully characterized for this structural class in general. Nonetheless, strict rules have emerged for the necessity of specific types of amino acids at specific positions. In this chapter, we discuss this system in light of existing coiled coil structures and in applying rules to coiled coils that are to be designed or optimized. Understanding and expanding on these rules is crucial in using these motifs, which play key roles in virtually every cellular process, to act as drug-delivery agents by sequestering other proteins that are not behaving natively or that have been upregulated (for example, by binding to coiled coil domains implicated in oncogenesis). The roles of the a and d "hydrophobic" core positions and the e and g "electrostatic" edge positions in directing oligomerization and pairing specificity are discussed. Also discussed is the role of these positions in concert with the b, c, and f positions in maintaining alpha-helical propensity, helix solubility, and dimer stability.

  8. Designing with null flux coils

    SciTech Connect

    Davey, K.R.

    1997-09-01

    Null flux were suggested by Danby and Powell in the late 1960`s as a useful means for realizing induced lift with little drag. As an array of alternating magnets is translated past a set of null flux coils, the currents induced in these coils act to vertically center the magnets on those coils. At present, one Japanese MAGLEV system company and two American-based companies are employing either null flux or flux eliminating coils in their design for high speed magnetically levitated transportation. The principle question addressed in paper is: what is the proper choice of coil length to magnet length in a null flux system? A generic analysis in the time and frequency domain is laid out with the intent of showing the optimal design specification in terms of coil parameters.

  9. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Alfi, S.; Bruni, S.

    2016-06-01

    A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic 'input-output' model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software 'ADTreS' are utilised as 'virtual measurements' considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.

  10. Multiobjective Robust Design of the Double Wishbone Suspension System Based on Particle Swarm Optimization

    PubMed Central

    Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system. PMID:24683334

  11. A review of dynamic stability of repulsive-force maglev suspension systems

    SciTech Connect

    Cai, Y.; Rote, D.M.

    1998-07-01

    Vehicle dynamics and the need to satisfy ride quality requirements have long been recognized as crucial to the commercial success of passenger-carrying transportation systems. Design concepts for maglev systems are no exception. Early maglev investigators and designers were well aware of the importance of ride quality and took care to ensure that their designs would meet acceptable ride quality standards. In contrast, the dynamic stability of electrodynamic suspension (EDS) systems, which has obvious implications for system safety and cost as well as for ride quality, has not received nearly as much attention. Because of the well-known under-damped nature of EDS suspension systems and the observation of instabilities in laboratory-scale model systems, it is prudent to develop a better understanding of vehicle stability characteristics. The work reported in this was undertaken with the intention of summarizing information that has been accumulated worldwide and that is relevant to dynamic stability of repulsive-force maglev suspension systems, assimilating that information, and gaining an understanding of the factors that influence that stability. Included in the paper is a discussion and comparison of results acquired from some representative tests of large-scale vehicles on linear test tracks, together with analytical and laboratory-scale investigations of stability and dynamics of EDS systems. This paper will also summarize the R and D activities at Argonne National Laboratory (ANL) since 1991 to study the nature of the forces that are operative in an EDS system and the dynamic stability of such systems.

  12. The gyroscope testbed: A verification of the gravity probe B suspension system

    NASA Astrophysics Data System (ADS)

    Brumley, Robert Willard

    The verification of precision control systems for use in space-based applications can be extremely challenging. Often, the presence of the 1-g field substantively changes the control problem, making it impossible to test directly on the Earth. This talk discusses a new approach to testing and verification of the gyroscope suspension system for the Gravity Probe B (GP-B) experimental test of General Relativity. The verification approach involves the creation of a new testbed that has the same input-output characteristics and dynamics as a GP-B gyroscope. This involves real physical hardware that moves like a real gyroscope, allowing the suspension system's performance to be measured directly without the need to break any internal connections or bypass internal subsystems. The user free to define any set of disturbances from a 1-g ground levitation to a 10-8 g science mission. The testbed has two main subsystems. The mechanical subsystem is comprised of six parallel plate capacitors whose spacing is controlled by precision actuators. These actuators are the physical interface to the suspension system and create the electrode-rotor capacitances present in a real gyroscope. The closed-loop positioning noise of the system is approximately 10 pm/√Hz, enabling the commanding of position variations a fraction the size of a single atom of Silicon. The control subsystem has a DSP-based high-speed nonlinear controller that forces the actuators to follow the dynamics of a gyroscope. The device has been shown to faithfully represent a gyroscope in 1-g levitation, and a robustness analysis has been performed to prove that it correctly tests the stability of the on-orbit system. The testbed is then used to measure directly suspension system performance in a variety of on-orbit scenarios. Gyroscope levitation in 10-8 g conditions is demonstrated. The robustness of gyroscope levitation to transient disturbances such as micrometeorite impacts on the space vehicle and transitions

  13. Pulse Coil Tester

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1988-01-01

    Set of relays tested easily and repeatedly. Pulse coil tester causes coil under test to generate transient voltage; waveform indicates condition of coil. Tester accommodates assembly of up to four coils at a time.

  14. Hybrid modelling and damping collaborative optimisation of Five-suspensions for coupling driver-seat-cab system

    NASA Astrophysics Data System (ADS)

    Zhao, Leilei; Zhou, Changcheng; Yu, Yuewei; Yang, Fuxing

    2016-05-01

    For the complex structure and vibration characteristics of coupling driver-seat-cab system of trucks, there is no damping optimisation theory for its suspensions at present, which seriously restricts the improvement of vehicle ride comfort. Thus, in this paper, the seat suspension was regarded as 'the fifth suspension' of cab, the 'Five-suspensions' for this system was proposed. Based on this, using the mechanism modelling method, a 4 degree-of-freedom coupling driver-seat-cab system model was presented; then, by the tested cab suspensions excitation and seat acceleration response, its parameters identification mathematical model was established. Based on this, taking optimal ride comfort as target, its damping collaborative optimisation mathematical model was built. Combining the tested signals and a simulation model with the mathematical models of parameters identification and damping collaborative optimisation, a complete flow of hybrid modelling and damping collaborative optimisation of Five-suspensions was presented. With a practical example of seat and cab system, the damping parameters were optimised and validated by simulation and bench test. The results show that the model and method proposed are correct and reliable, providing a valuable reference for the design of seat suspension and cab suspensions.

  15. An airfoil flutter model suspension system to accommodate large static transonic airloads

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1985-01-01

    A pitch/plunge flutter model suspension system and associated two-dimensional MBB-A3 airfoil models is described. The system is designed for installation in the Langley 6-by-19-inch and 6-by-18-inch transonic blowdown wind tunnels to enable systematic study of the transonic flutter characteristics and static pressure distributions of supercritical airfoils at transonic Mach numbers. A compound spring suspension concept is introduced which simultaneously meets requirements for low plunge-mode stiffness, lightweight suspended model, and large steady lift due to angle of attack without the need for excessive static deflections of the plunge spring. The system features variable pitch and plunge frequencies, changeable airfoil rotation axes, and a self aligning control system to maintain a constant mean position of the model with changing airload.

  16. Preliminary investigations of design philosophies and features applicable to large magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.

    1979-01-01

    The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.

  17. Microbial spoilage, instability risk of antacid suspension in the presence of commonly used preservative system.

    PubMed

    Khan, Jamshaid Ali; Khan, Imran Ullah; Iqbal, Zafar; Nasir, Fazli; Muhammad, Salar; Hannan, Peer Abdul; Ullah, Irfan

    2015-09-01

    Manifestation of microbial spoilage of any product by bacteria and to assess the effectiveness of the anti-microbial preservatives (parabens) used for the prevention and stability purpose. The aim of the present work is to study the effectiveness of preservatives used in the antacid suspensions and to analyze the effect of microbial growth on the quality of respective antacid suspensions. Samples of various antacid suspensions were randomly collected from local market and Government hospital pharmacies. Three different antacid formulations were prepared in the laboratory. All the formulations were preliminarily evaluated on the basis of organoleptic characteristics, pH, viscosity and assay. Efficacy of the preservative system in suspension formulation was determined by inoculating the samples in its final container, with specific strains of bacteria i.e. Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 6538, taking samples from the inoculated preparation at specified intervals of time i.e. 0 time, 07 days, 14 days and 28 days, growing it on nutrient agar medium and colony forming units (CFUs) were scored by plate count. At the same time the samples were also subjected to qualitative and quantitative testing. The decrease in CFU and alteration in assay, pH and viscosity was observed in all the formulations except formulation M2 and F3 that showed stability throughout the study period.

  18. Hierarchical Nanostructures Self-Assembled from a Mixture System Containing Rod-Coil Block Copolymers and Rigid Homopolymers

    PubMed Central

    Li, Yongliang; Jiang, Tao; Lin, Shaoliang; Lin, Jiaping; Cai, Chunhua; Zhu, Xingyu

    2015-01-01

    Self-assembly behavior of a mixture system containing rod-coil block copolymers and rigid homopolymers was investigated by using Brownian dynamics simulations. The morphologies of formed hierarchical self-assemblies were found to be dependent on the Lennard-Jones (LJ) interaction εRR between rod blocks, lengths of rod and coil blocks in copolymer, and mixture ratio of block copolymers to homopolymers. As the εRR value decreases, the self-assembled structures of mixtures are transformed from an abacus-like structure to a helical structure, to a plain fiber, and finally are broken into unimers. The order parameter of rod blocks was calculated to confirm the structure transition. Through varying the length of rod and coil blocks, the regions of thermodynamic stability of abacus, helix, plain fiber, and unimers were mapped. Moreover, it was discovered that two levels of rod block ordering exist in the helices. The block copolymers are helically wrapped on the homopolymer bundles to form helical string, while the rod blocks are twistingly packed inside the string. In addition, the simulation results are in good agreement with experimental observations. The present work reveals the mechanism behind the formation of helical (experimentally super-helical) structures and may provide useful information for design and preparation of the complex structures. PMID:25965726

  19. Hierarchical Nanostructures Self-Assembled from a Mixture System Containing Rod-Coil Block Copolymers and Rigid Homopolymers

    NASA Astrophysics Data System (ADS)

    Li, Yongliang; Jiang, Tao; Lin, Shaoliang; Lin, Jiaping; Cai, Chunhua; Zhu, Xingyu

    2015-05-01

    Self-assembly behavior of a mixture system containing rod-coil block copolymers and rigid homopolymers was investigated by using Brownian dynamics simulations. The morphologies of formed hierarchical self-assemblies were found to be dependent on the Lennard-Jones (LJ) interaction ɛRR between rod blocks, lengths of rod and coil blocks in copolymer, and mixture ratio of block copolymers to homopolymers. As the ɛRR value decreases, the self-assembled structures of mixtures are transformed from an abacus-like structure to a helical structure, to a plain fiber, and finally are broken into unimers. The order parameter of rod blocks was calculated to confirm the structure transition. Through varying the length of rod and coil blocks, the regions of thermodynamic stability of abacus, helix, plain fiber, and unimers were mapped. Moreover, it was discovered that two levels of rod block ordering exist in the helices. The block copolymers are helically wrapped on the homopolymer bundles to form helical string, while the rod blocks are twistingly packed inside the string. In addition, the simulation results are in good agreement with experimental observations. The present work reveals the mechanism behind the formation of helical (experimentally super-helical) structures and may provide useful information for design and preparation of the complex structures.

  20. Hierarchical nanostructures self-assembled from a mixture system containing rod-coil block copolymers and rigid homopolymers.

    PubMed

    Li, Yongliang; Jiang, Tao; Lin, Shaoliang; Lin, Jiaping; Cai, Chunhua; Zhu, Xingyu

    2015-05-12

    Self-assembly behavior of a mixture system containing rod-coil block copolymers and rigid homopolymers was investigated by using Brownian dynamics simulations. The morphologies of formed hierarchical self-assemblies were found to be dependent on the Lennard-Jones (LJ) interaction εRR between rod blocks, lengths of rod and coil blocks in copolymer, and mixture ratio of block copolymers to homopolymers. As the εRR value decreases, the self-assembled structures of mixtures are transformed from an abacus-like structure to a helical structure, to a plain fiber, and finally are broken into unimers. The order parameter of rod blocks was calculated to confirm the structure transition. Through varying the length of rod and coil blocks, the regions of thermodynamic stability of abacus, helix, plain fiber, and unimers were mapped. Moreover, it was discovered that two levels of rod block ordering exist in the helices. The block copolymers are helically wrapped on the homopolymer bundles to form helical string, while the rod blocks are twistingly packed inside the string. In addition, the simulation results are in good agreement with experimental observations. The present work reveals the mechanism behind the formation of helical (experimentally super-helical) structures and may provide useful information for design and preparation of the complex structures.

  1. Magnetic suspension system for an Annular Momentum Control Device (AMCD)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A technique to control a rim suspended in a magnetic field was developed. A complete system was developed, incorporating a support structure, magnetic actuators, a rim drive mechanism, an emergency fail-safe system, servo control system, and control electronics. Open loop and closed loop response of the system at zero speed and at 500 revolutions per minute (r/min) of the rim was obtained and analyzed. The rim was then dynamically balanced and a rim speed of 725 r/min was achieved. An analog simulation of the hardware was developed and tested with the actual control electronics connected to the analog computer. The system under development is stable at rim speeds below 700 r/min. Test results indicate that the rim under test is not rigid. The rim has a warp and a number of binding modes which prevented achievement of higher speeds. Further development efforts are required to achieve higher rim speeds.

  2. Eddy Current Loss Induced in Aluminum Thermal Conduction Strips for ASPCS Coils Indirectly Cooled by Liquid Hydrogen through Thermo-siphon System

    NASA Astrophysics Data System (ADS)

    Ota, Narumi; Katsura, Masashi; Ando, Kennosuke; Takao, Tomoaki; Shintomi, Takakazu; Makida, Yasuhiro; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Tsujigami, Hiroshi; Fujikawa, Shizuichi; Semba, Toshiaki; Iwaki, Katsuya

    To promote renewable energy sources, we proposed a new system called the Advanced Superconducting Power Conditioning System (ASPCS), which consists of Superconducting Magnetic Energy Storage-system (SMES), Electrolyzer, and Fuel Cell, and is also combined with a liquid hydrogen station for vehicles. The SMES plays a role to compensate the fast fluctuations generated by the renewable energies. In case of the ASPCS with a capacity of 5 MW, we designed the 50 MJ-class SMES composed of 4 solenoid coils. The winding of the solenoid coils is double pancake and a basic coil is 2 m in diameter and 0.5 m in height. Each SMES coil is wound with MgB2 conductor and indirectly cooled at 20 K by liquid hydrogen flowing through a thermo-siphon cooling system. Pure aluminum strips are inserted between the double-pancake coils and the pure aluminum plates gathering the strips lead to liquid hydrogen pipes. This scheme enables the strips and the plates to transfer the heat load in the coils to the cooling pipes and keep the coils at low temperature. On the other hand, we must consider that the strips generate eddy current loss which is strongly affected by a width of the strips. At the same time as the primary study of the SMES coils, we experimented on the thermo-siphon cooling system and investigated the relationship between the heat load and the heat extraction ability of the cooling system. The experiments showed that the cooling system could proficiently function. The estimation of eddy current loss from the particular cooling aluminum strips for the SMES in the ASPCS is reported with the results of the thermo-siphon driving experiment.

  3. Vehicle height and posture control of the electronic air suspension system using the hybrid system approach

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Cai, Yingfeng; Chen, Long; Liu, Yanling; Wang, Shaohua

    2016-03-01

    The electronic air suspension (EAS) system can improve ride comfort, fuel economy and handling safety of vehicles by adjusting vehicle height. This paper describes the development of a novel controller using the hybrid system approach to adjust the vehicle height (height control) and to regulate the roll and pitch angles of the vehicle body during the height adjustment process (posture control). The vehicle height adjustment system of EAS poses challenging hybrid control problems, since it features different discrete modes of operation, where each mode has an associated linear continuous-time dynamic. In this paper, we propose a novel approach to the modelling and controller design problem for the vehicle height adjustment system of EAS. The system model is described firstly in the hybrid system description language (HYSDEL) to obtain a mixed logical dynamical (MLD) hybrid model. For the resulting model, a hybrid model predictive controller is tuned to improve the vehicle height and posture tracking accuracy and to achieve the on-off statuses direct control of solenoid valves. The effectiveness and performance of the proposed approach are demonstrated by simulations and actual vehicle tests.

  4. Multi-objective H ∞ control for vehicle active suspension systems with random actuator delay

    NASA Astrophysics Data System (ADS)

    Li, Hongyi; Liu, Honghai; Hand, Steve; Hilton, Chris

    2012-12-01

    This article is concerned with the problem of multi-objective H ∞ control for vehicle active suspension systems with random actuator delay, which can be represented by signal probability distribution. First, the dynamical equations of a quarter-car suspension model are established for the control design purpose. Secondly, when taking into account vehicle performance requirements, namely, ride comfort, suspension deflection and the probability distributed actuator delay, we present the corresponding dynamic system, which will be transformed to the stochastic system for the problem of multi-objective H ∞ controller design. Third, based on the stochastic stability theory, the state feedback controller is proposed to render that the closed-loop system is exponentially stable in mean-square while simultaneously satisfying H ∞ performance and the output constraint requirement. The presented condition is expressed in the form of convex optimisation problems so that it can be efficiently solved via standard numerical software. Finally, a practical design example is given to demonstrate the effectiveness of the proposed method.

  5. Quarter Car Suspension System With One Degree Of Freedom Simulated Using Simulink

    NASA Astrophysics Data System (ADS)

    Bereteu, L.; Perescu, A.

    2012-12-01

    Simulate the behavior of a quarter car suspension system with Simulink®. Consider only vertical movement of the car, neglecting roll and pitch. All movements of the car axes are modeled as having equal amplitude. The characteristic equations that describe the behavior of dynamical systems based on FBD (Free Body Diagram) of automotive suspension. We make the simulation model in six steps. In simulation we consider the damping coefficient, c, variable. The rest of parameters are constant (mass, speed and stiffness). The simulation parametrs are defined in Mathlab®. We follow the final signal created on the oscilloscope. At the end of the study, we concluded the effect of damping coefficient changes over the comfort.

  6. The Annular Suspension and Pointing (ASP) system for space experiments and predicted pointing accuracies

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Joshi, S. M.

    1975-01-01

    An annular suspension and pointing system consisting of pointing assemblies for coarse and vernier pointing is described. The first assembly is attached to a carrier spacecraft (e.g., the space shuttle) and consists of an azimuth gimbal and an elevation gimbal which provide 'coarse' pointing. The second or vernier pointing assembly is made up of magnetic actuators of suspension and fine pointing, roll motor segments, and an instrument or experiment mounting plate around which is attached a continuous annular rim similar to that used in the annular momentum control device. The rim provides appropriate magnetic circuits for the actuators and the roll motor segments for any instrument roll position. The results of a study to determine the pointing accuracy of the system in the presence of crew motion disturbances are presented. Typical 3 sigma worst-case errors are found to be of the order of 0.001 arc-second.

  7. Study on needs for a magnetic suspension system operating with a transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Martindale, W. R.; Butler, R. W.; Starr, R. F.

    1985-01-01

    The U.S. aeronautical industry was surveyed to determine if current and future transonic testing requirements are sufficient to justify continued development work on magnetic suspension and balance systems (MSBS) by NASA. The effort involved preparation of a brief technical description of magnetic suspension and balance systems, design of a survey form asking specific questions about the role of the MSBS in satisfying future testing requirements, selecting nine major aeronautics companies to which the description and survey forms were sent, and visiting the companies and discussing the survey to obtain greater insight to their response to the survey. Evaluation and documentation of the survey responses and recommendations which evolved from the study are presented.

  8. An LQR controller design approach for a Large Gap Magnetic Suspension System (LGMSS)

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Schaffner, Philip R.

    1990-01-01

    Two control approaches for a Large Gap Magnetic Suspension System (LGMSS) are investigated and numerical results are presented. The approaches are based on Linear Quadratic Regulator (LQR) control theory and include a nonzero set point regulator with constant disturbance input and an integral feedback regulator. The LGMSS provides five degree of freedom control of a cylindrical suspended element which is composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar way.

  9. Description of the Large-Gap Magnetic Suspension System (LGMSS) ground based experiment

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1991-01-01

    An overview of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment is provided. A description of the experiment, as originally defined, and the experiment objectives and potential applications of the technology resulting from the experiment are presented. Also, the results of two studies which were conducted to investigate the feasibility of implementing the experiment are presented and discussed. Finally, a description of the configuration which was selected for the experiment is described, and a summary of the paper is presented.

  10. Alternative Suspension System for Space Shuttle Avionics Shelf

    NASA Technical Reports Server (NTRS)

    Biele, Frank H., III

    2010-01-01

    Engineers working in the Aerospace field under deadlines and strict budgets often miss the opportunity to design something that is considered new or innovative, favoring instead to use the tried-and-true design over those that may, in fact, be more efficient. This thesis examines an electronic equipment stowage shelf suspended from a frame in the cargo bay (mid fuselage) of the United States Space Transportation System (STS), the Space Shuttle, and 3 alternative designs. Four different designs are examined and evaluated. The first design is a conventional truss, representing the tried and true approach. The second is a cable dome type structure consisting of struts and pre-stressed wiring. The third and fourth are double layer tensegrity systems consisting of contiguous struts of the order k=1 and k=2 respectively.

