Li, Xuyou; Ling, Weiwei; He, Kunpeng; Xu, Zhenlong; Du, Shitong
2016-06-16
The thermal performance under variable temperature conditions of fiber coils with double-cylinder (D-CYL) and quadrupolar (QAD) winding methods is comparatively analyzed. Simulation by the finite element method (FEM) is done to calculate the temperature distribution and the thermal-induced phase shift errors in the fiber coils. Simulation results reveal that D-CYL fiber coil itself has fragile performance when it experiences an axially asymmetrical temperature gradient. However, the axial fragility performance could be improved when the D-CYL coil meshes with a heat-off spool. Through further simulations we find that once the D-CYL coil is provided with an axially symmetrical temperature environment, the thermal performance of fiber coils with the D-CYL winding method is better than that with the QAD winding method under the same variable temperature conditions. This valuable discovery is verified by two experiments. The D-CYL winding method is thus promising to overcome the temperature fragility of interferometric fiber optic gyroscopes (IFOGs).
Li, Xuyou; Ling, Weiwei; He, Kunpeng; Xu, Zhenlong; Du, Shitong
2016-01-01
The thermal performance under variable temperature conditions of fiber coils with double-cylinder (D-CYL) and quadrupolar (QAD) winding methods is comparatively analyzed. Simulation by the finite element method (FEM) is done to calculate the temperature distribution and the thermal-induced phase shift errors in the fiber coils. Simulation results reveal that D-CYL fiber coil itself has fragile performance when it experiences an axially asymmetrical temperature gradient. However, the axial fragility performance could be improved when the D-CYL coil meshes with a heat-off spool. Through further simulations we find that once the D-CYL coil is provided with an axially symmetrical temperature environment, the thermal performance of fiber coils with the D-CYL winding method is better than that with the QAD winding method under the same variable temperature conditions. This valuable discovery is verified by two experiments. The D-CYL winding method is thus promising to overcome the temperature fragility of interferometric fiber optic gyroscopes (IFOGs). PMID:27322271
An adjoint method for gradient-based optimization of stellarator coil shapes
NASA Astrophysics Data System (ADS)
Paul, E. J.; Landreman, M.; Bader, A.; Dorland, W.
2018-07-01
We present a method for stellarator coil design via gradient-based optimization of the coil-winding surface. The REGCOIL (Landreman 2017 Nucl. Fusion 57 046003) approach is used to obtain the coil shapes on the winding surface using a continuous current potential. We apply the adjoint method to calculate derivatives of the objective function, allowing for efficient computation of analytic gradients while eliminating the numerical noise of approximate derivatives. We are able to improve engineering properties of the coils by targeting the root-mean-squared current density in the objective function. We obtain winding surfaces for W7-X and HSX which simultaneously decrease the normal magnetic field on the plasma surface and increase the surface-averaged distance between the coils and the plasma in comparison with the actual winding surfaces. The coils computed on the optimized surfaces feature a smaller toroidal extent and curvature and increased inter-coil spacing. A technique for computation of the local sensitivity of figures of merit to normal displacements of the winding surface is presented, with potential applications for understanding engineering tolerances.
Minimum maximum temperature gradient coil design.
While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart
2013-08-01
Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.
New method to design stellarator coils without the winding surface
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...
2017-11-06
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
New method to design stellarator coils without the winding surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
Method of eliminating the training effect in superconducting coils by post-wind preload
Heim, Joseph R.
1976-01-01
The training effect in superconducting coils is eliminated by winding the coil with a composite material that includes both a superconductor and a normal material and then applying stresses to the wound coil in the direction that electromagnetic stresses will be applied to the coil during normal use and in a magnitude greater than the calculated magnitude of the greatest electromagnetic stresses to be applied to the coil.
Uniformly wound superconducting coil and method of making same
Mookerjee, S.; Weijun, S.; Yager, B.
1994-03-08
A coil of superconducting wire for a superconducting magnet is described having a relatively dense and uniformly spaced winding to enhance the homogeneity and strength of the magnetic field surrounding the coil and a method of winding the same wherein the mandrel used to wind said coil comprises removable spacers and retainers forming a plurality of outwardly opening slots, each of said slots extending generally about the periphery of the mandrel and being sized to receive and outwardly align and retain successive turns of the superconducting wire within each slot as the wire is wound around and laterally across the mandrel to form a plurality of wire ribbons of a predetermined thickness laterally across the mandrel. 8 figures.
Uniformly wound superconducting coil and method of making same
Mookerjee, Sumit; Weijun, Shen; Yager, Billy
1994-01-01
A coil of superconducting wire for a superconducting magnet having a relaely dense and uniformly spaced winding to enhance the homogeneity and strength of the magnetic field surrounding the coil and a method of winding the same wherein the mandrel used to wind said coil comprises removable spacers and retainers forming a plurality of outwardly opening slots, each of said slots extending generally about the periphery of the mandrel and being sized to receive and outwardly align and retain successive turns of the superconducting wire within each slot as the wire is wound around and laterally across the mandrel to form a plurality of wire ribbons of a predetermined thickness laterally across the mandrel.
New method to design stellarator coils without the winding surface
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi
2018-01-01
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.
Mechanical and electric characteristics of vacuum impregnated no-insulation HTS coil
NASA Astrophysics Data System (ADS)
Park, Heecheol; Kim, A.-rong; Kim, Seokho; Park, Minwon; Kim, Kwangmin; Park, Taejun
2014-09-01
For the conduction cooling application, epoxy impregnation is inevitable to enhance the thermal conduction. However, there have been several research results on the delamination problem with coated conductor and the main cause of the delamination is related with the different thermal contraction between epoxy, the insulation layer and the weak conductor. To avoid this problem, the amount of epoxy and insulation layer between conductors should be minimized or removed. Therefore, no insulation (NI) winding method and impregnation after dry winding can be considered to solve the problem. The NI coil winding method is very attractive due to high mechanical/thermal stability for the special purpose of DC magnets by removing the insulation layer. In this paper, the NI coil winding method and vacuum impregnation are applied to a HTS coil to avoid the delamination problem and enhance the mechanical/thermal stability for the conduction cooling application. Through the charging/discharging operation, electric/thermal characteristics are investigated at 77 K and 30 K.
NASA Astrophysics Data System (ADS)
Komodromos, A.; Tekkaya, A. E.; Hofmann, J.; Fleischer, J.
2018-05-01
Since electric motors are gaining in importance in many fields of application, e.g. hybrid electric vehicles, optimization of the linear coil winding process greatly contributes to an increase in productivity and flexibility. For the investigation of the forming behavior of the winding wire the material behavior is characterized in different experimental setups. Numerical examinatons of the linear winding process are carried out in a case study for a rectangular bobbin in order to analyze the influence of forming parameters on the resulting properties of the wound coil. Besides the numerical investigation of the linear winding method by using the finite element method (FEM), a multi-body dynamics (MBD) simulation is carried out. The multi-body dynamics simulation is necessary to represent the movement of the bodies as well as the connection of the components during winding. The finite element method is used to represent the material behavior of the copper wire and the plastic strain distribution within the wire. It becomes clear that the MBD simulation is not sufficient for analyzing the process and the wire behavior in its entirety. Important parameters that define the final coil properties cannot be analyzed in the manner of a precise manifestation, e.g. the clearance between coil bobbin and wire as well as the wire deformation behavior in form of a diameter reduction which negatively affects the ohmic resistance. Finally, the numerical investigations are validated experimentally by linear winding tests.
Foster, Billy E.
1976-01-01
A method of determining the pitch and eccentricity of the winding of a coil unit is provided. It specifically relates to nondestructively examining completely encased heating coils used to simulate the heat generated from fuel rods in reactor studies. The method comprises (1) the use of an x-ray transmission technique through the axial centerline of the coil unit after the winding of the coil unit has been completely encased, (2) the use of a radiation detection instrument to monitor the transmitted radiation, and (3) the use of recording instrumentation calibrated as a function of the distance between windings. A change in the pitch of the winding is detected by a general increase or decrease in the distance between recorded peaks of the transmitted radiation. Eccentricity is detected by a consistent variation in distance between peaks occuring in alternate pairs.
Designing gradient coils with reduced hot spot temperatures.
While, Peter T; Forbes, Larry K; Crozier, Stuart
2010-03-01
Gradient coil temperature is an important concern in the design and construction of MRI scanners. Closely spaced gradient coil windings cause temperature hot spots within the system as a result of Ohmic heating associated with large current being driven through resistive material, and can strongly affect the performance of the coils. In this paper, a model is presented for predicting the spatial temperature distribution of a gradient coil, including the location and extent of temperature hot spots. Subsequently, a method is described for designing gradient coils with improved temperature distributions and reduced hot spot temperatures. Maximum temperature represents a non-linear constraint and a relaxed fixed point iteration routine is proposed to adjust coil windings iteratively to minimise this coil feature. Several examples are considered that assume different thermal material properties and cooling mechanisms for the gradient system. Coil winding solutions are obtained for all cases considered that display a considerable drop in hot spot temperature (>20%) when compared to standard minimum power gradient coils with equivalent gradient homogeneity, efficiency and inductance. The method is semi-analytical in nature and can be adapted easily to consider other non-linear constraints in the design of gradient coils or similar systems. Crown Copyright (c) 2009. Published by Elsevier Inc. All rights reserved.
Tang, Sai Chun; McDannold, Nathan J.
2015-01-01
This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems. PMID:26640745
Tang, Sai Chun; McDannold, Nathan J
2015-03-01
This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems.
Magnetic field transfer device and method
Wipf, S.L.
1990-02-13
A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.
Magnetic field transfer device and method
Wipf, Stefan L.
1990-01-01
A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian
2017-03-28
A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.
Superconducting flat tape cable magnet
Takayasu, Makoto
2015-08-11
A method for winding a coil magnet with the stacked tape cables, and a coil so wound. The winding process is controlled and various shape coils can be wound by twisting about the longitudinal axis of the cable and bending following the easy bend direction during winding, so that sharp local bending can be obtained by adjusting the twist pitch. Stack-tape cable is twisted while being wound, instead of being twisted in a straight configuration and then wound. In certain embodiments, the straight length should be half of the cable twist-pitch or a multiple of it.
NASA Astrophysics Data System (ADS)
Habu, K.; Kaminohara, S.; Kimoto, T.; Kawagoe, A.; Sumiyoshi, F.; Okamoto, H.
2010-11-01
We have developed a new monitoring system to detect an unusual event in the superconducting coils without direct contact on the coils, using Poynting's vector method. In this system, the potential leads and pickup coils are set around the superconducting coils to measure local electric and magnetic fields, respectively. By measuring the sets of magnetic and electric fields, the Poynting's vectors around the coil can be obtained. An unusual event in the coil can be detected as the result of the change of the Poynting's vector. This system has no risk of the voltage breakdown which may happen with the balance voltage method, because there is no need of direct contacts on the coil windings. In a previous paper, we have demonstrated that our system can detect the normal transitions in the Bi-2223 coil without direct contact on the coil windings by using a small test system. For our system to be applied to practical devices, it is necessary for the early detection of an unusual event in the coils to be able to detect local normal transitions in the coils. The signal voltages of the small sensors to measure local magnetic and electric fields are small. Although the increase in signals of the pickup coils is attained easily by an increase in the number of turns of the pickup coils, an increase in the signals of the potential lead is not easily attained. In this paper, a new method to amplify the signal of local electric fields around the coil is proposed. The validity of the method has been confirmed by measuring local electric fields around the Bi-2223 coil.
Mandija, Stefano; Sommer, Iris E. C.; van den Berg, Cornelis A. T.; Neggers, Sebastiaan F. W.
2017-01-01
Background Despite TMS wide adoption, its spatial and temporal patterns of neuronal effects are not well understood. Although progress has been made in predicting induced currents in the brain using realistic finite element models (FEM), there is little consensus on how a magnetic field of a typical TMS coil should be modeled. Empirical validation of such models is limited and subject to several limitations. Methods We evaluate and empirically validate models of a figure-of-eight TMS coil that are commonly used in published modeling studies, of increasing complexity: simple circular coil model; coil with in-plane spiral winding turns; and finally one with stacked spiral winding turns. We will assess the electric fields induced by all 3 coil models in the motor cortex using a computer FEM model. Biot-Savart models of discretized wires were used to approximate the 3 coil models of increasing complexity. We use a tailored MR based phase mapping technique to get a full 3D validation of the incident magnetic field induced in a cylindrical phantom by our TMS coil. FEM based simulations on a meshed 3D brain model consisting of five tissues types were performed, using two orthogonal coil orientations. Results Substantial differences in the induced currents are observed, both theoretically and empirically, between highly idealized coils and coils with correctly modeled spiral winding turns. Thickness of the coil winding turns affect minimally the induced electric field, and it does not influence the predicted activation. Conclusion TMS coil models used in FEM simulations should include in-plane coil geometry in order to make reliable predictions of the incident field. Modeling the in-plane coil geometry is important to correctly simulate the induced electric field and to correctly make reliable predictions of neuronal activation PMID:28640923
NASA Astrophysics Data System (ADS)
Suzuki, Masao; Aiba, Masayuki; Takahashi, Noriyuki; Ota, Satoru; Okada, Shigenori
In a magnetically levitated transportation (MAGLEV) system, a huge number of ground coils will be required because they must be laid for the whole line. Therefore, stable performance and reduced cost are essential requirements for the ground coil development. On the other hand, because the magnetic field changes when the superconducting magnet passes by, an eddy current will be generated in the conductor of the ground coil and will result in energy loss. The loss not only increases the magnetic resistance for the train running but also brings an increase in the ground coil temperature. Therefore, the reduction of the eddy current loss is extremely important. This study examined ground coils in which both the eddy current loss and temperature increase were small. Furthermore, quantitative comparison for the eddy current loss of various magnet wire samples was performed by bench test. On the basis of the comparison, a round twisted wire having low eddy current loss was selected as an effective ground coil material. In addition, the ground coils were manufactured on trial. A favorable outlook to improve the size accuracy of the winding coil and uneven thickness of molded resin was obtained without reducing the insulation strength between the coil layers by applying a compression molding after winding.
NASA Astrophysics Data System (ADS)
Wang, Xuping; Quan, Long; Xiong, Guangyu
2013-11-01
Currently, most researches use signals, such as the coil current or voltage of solenoid, to identify parameters; typically, parameter identification method based on variation rate of coil current is applied for position estimation. The problem exists in these researches that the detected signals are prone to interference and difficult to obtain. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which adds a new group of secondary winding to the coil of the ordinary switching electromagnet. On the basis of electromagnetic coupling theory analysis and simulation research of the magnetic field regarding the primary and secondary winding coils, and in accordance with the fact that under PWM control mode varying core position and operating current of windings produce different characteristic of flux increment of the secondary winding. The flux increment of the electromagnet winding can be obtained by conducting time domain integration for the induced voltage signal of the extracted secondary winding, and the core position from the two-dimensional fitting curve of the operating winding current and flux-linkage characteristic quantity of solenoid are calculated. The detecting and testing system of solenoid core position is developed based on the theoretical research. The testing results show that the flux characteristic quantity of switching electromagnet magnetic circuit is able to effectively show the core position and thus to accomplish the non-displacement transducer detection of the said core position of the switching electromagnet. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which provides a new theory and method for switch solenoid to control the proportional valve.
Minimizing hot spot temperature in asymmetric gradient coil design.
While, Peter T; Forbes, Larry K; Crozier, Stuart
2011-08-01
Heating caused by gradient coils is a considerable concern in the operation of magnetic resonance imaging (MRI) scanners. Hot spots can occur in regions where the gradient coil windings are closely spaced. These problem areas are particularly common in the design of gradient coils with asymmetrically located target regions. In this paper, an extension of an existing coil design method is described, to enable the design of asymmetric gradient coils with reduced hot spot temperatures. An improved model is presented for predicting steady-state spatial temperature distributions for gradient coils. A great amount of flexibility is afforded by this model to consider a wide range of geometries and system material properties. A feature of the temperature distribution related to the temperature gradient is used in a relaxed fixed point iteration routine for successively altering coil windings to have a lower hot spot temperature. Results show that significant reductions in peak temperature are possible at little or no cost to coil performance when compared to minimum power coils of equivalent field error.
NASA Astrophysics Data System (ADS)
Sun, Jiuce; Sanz, Santiago; Neumann, Holger
2015-12-01
Superconducting generators show the potential to reduce the head mass of large offshore wind turbines. A 10 MW offshore superconducting wind turbine has been investigated in the SUPRAPOWER project. The superconducting coils based on MgB2 tapes are supposed to work at cryogenic temperature of 20 K. In this paper, a novel modular rotating cryostat was presented for one single coil of the superconducting wind turbine. The modular concept and cryogen-free cooling method were proposed to fulfil the requirements of handling, maintenance, reliability of long term and offshore operations. Two stage Gifford-McMahon cryocoolers were used to provide cooling source. Supporting rods made of titanium alloy were selected as support structures of the cryostat in aim of reducing the heat load. The thermal performance in the modular cryostat was carefully investigated. The heat load applied to the cryocooler second stage was 2.17 W@20 K per coil. The corresponding temperature difference along the superconducting coil was only around 1 K.
Radiation-hard electrical coil and method for its fabrication
Grieggs, R.J.; Blake, R.D.; Gac, F.D.
1982-06-29
A radiation-hard insulated electrical coil and method for making the same are disclosed. In accordance with the method, a conductor, preferably copper, is wrapped with an aluminum strip and then tightly wound into a coil. The aluminum-wrapped coil is then annealed to relax the conductor in the coiled configuration. The annealed coil is then immersed in an alkaline solution to dissolve the aluminum strip, leaving the bare conductor in a coiled configuration with all of the windings closely packed yet uniformly spaced from one another. The coil is then insulated with a refractory insulating material. In the preferred embodiment, the coil is insulated by coating it with a vitreous enamel and subsequently potting the enamelled coil in a castable ceramic concrete. The resulting coil is substantially insensitive to radiation and may be operated continuously in high radiation environments for long periods of time.
NASA Astrophysics Data System (ADS)
Hasbullah Mohd Isa, Wan; Fikri Muhammad, Khairul; Mohd Khairuddin, Ismail; Ishak, Ismayuzri; Razlan Yusoff, Ahmad
2016-02-01
This paper presents the new form of coils for electromagnetic energy harvesting system based on topology optimization method which look-liked a cap to maximize the power output. It could increase the number of magnetic flux linkage interception of a cylindrical permanent magnet which in this case is of 10mm diameter. Several coils with different geometrical properties have been build and tested on a vibration generator with frequency of 100Hz. The results showed that the coil with lowest number of winding transduced highest power output of 680μW while the highest number of windings generated highest voltage output of 0.16V.
Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers
Danby, G.T.; Jackson, J.W.
1990-03-19
A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.
Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers
Danby, Gordon T.; Jackson, John W.
1991-01-01
A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.
Vehicle to wireless power transfer coupling coil alignment sensor
Miller, John M.; Chambon, Paul H.; Jones, Perry T.; White, Clifford P.
2016-02-16
A non-contacting position sensing apparatus includes at least one vehicle-mounted receiver coil that is configured to detect a net flux null when the vehicle is optimally aligned relative to the primary coil in the charging device. Each of the at least one vehicle-mounted receiver coil includes a clockwise winding loop and a counterclockwise winding loop that are substantially symmetrically configured and serially connected to each other. When the non-contacting position sensing apparatus is located directly above the primary coil of the charging device, the electromotive forces from the clockwise winding loop and the counterclockwise region cancel out to provide a zero electromotive force, i.e., a zero voltage reading across the coil that includes the clockwise winding loop and the counterclockwise winding loop.
Design, analyses, fabrication and characterization of Nb3Sn coil in 1 W pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Kundu, Ananya; Das, Subrat Kumar; Bano, Anees; Kumar, Nitish; Pradhan, Subrata
2017-02-01
A laboratory scale Nb3Sn coil is designed, analysed, fabricated and characterized in 1 W pulse tube cryocooler in solid nitrogen cooling mode and in conduction cooling mode. The magnetic field profile in axial and radial direction, Lorentz force component across the winding volume in operational condition are estimated in COMSOL. The coil is designed for 1.5 T at 100 A. It is fabricated in wind and react method. Before winding, the insulated Nb3Sn strand is wound on a copper mandrel which is thermally anchored with the 2nd stage of the cold head unit via a 10 mm thick copper ‘Z’ shaped plate The temperature distribution in 2nd cold stage, copper z plate and coil is monitored in both solid nitrogen cooling and conduction cooling mode. In solid nitrogen cooling mode, the quench of the coil occurs at 150 A for 0.01 A/s current ramp rate. The magnetic field at the centre of the coil bore is measured using transverse Hall sensor. The measured magnetic field value is compared with the analytical field value and they are found to be deviating ∼5% in magnitude. Again the coil is tested in conduction cooling mode maintaining the same current ramp rate and it is observed that the coil gets quenched at 70 A at temperature ∼ 10K.
Air core poloidal magnetic field system for a toroidal plasma producing device
Marcus, Frederick B.
1978-01-01
A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux.
Optimizing stellarator coil winding surfaces with Regcoil
NASA Astrophysics Data System (ADS)
Bader, Aaron; Landreman, Matt; Anderson, David; Hegna, Chris
2017-10-01
We show initial attempts at optimizing a coil winding surface using the Regcoil code [1] for selected quasi helically symmetric equilibria. We implement a generic optimization scheme which allows for variation of the winding surface to allow for improved diagnostic access and allow for flexible divertor solutions. Regcoil and similar coil-solving algorithms require a user-input winding surface, on which the coils lie. Simple winding surfaces created by uniformly expanding the plasma boundary may not be ideal. Engineering constraints on reactor design require a coil-plasma separation sufficient for the introduction of neutron shielding and a tritium generating blanket. This distance can be the limiting factor in determining reactor size. Furthermore, expanding coils in other regions, where possible, can be useful for diagnostic and maintenance access along with providing sufficient room for a divertor. We minimize a target function that includes as constraints, the minimum coil-plasma distance, the winding surface volume, and the normal magnetic field on the plasma boundary. Results are presented for two quasi-symmetric equilibria at different aspect ratios. Work supported by the US DOE under Grant DE-FG02-93ER54222.
Permanent magnet machine with windings having strand transposition
Qu, Ronghai; Jansen, Patrick Lee
2009-04-21
This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.
Six pole/eight pole single-phase motor
Kirschbaum, Herbert S.
1984-01-01
A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included.
Six pole/eight pole single-phase motor
Kirschbaum, H.S.
1984-07-31
A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included. 10 figs.
Apparatus and process for making a superconducting magnet for particle accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarabak, A.J.; Sunderman, W.H.; Mendola, E.G.
1992-03-10
This patent describes an apparatus for manufacturing a coil of superconducting material. It comprises a horizontally disposed winding mandrel; an adjustable support for receiving a spool of superconducting material, the spool having a vertical axis; means for translating the spool of superconducting material in a generally oval path around the winding mandrel so that the superconducting material is de-reeled from the spool, in order to wind a predetermined amount of superconducting material onto the mandrel, such that a coil of superconducting material is formed; means for guiding the superconducting material from the spool so as to deliver the superconducting materialmore » to the winding mandrel on a plane perpendicular to the vertical axis of the spool and parallel with a winding plane on the winding mandrel; means for imparting a tensioning force on the superconducting material as it is guided from the spool; means for rotating the winding mandrel about the horizontal axis thereof; means for clamping the superconducting material against the winding mandrel as the wire is wound thereon; means for securing the coil to the winding mandrel for lifting mandrel with the coil thereon; and means for curing the coil of superconducting material whereby a finished coil of superconducting material is formed.« less
Demonstration of a stand-alone cylindrical fiber coil for optical amplifiers
NASA Astrophysics Data System (ADS)
Laxton, Steven R.; Bravo, Tyler; Madsen, Christi K.
2015-08-01
The design, fabrication and measurement of a cylindrical fiber coil structure is presented that has applications for compact fiber-optic amplifiers. A multimode fiber is used as a surrogate for a dual clad, rare-earth doped fiber for coil fabrication and optical testing. A ray trace algorithm, written in Python, was used to simulate the behavior of light travelling along the waveguide path. An in-house fabrication method was developed using 3D printed parts designed in SolidWorks and assembled with Arduino-controlled stepper motors for coil winding. Ultraviolet-cured epoxy was used to bind the coils into a rigid cylinder. Bend losses are introduced by the coil, and a measurement of the losses for two coil lengths was obtained experimentally. The measurements confirm that bend losses through a multimode fiber, representative of pump light propagating in a dual-clad rare-earth doped fiber, are relatively wavelength independent over a large spectral range and that higher order modes are extinguished quickly while lower order modes transmit through the windings with relatively low loss.
Choi, Y H; Song, J B; Yang, D G; Kim, Y G; Hahn, S; Lee, H G
2016-10-01
This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.
NASA Astrophysics Data System (ADS)
Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.
2016-10-01
This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.
Superconductor coil geometry and ac losses
NASA Technical Reports Server (NTRS)
Pierce, T. V., Jr.; Zapata, R. N.
1976-01-01
An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.
Globally optimal superconducting magnets part II: symmetric MSE coil arrangement.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
A globally optimal superconducting magnet coil design procedure based on the Minimum Stored Energy (MSE) current density map is outlined. The method has the ability to arrange coils in a manner that generates a strong and homogeneous axial magnetic field over a predefined region, and ensures the stray field external to the assembly and peak magnetic field at the wires are in acceptable ranges. The outlined strategy of allocating coils within a given domain suggests that coils should be placed around the perimeter of the domain with adjacent coils possessing alternating winding directions for optimum performance. The underlying current density maps from which the coils themselves are derived are unique, and optimized to possess minimal stored energy. Therefore, the method produces magnet designs with the lowest possible overall stored energy. Optimal coil layouts are provided for unshielded and shielded short bore symmetric superconducting magnets.
Effect of Dimension and Shape of Magnet on the Performance AC Generator with Translation Motion
NASA Astrophysics Data System (ADS)
Indriani, A.; Dimas, S.; Hendra
2018-02-01
The development of power plants using the renewable energy sources is very rapid. Renewable energy sources used solar energy, wind energy, ocean wave energy and other energy. All of these renewable energy sources require a processing device or a change of motion system to become electrical energy. One processing device is a generator which have work principle of converting motion (mechanical) energy into electrical energy with rotary shaft, blade and other motion components. Generator consists of several types of rotation motion and linear motion (translational). The generator have components such as rotor, stator and anchor. In the rotor and stator having magnet and winding coil as an electric generating part of the electric motion force. Working principle of AC generator with linear motion (translation) also apply the principle of Faraday that is using magnetic induction which change iron magnet to produce magnetic flux. Magnetic flux is captured by the stator to be converted into electrical energy. Linear motion generators consist of linear induction machine, wound synchronous machine field, and permanent magnet synchronous [1]. Performance of synchronous generator of translation motion is influenced by magnet type, magnetic shape, coil winding, magnetic and coil spacing and others. In this paper focus on the neodymium magnet with varying shapes, number of coil windings and gap of magnetic distances. This generator work by using pneumatic mechanism (PLTGL) for power plants system. Result testing of performance AC generator translation motion obtained that maximum voltage, current and power are 63 Volt for diameter winding coil 0.15 mm, number of winding coil 13000 and distance of magnet 20 mm. For effect shape of magnet, maximum voltage happen on rectangle magnet 30x20x5 mm with 4.64 Volt. Voltage and power on effect of diameter winding coil is 14.63 V and 17.82 W at the diameter winding coil 0.7 and number of winding coil is 1260 with the distance of magnet 25 mm.
NASA Astrophysics Data System (ADS)
Nanato, N.; Kobayashi, Y.
AC high temperature superconducting (HTS) coils have been developed for transformers, motors and so on. Quench detection and protection system are essential for safety operations of the AC HTS facilities. The balance voltage method is universally used for the quench detection and protection, however especially for AC operations, the method has risks in terms of high voltage sparks. Because the method needs a voltage tap soldered to a midpoint of the coil winding and the AC HTS facilities generally operate at high voltages and therefore high voltage sparks may occur at the midpoint with no insulation. We have proposed the active power method for the quench detection and protection. The method requires no voltage tap on the midpoint of the coil winding and therefore it has in-built effectiveness for the AC HTS facilities. In this paper, we show that the method can detect the quench in an HTS transformer and moreover our proposed quench protection circuits which consist of thyristors are simple and useful for the AC HTS facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.
A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of themore » large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.« less
Method Of Wire Insertion For Electric Machine Stators
Brown, David L; Stabel, Gerald R; Lawrence, Robert Anthony
2005-02-08
A method of inserting coils in slots of a stator is provided. The method includes interleaving a first set of first phase windings and a first set of second phase windings on an insertion tool. The method also includes activating the insertion tool to radially insert the first set of first phase windings and the first set of second phase windings in the slots of the stator. In one embodiment, interleaving the first set of first phase windings and the first set of second phase windings on the insertion tool includes forming the first set of first phase windings in first phase openings defined in the insertion tool, and forming the first set of second phase windings in second phase openings defined in the insertion tool.
Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping
2011-01-01
In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.
Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping
2011-01-01
In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672
Split Coil Forms for Rotary Transformers
NASA Technical Reports Server (NTRS)
Mclyman, C. W. T.
1982-01-01
Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.
Demonstration of a Conduction Cooled React and Wind MgB2 Coil Segment for MRI Applications
Kim, H. S.; Kovacs, C.; Rindfleisch, M.; Yue, J.; Doll, D.; Tomsic, M.; Sumption, M. D.; Collings, E. W.
2016-01-01
This study is a contribution to the development of technology for an MgB2-based, cryogen-free, superconducting magnet for an MRI system. Specifically, we aim to demonstrate that a react and wind coil can be made using high performance in-situ route MgB2 conductor, and that the conductor could be operated in conduction mode with low levels of temperature gradient. In this work, an MgB2 conductor was used for the winding of a sub-size, MRI-like coil segment. The MgB2 coil was wound on a 457 mm ID 101 OFE copper former using a react-and-wind approach. The total length of conductor used was 330 m. The coil was epoxy impregnated and then instrumented for low temperature testing. After the initial cool down (conduction cooling) the coil Ic was measured as a function of temperature (15-30 K), and an Ic of 200 A at 15 K was measured. PMID:27857508
Electromagnetic pump stator coil
Fanning, A.W.; Dahl, L.R.
1996-06-25
An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.
Electromagnetic pump stator coil
Fanning, Alan W.; Dahl, Leslie R.
1996-01-01
An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.
An improved current potential method for fast computation of stellarator coil shapes
NASA Astrophysics Data System (ADS)
Landreman, Matt
2017-04-01
Several fast methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure (Merkel 1987 Nucl. Fusion 27 867), its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we find the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, it preserves convexity to ensure the local optimum found is the global optimum, and it eliminates two pathologies of NESCOIL: the resulting coil shapes become independent of the arbitrary choice of angles used to parameterize the coil surface, and the resulting coil shapes converge rather than diverge as Fourier resolution is increased. We therefore contend that REGCOIL should be used instead of NESCOIL for applications in which a fast and robust method for coil calculation is needed, such as when targeting coil complexity in fixed-boundary plasma optimization, or for scoping new stellarator geometries.
Coil optimisation for transcranial magnetic stimulation in realistic head geometry.
Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J
Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarmiento, G.; Sanz, S.; Pujana, A.; Merino, J. M.; Iturbe, R.; Apiñaniz, S.; Nardelli, D.; Marino, I.
2014-05-01
Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.
Experiment study on an inductive superconducting fault current limiter using no-insulation coils
NASA Astrophysics Data System (ADS)
Qiu, D.; Li, Z. Y.; Gu, F.; Huang, Z.; Zhao, A.; Hu, D.; Wei, B. G.; Huang, H.; Hong, Z.; Ryu, K.; Jin, Z.
2018-03-01
No-insulation (NI) coil made of 2 G high temperature superconducting (HTS) tapes has been widely used in DC magnet due to its excellent performance of engineering current density, thermal stability and mechanical strength. However, there are few AC power device using NI coil at present. In this paper, the NI coil is firstly applied into inductive superconducting fault current limiter (iSFCL). A two-winding structure air-core iSFCL prototype was fabricated, composed of a primary copper winding and a secondary no-insulation winding using 2 G HTS coated conductors. Firstly, in order to testify the feasibility to use NI coil as the secondary winding, the impedance variation of the prototype at different currents and different cycles was tested. The result shows that the impedance increases rapidly with the current rises. Then the iSFCL prototype was tested in a 40 V rms/ 3.3 kA peak short circuit experiment platform, both of the fault current limiting and recovery property of the iSFCL are discussed.
Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof
Mihailovich, Robert E.; Papavasiliou, Alex P.; Mehrotra, Vivek; Stupar, Philip A.; Borwick, III, Robert L.; Ganguli, Rahul; DeNatale, Jeffrey F.
2017-03-28
A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil. Alternating magnetic layers and electrically insulating layers may be micro-fabricated and electroplated as a single and substantially continuous segment on or around the insulating material.
Innovations in compact stellarator coil design
NASA Astrophysics Data System (ADS)
Pomphrey, N.; Berry, L.; Boozer, A.; Brooks, A.; Hatcher, R. E.; Hirshman, S. P.; Ku, L.-P.; Miner, W. H.; Mynick, H. E.; Reiersen, W.; Strickler, D. J.; Valanju, P. M.
2001-03-01
Experimental devices for the study of the physics of high beta (β gtrsim 4%), low aspect ratio (A lesssim 4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, several innovations have been made that may be useful in future stellarator design efforts. These include: the use of singular value decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a control matrix method for identifying which few of the many detailed elements of a stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of a genetic algorithm for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the trade-off between physics objectives and engineering constraints; the development of a new coil optimization code for designing modular coils and the identification of a `natural' basis for describing current sheet distributions.
Conductor for a fluid-cooled winding
Kenney, Walter J.
1983-01-01
A conductor and method of making the conductor are provided for use in winding electrical coils which are cooled by a fluid communicating with the conductor. The conductor is cold worked through twisting and reshaping steps to form a generally rectangular cross section conductor having a plurality of helical cooling grooves extending axially of the conductor. The conductor configuration makes it suitable for a wide variety of winding applications and permits the use of simple strip insulation between turns and perforated sheet insulation between layers of the winding.
Giant-FOG: A new player in ground motion instrumentation
NASA Astrophysics Data System (ADS)
Guattari, F.; de Toldi, E.; Bigueur, A.; Decitre, J. B.; Ponceau, D.; Sèbe, O.; Frenois, A.; Schindelé, F.; Moluçon, C.; Gaffet, S.; Ducloux, E.; Lefèvre, H.
2017-12-01
Based on recent experiences developing very low noise fiber-optic gyroscopes (FOG), first performance results on very large fiber-optic coils of up to 1m diameter are presented. The goal for constructing large FOGs is to evaluate experimentally the physical limits of this kind of technology and to reach the lowest possible noise. While these experiments are probing the fundamental limits of the FOG technology, they also serves as a first step for a cost effective very low noise laboratory rotational seismometer, which could be a game changer in instrumentation of ground motion. Build a Giant-FOG has several difficulties: The first is winding of the coil, the second concerns the mechanical substrate, and third is related to the measurement. - To our knowledge, a winding machine, large enough to wind coil of a 1 meter diameter, does not exist, but thanks to the iXblue expertise in the manufacturing of winding machines and calibration tables, a hydride system has been designed, merging these two technology to fulfill the requirement of winding a large coil on an adequate rotational platform. The characterization of the wobbles of the system will be presented, since this is a critical parameter for the winding and ultimately the performance. - To achieve the highest attainable measurement sensitivity to the real ground rotation, the design of the mechanical substrate of the coil is critical to reduce as much as possible the sensor sensitivities to environmental noises. A preliminary assessment of the global noise performance of the 1m diameter FOG sensor will be presented. - To demonstrate the on-site performance, the low noise inter-disciplinary underground laboratory (LSBB, Rustrel, France), with a dense array of precisely oriented broad-band seismometers, provides the possibility to compare Large FOG rotation records with Array Derivated Rotation measurement method. Results of different prototypes during the development process will be presented to underline the applicability of each technological response to the Large-FOG requirements. Finally we conclude with presentation of the achieved results with a 1m scale diameter FOG having more than 10km of fiber length.
Nylon screws make inexpensive coil forms
NASA Technical Reports Server (NTRS)
Aucoin, G.; Rosenthal, C.
1978-01-01
Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.
Ceramic electrical insulation for electrical coils, transformers, and magnets
Rice, John A.; Hazelton, Craig S.; Fabian, Paul E.
2002-01-01
A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.
Modeling of screening currents in coated conductor magnets containing up to 40000 turns
NASA Astrophysics Data System (ADS)
Pardo, E.
2016-08-01
Screening currents caused by varying magnetic fields degrade the homogeneity and stability of the magnetic fields created by REBCO coated conductor coils. They are responsible for the AC loss; which is also important for other power applications containing windings, such as transformers, motors and generators. Since real magnets contain coils exceeding 10000 turns, accurate modeling tools for this number of turns or above are necessary for magnet design. This article presents a fast numerical method to model coils with no loss of accuracy. We model a 10400-turn coil for its real number of turns and coils of up to 40000 turns with continuous approximation, which introduces negligible errors. The screening currents, the screening current induced field (SCIF) and the AC loss is analyzed in detail. The SCIF is at a maximum at the remnant state with a considerably large value. The instantaneous AC loss for an anisotropic magnetic-field dependent J c is qualitatively different than for a constant J c , although the loss per cycle is similar. Saturation of the magnetization currents at the end pancakes causes the maximum AC loss at the first ramp to increase with J c . The presented modeling tool can accurately calculate the SCIF and AC loss in practical computing times for coils with any number of turns used in real windings, enabling parameter optimization.
NASA Astrophysics Data System (ADS)
Plastun, A. T.; Tikhonova, O. V.; Malygin, I. V.
2018-02-01
The paper presents methods of making a periodically varying different-pole magnetic field in low-power electrical machines. Authors consider classical designs of electrical machines and machines with ring windings in armature, structural features and calculated parameters of magnetic circuit for these machines.
NASA Astrophysics Data System (ADS)
Chen, Peng
As the only high temperature superconductor with round wire (RW) geometry, Bi2Sr2CaCu2O8+x (Bi-2212) superconducting wire has the advantages of being multi-filamentary, macroscopically isotropic and twistable. With overpressure (OP) processing techniques recently developed by our group at the National High Magnetic Field Laboratory (NHMFL), the engineering current density (Je) of Bi-2212 RW can be dramatically increased. For example, Je of more than 600 A/mm 2 (4.2 K and 20 T) is achieved after 100 bar OP processing. With these intrinsically beneficial properties and recent processing progress, Bi-2212 RW has become very attractive for high field magnet applications, especially for nuclear magnetic resonance (NMR) magnets and accelerator magnets etc. This thesis summarizes my graduate study on Bi-2212 solenoids for high field and high homogeneity NMR magnet applications, which mainly includes performance study of Bi-2212 RW insulations, 1 bar and OP processing study of Bi-2212 solenoids, and development of superconducting joints between Bi-2212 RW conductors. Electrical insulation is one of the key components of Bi-2212 coils to provide sufficient electrical standoff within coil winding pack. A TiO 2/polymer insulation offered by nGimat LLC was systematically investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurements, and transport critical current (Ic) property measurements. About 29% of the insulation by weight is polymer. When the Bi-2212 wire is fully heat treated, this decomposes with slow heating to 400 °C in flowing O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V. A Bi-2212 RW wound solenoid coil was built using this insulation being offered by nGimat LLC. The coil resistance was constant through coil winding, polymer burn-off and full coil reaction. The coil was successfully tested at the NHMFL generating 33.8 T combined magnetic field in a 31.2 T background field. Multiple quenches occurred safely, which also illustrates that the insulation provided sufficient dielectric standoff. For Bi-2212 RW with a typical as-drawn diameter of 1.0-1.5 mm, this 15 microm thick insulation allows a very high coil packing factor of ~0.74, whereas earlier alumino-silicate braid insulation only allows packing factors of 0.38-0.48. In addition to the commercial TiO2/polymer insulation, we have also investigated sol-gel based ceramic coatings through collaboration with Harran University and another TiO2 based insulation coating at the NHMFL. Since Bi-2212 superconducting coils employ the Wind-and-React (W&R) technology, there are some potential issues in processing Bi-2212 coils, in particular for coils with a large thermal mass and dense oxide insulation coating. For this study, several Bi-2212 test solenoids with an outer diameter (OD) of about 90 mm were built and heat treated in 1 bar flowing oxygen with deadweights applied so as to simulate large coil packs. After the heat treatment (HT), coils were epoxy impregnated and cut. Winding pack was checked using SEM in terms of conductor geometry and insulation. Some samples were extracted to measure transport critical current Ic and critical temperature Tc. The results are very promising: test coils presented low creep behavior after standard partial melt HT under mechanical load, and no Ic degradation was found due to the application of mechanical load, and no inadequate oxygenation issue was seen for thick coils with ceramic coating on the wire. However, coils were partially electrically shorted after 1 bar HT under mechanical load, and we believe that increasing insulation coating thickness is necessary. In addition, several small solenoids were manufactured to study OP processing of Bi-2212 coils. The preliminary results indicate that there are some gaps between turns due to densification of wires (~4% wire diameter reduction) during 50-100 bar OP processing, and the diameter shrinking of conductors will potentially lead to coil sagging. So far, we have developed some methods to solve the issue of coil sagging, such as using flexible coil flange to allow smooth sagging of winding pack during OP processing. We have also investigated electrical joints between Bi-2212 RW conductors, which include resistive joints and superconducting joints. For resistive Bi-2212 joints, we evaluated conventional diffusion bonding method and soldering method. In general, the joints (with 42 mm joint length) resistances are below 200 nO at 4.2 K and magnetic fields up to 13.5 T, and the effect of magnetoresistance is clearly present. In addition to resistive joints, we successfully developed a superconducting joint between Bi-2212 RW conductors for persistent current mode (PCM) operations. (Abstract shortened by UMI.).
Physical properties of a resin system for filling the inter-space in the ITER TF coil casing
NASA Astrophysics Data System (ADS)
Evans, D.; Baynahm, E.; Canfer, S.; Foussat, A.
2014-01-01
Each of the eighteen ITER Toroidal Field (TF) coils will consist of seven double pancakes. Each double pancake will have been individually vacuum impregnated and then the seven units assembled together, over-wrapped with glass fabric based insulation and finally vacuum impregnated again to form the TF coil winding pack [1]. The winding pack (WP) will be finally assembled into the coil casing (CC) and to allow for manufacturing tolerances and final geometric definition, a nominal 10 mm gap will exist between the winding pack and the coil case but in practice, this gap may vary between 3 and 15 mm. After assembly, the final step will be to fill the gap with a material that will maintain the final position of the WP and to uniformly transfer load from WP to CC. This paper deals with the selection of materials and techniques to fill the gap and details some of the properties of the chosen material.
Performance of the Conduction-Cooled LDX Levitation Coil
NASA Astrophysics Data System (ADS)
Michael, P. C.; Schultz, J. H.; Smith, B. A.; Titus, P. H.; Radovinsky, A.; Zhukovsky, A.; Hwang, K. P.; Naumovich, G. J.; Camille, R. J.
2004-06-01
The Levitated Dipole Experiment (LDX) was developed to study plasma confinement in a dipole magnetic field. Plasma is confined in the magnetic field of a 680-kg Nb3Sn Floating Coil (F-coil) that is electromagnetically supported at the center of a 5-m diameter by 3-m tall vacuum chamber. The Levitation Coil (L-coil) is a 2800-turn, double pancake winding that supports the weight of the F-coil and controls its vertical position within the vacuum chamber. The use of high-temperature superconductor (HTS) Bi-2223 for the L-coil minimizes the electrical and cooling power needed for levitation. The L-coil winding pack and support plate are suspended within the L-coil cryostat and cooled by conduction to a single-stage cryocooler rated for 25-W heat load at approximately 20 K. The coil current leads consist of conduction-cooled copper running from room temperature to 80 K and a pair of commercially-available, 150-A HTS leads. An automatically filled liquid-nitrogen reservoir provides cooling for the coil's radiation shield and for the leads' 80-K heat stations. This paper discusses the L-coil system design and its observed cryogenic performance.
Dombrovski, Viatcheslav V.; Driscoll, David I.; Shovkhet, Boris A.
2001-01-01
A superconducting electromechanical rotating (SER) device, such as a synchronous AC motor, includes a superconducting field winding and a one-layer stator winding that may be water-cooled. The stator winding is potted to a support such as the inner radial surface of a support structure and, accordingly, lacks hangers or other mechanical fasteners that otherwise would complicate stator assembly and require the provision of an unnecessarily large gap between adjacent stator coil sections. The one-layer winding topology, resulting in the number of coils being equal to half the number of slots or other mounting locations on the support structure, allows one to minimize or eliminate the gap between the inner radial ends of adjacent straight sections of the stator coilswhile maintaining the gap between the coil knuckles equal to at least the coil width, providing sufficient room for electrical and cooling element configurations and connections. The stator winding may be potted to the support structure or other support, for example, by a one-step VPI process relying on saturation of an absorbent material to fill large gaps in the stator winding or by a two-step process in which small gaps are first filled via a VPI or similar operation and larger gaps are then filled via an operation that utilizes the stator as a portion of an on-site mold.
Ke, Lei; Yan, Guozheng; Yan, Sheng; Wang, Zhiwu; Li, Xiaoyang
2015-07-01
Transcutaneous energy transfer system (TETS) is widely used to energize implantable biomedical devices. As a key part of the TETS, a pair of applicable coils with low losses, high unloaded Q factor, and strong coupling is required to realize an efficient TETS. This article presents an optimal design methodology of planar litz wire coils sandwiched between two ferrite substrates wirelessly powering a novel mechanical artificial anal sphincter system for treating severe fecal incontinence, with focus on the main parameters of the coils such as the wire diameter, number of turns, geometry, and the properties of the ferrite substrate. The theoretical basis of optimal power transfer efficiency in an inductive link was analyzed. A set of analytical expressions are outlined to calculate the winding resistance of a litz wire coil on ferrite substrate, taking into account eddy-current losses, including conduction losses and induction losses. Expressions that describe the geometrical dimension dependence of self- and mutual inductance are derived. The influence of ferrite substrate relative permeability and dimensions is also considered. We have used this foundation to devise an applicable coil design method that starts with a set of realistic constraints and ends with the optimal coil pair geometries. All theoretical predictions are verified with measurements using different types of fabricated coils. The results indicate that the analysis is useful for optimizing the geometry design of windings and the ferrite substrate in a sandwich structure as part of which, in addition to providing design insight, allows speeding up the system efficiency-optimizing design process. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Influence of bending stress on flux distribution in toroidal transducers
NASA Astrophysics Data System (ADS)
Goktepe, M.; Meydan, T.
1994-05-01
Amorphous transducers consisting of toroidally wound amorphous ribbon with a magnetising winding and search coil windings have been investigated. The application of displacement to the toroid gives a linear search coil voltage against the applied force characteristics. The position of the search coils with respect to the applied force has been studied and it is shown that the effect of applied force is localised. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.
Superconducting Coil Winding Machine Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogiec, J. M.; Kotelnikov, S.; Makulski, A.
The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.
Single phase two pole/six pole motor
Kirschbaum, Herbert S.
1984-01-01
A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis.
Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application
NASA Astrophysics Data System (ADS)
Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi
2015-11-01
The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
Liu, Yadong; Xie, Xiaolei; Hu, Yue; Qian, Yong; Sheng, Gehao; Jiang, Xiuchen
2016-01-01
The accurate detection of high-frequency transient fault currents in overhead transmission lines is the basis of malfunction detection and diagnosis. This paper proposes a novel differential winding printed circuit board (PCB) Rogowski coil for the detection of transient fault currents in overhead transmission lines. The interference mechanism of the sensor surrounding the overhead transmission line is analyzed and the guideline for the interference elimination is obtained, and then a differential winding printed circuit board (PCB) Rogowski coil is proposed, where the branch and return line of the PCB coil were designed to be strictly symmetrical by using a joining structure of two semi-rings and collinear twisted pair differential windings in each semi-ring. A serial test is conducted, including the frequency response, linearity, and anti-interference performance as well as a comparison with commercial sensors. Results show that a PCB Rogowski coil has good linearity and resistance to various external magnetic field interferences, thus enabling it to be widely applied in fault-current-collecting devices. PMID:27213402
Wind and React MgB2 Rotor Coils
NASA Astrophysics Data System (ADS)
Bohnenstiehl, S. D.; Sumption, M. D.; Majoros, M.; Tomsic, M.; Rindfleisch, M.; Phillips, J.; Yue, J.; Collings, E. W.
2008-03-01
Five rotor coils (four plus a spare) intended for a prototype 2 MW generator were fabricated and tested. For each coil, multifilamentary MgB2 strand was wound around a stepped former in a wind and react mode using S-glass insulation in combination with vacuum epoxy impregnation. The stepped, ellipsoidal coils had maximum in-plane dimensions of 26.7 cm×13.1 cm and a total thickness of 5.4 cm, and were wound with approximately 580 m of MgB2 strand per coil. Each of the coils were measured separately for Ic and magnetic field in the bore at 4.2 K and for one coil Ic and B were also measured as a function of temperature. The bore field as a function of position along the z-axis was also determined near the critical current at 4.2 K. The coils typically reached 186 A at 4.2 K generating a 1.7 T field, while at 20 K the Ic was 117 A with a bore field of 1.1 T field.
Single phase two pole/six pole motor
Kirschbaum, H.S.
1984-09-25
A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis. 12 figs.
Low loss pole configuration for multi-pole homopolar magnetic bearings
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)
2001-01-01
A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.
1 MVA HTS-2G Generator for Wind Turbines
NASA Astrophysics Data System (ADS)
Kovalev, K. L.; Poltavets, V. N.; Ilyasov, R. I.; Verzhbitsky, L. G.; Kozub, S. S.
2017-10-01
The calculation, design simulations and design performance of 1 MVA HTS-2G (second-generation high-temperature superconductor) Generator for Wind Turbines were done in 2013-2014 [1]. The results of manufacturing and testing of 1 MVA generator are presented in the article. HTS-2G field coils for the rotor were redesigned, fabricated and tested. The tests have shown critical current of the coils, 41-45 A (self field within the ferromagnetic core, T = 77 K), which corresponds to the current of short samples at self field. Application of the copper inner frame on the pole has improved internal cooling conditions of HTS coil windings and reduced the magnetic field in the area, thereby increased the critical current value. The original construction of the rotor with a rotating cryostat was developed, which decreases the thermal in-flow to the rotor. The stator of 1 MW HTS-2G generator has been manufactured. In order to improve the specific weight of the generator, the wave (harmonic drive) multiplier was used, which provides increasing RPM from 15 RPM up to 600 RPM. The total mass of the multiplier and generator is significantly smaller compared to traditional direct-drive wind turbines generators [2-7]. Parameters of the multiplier and generator were chosen based on the actual parameters of wind turbines, namely: 15 RPM, power is 1 MVA. The final test of the assembled synchronous generator with HTS-2G field coils for Wind Turbines with output power 1 MVA was completed during 2015.
NASA Astrophysics Data System (ADS)
Chen, Qian; Liu, Guohai; Gong, Wensheng; Qu, Li; Zhao, Wenxiang; Shen, Yue
2012-04-01
The spoke-type motor has higher torque density than the conventional one resulting from its structure for concentrating flux from permanent magnets (PMs). However, this motor suffers from the serious distortion of back electromotive force (EMF). This paper proposes a cost-effective approach to design a spoke-type motor with lower harmonics of back-EMF for electric vehicle. The key is to superimpose the coil-EMF of one phase in such a way that the harmonics of the phase-EMF can be canceled, resulting in essentially sinusoidal waveforms. By using finite element method (FEM), an optimal coil-EMF vectors distribution for minimum harmonics of the phase-EMF is obtained and verified. In addition, the co-simulation technology is adopted to verify that the torque ripple under the optimal winding configuration can be significantly suppressed.
Single phase four pole/six pole motor
Kirschbaum, Herbert S.
1984-01-01
A single phase alternating current electric motor is provided with a main stator winding having two coil groups each including the series connection of three coils. These coil groups can be connected in series for six pole operation and in parallel for four pole operation. The coils are approximately equally spaced around the periphery of the machine but are not of equal numbers of turns. The two coil groups are identically wound and spaced 180 mechanical degrees apart. One coil of each group has more turns and a greater span than the other two coils.
Construction and component testing of TAMU3, a 14 Tesla stress-managed Nb3Sn model dipole
NASA Astrophysics Data System (ADS)
Holik, Eddie Frank, III; Benson, Chris; Blackburn, Raymond; Diaczenko, Nick; Elliott, Timothy; Jaisle, Andrew; McInturff, A.; McIntyre, P.; Sattarov, Akhdiyor
2012-06-01
We report the construction and testing of components of TAMU3, a 14 Tesla Nb3Sn block-coil dipole. A primary goal in developing this model dipole is to test a method of stress management in which Lorentz stress is intercepted within the coil assembly and bypassed so that it cannot accumulate to a level that would cause strain degradation in the superconducting windings. Details of the fabrication, tooling, and results of construction and magnet component testing will be presented.
Haghnegahdar, A; Khosrovpanah, H; Andisheh-Tadbir, A; Mortazavi, Gh; Saeedi Moghadam, M; Mortazavi, SMJ; Zamani, A; Haghani, M; Shojaei Fard, M; Parsaei, H; Koohi, O
2014-01-01
Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicate that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coils are devices that generate pulsed electromagnetic fields (PEMF). Objective: In this work, a pair of Helmholtz coils for enhancing the healing process in periodontitis was designed and fabricated. Method: An identical pair of square Helmholtz coils generated the 50 Hz magnetic field. This device was made up of two parallel coaxial circular coils (100 turns in each loop, wound in series) which were separated from each other by a distance equal to the radius of one coil (12.5 cm). The windings of our Helmholtz coil was made of standard 0.95mm wire to provide the maximum possible current. The coil was powered by a function generator. Results: The Helmholtz Coils generated a uniform magnetic field between its coils. The magnetic field strength at the center of the space between two coils was 97.6 μT. Preliminary biological studies performed on rats show that exposure of laboratory animals to pulsed electromagnetic fields enhanced the healing of periodontitis. Conclusion: Exposure to PEMFs can lead to stimulatory physiological effects on cells and tissues such as enhanced healing of periodontitis. PMID:25505775
A polygonal double-layer coil design for high-efficiency wireless power transfer
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.
Reduced vibration motor winding arrangement
Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.
1997-11-11
An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.
Reduced vibration motor winding arrangement
Slavik, Charles J.; Rhudy, Ralph G.; Bushman, Ralph E.
1997-01-01
An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.
Superconducting HTS coil made from round cable cooled by liquid nitrogen flow
NASA Astrophysics Data System (ADS)
Šouc, J.; Gömöry, F.; Vojenčiak, M.; Solovyov, M.; Seiler, E.; Kováč, J.; Frolek, L.
2017-10-01
The concept of simple cooling arrangement for superconducting coil made from a round cable based on high-temperature superconductor tapes is demonstrated. The cable architecture is similar to the Conductor on Round Core (CORC®) concept: it consists of eight superconducting tapes wound in two layers on a copper tube core in a helical manner. Such a Conductor on Round Tube hand-made cable 4 m long was used to wind the coil with eight turns on 14 cm diameter. Layers of commercial aerogel and polyurethane foam were applied to the coil to provide vacuum-less thermal insulation at its cooling by the flow of liquid nitrogen (LN) in the cable tube. The temperature of superconducting tapes was around 1 K above the coolant temperature in these conditions, causing about 16% reduction of the critical current compared to the LN bath cooling. Electromagnetic performance of the coil was calculated by the model based on the finite element method and the results compared with experimental observations.
Method and apparatus for making superconductive magnet coils
Borden, A.R.
1983-11-07
A curved, shell-type magnet coil, adapted to be used in a superconducting magnet, is wound by providing a mandrel having a tubular cylindrical mid-portion terminating at both ends in tapered end portions formed with longitudinal slots having flexible fingers therebetween. An elongated electrical conductor is wound around an elongated oval-shaped pole island engaged with the outside of the cylindrical mid-portion, to form a multiplicity of oval-shaped turns engaged with a 180-degree segment of the mandrel. The coil turns have longitudinal portions with curved portions therebetween, engaging the tapered end portions of the mandrel. Upon completion of the winding, tapered expansion members are fully inserted into the tapered end portions, to displace the flexible fingers outwardly into a cylindrical form and to displace the curved portions of the turns into a shape conforming to such cylindrical form while also exerting increased tension upon the turns to minimize draping of the turns and to enhance the mechanical integrity of the coil. A half cylinder clamp may then be employed to clamp the coil, whereupon the coil may be solidified by the use of an epoxy adhesive.
Method and apparatus for making superconductive magnet coils
Borden, Albert R.
1985-01-01
A curved, shell-type magnet coil, adapted to be used in a superconducting magnet, is wound by providing a mandrel having a tubular cylindrical mid-portion terminating at both ends in tapered end portions formed with longitudinal slots having flexible fingers therebetween. An elongated electrical conductor is wound around an elongated oval-shaped pole island engaged with the outside of the cylindrical mid-portion, to form a multiplicity of oval-shaped turns engaged with a 180-degree segment of the mandrel. The coil turns have longitudinal portions with curved portions therebetween, engaging the tapered end portions of the mandrel. Upon completion of the winding, tapered expansion members are fully inserted into the tapered end portions, to displace the flexible fingers outwardly into a cylindrical form and to displace the curved portions of the turns into a shape conforming to such cylindrical form while also exerting increased tension upon the turns to minimize draping of the turns and to enhance the mechanical integrity of the coil. A half cylinder clamp may then be employed to clamp the coil, whereupon the coil may be solified by the use of an epoxy adhesive.
High-field double-pancake superconducting coils and a method of winding
Materna, P.A.
1984-01-31
A double-pancake coil having first and second pancakes may comprise a plurality of conductor means, each conductor means having a different grade and having one or more conductors, wherein each pancake of said double-pancake coil is comprised of inner and outer turns; wherein said inner turns are comprised of at least one of said conductor means wound about an axis and nested within one another; wherein said outer turns are comprised of said inner conductor means and at least one other conductor means co-wound about said inner turns and nested within one another; wherein each of said conductor means is wound along said axis from said first pancake to said second pancake at a different turn.
High-field double-pancake superconducting coils and a method of winding
Materna, Peter A.
1985-01-01
A double-pancake coil having first and second pancakes may comprise a plurality of conductor means, each conductor means having a different grade and having one or more conductors, wherein each pancake of said double-pancake coil is comprised of inner and outer turns; wherein said inner turns are comprised of at least one of said conductor means wound about an axis and nested within one another; wherein said outer turns are comprised of said inner conductor means and at least one other conductor means co-wound about said inner turns and nested within one another; wherein each of said conductor means is wound along said axis from said first pancake to said second pancake at a different turn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L'vov, S. Yu.; Lyut'ko, E. O.; Bondareva, V. N.
The radiational-thermal development of coil short circuits due to the action of partial discharges of the first kind when the windings of transformers, autotransformers and shunting reactors become contaminated with metal-containing colloidal particles, formed in the transformer oil as a result of the interaction of the oil with the constructional materials (the copper of the windings, the iron of the tank, the core etc.) is considered. Acriterion of dangerous contamination of the coil insulation of the windings by metal-containing colloidal particles is proposed, namely, 3% of the mass content of copper and iron in it, which, if exceeded, may servemore » as a basis for recognizing the state of transformers, autotransformers and shunting reactors at a voltage of 110 kV and above the limit. It is shown that filters for continuously cleaning the oil play a considerable role in prolonging the life of transformer equipment.« less
Flexible helical-axis stellarator
Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.
1988-01-01
An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.
NASA superconducting magnetic mirror facility
NASA Technical Reports Server (NTRS)
Reinmann, J. J.; Swanson, M. C.; Nichols, C. R.; Obloy, S. J.; Nagy, L. A.; Brady, F. J.
1973-01-01
This report summarizes the design details and initial test results of a superconducting magnetic mirror facility that has been constructed at NASA Lewis Research Center for use in thermonuclear research. The magnet system consists of four solenoidal coils which are individually rated at 5.0 T. Each coil is composed of an inner, middle, and outer winding. The inner winding is wound of stabilized Nb3SN superconducting ribbon, and the middle and outer windings are wound of stabilized Nb-Ti superconducting wire. When arranged in the mirror geometry, the four coils will produce 8.7 T at the mirrors and a 1.8 mirror ratio. The magnet has a 41-cm diameter clear bore which is open to atmosphere. Distance between the mirrors is 111 cm. Presently there are only three magnets in the facility; the fourth magnet is being rebuilt.
Single phase four pole/six pole motor
Kirschbaum, H.S.
1984-10-09
A single phase alternating current electric motor is provided with a main stator winding having two coil groups each including the series connection of three coils. These coil groups can be connected in series for six pole operation and in parallel for four pole operation. The coils are approximately equally spaced around the periphery of the machine but are not of equal numbers of turns. The two coil groups are identically wound and spaced 180 mechanical degrees apart. One coil of each group has more turns and a greater span than the other two coils. 10 figs.
Design development and construction of the RFX field shaping winding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitarin, G.; Guarnieri, M.; Stella, A.
1989-03-01
The paper describes the development work on the design and the manufacture of the RFX Field Shaping Winding, from the preliminary analysis and the tests on prototypes to the final design. The winding consists of 16 coils, with 24 copper turns each and of diameters up to 5.5 m. The maximum current is 6.25 kA and the maximum voltage to earth is 35 kV. Each coil is supported in 24 radial locations and the electrodynamic load on a single coil is approximately 40 kN/m in normal operation. Fiberglass impregnated with epoxy resin, reinforced in places with polymide tape, has beenmore » used for the insulation. The high levels of the electrical and mechanical strength specified present conflicting constraints, which have required some care in the structural design and the definition of insulation system and impregnation technology. Although the use of copper coils with this kid of insulation may seem obvious and well established, indeed the stringent operational requirements have posed a number of problems which have demanded extensive work on the design and prototype development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiersen, W.; Heitzenroeder, P.; Neilson, G. H.
The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The stellarator core is designed to produce a compact 3-D plasma that combines stellarator and tokamak physics advantages. The engineering challenges of NCSX stem from its complex geometry. From the project's start in April, 2003 to September, 2004, the fabrication specifications for the project's two long-lead components, the modular coil winding forms and the vacuum vessel, were developed. An industrial manufacturing R&D program refined the processes for their fabrication as well as production cost andmore » schedule estimates. The project passed a series of reviews and established its performance baseline with the Department of Energy. In September 2004, fabrication was approved and contracts for these components were awarded. The suppliers have completed the engineering and tooling preparations and are in production. Meanwhile, the project completed preparations for winding the coils at PPPL by installing a coil manufacturing facility and developing all necessary processes through R&D. The main activities for the next two years will be component manufacture, coil winding, and sub-assembly of the vacuum vessel and coil subsets. Machine sector sub-assembly, machine assembly, and testing will follow, leading to First Plasma in July 2009.« less
Measurement of AC Losses in a Racetrack Superconducting Coil Made from YBCO Coated Conductor
NASA Astrophysics Data System (ADS)
Seiler, Eugen; Abrahamsen, Asger B.; Kováč, Ján; Wichmann, Mike; Træholt, Chresten
We present the results of transport measurements of AC losses in a racetrack shaped superconducting coil made from coated conductor tape. The outer dimensions of the coil are approximately 24 cm × 12 cm and it has 57 turns. The coil is impregnated with epoxy resin and fiberglass tape is used to insulate the individual turns and to improve the mechanical properties of the epoxy when exposed to thermal cycling. The coil is manufactured as a part of the field winding of a small synchronous generator; therefore stainless steel frames are installed on the inner and outer side of the winding to reinforce it. The AC loss is measured versus the transport current Ia with the coil immersed in liquid nitrogen. Measurements at frequencies 21 Hz, 36 Hz and 72 Hz are compared. The AC losses follow Ia2 dependence at low current amplitudes and Ia3 at high amplitudes. After cutting the inner steel frame the low amplitude losses are decreased, their frequency dependence is reduced but their dependence on the current remains unchanged.
NASA Astrophysics Data System (ADS)
Wang, Boshuo; Shen, Michael R.; Deng, Zhi-De; Smith, J. Evan; Tharayil, Joseph J.; Gurrey, Clement J.; Gomez, Luis J.; Peterchev, Angel V.
2018-06-01
Objective. To present a systematic framework and exemplar for the development of a compact and energy-efficient coil that replicates the electric field (E-field) distribution induced by an existing transcranial magnetic stimulation coil. Approach. The E-field generated by a conventional low field magnetic stimulation (LFMS) coil was measured for a spherical head model and simulated in both spherical and realistic head models. Then, using a spherical head model and spatial harmonic decomposition, a spherical-shaped cap coil was synthesized such that its windings conformed to a spherical surface and replicated the E-field on the cortical surface while requiring less energy. A prototype coil was built and electrically characterized. The effect of constraining the windings to the upper half of the head was also explored via an alternative coil design. Main results. The LFMS E-field distribution resembled that of a large double-cone coil, with a peak field strength around 350 mV m‑1 in the cortex. The E-field distributions of the cap coil designs were validated against the original coil, with mean errors of 1%–3%. The cap coil required as little as 2% of the original coil energy and was significantly smaller in size. Significance. The redesigned LFMS coil is substantially smaller and more energy-efficient than the original, improving cost, power consumption, and portability. These improvements could facilitate deployment of LFMS in the clinic and potentially at home. This coil redesign approach can also be applied to other magnetic stimulation paradigms. Finally, the anatomically-accurate E-field simulation of LFMS can be used to interpret clinical LFMS data.