  11. Alternate suspension system for space shuttle avionics shelf

    NASA Astrophysics Data System (ADS)

    Biele, Frank H., III

    This thesis examines an equipment stowage shelf suspended from a frame in the cargo bay (mid fuselage) of the U.S. Space Shuttle, and three alternative designs. The first design is a conventional truss, representing the "tried and true" approach. The second is a cable dome type structure consisting of struts and pre-stressed cables. The third and fourth are double layer tensegrity systems consisting of contiguous struts of the order k=1 and k=2 respectively. The four options are compared to each other with an emphasis placed on weight, size, and approximate cost of each option. Results indicate the 4-Way Double Layer Tensegrity grid utilizing carbon fiber composite cables is the most efficient (lightest weight) tensegrity system, however for this particular application the most cost effective design was proven to be the optimized conventional truss. It was determined that the scale of the structure would have to increase substantially or tensegrity structures complexity must decrease for these alternative systems to compete with conventional designs.

  12. A self-adjustable four-point probing system using polymeric three dimensional coils and non-toxic liquid metal.

    PubMed

    Oyunbaatar, Nomin-Erdene; Choi, Young Soo; Choi, Yong Soo; Lee, Dong-Weon

    2015-12-01

    This paper describes a self-adjustable four-point probe (S4PP) system with a square configuration. The S4PP system consists of 3D polymer coil springs for the independent operation of each tungsten (W) probe, microfluidic channels filled with a nontoxic liquid metal, and a LabView-based control system. The 3D coil springs made by PMMA are fabricated with a 3D printer and are positioned in a small container filled with the non-toxic liquid metal. This unique configuration allows independent self-adjustment of the probe heights for precise measurements of the electrical properties of both flexible and large-step-height microsamples. The feasibility of the fabricated S4PP system is evaluated by measuring the specific resistance of Cr and Au thin films deposited on silicon wafers. The system is then employed to evaluate the electrical properties of a Au thin film deposited onto a flexible and easily breakable silicon diaphragm (spring constant: ∼3.6 × 10(-5) N/m). The resistance of the Cr thin films (thickness: 450 nm) with step heights of 60 and 90 μm is also successfully characterized. These experimental results indicate that the proposed S4PP system can be applied to common metals and semiconductors as well as flexible and large-step-height samples. PMID:26724065

  13. A self-adjustable four-point probing system using polymeric three dimensional coils and non-toxic liquid metal

    NASA Astrophysics Data System (ADS)

    Oyunbaatar, Nomin-Erdene; Choi, Young Soo; Lee, Dong-Weon

    2015-12-01

    This paper describes a self-adjustable four-point probe (S4PP) system with a square configuration. The S4PP system consists of 3D polymer coil springs for the independent operation of each tungsten (W) probe, microfluidic channels filled with a nontoxic liquid metal, and a LabView-based control system. The 3D coil springs made by PMMA are fabricated with a 3D printer and are positioned in a small container filled with the non-toxic liquid metal. This unique configuration allows independent self-adjustment of the probe heights for precise measurements of the electrical properties of both flexible and large-step-height microsamples. The feasibility of the fabricated S4PP system is evaluated by measuring the specific resistance of Cr and Au thin films deposited on silicon wafers. The system is then employed to evaluate the electrical properties of a Au thin film deposited onto a flexible and easily breakable silicon diaphragm (spring constant: ˜3.6 × 10-5 N/m). The resistance of the Cr thin films (thickness: 450 nm) with step heights of 60 and 90 μm is also successfully characterized. These experimental results indicate that the proposed S4PP system can be applied to common metals and semiconductors as well as flexible and large-step-height samples.

  14. Final Report: Model interacting particle systems for simulation and macroscopic description of particulate suspensions

    SciTech Connect

    Peter J. Mucha

    2007-08-30

    Suspensions of solid particles in liquids appear in numerous applications, from environmental settings like river silt, to industrial systems of solids transport and water treatment, and biological flows such as blood flow. Despite their importance, much remains unexplained about these complicated systems. Mucha's research aims to improve understanding of basic properties of suspensions through a program of simulating model interacting particle systems with critical evaluation of proposed continuum equations, in close collaboration with experimentalists. Natural to this approach, the original proposal centered around collaboration with studies already conducted in various experimental groups. However, as was detailed in the 2004 progress report, following the first year of this award, a number of the questions from the original proposal were necessarily redirected towards other specific goals because of changes in the research programs of the proposed experimental collaborators. Nevertheless, the modified project goals and the results that followed from those goals maintain close alignment with the main themes of the original proposal, improving efficient simulation and macroscopic modeling of sedimenting and colloidal suspensions. In particular, the main investigations covered under this award have included: (1) Sedimentation instabilities, including the sedimentation analogue of the Rayleigh-Taylor instability (for heavy, particle-laden fluid over lighter, clear fluid). (2) Ageing dynamics of colloidal suspensions at concentrations above the glass transition, using simplified interactions. (3) Stochastic reconstruction of velocity-field dependence for particle image velocimetry (PIV). (4) Stochastic modeling of the near-wall bias in 'nano-PIV'. (5) Distributed Lagrange multiplier simulation of the 'internal splash' of a particle falling through a stable stratified interface. (6) Fundamental study of velocity fluctuations in sedimentation. (7) Parallelization of

  15. Regenerative magnetorheological dampers for vehicle suspensions

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zou, Li; Liao, Wei-Hsin

    2015-04-01

    Magnetorheological (MR) dampers are promising for vehicle suspensions, by virtue of their adaptive properties. During the everyday use of vehicles, a lot of energy is wasted due to the energy dissipation by dampers under the road irregularities. On the other hand, extra batteries are required for the current MR damper systems. To reduce the energy waste and get rid of the dependence on extra batteries, in this paper, regenerative MR dampers are proposed for vehicle suspensions, which integrate energy harvesting and controllable damping functions. The wasted vibration energy can be converted into electrical energy and power the MR damper coil. A regenerative MR damper for vehicle suspensions is developed. Damping force and power generation characteristics of the regenerative MR damper were modeled and analyzed. Then the damper is applied to a 2 DOF suspension system for system simulation under various road conditions. Simulation results show that riding comfort can be significantly improved, while harvesting energy for other use in addition to supply power for the controlled MR damper.

  16. Soft-coupling suspension system for an intradural spinal cord stimulator: Biophysical performance characteristics

    NASA Astrophysics Data System (ADS)

    Oya, H.; Safayi, S.; Jeffery, N. D.; Viljoen, S.; Reddy, C. G.; Dalm, B. D.; Kanwal, J. K.; Gillies, G. T.; Howard, M. A.

    2013-10-01

    We have characterized the mechanical compliance of an improved version of the suspension system used to position the electrode-bearing membrane of an intradural neuromodulator on the dorsal pial surface of the spinal cord. Over the compression span of 5 mm, it exhibited a restoring force of 2.4 μN μm-1 and a mean pressure of 0.5 mm Hg (=66 Pa) on the surface below it, well within the range of normal intrathecal pressures. We have implanted prototype devices employing this suspension and a novel device fixation technique in a chronic ovine model of spinal cord stimulation and found that it maintains stable contact at the electrode-pia interface without lead fracture, as determined by measurement of the inter-contact impedances.

  17. Robust fault-tolerant H∞ control of active suspension systems with finite-frequency constraint

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Jing, Hui; Karimi, Hamid Reza; Chen, Nan

    2015-10-01

    In this paper, the robust fault-tolerant (FT) H∞ control problem of active suspension systems with finite-frequency constraint is investigated. A full-car model is employed in the controller design such that the heave, pitch and roll motions can be simultaneously controlled. Both the actuator faults and external disturbances are considered in the controller synthesis. As the human body is more sensitive to the vertical vibration in 4-8 Hz, robust H∞ control with this finite-frequency constraint is designed. Other performances such as suspension deflection and actuator saturation are also considered. As some of the states such as the sprung mass pitch and roll angles are hard to measure, a robust H∞ dynamic output-feedback controller with fault tolerant ability is proposed. Simulation results show the performance of the proposed controller.

  18. High-lateral-tension abdominoplasty with superficial fascial system suspension.

    PubMed

    Lockwood, T

    1995-09-01

    Modern abdominoplasty techniques were developed in the 1960s. The advent of liposuction has reduced the need for classic abdominoplasty and allowed more aesthetic sculpting of the entire trunk. However, the combination of significant truncal liposuction and classic abdominoplasty is not recommended due to the increased risk of complications. Although the surgical principles of classic abdominoplasty certainly have stood the test of time, they are based on two theoretical assumptions that may be proved to be inaccurate. The first assumption is that wide direct undermining to costal margins is essential for abdominal flap advancement. In fact, discontinuous undermining allows effective loosening of the abdominal flap while preserving vascular perforators. The second inaccurate assumption is that with aging and weight fluctuations (including pregnancy), abdominal skin relaxation occurs primarily in the vertical direction from the xiphoid to the pubis. This is true in the lower abdomen, but in most patients a strong superficial fascial system adherence to the linea alba in the epigastrium limits vertical descent. Epigastric laxity frequently results from a progressive horizontal loosening due to relaxation of the tissue along the lateral trunk. Experience with the lower-body lift procedure has shown that significant lateral truncal skin resection results in epigastric tightening. In these patients, the ideal abdominoplasty pattern would resect as much or more laterally than centrally, leading to more natural abdominal contours. Fifty patients who underwent high-lateral-tension abdominoplasty with and without significant truncal liposuction and other aesthetic procedures were followed for 4 to 16 months. The primary indication for surgery was moderate to severe laxity of abdominal skin and muscle with or without truncal fat deposits. Complication rates were equal to or less than those of historical controls and did not increase with significant adjunctive liposuction

  19. Implementation of a decoupled controller for a magnetic suspension system using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Cox, D. E.; Groom, N. J.

    1994-01-01

    An implementation of a decoupled, single-input/single-output control approach for a large angle magnetic suspension test fixture is described. Numerical and experimental results are presented. The experimental system is a laboratory model large gap magnetic suspension system which provides five degree-of-freedom control of a cylindrical suspended element. The suspended element contains a core composed of permanent magnet material and is levitated above five electromagnets mounted in a planar array.

  20. Analytical determination of space station response to crew motion and design of suspension system for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Liu, Frank C.

    1987-01-01

    The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.

  1. Nonlinear analysis and performance evaluation of the Annular Suspension and Pointing System (ASPS)

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1978-01-01

    The Annular Suspension and Pointing System (ASPS) can provide high accurate fine pointing for a variety of solar-, stellar-, and Earth-viewing scientific instruments during space shuttle orbital missions. In this report, a detailed nonlinear mathematical model is developed for the ASPS/Space Shuttle system. The equations are augmented with nonlinear models of components such as magnetic actuators and gimbal torquers. Control systems and payload attitude state estimators are designed in order to obtain satisfactory pointing performance, and statistical pointing performance is predicted in the presence of measurement noise and disturbances.

  2. Drag measurements on a body of revolution in Langley's 13-inch Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1988-01-01

    NASA Langley's 13-inch Magnetic Suspension and Balance System (MSBS) has been used to conduct low-speed wind tunnel drag force measurements on a laminar-flow body-of-revolution free of support system interference, in order to verify the drag force measurement capabilities of the MSBS. The drag force calibrations and wind-on repeatability data obtained have verified the design capabilities for this system. A drag-prediction code has been used to assess the MSBS's usefulness in body drag estimation.

  3. The Effects of Suction and Pin/Lock Suspension Systems on Transtibial Amputees’ Gait Performance

    PubMed Central

    Gholizadeh, Hossein; Abu Osman, Noor Azuan; Eshraghi, Arezoo; Ali, Sadeeq

    2014-01-01

    Background The suction sockets that are commonly prescribed for transtibial amputees are believed to provide a better suspension than the pin/lock systems. Nevertheless, their effect on amputees’ gait performance has not yet been fully investigated. The main intention of this study was to understand the potential effects of the Seal-in (suction) and the Dermo (pin/lock) suspension systems on amputees’ gait performance. Methodology/Principal Findings Ten unilateral transtibial amputees participated in this prospective study, and two prostheses were fabricated for each of them. A three-dimensional motion analysis system was used to evaluate the temporal-spatial, kinematics and kinetics variables during normal walking. We also asked the participants to complete some part of Prosthesis Evaluation Questionnaire (PEQ) regarding their satisfaction and problems with both systems. The results revealed that there was more symmetry in temporal-spatial parameters between the prosthetic and sound limbs using the suction system. However, the difference between two systems was not significant (p<0.05). Evaluation of kinetic data and the subjects’ feedback showed that the participants had more confidence using the suction socket and the sockets were more fit for walking. Nevertheless, the participants had more complaints with this system due to the difficulty in donning and doffing. Conclusion It can be concluded that even though the suction socket could create better suspension, fit, and gait performance, overall satisfaction was higher with the pin/lock system due to easy donning and doffing of the prosthesis. Trial Registration irct.ir IRCT2014012816395N1 PMID:24827560

  4. System identification of the Large-Angle Magnetic Suspension Test Facility (LAMSTF)

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang

    1993-01-01

    The Large-Angle Magnetic Suspension Test Facility (LAMSTF), a laboratory-scale research project to demonstrate the magnetic suspension of objects over wide ranges of attitudes, has been developed. This system represents a scaled model of a planned Large-Gap Magnetic Suspension System (LGMSS). The LAMSTF system consists of a planar array of five copper electromagnets which actively suspend a small cylindrical permanent magnet. The cylinder is a rigid body and can be controlled to move in five independent degrees of freedom. Five position variables are sensed indirectly by using infra-red light-emitting diodes and light-receiving phototransistors. The motion of the suspended cylinder is in general nonlinear and hence only the linear, time-invariant perturbed motion about an equilibrium state is considered. One of the main challenges in this project is the control of the suspended element over a wide range of orientations. An accurate dynamic model plans an essential role in controller design. The analytical model of the LAMSTF system includes highly unstable real poles (about 10 Hz) and low-frequency flexible modes (about 0.16 Hz). Projection filters are proposed to identify the state space model from closed-loop test data in time domain. A canonical transformation matrix is also derived to transform the identified state space model into the physical coordinate. The LAMSTF system is stabilized by using a linear quadratic regulator (LQR) feedback controller. The rate information is obtained by calculating the back difference of the sensed position signals. The reference inputs contain five uncorrelated random signals. This control input and the system reponse are recorded as input/output data to identify the system directly from the projection filters. The sampling time is 4 ms and the model is fairly accurate in predicting the step responses for different controllers while the analytical model has a deficiency in the pitch axis.

  5. System identification of the Large-Angle Magnetic Suspension Test Fixture (LAMSTF)

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang

    1994-01-01

    The Large-Angle Magnetic Suspension Test Fixture (LAMSTF), a laboratory-scale research project to demonstrate the magnetic suspension of objects over wide ranges of attitudes, has been developed. This system represents a scaled model of a planned Large-Gap Magnetic Suspension System (LGMSS). The LAMSTF consists of a small cylindrical permanent magnet suspended element which is levitated above a planar array of five electromagnets mounted in a circular configuration. The cylinder is a rigid body and can be controlled to move in five independent degrees of freedom. Six position variables are sensed indirectly by using infrared light-emitting diodes and light-receiving phototransistors. The motion of the suspended cylinder is in general nonlinear and hence only the linear, time-invariant perturbed motion about an equilibrium state is considered. One of the main challenges in this project is the control of the suspended element over a wide range of orientations. An accurate dynamic model plays an essential role in controller design. The analytical model is first derived and open-loop characteristics discussed. The system is shown to be highly unstable and requires feedback control for system identification. Projection filters are first proposed to identify the state space model from closed-loop input/output test data in the time domain. This method is then extended to identify linear systems from the frequency test data. A canonical transformation matrix is also derived to transform the identified state space model into the physical coordinate. The LAMSTF system is stabilized by using a linear quadratic regulator (LQR) feedback controller for closed-loop identification. The rate information is obtained by calculating the back difference of the sensed position signals. Only the closed-loop random input/output data are recorded. Preliminary results from numerical simulations demonstrate that the identified system model is fairly accurate from either time domain or

  6. Magnet Coil Shorted Turn Detector

    SciTech Connect

    Dinkel, J.A.; Biggs, J.E.

    1994-03-01

    The Magnet Coil Shorted Turn Detector has been developed to facilitate the location of shorted turns in magnet coils. Finding these shorted turns is necessary to determine failure modes that are a necessary step in developing future production techniques. Up to this point, coils with shorted turns had the insulation burned off without the fault having been located. This disassembly process destroyed any chance of being able to find the fault. In order to maintain a flux balance in a coupled system such as a magnet coil, the current in a shorted turn must be opposed to the incident current. If the direction of the current in each conductor can be measured relative to the incident current, then the exact location of the short can be determined. In this device, an AC voltage is applied to the magnet under test. A small hand held B-dot pickup coil monitors the magnetic field produced by current in the individual magnet conductors. The relative phase of this pickup coil voltage is compared to a reference signal derived from the input current to detect a current reversal as the B-dot pickup coil is swept over the conductors of the coil under test. This technique however, is limited to only those conductors that are accessible to the hand held probe.

  7. Muscle Activation during Push-Ups with Different Suspension Training Systems

    PubMed Central

    Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C.; Martín, Fernando F; Rogers, Michael E.; Behm, David G.; Andersen, Lars L.

    2014-01-01

    The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p < 0.001). Individually, the suspended push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key Points Compared with standard push-ups on the floor, suspended push-ups increase core muscle activation. A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity. More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation. A suspended push-up is an effective method to achieve high muscle activity levels in the ABS. PMID:25177174

  8. Suppressing local hot spots due to eddy currents in magnetic coil systems

    NASA Astrophysics Data System (ADS)

    Yao, Zhen; Shojinaga, Aaron; Wu, Yong; Shvartsman, Shmaryu; Eagan, Timothy; Chmielewski, Thomas; Brown, Robert

    2011-03-01

    A particular goal in magnetic field applications is to avoid eddy current heating in coils and shields. It is important, in MRI, for example, to avoid hot spots near the patient to be imaged as well as in the vicinity of soldering joints. We develop effective analytical formulas for the eddy current behavior of sources close to surrounding conductors, we verify these via numerical simulations, and we make successful comparisons to corresponding experimental temperature distributions. Optimized patterns of incisions made in the conductors are discovered for addressing particularly troublesome heating locations. The criteria include the need to minimize the number and length of the cuts. Theory and experiment are in agreement on the efficacy of this method for reducing steady-state temperatures. An example of results in the practical design of commercial coils and shields is that a single cut parallel to the long edge of rectangular conductors reduces the temperatures much more than making multiple cuts parallel to the short edge. Supported by Ohio Third Frontier Program

  9. A Parallel Coiled-Coil Tetramer with Offset Helices

    SciTech Connect

    Liu,J.; Deng, Y.; Zheng, Q.; Cheng, C.; Kallenbach, N.; Lu, M.

    2006-01-01

    Specific helix-helix interactions are fundamental in assembling the native state of proteins and in protein-protein interfaces. Coiled coils afford a unique model system for elucidating principles of molecular recognition between {alpha} helices. The coiled-coil fold is specified by a characteristic seven amino acid repeat containing hydrophobic residues at the first (a) and fourth (d) positions. Nonpolar side chains spaced three and four residues apart are referred to as the 3-4 hydrophobic repeat. The presence of apolar amino acids at the e or g positions (corresponding to a 3-3-1 hydrophobic repeat) can provide new possibilities for close-packing of {alpha}-helices that includes examples such as the lac repressor tetramerization domain. Here we demonstrate that an unprecedented coiled-coil interface results from replacement of three charged residues at the e positions in the dimeric GCN4 leucine zipper by nonpolar valine side chains. Equilibrium circular dichroism and analytical ultracentrifugation studies indicate that the valine-containing mutant forms a discrete {alpha}-helical tetramer with a significantly higher stability than the parent leucine-zipper molecule. The 1.35 {angstrom} resolution crystal structure of the tetramer reveals a parallel four-stranded coiled coil with a three-residue interhelical offset. The local packing geometry of the three hydrophobic positions in the tetramer conformation is completely different from that seen in classical tetrameric structures yet bears resemblance to that in three-stranded coiled coils. These studies demonstrate that distinct van der Waals interactions beyond the a and d side chains can generate a diverse set of helix-helix interfaces and three-dimensional supercoil structures.

  10. Non-linear dynamic modeling of an automobile hydraulic active suspension system

    NASA Astrophysics Data System (ADS)

    Mrad, R. Ben; Levitt, J. A.; Fassois, S. D.

    1994-09-01

    Motived by the strong need for realistically describing the dynamical behaviour of automotive systems through adequate mathematical models, a computer-stimulation-suitable non-linear quarter-car model of a hydraulic active suspension system is developed. Unlike previously available linear models characterised by idealised actuator and component behaviour, the developed model accounts for the dynamics of the main system components, including the suspension bushing, pump, accumulator, power and bypass valves, and hydraulic actuator, while also incorporating preliminary versions of the system controllers. Significant system characteristics, such as non-linear pressure-flow relationships, fluid compressibility, pump and valve non-linearities, leakages, as well as Coulomb friction, are also explicitly accounted for, and the underpinning assumptions are discussed. Simulation results obtained by exercising the model provide insight into the system behavior, illustrate the importance of the actuator/component dynamics and their associated non-linearities and reveal the inadequacy of the idealised linear models in capturing the system behaviour, demonstrate specific effects of valve leakage and fluid bulk modulus, are in qualitative agreement with experimental measurements, and stress the need for proper control law design and tuning. The developed model is particularly suitable for analysis, design, control law optimisation, and diagnostic strategies development.