Gomez, Luis J; Goetz, Stefan M; Peterchev, Angel V
2018-08-01
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique used for research and clinical applications. Existent TMS coils are limited in their precision of spatial targeting (focality), especially for deeper targets. This paper presents a methodology for designing TMS coils to achieve optimal trade-off between the depth and focality of the induced electric field (E-field), as well as the energy required by the coil. A multi-objective optimization technique is used for computationally designing TMS coils that achieve optimal trade-offs between E-field focality, depth, and energy (fdTMS coils). The fdTMS coil winding(s) maximize focality (minimize the volume of the brain region with E-field above a given threshold) while reaching a target at a specified depth and not exceeding predefined peak E-field strength and required coil energy. Spherical and MRI-derived head models are used to compute the fundamental depth-focality trade-off as well as focality-energy trade-offs for specific target depths. Across stimulation target depths of 1.0-3.4 cm from the brain surface, the suprathreshold volume can be theoretically decreased by 42%-55% compared to existing TMS coil designs. The suprathreshold volume of a figure-8 coil can be decreased by 36%, 44%, or 46%, for matched, doubled, or quadrupled energy. For matched focality and energy, the depth of a figure-8 coil can be increased by 22%. Computational design of TMS coils could enable more selective targeting of the induced E-field. The presented results appear to be the first significant advancement in the depth-focality trade-off of TMS coils since the introduction of the figure-8 coil three decades ago, and likely represent the fundamental physical limit.
NASA Astrophysics Data System (ADS)
Meydan, T.; Overshott, K. J.
1984-02-01
Amorphous ribbon transducers have been investigated which consist of toroidally wound amorphous ribbon with a primary (magnetizing) winding and secondary (search coil) windings. The application of a force to the ribbon gives a linear search coil voltage against applied force characteristic. The positioning of the windings with respect to the applied force has been studied, and it is shown that the effect of the applied force is localized. Domain studies have shown that the applied force produces domain wall motion which can be correlated to the performance. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.
Mao, Weihua; Chronik, Blaine A; Feldman, Rebecca E; Smith, Michael B; Collins, Christopher M
2006-06-01
We present a method to calculate the electric (E)-fields within and surrounding a human body in a gradient coil, including E-fields induced by the changing magnetic fields and "conservative" E-fields originating with the scalar electrical potential in the coil windings. In agreement with previous numerical calculations, it is shown that magnetically-induced E-fields within the human body show no real concentration near the surface of the body, where nerve stimulation most often occurs. Both the magnetically-induced and conservative E-fields are shown to be considerably stronger just outside the human body than inside it, and under some circumstances the conservative E-fields just outside the body can be much larger than the magnetically-induced E-fields there. The order of gradient winding and the presence of conductive RF shield can greatly affect the conservative E-field distribution in these cases. Though the E-fields against the outer surface of the body are not commonly considered, understanding gradient E-fields may be important for reasons other than peripheral nerve stimulation (PNS), such as potential interaction with electrical equipment. Copyright 2006 Wiley-Liss, Inc.
Design and prototype fabrication of a 30 tesla cryogenic magnet
NASA Technical Reports Server (NTRS)
Prok, G. M.; Swanson, M. C.; Brown, G. V.
1977-01-01
A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.
Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace
Mathur, Mahendra P.; Ekmann, James M.
1989-01-01
The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.
Active Protection of an MgB2 Test Coil
Park, Dong Keun; Hahn, Seungyong; Bascuñán, Juan; Iwasa, Yukikazu
2011-01-01
This paper presents results of a study, experimental and computational, of a detect-and-activate-the-heater protection technique applied to a magnesium diboride (MgB2) test coil operated in semi-persistent mode. The test coil with a winding ID of 25 cm and wound with ~500-m long reacted MgB2 wire was operated at 4.2 K immersed in a bath of liquid helium. In this active technique, upon the initiation of a “hot spot” of a length ~10 cm, induced by a “quench heater,” a “protection heater” (PH) of ~600-cm long planted within the test coil is activated. The normal zone created by the PH is large enough to absorb the test coil’s entire initial stored energy and still keeps the peak temperature within the winding below ~260 K. PMID:22081754
NASA Astrophysics Data System (ADS)
Lécrevisse, T.; Badel, A.; Benkel, T.; Chaud, X.; Fazilleau, P.; Tixador, P.
2018-05-01
In the framework of a project aiming at fabricating a 10 T high temperature superconducting (HTS) insert to operate in a 20 T background field, we are investigating the behavior of pancakes consisting of a REBCO HTS tape co-wound with a stainless steel tape (metal-as-insulation (MI) coil). The MI winding is inducing a significant turn-to-turn electrical resistance which helps to reduce the charging time delay. Despite this resistance, the self-protection feature of no-insulation coils is still enabled, thanks to the voltage limit of the power supply. We have built a single pancake coil representative of the pancake that will be used in the insert and performed tests under very high background magnetic field. Our coil experienced over 100 heater induced quenches without a measureable increase of its internal resistance. We have gathered stability and quench behavior data for magnetic fields and engineering current densities (je ) in the range of 0–17 T and 0–635 A mm‑2 respectively. We also present our very first experiments on the insert/outsert interaction in the case of a resistive magnet fault. We show that if self-protection of the MI winding is really effective in the case of a MI coil quench, a major issue comes from the outsert fault which induces a huge current inside the MI coil.
A nonintrusive method for measuring the operating temperature of a solenoid-operated valve
NASA Astrophysics Data System (ADS)
Kryter, Robert C.
Experimental data are presented to show that the in-service operating temperature of a solenoid operated valve (SOV) can be inferred simply and nondisruptively by using the copper winding of the solenoid coil as a self-indicating, permanently available resistance thermometer. The principal merits of this approach include: (1) there is no need for an add-on temperature sensor, (2) the true temperature of a critical and likely the hottest, part of the SOV (namely, the electrical coil) is measured directly, (3) temperature readout can be provided at any location at which the SOV electrical lead wires are accessible (even though remote from the valve), (4) the SOV need not be disturbed (whether normally energized or deenergized) to measure its temperature in situ, and (5) the method is applicable to all types of SOVs, large and small, ac- and dc-powered. Laboratory tests comparing temperatures measured both by coil resistance and by a conventional thermometer placed in contact with the external surface of the potted solenoid coil indicate that temperature within the coil may be on the order of 40 C higher than that measured externally, a fact that is important to life-expectancy calculations made on the basis of Arrhenius theory. Field practicality is illustrated with temperature measurements made using this method on a SOV controlling the flow of refrigerant in a large chilled-water air-conditioning system.
Pole-phase modulated toroidal winding for an induction machine
Miller, John Michael; Ostovic, Vlado
1999-11-02
A stator (10) for an induction machine for a vehicle has a cylindrical core (12) with inner and outer slots (26, 28) extending longitudinally along the inner and outer peripheries between the end faces (22, 24). Each outer slot is associated with several adjacent inner slots. A plurality of toroidal coils (14) are wound about the core and laid in the inner and outer slots. Each coil occupies a single inner slot and is laid in the associated outer slot thereby minimizing the distance the coil extends from the end faces and minimizing the length of the induction machine. The toroidal coils are configured for an arbitrary pole phase modulation wherein the coils are configured with variable numbers of phases and poles for providing maximum torque for cranking and switchable to a another phase and pole configuration for alternator operation. An adaptor ring (36) circumferentially positioned about the stator improves mechanical strength, and provides a coolant channel manifold (34) for removing heat produced in stator windings during operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L.P. Ku and A.H. Boozer
Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other typesmore » of coils to complement modular coils to improve both the physics and the modular coil characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, R.O.
Voltage breakdowns become a major concern in reducing the size of high-voltage power converter transformers. Even the smallest of voids can provide a path for corona discharge which can cause a dielectric breakdown leading to a transformer failure. A method of encapsulating small high voltage transformers has been developed. The method virtually eliminates voids in the impregnation material, provides an exceptional dielectric between windings and provides a mechanically rugged package. The encapsulation material is a CTBN modified mica filled epoxy. The method requires heat/vacuum to impregnate the coil and heat/pressure to cure the encapsulant. The transformer package utilizes a Diallylmore » Phthalate (DAP) contact assembly in which a coated core/coil assembly is mounted and soldered. This assembly is then loaded into an RTV mold and the encapsulation process begins.« less
Recent Advances in Stellarator Optimization
NASA Astrophysics Data System (ADS)
Gates, David; Brown, T.; Breslau, J.; Landreman, M.; Lazerson, S. A.; Mynick, H.; Neilson, G. H.; Pomphrey, N.
2016-10-01
Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. One criticism that has been levelled at this method of design is the complexity of the resultant field coils. Recently, a new coil optimization code, COILOPT + + , was written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. We have also explored possibilities for generating an experimental database that could check whether the reduction in turbulent transport that is predicted by GENE as a function of local shear would be consistent with experiments. To this end, a series of equilibria that can be made in the now latent QUASAR experiment have been identified. This work was supported by U.S. DoE Contract #DE-AC02-09CH11466.
A method for encapsulating high voltage power transformers
NASA Astrophysics Data System (ADS)
Sanchez, Robert O.
Voltage breakdowns become a major concern in reducing the size of high-voltage power converter transformers. Even the smallest of voids can provide a path for corona discharge which can cause a dielectric breakdown leading to a transformer failure. A method of encapsulating small high voltage transformers has been developed. The method virtually eliminates voids in the impregnation material, provides an exceptional dielectric between windings and provides a mechanically rugged package. The encapsulation material is a carboxyl terminated butadiene nitril (CTBN) modified mica filled epoxy. The method requires heat/vacuum to impregnate the coil and heat/pressure to cure the encapsulant. The transformer package utilizes a diallyl phthalate (DAP) contact assembly in which a coated core/coil assembly is mounted and soldered. This assembly is then loaded into an RTV mold and the encapsulation process begins.
High Radiation Environment Nuclear Fragment Separator Magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahn, Stephen; Gupta, Ramesh
2016-01-31
Superconducting coils wound with HTS conductor can be used in magnets located in a high radiation environment. NbTi and Nb 3Sn superconductors must operate at 4.5 K or below where removal of heat is less efficient. The HTS conductor can carry significant current at higher temperatures where the Carnot efficiency is significantly more favorable and where the coolant heat capacity is much larger. Using the HTS conductor the magnet can be operated at 40 K. This project examines the use of HTS conductor for the Michigan State University Facility For Rare Isotope Beams (FRIB) fragment separator dipole magnet which bendsmore » the beam by 30° and is located in a high radiation region that will not be easily accessible. Two of these magnets are needed to select the chosen isotope. There are a number of technical challenges to be addressed in the design of this magnet. The separator dipole is 2 m long and subtends a large angle. The magnet should keep a constant transverse field profile along its beam reference path. Winding coils with a curved inner segment is difficult as the conductor will tend to unwind during the process. In the Phase I project two approaches to winding the conductor were examined. The first was to wind the coils with curved sections on the inner and outer segments with the inner segment wound with negative curvature. The alternate approach was to use a straight segment on the inner segment to avoid negative curvature. In Phase I coils with a limited number of turns were successfully wound and tested at 77 K for both coil configurations. The Phase II program concentrated on the design, coil winding procedures, structural analysis, prototyping and testing of an HTS curved dipole coil at 40 K with a heat load representative of the radiation environment. One of the key criteria of the design of this magnet is to avoid the use of organic materials that would degrade rapidly in radiation. The Lorentz forces expected from the coils interacting with the magnetic field are large and in order minimize the deformation of the coils, mechanical support must be provided. Since the support structure cannot be made of organic materials with minimal thermal conductivity, an optimization was explored comparing the amount of coil deformation that can be tolerated and the amount of heat leakage that can be endured. A test coil containing 500 m of HTS was constructed to be tested at the 40 K operating temperature. The anticipated heat load was simulated with heater strips to demonstrate that the heat could be removed and that the coil can operate in a stable state. The FRIB project has decided that using HTS coils for this magnet was too risky considering their time and funding constraints and has opted for a more conservative approach with conventional coils. As an outcome of this STTR project, it is likely that HTS coils operating at higher temperatures will have beneficial applications for future accelerator projects.« less
Ecker, Amir L.
1983-01-01
What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.
Lightweight MgB2 superconducting 10 MW wind generator
NASA Astrophysics Data System (ADS)
Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.
2016-02-01
The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.
Bascuñán, Juan; Michael, Philip; Hahn, Seungyong; Lecrevisse, Thibault; Iwasa, Yukikazu
2017-06-01
This paper focuses on the construction and test results of Coil 2 that is part of a trio of nested coils composing the REBCO 800 MHz insert. Upon its completion, the REBCO 800 MHz insert will be placed in the bore of a 500 MHz low temperature superconducting (LTS) NMR magnet (L500) to form the MIT 1.3 GHz high-resolution NMR magnet. Coil 2 is a stack of 32 double pancake (DP) coils wound with 6-mm wide REBCO tape using the no-insulation (NI) technique. Each pancake is wound on a stainless steel inner supporting ring to prevent the collapsing of its crossover due to the external pressure exerted by the winding pack. Coil 2 will be constructed in the following sequence: 1) after winding each DP will be individually tested in a bath of liquid nitrogen at atmospheric pressure to determine its current carrying capabilities; 2) DPs will be then assembled as a stack with interconnecting joints, and 3) as in Coil 1, each pancake will be overbanded with a stainless steel tape, this time to a thickness of 5 mm, thickness determined by a stress analysis previously performed. Finally the fully assembled Coil 2 will be tested in liquid nitrogen at 77 K and then in liquid helium at 4.2 K. We present here details of the stress analysis leading to the sizing of the DP inner supporting stainless steel ring and of the overbanding thickness required. Test results include coil index, critical current, charging time constant.
Direct-Current Monitor With Flux-Reset Transformer Coupling
NASA Technical Reports Server (NTRS)
Canter, Stanley
1993-01-01
Circuit measures constant or slowly-varying unidirectional electrical current using flux-reset transformer coupling. Measurement nonintrusive in sense that no need for direct contact with wire that carries load current to be measured, and no need to install series resistive element in load-current path. Toroidal magnetic core wrapped with coil of wire placed around load-current-carrying wire, acts as transformer core, load-current-carrying wire acts as primary winding of transformer, and coil wrapped on core acts as secondary winding.
Transformer current sensor for superconducting magnetic coils
Shen, Stewart S.; Wilson, C. Thomas
1988-01-01
A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.
Lee, B S; Choi, S; Yoon, J H; Park, J Y; Won, M S
2012-02-01
A magnet system for a 28 GHz electron cyclotron resonance ion source is being developed by the Korea Basic Science Institute. The configuration of the magnet system consists of 3 solenoid coils for a mirror magnetic field and 6 racetrack coils for a hexapole magnetic field. They can generate axial magnetic fields of 3.6 T at the beam injection part and 2.2 T at the extraction part. A radial magnetic field of 2.1 T is achievable at the plasma chamber wall. A step type winding process was employed in fabricating the hexapole coil. The winding technique was confirmed through repeated cooling tests. Superconducting magnets and a cryostat system are currently being manufactured.
Magnetic suspension and balance system advanced study
NASA Technical Reports Server (NTRS)
Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.
1985-01-01
An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design.
Design and prototype fabrication of a 30 tesla cryogenic magnet
NASA Technical Reports Server (NTRS)
Prok, G. M.; Swanson, M. C.; Brown, G. V.
1977-01-01
A liquid-neon-cooled magnet has been designed to produce 30 teslas in steady operation. Its feasibility was established by a previously reported parametric study. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors; tensile-shear tests on the cryogenic adhesives; and simulated flow studies for the coolant. The magnet will be made of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll-bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock-up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Minnix, Richard B.; Carpenter, D. Rae, Jr.
1983-01-01
Describes a coriolis simulator which uses a carbon paper trace technique and a simple specific-heat apparatus, emphasizing instructional considerations. Also indicates that a variac and an ordinary electric drill can be used to wind coil if a lathe or coil winder are unavailable. (JN)
Recent advances in stellarator optimization
Gates, D. A.; Boozer, A. H.; Brown, T.; ...
2017-10-27
Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. Here, we outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—wasmore » written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. Thus, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also discussed. A new algorithm developed for the design of the scraper element on W7-X is presented along with ideas for automating the optimization approach.« less
Recent advances in stellarator optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, D. A.; Boozer, A. H.; Brown, T.
Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. Here, we outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—wasmore » written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. Thus, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also discussed. A new algorithm developed for the design of the scraper element on W7-X is presented along with ideas for automating the optimization approach.« less
Update on High-Temperature Coils for Electromagnets
NASA Technical Reports Server (NTRS)
Kascak, Albert F.; Montague, Gerald T.; Palazzolo, Alan; Preuss, Jason; Carter, Bart; Tucker, Randall; Hunt, Andrew
2005-01-01
A report revisits the subject matter of "High-Temperature Coils for Electromagnets" (LEW-17164), NASA Tech Briefs, Vol. 26, No. 8, (August 2002) page 38. To recapitulate: Wires have been developed for use in electromagnets that operate at high temperatures. The starting material for a wire of this type can be either a nickel-clad, ceramic-insulated copper wire or a bare silver wire. The wire is covered by electrical-insulation material that is intended to withstand operating temperatures in the range from 800 to 1,300 F (.430 to .700 C): The starting wire is either primarily wrapped with S-glass as an insulating material or else covered with another insulating material wrapped in S-glass prior to the winding process. A ceramic binding agent is applied as a slurry during the winding process to provide further insulating capability. The turns are pre-bent during winding to prevent damage to the insulation. The coil is then heated to convert the binder into ceramic. The instant report mostly reiterates the prior information and presents some additional information on the application of the ceramic binding agent and the incorporation of high-temperature wire into the windings.
Passive energy dump for superconducting coil protection
Luton, J.N. Jr.
1973-01-16
The patent describes a passive resistance type energy dump for the protection of the coils of a superconducting magnet. Insertion heaters are immersed in a rigid container filled with a fusible alloy. The energy dump is connected across the coils of the superconducting magnet wherein individual heater elements are connected singly to the windings or otherwise according to the energy dumping requirements upon transition of the magnet to a normal state.
New thermal method for evaluating vaginal blood flow.
Frisinger, J E; Abrams, R M; Graichen, H; Cassin, S
1981-01-01
The goal of this study was the development noninvasive technique for measurement of vaginal blood flow. A vaginal probe (diameter 1.84 cm; length 7.0 cm) was constructed by winding 23 m of 34-gauge enameled copper wire around a hollow cylinder of epoxy-impregnated glass wool. Resistance of the wire was 20 omega at 40 degrees C. Surface area of coil was 40.5 cm2. The temperature of the wire midway along the coil was measured continuously with a thermcouple. Temperature difference (delta T) between coil and vagina was raised by delivery of 300 mA with a resultant production of 1.8 W. In ewes treated with 1 mg estrone im., delta T fell significantly (p less than 0.025) by 90 min and (p less than 0.005) by 120 min after injection. There was a significant correlation between delta T and vaginal blood flow as measured by the radiolabeled microsphere technique.
New Side-Looking Rogowski Coil Sensor for Measuring Large-Magnitude Fast Impulse Currents
NASA Astrophysics Data System (ADS)
Metwally, I. A.
2015-12-01
This paper presents a new design of a side-looking "flat spiral" self-integrating Rogowski coil that is wound by twin coaxial cable with individual sheath. The coil is tested with different impulse current waveforms up to 7 kA peak value to improve its performance. The coil design is optimized to achieve bandwidth and sensitivity up to 7.854 MHz and 3.623 V/kA, respectively. The coil is calibrated versus two commercial impulse-current measurement devices at different coil-to-wire separations, coil inclination angles, and impulse current waveforms. Distortion of the coil output voltage waveform is examined by using the lumped-element model to optimize the connections of the four cable winding sheaths and the coil termination resistance. Finally, the coil frequency response is investigated to optimize the coil design parameters and achieve the desired bandwidth (large low-frequency time constant), high rate of rise, no overshoot, very small droop, high rate of fall, and no backswing.
You, H-J; Jang, S-W; Jung, Y-H; Lho, T-H; Lee, S-J
2012-02-01
A superconducting magnet was designed and fabricated for an 18 GHz ECR ion∕photon source, which will be installed at National Fusion Research Institute (NFRI) in South Korea. The magnetic system consists of a set of four superconducting coils for axial mirror field and 36 pieces of permanent magnets for hexapolar field. The superconducting coils with a cryocooler (1.5 W @ 4.2 K) allow one to reach peak mirror fields of 2.2 T in the injection and those of 1.5 T in the extraction regions on the source axis, and the resultant hexapolar field gives 1.35 T on the plasma chamber wall. The unbalanced magnetic force between the coils and surrounding yoke has been minimized to 16 ton by a coil arrangement and their electrical connection, and then was successfully suspended by 12 strong thermal insulating supports made of large numbers of carbon fibers. In order to block radiative thermal losses, multilayer thermal insulations are covered on the coil windings as well as 40-K aluminum thermal shield. Also new schemes of quench detection and safety system (coil divisions, quench detection coils, and heaters) were employed. For impregnation of the windings a special epoxy has been selected and treated to have a higher breaking strength and a higher thermal conductivity, which enables the superconductors to be uniformly and rapidly cooled down or heated during a quench.
Measurement of a Conduction Cooled Nb3Sn Racetrack Coil
NASA Astrophysics Data System (ADS)
Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.
2017-12-01
Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.
High voltage capability electrical coils insulated with materials containing SF.sub.6 gas
Lanoue, Thomas J.; Zeise, Clarence L.; Wagenaar, Loren; Westervelt, Dean C.
1988-01-01
A coil is made having a plurality of layers of adjacent metal conductor windings subject to voltage stress, where the windings have insulation therebetween containing a small number of minute disposed throughout its cross-section, where the voids are voids filled with SF.sub.6 gas to substitute for air or other gaseous materials in from about 60% to about 95% of the cross-sectional void volume in the insulation, thus incorporating an amount of SF.sub.6 gas in the cross-section of the insulation effective to substantially increase corona inception voltages.
Partial Arc Curvilinear Direct Drive Servomotor
NASA Technical Reports Server (NTRS)
Sun, Xiuhong (Inventor)
2014-01-01
A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.
Fabrication of a helical coil shape memory alloy actuator
NASA Astrophysics Data System (ADS)
Odonnell, R. E.
1992-02-01
A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the 'memory' of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.
Wang, S.T.
1994-11-01
A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.
Development of the design concepts for a medium-scale wind tunnel magnetic suspension system
NASA Technical Reports Server (NTRS)
Humphris, R. R.; Zapata, R. N.
1982-01-01
The magnitude of AC losses from a superconducting coil strongly indicates that the predicted scaling lawa are valid. The stainless steel bands around the test coil were the source of additional helium boiloff due to a transformer action and, hence, caused erroneously high AC loss measurements in the first run. However, removal of these bands for the second run produced data which are consistent with previous results on small scale multifilamentary superconducting coils.
Magnetic Resonance Characterization of Axonal Response to Spinal Cord Injury
2012-10-01
In addition, we discovered a crack in the epoxy of our custom gradient coil that produced a vibrational phase instability in the data, and we...corrected this by applying a new layer of epoxy resin to the gradient coil windings. After these modifications to the gradient coil hardware had been...the chemical shifts of the constituents making up myelin lipids. The spectrum could be modeled as a sum of super -Lorentzians with a T2* distribution
A novel propulsion method for high- Tc superconducting maglev vehicle
NASA Astrophysics Data System (ADS)
Ma, Guangtong; Wang, Jiasu; Wang, Suyu; Liu, Minxian; Jing, Hua; Lu, Yiyun; Lin, Qunxu
2008-01-01
High-Tc superconducting (HTS) maglev is considered as a perfect transportation type because of its unique inherent stability. A direct current (DC) linear motor using the permanent magnet guideway (PMG) as the stator and the on-board coil as the rotor instead of the present inductive or synchronous alternate current (AC) linear motor which has an economic disadvantage due to the necessity to lay primary coil along the guideway is proposed in this paper. In order to modulate the magnetic field under the PMG, an inverse E shape ferromagnetic device (IESFD) core is designed. The possible winding method for the on-board coil is listed, and the analytical result shows that a considerable net ampere force and thus the propulsion force can be generated by this special structure. The influence of the concentrated effect of the IESFD on the maglev performance of HTS bulk is studied by a numerical program, and the results show that the levitation force with the IESFD is 90% of that without. It is also indicated that the load capability and lateral performance of the maglev vehicle combined this propulsion method can be improved thanks to the attractive effect between the IESFD and PMG. The cost of the HTS maglev vehicle will be remarkably reduced and then shorten the distance to practical application with this propulsion method.
NASA Technical Reports Server (NTRS)
1985-01-01
Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.
Current Progress in Fabrication of a 14 Tesla Nb3Sn Dipole
NASA Astrophysics Data System (ADS)
Holik, Eddie, III; Benson, Christopher; Damborsky, Kyle; Diaczenko, Nick; Elliott, Tim; Garrison, Ray; Jaisle, Andrew; McInturff, Alfred; McIntyre, Peter; Sattarov, Dior
2012-03-01
The Accelerator Technology Laboratory at Texas A&M is fabricating a model dipole magnet, TAMU3, designed to operate at a 14 Tesla bore field. The dipole employs an advanced internal-tin Nb3Sn/Cu composite strand with enhanced current density. The coils must be processed through a heat treatment after winding, during which the Sn within the heterogeneous strands diffuse into the Cu/Nb matrix to form high-performance superconducting layers. Heat treatment of the first coil assembly revealed tin leakage from the Sn cores that was caused by omission of a pre-anneal step in the heat treatment. We are evaluating the electrical properties of the coil, the microstructure and short-sample superconducting performance of cut-off samples of current leads to determine the extent of damage to the performance of the windings. Results of those tests and plans for construction of TAMU3 will be presented.
Coil Design for Low Aspect Ratio Stellarators
NASA Astrophysics Data System (ADS)
Miner, W. H., Jr.; Valanju, P. M.; Wiley, J. C.; Hirshman, S. P.; Whitson, J. C.
1998-11-01
Two compact stellarator designs have recently been under investigation because of their potential as a reactor featuring steady-state, disruption-free operation, low recirculating power and good confinement and beta. Both quasi-axisymmetric (QA) equilibria and quasi-omnigenous (QO) equilibria have been obtained by using the 3-D MHD equilibrium code VMEC. In order to build an experiment, coil sets must be obtained that are compatable with these equilibria. We have been using both the NESCOIL(Merkel, P., Nucl. Fus. 27, 5 (1987) 867.) code and the COILOPT code to find coilsets for both of these types of equilibria. We are considering three types of coil configurations. The first is a combination of modular coils and vertical field coils. The second configuration is a combination of toroidal field coils, vertical field coils and saddle coils. A third configuration is a combination of modular coils and a single helical winding. The quality of each coil set will be evaluated by computing its magnetic field and using that as input to VMEC in free boundary mode to see how accurately the original equilibrium can be reconstructed.
Mitarai, O.; Xiao, C.; McColl, D.; ...
2015-03-24
A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitarai, O.; Xiao, C.; McColl, D.
A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less
No-insulation multi-width winding technique for high temperature superconducting magnet.
Hahn, Seungyong; Kim, Youngjae; Keun Park, Dong; Kim, Kwangmin; Voccio, John P; Bascuñán, Juan; Iwasa, Yukikazu
2013-10-21
We present a No-Insulation ( NI ) Multi-Width ( MW ) winding technique for an HTS (high temperature superconductor) magnet consisting of double-pancake (DP) coils. The NI enables an HTS magnet self-protecting and the MW minimizes the detrimental anisotropy in current-carrying capacity of HTS tape by assigning tapes of multiple widths to DP coils within a stack, widest tape to the top and bottom sections and the narrowest in the midplane section. This paper presents fabrication and test results of an NI-MW HTS magnet and demonstrates the unique features of the NI-MW technique: self-protecting and enhanced field performance, unattainable with the conventional technique.
NASA superconducting magnetic mirror facility. [for thermonuclear research
NASA Technical Reports Server (NTRS)
Reinmann, J. J.; Swanson, M. C.; Nichols, C. R.; Bloy, S. J.; Nagy, L. A.; Brady, F. J.
1973-01-01
The design details and initial test results of a superconducting magnetic mirror facility that has been constructed at NASA Lewis Research Center for use in thermonuclear research are summarized. The magnet system consists of four solenoidal coils which are individually rated at 5.0 T. Each coll is composed of an inner, middle, and outer winding. The inner winding is wound of stabilized Nb3Sn superconducting ribbon, and the middle and outer windings are wound of stabilized Nb-Ti superconducting wire. When arranged in the mirror geometry, the four coils will produce 8.7 T at the mirrors and a 1.8 mirror ratio. The magnet has a 41-cm diameter clear bore which is open to atmosphere. Distance between the mirrors is 111 cm. Presently there are only three magnets in the facility; the fourth magnet is being rebuilt.
NASA Astrophysics Data System (ADS)
Kan Chan, Wan; Schwartz, Justin
2017-07-01
The no-insulation (NI) approach to winding (RE)Ba2Cu3O x (REBCO) high temperature superconductor solenoids has shown significant promise for maximizing the efficient usage of conductor while providing self-protecting operation. Self-protection in a NI coil, however, does not diminish the likelihood that a recoverable quench occurs. During a disturbance resulting in a recoverable quench, owing to the low turn-to-turn contact resistance, transport current bypasses the normal zone by flowing directly from the current input lead to the output lead, leading to a near total loss of the azimuthal current responsible for magnetic field generation. The consequences are twofold. First, a long recovery process is needed to recharge the coil to full operational functionality. Second, a fast magnetic field transient is created due to the sudden drop in magnetic field in the quenching coil. The latter could induce a global inductive quench propagation in other coils of a multi-coil NI magnet, increasing the likelihood of quenching and accelerating the depletion of useful current in other coils, lengthening the post-quench recovery process. Here a novel graded-resistance method is proposed to tackle the mentioned problems while maintaining the superior thermal stability and self-protecting capability of NI magnets. Through computational modeling and analysis on a hybrid multiphysics model, patterned resistive-conductive layers are inserted between selected turn-to-turn contacts to contain hot-spot heat propagation while maintaining the turn-wise current sharing required for self-protection, resulting in faster post-quench recovery and reduced magnetic field transient. Effectiveness of the method is studied at 4.2 and 77 K. Through the proposed method, REBCO magnets with high current density, high thermal stability, low likelihood of quenching, and rapid, passive recovery emerge with high operational reliability and availability.
Clamp for use in winding large magnet coils
Brown, Robert L.; Kenney, Walter J.
1983-01-01
In one aspect, the invention is a novel arrangement for applying forces to urns of a vertically extending helical coil which is wound about a support. The apparatus includes a first rigid member extending towards the turns. A second rigid member extends transversely from the end of the first and has a vertically extending face provided with a generally straight groove extending transversely of the turns. A longitudinal passage in the first member connects to the groove to form therewith a continuous guideway for rollable articles. A rigid lug longitudinally movable in the groove is provided with a projection which extends out of the groove and beneath the bottom of a selected turn of the coil. A train of rigid, rollable articles is disposed in the guideway inwardly of the lug. Means are provided for applying force to that end of the train which is relatively remote from the lug, to urge the latter against the bottom face of the selected turn. As a result, that turn is moved upward along the face of the support, establishing a selected spacing between that turn and the previously formed turn of the coil. When upward movement of the selected turn stops, the force applied to the lug immediately translates to a force which urges the above-mentioned grooved face against all of the formed turns, thus compressing them against the support. The above-mentioned first and second members are swingably mounted so that they can be temporarily moved out of the winding path, thus permitting continuous winding.
Clamp for use in winding large magnet coils
Brown, R.L.; Kenney, W.J.
1981-05-05
In one aspect, the invention is a novel arrangement for applying forces to turns of a vertically extending helical coil which is wound about a support. The apparatus includes a first rigid member extending towards the turns. A second rigid member extends transversely from the end of the first and has a vertically extending face provided with a generally straight groove extending transversely of the turns. A longitudinal passage in the first member connects to the groove to form therewith a continuous guideway for rollable articles. A rigid lug longitudinally movable in the groove is provided with a projection which extends out of the groove and beneath the bottom of a selected turn of the coil. A train of rigid, rollable articles is disposed in the guideway inwardly of the lug. Means are provided for applying force to that end of the train which is relatively remote from the lug, to urge the latter against the bottom face of the selected turn. As a result, that turn is moved upward along the face of the support, establishing a selected spacing between that turn and the previously formed turn of the coil. When upward movement of the selected turn stops, the force applied to the lug immediately translates to a force which urges the above-mentioned grooved face against all of the formed turns, thus compressing them against the support. The above-mentioned first and second members are swingably mounted so that they can be temporarily moved out of the winding path, thus permitting continuous winding.
Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil.
Xu, Mengyuan; Yan, Jing; Geng, Yingsan; Zhang, Kun; Sun, Chao
2018-03-13
An innovative array of magnetic coils (the discrete Rogowski coil-RC) with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP) method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC's interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Chouhan, J. DeKamp, A. Zeller, P. Brindza, S. Lassiter, M. Fowler, E. Sun
A collaboration between NSCL and Jlab has developed the reference design and coil winding for Jlab's Super High Momentum Spectrometer (SHMS) horizontal bend magnet. A warm iron ??C?? type superferric dipole magnet will bend the 12 GeV/c particles horizontally by 3?? to allow the SHMS to reach angles as low as 5.5??. This requires an integral field strength of up to 2.1 T.m. The major challenges are the tight geometry, high and unbalanced forces and a required low fringe field in primary beam path. A coil design based on flattened SSC Rutherford cable that provides a large current margin andmore » commercially available fiberglass prepreg epoxy tape has been developed. A complete test coil has been wound and will be cold tested. This paper present the modified magnet design includes coil forces, coil restraint system and fringe field. In addition, coil properties, quench calculations and the full mechanical details are also presented.« less
Eccentric figure-eight coils for transcranial magnetic stimulation.
Sekino, Masaki; Ohsaki, Hiroyuki; Takiyama, Yoshihiro; Yamamoto, Keita; Matsuzaki, Taiga; Yasumuro, Yoshihiro; Nishikawa, Atsushi; Maruo, Tomoyuki; Hosomi, Koichi; Saitoh, Youichi
2015-01-01
Previously we proposed an eccentric figure-eight coil that can cause threshold stimulation in the brain at lower driving currents. In this study, we performed numerical simulations and magnetic stimulations to healthy subjects for evaluating the advantages of the eccentric coil. The simulations were performed using a simplified spherical brain model and a realistic human brain model. We found that the eccentric coil required a driving current intensity of approximately 18% less than that required by the concentric coil to cause comparable eddy current densities within the brain. The eddy current localization of the eccentric coil was slightly higher than that of the concentric coil. A prototype eccentric coil was designed and fabricated. Instead of winding a wire around a bobbin, we cut eccentric-spiral slits on the insulator cases, and a wire was woven through the slits. The coils were used to deliver magnetic stimulation to healthy subjects; among our results, we found that the current slew rate corresponding to motor threshold values for the concentric and eccentric coils were 86 and 78 A/µs, respectively. The results indicate that the eccentric coil consistently requires a lower driving current to reach the motor threshold than the concentric coil. Future development of compact magnetic stimulators will enable the treatment of some intractable neurological diseases at home. © 2014 Wiley Periodicals, Inc.
Testing of machine wound second generation HTS tape Vacuum Pressure Impregnated coils
NASA Astrophysics Data System (ADS)
Swaffield, D.; Lewis, C.; Eugene, J.; Ingles, M.; Peach, D.
2014-05-01
Delamination of second generation (2G) High Temperature Superconducting (HTS) tapes has previously been reported when using resin based insulation systems for wound coils. One proposed root cause is the differential thermal contraction between the coil former and the resin encapsulated coil turns resulting in the tape c-axis tensile stress being exceeded. Importantly, delamination results in unacceptable degradation of the superconductor critical current level. To mitigate the delamination risk and prove winding, jointing and Vacuum Pressure Impregnation (VPI) processes in the production of coils for superconducting rotating machines at GE Power Conversion two scaled trial coils have been wound and extensively tested. The coils are wound from 12mm wide 2G HTS tape supplied by AMSC onto stainless steel 'racetrack' coil formers. The coils are wound in two layers which include both in-line and layer-layer joints subject to in-process test. The resin insulation system chosen is VPI and oven cured. Tests included; insulation resistance, repeat quench and recovery of the superconductor, heat runs and measurement of n-value, before and after multiple thermal cycling between ambient and 35 Kelvin. No degradation of coil performance is evidenced.
Second-generation coil design of the Nb 3Sn low-β quadrupole for the high luminosity LHC
Bermudez, S. Izquierdo; Ambrosio, G.; Ballarino, A.; ...
2016-01-18
As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture Nb 3Sn quadrupole for the LHC interaction regions. A first series of 1.5 m long coils were fabricated and assembled in a first short model. A detailed visual inspection of the coils was carried out to investigate cable dimensional changes during heat treatment and the position of the windings in the coil straight section and in the end region. The analyses allow identifying a set of design changes which, combined with amore » fine tune of the cable geometry and a field quality optimization, were implemented in a new, second-generation, coil design. In this study, we review the main characteristics of the first generation coils, describe the modification in coil lay-out, and discuss their impact on parts design and magnet analysis.« less
No-insulation multi-width winding technique for high temperature superconducting magnet
Hahn, Seungyong; Kim, Youngjae; Keun Park, Dong; Kim, Kwangmin; Voccio, John P.; Bascuñán, Juan; Iwasa, Yukikazu
2013-01-01
We present a No-Insulation (NI) Multi-Width (MW) winding technique for an HTS (high temperature superconductor) magnet consisting of double-pancake (DP) coils. The NI enables an HTS magnet self-protecting and the MW minimizes the detrimental anisotropy in current-carrying capacity of HTS tape by assigning tapes of multiple widths to DP coils within a stack, widest tape to the top and bottom sections and the narrowest in the midplane section. This paper presents fabrication and test results of an NI-MW HTS magnet and demonstrates the unique features of the NI-MW technique: self-protecting and enhanced field performance, unattainable with the conventional technique. PMID:24255549
Power consumption analysis DBD plasma ozone generator
NASA Astrophysics Data System (ADS)
Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.
2016-11-01
Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts
Code of Federal Regulations, 2010 CFR
2010-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2012 CFR
2012-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2014 CFR
2014-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2013 CFR
2013-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
High-Temperature, High-Load-Capacity Radial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben
2005-01-01
A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).
Wang, Sou-Tien
1994-11-01
A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).
Demas, Vasiliki; Bernhardt, Anthony; Malba, Vince; Adams, Kristl L; Evans, Lee; Harvey, Christopher; Maxwell, Robert S; Herberg, Julie L
2009-09-01
Nuclear magnetic resonance (NMR) offers a non-destructive, powerful, structure-specific analytical method for the identification of chemical and biological systems. The use of radio frequency (RF) microcoils has been shown to increase the sensitivity in mass-limited samples. Recent advances in micro-receiver technology have further demonstrated a substantial increase in mass sensitivity [D.L. Olson, T.L. Peck, A.G. Webb, R.L. Magin, J.V. Sweedler, High-resolution microcoil H-1-NMR for mass-limited, nanoliter-volume samples, Science 270 (5244) (1995) 1967-1970]. Lithographic methods for producing solenoid microcoils possess a level of flexibility and reproducibility that exceeds previous production methods, such as hand winding microcoils. This paper presents electrical characterizations of RF microcoils produced by a unique laser lithography system that can pattern three dimensional surfaces and compares calculated and experimental results to those for wire wound RF microcoils. We show that existing optimization conditions for RF coil design still hold true for RF microcoils produced by lithography. Current lithographic microcoils show somewhat inferior performance to wire wound RF microcoils due to limitations in the existing electroplating technique. In principle, however, when the pitch of the RF microcoil is less than 100mum lithographic coils should show comparable performance to wire wound coils. In the cases of larger pitch, wire cross sections can be significantly larger and resistances lower than microfabricated conductors.
NASA Astrophysics Data System (ADS)
Tsukamoto, Osami; Fujimoto, Yasutaka; Takao, Tomoaki
2014-09-01
It has been considered that HTS coils are hard to be quenched because of high quench energy due to high critical temperature and high specific heat of HTS wires. Therefore, attention to quench protection was not much paid. However, HTS coils still have possibility to be quenched during operation by mainly the following two origins, (a) presence of non-recoverable local defects in the conductors and (b) temperature rise of long part of the conductor. Actually, severe quench accidents, such as burning coils, are occurring in various places as scales of HTS increased. Purposes of this paper are to study on behaviors of normal zone and hot spot temperature of wires during quench detect/energy dump sequence and to find criteria for the stability and quench protection. In the paper, criteria are proposed for stability and quench protection of HTS coils. A criterion for the stability is that a coil can be operated stably without a quench against defects in coil windings and that for quench protection is that a coil can be safely protected from damages caused by a quench due to temperature rise of long part of coil wires. The criteria are used as design rules for HTS coils.
NASA Astrophysics Data System (ADS)
Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza
2008-01-01
AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency.
Charging system and method for multicell storage batteries
Cox, Jay A.
1978-01-01
A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.
Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.
1989-08-22
A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.
Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.
1989-01-01
A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.
Development of rotating magnetic field coil system in the HIST spherical torus device
NASA Astrophysics Data System (ADS)
Yoshikawa, T.; Kikuchi, Y.; Yamada, S.; Hashimoto, S.; Nishioka, T.; Fukumoto, N.; Nagata, M.
2007-11-01
Coaxial Helicity Injection (CHI) is one of most attractive methods to achieve non-inductive current drive in spherical torus devices. The current drive mechanism of CHI relies on MHD relaxation process of rotating kink behavior [1], so that there is a possibility to control the CHI by using an externally applied rotating magnetic field (RMF). We have recently started to develop a RMF coil system in the HIST spherical torus device. Eight coils are located above and below the midplane at four toroidal locations so that the RMF is resonant with n = 1 rotating kink mode driven by the CHI. In addition, the RMF coil set is installed inside a flux conserver of 5 mm thickness (cut-off frequency ˜ 170 Hz) so that the RMF penetrates into the plasma. The coil winding is made of 20 turns of enameled copper circular wires (1.5 mm^2 conductor cross section), covered with a thin stainless steal case of 0.5 mm thickness (cut-off frequency ˜ 710 kHz). The RMF system is driven by an IGBT inverter power supply (nominal current: 1 kA, nominal voltage: 1 kV) with an operating frequency band from 10 kHz to 30 kHz. The estimated amplitude of RMF neglecting effects of image current at the flux conserver is a few tens Gauss at around the magnetic axis. A preliminary experimental result will be shown in the conference. [1] M. Nagata, et al., Physics of Plasmas 10, 2932 (2003).
Morales, Hernán G; Larrabide, Ignacio; Geers, Arjan J; Dai, Daying; Kallmes, David F; Frangi, Alejandro F
2013-11-01
Endovascular coiling is often performed by first placing coils along the aneurysm wall to create a frame and then by filling up the aneurysm core. However, little attention has been paid to quantifying this filling strategy and to see how it changes for different packing densities. The purpose of this work is to analyze and quantify endovascular coil distribution inside aneurysms based on serial histological images of experimental aneurysms. Seventeen histological images from 10 elastase-induced saccular aneurysms in rabbits treated with coils were studied. In-slice coil density, defined as the area taken up by coil winds, was calculated on each histological image. Images were analyzed by partitioning the aneurysm along its longitudinal and radial axes. Coil distribution was quantified by measuring and comparing the in-slice coil density of each partition. Mean total in-slice coil density was 22.0 ± 6.2% (range 10.1-30.2%). The density was non-significantly different (p = 0.465) along the longitudinal axis. A significant difference (p < 0.001) between peripheral and core densities was found. Additionally, the peripheral-core density ratio was observed to be inversely proportional to the total in-slice coil density (R(2)=0.57, p <0.001). This ratio was near unity for high in-slice coil density (around 30%). These findings demonstrate and confirm that coils tend to be located near the aneurysm periphery when few are inserted. However, when more coils are added, the radial distribution becomes more homogeneous. Coils are homogeneously distributed along the longitudinal axis.
Degradation of the performance of an epoxy-impregnated REBCO solenoid due to electromagnetic forces
NASA Astrophysics Data System (ADS)
Matsuda, T.; Okamura, T.; Hamada, M.; Matsumoto, S.; Ueno, T.; Piao, R.; Yanagisawa, Y.; Maeda, H.
2018-03-01
Recently, degradation of a high-field REBCO coil due to strong electromagnetic forces, has been identified. This issue is related to a conductor movement, forming a kink in the conductor body, and hence epoxy impregnation should be effective to prevent it. The purpose of this paper is to examine the effect of epoxy impregnation on the electromagnetic force-induced degradation of a REBCO coil. We made an epoxy impregnated solenoid coil and charged it at 4.2 K in an external field of 11 T. A notable characteristic behavior, which is different from that of a dry or paraffin impregnated coil, was observed in the coil's performance. The coil did not show any normal voltage below 408 A, at 65% on the coil load line, but it showed a sudden voltage jump at 408 A, resulted from a sudden fracture of the REBCO conductor. The outward bending, combined with a strong circumferential stress, caused the REBCO layer to fracture. Although epoxy impregnation is effective to suppress a conductor movement inside the winding, avoiding self-supported sites at a coil edge is required to eliminate degradation of the thin and flexible REBCO conductor.
A Way to Select Electrical Sheets of the Segment Stator Core Motors.
NASA Astrophysics Data System (ADS)
Enomoto, Yuji; Kitamura, Masashi; Sakai, Toshihiko; Ohara, Kouichiro
The segment stator core, high density winding coil, high-energy-product permanent magnet are indispensable technologies in the development of a compact and also high efficient motors. The conventional design method for the segment stator core mostly depended on experienced knowledge of selecting a suitable electromagnetic material, far from optimized design. Therefore, we have developed a novel design method in the selection of a suitable electromagnetic material based on the correlation evaluation between the material characteristics and motor performance. It enables the selection of suitable electromagnetic material that will meet the motor specification.
Manufacture and Quality Control of Insert Coil with Real ITER TF Conductor
Ozeki, H.; Isono, T.; Uno, Y.; ...
2016-03-02
JAEA successfully completed the manufacture of the toroidal field (TF) insert coil (TFIC) for a performance test of the ITER TF conductor in the final design in cooperation with Hitachi, Ltd. The TFIC is a single-layer 8.875-turn solenoid coil with 1.44-m diameter. This will be tested for 68-kA current application in a 13-T external magnetic field. TFIC was manufactured in the following order: winding of the TF conductor, lead bending, fabrication of the electrical termination, heat treatment, turn insulation, installation of the coil into the support mandrel structure, vacuum pressure impregnation (VPI), structure assembly, and instrumentation. Here in this presentation,more » manufacture process and quality control status for the TFIC manufacturing are reported.« less
Design and Testing of the ARL Squeeze 4 Helical Flux Compression Generator
2013-06-01
armature makes contact. Centering the armature inside the coil was accomplished with three machined polyurethane (4 lb/ft3 Lastafoam)3 foam rings. A...after shrinking was ~1 mm thick. The explosive charge was comprised of a paper- reinforced phenolic cylinder filled with Comp-B explosive fill. The...backfilled with polyester resin. Foam rubber was placed between coil windings (figure 3a). All other subsequent experiments used a custom rapid-prototyped
NASA Astrophysics Data System (ADS)
Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.
The windings of the superconducting magnet coils for the ITER-FEAT fusion device are affected by high mechanical stresses at cryogenic temperatures and by a radiation environment, which impose certain constraints especially on the insulating materials. A glass fiber reinforced plastic (GFRP) laminate, which consists of Kapton/R-glass-fiber reinforcement tapes, vacuum-impregnated in a DGEBA epoxy system, was used for the European toroidal field model coil turn insulation of ITER. In order to assess its mechanical properties under the actual operating conditions of ITER-FEAT, cryogenic (77 K) static tensile tests and tension-tension fatigue measurements were done before and after irradiation to a fast neutron fluence of 1×10 22 m -2 ( E>0.1 MeV), i.e. the ITER-FEAT design fluence level. We find that the mechanical strength and the fracture behavior of this GFRP are strongly influenced by the winding direction of the tape and by the radiation induced delamination process. In addition, the composite swells by 3%, forming bubbles inside the laminate, and loses weight (1.4%) at the design fluence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, G. H.; Heitzenroeder, P.; Lyon, J.
Stellarators use 3D plasma and magnetic field shaping to produce a steady-state disruption-free magnetic confinement configuration. Compact stellarators have additional attractive properties — quasi-symmetric magnetic fields and low aspect ratio. The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL) to test the physics of a high-beta compact stellarator with a lowripple, tokamak-like magnetic configuration. The engineering challenges of NCSX stem from its complex geometry requirements. These issues are addressed in the construction project through manufacturing R&D and system engineering. As a result, the fabricationmore » of the coil winding forms and vacuum vessel are proceeding in industry without significant technical issues, and preparations for winding the coils at PPPL are in place. Design integration, analysis, and dimensional control are functions provided by system engineering to ensure that the finished product will satisfy the physics requirements, especially accurate realization of the specified coil geometries. After completion of construction in 2009, a research program to test the expected physics benefits will start.« less
Transformer current sensor for superconducting magnetic coils
Shen, S.S.; Wilson, C.T.
1985-04-16
The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.
NASA Astrophysics Data System (ADS)
Lesnikova, Yu I.; Smetannikov, O. Yu; Trufanov, A. N.; Trufanov, N. A.
2017-02-01
The impact of contact transverse forces on the birefringence of the single-mode polarization-maintaining Panda-type fiber is numerically modeled. It has been established that with a single-row power winding on a cylindrical mandrel, the fiber tension at winding is the principal factor that influences birefringence. When coiling the fiber based on the local defect microbending, the birefringence at the microbending point differs from that of the free fiber by 1.3%.
Loss measurement and analysis for the prototype generator with HTS stator and permanent magnet rotor
NASA Astrophysics Data System (ADS)
Song, Peng; Qu, Timing; Yu, Xiaoyu; Li, Longnian; Gu, Chen; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Han, Zhenghe
2013-11-01
A prototype HTS synchronous generator with a permanent magnet rotor and HTS armature windings was developed. The rated armature frequency is 10 Hz. The cryogenic Dewar is tightly surrounded outside the iron core. Both HTS coils and the iron core were cooled by using conduction cooling method. During the process of no-load running, the no-load loss power data were obtained through the torque measurement. The temperature evolution characteristics of the stator was measured by PT-100 temperature sensors. These results show that the no-load loss power at around 77 K are much larger than that at room temperature. The possible reason for the no-load loss increment is discussed. The ac loss power of one individual HTS coil used in this generator was also tested. Compared with the iron loss power, the ac loss power is rather small and could be neglected.
Improved structure and long-life blanket concepts for heliotron reactors
NASA Astrophysics Data System (ADS)
Sagara, A.; Imagawa, S.; Mitarai, O.; Dolan, T.; Tanaka, T.; Kubota, Y.; Yamazaki, K.; Watanabe, K. Y.; Mizuguchi, N.; Muroga, T.; Noda, N.; Kaneko, O.; Yamada, H.; Ohyabu, N.; Uda, T.; Komori, A.; Sudo, S.; Motojima, O.
2005-04-01
New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius of over 14 m is selected to permit a blanket-shield thickness of about 1 m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armour tiles that soften the neutron energy spectrum incident on the self-cooled flibe-reduced activation ferritic steel blanket. In this adaptation of the spectral-shifter and tritium breeder blanket (STB) concept a local tritium breeding ratio over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the superconducting magnet coils is also significantly improved. Using constant cross sections of a helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armour tiles. The key R&D issues for developing the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated.
The use of superconductivity in magnetic balance design
NASA Technical Reports Server (NTRS)
Moss, F. E.
1973-01-01
The magnetic field and field gradient requirements for magnetic suspension in a Mach 3, 6-in. diameter wind tunnel are stated, along with the power requirements for gradient coil pairs wound of copper operating at room temperature and aluminum cooled to 20 K. The power dissipated is large enough that the use of superconductivity in the coil design becomes an attractive alternative. The problems of stability and ac losses are outlined along with the properties of stabilized superconductors. A brief review of a simplified version of the critical state model of C. P. Bean is presented, and the problems involved in calculations of the ac losses in superconducting coils are outlined. A summary of ac loss data taken on pancake coils wound of commercially available Nb3Sn partially stabilized tape is presented and shown as leading to the U.Va. gradient coil design. The actual coil performance is compared with predictions based on the BNL results. Finally, some remarks are presented concerning scaling of the ac losses to larger magnetic suspension systems as well as prospects for improved performance using newer multifilament superconductors.
Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field
Takahashi, Hironori
2004-02-10
A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.
A 1 T, 0. 33 m bore superconducting magnet operating with cryocoolers at 12 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Laan, M.T.G.; Tax, R.B.; ten Kate, H.H.J.
1992-01-01
The application of small cryocoolers for cooling a superconducting magnet at 12 K has important advantages especially for small and medium sized magnets. A simple construction and a helium free magnet system is obtained. The demonstration magnet developed is a six coil system with a volume of 75 L and can be regarded as a 1:3 scale MRI magnet. With a current of 100 A, a 1 T central field is generated with a maximum of 1.9 T in the windings. The magnet consists of six coil formers and five aluminum spacing rings, providing easy service and disassembly. The superconductor,more » a 0.6 mm diameter Nb{sub 3}Sn wire, is wound on the thin walled stainless steel coil formers after which the coil is heat treated and vacuum impregnated. Afterwards, the coil system is assembled and the electrical and thermal connections are made. This paper describes the development of the superconducting magnet.« less
Dimensional changes of Nb 3Sn Rutherford cables during heat treatment
Rochepault, E.; Ferracin, P.; Ambrosio, G.; ...
2016-06-01
In high field magnet applications, Nb 3Sn coils undergo a heat treatment step after winding. During this stage, coils radially expand and longitudinally contract due to the Nb 3Sn phase change. In order to prevent residual strain from altering superconducting performances, the tooling must provide the adequate space for these dimensional changes. The aim of this paper is to understand the behavior of cable dimensions during heat treatment and to provide estimates of the space to be accommodated in the tooling for coil expansion and contraction. In addition, this paper summarizes measurements of dimensional changes on strands, single Rutherford cables,more » cable stacks, and coils performed between 2013 and 2015. These samples and coils have been performed within a collaboration between CERN and the U.S. LHC Accelerator Research Program to develop Nb 3Sn quadrupole magnets for the HiLumi LHC. The results are also compared with other high field magnet projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozeki, H.; Isono, T.; Uno, Y.
JAEA successfully completed the manufacture of the toroidal field (TF) insert coil (TFIC) for a performance test of the ITER TF conductor in the final design in cooperation with Hitachi, Ltd. The TFIC is a single-layer 8.875-turn solenoid coil with 1.44-m diameter. This will be tested for 68-kA current application in a 13-T external magnetic field. TFIC was manufactured in the following order: winding of the TF conductor, lead bending, fabrication of the electrical termination, heat treatment, turn insulation, installation of the coil into the support mandrel structure, vacuum pressure impregnation (VPI), structure assembly, and instrumentation. Here in this presentation,more » manufacture process and quality control status for the TFIC manufacturing are reported.« less
Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.
2012-11-13
A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.
Ghoshal, P. K.; Pastor, O.; Kashy, D.; ...
2014-12-18
The torus magnet for the CLAS12 spectrometer is a 3.6 T superconducting magnet being designed and built as part of the Jefferson Lab 12 GeV Upgrade. The magnet consists of six coil case assemblies mounted to a cold central hub. The coil case assembly consists of an aluminum case and cover enclosing an epoxy vacuum impregnated coil pack. The coil pack consists of a 117 turn double-pancake winding wrapped with 2 layers of 0.635 mm thick copper cooling sheets. The coil case assembly is cooled by supercritical helium at 4.6 K. This report details the structural analysis of the coilmore » case assembly and the assessment of the coil pack stresses. For the normal operation of the torus magnet, the coil case assembly was analyzed for cool down to 4.6 K and the Lorentz forces at normal operating current. In addition to the normal operating configuration, the coil case assembly was analyzed for Lorentz forces arising from coil misalignment and current imbalances. The allowable stress criteria for the magnet followed the approach of the ASME codes. Primary stresses were limited to the lesser of 2/3 times the yield strength or 1/3 times the ultimate tensile strength. Primary plus secondary stresses were limited to 3 times the primary stress allowable. The analysis was performed using ANSYS Maxwell to calculate the magneto-static loads and ANSYS Mechanical to calculate the stresses.« less
A miniature implantable coil that can be wrapped around a tubular organ within the human body
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
There are many tubular or rod-shaped organs and tissues within the human body. A miniature medical implant that wraps around such a biological structure can monitor or modulate its function. In order to provide the wrap-around implant with power, a solenoidal coil coupled wirelessly with a planar coil outside the human body can be used. Unfortunately, there is a serious practical problem that this configuration cannot be realized easily because the implantable solenoidal coil cannot be positioned around the tubular biological structure unless either the structure or the coil is cut and reconnected, which is impermissible in most cases. In addition, when a planner exterior coil is used for wireless power transfer and communication, its maximum magnetic coupling with the implanted solenoidal coil is achieved when the tubular structure is perpendicular to the surface of the body. However, in human anatomy, most tubular/rod structures are oriented horizontally. In order to solve these problems, we present a new flexible coil for the class of wrapped-around implantable devices. Our multilayer coil has specially designed windings in cross patterns. The new coil can be made conveniently in high precision at low cost on a flat substrate using the same technology for making the flexible multilayer printed circuit boards along with miniature sensors and electronic circuits. This allows the implant to be made in a flat form and then wrapped around the biostructure during surgery. We present the design of this new coil, perform theoretical analysis with respect to its wireless power transfer efficiency, discuss the effects of coil parameters, and conduct experiments using constructed miniature prototypes. Our results confirm the validity of the new coil.
TPX: Contractor preliminary design review. Volume 3, Design and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-30
Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presentedmore » as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.« less
Handbook of estimating data, factors, and procedures. [for manufacturing cost studies
NASA Technical Reports Server (NTRS)
Freeman, L. M.
1977-01-01
Elements to be considered in estimating production costs are discussed in this manual. Guidelines, objectives, and methods for analyzing requirements and work structure are given. Time standards for specific specfic operations are listed for machining, sheet metal working, electroplating and metal treating; painting; silk screening, etching and encapsulating; coil winding; wire preparation and wiring; soldering; and the fabrication of etched circuits and terminal boards. The relation of the various elements of cost to the total cost as proposed for various programs by various contractors is compared with government estimates.
Nonferromagnetic linear variable differential transformer
Ellis, James F.; Walstrom, Peter L.
1977-06-14
A nonferromagnetic linear variable differential transformer for accurately measuring mechanical displacements in the presence of high magnetic fields is provided. The device utilizes a movable primary coil inside a fixed secondary coil that consists of two series-opposed windings. Operation is such that the secondary output voltage is maintained in phase (depending on polarity) with the primary voltage. The transducer is well-suited to long cable runs and is useful for measuring small displacements in the presence of high or alternating magnetic fields.
Terrestrial adaptation of the thermal heliotrope.
NASA Technical Reports Server (NTRS)
Fairbanks, J. W.; Morse, F. H.
1971-01-01
The principle of using bimetal helical coils to cause solar arrays to track the sun in space is presently under consideration for array orientation on several spacecraft. Adaptation of this thermal heliotrope to terrestrial applications introduces additional design considerations. The dominance of solar-radiation energy input to the helical coil over convective energy losses has to be ensured, and wind effects must be minimized. As long as the cost of solar cells remains high, orientation will always result in a significant cost saving for the converter.
A 0.6 T/650 mm RT Bore Solid Nitrogen Cooled MgB2 Demonstration Coil for MRI—a Status Report
Bascuñán, Juan; Lee, Haigunan; Bobrov, Emmanuel S.; Hahn, Seungyong; Iwasa, Yukikazu; Tomsic, Mike; Rindfleisch, Matt
2014-01-01
Aiming to demonstrate feasibility and practicality of a low cost superconducting MRI magnet system targeted for use in small hospitals, rural communities and underdeveloped countries, MIT-Francis Bitter Magnet Laboratory has developed a 0.6 T/650 mm room temperature bore demonstration coil wound with multifilament MgB2 conductor and cooled via an innovative cryogenic design/operation. The coil is to be maintained cold by solid nitrogen kept in the solid state by a cryocooler. In the event of a power failure the cryocooler is automatically thermally decoupled from the system. In this paper we present details of the MgB2 conductor, winding process, and preliminary theoretical analysis of the current-carrying performance of the conductively cooled coils in zero background field and over the 10–30 K temperature range. PMID:25580068
IMP 8. Volume 1: EM field experiment
NASA Technical Reports Server (NTRS)
1980-01-01
The electromagnetic fields experiment on IMP-J used two electric dipole antennas and a triaxial search coil magnetic antenna to sense the electric and magnetic field of plasma waves in space. The electric dipole antennas consisted of a fine wire, 0.021 inches in diameter, with a nominal extended tip-to-tip length of 400 ft. The outermost 50 ft. of each element was conducting and the rest of the antenna was covered with an insulating coating. The search coil antennas each consisted of a high mu core with two separate windings of 40,000 turns each to sense ac magnetic fields. The search coils had a length of 18 inches tip-to-tip and are mounted on the end of a boom. The axes of the x prime and y prime search coil antennas were parallel to the x prime and y prime electric antenna axes.
High energy overcurrent protective device
Praeg, Walter F.
1982-01-01
Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.
Transformer modeling for low- and mid-frequency electromagnetic transients simulation
NASA Astrophysics Data System (ADS)
Lambert, Mathieu
In this work, new models are developed for single-phase and three-phase shell-type transformers for the simulation of low-frequency transients, with the use of the coupled leakage model. This approach has the advantage that it avoids the use of fictitious windings to connect the leakage model to a topological core model, while giving the same response in short-circuit as the indefinite admittance matrix (BCTRAN) model. To further increase the model sophistication, it is proposed to divide windings into coils in the new models. However, short-circuit measurements between coils are never available. Therefore, a novel analytical method is elaborated for this purpose, which allows the calculation in 2-D of short-circuit inductances between coils of rectangular cross-section. The results of this new method are in agreement with the results obtained from the finite element method in 2-D. Furthermore, the assumption that the leakage field is approximately 2-D in shell-type transformers is validated with a 3-D simulation. The outcome of this method is used to calculate the self and mutual inductances between the coils of the coupled leakage model and the results are showing good correspondence with terminal short-circuit measurements. Typically, leakage inductances in transformers are calculated from short-circuit measurements and the magnetizing branch is calculated from no-load measurements, assuming that leakages are unimportant for the unloaded transformer and that magnetizing current is negligible during a short-circuit. While the core is assumed to have an infinite permeability to calculate short-circuit inductances, and it is a reasonable assumption since the core's magnetomotive force is negligible during a short-circuit, the same reasoning does not necessarily hold true for leakage fluxes in no-load conditions. This is because the core starts to saturate when the transformer is unloaded. To take this into account, a new analytical method is developed in this dissertation, which removes the contributions of leakage fluxes to properly calculate the magnetizing branches of the new models. However, in the new analytical method for calculating short-circuit inductances (as with other analytical methods), eddy-current losses are neglected. Similarly, winding losses are omitted in the coupled leakage model and in the new analytical method to remove leakage fluxes to calculate core parameters from no-load tests. These losses will be taken into account in future work. Both transformer models presented in this dissertation are based on the classical hypothesis that flux can be discretized into flux tubes, which is also the assumption used in a category of models called topological models. Even though these models are physically-based, there exist many topological models for a given transformer geometry. It is shown in this work that these differences can be explained in part through the concepts of divided and integral fluxes, and it is explained that divided approach is the result of mathematical manipulations, while the integral approach is more "physically-accurate". Furthermore, it is demonstrated, for the special case of a two-winding single-phase transformer, that the divided leakage inductances have to be nonlinear for both approaches to be equivalent. Even between models of the divided or integral approach models, there are differences, which arise from the particular choice of so-called flux paths" (tubes). This arbitrariness comes from the fact that with the classical hypothesis that magnetic flux can be confined into predefined flux tubes (leading to classical magnetic circuit theory), it is assumed that flux cannot leak from the sides of flux tubes. Therefore, depending on the transformer's operation conditions (degree of saturation, short-circuit, etc.), this can lead to different choices of flux tubes and different models. In this work, a new theoretical framework is developed to allow flux to leak from the sides of the tube, and generalized to include resistances and capacitances in what is called electromagnetic circuit theory. Also, it is explained that this theory is actually equivalent to what is called finite formulations (such as the finite element method), which bridges the gap between circuit theory and discrete electromagnetism. Therefore, this enables not only to develop topologically-correct transformer models, where electric and magnetic circuits are defined on dual meshes, but also rotating machine and transmission lines models (wave propagation can be taken into account).
Multi-winding homopolar electric machine
Van Neste, Charles W
2012-10-16
A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.