  11. The Suspension School: An Alternative to Suspension.

    ERIC Educational Resources Information Center

    Kennedy, Robert L.; And Others

    A suspension school for secondary students, established in the 1977-78 school year in an Arkansas school district has developed specific program goals and procedures. Following a discussion of the school's origins, this paper describes operating procedures, philosophy, support system, and student reaction. Suspensions declined considerably through…

  12. Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation

    NASA Astrophysics Data System (ADS)

    Hailong, Zhang; Enrong, Wang; Fuhong, Min; Ning, Zhang

    2016-03-01

    The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51475246, 51277098, and 51075215), the Research Innovation Program for College Graduates of Jiangsu Province China (Grant No. KYLX15 0725), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131402).

  13. Fuzzy chaos control for vehicle lateral dynamics based on active suspension system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Jiang, Haobin; Yuan, Chaochun; Xia, Tian

    2014-07-01

    The existing research of the active suspension system (ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.

  14. Analysis and simulation of a magnetic bearing suspension system for a laboratory model annular momentum control device

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Woolley, C. T.; Joshi, S. M.

    1981-01-01

    A linear analysis and the results of a nonlinear simulation of a magnetic bearing suspension system which uses permanent magnet flux biasing are presented. The magnetic bearing suspension is part of a 4068 N-m-s (3000 lb-ft-sec) laboratory model annular momentum control device (AMCD). The simulation includes rigid body rim dynamics, linear and nonlinear axial actuators, linear radial actuators, axial and radial rim warp, and power supply and power driver current limits.

  15. Multiphysics modelling of multibody systems: application to car semi-active suspensions

    NASA Astrophysics Data System (ADS)

    Docquier, N.; Poncelet, A.; Delannoy, M.; Fisette, P.

    2010-12-01

    The goal of the present article is to analyse the performances of a modern vehicle equipped with a novel suspension system linking front, rear, right and left cylinders via a semi-active hydraulic circuit, developed by the Tenneco Automotive company. In addition to improving the vehicle's vertical performances (in terms of comfort), both the stiff roll motion of the carbody and the soft wrap motion of the rear/front wheel-axle units can be obtained and tuned via eight electrovalves. The proposed system avoids the use of classical anti-roll bars, which would be incompatible with the wrap performance. A major problem of the project is to produce a realistic and efficient 3D multibody dynamic model of an Audi A6 coupled, at the equational level, with an hydraulic model of the suspension including cylinders, accumulators, valve characteristics, oil compressibility and pipe dynamics. As regards the hydraulic submodel, a particular attention is paid to assemble resistive components properly without resorting to the use of artificial volumes, as proposed by some software dealing with the dynamics of hydraulic systems. According to Tenneco Automotive requirements, this model must be produced in a Matlab/Simulink form, in particular for control purposes. Thanks to the symbolic approach underlying our multibody program; a unified hybrid model can be obtained as a unique plant dynamic block to be real-time integrated in the Simulink environment on a standard computer. Simulation results highlight the advantages of this new suspension system, in particular regarding the behaviour of the car which can remain stiff in roll for curve negotiation, while maintaining a soft wrap behaviour on uneven surfaces.

  16. Design and optimization of voice coil actuator for six degree of freedom active vibration isolation system using Halbach magnet array

    NASA Astrophysics Data System (ADS)

    Kim, MyeongHyeon; Kim, Hyunchang; Gweon, Dae-Gab

    2012-10-01

    This paper describes the design, modeling, optimization, and validation of an active vibration isolation system using a voice coil motor. The active vibration isolating method was constructed with a passive isolator and an active isolator. A spring was used for passive isolating; an actuator was used for active isolating. The proposed active vibration isolation system (AVIS) can isolate disturbances for many kinds of instruments. Until now, developed AVIS were able to isolate a six degree-of-freedom disturbance effectively. This paper proposes the realization of such a six degree-of-freedom active vibration isolation system that can work as a bench top device for precision measuring machines such as atomic force microscope, scanning probe microscope, etc.

  17. Design and optimization of voice coil actuator for six degree of freedom active vibration isolation system using Halbach magnet array.

    PubMed

    Kim, MyeongHyeon; Kim, Hyunchang; Gweon, Dae-Gab

    2012-10-01

    This paper describes the design, modeling, optimization, and validation of an active vibration isolation system using a voice coil motor. The active vibration isolating method was constructed with a passive isolator and an active isolator. A spring was used for passive isolating; an actuator was used for active isolating. The proposed active vibration isolation system (AVIS) can isolate disturbances for many kinds of instruments. Until now, developed AVIS were able to isolate a six degree-of-freedom disturbance effectively. This paper proposes the realization of such a six degree-of-freedom active vibration isolation system that can work as a bench top device for precision measuring machines such as atomic force microscope, scanning probe microscope, etc.

  18. Conceptual design of MgB2 coil for the 100 MJ SMES of advanced superconducting power conditioning system (ASPCS)

    NASA Astrophysics Data System (ADS)

    Atomura, Naoki; Takahashi, Toshinori; Amata, Hiroto; Iwasaki, Tatsuya; Son, Kyoungwoo; Miyagi, Daisuke; Tsuda, Makoto; Hamajima, Takataro; Shintomi, Takakazu; Makida, Yasuhiro; Takao, Tomoaki; Munakata, Kohe; Kajiwara, Masataka

    In order to reduce global carbon-dioxide in the world, we propose an Advanced Superconducting Power Conditioning System (ASPCS) which is composed of 5 MW renewable energy resources and 1 MW hybrid storage system. The hybrid storage system is composed of FC-H2-EL and SMES which is installed adjacent to a LH2 station for vehicles. Since the SMES can be operated at 20 K which is a saturated temperature of LH2, we can use MgB2 superconductors. In the ASPCS, 100 MJ storage capacities of the SMES should be required. This paper focuses on studies into a conceptual design of SMES toroidal coil composed of the MgB2 and indirectly cooled by LH2.

  19. Toroidal field coil design concept and structural support system for CTHR

    SciTech Connect

    Chianese, R. B.; Kelly, J. L.; Ruck, G. W.

    1980-09-01

    The CTHR conceptual design consists of a magnetically confined (tokamak) fusion reactor fitted with a fertile uranium blanket. The fusion driver concept was based on an ignited plasma. All concepts and parameters were selected on the basis that technical feasibility would be achieved by 1995 to assure a viable commercial operation in the early to mid-21st century. The reactor was designed to achieve good fissile fuel production, with electricity production being a second order priority. However, the resulting concepts that evolved were all excellent power producers which significantly improved the economic performance. The subsystems discussed in the following paragraphs provide a background of the application for the TF coil design described in this report.

  20. NOTE: The utility of pelvic coil SNR testing in the quality assurance of a clinical MRgFUS system

    NASA Astrophysics Data System (ADS)

    Gorny, Krzysztof R.; Hangiandreou, Nicholas J.; Ward, Heidi A.; Hesley, Gina K.; Brown, Douglas L.; Felmlee, Joel P.

    2009-04-01

    During MRI-guided focused ultrasound (MRgFUS) treatments of uterine fibroids using ExAblate®2000, tissue ablations are delivered by a FUS transducer while MR imaging is performed with a pelvic receiver coil. The consistency of the pelvic coil performance is crucial for reliable MR temperature measurements as well as detailed anatomic imaging in patients. Test sonications in a gel phantom combined with MR thermometry are used to test the performance of the FUS transducer prior to each treatment. As we show, however, these tests do not adequately evaluate receiver coil performance prior to clinical use. This could become a problem since the posterior part of the coil is frequently moved and can malfunction. The aim of this work is to demonstrate the utility of the signal-to-noise ratio (SNR) as a reliable indicator of pelvic coil performance. Slight modification of the vendor-provided coil support was accomplished to assure reproducible coil positioning. The SNR was measured in a gel phantom using axial acquisitions from the 3D-localizer scan. MR temperature and SNR measurements were obtained using a degraded receiver coil (with posterior element removed) and a known faulty coil, and compared to those obtained with a fully functioning coil. While the MR temperature-based tests were insensitive to change in pelvic coil performance, (degraded, p = 0.24; faulty, p = 0.28), the SNR tests were highly sensitive to coil performance, (degraded, p < 0.001; faulty, p < 0.001). Additional clinical data illustrate the utility of SNR testing of the receiver coil. These tests require minimal (or possibly no) additional scan time and have proven to be effective in our clinical practice.

  1. Annoyance rate evaluation method on ride comfort of vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Tang, Chuanyin; Zhang, Yimin; Zhao, Guangyao; Ma, Yan

    2014-03-01

    The existing researches of the evaluation method of ride comfort of vehicle mainly focus on the level of human feelings to vibration. The level of human feelings to vibration is influenced by many factors, however, the ride comfort according to the common principle of probability and statistics and simple binary logic is unable to reflect these uncertainties. The random fuzzy evaluation model from people subjective response to vibration is adopted in the paper, these uncertainties are analyzed from the angle of psychological physics. Discussing the traditional evaluation of ride comfort during vehicle vibration, a fuzzily random evaluation model on the basis of annoyance rate is proposed for the human body's subjective response to vibration, with relevant fuzzy membership function and probability distribution given. A half-car four degrees of freedom suspension vibration model is described, subject to irregular excitations from the road surface, with the aid of software Matlab/Simulink. A new kind of evaluation method for ride comfort of vehicles is proposed in the paper, i.e., the annoyance rate evaluation method. The genetic algorithm and neural network control theory are used to control the system. Simulation results are obtained, such as the comparison of comfort reaction to vibration environments between before and after control, relationship of annoyance rate to vibration frequency and weighted acceleration, based on ISO 2631/1(1982), ISO 2631-1(1997) and annoyance rate evaluation method, respectively. Simulated assessment results indicate that the proposed active suspension systems prove to be effective in the vibration isolation of the suspension system, and the subjective response of human being can be promoted from very uncomfortable to a little uncomfortable. Furthermore, the novel evaluation method based on annoyance rate can further estimate quantitatively the number of passengers who feel discomfort due to vibration. A new analysis method of vehicle

  2. Vehicle active suspension system using skyhook adaptive neuro active force control

    NASA Astrophysics Data System (ADS)

    Priyandoko, G.; Mailah, M.; Jamaluddin, H.

    2009-04-01

    This paper aims to highlight the practical viability of a new and novel hybrid control technique applied to a vehicle active suspension system of a quarter car model using skyhook and adaptive neuro active force control (SANAFC). The overall control system essentially comprises four feedback control loops, namely the innermost proportional-integral (PI) control loop for the force tracking of the pneumatic actuator, the intermediate skyhook and active force control (AFC) control loops for the compensation of the disturbances and the outermost proportional-integral-derivative (PID) control loop for the computation of the optimum target/commanded force. A neural network (NN) with a modified adaptive Levenberg-Marquardt learning algorithm was used to approximate the estimated mass and inverse dynamics of the pneumatic actuator in the AFC loop. A number of experiments were carried out on a physical test rig using a hardware-in-the-loop configuration that fully incorporates the theoretical elements. The performance of the proposed control method was evaluated and compared to examine the effectiveness of the system in suppressing the vibration effect on the suspension system. It was found that the simulation and experimental results were in good agreement, particularly for the sprung mass displacement and acceleration behaviours in which the proposed SANAFC scheme is found to outperform the PID and passive counterparts.

  3. ASPS performance with large payloads onboard the Shuttle Orbiter. [Annular Suspension and Pointing System

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.

    1980-01-01

    A high fidelity digital computer simulation was used to establish the viability of the Annular Suspension and Pointing System (ASPS) for satisfying the pointing and stability requirements of facility class payloads, such as the Solar Optical Telescope, when subjected to the Orbiter disturbance environment. The ASPS and its payload were subjected to disturbances resulting from crew motions in the Orbiter aft flight deck and VRCS thruster firings. Worst case pointing errors of 0.005 arc seconds were experienced under the disturbance environment simulated; this is well within the 0.08 arc seconds requirement specified by the payload.

  4. Inductively coupled wireless RF coil arrays.

    PubMed

    Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J

    2015-04-01

    As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking. PMID:25523607

  5. High angle of attack position sensing for the Southampton University magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Parker, David H.

    1987-01-01

    An all digital five channel position detection system is to be installed in the Southampton University Magnetic Suspension and Balance System (SUMSBS). The system is intended to monitor a much larger range of model pitch attitudes than has been possible hitherto, up to a maximum of a 90 degree angle of attack. It is based on the use of self-scanning photodiode arrays and illuminating laser light beams, together with purpose built processing electronics. The principles behind the design of the system are discussed, together with the results of testing one channel of the system which was used to control the axial position of a magnetically suspended model in SUMSBS. The removal of optically coupled heave position information from the axial position sensing channel is described.

  6. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    PubMed

    Wu, Wei; Fang, Qiang

    2011-01-01

    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline. PMID:22255221

  7. Development of the design concepts for a medium-scale wind tunnel magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Humphris, R. R.; Zapata, R. N.

    1982-01-01

    The magnitude of AC losses from a superconducting coil strongly indicates that the predicted scaling lawa are valid. The stainless steel bands around the test coil were the source of additional helium boiloff due to a transformer action and, hence, caused erroneously high AC loss measurements in the first run. However, removal of these bands for the second run produced data which are consistent with previous results on small scale multifilamentary superconducting coils.

  8. Method and apparatus for identifying conductive objects by monitoring the true resistive component of impedance change in a coil system caused by the object

    DOEpatents

    Gregory, William D.; Capots, Larry H.; George, James P.; Janik, Richard

    1981-01-01

    The type of conductor, its property, and if a metal, its type and cross-sectional area can be obtained from measurements made at different frequencies for the amount of unbalance created in a previously balanced stable coil detection system. The true resistive component is accurately measured and thus reflects only the voltage loss attributable to eddy currents caused by introduction of the test sample to the coil system. This voltage divided by corresponding applied frequency gives a curve which peaks at a frequency dependent upon type of conductor. For a metal this peak frequency is proportional to the samples resistivity divided by its cross-sectional area.

  9. Aneurysm of an Anomalous Systemic Artery Supplying the Normal Basal Segments of the Left Lower Lobe: Endovascular Treatment with the Amplatzer Vascular Plug II and Coils

    SciTech Connect

    Canyigit, Murat Gumus, Mehmet; Kilic, Evrim; Erol, Bekir; Cetin, Huseyin; Hasanoglu, Hatice Canan; Arslan, Halil

    2011-02-15

    An anomalous systemic artery originating from the descending thoracic aorta supplying the normal basal segments of the lower lobe of the left lung without sequestration is a rare congenital anomaly. The published surgical treatments include lobectomy, segmentectomy, anastomosis, and ligation. In addition, endovascular treatment with coils has been reported. A second-generation occluder, the Amplatzer Vascular Plug II (AVP II), has a central plug and two occlusion disks and a finer, more densely woven nitinol wire, thus enabling faster embolization. This published case is the first successful occlusion of an aneurysm of an anomalous systemic artery with the AVP II and fibered coils, with 10 months of follow-up.

  10. Description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1991-01-01

    A description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment is presented. The LGMSS provides five degrees of freedom control of a cylindrical suspended element which is levitated above a floor-mounted array of air core electromagnets. The uncontrolled degree of freedom is rotation about the long axis of the cylinder (roll). Levitation and control forces are produced on a permanent magnet core which is embedded in the cylinder. The cylinder also contains light emitting diodes (LEDs), assorted electrons, and a power supply. The LEDs provide active targets for an optical position measurement system which is being developed in-house at the Langley Research Center. The optical position measurement system will provide six degrees of freedom position information for the LGMSS control system.

  11. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems.

    PubMed

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2011-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 - 6.3% (w/w) dibasic potassium phosphate - 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities.

  12. System concept definition of the Grumman superconducting Electromagnetic Suspension (EMS) Maglev design

    NASA Technical Reports Server (NTRS)

    Proise, M.

    1994-01-01

    Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.

  13. System concept definition of the Grumman superconducting Electromagnetic Suspension (EMS) Maglev design

    NASA Astrophysics Data System (ADS)

    Proise, M.

    1994-05-01

    Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.

  14. Coil Welding Aid

    NASA Technical Reports Server (NTRS)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  15. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    NASA Astrophysics Data System (ADS)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  16. Development and optimization of an energy-regenerative suspension system under stochastic road excitation

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Hsieh, Chen-Yu; Golnaraghi, Farid; Moallem, Mehrdad

    2015-11-01

    In this paper a vehicle suspension system with energy harvesting capability is developed, and an analytical methodology for the optimal design of the system is proposed. The optimization technique provides design guidelines for determining the stiffness and damping coefficients aimed at the optimal performance in terms of ride comfort and energy regeneration. The corresponding performance metrics are selected as root-mean-square (RMS) of sprung mass acceleration and expectation of generated power. The actual road roughness is considered as the stochastic excitation defined by ISO 8608:1995 standard road profiles and used in deriving the optimization method. An electronic circuit is proposed to provide variable damping in the real-time based on the optimization rule. A test-bed is utilized and the experiments under different driving conditions are conducted to verify the effectiveness of the proposed method. The test results suggest that the analytical approach is credible in determining the optimality of system performance.

  17. Wind Tunnel Magnetic Suspension and Balance Systems With Transversely Magnetized Model Cores

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1998-01-01

    This paper discusses the possibility of using vertically magnetized model cores for wind tunnel Magnetic Suspension and Balance Systems (MSBS) in an effort to resolve the traditional "roll control" problem. A theoretical framework is laid out, based on previous work related to generic technology development efforts at NASA Langley Research Center. The impact of the new roll control scheme on traditional wind tunnel MSBS configurations is addressed, and the possibility of demonstrating the new scheme with an existing electromagnet assembly is explored. The specific system considered is the ex- Massachusetts Institute of Technology (MIT), ex-NASA, 6-inch MSBS currently in the process of recommissioning at Old Dominion University. This system has a sufficiently versatile electromagnet configuration such that straightforward "conversion" to vertically magnetized cores appears possible.

  18. An experimental study of the flow of LPG as refrigerant inside an adiabatic helical coiled capillary tube in vapour compression refrigeration system

    NASA Astrophysics Data System (ADS)

    Punia, Sanjeev Singh; Singh, Jagdev

    2015-11-01

    This paper presents an experimental investigation for the flow of liquefied petroleum gas (LPG) as a refrigerant inside an adiabatic helically coiled capillary tube in vapour compression refrigeration system. The effect of various geometric parameters and operating conditions like capillary tube inner diameter, length of capillary tube, coil diameter and different inlet subcoolings on the mass flow rate of LPG through the helical coiled capillary tube geometry has been investigated. It has been established that the coil diameter significantly influences the mass flow rate of LPG through the adiabatic helical capillary tube. It has been concluded that the effect of coiling of capillary tube reduces the mass flow rate by 5-12 % as compared to those of the straight capillary tube operating under similar conditions. The data obtained from the experiments are analyzed and a dimensionless correlation has been developed. The proposed correlation predicts that more than 90 % of experimental data which is in agreement with measured data in an error band of ±10 %.

  19. 48 CFR 209.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Suspension. 209.407... OF DEFENSE ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 209.407 Suspension....

  20. 48 CFR 209.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Suspension. 209.407... OF DEFENSE ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 209.407 Suspension....

  1. 48 CFR 3409.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Suspension. 3409.407... COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 3409.407 Suspension....

  2. Inverse neuro-fuzzy MR damper model and its application in vibration control of vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Zong, Lu-Hang; Gong, Xing-Long; Guo, Chao-Yang; Xuan, Shou-Hu

    2012-07-01

    In this paper, a magneto-rheological (MR) damper-based semi-active controller for vehicle suspension is developed. This system consists of a linear quadratic Gauss (LQG) controller as the system controller and an adaptive neuro-fuzzy inference system (ANFIS) inverse model as the damper controller. First, a modified Bouc-Wen model is proposed to characterise the forward dynamic characteristics of the MR damper based on the experimental data. Then, an inverse MR damper model is built using ANFIS technique to determine the input current so as to gain the desired damping force. Finally, a quarter-car suspension model together with the MR damper is set up, and a semi-active controller composed of the LQG controller and the ANFIS inverse model is designed. Simulation results demonstrate that the desired force can be accurately tracked using the ANFIS technique and the semi-active controller can achieve competitive performance as that of active suspension.

  3. An online monitoring system for atmospheric nitrous acid (HONO) based on stripping coil and ion chromatography.

    PubMed

    Cheng, Peng; Cheng, Yafang; Lu, Keding; Su, Hang; Yang, Qiang; Zou, Yikan; Zhao, Yanran; Dong, Huabing; Zeng, Limin; Zhang, Yuanhang

    2013-05-01

    A new instrument for measuring atmospheric nitrous acid (HONO) was developed, consisting of a double-wall glass stripping coil sampler coupled with ion chromatography (SC-IC). SC-IC is featured by small size (50 x 35 x 25 cm) and modular construction, including three independent parts: the sampling unit, the transfer and supporting unit, and the detection unit. High collection efficiency (> 99%) was achieved with 25 micromol/L Na2CO3 as absorption solution even in the presence of highly acidic compounds. This instrument has a detection limit of 8 pptv at 15 min time resolution, with a measurement uncertainty of 7%. Potential interferences from NO(x), NO2+SO2, NO2+VOCs, HONO+O3, HNO3, peroxyacetyl nitrite (PAN) and particle nitrite were quantified in laboratory studies and were found to be insignificant under typical atmospheric conditions. Within the framework of the 3C-STAR project, inter-comparison between the SC-IC and LOPAP (long path liquid absorption photometer) was conducted at a rural site in the Pearl River Delta. Good agreement was achieved between the two instruments over three weeks. Both instruments determined a clear diurnal profile of ambient HONO concentrations from 0.1 to 2.5 ppbv. However, deviations were found for low ambient HONO concentrations (i.e. < 0.3 ppbv), which cannot be explained by previous investigated interference species. To accurately determine the HONO budget under illuminated conditions, more intercomparison of HONO measurement techniques is still needed in future studies, especially at low HONO concentrations.

  4. A comparative study of flat coil and coil sensor for landslide detection

    NASA Astrophysics Data System (ADS)

    Sanjaya, Edi; Muslimin, Ahmad Novi; Djamal, Mitra; Suprijadi, Handayani, Gunawan; Ramli

    2016-03-01

    The landslide is one of the most costly catastrophic events in terms of human lives and infrastructure damage, thus an early warning monitoring for landslides becomes more and more important. Currently existing monitoring systems for early warning are available in terms of monolithic systems. This is a very cost-intensive way, considering installation as well as operational and personal expenses. We have been developing a landslide detection system based on flat coil and coil sensor. The flat coil element being developed is an inductive proximity sensor for detection mass of soil movement. The simple method of flat coil manufactures and low cost, is an attraction that is still inspired to develop flat coil sensors. Meanwhile, although it has a drawback in terms of their size, the coil sensor is still required in many fields due to their sensitivity and robustness. The simple method of coil manufacture and the materials are commonly available and low cost, is an attraction that is still inspired to develop induction coil sensors. A comparative study of alternative configuration of sensor based on flat coil elements and a coil in application to landslide detection has been discussed in this paper. The purpose of this comparison is to show the ideal conditions and the challenges for each sensor. Furthermore, a comparison between flat coil and coil sensor is presented.

  5. Flux-canceling electrodynamics maglev suspension. Part 2: Test results and scaling laws

    SciTech Connect

    Thompson, M.T.; Thornton, R.D.

    1999-05-01

    Electrodynamic suspension (EDS) are highly undamped and require some form of active control or a secondary suspension to achieve adequate ride quality. This paper reports on efforts to develop a version of EDS that uses controllable magnetic forces to eliminate the need for any secondary suspension. The magnetic forces act directly on the guideway and avoid the need to have unsprung weight and a secondary suspension. It is shown that the energy required to effect this control can be less than 1% of the energy stored in the suspension magnets, so a modest size controller can be used. The same controller can also provide life at very low speeds and thereby eliminate the need for a separate low-speed suspension system. A set of scaling laws is described which is used to size a full-scale high-temperature superconductor (HTSC)-based suspension magnet. The test fixture was also used to verify the use of zero velocity lift, where ac excitation is used in the suspension coils to achieve lift at low train velocity.

  6. Addition of trim coils to the Tandem Mirror Experiment Upgrade (TMX-U) magnet system to improve the magnetic field mapping

    SciTech Connect

    Wong, R.L.; Pedrotti, L.R.; Baldwin, D.E.; Hibbs, S.M.; Hill, D.N.; Hornady, R.H.; Jackson, M.C.

    1985-11-14

    The mapping of the magnetic flux bundle from the center cell to the Plasma Potential Control plates (PPC) on the end fan of the Tandem Mirror Experiment Upgrade (TMX-U), was improved by the addition of trim coils (12,000 amp-turns) on each side of each end fan next to the pump beam magnetic shields. The coils' axes are oriented perpendicular to the machine centerline. These coils made the necessary corrections to the field-line mapping, while keeping the field in the nearby pump beam magnetic shield below the saturation threshold. This paper briefly describes the problem, discusses the design as it evolved, and presents the results of the field testing. The disturbance to the field mapping and the appropriate corrections were determined using the code GFUN (a three dimensional electromagnetic field analysis code that includes the presence of permeable materials). The racetrack-shaped coils have dimensions of 1.5 feet by 3 feet and are powered by a renovated 600 kW Bart-Messing power supply controlled by the machine's magnet control system. The magnets were fabricated from polyimide-coated magnet wire. They are rated to 200/sup 0/C, although in pulsed operation they rise only a few degrees centigrade. The coils are placed outside of the vacuum system, and thus are considerably simpler than the other machine magnets. The restraints are designed to withstand a force of 1000 pounds per coil and a turning moment of 1000 foot pounds. The calculated field strengths were verified on the machine by inserting a Hall probe along the axis. The perturbations to the neutral beam magnetic shields were also measured. A brief description of the improvement in the machine performance is also included.

  7. The modeling and design of the Annular Suspension and Pointing System /ASPS/. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Lin, W. C. W.

    1979-01-01

    The Annular Suspension and Pointing System (ASPS) is a payload auxiliary pointing device of the Space Shuttle. The ASPS is comprised of two major subassemblies, a vernier and a coarse pointing subsystem. The three functions provided by the ASPS are related to the pointing of the payload, centering the payload in the magnetic actuator assembly, and tracking the payload mounting plate and shuttle motions by the coarse gimbals. The equations of motion of a simplified planar model of the ASPS are derived. Attention is given to a state diagram of the dynamics of the ASPS with position-plus-rate controller, the nonlinear spring characteristic for the wire-cable torque of the ASPS, the design of the analog ASPS through decoupling and pole placement, and the time response of different components of the continuous control system.

  8. Progress of magnetic suspension and balance systems for wind tunnels in the USSR

    NASA Technical Reports Server (NTRS)

    Kuzin, A. V.; Vyshkov, Y. D.; Shapovalov, G. K.

    1992-01-01

    Magnetic Suspension and Balance Systems (MSBS) for wind tunnels are being developed in order to solve the principal problems of aerodynamics which cannot be solved by conventional means: (1) measurements of aerodynamic loads acting on the aircraft models without the effects of mechanical supporting devices; and (2) the study of base pressure. This paper traces the progress of MSBS for wind tunnels in the Commonwealth of Independent States (CIS). The paper describes electromagnetic configuration, position sensing, and control and calibration systems of two wind tunnel MSBS existing in the CIS. The features of high-angle-of-attack control and roll control are discussed. The results of preliminary experiments on high-angle-of-attack and roll controls, digital control, and aerodynamic testing are also presented.

  9. Some aspects of wind tunnel magnetic suspension systems with special application at large physical scales

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1983-01-01

    Wind tunnel magnetic suspension and balance systems (MSBSs) have so far failed to find application at the large physical scales necessary for the majority of aerodynamic testing. Three areas of technology relevant to such application are investigated. Two variants of the Spanwise Magnet roll torque generation scheme are studied. Spanwise Permanent Magnets are shown to be practical and are experimentally demonstrated. Extensive computations of the performance of the Spanwise Iron Magnet scheme indicate powerful capability, limited principally be electromagnet technology. Aerodynamic testing at extreme attitudes is shown to be practical in relatively conventional MSBSs. Preliminary operation of the MSBS over a wide range of angles of attack is demonstrated. The impact of a requirement for highly reliable operation on the overall architecture of Large MSBSs is studied and it is concluded that system cost and complexity need not be seriously increased.

  10. Effects of temperature on performance of a compressible magnetorheological fluid damper-liquid spring suspension system

    NASA Astrophysics Data System (ADS)

    McKee, Michael; Wang, Xiaojie; Gordaninejad, Faramarz

    2011-03-01

    A compact compressible magnetorheological (MR) fluid damper-liquid spring (CMRFD-LS) suspension system is designed, developed and tested. The performances of the CMRFD-LS are investigated under room temperature. However, MR fluids are temperature dependent. The effect of temperature is observed in both the viscosity and the compressibility of the MR fluid. This study is to experimentally determine how temperature affects the performance of a CMRFD-LS device. A test setup is developed to measure the stiffness and energy dissipated by the system under various frequency loadings, magnetic fields and temperatures. The experimental results demonstrate that both the stiffness and the energy dissipated by the CMRFD-LS are inversely related to the temperature of the MR fluid. These changes in damper characteristics show that the compressibility of MR fluid is proportional to the fluid temperature, while the viscosity of the MR fluid is inversely related to the fluid temperature.

  11. Robust fixed-order dynamic output feedback controller design for nonlinear uncertain suspension system

    NASA Astrophysics Data System (ADS)

    Badri, Pouya; Amini, Amir; Sojoodi, Mahdi

    2016-12-01

    This paper deals with designing a robust fixed-order non-fragile dynamic output feedback controller for active suspension system of a quarter-car, by means of convex optimization and linear matrix inequalities (LMIs). Our purpose is to design a low-order controller that keeps the desired design specifications besides the simplicity of the implementation. The proposed controller is capable of asymptotically stabilizing the closed-loop system and developing H∞ control, despite model uncertainties and nonlinear dynamics of the quarter-car as well as the norm bounded perturbations of controller parameters. Furthermore, controller parameters are prevented from taking very large and undesirable amounts through appropriate LMI constraints. Finally, a numerical example is presented to show the effectiveness of the proposed method by comparing it with similar works.

  12. Structural observation of long-span suspension bridges for safety assessment: implementation of an optical displacement measurement system

    NASA Astrophysics Data System (ADS)

    Lages Martins, L.; Rebordão, J. M.; Silva Ribeiro, A.

    2015-02-01

    This paper addresses the implementation of an optical displacement measurement system in the observation scenario of a long-span suspension bridge and its contribution for structural safety assessment. The metrological background required for quality assurance of the measurements is described, namely, the system's intrinsic parameterization and integration in the SI dimensional traceability chain by calibration, including its measurement uncertainty assessment.

  13. 75 FR 27847 - Broadengate Systems, Inc., (n/k/a Otter Lake Resources, Inc.); Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... COMMISSION Broadengate Systems, Inc., (n/k/a Otter Lake Resources, Inc.); Order of Suspension of Trading May... accurate information concerning the securities of Broadengate Systems, Inc. (n/k/a Otter Lake Resources... trading in the securities of the above-listed company. Therefore, it is ordered, pursuant to Section...

  14. Pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer.

    PubMed

    Yoshimura, Toshio; Takagi, Atsushi

    2004-09-01

    This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and functions by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.

  15. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  16. A Non-perturbing Probe of Coiled Coil Formation Based on Electron Transfer Mediated Fluorescence Quenching.

    PubMed

    Watson, Matthew D; Peran, Ivan; Raleigh, Daniel P

    2016-07-01

    Coiled coils are abundant in nature, occurring in ∼3% of proteins across sequenced genomes, and are found in proteins ranging from transcription factors to structural proteins. The motif continues to be an important model system for understanding protein-protein interactions and is finding increased use in bioinspired materials and synthetic biology. Knowledge of the thermodynamics of self-assembly, particularly the dissociation constant KD, is essential for the application of designed coiled coils and for understanding the in vivo specificity of natural coiled coils. Standard methods for measuring KD typically rely on concentration dependent circular dichroism (CD). Fluorescence methods are an attractive alternative; however Trp is rarely found in an interior position of a coiled coil, and appending unnatural fluorophores can perturb the system. We demonstrate a simple, non-perturbing method to monitor coiled coil formation using p-cyanophenylalanine (FCN) and selenomethionine (MSe), the Se analogue of Met. FCN fluorescence can be selectively excited and is effectively quenched by electron transfer with MSe. Both FCN and MSe represent minimally perturbing substitutions in coiled coils. MSe quenching of FCN fluorescence is shown to offer a non-perturbing method for following coiled coil formation and for accurately determining dissociation constants. The method is validated using a designed heterodimeric coiled coil. The KD deduced by fluorescence monitored titration is in excellent agreement with the value deduced from concentration dependent CD measurements to within the uncertainty of the measurement. However, the fluorescence approach requires less protein, is less time-consuming, can be applied to lower concentrations and could be applied to high throughput screens. PMID:27258904

  17. Chain Dynamics in Magnetorheological Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    Magnetorheological (MR) suspensions are composed of colloidal particles which acquire dipole moments when subjected to an external magnetic field. At sufficient field strengths and concentrations, the dipolar particles rapidly aggregate to form long chains. Subsequent lateral cross-linking of the dipolar chains is responsible for a rapid liquid-to-solid-like rheological transition. The unique, magnetically-activated rheological properties of MR suspensions make them ideal for interfacing mechanical systems to electronic controls. Additionally, the ability to experimentally probe colloidal suspensions interacting through tunable anisotropic potentials is of fundamental interest. Our current experimental work has focused on understanding the fluctuations of dipolar chains. It has been proposed by Halsey and Toor (HT) that the strong Landau-Peierls thermal fluctuations of dipolar chains could be responsible for long-range attractions between chains. Such interactions will govern the long-time relaxation of MR suspensions. We have synthesized monodisperse neutrally buoyant MR suspensions by density matching stabilized ferrofluid emulsion droplets with D2O. This allows us to probe the dynamics of the dipolar chains using light scattering without gravitational, interfacial, and polydispersity effects to resolve the short-wavelength dynamics of the dipolar chains. We used diffusing wave spectroscopy to measure these dynamics. The particle displacements at short times that show an independence to the field strength, but at long times exhibit a constrained, sub-diffusive motion that slows as the dipole strength is increased. The experiments are in good qualitative agreement with Brownian dynamics simulations of dipolar chains. Although there have been several important and detailed studies of the structure and interactions in MR suspensions, there has not been conclusive evidence that supports or contradicts the HT model prediction that long-range interactions exist between

  18. Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance.

    PubMed

    van Loon, Leendert C; Bakker, Peter A H M; van der Heijdt, Walter H W; Wendehenne, David; Pugin, Alain

    2008-12-01

    Colonization of roots by selected strains of fluorescent Pseudomonas spp. can trigger induced systemic resistance (ISR) against foliar pathogens in a plant species-specific manner. It has been suggested that early responses in cell suspension cultures in response to rhizobacterial elicitors, such as generation of active oxygen species (AOS) and extracellular medium alkalinization (MA), are linked to the development of ISR in whole plants. Perception of flagellin was demonstrated to elicit ISR in Arabidopsis, and bacterial lipopolysaccharides (LPS) have been shown to elicit several defense responses and to act as bacterial determinants of ISR in various plant species. In the present study, the LPS-containing cell walls, the pyoverdine siderophores, and the flagella of Pseudomonas putida WCS358, P. fluorescens WCS374, and P. fluorescens WCS417, which are all known to act as elicitors of ISR in selected plant species, were tested for their effects on the production of AOS, MA, elevation of cytoplasmic Ca(2+) ([Ca(2+)](cyt)), and defense-related gene expression in tobacco suspension cells. The LPS of all three strains, the siderophore of WCS374, and the flagella of WCS358 induced a single, transient, early burst of AOS, whereas the siderophores of WCS358 and WCS417 and the flagella of WCS374 and WCS417 did not. None of the compounds caused cell death. Once stimulated by the active compounds, the cells became refractory to further stimulation by any of the active elicitors, but not to the elicitor cryptogein from the oomycete Phytophthora cryptogea, indicating that signaling upon perception of the different rhizobacterial compounds rapidly converges into a common response pathway. Of all compounds tested, only the siderophores of WCS358 and WCS417 did not induce MA; the flagella of WCS374 and WCS417, although not active as elicitors of AOS, did induce MA. These results were corroborated by using preparations from relevant bacterial mutants. The active rhizobacterial

  19. Stability of an electrodynamic suspension

    NASA Astrophysics Data System (ADS)

    Filatov, Alexei V.; Maslen, Eric H.; Gillies, George T.

    2002-09-01

    Previously, the authors have described a method of dynamically stabilized noncontact electromagnetic suspension of rotating bodies. The method makes use of the dynamic interaction between stationary and rotating sets of conductors and permanent magnets. The validity of this method has been demonstrated by building and testing a prototype in which noncontact suspension of a 3.2 kg rotor was achieved when it rotates at speeds above 18 Hz. A stability condition for that method of suspension was obtained with certain simplifying assumptions. One of these assumptions was that the inductive component of the stationary conductors is negligible. Here, we present modified stability conditions which take the inductance of the stationary conductors into consideration. One of the predicted effects is that nonzero inductance may cause significant reduction of the minimum stable levitation speed. Consequently, careful choice of the electrical properties of the stationary coils may significantly enhance the performance of the suspension.

  20. A large motion zero-gravity suspension system for experimental simulation of orbital construction and deployment. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Straube, Timothy Milton

    1993-01-01

    The design and implementation of a vertical degree of freedom suspension system is described which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate orbital construction events such as docking, multiple component assembly, or structural deployment. A unique aspect of this device is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing break-away friction by a factor of twenty over the passive system alone. The thesis describes the development of the suspension hardware and the control algorithm. Experiments were performed to verify the suspensions system's effectiveness in providing a gravity off-load and simulating the motion of a structure in orbit. Additionally, a three dimensional system concept is presented as an extension of the one dimensional suspension system which was implemented.

  1. Multi-objective design of vehicle suspension systems via a local diffusion genetic algorithm for disjoint Pareto frontiers

    NASA Astrophysics Data System (ADS)

    Aly, Mohamed F.; Nassef, Ashraf O.; Hamza, Karim

    2015-05-01

    This article presents a multi-objective design optimization study of a vehicle suspension system with passive variable stiffness and active damping. Design of suspension systems is particularly challenging when the effective mass of the vehicle is subject to considerable variation during service. Perfectly maintaining the suspension performance under the variable load typically requires a controlled actuator to emulate variable stiffness. This is typically done through a hydraulic or pneumatic system, which can be too costly for small/medium pick-up trucks. The system in this article employs two springs with an offset to the second spring so that it engages during large deformation only, thereby providing passive variable stiffness without expensive hydraulics. The system damping is assumed to be controlled via variable viscosity magnetizable fluid, which can be implemented in a compact, low-power set-up. Performance indices from the literature are evaluated at minimum and maximum weight, and regarded as objectives in a multi-objective problem. As the individual objectives are prone to having local optima, the multi-objective problem is prone to having a disjointed Pareto-space. To deal with this issue, a modification is proposed to a multi-objective genetic algorithm. The algorithm performance is investigated via analytical test functions as well as the design case of the suspension system.

  2. Further investigation into calibration techniques for a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Eskins, J.

    1986-01-01

    Calibrations performed on three different magnetic cores for wind tunnel models suspended in the Southampton University Magnetic Suspension and Balance System (SUMSBS) are detailed. The first core investigated was the Southampton University pilot Superconducting Solenoid model, first flown in July 1983. Static calibrations of lift force, drag force and pitching moment, together with lift force and pitching moment calibrations determined by the dynamic method are detailed in this report. Other types of core investigated in a similar manner were conventional permanent magnets, Alnico and samarium-cobalt. All static calibrations gave a linear dependence of force on electromagnet current as expected. Dynamic calibrations are faster to perform but are proving to be not as easily analyzed as static calibrations. There are still some effects to be explained but dynamic lift calibration results were obtained agreeing to within 2 percent of the static calibration value.

  3. Simulation of oxygen saturation of hemoglobin solution, RBC suspension and hemosome by a neural network system.

    PubMed

    Kan, P; Chen, W K; Lee, C J

    1996-03-01

    Hemoglobin-based artificial blood substitutes as oxygen carrier is advantageous over current plasma expander. In this study, oxygen saturation of hemoglobin solution, red blood cell suspension and artificial blood substitute under various conditions were measured by yeast-consuming-oxygen experiments instead of spectrophotometer. The empirical results were assigned into training feedforward back-propagation neural network system in order to simulate the oxygen saturation model modulated by those factors such as pH, [Cl-], [2,3-DPG], pO2 and pCO2. Consequently, this neural network is able to simulate accurately the oxygen saturation of Hb solution. The prediction of hemosome is not agreed well possible because of the resistance of transport of oxygen. However, the results showed neural net can offer a simple and convenient way in comparison with the conventional methods, especially in dealing with complex and ambiguous problem.

  4. Drag measurements on a modified prolate spheroid using a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1989-01-01

    Low-speed wind tunnel drag force measurements were taken on a modified prolate spheroid free of support interference. This body was tested at zero incidence in the NASA Langley 13 inch Magnetic Suspension and Balance System. This shape was one of two bodies tested to determine the drag force measuring capabilities of the 13 inch MSBS. In addition, support interference on this shape at zero incidence was quantified by using a dummy sting. The drag force calibrations and wind-on repeatability data make it possible to assess the drag force measuring capabilities of the 13 inch MSBS. Comparisons with and without the sting showed differences in the drag coefficients with the dummy sting case resulting in lower drag coefficients.

  5. Suspension system for a wheel rolling on a flat track. [bearings for directional antennas

    NASA Technical Reports Server (NTRS)

    Mcginness, H. D. (Inventor)

    1981-01-01

    An improved suspension system for an uncrowned wheel rolling on a flat track is presented. It is characterized by a wheel frame assembly including a wheel frame and at least one uncrowned wheel connected in supporting relation with the frame. It is adapted to be seated in rolling engagement with a flat track, a load supporting bed, and a plurality of flexural struts interconnecting the bed in supported relation with the frame. Each of said struts is disposed in a plane passing through the center of the uncrowned wheel surface along a line substantially bisecting the line of contact established between the wheel surface and the flat surface of the truck and characterized by a modulus of elasticity sufficient for maintaining the axis of rotation for the wheel in substantial parallelism with the line of contact established between the surfaces of the wheel and track.