Recent Progress of the Series-Connected Hybrid Magnet Projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkins, Todd; Bole, Scott
2010-01-01
The National High Magnetic Field Laboratory (NHMFL) in Tallahassee, Florida has designed and is now constructing two Series Connected Hybrid (SCH) magnets, each connecting a superconducting outsert coil and a resistive Florida Bitter insert coil electrically in series. The SCH to be installed at the NHMFL will produce 36 T and provide 1 ppm maximum field inhomogeneity over a 1 cm diameter spherical volume. The SCH to be installed at the Helmholtz Center Berlin (HZB) in combination with a neutron source will produce 25 T to 30 T depending on the resistive insert. The two magnets have a common designmore » for their cable-in-conduit conductor (CICC) and superconducting outsert coils. The CICC outsert coil winding packs have an inner diameter of 0.6 m and contribute 13.1 T to the central field using three grades of CICC conductors. Each conductor grade carries 20 kA and employs the same type of Nb{sub 3}Sn superconducting wire, but each grade contains different quantities of superconducting wires, different cabling patterns and different aspect ratios. The cryostats and resistive insert coils for the two magnets are different. This paper discusses the progress in CIC conductor and coil fabrication over the last year including specification, qualification and production activities for wire, cable, conductor and coil processing.« less
Single bead detection with an NMR microcapillary probe.
Nakashima, Yoshihiro; Boss, Michael; Russek, Stephen E; Moreland, John
2012-11-01
We have developed a nuclear magnetic resonance (NMR) microcapillary probe for the detection of single magnetic microbeads. The geometry of the probe has been optimized so that the signal from the background water has a similar magnitude compared to the signal from the dephased water nearby a single magnetic bead within the probe detector coil. In addition, the RF field of the coil must be uniform within the effective range of the magnetic bead. Three different RF probes were tested in a 7 T (300 MHz) pulsed NMR spectrometer with sample volumes ranging from 5 nL down to 1 nL. The 1 nL probe had a single-shot signal-to-noise ratio (SNR) for pure water of 27 and a volume resolution that exhibits a 600-fold improvement over a conventional (5 mm tube) NMR probe with a sample volume of 18 μL. This allowed for the detection of a 1 μm magnetite/polystyrene bead (m=2×10(-14)Am(2)) with an estimated experimental SNR of 30. Simulations of the NMR spectra for the different coil geometries and positions of the bead within the coil were developed that include the B(0) shift near a single bead, the inhomogeneity of the coils, the local coil sensitivity, the skin effect of the coil conductor, and quantitated estimates of the proximity effect between coil windings. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Oomen, Marijn; Herkert, Werner; Bayer, Dietmar; Kummeth, Peter; Nick, Wolfgang; Arndt, Tabea
2012-11-01
We investigate the use of 2nd-generation High-Temperature Superconductors (2G-HTSs) in the rotors of electrical motors and generators. For these devices the conductor must be wound into robust impregnated coils, which are operated in vacuum at temperatures around 30 K, in strong magnetic fields of about 2T. Differences in thermal contraction between the coil former, conductor constituents, impregnation resin, bandage and heat-sink materials (assembled at room temperature) cause mechanical stresses at operating temperature. Rotating-machine operation adds Lorentz forces and challenging centripetal accelerations up to thousands of g. Second generation-HTS conductors withstand large tensile stresses in axial direction and compression in normal direction. However, shear stresses, axial compression, and tension normal to the conductor can cause degradation in superconducting properties. Such stresses can be mitigated by correct choice of materials, coil lay-out and manufacturing process. A certain stress level will remain, which the conductor must withstand. We have manufactured many impregnated round and race-track coils, using different 2G-HTS conductors, and tested them at temperatures from 25 K to 77 K. Degradation of the superconductor in early coils was traced to the mentioned differences in thermal contraction, and was completely avoided in coils produced later. We will discuss appropriate coil-winding techniques to assure robust and reliable superconductor performance.
Orr, Stanley G.
2000-01-01
A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.
MAGNET ENGINEERING AND TEST RESULTS OF THE HIGH FIELD MAGNET R AND D PROGRAM AT BNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
COZZOLINO,J.; ANERELLA,M.; ESCALLIER,J.
2002-08-04
The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has been carrying out design, engineering, and technology development of high performance magnets for future accelerators. High Temperature Superconductors (HTS) play a major role in the BNL vision of a few high performance interaction region (IR) magnets that would be placed in a machine about ten years from now. This paper presents the engineering design of a ''react and wind'' Nb{sub 3}Sn magnet that will provide a 12 Tesla background field on HTS coils. In addition, the coil production tooling as well as the most recent 10-turn R&D coil test resultsmore » will be discussed.« less
Veligdan, James T.
2001-01-01
A flexible optical panel includes laminated optical waveguides, each including a ribbon core laminated between cladding, with the core being resilient in the plane of the core for elastically accommodating differential movement thereof to permit winding of the panel in a coil.
NASA Astrophysics Data System (ADS)
Paul Antony, Anish
Renewable energy sources are ubiquitous, wind energy in particular is one of the fastest growing forms of renewable energy, yet the stochastic nature of wind creates fluctuations that threaten the stability of the electrical grid. In addition to stability with increased wind energy, the need for additional load following capability is a major concern hindering increased wind energy penetration. Improvements in power electronics are required to increase wind energy penetration, but these improvements are hindered by a number of limitations. Changes in physical weather conditions, insufficient capacity of the transmission line and inaccurate wind forecasting greatly stymie their effect and ultimately lead to equipment damage. With this background, the overall goal of this research effort is to pitch a case for superconducting magnetic energy storage (SMES) by (1) optimally designing the SMES to be coupled with wind turbines thus reducing wind integration challenges and (2) to help influence decision makers in either increasing superconducting wire length/fill factor or improving superconducting splice technology thereby increasing the storage capacity of the SMES. Chapter 1 outlines the scope of this thesis by answering the following questions (1) why focus on wind energy? (2) What are the problems associated with increasing wind energy on the electric grid? (3) What are the current solutions related to wind integration challenges and (4) why SMES? Chapter 2, presents a detailed report on the study performed on categorizing the challenges associated with integrating wind energy into the electric grid. The conditions under which wind energy affected the electric grid are identified both in terms of voltage stability and excess wind generation. Chapter 3, details a comprehensive literature review on the different superconducting wires. A technology assessment of the five selected superconductors: [Niobium Titanium (NbTi), Niobium Tin (Nb3Sn), Bismuth strontium calcium copper oxide (BSCCO), Yttrium barium copper oxide (YBCO) and Magnesium diboride (MgB 2)] is carried out. The assessed attributes include superconducting transition temperature (Tc), critical current density (Jc ), the irreversibility field (H*) and the superconducting critical field (Hc). Chapter 4 presents the design of a solenoid shaped 1MJ MgB2 SMES. This SMES is used to mitigate the problem of momentary interruptions on a wind turbine. The total length of superconducting wire required for a 1MJ solenoid is calculated to be 21km. The maximum wire lengths currently available are 6km thus we hypothesize that either wire lengths have to be increased or work has to be done on MgB2 superconducting splice technology for multifilament wire. Another design consisting of 8 solenoids storing 120 kJ each is presented. The stress analysis on the proposed coil is performed using finite element analysis exhibiting the safety of the proposed design. Chapter 5 presents the design of a toroid shaped 20MJ MgB2 SMES. This is used to mitigate the problem of sustained interruptions on a wind turbine. The toroid coil is chosen since the magnetic field could be completely contained within the coil, thus reducing stray magnetic fields. A combination of genetic algorithm and nonlinear programming is used in determining the design. In Chapter 6, the different methods of operation of the SMES are examined. The Voltage Source Convertor (VSC) based SMES topology was chosen based on its ease of switching. The VSC switching strategy is based on a sinusoidal pulse width modulation technique. EMTDC/PSCAD software was used to demonstrate the efficacy of the VSC based SMES coupled to a wind turbine. The wind generator was modeled as an induction machine feeding into a load. The simulation results established that SMES connected to wind turbines improved output quality. Although the efficacy of SMES for wind energy has been stated previously in other work, this chapter specifically demonstrates through simulation results the utility of SMES in voltage sag mitigation for momentary interruptions. The 1MJ SMES mitigates voltage sags for a useful duration ~50 seconds. In conclusion (Chapter 7), we believe that in this dissertation, we have documented the design of SMES for both momentary and sustained interruptions in wind turbines. We have put forth some novel and relevant hypotheses, developed and performed suitable simulation studies to validate these hypotheses. By doing so, we have been able to expand our knowledge in our quest to grasp the underlying mechanisms of storage systems in wind energy integration. Although the resulting analysis has allowed us to gain valuable insight, we feel that it is only the tip of the iceberg, and that many yet unknown discoveries are to be made. We remain hopeful that the future of SMES for wind energy will only look brighter from here onward. (Abstract shortened by UMI.).
Nick-free formation of reciprocal heteroduplexes: a simple solution to the topological problem.
Wilson, J H
1979-01-01
Because the individual strands of DNA are intertwined, formation of heteroduplex structures between duplexes--as in presumed recombination intermediates--presents a topological puzzle, known as the winding problem. Previous approaches to this problem have assumed that single-strand breaks are required to permit formation of fully coiled heteroduplexes. This paper describes a simple, nick-free solution to the winding problem that satisfies all topological constraints. Homologous duplexes associated by their minor-groove surfaces can switch strand pairing to form reciprocal heteroduplexes that coil together into a compact, four-stranded helix throughout the region of pairing. Model building shows that this fused heteroduplex structure is plausible, being composed entirely of right-handed primary helices with Watson-Crick base pairing throughout. Its simplicity of formation, structural symmetry, and high degree of specificity are suggestive of a natural mechanism for alignment by base pairing between intact homologous duplexes. Implications for genetic recombination are discussed. Images PMID:291028
Direct matching methods for coils and preamplifiers in MRI
NASA Astrophysics Data System (ADS)
Cao, Xueming; Fischer, Elmar; Hennig, Jürgen; Zaitsev, Maxim
2018-05-01
In this paper, direct matching methods for coils and preamplifiers in receiver arrays are presented. Instead of compensating the reactance of the input impedance of preamplifiers, in our method, the reactance was used to resonate with the coil matching networks and thus to decouple the coils. Furthermore, coil matching networks and preamplifier input matching networks were combined, meaning the coil loop can be matched to the transistor in the preamplifier directly. These matching methods and, for comparison, the conventional matching method were implemented with custom-made preamplifiers and coils. Decoupling and noise-matching performance were compared between these three configurations. Phase shifting networks between coils and preamplifiers are not necessary in our matching methods. With fewer components, these matching networks showed lower noise factors, while similar preamplifier-decoupling performance was found for all three methods.
Apparatus and Methods for Mitigating Electromagnetic Emissions
NASA Technical Reports Server (NTRS)
Geng, Steven M. (Inventor); Niedra, Janis M. (Inventor)
2013-01-01
Apparatus, methods, and other embodiments associated with mitigation of magnetic fields are described herein. In an embodiment, a method for mitigating an electromagnetic field includes positioning a mitigating coil around a linear alternator of linear motor so that the mitigating coil is coaxially located with an alternator coil; arranging the mitigating coil to generate a field to mitigate an electromagnetic field generated by the alternator coil; and passing an induced current from the alternator coil through the mitigating coil.
Apparatus and Methods for Mitigating Electromagnetic Emissions
NASA Technical Reports Server (NTRS)
Geng, Steven M. (Inventor); Niedra, Janis M. (Inventor)
2016-01-01
Apparatus, methods, and other embodiments associated with mitigation of magnetic fields are described herein. In an embodiment, a method for mitigating an electromagnetic field includes positioning a mitigating coil around a linear alternator of linear motor so that the mitigating coil is coaxially located with an alternator coil; arranging the mitigating coil to generate a field to mitigate an electromagnetic field generated by the alternator coil; and passing an induced current from the alternator coil through the mitigating coil.
Three-dimensional eddy current solution of a polyphase machine test model (abstract)
NASA Astrophysics Data System (ADS)
Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado
1994-05-01
This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.
NASA Astrophysics Data System (ADS)
Shih, Yu-Ling; Le, Trung; Rothfield, Lawrence
2003-06-01
The MinCDE proteins of Escherichia coli are required for proper placement of the division septum at midcell. The site selection process requires the rapid oscillatory redistribution of the proteins from pole to pole. We report that the three Min proteins are organized into extended membrane-associated coiled structures that wind around the cell between the two poles. The pole-to-pole oscillation of the proteins reflects oscillatory changes in their distribution within the coiled structure. We also report that the E. coli MreB protein, which is required for maintaining the rod shape of the cell, also forms extended coiled structures, which are similar to the MreB structures that have previously been reported in Bacillus subtilis. The MreB and MinCDE coiled arrays do not appear identical. The results suggest that at least two functionally distinct cytoskeletal-like elements are present in E. coli and that structures of this type can undergo dynamic changes that play important roles in division site placement and possibly other aspects of the life of the cell.
Optimum Construction of Heating Coil for Domestic Induction Cooker
NASA Astrophysics Data System (ADS)
Sinha, Dola; Bandyopadhyay, Atanu; Sadhu, Pradip Kumar; Pal, Nitai
2010-10-01
The design and optimization of the parameters of heating coil is very important for the analytical analysis of high frequency inverter fed induction cooker. Moreover, accurate prediction of high frequency winding loss (i.e., losses due to skin and proximity effects) is necessary as the induction cooker used in power electronics applications. At high frequency current penetration in the induction coil circuit is very difficult for conducting wire due to skin-effect. To eradicate the skin effect heating coil is made up of bundle conductor i.e., litz wire. In this paper inductances and AC resistances of a litz-wire are calculated and optimized by considering the input parameters like wire type, shape, number of strand, number of spiral turn, number of twist per feet of heating coil and operating frequency. A high frequency half bridge series resonant mirror inverter circuit is used in this paper and taking the optimum values of inductance and ac resistance the circuit is simulated through PSPICE simulations. It has been noticed that the results are feasible enough for real implementation.
Winding a Long Coil with a Pre-Programmed Turns Density Variation
1975-05-27
turns den- sity is to follow. A machine having this capability is needed to provide a towed ELF loop antenna with the smoothly tapered sensitivity...Introduction A submarine towed ELF loop antenna vibrates longitudinally and trans- versely during towing. The vibration is driven by the fluctuating surface...in attaining the smoothly varying turns density required for the signal winding of a towed ELF loop antenna . Acknowledgments Thanks are due to John
Development of a REBCO HTS magnet for Maglev - repeated bending tests of HTS pancake coils -
NASA Astrophysics Data System (ADS)
Sugino, Motohikoa; Mizuno, Katsutoshi; Tanaka, Minoru; Ogata, Masafumi
2018-01-01
In the past study, two manufacturing methods were developed that can manufacture pancake coils by using REBCO coated conductors. It was confirmed that the conductors have no electric degradation that caused by the manufacturing method. The durability evaluation tests of the pancake coils were conducted as the final evaluation of the coil manufacturing method in this study. The repeated bending deformation was applied to manufactured pancake coils in the tests. As the results of these tests, it was confirmed that the pancake coils that were manufactured by two methods had the durability for the repeated bending deformation and the coils maintained the appropriate mechanical performance and electric performance. We adopted the fusion bonding method as the coil manufacturing method of the HTS magnet Furthermore, using the prototype pancake coil that was manufactured by the fusion bonding method as a test sample, the repeated bending test under the exited condition was conducted. Thus it was confirmed that the coil manufactured by the fusion bonding method has no degradation of the electricity performance and the mechanical properties even if the repeated bending deformation was applied under the exited condition.
Study of transient behavior of finned coil heat exchangers
NASA Technical Reports Server (NTRS)
Rooke, S. P.; Elissa, M. G.
1993-01-01
The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.
A portable wireless power transmission system for video capsule endoscopes.
Shi, Yu; Yan, Guozheng; Zhu, Bingquan; Liu, Gang
2015-01-01
Wireless power transmission (WPT) technology can solve the energy shortage problem of the video capsule endoscope (VCE) powered by button batteries, but the fixed platform limited its clinical application. This paper presents a portable WPT system for VCE. Besides portability, power transfer efficiency and stability are considered as the main indexes of optimization design of the system, which consists of the transmitting coil structure, portable control box, operating frequency, magnetic core and winding of receiving coil. Upon the above principles, the correlation parameters are measured, compared and chosen. Finally, through experiments on the platform, the methods are tested and evaluated. In the gastrointestinal tract of small pig, the VCE is supplied with sufficient energy by the WPT system, and the energy conversion efficiency is 2.8%. The video obtained is clear with a resolution of 320×240 and a frame rate of 30 frames per second. The experiments verify the feasibility of design scheme, and further improvement direction is discussed.
High pressure superconducting radial magnetic bearing
NASA Technical Reports Server (NTRS)
Eyssa, Y. M.; Huang, X.
1990-01-01
In a conventional radial magnetic bearing, the rotor (soft magnetic material) can only have attraction force from one of the electromagnets in the stator. The stator electromagnets consist of small copper windings with a soft magnetic material iron yoke. The maximum pressure obtainable is about 200 N/sq cm. It is shown that replacing the stator copper winding by a superconducting winding in the above configuration can increase the pressure to about 1000 N/sq cm. It is also shown that replacing the iron in the rotor by a group of superconducting windings in persistent mode and using a group of saddle coils in the stator can produce a pressure in excess of 2000 N/sq cm.
Magnetic Leviation System Design and Implementation for Wind Tunnel Application
NASA Technical Reports Server (NTRS)
Lin, Chin E.; Sheu, Yih-Ran; Jou, Hui-Long
1996-01-01
This paper presents recent work in magnetic suspension wind tunnel development in National Cheng Kung University. In this phase of research, a control-based study is emphasized to implement a robust control system into the experimental system under study. A ten-coil 10 cm x 10 cm magnetic suspension wind tunnel is built using a set of quadrant detectors for six degree of freedom control. To achieve the attitude control of suspended model with different attitudes, a spacial electromagnetic field simulation using OPERA 3D is studied. A successful test for six degree of freedom control is demonstrated in this paper.
The equivalent magnetizing method applied to the design of gradient coils for MRI.
Lopez, Hector Sanchez; Liu, Feng; Crozier, Stuart
2008-01-01
This paper presents a new method for the design of gradient coils for Magnetic Resonance Imaging systems. The method is based on the equivalence between a magnetized volume surrounded by a conducting surface and its equivalent representation in surface current/charge density. We demonstrate that the curl of the vertical magnetization induces a surface current density whose stream line defines the coil current pattern. This method can be applied for coils wounds on arbitrary surface shapes. A single layer unshielded transverse gradient coil is designed and compared, with the designs obtained using two conventional methods. Through the presented example we demonstrate that the generated unconventional current patterns obtained using the magnetizing current method produces a superior gradient coil performance than coils designed by applying conventional methods.
Heat energy of various ignition sparks
NASA Technical Reports Server (NTRS)
Silsbee, F B; Loeb, L B; Fonseca, E L
1920-01-01
This report describes a method developed at the Bureau of Standards for measuring the total energy liberated as heat in a spark gap by an ignition system. Since this heat energy is obtained from the electromagnetic energy stored in the windings of the magneto or coil, it is a measure of the effectiveness of the device as an electric generator. Part 2 gives the results of measurements in absolute units of the total heat supplied to a spark gap by ignition systems of different types operating at various speeds, under conditions substantially equivalent to those in the cylinder of a high-compression aviation engine.
Vacuum Magnetic Field Mapping of the Compact Toroidal Hybrid (CTH)
NASA Astrophysics Data System (ADS)
Peterson, J. T.; Hanson, J.; Hartwell, G. J.; Knowlton, S. F.; Montgomery, C.; Munoz, J.
2007-11-01
Vacuum magnetic field mapping experiments are performed on the CTH torsatron with a movable electron gun and phosphor-coated screen or movable wand at two different toroidal locations. These experiments compare the experimentally measured magnetic configuration produced by the as-built coil set, to the magnetic configuration simulated with the IFT Biot-Savart code using the measured coil set parameters. Efforts to minimize differences between the experimentally measured location of the magnetic axis and its predicted value utilizing a Singular Value Decomposition (SVD) process result in small modifications of the helical coil winding law used to model the vacuum magnetic field geometry of CTH. Because these studies are performed at relatively low fields B = 0.01 - 0.05 T, a uniform ambient magnetic field is included in the minimization procedure.
Design of a 100 kVA high temperature superconducting demonstration synchronous generator
NASA Astrophysics Data System (ADS)
Al-Mosawi, M. K.; Beduz, C.; Goddard, K.; Sykulski, J. K.; Yang, Y.; Xu, B.; Ship, K. S.; Stoll, R.; Stephen, N. G.
2002-08-01
The paper presents the main features of a 100 kVA high temperature superconducting (HTS) demonstrator generator, which is designed and being built at the University of Southampton. The generator is a 2-pole synchronous machine with a conventional 3-phase stator and a HTS rotor operating in the temperature range 57-77 K using either liquid nitrogen down to 65 K or liquid air down to 57 K. Liquid air has not been used before in the refrigeration of HTS devices but has recently been commercialised by BOC as a safe alternative to nitrogen for use in freezing of food. The generator will use an existing stator with a bore of 330 mm. The rotor is designed with a magnetic core (invar) to reduce the magnetising current and the field in the coils. For ease of manufacture, a hybrid salient pole construction is used, and the superconducting winding consists of twelve 50-turn identical flat coils. Magnetic invar rings will be used between adjacent HTS coils of the winding to divert the normal component of the magnetic field away from the Bi2223 superconducting tapes. To avoid excessive eddy-current losses in the rotor pole faces, a cold copper screen will be placed around the rotor core to exclude ac magnetic fields.
Rotatable superconducting cyclotron adapted for medical use
Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.
1985-01-01
A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.
Optimization of the current potential for stellarator coils
NASA Astrophysics Data System (ADS)
Boozer, Allen H.
2000-02-01
Stellarator plasma confinement devices have no continuous symmetries, which makes the design of appropriate coils far more subtle than for axisymmetric devices such as tokamaks. The modern method for designing coils for stellarators was developed by Peter Merkel [P. Merkel, Nucl. Fusion 27, 867 (1987)]. Although his method has yielded a number of successful stellarator designs, Merkel's method has a systematic tendency to give coils with a larger current than that required to produce a stellarator plasma with certain properties. In addition, Merkel's method does not naturally lead to a coil set with the flexibility to produce a number of interesting plasma configurations. The issues of coil efficiency and flexibility are addressed in this paper by a new method of optimizing the current potential, the first step in Merkel's method. The new method also allows the coil design to be based on a freer choice for the plasma-coil separation and to be constrained so space is preserved for plasma access.
Optimization of the current potential for stellarator coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boozer, Allen H.; Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, D-85748 Garching,
2000-02-01
Stellarator plasma confinement devices have no continuous symmetries, which makes the design of appropriate coils far more subtle than for axisymmetric devices such as tokamaks. The modern method for designing coils for stellarators was developed by Peter Merkel [P. Merkel, Nucl. Fusion 27, 867 (1987)]. Although his method has yielded a number of successful stellarator designs, Merkel's method has a systematic tendency to give coils with a larger current than that required to produce a stellarator plasma with certain properties. In addition, Merkel's method does not naturally lead to a coil set with the flexibility to produce a number ofmore » interesting plasma configurations. The issues of coil efficiency and flexibility are addressed in this paper by a new method of optimizing the current potential, the first step in Merkel's method. The new method also allows the coil design to be based on a freer choice for the plasma-coil separation and to be constrained so space is preserved for plasma access. (c) 2000 American Institute of Physics.« less
Endovascular rescue method for undesirably stretched coil.
Cho, Jae Hoon
2014-10-01
Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter.
Endovascular Rescue Method for Undesirably Stretched Coil
2014-01-01
Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter. PMID:25371791
NASA Astrophysics Data System (ADS)
Ji, Yanju; Wang, Hongyuan; Lin, Jun; Guan, Shanshan; Feng, Xue; Li, Suyi
2014-12-01
Performance testing and calibration of airborne transient electromagnetic (ATEM) systems are conducted to obtain the electromagnetic response of ground loops. It is necessary to accurately calculate the mutual inductance between transmitting coils, receiving coils and ground loops to compute the electromagnetic responses. Therefore, based on Neumann's formula and the measured attitudes of the coils, this study deduces the formula for the mutual inductance calculation between circular and quadrilateral coils, circular and circular coils, and quadrilateral and quadrilateral coils using a rotation matrix, and then proposes a method to calculate the mutual inductance between two coils at arbitrary attitudes (roll, pitch, and yaw). Using coil attitude simulated data of an ATEM system, we calculate the mutual inductance of transmitting coils and ground loops at different attitudes, analyze the impact of coil attitudes on mutual inductance, and compare the computational accuracy and speed of the proposed method with those of other methods using the same data. The results show that the relative error of the calculation is smaller and that the speed-up is significant compared to other methods. Moreover, the proposed method is also applicable to the mutual inductance calculation of polygonal and circular coils at arbitrary attitudes and is highly expandable.
Mechanical performance evaluation of the CFETR central solenoid model coil design
NASA Astrophysics Data System (ADS)
Liu, Xiaogang; Wang, Zhaoliang; Ren, Yong; Li, Junjun; Yin, Dapeng; Li, Lei; Gao, Xiang; Wu, Yu
2018-01-01
The Chinese Fusion Engineering Test Reactor (CFETR) Central Solenoid Model Coil is being fabricated by the Institute of Plasma Physics Chinese Academy of Sciences. The Model Coil is comprised of Nb3Sn and NbTi modules held together by a preload structure. It will operate at 4.5 K to produce a peak field of 12 T at 48 kA. In order to investigate the feasibility and integrity of the Model Coil design before its manufacturing, the mechanical performance has been evaluated for the room temperature preload, 4.5 K stand-by and 48 kA operating conditions. A 1/15 3D detailed model that consists of jackets, insulations, bladders, buffers and preload structure, is constructed and simulated using the coupled structural-thermal-electromagnetic solver of ANSYS. In contrary to a smeared winding pack model, our analysis with the detailed model can directly and precisely simulate the differential thermal contraction effect of the preload structure, jacket and insulations, as well as the electromagnetic load acting on the jacket. The detailed deformation and stress behaviors of the Model Coil are illustrated and discussed. The results indicate that the final design of the CFETR Central Solenoid Model Coil is reasonably conservative and satisfy the design criteria.
NASA Astrophysics Data System (ADS)
Núñez-Chico, A. B.; Martínez, E.; Angurel, L. A.; Navarro, R.
2016-08-01
Early quench detection and thermal stability of superconducting coils are of great relevance for practical applications. Magnets made with second generation high temperature superconducting (2G-HTS) tapes present low quench propagation velocities and therefore slow voltage development and high local temperature rises, which may cause irreversible damage. Since quench propagation depends on the anisotropy of the thermal conductivity, this may be used to achieve an improvement of the thermal stability and robustness of 2G-HTS coils. On pancake type coils, the thermal conductivity along the tapes (coil’s azimuthal direction) is mostly fixed by the 2G-HTS tape characteristics, so that the reduction of anisotropy relies on the improvement of the radial thermal conductivity, which depends on the used materials between superconducting tapes, as well as on the winding and impregnation processes. In this contribution, we have explored two possibilities for such anisotropy reduction: by using anodised aluminium or stainless steel tapes co-wound with the 2G-HTS tapes. For all the analysed coils, critical current distribution, minimum quench energy values and both tangential and radial quench propagation velocities at different temperatures and currents are reported and compared with the results of similar coils co-wound with polyimide (Kapton®) tapes.
Chu, Alan; Noll, Douglas C
2016-10-01
Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan
2017-05-01
In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.
Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil †
Xu, Mengyuan; Yan, Jing; Geng, Yingsan; Zhang, Kun; Sun, Chao
2018-01-01
An innovative array of magnetic coils (the discrete Rogowski coil—RC) with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP) method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC’s interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors. PMID:29534006
Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted
2016-09-16
distribution. Simulation results, using both an optimized coil and a conventional coil, are generated using the finite element method (FEM) model...optimized coil and a conventional coil, are generated using the finite element method (FEM) model. The signal magnitude for an optimized coil is seen to be...optimized coil. 4. Model Based Performance Analysis A 3D finite element model (FEM) is used to analyze the performance of the optimized coil and
Atmospheric Renewable-Energy Research. Volume 1 (Background: To BE or Not to BE)
2015-09-01
buildings, trees, and other obstacles). Consequently, wind turbines generally need to be at least 24 m (approximately 80 ft) above ground level (AGL) in a...which turns large turbines . The blades of a turbine turn a series of magnets (a rotor) past stationary coils of copper wire (the stator), creating a...energy than wind ; • Almost all moving water energy is usable by the turbine , with 50–70% of the water energy becoming electricity; and • A
Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei
2006-04-04
Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.
Post, Richard F.
2001-01-01
An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.
Characteristics of bowl-shaped coils for transcranial magnetic stimulation
NASA Astrophysics Data System (ADS)
Yamamoto, Keita; Suyama, Momoko; Takiyama, Yoshihiro; Kim, Dongmin; Saitoh, Youichi; Sekino, Masaki
2015-05-01
Transcranial magnetic stimulation (TMS) has recently been used as a method for the treatment of neurological and psychiatric diseases. Daily TMS sessions can provide continuous therapeutic effectiveness, and the installation of TMS systems at patients' homes has been proposed. A figure-eight coil, which is normally used for TMS therapy, induces a highly localized electric field; however, it is challenging to achieve accurate coil positioning above the targeted brain area using this coil. In this paper, a bowl-shaped coil for stimulating a localized but wider area of the brain is proposed. The coil's electromagnetic characteristics were analyzed using finite element methods, and the analysis showed that the bowl-shaped coil induced electric fields in a wider area of the brain model than a figure-eight coil. The expanded distribution of the electric field led to greater robustness of the coil to the coil-positioning error. To improve the efficiency of the coil, the relationship between individual coil design parameters and the resulting coil characteristics was numerically analyzed. It was concluded that lengthening the outer spherical radius and narrowing the width of the coil were effective methods for obtaining a more effective and more uniform distribution of the electric field.
Magnetic suspension and balance system advanced study, phase 2
NASA Technical Reports Server (NTRS)
Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.
1990-01-01
The design improvements for the system encompass 14 or 18 external superconductive coils mounted on a 8 x 8 foot wind tunnel, a superconductive model core magnet on a holmium mandrel to fit an F-16 model, model wings of permanent magnet material Nd2Fe14B, and fiber glass epoxy structure. The Magnetic Suspension and Balance System (MSBS) advanced design is confirmed by the successful construction and test of a full size superconductive model core solenoid with holmium mandrel. The solenoid is 75 cm long and 12.6 cm in diameter and produces 6.1 tesla for a hold time of 47 minutes. An integrated coil system design of a new compact configuration without specific coils for roll or pitch shows promise of simplicity; magnet reductions of 30 percent compared to the most recent 1985 design are possible.
Magnetic suspension and balance system study
NASA Technical Reports Server (NTRS)
Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.
1984-01-01
A compact design for a superconducting magnetic suspension and balance system is developed for a 8 ft. x 8 ft. transonic wind tunnel. The main features of the design are: a compact superconducting solenoid in the suspended airplane model; permanent magnet wings; one common liquid helium dewar for all superconducting coils; efficient new race track coils for roll torques; use of established 11 kA cryostable AC conductor; acceptable AC losses during 10 Hz control even with all steel structure; and a 560 liter/hour helium liquefier. Considerable design simplicity, reduced magnet weights, and reduced heat leak results from using one common dewar which eliminates most heavy steel structure between coils and the suspended model. Operational availability is thought to approach 100% for such magnet systems. The weight and cost of the magnet system is approximately one-third that of previous less compact designs.
Development of an engineering model for ferromagnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato
This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature.
A Bearingless Switched-Reluctance Motor for High Specific Power Applications
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Siebert, Mark
2006-01-01
A 12-8 switched-reluctance motor (SRM) is studied in bearingless (or self-levitated) operation with coil currents limited to the linear region to avoid magnetic saturation. The required motoring and levitating currents are summed and go into a single motor coil per pole to obtain the highest power output of the motor by having more space for motor coil winding. Two controllers are investigated for the bearingless SRM operation. First, a model-based controller using the radial force, which is adjusted by a factor derived from finite element analysis, is presented. Then a simple and practical observation-based controller using a PD (proportional-derivative) control algorithm is presented. Both controllers were experimentally demonstrated to 6500 rpm. This paper reports the initial efforts toward eventual self levitation of a SRM operating into strong magnetic core saturation at liquid nitrogen temperature.