  6. Techniques for extreme attitude suspension of a wind tunnel model in a magnetic suspension and balance system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Parker, David Huw

    1989-01-01

    Although small scale magnetic suspension and balance systems (MSBSs) for wind tunnel use have been in existence for many years, they have not found general application in the production testing of flight vehicles. One reason for this is thought to lie in the relatively limited range of attitudes over which a wind tunnel model may be suspended. Modifications to a small MSBS to permit the suspension and control of axisymmetric models over angles of attack from less than zero to over ninety degrees are reported. Previous work has shown that existing arrangement of ten electromagnets was unable to generate one of the force components needed for control at extreme attitudes. Examination of possible solutions resulted in a simple alteration to rectify this deficiency. To generate the feedback signals to control the suspended model, an optical position sensing system using collimated laser beams and photodiode arrays was installed and tested. An analytical basis was developed for distributing the demands for force and moment needed for model stabilization amonge the electromagnets over the full attitude range. This was implemented by an MSBS control program able to continually adjust the distribution for the instantaneous incidence in accordance with prescheduled data. Results presented demonstrate rotations of models from zero to ninety degrees at rates up to ninety degrees per second, with pitching rates rising to several hundred degrees per second in response to step-change demands. A study of a design for a large MSBS suggests that such a system could be given the capability to control a model in six degrees of freedom over an unlimited angle of attack range.

  7. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chang; Huang, An-Chyau

    2005-04-01

    An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.

  8. Antiorthostatic suspension as a model for the effects of spaceflight on the immune system

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Mastro, A. M.; Sonnenfeld, G.; Berry, W. D.

    1993-01-01

    We describe the use and appropriateness of antiorthostatic suspension in immunological investigations. This manuscript describes the model and discusses how well data obtained by using the model correlate with spaceflight data. This review concludes with some suggestions for future experiments using antiorthostatic suspension.

  9. 41 CFR 105-68.110 - What is the purpose of the nonprocurement debarment and suspension system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...? (a) To protect the public interest, the Federal Government ensures the integrity of Federal programs... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the purpose of the nonprocurement debarment and suspension system? 105-68.110 Section 105-68.110 Public Contracts...

  10. 78 FR 27468 - Order of Suspension of Trading in the Matter of CoreCare Systems, Inc., Forticell Bioscience, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Order of Suspension of Trading in the Matter of CoreCare Systems, Inc., Forticell Bioscience, Inc... Commission that there is a lack of current and accurate information concerning the securities of...

  11. 77 FR 40107 - Order of Suspension of Trading; In the Matter of A-Power Energy Generation Systems, Ltd.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Order of Suspension of Trading; In the Matter of A-Power Energy Generation Systems, Ltd. July 3, 2012. It appears to the Securities and Exchange Commission (``Commission'') that there is a lack of current and accurate information...

  12. 45 CFR 307.40 - Suspension of approval of advance planning documents for computerized support enforcement systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Suspension of approval of advance planning documents for computerized support enforcement systems. 307.40 Section 307.40 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT ENFORCEMENT...

  13. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil’s microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape. PMID:25892746

  14. Comparing the accuracy of video-oculography and the scleral search coil system in human eye movement analysis.

    PubMed

    Imai, Takao; Sekine, Kazunori; Hattori, Kousuke; Takeda, Noriaki; Koizuka, Izumi; Nakamae, Koji; Miura, Katsuyoshi; Fujioka, Hiromu; Kubo, Takeshi

    2005-03-01

    The measurement of eye movements in three dimensions is an important tool to investigate the human vestibular and oculomotor system. The primary methods for three dimensional eye movement measurement are the scleral search coil system (SSCS) and video-oculography (VOG). In the present study, we compare the accuracy of VOG with that of SSCS using an artificial eye. We then analyzed the Y (pitch) and Z (yaw) component of human eye movements during saccades, smooth pursuit and optokinetic nystagmus, and the X (roll) component of human eye movement during the torsional vestibulo-ocular reflex induced by rotation in normal subjects, using simultaneous VOG and SSCS measures. The coefficients of the linear relationship between the angle of a simulated eyeball and the angle measured by both VOG and SSCS was almost unity with y-intercepts close to zero for torsional (X), vertical (Y) and horizontal (Z) movements, indicating that the in vitro accuracy of VOG was similar to that of SSCS. The average difference between VOG and SSCS was 0.56 degrees , 0.78 degrees and 0.18 degrees for the X, Y and Z components of human eye movements, respectively. Both the in vitro and in vivo comparisons demonstrate that VOG has accuracy comparable to SSCS, and is a reliable method for measurement of three dimensions (3D) human eye movements.

  15. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  16. A study on geometry effect of transmission coil for micro size magnetic induction coil

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun

    2016-05-01

    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  17. [Efficacy of Stent-Assisted Coil Embolization for a Dissecting Aneurysm of the Cervical Internal Carotid Artery Caused by a Systemic Vascular Disease: A Case Report].

    PubMed

    Takamiya, Soichiro; Osanai, Toshiya; Ushikoshi, Satoshi; Kurisu, Kota; Shimoda, Yusuke; Ito, Yasuhiro; Ishi, Yukitomo; Hokari, Masaaki; Nakayama, Naoki; Kazumata, Ken; Abumiya, Takeo; Shichinohe, Hideo; Houkin, Kiyohiro

    2016-01-01

    Systemic vascular diseases such as fibromuscular dysplasia, Ehlers-Danlos syndrome, Marfan syndrome, and Behçet's disease are known to cause spontaneous dissecting aneurysms of the cervical internal carotid artery. These diseases are generally associated with vascular fragility; therefore, invasive treatments are avoided in many cases of dissecting aneurysms, and a conservative approach is used for the primary disease. Surgical or intravascular treatment may be chosen when aneurysms are progressive or are associated with a high risk of hemorrhage; however, there is no consensus on which treatment is better. We report a case of a dissecting aneurysm of the cervical internal carotid artery in a patient with suspected Behçet's disease, which was treated using stent-assisted coil embolization. A man in his 40's, with suspected Behçet's disease, presented with an enlarged dissecting aneurysm of the right cervical internal carotid artery. The lesion was present for approximately 10 years. We performed stent-assisted coil embolization for the lesion. Post-surgery, no aneurysms were detected with carotid artery echography. Our case report suggests that stent-assisted coil embolization is a promising treatment for dissecting aneurysms of the cervical internal carotid artery. In addition, the procedure demonstrates the utility of carotid artery echograms for examining recanalization after stent-assisted coil embolization. PMID:26771095

  18. Integration of Mirror Design with Suspension System using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William; Bevan Ryan M.; Stahl, Philip

    2013-01-01

    Advances in mirror fabrication is making very large space based telescopes possible. In the many applications, only monolithic mirrors meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass. Again, available and planned payload shroud size limits near term designs to 4 meter class mirror. Practical 8 meter and beyond designs could encourage planners to include larger shrouds if it can be proven that such mirrors can be manufactured. These two factors lower mass and larger mirrors, presents the classic optimization problem. There is a practical upper limit to how large a mirror can be supported by a purely kinematic mount system and be launched. This paper shows how the design of the suspension system and mirror blank needs to be designed simultaneously. We will also explore the concepts of auxiliary support systems, which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass. The AMTD project is developing and maturing the processes for future replacements for HUBBLE, creating the design tools, validating the methods and techniques necessary to manufacture, test and launch extremely large optical missions. This paper will use the AMTD 4 meter "design point" as an illustration of the typical use of the modeler in generating the multiple models of mirror and suspension systems used during the conceptual design phase of most projects. The influence of Hexapod geometry, mirror depth, cell size and construction techniques (Exelsis Deep Core Low Temperature Fusion (c) versus Corning Frit Bonded (c) versus Schott Pocket Milled Zerodur (c) in this particular study) are being evaluated. Due to space and time consideration we will only be able to present snippets of the study in this paper. The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low

  19. Integration of mirror design with suspension system using NASA's new mirror modeling software

    NASA Astrophysics Data System (ADS)

    Arnold, William R.; Bevan, Ryan M.; Stahl, H. Philip

    2013-09-01

    Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.

  20. Integration of Mirror Design with Suspension System Using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.; Bevan, Ryan M.; Stahl, H. Philip

    2013-01-01

    Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.

  1. Integration of Mirror Design with Suspension System using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold,William R., Sr.; Bevan, Ryan M.; Stahl, Philip

    2013-01-01

    Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.

  2. NCSX Trim Coil Design

    SciTech Connect

    M. Kalish, A. Brooks, J. Rushinski, R. Upcavage

    2009-05-29

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure.

  3. Tail suspension increases energy expenditure independently of the melanocortin system in mice.

    PubMed

    Lew, Pei San; Wong, Davie; Yamaguchi, Takafumi; Leckstrom, Arnold; Schwartz, Jacquie; Dodd, Janice G; Mizuno, Tooru M

    2009-10-01

    Space travelers experience anorexia and body weight loss in a microgravity environment, and microgravity-like situations cause changes in hypothalamic activity. Hypothalamic melanocortins play a critical role in the regulation of metabolism. Therefore, we hypothesized that microgravity affects metabolism through alterations in specific hypothalamic signaling pathways, including melanocortin signaling. To address this hypothesis, the microgravity-like situation was produced by an antiorthostatic tail suspension in wild-type and agouti mice, and the effect of tail suspension on energy expenditure and hypothalamic gene expression was examined. Energy expenditure was measured using indirect calorimetry before and during the tail suspension protocol. Hypothalamic tissues were collected for gene expression analysis at the end of the 3 h tail suspension period. Tail suspension significantly increased oxygen consumption, carbon dioxide production, and heat production in wild-type mice. Tail suspension-induced increases in energy expenditure were not attenuated in agouti mice. Although tail suspension did not alter hypothalamic proopiomelanocortin (POMC) and agouti-related protein (AGRP) mRNA levels, it significantly increased hypothalamic interleukin 6 (Il-6) mRNA levels. These data are consistent with the hypothesis that microgravity increases energy expenditure and suggest that these effects are mediated through hypothalamic signaling pathways that are independent of melanocortins, but possibly used by Il-6.

  4. Tail suspension increases energy expenditure independently of the melanocortin system in mice.

    PubMed

    Lew, Pei San; Wong, Davie; Yamaguchi, Takafumi; Leckstrom, Arnold; Schwartz, Jacquie; Dodd, Janice G; Mizuno, Tooru M

    2009-10-01

    Space travelers experience anorexia and body weight loss in a microgravity environment, and microgravity-like situations cause changes in hypothalamic activity. Hypothalamic melanocortins play a critical role in the regulation of metabolism. Therefore, we hypothesized that microgravity affects metabolism through alterations in specific hypothalamic signaling pathways, including melanocortin signaling. To address this hypothesis, the microgravity-like situation was produced by an antiorthostatic tail suspension in wild-type and agouti mice, and the effect of tail suspension on energy expenditure and hypothalamic gene expression was examined. Energy expenditure was measured using indirect calorimetry before and during the tail suspension protocol. Hypothalamic tissues were collected for gene expression analysis at the end of the 3 h tail suspension period. Tail suspension significantly increased oxygen consumption, carbon dioxide production, and heat production in wild-type mice. Tail suspension-induced increases in energy expenditure were not attenuated in agouti mice. Although tail suspension did not alter hypothalamic proopiomelanocortin (POMC) and agouti-related protein (AGRP) mRNA levels, it significantly increased hypothalamic interleukin 6 (Il-6) mRNA levels. These data are consistent with the hypothesis that microgravity increases energy expenditure and suggest that these effects are mediated through hypothalamic signaling pathways that are independent of melanocortins, but possibly used by Il-6. PMID:20052010

  5. Multibody dynamics modelling and system identification of a quarter-car test rig with McPherson strut suspension

    NASA Astrophysics Data System (ADS)

    Sandu, Corina; Andersen, Erik R.; Southward, Steve

    2011-02-01

    In this paper, we develop a multibody dynamics model of a quarter-car test-rig equipped with a McPherson strut suspension and we apply a system identification technique on it. Constrained equations of motion in the Lagrange multiplier form are derived and employed to characterise the dynamic behaviour of the test rig modelled once as a linear system and once as a non-linear system. The system of differential algebraic equations is integrated using a Hilber-Hughes-Taylor integrator. The responses of both models (linear and non-linear) to a given displacement input are obtained and compared with the experimental response recorded using the physical quarter-car test rig equipped with a McPherson strut suspension. The system identification is performed for control purposes. The results, as well as the performance and area of applicability of the test rig models derived, are discussed.

  6. Electromagnetic pump stator coil

    DOEpatents

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  7. Electromagnetic pump stator coil

    DOEpatents

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  8. Predicting coiled coils by use of pairwise residue correlations.

    PubMed Central

    Berger, B; Wilson, D B; Wolf, E; Tonchev, T; Milla, M; Kim, P S

    1995-01-01

    A method is presented that predicts coiled-coil domains in protein sequences by using pairwise residue correlations obtained from a (two-stranded) coiled-coil database of 58,217 amino acid residues. A program called PAIRCOIL implements this method and is significantly better than existing methods at distinguishing coiled coils from alpha-helices that are not coiled coils. The database of pairwise residue correlations suggests structural features that stabilize or destabilize coiled coils. Images Fig. 1 Fig. 2 PMID:7667278

  9. The effects of mountain bike suspension systems on energy expenditure, physical exertion, and time trial performance during mountain bicycling.

    PubMed

    Seifert, J G; Luetkemeier, M J; Spencer, M K; Miller, D; Burke, E R

    1997-04-01

    The purpose of this 3-Phase study was to investigate the effects of suspension systems on muscular stress, energy expenditure, and time trial performance during mountain biking. Three suspension systems were tested, a rigid frame bike (RIG), a suspension fork bike (FS), and a front and rear suspension bike (FSR). Phase I and II consisted of cycling at 16.1 km.hr-1 over a flat, bumpy course for 63 min. Phase III consisted of ascending (ATT), descending (DTT), and cross country (XTT) time trials. Phase I assessed muscular stress by 24 h change in CK, Phase II assessed HR, VO2, VE, and Phase III assessed performance responses to the suspension systems. The 24 hr change in CK was greater for RIG than FS and FSR (+91.9 +/- 79.5 IU vs +8.6 +/- 17.5 IU and +9.7 +/- 21.8 IU). Mean HR was greater for RIG than FS and FSR (153.7 +/- 15.6 bpm vs 146.7 +/- 15.4 bpm, 146.3 +/- 16.2 bpm). Subjects rode significantly faster on FS than FSR and RIG during the XTT (30.9 +/- 2.0 min vs 32.3 +/- 3.6 min, 32.3 +/- 3.2 min). Subjects RPE was lower for FSR than FS and RIG, however, no differences were observed for VO2, VE, ATT, or DTT. Cyclists incurred less muscular stress, indicated by CK and HR, when riding the FS and FSR. Although the FS and FSR weigh from 0.7 to 2.2 kg more than RIG, no differences were observed for energy expenditure and that riding the FS in a XTT resulted in a faster finishing time than FSR or RIG.

  10. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    SciTech Connect

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  11. Dimensional field testing of an optical measurement system in a long-span suspension bridge

    NASA Astrophysics Data System (ADS)

    Lages Martins, Luis F.; Rebordão, José Manuel; Ribeiro, Álvaro S.

    2015-05-01

    The dimensional field testing activity described in this paper allowed measuring the vertical and transverse dynamic displacement related to the main span (with a dimension equal to 1012 meters) central section of a long-span suspension bridge - the 25th of April Bridge (P25A), in Lisbon (Portugal) - using an optical system composed by high focal length lens (600 mm), digital image sensor and active infrared LED targets. Maximum values of 0,53 m and 0,29 m were obtained for the vertical and transverse displacements without rail traffic on the P25A. Passenger train circulation on the bridge's lower rail deck increased the vertical displacement up to 1,69 m. The applied measuring system was subjected to an in situ calibration procedure (SI traceable), showing maximum deviations close to 1,3 mm with an expanded measurement uncertainty (in a 95% confidence interval) around 3,0 mm, in a favorable observation scenario (winter season with low vertical thermal gradient in the atmosphere). Field studies of optical phenomena such as atmospheric refraction and beam wandering effect by turbulence were also performed, aiming the validation of developed refraction correction models and the quantification of targets image coordinates dispersions (0,13 pixel in winter season a 0,56 pixel during summer season).

  12. Managing Coil Epoxy Vacuum Impregnation Systems at the Manufacturing Floor Level To Achieve Ultimate Properties in State-of-the-Art Magnet Assemblies

    SciTech Connect

    J.G. Hubrig; G.H. Biallas

    2005-05-01

    Liquid epoxy resin impregnation systems remain a state-of-the-art polymer material for vacuum and vacuum/pressure impregnation applications in the manufacture of both advanced and conventional coil winding configurations. Epoxy resins inherent latitude in processing parameters accounts for their continued popularity in engineering applications, but also for the tendency to overlook or misinterpret the requisite processing parameters on the manufacturing floor. Resin system impregnation must be managed in detail in order to achieve device life cycle reliability. This closer look reveals how manufacturing floor level management of material acceptance, handling and storage, pre- and post- impregnation processing and cure can be built into a manufacturing plan to increase manufacturing yield, lower unit cost and ensure optimum life cycle performance of the coil.

  13. Detail of heating coil for Machine Shop (Bldg. 163) ventilation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of heating coil for Machine Shop (Bldg. 163) ventilation system Note portion of fan visible behind coil - Atchison, Topeka, Santa Fe Railroad, Albuquerque Shops, Machine Shop, 908 Second Street, Southwest, Albuquerque, Bernalillo County, NM

  14. Ignition control system for internal combustion engines with simplified crankshaft sensing and improved coil charging

    SciTech Connect

    Wilens, D.L.; Long, A.

    1988-11-29

    This patent describes an electronic ignition system for controlling as a function of at least one selected engine parameter the ignition instant of an internal combustion engine having at least one cylinder, the cylinder having a piston and a rotatable crankshaft coupled to the piston to be rotatably driven as combustions occur within the cylinder at the ignition instants, the crankshaft having at least one reference position defining a positional relationship of the crankshaft to the cylinder. The electronic ignition system comprising: (a) a rotor affixed to rotate with the crankshaft and having a plurality of reference indicia thereon positionally related with respect to the reference position. The reference indicia being disposed at points equally spaced by a predetermined arc of crankshaft rotation from each other about the rotor, at least one of the points having a missing indicium and disposed in a predetermined relation to the reference position of the crankshaft; (b) a single sensor disposed at a point fixed in relation to the rotation of the crankshaft for providing a train of signals, each signal occurring in time when each of the plurality of reference indicia rotates past the fixed point (c) missing indicium means responsive to each sensor signal of the train for measuring an arc of crankshaft rotation from the corresponding, current indicium and if the measured arc of crankshaft rotation exceeds the predetermined arc of crankshaft rotation, for providing a missing indicium signal.

  15. Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm

    NASA Astrophysics Data System (ADS)

    Centeno Drehmer, Luis Roberto; Paucar Casas, Walter Jesus; Martins Gomes, Herbert

    2015-04-01

    The purpose of this paper is to determine the lumped suspension parameters that minimise a multi-objective function in a vehicle model under different standard PSD road profiles. This optimisation tries to meet the rms vertical acceleration weighted limits for human sensitivity curves from ISO 2631 [ISO-2631: guide for evaluation of human exposure to whole-body vibration. Europe; 1997] at the driver's seat, the road holding capability and the suspension working space. The vehicle is modelled in the frequency domain using eight degrees of freedom under a random road profile. The particle swarm optimisation and sequential quadratic programming algorithms are used to obtain the suspension optimal parameters in different road profile and vehicle velocity conditions. A sensitivity analysis is performed using the obtained results and, in Class G road profile, the seat damping has the major influence on the minimisation of the multi-objective function. The influence of vehicle parameters in vibration attenuation is analysed and it is concluded that the front suspension stiffness should be less stiff than the rear ones when the driver's seat relative position is located forward the centre of gravity of the car body. Graphs and tables for the behaviour of suspension parameters related to road classes, used algorithms and velocities are presented to illustrate the results. In Class A road profile it was possible to find optimal parameters within the boundaries of the design variables that resulted in acceptable values for the comfort, road holding and suspension working space.

  16. Development of a systematic and practical methodology for the design of vehicles semi-active suspension control system

    NASA Astrophysics Data System (ADS)

    Bolandhemmat, Hamidreza; Clark, Christopher M.; Golnaraghi, Farid

    2010-05-01

    In this paper, a novel systematic and practical methodology is presented for design of vehicle semi-active suspension systems. Typically, the semi-active control strategies developed to improve vehicle ride comfort and stability have a switching nature. This makes the design of the controlled suspension systems difficult and highly dependent on an extensive trial-and-error process. The proposed methodology maps the discontinuous control system model to a continuous linear region, where all the time and frequency design techniques, established in the conventional control system theory, can be applied. If the semi-active control system is designed to satisfy some ride and stability requirements, an inverse mapping offers the ultimate control law. At the end, the entire design procedure is summarised in six steps. The effectiveness of the proposed methodology in the design of a semi-active suspension system for a Cadillac SRX 2005 is demonstrated with road tests results. Real-time experiments confirm that the use of the newly developed systematic design method reduces the required time and effort in real industrial problems.

  17. 48 CFR 2909.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Suspension. 2909.407... CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2909.407 Suspension. (a) The Senior... authorized to make an exception, regarding suspension by another agency suspending official under...

  18. 48 CFR 2909.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Suspension. 2909.407... CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2909.407 Suspension. (a) The Senior... authorized to make an exception, regarding suspension by another agency suspending official under...

  19. Wound tension in rhytidectomy. Effects of skin-flap undermining and superficial musculoaponeurotic system suspension.

    PubMed

    Burgess, L P; Casler, J D; Kryzer, T C

    1993-02-01

    This study was conducted to determine the effects of skin-flap undermining and superficial musculoaponeurotic system (SMAS) suspension on wound-closing tension. Nine sides from five fresh-frozen cadavers were used, with closing tension measured at the two main anchor points, anteriorly (A) and posteriorly (P), with and without SMAS plication for minimal (MIN), intermediate (INT), and maximal (MAX) skin-flap undermining. Results indicated that closing tension was significantly decreased with SMAS plication, both A and P, for all three levels of skin undermining. The average decrease in closing tension with SMAS plication was: A-MIN 191 g, A-INT 95 g, A-MAX 83 g, P-MIN 235 g, P-INT 68 g, and P-MAX 70 g (P < .001 for all). Considering the effect of skin-flap undermining alone, closing tension decreased with wider skin-flap undermining, both with and without SMAS plication. The tension-reducing effect of SMAS plication was decreased with wider skin-flap undermining. Regression analysis determined a second-order exponential curve relating closing tension to skin excision.

  20. Changes in the cholinergic system of rat sciatic nerve and skeletal muscle following suspension induced disuse

    NASA Technical Reports Server (NTRS)

    Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.

    1984-01-01

    Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.

  1. Design and performance evaluation of a rotary magnetorheological damper for unmanned vehicle suspension systems.

    PubMed

    Lee, Jae-Hoon; Han, Changwan; Ahn, Dongsu; Lee, Jin Kyoo; Park, Sang-Hu; Park, Seonghun

    2013-01-01

    We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers. PMID:23533366

  2. Design and Performance Evaluation of a Rotary Magnetorheological Damper for Unmanned Vehicle Suspension Systems

    PubMed Central

    Lee, Jae-Hoon; Han, Changwan; Ahn, Dongsu; Lee, Jin Kyoo; Park, Sang-Hu; Park, Seonghun

    2013-01-01

    We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers. PMID:23533366

  3. A Cryogenic, Insulating Suspension System for the High Resolution Airborne Wideband Camera (HAWC)and Submillemeter And Far Infrared Experiment (SAFIRE) Adiabatic Demagnetization Refrigerators (ADRs)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Jackson, Michael L.; Shirron, Peter J.; Tuttle, James G.

    2002-01-01

    The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists of two parts that can be assembled and tensioned offline, and later bolted onto the salt pill.

  4. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  5. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  6. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  7. Simulation and analysis of the interactions between split gradient coils and a split magnet cryostat in an MRI-PET system

    NASA Astrophysics Data System (ADS)

    Liu, Limei; Sanchez-Lopez, Hector; Poole, Michael; Liu, Feng; Crozier, Stuart

    2012-09-01

    Splitting a magnetic resonance imaging (MRI) magnet into two halves can provide a central region to accommodate other modalities, such as positron emission tomography (PET). This approach, however, produces challenges in the design of the gradient coils in terms of gradient performance and fabrication. In this paper, the impact of a central gap in a split MRI system was theoretically studied by analysing the performance of split, actively-shielded transverse gradient coils. In addition, the effects of the eddy currents induced in the cryostat on power loss, mechanical vibration and magnetic field harmonics were also investigated. It was found, as expected, that the gradient performance tended to decrease as the central gap increased. Furthermore, the effects of the eddy currents were heightened as a consequence of splitting the gradient assembly into two halves. An optimal central gap size was found, such that the split gradient coils designed with this central gap size could produce an engineering solution with an acceptable trade-off between gradient performance and eddy current effects. These investigations provide useful information on the inherent trade-offs in hybrid MRI imaging systems.

  8. On-coil multiple channel transmit system based on class-D amplification and pre-amplification with current amplitude feedback.

    PubMed

    Gudino, Natalia; Heilman, Jeremiah A; Riffe, Matthew J; Heid, Oliver; Vester, Markus; Griswold, Mark A

    2013-07-01

    A complete high-efficiency transmit amplifier unit designed to be implemented in on-coil transmit arrays is presented. High power capability, low power dissipation, scalability, and cost minimization were some of the requirements imposed to the design. The system is composed of a current mode class-D amplifier output stage and a voltage mode class-D preamplification stage. The amplitude information of the radio frequency pulse was added through a customized step-down DC-DC converter with current amplitude feedback that connects to the current mode class-D stage. Benchtop measurements and imaging experiments were carried out to analyze system performance. Direct control of B1 was possible and its load sensitivity was reduced to less than 10% variation from unloaded to full loaded condition. When using the amplifiers in an array configuration, isolation above 20 dB was achieved between neighboring coils by the amplifier decoupling method. High output current operation of the transmitter was proved on the benchtop through output power measurements and in a 1.5T scanner through flip angle quantification. Finally, single and multiple channel excitations with the new hardware were demonstrated by receiving signal with the body coil of the scanner.

  9. On-coil multiple channel transmit system based on class-D amplification and pre-amplification with current amplitude feedback

    PubMed Central

    Gudino, N.; Heilman, J.A; Riffe, M. J.; Heid, O.; Vester, M.; Griswold, M.A.

    2016-01-01

    A complete high-efficiency transmit amplifier unit designed to be implemented in on-coil transmit arrays is presented. High power capability, low power dissipation, scalability and cost minimization were some of the requirements imposed to the design. The system is composed of a current mode class-D (CMCD) amplifier output stage and a voltage mode class-D (VMCD) preamplification stage. The amplitude information of the radio frequency pulse was added through a customized step-down DC-DC converter with current amplitude feedback that connects to the CMCD stage. Benchtop measurements and imaging experiments were carried out to analyze system performance. Direct control of B1 was possible and its load sensitivity was reduced to less than 10% variation from unloaded to full loaded condition. When using the amplifiers in an array configuration, isolation above 20 dB was achieved between neighboring coils by the amplifier decoupling method. High output current operation of the transmitter was proved on the benchtop through output power measurements and in a 1.5 T scanner through flip angle quantification. Finally, single and multiple channel excitations with the new hardware were demonstrated by receiving signal with the body coil of the scanner. PMID:22890962

  10. Simulation and analysis of the interactions between split gradient coils and a split magnet cryostat in an MRI-PET system.

    PubMed

    Liu, Limei; Sanchez-Lopez, Hector; Poole, Michael; Liu, Feng; Crozier, Stuart

    2012-09-01

    Splitting a magnetic resonance imaging (MRI) magnet into two halves can provide a central region to accommodate other modalities, such as positron emission tomography (PET). This approach, however, produces challenges in the design of the gradient coils in terms of gradient performance and fabrication. In this paper, the impact of a central gap in a split MRI system was theoretically studied by analysing the performance of split, actively-shielded transverse gradient coils. In addition, the effects of the eddy currents induced in the cryostat on power loss, mechanical vibration and magnetic field harmonics were also investigated. It was found, as expected, that the gradient performance tended to decrease as the central gap increased. Furthermore, the effects of the eddy currents were heightened as a consequence of splitting the gradient assembly into two halves. An optimal central gap size was found, such that the split gradient coils designed with this central gap size could produce an engineering solution with an acceptable trade-off between gradient performance and eddy current effects. These investigations provide useful information on the inherent trade-offs in hybrid MRI imaging systems.

  11. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    NASA Astrophysics Data System (ADS)

    Zong, Zhanguo; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-01

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption.

  12. Self assembly of coiled-coil peptide-porphyrin complexes.

    PubMed

    Kokona, Bashkim; Kim, Andrew M; Roden, R Claire; Daniels, Joshua P; Pepe-Mooney, Brian J; Kovaric, Brian C; de Paula, Julio C; Johnson, Karl A; Fairman, Robert

    2009-06-01

    We are interested in the controlled assembly of photoelectronic materials using peptides as scaffolds and porphyrins as the conducting material. We describe the integration of a peptide-based polymer strategy with the ability of designed basic peptides to bind anionic porphyrins in order to create regulated photoelectronically active biomaterials. We have described our peptide system in earlier work, which demonstrates the ability of a peptide to form filamentous materials made up of self-assembling coiled-coil structures. We have modified this peptide system to include lysine residues appropriately positioned to specifically bind meso-tetrakis(4-sulfonatophenyl)porphine (TPPS(4)), a porphyrin that contains four negatively charged sulfonate groups at neutral pH. We measure the binding of TPPS(4) to our peptide using UV--visible and fluorescence spectroscopies to follow the porphyrin signature. We determine the concomitant acquisition of helical secondary structure in the peptide upon TPPS(4) binding using circular dichroism spectropolarimetry. This binding fosters polymerization of the peptide, as shown by absorbance extinction effects in the peptide CD spectra. The morphologies of the peptide/porphyrin complexes, as imaged by atomic force microscopy, are consistent with the coiled-coil polymers that we had characterized earlier, except that the heights are slightly higher, consistent with porphyrin binding. Evidence for exciton coupling in the copolymers is shown by red-shifting in the UV--visible data, however, the coupling is weak based on a lack of fluorescence quenching in fluorescence experiments.

  13. Performance measurements of a pilot superconducting solenoid model core for a wind tunnel magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.; Britcher, C. P.

    1983-01-01

    The results of experimental demonstrations of a superconducting solenoid model core in the Southampton University Magnetic Suspension and Balance System are detailed. Technology and techniques relevant to large-scale wind tunnel MSBSs comprise the long term goals. The magnetic moment of solenoids, difficulties peculiar to superconducting solenoid cores, lift force and pitching moment, dynamic lift calibration, and helium boil-off measurements are discussed.

  14. A signal input coil made of superconducting thin film for improved signal-to-noise ratio in a high-Tc SQUID-based ultra-low field nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Chen, Kuen-Lin; Hsu, Chin-Wei; Ku, Yue-Bai; Chen, Hsin-Hsien; Liao, Shu-Hsien; Wang, Li-Min; Horng, Herng-Er; Yang, Hong-Chang

    2013-11-01

    Resonant coupling schemes are commonly used in SQUID-based ultra-low field (ULF) nuclear magnetic resonance (NMR) systems to couple the spin relaxation signals from samples to the SQUID. Generally, in NMR systems, a resonant coupling scheme is composed of two solenoid coils which are made of enamel insulated wires and a capacitor connected in series. In this work, we tried to replace the metal solenoid input coil with a planar high-Tc superconducting spiral coil to improve the signal-to-noise ratio (SNR) of the ULF NMR signal. A measurement of the free induction decay signal of water protons was performed to demonstrate the improved performance of the system. This improvement is due to the fact that the planar superconducting spiral coil possesses a higher mutual inductance with the SQUID. Therefore, it is a promising way to enhance the SNR of high-Tc SQUID-based ULF NMR/MRI systems.

  15. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.

    PubMed

    Hwang, Jiye; Kim, Jeongmin; Sung, Bong June

    2016-08-01

    There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system. PMID:27627367

  16. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm

    NASA Astrophysics Data System (ADS)

    Hwang, Jiye; Kim, Jeongmin; Sung, Bong June

    2016-08-01

    There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (Dtot) and the displacement distribution functions (P (r ,t ) ) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ , which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ =0.65 , while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ . We also investigate the distribution (P (θ ,t ) ) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.

  17. Design of robust H ∞ controller for a half-vehicle active suspension system with input delay

    NASA Astrophysics Data System (ADS)

    Li, Hongyi; Liu, Honghai; Hand, Steve; Hilton, Chris

    2013-04-01

    This article is concerned with the problem of robust H ∞ control for a half-vehicle active suspension system with input delay. The delay is assumed to be interval time-varying delay with unknown derivative. The vehicle front sprung mass and the rear unsprung mass are assumed to be varying due to vehicle load variation and may result in parameter uncertainties being modelled by polytopic uncertainty. First of all, regarding the heave and pitch accelerations as the optimisation objectives, and suspension deflection and relative tire load constraints as the output constraints, we build the corresponding suspension systems. Then, by constructing a novel Lyapunov functional involved with the lower and upper bounds of the delay, sufficient condition for the existence of robust H ∞ controller is given to ensure robust asymptotical stability of the closed-loop system and also guarantee the constrained performance. The condition can be converted into convex optimisation problem and verified easily by means of standard software. Finally, a design example is exploited to demonstrate the effectiveness of the proposed design method.

  18. Application of an Electro-Magnetic Induction Technique for the Magnetization up to 100 T in a Vertical Single-turn Coil System

    NASA Astrophysics Data System (ADS)

    Sakakura, R.; Matsuda, Y. H.; Tokunaga, M.; Kojima, E.; Takeyama, S.

    2010-04-01

    The system was developed for the magnetization measurement in the vertical single-turn coil (V-STC) system at ISSP, which can generate magnetic fields over 100 T in a semi-destructive manner. We have adjusted the electro-magnetic induction method to our V-STC. The new system was applied to the manganite with the perovskite-type structure Bi1/2Ca1/2MnO3. The total magnetization process was obtained up to 105 T in excellent quality comparable to those obtained by the non-destructive long pulse magnet.

  19. Open coil structure for bubble-memory-device packaging

    NASA Technical Reports Server (NTRS)

    Chen, T. T.; Ypma, J. E.

    1975-01-01

    Concept has several important advantages over close-wound system: memory and coil chips are separate and interchangeable; interconnections in coil level are eliminated by packing memory chip and electronics in single structure; and coil size can be adjusted to optimum value in terms of power dissipation and field uniformity.

  20. Development of an eight-channel NMR system using RF detection coils for measuring spatial distributions of current density and water content in the PEM of a PEFC.

    PubMed

    Ogawa, Kuniyasu; Yokouchi, Yasuo; Haishi, Tomoyuki; Ito, Kohei

    2013-09-01

    The water generation and water transport occurring in a polymer electrolyte fuel cell (PEFC) can be estimated from the current density generated in the PEFC, and the water content in the polymer electrolyte membrane (PEM). In order to measure the spatial distributions and time-dependent changes of current density generated in a PEFC and the water content in a PEM, we have developed an eight-channel nuclear magnetic resonance (NMR) system. To detect a NMR signal from water in a PEM at eight positions, eight small planar RF detection coils of 0.6 mm inside diameter were inserted between the PEM and the gas diffusion layer (GDL) in a PEFC. The local current density generated at the position of the RF detection coil in a PEFC can be calculated from the frequency shift of the obtained NMR signal due to an additional magnetic field induced by the local current density. In addition, the water content in a PEM at the position of the RF detection coil can be calculated by the amplitude of the obtained NMR signal. The time-dependent changes in the spatial distributions were measured at 4 s intervals when the PEFC was operated with supply gas under conditions of fuel gas utilization of 0.67 and relative humidity of the fuel gas of 70%RH. The experimental result showed that the spatial distributions of the local current density and the water content in the PEM within the PEFC both fluctuated with time.

  1. Formulation and implementation of parametric optimisation of a washing machine suspension system

    NASA Astrophysics Data System (ADS)

    Türkay, O. S.; Kiray, B.; Tugcu, A. K.; Sümer, İ. T.

    1995-07-01

    In earlier publications, the authors have presented modeling and experimental validation results of suspension dynamics of front load horizontal-axis washing machines. In this paper, various formulations for suspension design optimisation are discussed and implemented using gridand sequential quadratic programmingoptimisation methods. It is concluded that minimisation of the maximum orbit displacement or minimisation of a weighted multiobjective function subject to the resistive stepping force constraint are suitable formulations. Moreover, the actual design of the test washing machine is verified for its optimality. This result and those of the previous publications confirm the utilisation of the simulation/optimisation package as a prototype design tool.

  2. The stress system generated by an electromagnetic field in a suspension of drops

    NASA Technical Reports Server (NTRS)

    Erdogan, M. E.

    1982-01-01

    The stress generated in a suspension of drops in the presence of a uniform electric field and a pure straining motion, taking into account that the magnetohydrodynamic effects are dominant was calculated. It was found that the stress generated in the suspension depended on the direction of the applied electric field, the dielectric constants, the vicosity coefficients, the conductivities, and the permeabilities of fluids inside and outside the drops. The expression of the particle stress shows that for fluids which are good conductors and poor dielectrics, especially for larger drops, magnetohydrodynamic effects end to reduce the dependence on the direction of the applied electric field.

  3. Characteristics of bowl-shaped coils for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keita; Suyama, Momoko; Takiyama, Yoshihiro; Kim, Dongmin; Saitoh, Youichi; Sekino, Masaki

    2015-05-01

    Transcranial magnetic stimulation (TMS) has recently been used as a method for the treatment of neurological and psychiatric diseases. Daily TMS sessions can provide continuous therapeutic effectiveness, and the installation of TMS systems at patients' homes has been proposed. A figure-eight coil, which is normally used for TMS therapy, induces a highly localized electric field; however, it is challenging to achieve accurate coil positioning above the targeted brain area using this coil. In this paper, a bowl-shaped coil for stimulating a localized but wider area of the brain is proposed. The coil's electromagnetic characteristics were analyzed using finite element methods, and the analysis showed that the bowl-shaped coil induced electric fields in a wider area of the brain model than a figure-eight coil. The expanded distribution of the electric field led to greater robustness of the coil to the coil-positioning error. To improve the efficiency of the coil, the relationship between individual coil design parameters and the resulting coil characteristics was numerically analyzed. It was concluded that lengthening the outer spherical radius and narrowing the width of the coil were effective methods for obtaining a more effective and more uniform distribution of the electric field.

  4. Combining support vector machines with linear quadratic regulator adaptation for the online design of an automotive active suspension system

    NASA Astrophysics Data System (ADS)

    Chiou, J.-S.; Liu, M.-T.

    2008-02-01

    As a powerful machine-learning approach to pattern recognition problems, the support vector machine (SVM) is known to easily allow generalization. More importantly, it works very well in a high-dimensional feature space. This paper presents a nonlinear active suspension controller which achieves a high level performance by compensating for actuator dynamics. We use a linear quadratic regulator (LQR) to ensure optimal control of nonlinear systems. An LQR is used to solve the problem of state feedback and an SVM is used to address the question of the estimation and examination of the state. These two are then combined and designed in a way that outputs feedback control. The real-time simulation demonstrates that an active suspension using the combined SVM-LQR controller provides passengers with a much more comfortable ride and better road handling.

  5. Novel transcranial magnetic stimulation coil for mice

    NASA Astrophysics Data System (ADS)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  6. The Effect of Hindlimb Suspension on the Reproductive System of Young Male Rats

    NASA Technical Reports Server (NTRS)

    Tou, Janet; Grindeland, R.; Baer, L.; Guran, G.; Fung, C.; Wade, C.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Colonization of space requires the ability to reproduce in reduced gravity. Following spaceflight, astronauts and male rats exhibit decreased testosterone (T). This has important implications as T effects the testes and accessory sex glands. To our knowledge no studies have examined the effects of spaceflight on accessory sex glands. Due to the rarity of spaceflight opportunities, ground models have been used to simulate weightlessness. The objective of this study was to determine the effect of long-term (21 d) weightlessness on the reproductive system of male rats. Weightlessness was simulated using the Morey-Holton hindlimb suspension (HLS) model. Age 10 week old, male Sprague-Dawley rats weighing (209.0 +9.7g) were randomly assigned (n=10/group) to either HLS or ambulatory control. In HLS rats, testes mass was 33% lower (p<0.05) than ambulatory controls. However, HLS had no effect on prostate (0.65 +0.09g vs 0.69 +0.12g) or seminal vesicles (1.01 +0.35g vs 0.75 +0.22g) weights compared to controls. The absence of effects on plasma T in this study contrasts previous reports of reduced plasma T in HLS male rats. This discrepancy may have been due to the age of animal and timing of sampling. T levels vary dramatically during testes development as well as within normal diurnal cycles. In young HLS rats, testes weight was reduced but not plasma T. Subsequently there was no effect on accessory sex glands. However, this may not be the case in older rats. More studies using standardized methods are needed to gain a better understanding of male reproduction function and capability in weightlessness. Funding provided by NASA.

  7. Optimum Design of a Passive Suspension System of a Vehicle Subjected to Actual Random Road Excitations

    NASA Astrophysics Data System (ADS)

    Tamboli, J. A.; Joshi, S. G.

    1999-01-01

    Vehicles are subjected to random excitation due to road unevenness and variable velocity. In most research work reported earlier, the response analysis for Mean Square Acceleration Response (MSAR) has been carried out by considering the power spectral density (PSD) of the road excitation as white noise, and the velocity of the vehicle as constant. However, in the present paper the PSD of the actual road excitation has been found to follow an approximately exponentially decreasing curve. Also the change in vehicle velocity has a significant effect on the values of Root Mean Square Acceleration Response (RMSAR). Therefore, in this work, the RMSAR of a vehicle dynamic system subjected to actual random road excitations is obtained so as to account for the effect of the actual PSD of road excitation and the frequent changes in vehicle velocity. The RMSAR of the vehicle is calculated for actual field excitation using the Fast Fourier Transformation (FFT) technique to obtain the PSD, by recording observations at the rear wheel. The effect of time lag due to wheelbase on the RMSAR of the vehicle is studied. For this purpose, a new ratio α(τ) has been introduced. The relationship between α(τ) and the autocorrelation has been formulated. This ratio is useful for considering the effect of time lag due to wheelbase on RMSAR. Similarly, the effect of vehicle velocity on the RMSAR is obtained.Further, from a ride comfort point of view, the values of the design variables like spring stiffness and viscous damping coefficient of the front and rear suspensions have been obtained, by minimising the RMSAR using the desired boundary values of the vertical RMSAR as specified in the chart of ISO 2631, 1985(E) [1].