92. DETAIL OF GENERAL ELECTRIC 250HP SYNCHRONOUS MOTOR FROM SLIP ...
92. DETAIL OF GENERAL ELECTRIC 250-HP SYNCHRONOUS MOTOR FROM SLIP RING END. NOTE BOLTS AND SPRINGS OF BRAKE BAND, HEAVY-WIRE ARMATURE WINDINGS, AND TIGHTLY WOUND STATOR (FIELD) COILS. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO
Thermo-hydraulic analysis of the cool-down of the EDIPO test facility
NASA Astrophysics Data System (ADS)
Lewandowska, Monika; Bagnasco, Maurizio
2011-09-01
The first cool-down of the EDIPO (European DIPOle) test facility is foreseen to take place in 2011 by means of the existing 1.2 kW cryoplant at EPFL-CRPP Villigen. In this work, the thermo-hydraulic analysis of the EDIPO cool-down is performed in order both to assess the its duration and to optimize the procedure. The cool-down is driven by the helium flowing in both the outer cooling channel and in the windings connected hydraulically in parallel. We take into account limitations due to the pressure drop in the cooling circuit and the refrigerator capacity as well as heat conduction in the iron yoke. Two schemes of the hydraulic cooling circuit in the EDIPO windings are studied (coils connected in series and coils connected in parallel). The analysis is performed by means of an analytical model complemented by and numerical model. The results indicate that the cool-down to 5 K can be achieved in about 12 days.
Predicting helix orientation for coiled-coil dimers
Apgar, James R.; Gutwin, Karl N.; Keating, Amy E.
2008-01-01
The alpha-helical coiled coil is a structurally simple protein oligomerization or interaction motif consisting of two or more alpha helices twisted into a supercoiled bundle. Coiled coils can differ in their stoichiometry, helix orientation and axial alignment. Because of the near degeneracy of many of these variants, coiled coils pose a challenge to fold recognition methods for structure prediction. Whereas distinctions between some protein folds can be discriminated on the basis of hydrophobic/polar patterning or secondary structure propensities, the sequence differences that encode important details of coiled-coil structure can be subtle. This is emblematic of a larger problem in the field of protein structure and interaction prediction: that of establishing specificity between closely similar structures. We tested the behavior of different computational models on the problem of recognizing the correct orientation - parallel vs. antiparallel - of pairs of alpha helices that can form a dimeric coiled coil. For each of 131 examples of known structure, we constructed a large number of both parallel and antiparallel structural models and used these to asses the ability of five energy functions to recognize the correct fold. We also developed and tested three sequenced-based approaches that make use of varying degrees of implicit structural information. The best structural methods performed similarly to the best sequence methods, correctly categorizing ∼81% of dimers. Steric compatibility with the fold was important for some coiled coils we investigated. For many examples, the correct orientation was determined by smaller energy differences between parallel and antiparallel structures distributed over many residues and energy components. Prediction methods that used structure but incorporated varying approximations and assumptions showed quite different behaviors when used to investigate energetic contributions to orientation preference. Sequence based methods were sensitive to the choice of residue-pair interactions scored. PMID:18506779
4. PACK TRAIN WAITING TO BE UNLOADED AT FOOT OF ...
4. PACK TRAIN WAITING TO BE UNLOADED AT FOOT OF YAKI TRAIL. APPROXIMATELY TWO-AND-ONE-HALF TONS OF STEEL ON ANIMALS SHOWN. NOTE COIL OF 1-1/2' WIND CABLE IN FOREGROUND. - Kaibab Trail Suspension Bridge, Spanning Colorado River, Grand Canyon, Coconino County, AZ
Romero, Javier A; Domínguez, Gabriela A; Anoardo, Esteban
2017-03-01
An important requirement for a gradient coil is that the uniformity of the generated magnetic field gradient should be maximal within the active volume of the coil. For a cylindrical geometry, the radial uniformity of the gradient turns critic, particularly in cases where the gradient-unit has to be designed to fit into the inner bore of a compact magnet of reduced dimensions, like those typically used in fast-field-cycling NMR. In this paper we present two practical solutions aimed to fulfill this requirement. We propose a matrix-inversion optimization algorithm based on the Biot-Savart law, that using a proper cost function, allows maximizing the uniformity of the gradient and power efficiency. The used methodology and the simulation code were validated in a single-current design, by comparing the computer simulated field map with the experimental data measured in a real prototype. After comparing the obtained results with the target field approach, a multiple-element coil driven by independent current sources is discussed, and a real prototype evaluated. Opposed equispaced independent windings are connected in pairs conforming an arrangement of independent anti-Helmholtz units. This last coil seizes 80% of its radial dimension with a gradient uniformity better than 5%. The design also provides an adaptable region of uniformity along with adjustable coil efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
High-performance superconductors for Fusion Nuclear Science Facility
Zhai, Yuhu; Kessel, Chuck; Barth, Christian; ...
2016-11-09
High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb 3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steelmore » jacket for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced J cNb 3Sn RRP strands (J c > 1000 A/mm 2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.« less
High-performance superconductors for Fusion Nuclear Science Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Yuhu; Kessel, Chuck; Barth, Christian
High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb 3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steelmore » jacket for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced J cNb 3Sn RRP strands (J c > 1000 A/mm 2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.« less
Wang, Zhongxian; Liu, Yiping; Wei, Yonggeng; Song, Yilin
2018-01-01
The resonant coil design is taken as the core technology in the magnetic coupling resonant wireless power transmission system, which achieves energy transmission by the coupling of the resonant coil. This paper studies the effect of the resonant coil on energy transmission and the efficiency of the system. Combining a two-coil with a three-coil system, the optimum design method for the resonant coil is given to propose a novel coil structure. First, the co-simulation methods of Pspice and Maxwell are used. When the coupling coefficient of the resonant coil is different, the relationship between system transmission efficiency, output power, and frequency is analyzed. When the self-inductance of the resonant coil is different, the relationship between the performance and frequency of the system transmission is analyzed. Then, two-coil and three-coil structure models are built, and the parameters of the magnetic field of the coils are calculated and analyzed using the finite element method. In the end, a dual E-type simulation circuit model is used to optimize the design of the novel resonance coil. The co-simulation results show that the coupling coefficients of the two-coil, three-coil, and novel coil systems are 0.017, 0.17 and 0.0126, respectively. The power loss of the novel coil is 16.4 mW. There is an obvious improvement in the three-coil system, which shows that the magnetic leakage of the field and the energy coupling are relatively small. The new structure coil has better performance, and the load loss is lower; it can improve the system output power and transmission efficiency.
Superconducting light generator for large offshore wind turbines
NASA Astrophysics Data System (ADS)
Sanz, S.; Arlaban, T.; Manzanas, R.; Tropeano, M.; Funke, R.; Kováč, P.; Yang, Y.; Neumann, H.; Mondesert, B.
2014-05-01
Offshore wind market demands higher power rate and reliable turbines in order to optimize capital and operational cost. These requests are difficult to overcome with conventional generator technologies due to a significant weight and cost increase with the scaling up. Thus superconducting materials appears as a prominent solution for wind generators, based on their capacity to held high current densities with very small losses, which permits to efficiently replace copper conductors mainly in the rotor field coils. However the state-of-the-art superconducting generator concepts still seem to be expensive and technically challenging for the marine environment. This paper describes a 10 MW class novel direct drive superconducting generator, based on MgB2 wires and a modular cryogen free cooling system, which has been specifically designed for the offshore wind industry needs.
Testing of TAMU3: a Nb 3Sn Block–Coil Dipole with Stress Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntyre, Peter
The Accelerator Research Lab (ARL) at Texas A&M has recently concluded the construction and testing of a superconducting block-coil dipole TAMU3. TAMU3 reached 85% of the resistive-onset short sample critical current (0.1 μV/cm criterion) that was measured on extracted strands at the National High Magnetic Field Lab. Peak magnet current was 6603 amps, and all with quenches originated in the vicinity of the hard-way chicane near the exit lead of the TAMU3c inner winding. Leading up to the testing we discovered that we had made two grievous mistakes in the fabrication (we mistakenly used the wrong superconducting wire for themore » cables of the inner windings) and the heat treatment (we used a heat treatment that was too hot and too long). We extracted strands from the leads of the inner and outer windings, and colleagues at NHMFL performed short-sample measurements upon them. The NHMFL measurements indicated RRR ~ 2-5, which gives very little stability against microquenches. The short-sample tests of the extracted strands exhibited a long resistive transition, in which there was a current I sc(B) beyond which it became resistive, then a higher current In(B) at which it went fully normal. Using the I sc(B) data we predicted a short-sample limit for the revised load line of TAMU3 of 7700 A (9 T) – a disappointing reduction from the 14 T objective. On those unhappy notes we undertook the testing of the dipole. The first quench occurred at 5695 A, and the dipole trained thereafter to a maximum quench current of 6600 A (7.6 T), 85% of the compromised short-sample limit. All quenches occurred at a single location, in the region of the S-bend transition and outer lead of one inner winding. Data was collected from stress transducers on the outer windings to evaluate stress management, and on the coil ends to evaluate capture of axial forces by staticfriction lock. The low field reached prevented us from extending those tests to the stress levels where they would have become most interesting, but the designed stress management appeared to be working at the level tested.« less
Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging
NASA Astrophysics Data System (ADS)
Eldib, Mootaz; Bini, Jason; Robson, Philip M.; Calcagno, Claudia; Faul, David D.; Tsoumpas, Charalampos; Fayad, Zahi A.
2015-06-01
The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use.
Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil
Gao, Zhongxing; Zhang, Yonggang; Zhang, Yunhao
2016-01-01
Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD) is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance. PMID:27455257
Improved Sensing Coils for SQUIDs
NASA Technical Reports Server (NTRS)
Penanen, Konstantin; Hahn, Inseob; Eom, Byeong Ho
2007-01-01
An improvement in the design and fabrication of sensing coils of superconducting quantum interference device (SQUID) magnetometers has been proposed to increase sensitivity. It has been estimated that, in some cases, it would be possible to increase sensitivity by about half or to reduce measurement time correspondingly. The pertinent aspects of the problems of design and fabrication can be summarized as follows: In general, to increase the sensitivity of a SQUID magnetometer, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. It is often beneficial to fabricate the coil from a thicker wire to reduce its self-inductance. Moreover, to optimize the design of the coil with respect to sensitivity, it may be necessary to shape the wire to other than a commonly available circular or square cross-section. On the other hand, it is not practical to use thicker superconducting wire for the entire superconducting circuit, especially if the design of a specific device requires a persistent-current loop enclosing a remotely placed SQUID sensor. It may be possible to bond a thicker sensing-coil wire to thinner superconducting wires leading to a SQUID sensor, but it could be difficult to ensure reliable superconducting connections, especially if the bonded wires are made of different materials. The main idea is to mold the sensing coil in place, to more nearly optimum cross sectional shape, instead of making the coil by winding standard pre-fabricated wire. For this purpose, a thin superconducting wire loop that is an essential part of the SQUID magnetometer would be encapsulated in a form that would serve as a mold. A low-melting-temperature superconducting metal (e.g., indium, tin, or a lead/tin alloy) would be melted into the form, which would be sized and shaped to impart the required cross section to the coil thus formed.
NASA Astrophysics Data System (ADS)
Good, J.; Bracanovic, D.
The development of High Temperature Superconductors (HTS) conductors makes it possible to build very high field superconducting magnets up to at least 25 T. Previously, the only way to obtain a steady field of 25 T for research would be to use water cooled copper solenoids. To achieve 25 T in a 50 mm working space would require about 10 MW of power with a large water cooling plant to carry away the heat. With such high powers involved it is difficult to have a stable and quiet magnetic field environment in which to make sensitive measurements such as NMR. Both capital and operating costs are high so few such facilities exist worldwide. This makes a superconducting magnet of 25 T a very attractive proposition. Figure 1 shows that the critical current of HTS as compared to NbTi and NbSn. The latter can be used up to a limit of about 20 T at 4.2 K. The HTS on the other hand shows the potential of much higher fields. The two main issues in magnet design are the maximum critical current and the maximum stress that a conductor or coil structure can support. For the inner sections of the coil the forces are modest but as the diameter increases towards the outside of the coil hoop stress becomes the dominant issue. Cryogenic has built a magnet system with first generation BSCCO conductor. It is designed to run at 4.2 K. It has a three section design, two of conventional superconductor and one of HTS. • The outer winding is made from NbTi giving a field of 9 T, in a bore of 225 mm. The coil is made from 21 km of NbTi wire graded from 1 to 0.6 mm diameter. • A middle coil of NbSn bronze route conductor providing a field of 14 T in 140 mm diameter. • An inner set of HTS coils. These are in the form of 3 coaxial windings made from silver matrix BSCCO conductor supplied by American Superconductor. This conductor has a critical current of 100 A at 77 K in zero field. At 4 K in low field the current is very much higher. The set of three BSCCO windings has a gauss per amp of 157 and when run on its own at a current of 300 A provides a field of 4.7 T, although currents above 275 A begin to show significant resistive losses in the conductor. The inner BSCCO coils are separately powered from the outer magnet. In a test of the full magnet system the BSCCO coil is ramped up at various background fields up to 13 T. The resulting voltage loss across the BSCCO is shown in Fig. 2. This test shows that the BSCCO conductor can operate up to 275 A quite successfully independent of the background field with just a slight increase in resistive losses presumably from the joints between conductor being magneto-resistive or due to flux flow in the conductor. Since the BSCCO coils were made new 2nd generation conductors have become available made from thin films of YBCO on a stainless steel backing. These have a much higher effective current density. A 4 mm wide tape of BSCCO is 0.4 mm thick but carries a similar current to an YBCO tape of 0.01 mm or even 0.05 mm thickness. Table 1 shows the properties of different conductors compared. Interestingly the conductors are not just higher current density but also more flexible and stronger in tension. A new coil has now been produced from 0.1 mm Super Power material of a size that can fit inside the existing winding so that the combination can produce above 6 T providing a total field of 20 T at 4.2 K in a working bore of 38 mm. Now that the new 2nd generation YBCO based conductors have become available it is intended to exchange the BSCCO coils for YBCO windings which will allow this magnet to operate at much higher fields of up to 25 T. At this field it will be the highest field superconducting magnet worldwide. The magnet is housed in a liquid helium cryostat. To reduce helium consumption a powerful 2nd stage cryocooler is fitted to the cryostat. The first stage cools a shield around the liquid helium to 45 K. The second stage has a cooling power of 1.5 W at 4.2 K and is used to recondense helium gas evolved from the magnet. In operation, with no current in the leads to the cryocooler it is able to condense more gas than that evolved from the cryostat so the liquid helium level will increase with time. Except at the highest currents the cryostat is a zero loss magnet system. A cross section of cryostat and magnet is show in Fig 3. The power required for the cryocooler is 6.5 kW while that for the magnet power supplies and ancillary electronics is 2 kW giving a combined power requirement of 8.5 kW. This compares very favourably with the typical value of 10 MW required by a water cooled copper solenoid to achieve the same field. Note from Publisher: This article contains the abstract only.
High-Resolution and Frequency, Printed Miniature Magnetic Probes
NASA Astrophysics Data System (ADS)
Prager, James; Ziemba, Timothy; Miller, Kenneth; Picard, Julian
2013-10-01
Eagle Harbor Technologies, Inc. (EHT) is developing a technique to significantly reduce the cost and development time of producing magnetic field diagnostics. EHT is designing probes that can be printed on flexible PCBs thereby allowing for extremely small coils to be produced while essentially eliminating the time to wind the coils. The coil size can be extremely small when coupled with the EHT Hybrid Integrator, which is capable of high bandwidth measurements over short and long pulse durations. This integrator is currently being commercialized with the support of a DOE SBIR. Additionally, the flexible PCBs allow probes to be attached to complex surface and/or probes that have a complex 3D structure to be designed and fabricated. During the Phase I, EHT will design and construct magnetic field probes on flexible PCBs, which will be tested at the University of Washington's HIT-SI experiment and in EHT's material science plasma reactor. Funding provided by DOE SBIR/STTR Program.
High temperature superconducting synchronous motor design and test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, R.; Zhang, B.; Shoykhet, B.
1996-10-01
High horsepower synchronous motors with high temperature superconducting (HTS) field windings offer the potential to cut motor operating losses in half compared to conventional energy efficient induction motors available today. The design, construction and test of a prototype, air core, synchronous motor with helium gas cooled HTS field coils will be described in this paper. The work described is part of a US Department of Energy, Superconductivity Partnership Initiative award. The motor uses a modified conventional motor armature combined with a vacuum insulated rotor that contains the four racetrack-shaped HTS field coils. The rotor is cooled by helium gas somore » that the HTS coils operate at a temperature of 30 K. This paper provides a status report on HTS motor research and development at Reliance Lab., Rockwell Automation that will lead to commercial HTS motors for utility and industrial applications.« less
Acoustic thermometry for detecting quenches in superconducting coils and conductor stacks
NASA Astrophysics Data System (ADS)
Marchevsky, M.; Gourlay, S. A.
2017-01-01
Quench detection capability is essential for reliable operation and protection of superconducting magnets, coils, cables, and machinery. We propose a quench detection technique based on sensing local temperature variations in the bulk of a superconducting winding by monitoring its transient acoustic response. Our approach is primarily aimed at coils and devices built with high-temperature superconductor materials where quench detection using standard voltage-based techniques may be inefficient due to the slow velocity of quench propagation. The acoustic sensing technique is non-invasive, fast, and capable of detecting temperature variations of less than 1 K in the interior of the superconductor cable stack in a 77 K cryogenic environment. We show results of finite element modeling and experiments conducted on a model superconductor stack demonstrating viability of the technique for practical quench detection, discuss sensitivity limits of the technique, and its various applications.
Brushless direct-current motors
NASA Technical Reports Server (NTRS)
Bahm, E. J.
1970-01-01
Survey results are presented on the use of unconventional motor windings and switching sequences to optimize performance of brushless dc motors. A motor was built, each coil terminal having a separate, accessible lead. With the shaft and all electronics excluded, length and outside diameter measured 1.25 and 0.75 in., respectively.
Preliminary test of the prototype modular cryostat for a 10 MW offshore superconducting wind turbine
NASA Astrophysics Data System (ADS)
Sun, Jiuce; Ramalingam, R.; Sanz, Santiago; Neumann, Holger
2017-02-01
The SUPerconducting Reliable lightweight And more POWERful offshore wind turbine (SUPRAPOWER), an EU FP7 funded research project, are under development for an innovative superconducting 10 MW class offshore wind turbine. Due to the requirements of handling, maintenance, reliability of long term and offshore operation, the cryostats are divided in two major parts: the modular cryostat able to accommodate a single coil and a thermal collector that links all the modules. The prototype modular cryostat was designed, manufactured and assembled in Karlsruhe Institute of Technology (KIT). The paper reports preliminary test results of proto-type modular cryostat with a two-stage Gifford-McMahon (GM) cryocooler.
Design of the superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Li, Y.; Wang, Q.; Dai, Y.; Ni, Z.; Zhu, X.; Li, L.; Zhao, B.; Chen, S.
2017-02-01
A superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging is designed and fabricated in Institute of Electrical Engineering, Chinese Academy of Sciences. In this paper, the electromagnetic design methods of the main coils and compensating coils are presented. Sensitivity analysis is performed for all superconducting coils. The design of the superconducting shimming coils is also presented and the design of electromagnetic decoupling of the Z2 coils from the main coils is introduced. Stress and strain analysis with both averaged and detailed models is performed with finite element method. A quench simulation code with anisotropic continuum model and control volume method is developed by us and is verified by experimental study. By means of the quench simulation code, the quench protection system for the 9.4 T magnet is designed for the main coils, the compensating coils and the shimming coils. The magnet cryostat design with zero helium boiling-off technology is also introduced.
Ultra-high field magnets for whole-body MRI
NASA Astrophysics Data System (ADS)
Warner, Rory
2016-09-01
For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200-870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000-20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.
NASA Astrophysics Data System (ADS)
Quercia, A.; Albanese, R.; Fresa, R.; Minucci, S.; Arshad, S.; Vayakis, G.
2017-12-01
The paper carries out a comprehensive study of the performances of Rogowski coils. It describes methodologies that were developed in order to assess the capabilities of the Continuous External Rogowski (CER), which measures the total toroidal current in the ITER machine. Even though the paper mainly considers the CER, the contents are general and relevant to any Rogowski sensor. The CER consists of two concentric helical coils which are wound along a complex closed path. Modelling and computational activities were performed to quantify the measurement errors, taking detailed account of the ITER environment. The geometrical complexity of the sensor is accurately accounted for and the standard model which provides the classical expression to compute the flux linkage of Rogowski sensors is quantitatively validated. Then, in order to take into account the non-ideality of the winding, a generalized expression, formally analogue to the classical one, is presented. Models to determine the worst case and the statistical measurement accuracies are hence provided. The following sources of error are considered: effect of the joints, disturbances due to external sources of field (the currents flowing in the poloidal field coils and the ferromagnetic inserts of ITER), deviations from ideal geometry, toroidal field variations, calibration, noise and integration drift. The proposed methods are applied to the measurement error of the CER, in particular in its high and low operating ranges, as prescribed by the ITER system design description documents, and during transients, which highlight the large time constant related to the shielding of the vacuum vessel. The analyses presented in the paper show that the design of the CER diagnostic is capable of achieving the requisite performance as needed for the operation of the ITER machine.
Advanced Filters and Components for Power Applications
2006-08-31
PCB with a rectangular and circular coil version on each board. The printed windings are placed in an end-tapped configuration, with the winding...of fiat circular loops of various diameters in a system without magnetic material. We have found that the most accurate prediction for this...application is that of [31]. The formula for mutual inductance of circular traces is: Mt=°T f 00 S(kr2, kri)S(ka 2 , kai)Q(kh)e-k zdk (3.2) h2ln (rf) In (az) J0
NASA Astrophysics Data System (ADS)
Malykin, G. B.; Pozdnyakova, V. I.
2018-03-01
A linear transformation of orthogonal polarization modes in coiled optical spun-fibers with strong unperturbed linear birefringence, which causes the emergence of the dependences of the integrated elliptical birefringence and the ellipticity and azimuth of the major axis of the ellipse, as well as the polarization state of radiation (PSR), on the length of optical fiber has been considered. Optical spun-fibers are subjected to a strong mechanical twisting, which is frozen into the structure of the optical fiber upon cooling, in the process of being drawn out from the workpiece. Since the values of the local polarization parameters of coiled spunwaveguides vary according to a rather complex law, the calculations were carried out by numerical modeling of the parameters of the Jones matrices. Since the rotation speed of the axes of the birefringence is constant on a relatively short segment of a coiled optical spun-fiber in the accompanying torsion (helical) coordinate system, the so-called "Ginzburg helical polarization modes" (GHPMs)—two mutually orthogonal ellipses with the opposite directions of traversal, the axis of which rotate relative to the fixed coordinate system uniformly and unidirectionally—are approximately the local normal polarization modes of such optical fiber. It has been shown that, despite the fact that the unperturbed linear birefringence of the spun-fibers significantly exceeds the linear birefringence, which is caused by the winding on a coil, the integral birefringence of an extended segment of such a fiber coincides in order of magnitude with the linear birefringence, which is caused by the winding on the coil, and the integral polarization modes tend asymptotically to circular ones. It has been also shown that the values of the circular birefringence of twisted single-mode fibers, which were calculated in a nonrotating and torsion helical coordinate systems, differ significantly. It has been shown that the polarization phenomena occur in the process of linear transformation of local polarization modes, which lead to small quasi-harmonic oscillations of the birefringence integral parameters of the optical spun-fibers, which depend on their length, and the period of these oscillations is approximately equal to half of the effective period of polarization beating.
Kirschvink, J L
1992-01-01
A common mistake in biomagnetic experimentation is the assumption that Helmholtz coils provide uniform magnetic fields; this is true only for a limited volume at their center. Substantial improvements on this design have been made during the past 140 years with systems of three, four, and five coils. Numerical comparisons of the field uniformity generated by these designs are made here, along with a table of construction details and recommendations for their use in experiments in which large volumes of uniform intensity magnetic exposures are needed. Double-wrapping, or systems of bifilar windings, can also help control for the non-magnetic effects of the electric coils used in many experiments. In this design, each coil is wrapped in parallel with two separate, adjacent strands of copper wire, rather than the single strand used normally. If currents are flowing in antiparallel directions, the magnetic fields generated by each strand will cancel and yield virtually no external magnetic field, whereas parallel currents will yield an external field. Both cases will produce similar non-magnetic effects of ohmic heating, and simple measures can reduce the small vibration and electric field differences. Control experiments can then be designed such that the only major difference between treated and untreated groups is the presence or absence of the magnetic field. Double-wrapped coils also facilitate the use of truly double-blind protocol, as the same apparatus can be used either for experimental or control groups.
Eldib, Mootaz; Bini, Jason; Calcagno, Claudia; Robson, Philip M; Mani, Venkatesh; Fayad, Zahi A
2014-02-01
Attenuation correction for magnetic resonance (MR) coils is a new challenge that came about with the development of combined MR and positron emission tomography (PET) imaging. This task is difficult because such coils are not directly visible on either PET or MR acquisitions with current combined scanners and are therefore not easily localized in the field of view. This issue becomes more evident when trying to localize flexible MR coils (eg, cardiac or body matrix coil) that change position and shape from patient to patient and from one imaging session to another. In this study, we proposed a novel method to localize and correct for the attenuation and scatter of a flexible MR cardiac coil, using MR fiducial markers placed on the surface of the coil to allow for accurate registration of a template computed tomography (CT)-based attenuation map. To quantify the attenuation properties of the cardiac coil, a uniform cylindrical water phantom injected with 18F-fluorodeoxyglucose (18F-FDG) was imaged on a sequential MR/PET system with and without the flexible cardiac coil. After establishing the need to correct for the attenuation of the coil, we tested the feasibility of several methods to register a precomputed attenuation map to correct for the attenuation. To accomplish this, MR and CT visible markers were placed on the surface of the cardiac flexible coil. Using only the markers as a driver for registration, the CT image was registered to the reference image through a combination of rigid and deformable registration. The accuracy of several methods was compared for the deformable registration, including B-spline, thin-plate spline, elastic body spline, and volume spline. Finally, we validated our novel approach both in phantom and patient studies. The findings from the phantom experiments indicated that the presence of the coil resulted in a 10% reduction in measured 18F-FDG activity when compared with the phantom-only scan. Local underestimation reached 22% in regions of interest close to the coil. Various registration methods were tested, and the volume spline was deemed to be the most accurate, as measured by the Dice similarity metric. The results of our phantom experiments showed that the bias in the 18F-FDG quantification introduced by the presence of the coil could be reduced by using our registration method. An overestimation of only 1.9% of the overall activity for the phantom scan with the coil attenuation map was measured when compared with the baseline phantom scan without coil. A local overestimation of less than 3% was observed in the ROI analysis when using the proposed method to correct for the attenuation of the flexible cardiac coil. Quantitative results from the patient study agreed well with the phantom findings. We presented and validated an accurate method to localize and register a CT-based attenuation map to correct for the attenuation and scatter of flexible MR coils. This method may be translated to clinical use to produce quantitatively accurate measurements with the use of flexible MR coils during MR/PET imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Viola, J. Edwards, T. Brown, L. Dudek, R. Ellis, P. Heitzenroeder, R. Strykowsky and Michael Cole
The National Compact Stellarator Experiment (NCSX) was a collaborative effort between ORNL and PPPL. PPPL provided the assembly techniques with guidance from ORNL to meet design criteria. The individual vacuum vessel segments, modular coils, trim coils, and toroidal field coils components were delivered to the Field Period Assembly (FPA) crew who then would complete the component assemblies and then assemble the final three field period assemblies, each consisting of two sets of three modular coils assembled over a 120o vacuum vessel segment with the trim coils and toroidal field coils providing the outer layer. The requirements for positioning the modularmore » coils were found to be most demanding. The assembly tolerances required for accurate positioning of the field coil windings in order to generate sufficiently accurate magnetic fields strained state of the art techniques in metrology and alignment and required constant monitoring of assembly steps with laser trackers, measurement arms, and photogrammetry. The FPA activities were being performed concurrently while engineering challenges were being resolved. For example, it was determined that high friction electrically isolated shims were needed between the modular coil interface joints and low distortion welding was required in the nose region of those joints. This took months of analysis and development yet the assembly was not significantly impacted because other assembly tasks could be performed in parallel with ongoing assembly tasks as well as tasks such as advance tooling setup preparation for the eventual welding tasks. The crew technicians developed unique, accurate time saving techniques and tooling which provided significant cost and schedule savings. Project management displayed extraordinary foresight and every opportunity to gain advanced knowledge and develop techniques was taken advantage of. Despite many risk concerns, the cost and schedule performance index was maintained nearly 1.0 during the assembly phase until project cancellation. In this paper, the assembly logic, the engineering challenges, solutions to those challenges and some of the unique and clever assembly techniques, will be presented.« less
Direct-reading inductance meter
NASA Technical Reports Server (NTRS)
Kolbly, R. B.
1977-01-01
Meter indicates from 30 nH to 3 micro H. Reference inductor of 15 micro H is made by winding 50 turns of Number 26 Formvar wire on Micrometal type 50-2 (or equivalent) core. Circuit eliminates requirement for complex instrument compensation prior to taking coil inductance measurement and thus is as easy to operate as common ohmmeter.
De-noising of 3D multiple-coil MR images using modified LMMSE estimator.
Yaghoobi, Nima; Hasanzadeh, Reza P R
2018-06-20
De-noising is a crucial topic in Magnetic Resonance Imaging (MRI) which focuses on less loss of Magnetic Resonance (MR) image information and details preservation during the noise suppression. Nowadays multiple-coil MRI system is preferred to single one due to its acceleration in the imaging process. Due to the fact that the model of noise in single-coil and multiple-coil MRI systems are different, the de-noising methods that mostly are adapted to single-coil MRI systems, do not work appropriately with multiple-coil one. The model of noise in single-coil MRI systems is Rician while in multiple-coil one (if no subsampling occurs in k-space or GRAPPA reconstruction process is being done in the coils), it obeys noncentral Chi (nc-χ). In this paper, a new filtering method based on the Linear Minimum Mean Square Error (LMMSE) estimator is proposed for multiple-coil MR Images ruined by nc-χ noise. In the presented method, to have an optimum similarity selection of voxels, the Bayesian Mean Square Error (BMSE) criterion is used and proved for nc-χ noise model and also a nonlocal voxel selection methodology is proposed for nc-χ distribution. The results illustrate robust and accurate performance compared to the related state-of-the-art methods, either on ideal nc-χ images or GRAPPA reconstructed ones. Copyright © 2018. Published by Elsevier Inc.
Design of PCB search coils for AC magnetic flux density measurement
NASA Astrophysics Data System (ADS)
Ulvr, Michal
2018-04-01
This paper presents single-layer, double-layer and ten-layer planar square search coils designed for AC magnetic flux density amplitude measurement up to 1 T in the low frequency range in a 10 mm air gap. The printed-circuit-board (PCB) method was used for producing the search coils. Special attention is given to a full characterization of the PCB search coils including a comparison between the detailed analytical design method and the finite integration technique method (FIT) on the one hand, and experimental results on the other. The results show very good agreement in the resistance, inductance and search coil constant values (the area turns) and also in the frequency dependence of the search coil constant.
Hirano, Kenji; Yokogawa, Daisuke; Sato, Hirofumi; Sakaki, Shigeyoshi
2010-06-17
Three-dimensional (3D) solvation structure around coiled coil serine (Coil-Ser) and inner 3D hydration structure in bacteriorhodopsin (bR) were studied using a recently developed method named multicenter molecular Ornstein-Zernike equation (MC-MOZ) theory. In addition, a procedure for analyzing the 3D solvent distribution was proposed. The method enables us to calculate the coordination number of solvent water as well as the strength of hydrogen bonding between the water molecule and the protein. The results for Coil-Ser and bR showed very good agreement with the experimental observations.
Golner, Thomas M.; Mehta, Shirish P.
2005-07-26
A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.
Wellbore manufacturing processes for in situ heat treatment processes
Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles
2012-12-11
A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.
Method of constructing a superconducting magnet
Satti, John A.
1981-01-01
A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.
Small Layer-wound ReBCO Solenoids
NASA Astrophysics Data System (ADS)
Polyakov, A. V.; Shcherbakov, V. I.; Shevchenko, S. A.; Surin, M. I.
The development of the next generation of high field superconducting magnet systems demands studies of new technological approach for its internal sections. Several small HTS solenoids (21 mm inner diameter, 32 layers) were fabricated by layer-winding technique from SuperPower type SCS-4050 ReBCO wire insulated by polyimide wrapping. Different designs of external and internal joints also were also tested. The highest field generated by HTS coil was 2.4 T in a 10 T background field (total field was 12.4 T) at 4.2 K and achieved current density in the coil was 498 A/mm2. The results will be used in development of HTS inner sections for 25 T superconducting magnet.
A current-carrying coil design with improved liquid cooling arrangement
NASA Astrophysics Data System (ADS)
Ricci, Leonardo; Martini, Luca Matteo; Franchi, Matteo; Bertoldi, Andrea
2013-06-01
The design of an electromagnet requires the compliance with a number of constraints such as power supply characteristics, coil inductance and resistance, and, above all, heat dissipation, which poses the limit to the maximum achievable magnetic field. A common solution consists in using copper tubes in which a coolant flows. This approach, however, introduces further hydrodynamic concerns. To overcome these difficulties, we developed a new kind of electromagnet in which the pipe concept is replaced by a duct formed by the windings. Here we report on the realization and characterization of a compact model system in which the conductors carry a current that is one order of magnitude higher than the current allowable with conventional designs.