  8. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems

    PubMed Central

    Li, Jianzhou; Yu, Liang; Chen, Ermei; Zhu, Danhua; Zhang, Yimin; Li, LanJuan

    2016-01-01

    A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB) operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB). The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells) were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases. PMID:26840840

  9. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems.

    PubMed

    Lu, Juan; Zhang, Xiaoqian; Li, Jianzhou; Yu, Liang; Chen, Ermei; Zhu, Danhua; Zhang, Yimin; Li, LanJuan

    2016-01-01

    A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB) operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB). The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells) were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases.

  10. A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading

    NASA Astrophysics Data System (ADS)

    Alghafir, M. N.; Dunne, J. F.

    2012-02-01

    A computationally efficient NARX-type neural network model is developed to characterise highly nonlinear frequency-dependent thermally sensitive hydraulic dampers for use in the virtual tuning of passive suspension systems with high-frequency loading. Three input variables are chosen to account for high-frequency kinematics and temperature variations arising from continuous vehicle operation over non-smooth surfaces such as stone-covered streets, rough or off-road conditions. Two additional input variables are chosen to represent tuneable valve parameters. To assist in the development of the NARX model, a highly accurate but computationally excessive physical damper model [originally proposed by S. Duym and K. Reybrouck, Physical characterization of non-linear shock absorber dynamics, Eur. J. Mech. Eng. M 43(4) (1998), pp. 181-188] is extended to allow for high-frequency input kinematics. Experimental verification of this extended version uses measured damper data obtained from an industrial damper test machine under near-isothermal conditions for fixed valve settings, with input kinematics corresponding to harmonic and random road profiles. The extended model is then used only for simulating data for training and testing the NARX model with specified temperature profiles and different valve parameters, both in isolation and within quarter-car vehicle simulations. A heat generation and dissipation model is also developed and experimentally verified for use within the simulations. Virtual tuning using the quarter-car simulation model then exploits the NARX damper to achieve a compromise between ride and handling under transient thermal conditions with harmonic and random road profiles. For quarter-car simulations, the paper shows that a single tuneable NARX damper makes virtual tuning computationally very attractive.

  11. The Effects of Parachute System Mass and Suspension-Line Elastic Properties on the LADT #3 Viking Parachute Inflation Load

    NASA Technical Reports Server (NTRS)

    Talay, Theodore A.; Poole, Lamont R.

    1971-01-01

    Analytical calculations have considered the effects of 1) varying parachute system mass, 2) suspension-line damping, and 3) alternate suspension-line force-elongation data on the canopy force history. Results indicate the canopy force on the LADT #3 parachute did not substantially exceed the recorded vehicle force reading and that the above factors can have significant effects on the canopy force history. Analytical calculations have considered the effects of i) varying parachute system mass, 2) suspension line damping, and 3) different suspension-line force-elongation data on the canopy force history. Based on the results of this study the following conclusions are drawn: Specifically, 1. At the LADT #3 failure time of 1.70 seconds, the canopy force ranged anywhere from 15.7% below to 2.4% above the vehicle force depending upon the model and data used. Therefore, the canopy force did not substantially exceed the recorded vehicle force reading. 2. At a predicted full inflation time of 1.80 seconds the canopy force would be greater than the vehicle force by from 1.1% to 10.6%, again depending upon the model and data used. Generally, 3. At low altitudes, enclosed and apparent air mass can significantly effect the canopy force calculated and should, therefore, not be neglected. 4. The canopy force calculations are sensitive to decelerator physical properties. In this case changes in the damping and/or force-elongation characteristics produced significant changes in the canopy force histories. Accurate prediction of canopy force histories requires accurate inputs in these areas.

  12. Release kinetics of acyclovir from a suspension of acyclovir incorporated in a cubic phase delivery system.

    PubMed

    Helledi, L S; Schubert, L

    2001-11-01

    Acyclovir is a widely used agent in the treatment of herpes virus infections of the skin, but owing to its poor physicochemical properties in terms of bioavailability and suboptimal formulations, the treatment is far from optimal. The liquid crystalline cubic phase system has been reported to act as a bioadhesive drug delivery system. In the present study, acyclovir was suspended in a cubic phase of glycerol monooleate (GMO) and water 65%:35% w/w, and the phase behavior and release kinetics were examined. X-ray diffraction and differential scanning calorimetry (DSC) measurements demonstrated that the cubic phase containing 1%-10% (w/w) acyclovir retains its phase condition in the temperature range investigated (20 degrees C-70 degrees C). Acyclovir can be incorporated in high amounts (approximately 40% w/w) without causing phase transition, as is shown in polarized light. This is probably because of its low solubility (approximately 0.11% w/w) in the cubic phase. The release characteristics of acyclovir incorporated as a suspension (1%-5% w/w) into a cubic phase were investigated using Franz diffusion cells. Acyclovir was quantified by high-performance liquid chromatography (HPLC). The drug was readily released from the system, and the release increased with the initial drug load concentration. About 25%-50% was released after 24 h. The release is dependent on the square root of time, and the kinetics can be described by the Higuchi theory. The rate-limiting step in the release process is most likely diffusion. The suggested theory is further supported by identical release data obtained for micronized and nonmicronized acyclovir. The fluxes for 1% and 5% w/w were 380 and 900 microg/h(1/2), respectively. Comparison of the release rates of acyclovir delivered from a cubic phase and from the commercial product, Zovir cream, showed the rate to be six times faster from the cubic phase. The results indicate that the cubic phase is a promising drug delivery system for

  13. Coiled bodies without coilin.

    PubMed Central

    Bauer, D W; Gall, J G

    1997-01-01

    Nuclei assembled in vitro in Xenopus egg extract contain coiled bodies that have components from three different RNA processing pathways: pre-mRNA splicing, pre-rRNA processing, and histone pre-mRNA 3'-end formation. In addition, they contain SPH-1, the Xenopus homologue of p80-coilin, a protein characteristic of coiled bodies. To determine whether coilin is an essential structural component of the coiled body, we removed it from the egg extract by immunoprecipitation. We showed that nuclei with bodies morphologically identical to coiled bodies (at the light microscope level) formed in such coilin-depleted extract. As expected, these bodies did not stain with antibodies against coilin. Moreover, they failed to stain with an antibody against the Sm proteins, although Sm proteins associated with snRNAs were still present in the extract. Staining of the coilin- and Sm-depleted coiled bodies was normal with antibodies against two nucleolar proteins, fibrillarin and nucleolin. Similar results were observed when Sm proteins were depleted from egg extract: staining of the coiled bodies with antibodies against the Sm proteins and coilin was markedly reduced but bright nucleolin and fibrillarin staining remained. These immunodepletion experiments demonstrate an interdependence between coilin and Sm snRNPs and suggest that neither is essential for assembly of nucleolar components in coiled bodies. We propose that coiled bodies are structurally heterogeneous organelles in which the components of the three RNA processing pathways may occur in separate compartments. Images PMID:9017596

  14. On the achievable performance using variable geometry active secondary suspension systems in commercial vehicles

    NASA Astrophysics Data System (ADS)

    Evers, Willem-Jan; Besselink, Igo; Teerhuis, Arjan; Nijmeijer, Henk

    2011-10-01

    There is a need to further improve driver comfort in commercial vehicles. The variable geometry active suspension offers an interesting option to achieve this in an energy efficient way. However, the optimal control strategy and the overal performance potential remains unclear. The aim of this paper is to quantify the level of performance improvement that can theoretically be obtained by replacing a conventional air sprung cabin suspension design with a variable geometry active suspension. Furthermore, the difference between the use of a linear quadratic (LQ) optimal controller and a classic skyhook controller is investigated. Hereto, an elementary variable geometry actuator model and experimentally validated four degrees of freedom quarter truck model are adopted. The results show that the classic skyhook controller gives a relatively poor performance while a comfort increase of 17-28% can be obtained with the LQ optimal controller, depending on the chosen energy weighting. Furthermore, an additional 75% comfort increase and 77% energy cost reduction can be obtained, with respect to the fixed gain energy optimal controller, using condition-dependent control gains. So, it is concluded that the performance potential using condition-dependent controllers is huge, and that the use of the classic skyhook control strategy should, in general, be avoided when designing active secondary suspensions for commercial vehicles.

  15. Calculation of the hull and of the car-suspension systems of airships

    NASA Technical Reports Server (NTRS)

    Verduzio, R

    1924-01-01

    Differential and integral curves are presented and well as numerous calculations relating to hulls. Some of the calculations include those relating to hulls, those relating to the invariability of the shape of the hulls, and those relating to the suspension of the hull.

  16. New radiant coil technology

    SciTech Connect

    Yonezawa, M.; Amano, T.; Maruta, T.; Wall, F.

    1983-12-01

    This article demonstrates how the retrofitting of an ethylene furnace by replacing pyrolysis coils with a new design sharply improved its performance. The revamped furnace was designed and built for a 300,000 MTA (metric ton/yr) ethylene plant in the early 70s. Basic design considerations for the furnace were the use of high-severity cracking to provide high C/sub 2/H/sub 4/ and total olefin yields; by a careful selection of pyrolysis coil dimensions and materials, the coil was equipped with feedstock flexibility; and the furnace can handle four different gas fuels and two different liquid fuels. The furnace is a vertical twin-cell type with induced draft fans, and its four-pass pyrolysis coils (vertical/and single diameter) are arranged in a double staggered row. The cracked gas streams from the four-pass coils are combined at the furnace outlet by a special fitting and exit the furnace.

  17. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun; Choi, Young-Man; Gweon, Dae-Gab; Hong, Dong-Pyo; Kim, Koung-Suk; Lee, Suk-Won; Lee, Moon-Gu

    2005-12-01

    A decoupled dual servo (DDS) stage for ultra-precision scanning system is introduced in this paper. The proposed DDS consists of a 3 axis fine stage for handling and carrying workpieces and a XY coarse stage. Especially, the DDS uses three voice coil motors (VCM) as a planar actuation system of the fine stage to reduce the disturbances due to any mechanical connections with its coarse stage. VCMs are governed by Lorentz law. According to the law and its structure, there are no mechanical connections between coils and magnetic circuits. Moreover, the VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about 5mm2. To break that hurdle, the coarse stage with linear motors is used for the fine stage to move about 200mm2. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. Using MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. For linear motors, Halbach magnet linear motor is proposed and optimally designed in this paper. In addition, for their smooth movements without any frictions, guide systems of the DDS are composed of air bearings. And then, precisely to get their positions, linear scales with 0.1um resolution are used for the coarse's XY motions and plane mirror laser interferometers with 20nm for the fine's XYθz. On scanning, the two stages have same trajectories and are controlled. The control algorithm is Parallel method. The embodied ultra-precision scanning system has about 100nm tracking error and in-positioning stability.

  18. Design of robust-stable and quadratic finite-horizon optimal controllers with low trajectory sensitivity for uncertain active suspension systems

    NASA Astrophysics Data System (ADS)

    Chen, Shinn-Horng; Chou, Jyh-Horng; Zheng, Liang-An; Lin, Sheng-Kai

    2010-08-01

    This paper presents a design method for designing the robust-stable and quadratic-finite-horizon-optimal controllers of uncertain active suspension systems. The method integrates a robust stabilisability condition, the orthogonal functions approach (OFA) and the hybrid Taguchi-genetic algorithm (HTGA). Using the integrative computational method, a robust-stable and quadratic-finite-horizon-optimal controller with low-trajectory sensitivity can be obtained such that (i) the active suspension system with elemental parametric uncertainties is stabilised and (ii) a quadratic-finite-horizon-integral performance index including a quadratic trajectory sensitivity term for the nominal active suspension system is minimised. The robust stabilisability condition is proposed in terms of linear matrix inequalities (LMIs). Based on the OFA, an algebraic algorithm only involving the algebraic computation is derived for solving the nominal active suspension feedback dynamic equations. By using the OFA and the LMI-based robust stabilisability condition, the dynamic optimisation problem for the robust-stable and quadratic-finite-horizon-optimal controller design of the linear uncertain active suspension system is transformed into a static-constrained-optimisation problem represented by the algebraic equations with constraint of LMI-based robust stabilisability condition; thus greatly simplifies the design problem. Then, for the static-constrained-optimisation problem, the HTGA is employed to find the robust-stable and quadratic-finite-horizon-optimal controllers of the linear uncertain active suspension systems. A design example is given to demonstrate the applicability of the proposed integrative computational approach.

  19. Coiling Temperature Control in Hot Strip Mill

    NASA Astrophysics Data System (ADS)

    Imanari, Hiroyuki; Fujiyama, Hiroaki

    Coiling temperature is one of the most significant factors in products of hot strip mill to determine material properties such as strength, toughness of steel, so it is very important to achieve accurate coiling temperature control (CTC). Usually there are a few pyrometers on the run out table in hot strip mill, therefore temperature model and its adapting system have large influences on the accuracy of CTC. Also unscheduled change of rolling speed has a bad effect to keep coiling temperature as its target. Newly developed CTC system is able to get very accurate coiling temperature against uncertain factors and disturbances by adopting easily identified temperature model, learning method and dynamic set up function. The features of the CTC system are discussed with actual data, and the effectiveness of the system is shown by actual control results.

  20. Coil Embolization for Intracranial Aneurysms

    PubMed Central

    2006-01-01

    Executive Summary Objective To determine the effectiveness and cost-effectiveness of coil embolization compared with surgical clipping to treat intracranial aneurysms. The Technology Endovascular coil embolization is a percutaneous approach to treat an intracranial aneurysm from within the blood vessel without the need of a craniotomy. In this procedure, a microcatheter is inserted into the femoral artery near the groin and navigated to the site of the aneurysm. Small helical platinum coils are deployed through the microcatheter to fill the aneurysm, and prevent it from further expansion and rupture. Health Canada has approved numerous types of coils and coil delivery systems to treat intracranial aneurysms. The most favoured are controlled detachable coils. Coil embolization may be used with other adjunct endovascular devices such as stents and balloons. Background Intracranial Aneurysms Intracranial aneurysms are the dilation or ballooning of part of a blood vessel in the brain. Intracranial aneurysms range in size from small (<12 mm in diameter) to large (12–25 mm), and to giant (>25 mm). There are 3 main types of aneurysms. Fusiform aneurysms involve the entire circumference of the artery; saccular aneurysms have outpouchings; and dissecting aneurysms have tears in the arterial wall. Berry aneurysms are saccular aneurysms with well-defined necks. Intracranial aneurysms may occur in any blood vessel of the brain; however, they are most commonly found at the branch points of large arteries that form the circle of Willis at the base of the brain. In 85% to 95% of patients, they are found in the anterior circulation. Aneurysms in the posterior circulation are less frequent, and are more difficult to treat surgically due to inaccessibility. Most intracranial aneurysms are small and asymptomatic. Large aneurysms may have a mass effect, causing compression on the brain and cranial nerves and neurological deficits. When an intracranial aneurysm ruptures and bleeds

  1. Commercial applications for COIL

    NASA Astrophysics Data System (ADS)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  2. Correction coil cable

    DOEpatents

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  3. ELECTRICAL COIL STRUCTURE

    DOEpatents

    Baker, W.R.; Hartwig, A.

    1962-09-25

    A compactly wound electrical coil is designed for carrying intense pulsed currents such as are characteristic of controlled thermonuclear reaction devices. A flat strip of conductor is tightly wound in a spiral with a matching flat strip of insulator. To provide for a high fluid coolant flow through the coil with minimum pumping pressure, a surface of the conductor is scored with parallel transverse grooves which form short longitudinal coolant pasaages when the conductor is wound in the spiral configuration. Owing to this construction, the coil is extremely resistant to thermal and magnetic shock from sudden high currents. (AEC)

  4. Magnetic microhelix coil structures.

    PubMed

    Smith, Elliot J; Makarov, Denys; Sanchez, Samuel; Fomin, Vladimir M; Schmidt, Oliver G

    2011-08-26

    Together with the well-known ferro- and antiferromagnetic ordering, nature has created a variety of complex helical magnetic configurations. Here, we design and investigate three-dimensional microhelix coil structures that are radial-, corkscrew-, and hollow-bar-magnetized. The magnetization configurations of the differently magnetized coils are experimentally revealed by probing their specific dynamic response to an external magnetic field. Helix coils offer an opportunity to realize microscale geometries of the magnetic toroidal moment, observed so far only in bulk multiferroic materials. PMID:21929266

  5. Magnetic Microhelix Coil Structures

    NASA Astrophysics Data System (ADS)

    Smith, Elliot J.; Makarov, Denys; Sanchez, Samuel; Fomin, Vladimir M.; Schmidt, Oliver G.

    2011-08-01

    Together with the well-known ferro- and antiferromagnetic ordering, nature has created a variety of complex helical magnetic configurations. Here, we design and investigate three-dimensional microhelix coil structures that are radial-, corkscrew-, and hollow-bar-magnetized. The magnetization configurations of the differently magnetized coils are experimentally revealed by probing their specific dynamic response to an external magnetic field. Helix coils offer an opportunity to realize microscale geometries of the magnetic toroidal moment, observed so far only in bulk multiferroic materials.

  6. Design of a loop resonator with a split-ring-resonator (SRR) for a human-body coil in 3 T MRI systems

    NASA Astrophysics Data System (ADS)

    Son, Hyeok Woo; Cho, Young Ki; Kim, Byung Mun; Back, Hyun Man; Yoo, Hyoungsuk

    2016-04-01

    A new radio-frequency (RF) resonator for Nuclear Magnetic Resonance (NMR) imaging at clinical magnetic resonance imaging (MRI) systems is proposed in this paper. An approach based on the effects of the properties of metamaterials in split-ring resonators (SRRs) is used to design a new loop resonator with a SRR for NMR imaging. This loop resonator with a SRR is designed for NMR imaging at 3 T MRI systems. The 3D electromagnetic simulation was used to optimize the design of the proposed RF resonator and analyze it's performance at 3 T MRI systems. The proposed RF resonator provides strong penetrating magnetic fields at the center of the human phantom model, approximately 10%, as compared to the traditional loop-type RF resonator used for NMR imaging at clinical MRI systems. We also designed an 8-channel body coil for human-body NMR imaging by using the proposed loop resonator with a SRR. This body coil also produces more homogeneous and highly penetrating magnetic fields into the human phantom model.

  7. Phylogenetic occurrence of coiled coil proteins: implications for tissue structure in metazoa via a coiled coil tissue matrix.

    PubMed

    Odgren, P R; Harvie, L W; Fey, E G

    1996-04-01

    We examined GenBank sequence files with a heptad repeat analysis program to assess the phylogenetic occurrence of coiled coil proteins, how heptad repeat domains are organized within them, and what structural/functional categories they comprise. Of 102,007 proteins analyzed, 5.95% (6,074) contained coiled coil domains; 1.26% (1,289) contained "extended" (> 75 amino acid) domains. While the frequency of proteins containing coiled coils was surprisingly constant among all biota, extended coiled coil proteins were fourfold more frequent in the animal kingdom and may reflect early events in the divergence of plants and animals. Structure/function categories of extended coils also revealed phylogenetic differences. In pathogens and parasites, many extended coiled coil proteins are external and bind host proteins. In animals, the majority of extended coiled coil proteins were identified as constituents of two protein categories: 1) myosins and motors; or 2) components of the nuclear matrix-intermediate filament scaffold. This scaffold, produced by sequential extraction of epithelial monolayers in situ, contains only 1-2% of the cell mass while accurately retaining morphological features of living epithelium and is greatly enriched in proteins with extensive, interrupted coiled coil forming domains. The increased occurrence of this type of protein in metazoa compared with plants or protists leads us to hypothesize a tissue-wide matrix of coiled coil interactions underlying metazoan differentiated cell and tissue structure.

  8. Novel oral suspensions: a review.

    PubMed

    Kathpalia, Harsha; Phadke, Chetan

    2014-01-01

    An oral pharmaceutical suspension has been one of the most favorable dosage forms for pediatric and geriatric patients or patients unable to tolerate solid dosage forms. The liquid form is preferred because of the ease of swallowing and flexibility in the administration of doses. This emerging area of suspensions as applied to the pharmaceutical field are discussed in the current article enlightening the vision of the readers towards pharmaceutical formulations including nanosuspensions, non-aqueous suspensions and modified release suspensions. The emphasis in the article focuses on the essential principles involved in the process of formation of different types of suspensions and their applications, since novel oral suspensions have potential to provide various strategy systems.

  9. Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T.

    PubMed

    Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Girard, Olivier; Darrasse, Luc

    2007-09-01

    Signal-to-noise ratio improvement is of major importance to achieve microscopic spatial resolution in magnetic resonance experiments. Magnetic resonance imaging of small animals is particularly concerned since it typically requires voxels of less than (100 microm)(3) to observe the small anatomical structures having size reduction by a factor of more than 10 as compared to human being. The signal-to-noise ratio can be increased by working at high static magnetic field strengths, but the biomedical interest of such high-field systems may be limited due to field-dependent contrast mechanisms and severe technological difficulties. An alternative approach that allows working in clinical imaging system is to improve the sensitivity of the radio-frequency receiver coil. This can be done using small cryogenically operated coils made either of copper or high-temperature superconducting material. We report the technological development of cryo-cooled superconducting coils for high-resolution imaging in a whole-body magnetic resonance scanner operating at 1.5 T. The technological background supporting this development is first addressed, including HTS coil design, simulation tools, cryogenic mean description and electrical characterization procedure. To illustrate the performances of superconducting coils for magnetic resonance imaging at intermediate field strength, in-vivo mouse images of various anatomic sites acquired with a 12 mm diameter cryo-cooled superconducting coil are presented.