New head gradient coil design and construction techniques
Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A
2013-01-01
Purpose To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. Materials and Methods The use of the Boundary Element Method to solve for a gradient coil wire pattern on an arbitrary surface has allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design has been combined with robust manufacturing techniques and novel cooling methods. Results The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. Conclusion The ability to adapt your electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. PMID:24123485
A Solid Nitrogen Cooled MgB2 “Demonstration” Coil for MRI Applications
Yao, Weijun; Bascuñán, Juan; Kim, Woo-Seok; Hahn, Seungyong; Lee, Haigun; Iwasa, Yukikazu
2009-01-01
A 700-mm bore superconducting magnet was built and operated in our laboratory to demonstrate the feasibility of newly developed MgB2 superconductor wire for fabricating MRI magnets. The magnet, an assembly of 10 coils each wound with a reacted and s-glass insulated wire ~1-km long, was immersed in solid nitrogen rather than in a bath of liquid cryogen. This MgB2 magnet was designed to operate in the temperature range 10–15 K, maintained by a cryocooler. A combination of this “wide” temperature range and immersion of the winding in solid nitrogen enables this magnet to operate under conditions not possible with a low temperature superconductor (LTS) counterpart. Tested individually at 13 K, each coil could carry current up to 100 A. When assembled into the magnet, some coils, however, became resistive, causing the magnet to prematurely quench at currents ranging from 79 A to 88 A, at which point the magnet generated a center field of 0.54 T. Despite the presence of a large volume (50 liters) of solid nitrogen in the cold body, cooldown from 77 K to 10 K went smoothly. PMID:20390056
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, B.E.; Bryan, W.E.; Goranson, P.L.
1985-01-01
The helical field (HF) coil set for the Advanced Toroidal Facility (ATF) is an M = 12, l = 2, constant-ratio torsatron winding consisting of 2 coils, each with 14 turns of heavy copper conductor. The coils are divided into 24 identical segments to facilitate fabrication and minimize the assembly schedule. The segments are connected across through-bolted lap joints that must carry up to 124,000 A per turn for 5 s or 62,500 A steady-state. In addition, the joints must carry the high magnetic and thermal loads induced in the conductor and still fit within the basic 140- by 30-mmmore » copper envelope. Extensive testing and development were undertaken to verify and refine the basic joint design. Tests included assembly force and clamping force for various types of misalignment; joint resistance as a function of clamping force; clamp bolt relaxation due to thermal cycling; fatigue testing of full-size, multiturn joint prototypes; and low-cycle fatigue and tensile tests of annealed CDA102 copper. The required performance parameters and actual test results, as well as the final joint configuration, are presented. 2 refs., 9 figs., 4 tabs.« less
Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.
Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua
2018-03-01
To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter H. Titus, et. al.
The ITER vertical stability (VS) coils have been developed through the preliminary design phase by Princeton Plasma Physics Laboratory (PPPL). Final design, prototyping and construction will be carried out by the Chinese Participant Team contributing lab, Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The VS coils are a part of the in-vessel coil systems which include edge localized mode (ELM) coils as well as the VS coils. An overview of the ELM coils is provided in another paper at this conference. 15 The VS design employs four turns of stainless steel jacketed mineral insulated copper (SSMIC) conductors Themore » mineral insulation is Magnesium Oxide (MgO). Joule and nuclear heat is removed by water flowing at 3 m/s through the hollow copper conductor. A key element in the design is that slightly elevated temperatures in the conductor and its support spine during operation impose compressive stresses that mitigate fatigue damage. Away from joints, and break-outs, conductor thermal stresses are low because of the axisymmetry of the winding (there are no corner bends as in the ELM coils).The 120 degree segment joint, and break-out or terminal regions are designed with similar but imperfect constraint compared with the ring coil portion of the VS. The support for the break-out region is made from a high strength copper alloy, CuCrZr. This is needed to conduct nuclear heat to the actively cooled conductor and to the vessel wall. The support "spine" for the ring coil portion of the VS is 316 stainless steel, held to the vessel with preloaded 718 bolts. Lorentz loads resulting from normal operating loads, disruption loads and loads from disruption currents in the support spine shared with vessel, are applied to the VS coil. The transmission of the Lorentz and thermal expansion loads from the "spine" to the vessel rails is via friction augmented with a restraining "lip" to ensure the coil frictional slip is minimal and acceptable. Stresses in the coil, joints, and break-outs are presented. These are compared with static and fatigue allowables. Design for fatigue is much less demanding than for the ELM coils. A total of 30,000 cycles is required for VS design. Loads on the vessel due to the thermal expansion of the coil and spine are significant. Efforts to reduce these by reducing the cross section of the spine have been made but the vessel still must support loads resulting from restraint of thermal expansion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Priniski, T. Dodson, M. Duco, S. Raftopoulos, R. Ellis, and A. Brooks
In support of the National Compact Stellerator Experiment (NCSX), stellerator assembly activities continued this past year at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The construction program saw the completion of the first two Half Field-Period Assemblies (HPA), each consisting of three modular coils. The full machine includes six such sub-assemblies. A single HPA consists of three of the NCSX modular coils wound and assembled at PPPL. These geometrically-complex threedimensional coils were wound using computer-aided metrology and CAD models to tolerances within +/- 0.5mm. The assembly of these coils required similar accuracymore » on a larger scale with the added complexity of more individual parts and fewer degrees of freedom for correction. Several new potential positioning issues developed for which measurement and control techniques were developed. To accomplish this, CAD coordinate-based computer metrology equipment and software similar to the solutions employed for winding the modular coils was used. Given the size of the assemblies, the primary tools were both interferometeraided and Absolute Distance Measurement (ADM)-only based laser trackers. In addition, portable Coordinate Measurement Machine (CMM) arms and some novel indirect measurement techniques were employed. This paper will detail both the use of CAD coordinate-based metrology technology and the techniques developed and employed for dimensional control of NSCX subassemblies. The results achieved and possible improvements to techniques will be discussed.« less
Superconducting Magnets and Materials R&D | Technical Division
Dipoles for VLHC The design and main parameters of FNAL dipole models of the HFDA series are described in structure suitable for industrialization. The magnet design was based on a two-layer shell-type coil and a design (HFDC), which meets the VLHC requirements and allows using the React&Wind (R&W) technology
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... firm designs and Brockton, MA 02301. manufactures coil winding machinery. New World Millworks, Inc 1211... workers, or threat thereof, and to a decrease in sales or production of each petitioning firm. List of... Delaware Avenue, 07/10/12 The firm manufactures hats Longmont, CO 80501. and other apparel. HEB...
Field Quality and Fabrication Analysis of HQ02 Reconstructed Nb3Sn Coil Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holik, Eddie Frank; Ambrosio, Giorgio; Carbonara, Andrea
2017-01-23
The US LHC Accelerator Research Program (LARP) quadrupole HQ02 was designed and fully tested as part of the low-beta quad development for Hi-Lumi LHC. HQ02’s design is well documented with full fabrication accounting along with full field analysis at low and high current. With this history, HQ02 is an excellent test bed for developing a methodology for measuring turn locations from magnet cross sections and comparing with CAD models and measured field. All 4 coils of HQ02 were cut in identical locations along the magnetic length corresponding to magnetic field measurement and coil metrology. A real-time camera and coordinate measuringmore » equipment was used to plot turn corners. Measurements include systematic and random displacements of winding blocks and individual turns along the magnetic length. The range of cable shifts and the field harmonic range along the length are in agreement, although correlating turn locations and measured harmonics in each cross section is challenging.« less
Designing stellarator coils by a modified Newton method using FOCUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao
To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.
Designing stellarator coils by a modified Newton method using FOCUS
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi
2018-06-01
To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.
Designing stellarator coils by a modified Newton method using FOCUS
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...
2018-03-22
To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.
A periodic table of coiled-coil protein structures.
Moutevelis, Efrosini; Woolfson, Derek N
2009-01-23
Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.
Wood, Christopher W; Bruning, Marc; Ibarra, Amaurys Á; Bartlett, Gail J; Thomson, Andrew R; Sessions, Richard B; Brady, R Leo; Woolfson, Derek N
2014-11-01
The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem more widely and deriving truly ab initio models requires mathematical descriptions for protein folds; the means to decorate these with natural, engineered or de novo sequences; and methods to score the resulting models. We present CCBuilder, a web-based application that tackles the problem for a defined but large class of protein structure, the α-helical coiled coils. CCBuilder generates coiled-coil backbones, builds side chains onto these frameworks and provides a range of metrics to measure the quality of the models. Its straightforward graphical user interface provides broad functionality that allows users to build and assess models, in which helix geometry, coiled-coil architecture and topology and protein sequence can be varied rapidly. We demonstrate the utility of CCBuilder by assembling models for 653 coiled-coil structures from the PDB, which cover >96% of the known coiled-coil types, and by generating models for rarer and de novo coiled-coil structures. CCBuilder is freely available, without registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/. © The Author 2014. Published by Oxford University Press.
Detection of Cracks at Welds in Steel Tubing Using Flux Focusing Electromagnetic Probe
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Simpson, John; Namkung, Min
1994-01-01
The inspection of weldments in critical pressure vessel joints is a major concern in the nuclear power industry. Corrosive environments can speed the fatigue process and access to the critical area is often limited. Eddy current techniques have begun to be used to help overcome these obstacles [1]. As direct contact and couplants are not required, remote areas can be inspected by simply snaking an eddy current coil into the intake tube of the vessel. The drawback of the eddy current method has been the high sensitivity to small changes in the conductivity and permeability of the test piece which are known to vary at weldments [1]. The flaw detection mechanism of the flux focusing electromagnetic probe can help alleviate these difficulties and provide a unique capability for detecting longitudinal fatigue cracks in critical tube structures. The Flux Focusing Electromagnetic Flaw Detector, originally invented for the detection of fatigue and corrosion damage in aluminum plates [2-3], has been adapted for use in testing steel tubing for longitudinal fatigue cracks. The modified design allows for the probe to be placed axisymmetrically into the tubing, inducing eddy currents in the tube wall. The pickup coil of the probe is fixed slightly below the primary windings and is rotated 90 so that its axis is normal to the tube wall. The magnetic flux of the primary coil is focused through the use of ferromagnetic material so that in the absence of fatigue damage there will be no flux linkage with the pickup coil. The presence of a longitudinal fatigue crack will cause the eddy currents induced in the tube wall to flow around the flaw and directly under the pickup coil. The magnetic field associated with these currents will then link the pickup coil and an unambiguous increase in the output voltage of the probe will be measured. The use of the flux focusing electromagnetic probe is especially suited for the detection of flaws originating at or near tube welds. The probe is shown to discriminate against signals due solely to the weld joint so that flaw signals are not hidden in the background in these locations. Experimental and finite element modeling results are presented for the flaw detection capabilities of the probe in stainless steel tubes.
Zhang, Xiaoliang; Martin, Alastair; Jordan, Caroline; Lillaney, Prasheel; Losey, Aaron; Pang, Yong; Hu, Jeffrey; Wilson, Mark; Cooke, Daniel; Hetts, Steven W
2017-04-01
It is technically challenging to design compact yet sensitive miniature catheter radio frequency (RF) coils for endovascular interventional MR imaging. In this work, a new design method for catheter RF coils is proposed based on the coaxial transmission line resonator (TLR) technique. Due to its distributed circuit, the TLR catheter coil does not need any lumped capacitors to support its resonance, which simplifies the practical design and construction and provides a straightforward technique for designing miniature catheter-mounted imaging coils that are appropriate for interventional neurovascular procedures. The outer conductor of the TLR serves as an RF shield, which prevents electromagnetic energy loss, and improves coil Q factors. It also minimizes interaction with surrounding tissues and signal losses along the catheter coil. To investigate the technique, a prototype catheter coil was built using the proposed coaxial TLR technique and evaluated with standard RF testing and measurement methods and MR imaging experiments. Numerical simulation was carried out to assess the RF electromagnetic field behavior of the proposed TLR catheter coil and the conventional lumped-element catheter coil. The proposed TLR catheter coil was successfully tuned to 64 MHz for proton imaging at 1.5 T. B 1 fields were numerically calculated, showing improved magnetic field intensity of the TLR catheter coil over the conventional lumped-element catheter coil. MR images were acquired from a dedicated vascular phantom using the TLR catheter coil and also the system body coil. The TLR catheter coil is able to provide a significant signal-to-noise ratio (SNR) increase (a factor of 200 to 300) over its imaging volume relative to the body coil. Catheter imaging RF coil design using the proposed coaxial TLR technique is feasible and advantageous in endovascular interventional MR imaging applications.
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun
2016-11-01
The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.
Radial magnetic resonance imaging (MRI) using a rotating radiofrequency (RF) coil at 9.4 T.
Li, Mingyan; Weber, Ewald; Jin, Jin; Hugger, Thimo; Tesiram, Yasvir; Ullmann, Peter; Stark, Simon; Fuentes, Miguel; Junge, Sven; Liu, Feng; Crozier, Stuart
2018-02-01
The rotating radiofrequency coil (RRFC) has been developed recently as an alternative approach to multi-channel phased-array coils. The single-element RRFC avoids inter-channel coupling and allows a larger coil element with better B 1 field penetration when compared with an array counterpart. However, dedicated image reconstruction algorithms require accurate estimation of temporally varying coil sensitivities to remove artefacts caused by coil rotation. Various methods have been developed to estimate unknown sensitivity profiles from a few experimentally measured sensitivity maps, but these methods become problematic when the RRFC is used as a transceiver coil. In this work, a novel and practical radial encoding method is introduced for the RRFC to facilitate image reconstruction without the measurement or estimation of rotation-dependent sensitivity profiles. Theoretical analyses suggest that the rotation-dependent sensitivities of the RRFC can be used to create a uniform profile with careful choice of sampling positions and imaging parameters. To test this new imaging method, dedicated electronics were designed and built to control the RRFC speed and hence positions in synchrony with imaging parameters. High-quality phantom and animal images acquired on a 9.4 T pre-clinical scanner demonstrate the feasibility and potential of this new RRFC method. Copyright © 2017 John Wiley & Sons, Ltd.
Chen, Chingchi; Degner, Michael W.
2002-11-19
A sensor system for sensing a rotation of a sensing wheel is disclosed. The sensor system has a sensing coil in juxtaposition with the sensing wheel. Moreover, the sensing coil has a sensing coil output signal indicative of the rotational speed of the sensing wheel. Further, a cancellation coil is located remotely from the sensing coil and connected in series therewith. Additionally, the cancellation coil has a cancellation coil output signal indicative of an environmental disturbance which is effecting the sensing coil output signal. The cancellation coil output signal operates to cancel the effects of the environmental disturbance on the sensing coil output signal.
Method for manufacturing a rotor having superconducting coils
Driscoll, David I.; Shoykhet, Boris A.
2001-01-01
A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.
Core/coil assembly for use in superconducting magnets and method for assembling the same
Kassner, David A.
1979-01-01
A core/coil assembly for use in a superconducting magnet of the focusing or bending type used in syncronous particle accelerators comprising a coil assembly contained within an axial bore of the stacked, washer type, carbon steel laminations which comprise the magnet core assembly, and forming an interference fit with said laminations at the operating temperature of said magnet. Also a method for making such core/coil assemblies comprising the steps of cooling the coil assembly to cryogenic temperatures and drawing it rapidly upwards into the bore of said stacked laminations.
Design of High Field Solenoids made of High Temperature Superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartalesi, Antonio; /Pisa U.
2010-12-01
This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductormore » (HTS). Finally, a technological winding process was proposed and the required tooling is designed.« less
Magnet design with 100-kA HTS STARS conductors for the helical fusion reactor
NASA Astrophysics Data System (ADS)
Yanagi, N.; Terazaki, Y.; Ito, S.; Tamura, H.; Hamaguchi, S.; Mito, T.; Hashizume, H.; Sagara, A.
2016-12-01
The high-temperature superconducting (HTS) option is employed for the conceptual design of the LHD-type helical fusion reactor FFHR-d1. The 100-kA-class STARS (Stacked Tapes Assembled in Rigid Structure) conductor is used for the magnet system including the continuously wound helical coils. Protection of the magnet system in case of a quench is a crucial issue and the hot-spot temperature during an emergency discharge is estimated based on the zero-dimensional and one-dimensional analyses. The number of division of the coil winding package is examined to limit the voltage generation. For cooling the HTS magnet, helium gas flow is considered and its feasibility is examined by simple analysis as a first step.
Development status of a next generation ECRIS: MARS-D at LBNL
Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.; ...
2015-09-29
To demonstrate a Mixed Axial and Radial field System (MARS) as the best magnet scheme for future ECRISs, MARS-D, a demonstrative ECRIS using a NbTi MARS magnet is progressing at Lawrence Berkeley National Laboratory. An optimized MARS design can use either NbTi or Nb 3Sn coils with reduced engineering complexities to construct the needed high-field magnets. The optimized magnet design could enhance MARS-D to a next generation ECRIS by producing minimum-B field maxima of 5.6 T axially and 3.2 T radially for operating frequencies up to 45 GHz. Lastly, in-progress test winding has achieved a milestone demonstrating the fabrication feasibilitymore » of a MARS closed-loop coil.« less
Development status of a next generation ECRIS: MARS-D at LBNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.
To demonstrate a Mixed Axial and Radial field System (MARS) as the best magnet scheme for future ECRISs, MARS-D, a demonstrative ECRIS using a NbTi MARS magnet is progressing at Lawrence Berkeley National Laboratory. An optimized MARS design can use either NbTi or Nb 3Sn coils with reduced engineering complexities to construct the needed high-field magnets. The optimized magnet design could enhance MARS-D to a next generation ECRIS by producing minimum-B field maxima of 5.6 T axially and 3.2 T radially for operating frequencies up to 45 GHz. Lastly, in-progress test winding has achieved a milestone demonstrating the fabrication feasibilitymore » of a MARS closed-loop coil.« less
NASA Astrophysics Data System (ADS)
Andreeva, T.; Bräuer, T.; Bykov, V.; Egorov, K.; Endler, M.; Fellinger, J.; Kißlinger, J.; Köppen, M.; Schauer, F.
2015-06-01
Wendelstein 7-X, currently under commissioning at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany, is a modular advanced stellarator, combining the modular coil concept with optimized properties of the plasma. Most of the envisaged magnetic configurations of the machine are rather sensitive to symmetry breaking perturbations which are the consequence of unavoidable manufacturing and assembly tolerances. This overview describes the successive tracking of the Wendelstein 7-X magnet system geometry starting from the manufacturing of the winding packs up to the modelling of the influence of operation loads. The deviations found were used to calculate the resulting error fields and to compare them with the compensation capacity of the trim coils.
380 kW synchronous machine with HTS rotor windings--development at Siemens and first test results
NASA Astrophysics Data System (ADS)
Nick, W.; Nerowski, G.; Neumüller, H.-W.; Frank, M.; van Hasselt, P.; Frauenhofer, J.; Steinmeyer, F.
2002-08-01
Applying HTS conductors in the rotor of synchronous machines allows the design of future motors or generators that are lighter, more compact and feature an improved coefficient of performance. To address these goals a project collaboration was installed within Siemens, including Automation & Drives, Large Drives as a leading supplier of electrical machines, Corporate Technology as a competence center for superconducting technology, and other partners. The main task of the project was to demonstrate the feasibility of basic concepts. The rotor was built from racetrack coils of Bi-2223 HTS tape conductor, these were assembled on a core and fixed by a bandage of glass-fibre composite. Rotor coil cooling is performed by thermal conduction, one end of the motor shaft is hollow to give access for the cooling system. Two cooling systems were designed and operated successfully: firstly an open circuit using cold gaseous helium from a storage vessel, but also a closed circuit system based on a cryogenerator. To take advantage of the increased rotor induction levels the stator winding was designed as an air gap winding. This was manufactured and fitted in a standard motor housing. After assembling of the whole system in a test facility with a DC machine load experiments have been started to prove the validity of our design, including operation with both cooling systems and driving the stator from the grid as well as by a power inverter.
Refrigeration Compressors for the Altitude Wind Tunnel
1944-09-21
These compressors inside the Refrigeration Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory were used to generate cold temperatures in the Altitude Wind Tunnel (AWT) and Icing Research Tunnel. The AWT was a large facility that simulated actual flight conditions at high altitudes. The two primary aspects of altitude simulation are the reduction of the air pressure and the decrease of temperature. The Icing Research Tunnel was a smaller facility in which water droplets were added to the refrigerated air stream to simulate weather conditions that produced ice buildup on aircraft. The military pressured the NACA to complete the tunnels quickly so they could be of use during World War II. The NACA engineers struggled with the design of this refrigeration system, so Willis Carrier, whose Carrier Corporation had pioneered modern refrigeration, took on the project. The Carrier engineers devised the largest cooling system of its kind in the world. The system could lower the tunnels’ air temperature to –47⁰ F. The cooling system was powered by 14 Carrier and York compressors, seen in this photograph, which were housed in the Refrigeration Building between the two wind tunnels. The compressors converted the Freon 12 refrigerant into a liquid. The refrigerant was then pumped into zig-zag banks of cooling coils inside the tunnels’ return leg. The Freon absorbed heat from the airflow as it passed through the coils. The heat was transferred to the cooling water and sent to the cooling tower where it was dissipated into the atmosphere.
New head gradient coil design and construction techniques.
Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A
2014-05-01
To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. The use of the boundary element method to solve for a gradient coil wire pattern on an arbitrary surface allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design was combined with robust manufacturing techniques and novel cooling methods. The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. The ability to adapt an electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. Copyright © 2013 Wiley Periodicals, Inc.
Automated de novo phasing and model building of coiled-coil proteins.
Rämisch, Sebastian; Lizatović, Robert; André, Ingemar
2015-03-01
Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.
Method and apparatus for improved high power impulse magnetron sputtering
Anders, Andre
2013-11-05
A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.
NASA Astrophysics Data System (ADS)
Lyan, Oleg; Jankunas, Valdas; Guseinoviene, Eleonora; Pašilis, Aleksas; Senulis, Audrius; Knolis, Audrius; Kurt, Erol
2018-02-01
In this study, a permanent magnet synchronous generator (PMSG) topology with compensated reactance windings in parallel rod configuration is proposed to reduce the armature reactance X L and to achieve higher efficiency of PMSG. The PMSG was designed using iron-cored bifilar coil topology to overcome problems of market-dominant rotary type generators. Often the problem is a comparatively high armature reactance X L, which is usually bigger than armature resistance R a. Therefore, the topology is proposed to partially compensate or negligibly reduce the PMSG reactance. The study was performed by using finite element method (FEM) analysis and experimental investigation. FEM analysis was used to investigate magnetic field flux distribution and density in PMSG. The PMSG experimental analyses of no-load losses and electromotive force versus frequency (i.e., speed) was performed. Also terminal voltage, power output and efficiency relation with load current at different frequencies have been evaluated. The reactance of PMSG has low value and a linear relation with operating frequency. The low reactance gives a small variation of efficiency (from 90% to 95%) in a wide range of load (from 3 A to 10 A) and operation frequency (from 44 Hz to 114 Hz). The comparison of PMSG characteristics with parallel and series winding connection showed insignificant power variation. The research results showed that compensated reactance winding in parallel rod configuration in PMSG design provides lower reactance and therefore, higher efficiency under wider load and frequency variation.
Magnetic lumbosacral motor root stimulation with a flat, large round coil.
Matsumoto, Hideyuki; Octaviana, Fitri; Hanajima, Ritsuko; Terao, Yasuo; Yugeta, Akihiro; Hamada, Masashi; Inomata-Terada, Satomi; Nakatani-Enomoto, Setsu; Tsuji, Shoji; Ugawa, Yoshikazu
2009-04-01
The aim of this paper is to develop a reliable method for supramaximal magnetic spinal motor root stimulation (MRS) for lower limb muscles using a specially devised coil. For this study, 42 healthy subjects were recruited. A 20-cm diameter coil designated as a Magnetic Augmented Translumbosacral Stimulation (MATS) coil was used. Compound muscle action potentials (CMAPs) were recorded from the abductor hallucis muscle. Their CMAPs were compared with those obtained by MRS using a conventional round or double coil and with those obtained using high-voltage electrical stimulation. The MATS coil evoked CMAPs to supramaximal stimulation in 80 of 84 muscles, although round and double coils elicited supramaximal CMAPs in only 15 and 18 of 84 muscles, respectively. The CMAP size to the MATS coil stimulation was the same as that to high-voltage electrical motor root stimulation. MATS coil achieved supramaximal stimulation of the lumbosacral spinal nerves. The CMAPs to supramaximal stimulation are necessary for measurement of the amplitude and area for the detection of conduction blocks. The MATS coil stimulation of lumbosacral motor roots is a reliable method for measuring the CMAP size from lower limb muscles in spinal motor root stimulation.
Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.
Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S
2004-01-01
MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.
Method of reducing multipole content in a conductor assembly during manufacture
Meinke, Rainer [Melbourne, FL
2011-08-09
A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.
Method of reducing multipole content in a conductor assembly during manufacture
Meinke, Rainer
2013-08-20
A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.
NASA Astrophysics Data System (ADS)
Yuan, Weijia; Coombs, T. A.; Kim, Jae-Ho; Han Kim, Chul; Kvitkovic, Jozef; Pamidi, Sastry
2011-12-01
Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil.
Longitudinal gradient coil optimization in the presence of transient eddy currents.
Trakic, A; Liu, F; Lopez, H Sanchez; Wang, H; Crozier, S
2007-06-01
The switching of magnetic field gradient coils in magnetic resonance imaging (MRI) inevitably induces transient eddy currents in conducting system components, such as the cryostat vessel. These secondary currents degrade the spatial and temporal performance of the gradient coils, and compensation methods are commonly employed to correct for these distortions. This theoretical study shows that by incorporating the eddy currents into the coil optimization process, it is possible to modify a gradient coil design so that the fields created by the coil and the eddy currents combine together to generate a spatially homogeneous gradient that follows the input pulse. Shielded and unshielded longitudinal gradient coils are used to exemplify this novel approach. To assist in the evaluation of transient eddy currents induced within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using the total-field scattered-field (TFSF) scheme was performed. The simulations demonstrate the effectiveness of the proposed method for optimizing longitudinal gradient fields while taking into account the spatial and temporal behavior of the eddy currents.
Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.
Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart
2018-04-01
In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.
High Specific Power Motors in LN2 and LH2
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Jansen, Ralph H.; Trudell, Jeffrey J.
2007-01-01
A switched reluctance motor has been operated in liquid nitrogen (LN2) with a power density as high as that reported for any motor or generator. The high performance stems from the low resistivity of Cu at LN2 temperature and from the geometry of the windings, the combination of which permits steady-state rms current density up to 7000 A/cm2, about 10 times that possible in coils cooled by natural convection at room temperature. The Joule heating in the coils is conducted to the end turns for rejection to the LN2 bath. Minimal heat rejection occurs in the motor slots, preserving that region for conductor. In the end turns, the conductor layers are spaced to form a heat-exchanger-like structure that permits nucleate boiling over a large surface area. Although tests were performed in LN2 for convenience, this motor was designed as a prototype for use with liquid hydrogen (LH2) as the coolant. End-cooled coils would perform even better in LH2 because of further increases in copper electrical and thermal conductivities. Thermal analyses comparing LN2 and LH2 cooling are presented verifying that end-cooled coils in LH2 could be either much longer or could operate at higher current density without thermal runaway than in LN2.
High Specific Power Motors in LN2 and LH2
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Jansen, Ralph H.; Trudell, Jeffrey J.
2007-01-01
A switched reluctance motor has been operated in liquid nitrogen (LN2) with a power density as high as that reported for any motor or generator. The high performance stems from the low resistivity of Cu at LN2 temperature and from the geometry of the windings, the combination of which permits steady-state rms current density up to 7000 A/sq cm, about 10 times that possible in coils cooled by natural convection at room temperature. The Joule heating in the coils is conducted to the end turns for rejection to the LN2 bath. Minimal heat rejection occurs in the motor slots, preserving that region for conductor. In the end turns, the conductor layers are spaced to form a heat-exchanger-like structure that permits nucleate boiling over a large surface area. Although tests were performed in LN2 for convenience, this motor was designed as a prototype for use with liquid hydrogen (LH2) as the coolant. End-cooled coils would perform even better in LH2 because of further increases in copper electrical and thermal conductivities. Thermal analyses comparing LN2 and LH2 cooling are presented verifying that end-cooled coils in LH2 could be either much longer or could operate at higher current density without thermal runaway than in LN2.
Double layer field shaping systems for toroidal plasmas
Ohyabu, Nobuyoshi
1982-01-01
Methods and apparatus for plasma generation, confinement and control such as Tokamak plasma systems are described having a two layer field shaping coil system comprising an inner coil layer close to the plasma and an outer coil layer to minimize the current in the inner coil layer.
Preliminary report on electromagnetic model studies
Frischknecht, F.C.; Mangan, G.B.
1960-01-01
More than 70 resopnse curves for various models have been obtained using the slingram and turam electromagnetic methods. Results show that for the slingram method, horizontal co-planar coils are usually more sensitive than vertical, co-axial or vertical, co-planar coils. The shape of the anomaly usually is simpler for the vertical coils.
Novel TMS coils designed using an inverse boundary element method
NASA Astrophysics Data System (ADS)
Cobos Sánchez, Clemente; María Guerrero Rodriguez, Jose; Quirós Olozábal, Ángel; Blanco-Navarro, David
2017-01-01
In this work, a new method to design TMS coils is presented. It is based on the inclusion of the concept of stream function of a quasi-static electric current into a boundary element method. The proposed TMS coil design approach is a powerful technique to produce stimulators of arbitrary shape, and remarkably versatile as it permits the prototyping of many different performance requirements and constraints. To illustrate the power of this approach, it has been used for the design of TMS coils wound on rectangular flat, spherical and hemispherical surfaces, subjected to different constraints, such as minimum stored magnetic energy or power dissipation. The performances of such coils have been additionally described; and the torque experienced by each stimulator in the presence of a main magnetic static field have theoretically found in order to study the prospect of using them to perform TMS and fMRI concurrently. The obtained results show that described method is an efficient tool for the design of TMS stimulators, which can be applied to a wide range of coil geometries and performance requirements.
Levitation in the field of a nonsuperconducting coil with magnetic flux stabilization
NASA Astrophysics Data System (ADS)
Koshurnikov, E. K.
2013-09-01
A method providing the "frozen flux" conditions in a nonsuperconducting coil is suggested and demonstrated with a model. The feasibility of permanent magnet stable levitation in the field of the coil with magnetic flux stabilization and mean current control is shown. The method allows researchers to exploit permanent magnet-superconducting body interaction in physical devices, for example, to reproduce, using nonsuperconducting coils, the frozen magnetic flux conditions required for the stable levitation of the magnet over a superconducting body.
An active antenna for ELF magnetic fields
NASA Technical Reports Server (NTRS)
Sutton, John F.; Spaniol, Craig
1994-01-01
The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.
Rotor assembly including superconducting magnetic coil
Snitchler, Gregory L.; Gamble, Bruce B.; Voccio, John P.
2003-01-01
Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.
Motion-induced eddy current thermography for high-speed inspection
NASA Astrophysics Data System (ADS)
Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian
2017-08-01
This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.
Reinhardt, Ulrike; Lotze, Jonathan; Mörl, Karin; Beck-Sickinger, Annette G; Seitz, Oliver
2015-10-21
Fluorescently labeled proteins enable the microscopic imaging of protein localization and function in live cells. In labeling reactions targeted against specific tag sequences, the size of the fluorophore-tag is of major concern. The tag should be small to prevent interference with protein function. Furthermore, rapid and covalent labeling methods are desired to enable the analysis of fast biological processes. Herein, we describe the development of a method in which the formation of a parallel coiled coil triggers the transfer of a fluorescence dye from a thioester-linked coil peptide conjugate onto a cysteine-modified coil peptide. This labeling method requires only small tag sequences (max 23 aa) and occurs with high tag specificity. We show that size matching of the coil peptides and a suitable thioester reactivity allow the acyl transfer reaction to proceed within minutes (rather than hours). We demonstrate the versatility of this method by applying it to the labeling of different G-protein coupled membrane receptors including the human neuropeptide Y receptors 1, 2, 4, 5, the neuropeptide FF receptors 1 and 2, and the dopamine receptor 1. The labeled receptors are fully functional and able to bind the respective ligand with high affinity. Activity is not impaired as demonstrated by activation, internalization, and recycling experiments.
Three-axis orthogonal transceiver coil for eddy current sounding
NASA Astrophysics Data System (ADS)
Sukhanov, D.; Zavyalova, K.; Goncharik, M.