  10. Instrumentation and test of the Swiss LCT-coil

    SciTech Connect

    Zichy, J.A.; Horvath, I.; Jakob, B.; Marinucci, C.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1985-03-01

    Just before Christmas 1983 the fabrication of the Swiss LCT-coil was finished. Tests at ambient temperature were performed on the factory site and after delivery in Oak Ridge. To avoid an undesirable delay of the rescheduled Partial-Array Test it was agreed to install the coil without its superconducting bus. In July 1984 the Swiss LCT-coil was successfully cooled down to LHe temperature together with the other two fully installed coils. Besides the cooling system, the instrumentation, measured parameters of the coil and some preliminary results obtained during the ongoing Partial-Array Test are presented.

  11. A periodic table of coiled-coil protein structures.

    PubMed

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  12. Load-cell based characterization system for a "Violin-Mode" shadow-sensor in advanced LIGO suspensions

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre's holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  13. Load-cell based characterization system for a "Violin-Mode" shadow-sensor in advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre's holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  14. Load-cell based characterization system for a "Violin-Mode" shadow-sensor in advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre's holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated. PMID:27475586

  15. ENGINEERING OF THE AGS SNAKE COIL ASSEMBLY.

    SciTech Connect

    ANERELLA,M.GUPTA,R.KOVACH,P.MARONE,A.PLATE,S.POWER,K.SCHMALZLE,J.WILLEN,E.

    2003-05-12

    A 30% Snake superconducting magnet is proposed to maintain polarization in the AGS proton beam, the magnetic design of which is described elsewhere. The required helical coils for this magnet push the limits of the technology developed for the RHIC Snake coils. First, fields must be provided with differing pitch along the length of the magnet. To accomplish this, a new 3-D CAD system (''Pro/Engineer'' from PTC), which uses parametric techniques to enable fast iterations, has been employed. Revised magnetic field calculations are then based on the output of the mechanical model. Changes are made in turn to the model on the basis of those field calculations. To ensure that accuracy is maintained, the final solid model is imported directly into the CNC machine programming software, rather than by the use of graphics translating software. Next, due to the large coil size and magnetic field, there was concern whether the structure could contain the coil forces. A finite element analysis was performed, using the 3-D model, to ensure that the stresses and deflections were acceptable. Finally, a method was developed using ultrasonic energy to improve conductor placement during coil winding, in an effort to minimize electrical shorts due to conductor misplacement, a problem that occurred in the RHIC helical coil program. Each of these activities represents a significant improvement in technology over that which was used previously for the RHIC snake coils.

  16. Segmented Coil Fails In Steps

    NASA Technical Reports Server (NTRS)

    Stedman, Ronald S.

    1990-01-01

    Electromagnetic coil degrades in steps when faults occur, continues to operate at reduced level instead of failing catastrophically. Made in segments connected in series and separated by electrically insulating barriers. Fault does not damage adjacent components or create hazard. Used to control valves in such critical applications as cooling systems of power generators and chemical process equipment, where flammable liquids or gases handled. Also adapts to electrical control of motors.

  17. Enhancing Induction Coil Reliability

    NASA Astrophysics Data System (ADS)

    Kreter, K.; Goldstein, R.; Yakey, C.; Nemkov, V.

    2014-12-01

    In induction hardening, thermal fatigue is one of the main copper failure modes of induction heat treating coils. There have been papers published that describe this failure mode and others that describe some good design practices. The variables previously identified as the sources of thermal fatigue include radiation from the part surface, frequency, current, concentrator losses, water pressure and coil wall thickness. However, there is very little quantitative data on the factors that influence thermal fatigue in induction coils is available in the public domain. By using finite element analysis software this study analyzes the effect of common design variables of inductor cooling, and quantifies the relative importance of these variables. A comprehensive case study for a single shot induction coil with Fluxtrol A concentrator applied is used for the analysis.

  18. Magnetic Suspension Technology Workshop

    NASA Technical Reports Server (NTRS)

    Keckler, Claude R. (Editor); Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1993-01-01

    In order to identify the state of magnetic suspension technology in such areas as rotating systems, pointing of experiments or subsystems, payload isolation, and superconducting materials, a workshop on Magnetic Suspension Technology was held at the Langley Research Center in Hampton, Virginia, on 2-4 Feb. 1988. The workshop included five technical sessions in which a total of 24 papers were presented. The technical sessions covered the areas of pointing, isolation, and measurement, rotating systems, modeling and control, and superconductors. A list of attendees is provided.

  19. Design of the annular suspension and pointing system /ASPS/ through decoupling and pole placement. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Lin, W. C. W.

    1980-01-01

    A decoupling and pole-placement technique has been developed for the Annular Suspension and Pointing System (ASPS) of the Space Shuttle which uses bandwidths as performance criteria. The dynamics of the continuous-data ASPS allows the three degrees of freedom to be totally decoupled by state feedback through constant gains, so that the bandwidth of each degree of freedom can be independently specified without interaction. Although it is found that the digital ASPS cannot be completely decoupled, the bandwidth requirements are satisfied by pole placement and a trial-and-error method based on approximate decoupling.

  20. Test techniques: A survey paper on cryogenic tunnels, adaptive wall test sections, and magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.

    1989-01-01

    The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.

  1. 48 CFR 1309.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 1309.407 Section 1309.407 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 1309.407 Suspension....

  2. 48 CFR 909.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 909.407 Section 909.407 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 909.407 Suspension....

  3. 48 CFR 609.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Suspension. 609.407 Section 609.407 Federal Acquisition Regulations System DEPARTMENT OF STATE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 609.407 Suspension....

  4. 48 CFR 409.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Suspension. 409.407 Section 409.407 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension and Ineligibility 409.407 Suspension....

  5. 48 CFR 309.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 309.407 Section 309.407 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 309.407 Suspension....

  6. 48 CFR 509.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 509.407 Section 509.407 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 509.407 Suspension....

  7. 48 CFR 509.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Suspension. 509.407 Section 509.407 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 509.407 Suspension....

  8. 48 CFR 1409.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 1409.407 Section 1409.407 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 1409.407 Suspension....

  9. 48 CFR 2009.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Suspension. 2009.407 Section 2009.407 Federal Acquisition Regulations System NUCLEAR REGULATORY COMMISSION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2009.407 Suspension....

  10. 48 CFR 1409.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Suspension. 1409.407 Section 1409.407 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 1409.407 Suspension....

  11. 48 CFR 1309.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Suspension. 1309.407 Section 1309.407 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 1309.407 Suspension....

  12. 48 CFR 609.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 609.407 Section 609.407 Federal Acquisition Regulations System DEPARTMENT OF STATE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 609.407 Suspension....

  13. 48 CFR 909.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Suspension. 909.407 Section 909.407 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 909.407 Suspension....

  14. 48 CFR 2509.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Suspension. 2509.407 Section 2509.407 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2509.407 Suspension....

  15. 48 CFR 1509.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Suspension. 1509.407 Section 1509.407 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension and Ineligibility 1509.407 Suspension....

  16. 48 CFR 809.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 809.407 Section 809.407 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 809.407 Suspension....

  17. 48 CFR 2009.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Suspension. 2009.407 Section 2009.407 Federal Acquisition Regulations System NUCLEAR REGULATORY COMMISSION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2009.407 Suspension....

  18. 48 CFR 1509.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Suspension. 1509.407 Section 1509.407 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension and Ineligibility 1509.407 Suspension....

  19. 48 CFR 2509.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Suspension. 2509.407 Section 2509.407 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2509.407 Suspension....

  20. 48 CFR 809.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Suspension. 809.407 Section 809.407 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 809.407 Suspension....

  1. 48 CFR 409.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 409.407 Section 409.407 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension and Ineligibility 409.407 Suspension....

  2. 48 CFR 9.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Suspension. 9.407 Section 9.407 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 9.407 Suspension....

  3. 48 CFR 309.407 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Suspension. 309.407 Section 309.407 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 309.407 Suspension....

  4. 48 CFR 9.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Suspension. 9.407 Section 9.407 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 9.407 Suspension....

  5. Analysis of an off road 4WD vehicle's suspension system modification - Case study of aftermarket suspension lift and modification of wheel track size

    NASA Astrophysics Data System (ADS)

    Ross, J.; Hazrat, M. A.; Rasul, M. G.

    2016-07-01

    In this research, a four wheel drive (4WD) suspension of a vehicle has been modified by increasing the ride height to investigate stability and cornering potential of the vehicle through load transfer and variation of roll angle. Further investigation has been conducted to observe the characteristics which are deemed desirable for off road application but detrimental to the on road application. The Constant Radius Cornering Test (CRCT) was chosen as a base method for experimental investigation to observe the effect of the suspension modifications. The test was carried out by undertaking a known radius and cambered corner at a constant speed. For this test, the acceleration and gyroscopic data were measured to check and compare the accuracy of the analysis performed by OptimumDynamics model. The tests were conducted by means of negotiating the curve at the speed of 80 km/h and it was gradually achieved to allow a good consensus of the amount of body roll the vehicle experienced. Using a surveyor's wheel, the radius of the corner was estimated as 160 m and using the gyroscopic sensor, the corner camber was measured at 4 degrees. While comparing the experimental results with the simulation results, the experimental constraints led to higher values than those of the analytical results. The total load transfer reduced by 2.9% with the increased track size. It has been observed that the dynamic load transfer component is lesser than the standard suspension with the aftermarket suspension lift and the upgraded anti-roll bar (ARB). With the simulation of the fitment of the other modifications aimed to improve the characteristics of the raised vehicle, the vehicle showed a reduced tendency towards roll angle due to the stiffened anti-roll bar and the maximum increased wheel track demonstrated reduced lateral load transfer and body roll. Even with these modifications however, the decrease in load transfer is minimal in comparison to what was expected.

  6. Optimised sensor selection for control and fault tolerance of electromagnetic suspension systems: a robust loop shaping approach.

    PubMed

    Michail, Konstantinos; Zolotas, Argyrios C; Goodall, Roger M

    2014-01-01

    This paper presents a systematic design framework for selecting the sensors in an optimised manner, simultaneously satisfying a set of given complex system control requirements, i.e. optimum and robust performance as well as fault tolerant control for high integrity systems. It is worth noting that optimum sensor selection in control system design is often a non-trivial task. Among all candidate sensor sets, the algorithm explores and separately optimises system performance with all the feasible sensor sets in order to identify fallback options under single or multiple sensor faults. The proposed approach combines modern robust control design, fault tolerant control, multiobjective optimisation and Monte Carlo techniques. Without loss of generality, it's efficacy is tested on an electromagnetic suspension system via appropriate realistic simulations. PMID:24041402

  7. Multiple degree-of-freedom force and moment measurement for static propulsion testing using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Stuart, Keith; Bartosh, Blake

    1993-01-01

    Innovative Information Systems (IIS), Inc. is in the process of designing and fabricating a high bandwidth force and moment measuring device (i.e. the Magnetic Thruster Test Stand). This device will use active magnetic suspension to allow direct measurements of the forces and torques generated by the rocket engines of the missile under test. The principle of operation of the Magnetic Thruster Test Stand (MTTS) is based on the ability to perform very precise, high bandwidth force and position measurements on an object suspended in a magnetic field. This ability exists due to the fact that the digital servo control mechanism that performs the magnetic suspension uses high bandwidth (10 kHz) position data (via an eddy-current proximity sensor) to determine the amount of force required to maintain stable suspension at a particular point. This force is converted into required electromagnet coil current, which is then output to a current amplifier driving the coils. A discussion of how the coil current and magnetic gap distance (the distance between the electromagnet and the object being suspended) is used to determine the forces being applied from the suspended assembly is presented.

  8. Complex Coil Assisted Single Coil Embolization for Small Intracranial Aneurysm

    PubMed Central

    Yang, Tzu-Hsien; Ou, Chang-Hsien; Chan, Si-Wa; Chen, Tai-I; Yang, Chia-Jung; Chiang, Chia-Ming; Huang, Wen-Chien

    2013-01-01

    The purpose of the technical note is to introduce the complex coil assisted coil embolization method in the treatment of intracranial small aneurysm, in order to enhance the safety of the procedure. The first microcatheter was navigated into the aneurysm sac and the ultrasoft coil was used as the embolization coil. If the embolizations coil could not stay within the aneurysm sac smoothly, such as coil herniation into parent artery during the delivery process. The second microcatheter would be navigated to the aneurysm level in the parent artery. Another complex coil was delivered within the parent artery via the second microcatheter to provide the neck bridge effect in order to enhance the stability of embolization coil. Besides, the protection coil will not disturb the parent artery flow. While the embolization coil was put into the aneurysm sac smoothly under the help of complex protective coil, the protective coil was then withdrawn gently. We use the most magnified view, dual-plane approach simultaneously to observe the stability of embolization coil. The embolization coil would be detached without any evidence of coil motion or vibration. The new method could provide the physiological protective method, without leaving any protective device such as stent within the parent artery. PMID:24024075

  9. Expanded Equations for Torque and Force on a Cylindrical Permanent Magnet Core in a Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    The expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic suspension system are presented. The core is assumed to be uniformly magnetized, and equations are developed for two orientations of the magnetization vector. One orientation is parallel to the axis of symmetry, and the other is perpendicular to this axis. Fields and gradients produced by suspension system electromagnets are assumed to be calculated at a point in inertial space which coincides with the origin of the core axis system in its initial alignment. Fields at a given point in the core are defined by expanding the fields produced at the origin as a Taylor series. The assumption is made that the fields can be adequately defined by expansion up to second-order terms. Examination of the expanded equations for the case where the magnetization vector is perpendicular to the axis of symmetry reveals that some of the second-order gradient terms provide a method of generating torque about the axis of magnetization and therefore provide the ability to produce six-degree-of-freedom control.

  10. Hierarchical Cascades of Instability Govern the Mechanics of Coiled Coils: Helix Unfolding Precedes Coil Unzipping

    PubMed Central

    Hamed, Elham; Keten, Sinan

    2014-01-01

    Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies. PMID:25028889

  11. Hierarchical control of ride height system for electronically controlled air suspension based on variable structure and fuzzy control theory

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Zhou, Kongkang; Zou, Nannan; Jiang, Hong; Cui, Xiaoli

    2015-09-01

    The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system.

  12. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    PubMed

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering.

  13. A neural-network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities.

    PubMed

    Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano

    2008-09-01

    This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.

  14. Modular design of receiver coil arrays.

    PubMed

    De Zanche, Nicola; Massner, Jurek A; Leussler, Christoph; Pruessmann, Klaas P

    2008-07-01

    We describe a modular and hence flexible system for connecting MR surface coils to create a receiver array. Up to 16 individual coils of different size and shape depending on the application are plugged into a connector box that houses the control electronics. Preamplification, matching and detuning circuitry are housed on a circuit board directly attached to each coil loop. Electrical adjustments for tuning or decoupling for each coil configuration are not needed thanks to effective preamplifier decoupling provided through a Pi matching network. Radio-frequency safety and electrically stable cabling are ensured by multiple radio-frequency traps. Array modules for 1.5 and 3 T have been simulated, constructed, tested, and used for imaging experiments.

  15. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  16. Enantioselective toxicity and degradation of the chiral insecticide fipronil in Scenedesmus obliguus suspension system.

    PubMed

    Qu, Han; Ma, Rui-Xue; Liu, Dong-Hui; Wang, Peng; Huang, Le-Dan; Qiu, Xing-Xu; Zhou, Zhi-Qiang

    2014-11-01

    Fipronil is an effective insecticide, but it presents highly toxic effects in nontarget aquatic organisms. The present study examined the enantioselective toxicity and degradation of fipronil enantiomers in a freshwater algae Scenedesmus obliguus suspension. There was a substantial difference in the acute toxicity of the enantiomers to S. obliguus, with 72-h median effective concentrations (EC50s) of 0.29 mg L(-1) and 1.50 mg L(-1) for the R-fipronil and S-fipronil, respectively. The influences on the concentration of chlorophyll a, chlorophyll b, and carotenoids were determined, and the effects of fipronil on the concentration of chlorophyll a and chlorophyll b were also enantioselective. The degradation of fipronil in algae suspension was enantioselective, with half-lives for R-fipronil and S-fipronil of 2.9 d and 3.2 d, respectively, and the enantiomer fraction reaching 0.65 at the day 17. The enantiomeric differences should be taken into consideration for fipronil risk assessment. PMID:25077813

  17. A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems.

    PubMed

    Valadez-Bustos, Ma Guadalupe; Aguado-Santacruz, Gerardo Armando; Tiessen-Favier, Axel; Robledo-Paz, Alejandrina; Muñoz-Orozco, Abel; Rascón-Cruz, Quintin; Santacruz-Varela, Amalio

    2016-04-01

    Glycine betaine is a quaternary ammonium compound that accumulates in a large variety of species in response to different types of stress. Glycine betaine counteracts adverse effects caused by abiotic factors, preventing the denaturation and inactivation of proteins. Thus, its determination is important, particularly for scientists focused on relating structural, biochemical, physiological, and/or molecular responses to plant water status. In the current work, we optimized the periodide technique for the determination of glycine betaine levels. This modification permitted large numbers of samples taken from a chlorophyllic cell line of the grass Bouteloua gracilis to be analyzed. Growth kinetics were assessed using the chlorophyllic suspension to determine glycine betaine levels in control (no stress) cells and cells osmotically stressed with 14 or 21% polyethylene glycol 8000. After glycine extraction, different wavelengths and reading times were evaluated in a spectrophotometer to determine the optimal quantification conditions for this osmolyte. Optimal results were obtained when readings were taken at a wavelength of 290 nm at 48 h after dissolving glycine betaine crystals in dichloroethane. We expect this modification to provide a simple, rapid, reliable, and cheap method for glycine betaine determination in plant samples and cell suspension cultures.

  18. Signal-to-noise ratio of a mouse brain (13) C CryoProbe™ system in comparison with room temperature coils: spectroscopic phantom and in vivo results.

    PubMed

    Sack, M; Wetterling, F; Sartorius, A; Ende, G; Weber-Fahr, W

    2014-06-01

    MRI and MRS in small rodents demand very high sensitivity. Cryogenic transmit/receive radiofrequency probes (CryoProbes) designed for (1) H MRI of mouse brain provide an attractive option for increasing the performance of small-animal MR systems. As the Larmor frequency of (13) C nuclei is four times lower than that for (1) H nuclei, an even larger sensitivity improvement is expected for (13) C applications. The aim of this work was to evaluate the performance of a prototype (13) C CryoProbe™ for mouse brain MRS. To investigate the possible gain of the (13) C CryoProbe™, we acquired localized single-voxel (13) C spectra and chemical shift images of a dimethyl sulfoxide phantom with the CryoProbe™, as well as with two room temperature resonators. The cryogenically cooled resonator achieved approximately four-fold higher signal-to-noise ratio in phantom tests when compared with the best-performing room temperature coil. In addition, we present localized (13) C spectra of mouse brain obtained with the CryoProbe™, as well as with one of the room temperature coils, demonstrating the performance in vivo. In summary, the cryogenic cooling technique significantly enhances the (13) C signal sensitivity at 9.4 T and enables the investigation of metabolism within mouse brain.

  19. An assessment of the performance of the Spanwise Iron Magnet rolling moment generating system for magnetic suspension and balance systems using the finite element computer program GFUN

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1982-01-01

    The development of a powerful method of magnetic roll torque generation is essential before construction of a large magnetic suspension and balance system (LMSBS) can be undertaken. Some preliminary computed data concerning a relatively new dc scheme, referred to as the spanwise iron magnet scheme are presented. Computations made using the finite element computer program 'GFUN' indicate that adequate torque is available for at least a first generation LMSBS. Torque capability appears limited principally by current electromagnet technology.

  20. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    fluid-fluid interface [2]. Together with Remco Tuinier, Henk has recently completed a book in this area which is to appear later this year. A major theme in Henk's research is that of phase transitions in lyotropic liquid crystals. Henk, together with Daan Frenkel and Alain Stroobants, realized in the 1980s that a smectic phase in dispersions of rod-like particles can be stable without the presence of attractive interactions, similar to nematic ordering as predicted earlier by Onsager [3]. Together with Gert-Jan Vroege he wrote a seminal review in this area [4]. Henk once said that 'one can only truly develop one colloidal model system in one's career' and in his case this must be that of gibbsite platelets. Initially Henk's group pursued another polymorph of aluminium hydroxide, boehmite, which forms rod-like particles [5], which already displayed nematic liquid crystal phases. The real breakthrough came when the same precursors treated the produced gibbsite platelets slightly differently. These reliably form a discotic nematic phase [6] and, despite the polydispersity in their diameter, a columnar phase [7]. A theme encompassing a wide range of soft matter systems is that of colloidal dynamics and phase transition kinetics. Many colloidal systems have a tendency to get stuck in metastable states, such as gels or glasses. This is a nuisance if one wishes to study phase transitions, but it is of great practical significance. Such issues feature in many of Henk's publications, and with Valerie Anderson he wrote a highly cited review in this area [8]. Henk Lekkerkerker has also invested significant effort into the promotion of synchrotron radiation studies of colloidal suspensions. He was one of the great supporters of the Dutch-Belgian beamline 'DUBBLE' project at the ESRF [9]. He attended one of the very first experiments in Grenoble in 1999, which led to a Nature publication [7]. He was strongly involved in many other experiments which followed and also has been a