2017-08-01
We propose the new structure of three-axis transceiver magnetic-induction coil for eddy current probing. Due to the orientation of the coils, the direct signal from the transmitting coil to the receiving coil is minimized, which provided a high dynamic range. Sensitivity in all directions is provided by combining coils of different orientations. Numerical simulation and experimental studies of such a system have been carried out and confirmed the applicability of the proposed method and the mathematical model.
De-icing of the altitude wind tunnel turning vanes by electro-magnetic impulse
NASA Technical Reports Server (NTRS)
Zumwalt, G. W.; Ross, R.
1986-01-01
The Altitude Wind Tunnel at the NASA-Lewis facility is being proposed for a refurbishment and moderization. Two major changes are: (1) the increasing of the test section Mach number to 0.90, and (2) the addition of spray nozzles to provide simulation of flight in icing clouds. Features to be retained are the simulation of atmospheric temperature and pressure to 50,000 foot altitude and provision for full-scale aircraft engine operation by the exhausting of the aircraft combustion gases and ingestion of air to replace that used in combustion. The first change required a re-design of the turning vanes in the two corners downstream of the test section due to the higher Mach number at the corners. The second change threatens the operation of the turning vanes by the expected ice build-up, particulary on the first-corner vanes. De-icing by heat has two drawbacks: (1) an extremely large amount of heat is required, and (2) the melted ice would tend to collect as ice on some other surfaces in the tunnel, namely, the tunnel propellers and the cooling coils. An alternate de-icing method had been under development for three years under NASA-Lewis grants to the Wichita State University. This report describes the electro-impulse de-icing (EIDI) method and the testing work done to assess its applicability to wind tunnel turning vane de-icing. Tests were conducted in the structural dynamics laboratory and in the NASA Icing Research Tunnel. Good ice protection was achieved at lower power consumption and at a wide range of tunnel operations conditions. Recommendations for design and construction of the system for this application of the EIDI method are given.
Measuring the orthogonality error of coil systems
Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.
2012-01-01
Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.
The ISEE-1 and ISEE-2 plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Scarf, F. L.; Fredricks, R. W.; Smith, E. J.
1978-01-01
The ISEE-1 and ISEE-2 plasma wave experiments are designed to provide basic information on wave-particle interactions in the earth's magnetosphere and in the solar wind. The ISEE-1 plasma wave instrument uses three electric dipole antennas with lengths of 215, 73.5 and 0.61 m for electric field measurements, and a triaxial search coil antenna for magnetic field measurements. The ISEE-2 instrument uses two electric dipole antennas with lengths of 30 and 0.61 m for electric field measurements and a single-axis search coil antenna for magnetic field measurements. The primary scientific objectives of the experiments are described, including the resolution of space-time relationships of plasma wave phenomena and VLBI studies. The instrumentation is described, with emphasis on the antennas and the electronics.
An Experimental Design of Bypass Magneto-Rheological (MR) damper
NASA Astrophysics Data System (ADS)
Rashid, MM; Aziz, Mohammad Abdul; Raisuddin Khan, Md.
2017-11-01
The magnetorheological (MR) fluid bypass damper fluid flow through a bypass by utilizing an external channel which allows the controllability of MR fluid in the channel. The Bypass MR damper (BMRD) contains a rectangular bypass flow channel, current controlled movable piston shaft arrangement and MR fluid. The static piston coil case is winding by a coil which is used inside the piston head arrangement. The current controlled coil case provides a magnetic flux through the BMRD cylinder for controllability. The high strength of alloy steel materials are used for making piston shaft which allows magnetic flux propagation throughout the BMRD cylinder. Using the above design materials, a Bypass MR damper is designed and tested. An excitation of current is applied during the experiment which characterizes the BMRD controllability. It is shown that the BMRD with external flow channel allows a high controllable damping force using an excitation current. The experimental result of damping force-displacement characteristics with current excitation and without current excitation are compared in this research. The BMRD model is validated by the experimental result at various frequencies and applied excitation current.
Performance of 2G-HTS REBCO undulator coils impregnated epoxies mixed with different fillers
Kesgin, Ibrahim; Hasse, Quentin; Ivanyushenkov, Yury; ...
2016-12-12
The use of second-generation high-temperature superconducting-coated conductors enables an enhancement of the performance of undulator magnets. However, preventing the motion of the wire and providing sufficient conduction cooling to the winding stacks have remained challenges. In this study, we have evaluated epoxy impregnation techniques to address these issues. Epoxy resin was prepared with different nanopowders and the effect on the performance of the undulator coil pack was investigated. All epoxy impregnated coils showed smaller n values and some degree of deterioration of the critical current I c. The I c degradation was most pronounced for epoxy mixed with high aspectmore » ratio multiwalled carbon nanotubes (MWCNTs). It has been found that the crack formation in the epoxy results in plastic deformation of the copper stabilizer layer, which causes the underlying ceramic REBCO superconducting layer to crack resulting in degradation of the superconducting tape performance. As a result, careful adjustment of epoxy thickness surrounding the superconductor and the powder ratio in the epoxy eliminate the performance degradation.« less
Effect of thermo-mechanical stress during quench on Nb3Sn cable performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linda Imbasciati et al.
2002-12-09
Several high field magnets using Nb{sub 3}Sn superconductor are under development for future particle accelerators. The high levels of stored energy in these magnets can cause high peak temperatures during a quench. The thermomechanical stress generated in the winding during the fast temperature rise can result in a permanent damage of the brittle Nb{sub 3}Sn. Although there are several studies of the critical current degradation of Nb{sub 3}Sn strands due to strain, little is known about how to apply the strain limitations to define a maximum acceptable temperature in the coils during a quench. Therefore, an experimental program was launched,more » aimed at improving the understanding of the effect of thermo-mechanical stress in coils made from brittle Nb{sub 3}Sn. A first experiment, reported here, was performed on cables. The experimental results were compared to analytical and finite element models. The next step in the experimental program will be to repeat similar measurements in small racetrack coils and later in full size magnets.« less
Chen, Xinyuan; Dai, Jianrong
2018-05-01
Magnetic Resonance Imaging (MRI) simulation differs from diagnostic MRI in purpose, technical requirements, and implementation. We propose a semiautomatic method for image acceptance and commissioning for the scanner, the radiofrequency (RF) coils, and pulse sequences for an MRI simulator. The ACR MRI accreditation large phantom was used for image quality analysis with seven parameters. Standard ACR sequences with a split head coil were adopted to examine the scanner's basic performance. The performance of simulation RF coils were measured and compared using the standard sequence with different clinical diagnostic coils. We used simulation sequences with simulation coils to test the quality of image and advanced performance of the scanner. Codes and procedures were developed for semiautomatic image quality analysis. When using standard ACR sequences with a split head coil, image quality passed all ACR recommended criteria. The image intensity uniformity with a simulation RF coil decreased about 34% compared with the eight-channel diagnostic head coil, while the other six image quality parameters were acceptable. Those two image quality parameters could be improved to more than 85% by built-in intensity calibration methods. In the simulation sequences test, the contrast resolution was sensitive to the FOV and matrix settings. The geometric distortion of simulation sequences such as T1-weighted and T2-weighted images was well-controlled in the isocenter and 10 cm off-center within a range of ±1% (2 mm). We developed a semiautomatic image quality analysis method for quantitative evaluation of images and commissioning of an MRI simulator. The baseline performances of simulation RF coils and pulse sequences have been established for routine QA. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Development of a planar-type high sensitivity metallic contaminant detector
NASA Astrophysics Data System (ADS)
Okabe, Shunsuke; Sasada, Ichiro
2017-05-01
Metallic contaminant detectors based on the balanced coil system are widely used in the food industry. In the balanced coil system, an excitation coil and two identical pickup coils are used in a way that the magnetic coupling of pickup coils to the excitation coil is cancelled with each other when no metallic contaminants present. In a conventional system, the excitation coil and the pickup coil are planar and are parallel, therefore the magnetic coupling is strong even if there is no metallic contaminant. Such strong magnetic coupling makes balancing procedure tedious. In this paper, we introduce a new coil system in which pickup coils are set orthogonal to the excitation coil, making the magnetic coupling much small compared to conventional counterpart. Pickup coils are equipped with thin magnetic cores and placed inside the excitation coil being parallel to the excitation coil plane. The balancing method consists of two steps; the one is geometrical and the other is digital processing including down conversion. Experiments are carried out to show the detection capability of ferromagnetic contaminants and non-magnetic contaminants.
An accurate real-time model of maglev planar motor based on compound Simpson numerical integration
NASA Astrophysics Data System (ADS)
Kou, Baoquan; Xing, Feng; Zhang, Lu; Zhou, Yiheng; Liu, Jiaqi
2017-05-01
To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.
Superconducting coil system and methods of assembling the same
Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.
2016-01-19
A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.
Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T; Handler, William B; Chronik, Blaine A; Ibrahim, Tamer S
2015-11-01
To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. One set of a four-element, 2 × 2 Tic-Tac-Toe head coil structure was selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents were quantitatively studied in the time and frequency domains. The RF characteristics were studied using the finite difference time domain method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in vivo human subjects. The eddy current simulation method was verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding significantly distorted the gradient fields. Echo-planar images, B1+ maps, and S matrix measurements verified that the proposed slot pattern suppressed the eddy currents while maintaining the RF characteristics of the transmit coil. The presented dual-optimization method could be used to design RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hu, Xinbo
REBCO (REBa2Cu3O7-delta, RE=rare earth elements) coated conductor (CC) is one of the best candidates for building high-field magnets and it has been improved greatly in recent years. CC overcome the grain boundary problem by using either a rolling assisted biaxially textured substrate (RABiTS) or ion beam assisted deposition (IBAD) of a template for the REBCO. Artificial pinning centers were also introduced to increase critical current density. Despite all these improvements, one significant residual problem is lengthwise critical current (Ic) variations of the CCs. Characterizations of CCs can not only identify the variations, but also provide insight that can help improve the manufacturing process. This study focuses on cross-sectional and vortex pinning variations in CCs. With the reel-to-reel Ic and magnetization measurement system (YateStar), a systematic study has been carried out for CCs made in the last 5-6 years as this technology has rapidly developed. We found that cross-section variations exist for almost all conductors because of width variations. But this contribution to the total Ic variation is small. Vortex pinning variations are found to be the main reason for Ic variations, especially for conductors from different production runs. Even for conductors from the same run, pinning variations are often present. Microscopy studies show that the density and length of BaZrO3 (BZO) nanorods vary between different conductors even though they have nominally the same specifications. Pinning variations in one single tape are mostly attributed to the size variations of BZO nanorods and the configurations of RE2O3 precipitates. Deconstruction of magnet coils and cables were carried out to understand the reasons for in-service degradation. The prototype coil for the 32 T project was safely quenched more than 100 times but it degraded in 3 spontaneous quenches (conducted in an accelerated fatigue testing campaign at ramp rates much larger than service specification). Its pancake coil deconstruction showed three extremely localized burned regions, whose temperature went to over 800°C based on the appearance of a Cu-Ag eutectic above the damaged REBCO layer. Transverse propagation of the damage was almost as effective as longitudinal propagation. Transmission electron microscope images show that thicker BaZrO 3 (BZO) nanorods exist near the centers of damaged zones, compared to longer and thinner BZO nanorods from normal, good regions. Because of the lack of detailed Ic(x) characterizations of the length prior to use, the cause the cause of the coil degradation is not clear. It is possible that local degradation of the vortex pinning initiated the final quenches but another possibility is indicated by deconstruction of a no-insulation coil, which reached 45.5 T in a background field of 31 T. In this case no burn marks were observed but some tapes were heavily deformed on one edge, and some joints delaminated after quenches. Transport measurements show that the deformations correlate to Ic degradations, especially for the outer turns of pancakes. Microstructural studies reveal that the deformed (and cracked) edges are always the one that were slit during manufacturing. It appears that small, pre-existing micro-cracks on slit edges propagate after high-field tests. Study of individual strands of conductor on round core (CORCRTM ) cables demonstrated their steady improvements in the last few years. Overall cable current density, Je, has been greatly improved by replacement of 50 mum by 30 mum thick substrate in CCs and improved winding procedures cause no damage to the tapes. However, some degradation may appear after cables are bent and tested in high-field (20 T). It is found that inner layers are more vulnerable than outer layers. Winding angles and gaps strongly influence where degradations start. To understand the failure mechanisms and establish the limiting winding conditions for CORCRTM cables/wires, tapes were wound on different formers at different angles: 23°, 30°, 45° and 60°. For a 2 mm former diameter, the highest winding angle gives the least degradation while the other three are comparable. A major defect type introduced during winding is propagation of pre-existing edge (slitting) cracks, but some delamination under winding stress can also be seen. For the former with 2.54 mm in diameter, no propagations of pre-existing cracks or delaminations were observed after winding. Our studies of CCs made and tested in different ways has shown that further improvement of CC and of CORCRTM cables/wires can be made and also that some inherent features of the manufacture of CCs exert a strong influence on their service performance.
NASA Astrophysics Data System (ADS)
Xie, Jining; Mukhopadyay, K.; Yadev, J.; Varadan, V. K.
2003-10-01
Coiled carbon nanotubes exhibit excellent mechanical and electrical properties because of the combination of coil morphology and properties of nanotubes. They could have potential novel applications in nanocomposites and nano-electronic devices as well as nano-electromechanical systems. In this work, synthesis of regularly coiled carbon nanotubes is presented. It involves pyrolysis of hydrocarbon gas over metal/support catalyst by both thermal filament and microwave catalytic chemical vapor deposition methods. Scanning electron microscopy and transmission electron microscopy were performed to observe the coil morphology and nanostructure of coiled nanotubes. The growth mechanism and structural and electrical properties of coiled carbon nanotubes are also discussed.
NASA Astrophysics Data System (ADS)
Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa
2017-03-01
This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.
Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa
2017-03-21
This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.
NASA Astrophysics Data System (ADS)
Rickard, Scott
Electromagnets are a crucial component in a wide range of more complex electrical devices due to their ability to turn electrical energy into mechanical energy and vice versa. The trend for electronics becoming smaller and lighter has led to increased interest in using flat, planar electromagnetic coils, which have been shown to perform better at scaled down sizes. The two-dimensional geometry of a planar electromagnetic coil yields itself to be produced by a roll-to-roll additive manufacturing process. The emergence of the printed electronics field, which uses traditional printing processes to pattern functional inks, has led to new methods of mass-producing basic electrical components. The ability to print a planar electromagnetic coil using printed electronics could rival the traditional subtractive and semi-subtractive PCB process of manufacturing. The ability to print lightweight planar electromagnetic coils on flexible substrates could lead to their inclusion into intelligent packaging applications and could have specific use in actuating devices, transformers, and electromagnetic induction applications such as energy harvesting or wireless charging. In attempts to better understand the limitations of printing planar electromagnetic coils, the effect that the design parameters of the planar coils have on the achievable magnetic field strength were researched. A comparison between prototyping methods of digital extrusion and manufacturing scale flexographic printing are presented, discussing consistency in the printed coils and their performance in generating magnetic fields. A method to predict the performance of these planar coils is introduced to allow for design within required needs of an application. Results from the research include a demonstration of a printed coil being used in a flat speaker design, working off of actuating principles.
Jha, Kamal N.
1999-01-01
An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.
Harris, Chad T; Haw, Dustin W; Handler, William B; Chronik, Blaine A
2013-09-01
Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils. Copyright © 2013 Elsevier Inc. All rights reserved.
Leung, Chung Ming; Wang, Ya; Chen, Wusi
2016-11-01
In this letter, the airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively magnetized formation of 6 magnets to explore enhanced power density. In particular, the magnet array was positioned in parallel to the trajectory of the tip coil within its tip deflection span. The finite element simulations of the magnetic flux density and induced voltages at an open circuit condition were studied to find the maximum number of alternatively magnetized magnets that was required for the proposed energy harvester. Experimental results showed that the energy harvester with a pair of 6 alternatively magnetized linear magnet arrays was able to generate an induced voltage (V o ) of 20 V, with an open circuit condition, and 475 mW, under a 30 Ω optimal resistance load operating with the wind speed (U) at 7 m/s and a natural bending frequency of 3.54 Hz. Compared to the traditional electromagnetic energy harvester with a single magnet moving through a coil, the proposed energy harvester, containing multi-pole magnets and parallel array motion, enables the moving coil to accumulate a stronger magnetic flux in each period of the swinging motion. In addition to the comparison made with the airfoil-based piezoelectric energy harvester of the same size, our proposed electromagnetic energy harvester generates 11 times more power output, which is more suitable for high-power-density energy harvesting applications at regions with low environmental frequency.
Towards a microcoil for intracranial and intraductal MR microscopy
Strick, Debra S.; Nunnally, Ray L.; Smith, Jolinda C.; Clark, W. Gilbert; Mills, Dixie J.; Cohen, Mark S.; Judy, Jack W.
2011-01-01
Implantable RF-coils have enabled sub-mm resolution magnetic resonance images (MRI) of deep structures. Scaling down the size of RF coils has similarly provided a gain in signal-to-noise ratio in nuclear-magnetic-resonance spectroscopy. By combining both approaches we designed, fabricated, and imaged with an implantable microcoil catheter. While typical implantable catheters use a transverse magneti-zation, the axial magnetization of the microcoil provides improved sensitivity and allows visualization of the tissue beyond the distal end of the catheter. The microcoil catheter was designed with a diameter of 1 mm for future integration with intracranial devices, and for intraductal use in breast oncology. We modified the NMR-microcoil design to allow implantation of the RF coil, by winding the microcoil on medical-grade silicone tubing and incorporating leads on the catheter to connect circuit components. In order to achieve proper turn spacing, we coated copper wire with 25 µm of biocompatible polymer (Parylene C). Tuning and matching circuitry insured that the impedance of the RF coil was approximately 50 Ω at the operating frequency for 3-T proton MR applications. A duplexer was used to enable use of the microcoil catheter as a transceiver. Experimental verification of the coil design was achieved through ex vivo imaging of neural tissue. As expected, the microcoil catheter provided microscale images with 20-µm in-plane-resolution and 170-µm-thick slices. While 3-T MRI typically provides 1 to 30 voxels per-cubic-millimeter, in this paper we report that the MRI microcoil can provide hundreds, and even thousands of voxels in the same volume. PMID:19163097
Osanai, Toshiya; Bain, Mark D; Toth, Gabor; Hussain, M Shazam; Hui, Ferdinand K
2015-08-01
Carotid artery sacrifice remains an important procedure for cerebral vascular disorders despite the development of new endovascular devices. Conventional carotid artery sacrifice with detachable coils alone often requires numerous coils to complete occlusion. To describe the initial human experience with balloon-augmented Onyx and coil vessel sacrifice based on our previous experience with animals. We performed a retrospective review of patients who underwent carotid artery sacrifice between 2008 and 2012 in accordance with local investigational review board approval. Two methods were used to occlude carotid arteries-namely, combined Onyx and coil embolization and traditional coil embolization. We compared the two methods for the cost of embolizate, time to occlude the vessels, and the number of coils. Eight consecutive patients (combined group n=3, traditional group n=5) were assessed. The median cost of embolic material was $6321 in the combined Onyx and coil embolization group and $29 996 in the traditional coil embolization group. The median time from first coil placement to achievement of vessel occlusion was 52 min in the Onyx group and 113 min in the coil embolization group. The median number of coils used was 4 in the Onyx group and 35 in the coil embolization group (p<0.05). No symptomatic complications or recurrences were seen in the combined group. Balloon-augmented Onyx endovascular ligation may reduce costs and fluoroscopy times during vessel sacrifice. Further studies in a larger number of patients are needed to confirm these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Harmonic Fluxes and Electromagnetic Forces of Concentric Winding Brushless Permanent Magnet Motor
NASA Astrophysics Data System (ADS)
Ishibashi, Fuminori; Takemasa, Ryo; Matsushita, Makoto; Nishizawa, Takashi; Noda, Shinichi
Brushless permanent magnet motors have been widely used in home applications and industrial fields. These days, high efficiency and low noise motors are demanded from the view point of environment. Electromagnetic noise and iron loss of the motor are produced by the harmonic fluxes and electromagnetic forces. However, order and space pattern of these have not been discussed in detail. In this paper, fluxes, electromagnetic forces and magneto-motive forces of brushless permanent magnet motors with concentric winding were analyzed analytically, experimentally and numerically. Time harmonic fluxes and time electromagnetic forces in the air gap were measured by search coils on the inner surface of the stator teeth and analyzed by FEM. Space pattern of time harmonic fluxes and time electromagnetic forces were worked out with experiments and FEM. Magneto motive forces due to concentric winding were analyzed with equations and checked by FEM.
HUDSON, PARISA; HUDSON, STEPHEN D.; HANDLER, WILLIAM B.; SCHOLL, TIMOTHY J.; CHRONIK, BLAINE A.
2010-01-01
High-performance shim coils are required for high-field magnetic resonance imaging and spectroscopy. Complete sets of high-power and high-performance shim coils were designed using two different methods: the minimum inductance and the minimum power target field methods. A quantitative comparison of shim performance in terms of merit of inductance (ML) and merit of resistance (MR) was made for shim coils designed using the minimum inductance and the minimum power design algorithms. In each design case, the difference in ML and the difference in MR given by the two design methods was <15%. Comparison of wire patterns obtained using the two design algorithms show that minimum inductance designs tend to feature oscillations within the current density; while minimum power designs tend to feature less rapidly varying current densities and lower power dissipation. Overall, the differences in coil performance obtained by the two methods are relatively small. For the specific case of shim systems customized for small animal imaging, the reduced power dissipation obtained when using the minimum power method is judged to be more significant than the improvements in switching speed obtained from the minimum inductance method. PMID:20411157
Analysis of temperature influence on the informative parameters of single-coil eddy current sensors
NASA Astrophysics Data System (ADS)
Borovik, S. Yu.; Kuteynikova, M. M.; Sekisov, Yu. N.; Skobelev, O. P.
2017-07-01
This paper describes the study of temperature in the flowing part of a turbine on the informative parameters (equivalent inductances of primary windings of matching transformers) of single-coil eddy-current sensors with a sensitive element in the form of a conductor section, which are used as part of automation systems for testing gas-turbine engines. In this case, the objects of temperature influences are both sensors and controlled turbine blades. The existing model of electromagnetic interaction of a sensitive element with the end part of a controlled blade is used to obtain quantitative estimates of temperature changes of equivalent inductances of sensitive elements and primary windings of matching transformers. This model is also used to determine the corresponding changes of the informative parameter of the sensor in the process of experimental studies of temperature influences on it (in the absence of blades in the sensitive region). This paper also presents transformations in the form of relationships of informative parameters with radial and axial displacements at normal (20 °C) and nominal (1000 °C) temperatures, and their difference is used to determine the families of dominant functions of temperature, which characterize possible temperature errors for any radial and axial displacements in the ranges of their variation.
Evaluation of a New 1H/31P Dual-Tuned Birdcage Coil for 31P Spectroscopy
Potter, WM; Wang, L; McCully, KK; Zhao, Q
2013-01-01
We introduce a new dual-tuned Hydrogen/Phosphorus (1H/31P) birdcage coil, referred to as split birdcage coil, and evaluate its performance using both simulations and magnetic resonance (MR) experiments on a 3 T MR scanner. The proposed coil simplifies the practical matters of tuning and matching, which makes the coil easily reproducible. Simulations were run with the Finite Difference in Time Domain (FDTD) method to evaluate the sensitivity and homogeneity of the magnetic field generated by the proposed 1H coils. Following simulations, MR experiments were conducted using both a phantom and human thigh to compare the proposed design with a currently available commercial dual-tuned flexible surface coil, referred to as flex surface coil, for signal to noise ratio (SNR) as well as homogeneity for the 31P coil. At regions deep within the human thigh, the split birdcage coil was able to acquire spectroscopic signal with a higher average SNR than the flex surface coil. For all regions except those close to the flex surface coil, the split birdcage coil matched or exceeded the performance of the flex surface coil. PMID:24039555
Langguth, Berthold; Zowe, Marc; Landgrebe, Michael; Sand, Philipp; Kleinjung, Tobias; Binder, Harald; Hajak, Göran; Eichhammer, Peter
2006-01-01
Auditory phantom perceptions are associated with hyperactivity of the central auditory system. Neuronavigation guided repetitive transcranial magnetic stimulation (rTMS) of the area of increased activity was demonstrated to reduce tinnitus perception. The study aimed at developing an easy applicable standard procedure for transcranial magnetic stimulation of the primary auditory cortex and to investigate this coil positioning strategy for the treatment of chronic tinnitus in clinical practice. The left gyrus of Heschl was targeted in 25 healthy subjects using a frameless stereotactical system. Based on individual scalp coordinates of the coil, a positioning strategy with reference to the 10--20-EEG system was developed. Using this coil positioning approach we started an open treatment trial. 28 patients with chronic tinnitus received 10 sessions of rTMS (intensity 110% of motor threshold, 1 Hz, 2000 Stimuli/day). Being within a range of about 20 mm diameter, the scalp coordinates for stimulating the primary auditory cortex allowed to determine a standard procedure for coil positioning. Clinical validation of this coil positioning method resulted in a significant improvement of tinnitus complaints (p<0.001). The newly developed coil positioning strategy may have the potential to offer a more easy-to-use stimulation approach for treating chronic tinnitus as compared with highly sophisticated, imaging guided treatment methods.
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
2013-07-01
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.
Parallel magnetic resonance imaging using coils with localized sensitivities.
Goldfarb, James W; Holland, Agnes E
2004-09-01
The purpose of this study was to present clinical examples and illustrate the inefficiencies of a conventional reconstruction using a commercially available phased array coil with localized sensitivities. Five patients were imaged at 1.5 T using a cardiac-synchronized gadolinium-enhanced acquisition and a commercially available four-element phased array coil. Four unique sets of images were reconstructed from the acquired k-space data: (a) sum-of-squares image using four elements of the coil; localized sum-of-squares images from the (b) anterior coils and (c) posterior coils and a (c) local reconstruction. Images were analyzed for artifacts and usable field-of-view. Conventional image reconstruction produced images with fold-over artifacts in all cases spanning a portion of the image (mean 90 mm; range 36-126 mm). The local reconstruction removed fold-over artifacts and resulted in an effective increase in the field-of-view (mean 50%; range 20-70%). Commercially available phased array coils do not always have overlapping sensitivities. Fold-over artifacts can be removed using an alternate reconstruction method. When assessing the advantages of parallel imaging techniques, gains achieved using techniques such as SENSE and SMASH should be gauged against the acquisition time of the localized method rather than the conventional sum-of-squares method.
Levitation Experiment Using a High-Temperature Superconductor Coil for a Plasma Confinement Device
NASA Astrophysics Data System (ADS)
Morikawa, Junji; Ozawa, Daisaku; Ogawa, Yuichi; Yanagi, Nagato; Hamaguchi, Sinji; Mito, Toshiyuki
2001-10-01
Levitation experiments using a high-temperature superconductor coil have been carried out. A coil with a minor radius of 42 mm was fabricated with a Bi-2223 tape conductor, and immersed in the liquid nitrogen. The coil current was induced by the field-cooling method up to the critical current value. The current decay of the coil can be accounted for by the flux flow resistance and the normal resistance at the lap joint. The high-temperature superconductor coil can be levitated for 4 min or more within an accuracy of 25-30 μm.
A quantitative experimental phantom study on MRI image uniformity.
Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei
2018-05-23
Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e. Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included spin echo (SE) and gradient echo (GRE) scanned in three planes (i.e. axial, coronal, and sagittal). Moreover, three surface coil types (i.e. head and neck, Brain, and temporomandibular joint coils) and two image correction methods (i.e. surface coil intensity correction or SCIC, phased array uniformity enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the National Electrical Manufacturers Association peak-deviation non-uniformity method. Results showed that temporomandibular joint coils elicited the least uniform image and brain coils outperformed head and neck coils when metallic materials were present. Additionally, when metallic materials were present, spin echo outperformed gradient echo especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e. no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g. coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.
Wireless power delivery for retinal prostheses.
Ng, David C; Williams, Chris E; Allen, Penny J; Bai, Shun; Boyd, Clive S; Meffin, Hamish; Halpern, Mark E; Skafidas, Efstratios
2011-01-01
Delivering power to an implanted device located deep inside the body is not trivial. This problem is made more challenging if the implanted device is in constant motion. This paper describes two methods of transferring power wirelessly by means of magnetic induction coupling. In the first method, a pair of transmit and receive coils is used for power transfer over a large distance (compared to their diameter). In the second method, an intermediate pair of coils is inserted in between transmit and receive coils. Comparison between the power transfer efficiency with and without the intermediate coils shows power transfer efficiency to be 11.5 % and 8.8 %, respectively. The latter method is especially suitable for powering implanted devices in the eye due to immunity to movements of the eye and ease of surgery. Using this method, we have demonstrated wireless power delivery into an animal eye.
Wilhelm, Emmanuelle; Quoilin, Caroline; Petitjean, Charlotte; Duque, Julie
2016-01-01
Background: Many previous transcranial magnetic stimulation (TMS) studies have investigated corticospinal excitability changes occurring when choosing which hand to use for an action, one of the most frequent decision people make in daily life. So far, these studies have applied single-pulse TMS eliciting motor-evoked potential (MEP) in one hand when this hand is either selected or non-selected. Using such method, hand choices were shown to entail the operation of two inhibitory mechanisms, suppressing MEPs in the targeted hand either when it is non-selected (competition resolution, CR) or selected (impulse control, IC). However, an important limitation of this “Single-Coil” method is that MEPs are elicited in selected and non-selected conditions during separate trials and thus those two settings may not be completely comparable. Moreover, a more important problem is that MEPs are computed in relation to the movement of different hands. The goal of the present study was to test a “Double-Coil” method to evaluate IC and CR preceding the same hand responses by applying Double-Coil TMS over the two primary motor cortices (M1) at a near-simultaneous time (1 ms inter-pulse interval). Methods: MEPs were obtained in the left (MEPLEFT) and right (MEPRIGHT) hands while subjects chose between left and right hand key-presses in blocks using a Single-Coil or a Double-Coil method; in the latter blocks, TMS was either applied over left M1 first (TMSLRM1 group, n = 12) or right M1 first (TMSRLM1 group, n = 12). Results: MEPLEFT were suppressed preceding both left (IC) and right (CR) hand responses whereas MEPRIGHT were only suppressed preceding left (CR) but not right (IC) hand responses. This result was observed regardless of whether Single-Coil or Double-Coil TMS was applied in the two subject groups. However, in the TMSLRM1 group, the MEP suppression was attenuated in Double-Coil compared to Single-Coil blocks for both IC and CR, when probed with MEPLEFT (elicited by the second pulse). Conclusions: Although Double-Coil TMS may be a reliable method to assess bilateral motor excitability provided that a RM1-LM1 pulse order is used, further experiments are required to understand the reduced MEPLEFT changes in Double-Coil blocks when the LM1-RM1 pulse order was used. PMID:27014020
Aneurysm permeability following coil embolization: packing density and coil distribution
Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J
2015-01-01
Background Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability. Methods Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity. Results All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r2=0.73) than with packing density alone (r2=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures. Conclusions A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability. PMID:25031179
B1- non-uniformity correction of phased-array coils without measuring coil sensitivity.
Damen, Frederick C; Cai, Kejia
2018-04-18
Parallel imaging can be used to increase SNR and shorten acquisition times, albeit, at the cost of image non-uniformity. B 1 - non-uniformity correction techniques are confounded by signal that varies not only due to coil induced B 1 - sensitivity variation, but also the object's own intrinsic signal. Herein, we propose a method that makes minimal assumptions and uses only the coil images themselves to produce a single combined B 1 - non-uniformity-corrected complex image with the highest available SNR. A novel background noise classifier is used to select voxels of sufficient quality to avoid the need for regularization. Unique properties of the magnitude and phase were used to reduce the B 1 - sensitivity to two joint additive models for estimation of the B 1 - inhomogeneity. The complementary corruption of the imaged object across the coil images is used to abate individual coil correction imperfections. Results are presented from two anatomical cases: (a) an abdominal image that is challenging in both extreme B 1 - sensitivity and intrinsic tissue signal variation, and (b) a brain image with moderate B 1 - sensitivity and intrinsic tissue signal variation. A new relative Signal-to-Noise Ratio (rSNR) quality metric is proposed to evaluate the performance of the proposed method and the RF receiving coil array. The proposed method has been shown to be robust to imaged objects with widely inhomogeneous intrinsic signal, and resilient to poorly performing coil elements. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, R.W.; Post, D.W.; Lovell, R.T.
1981-04-01
Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relatemore » this profile to that generated by the coils in completed fuel pin simulators.« less
Application of mosquito repellent coils and associated self-reported health issues in Ghana.
Hogarh, Jonathan N; Antwi-Agyei, Philip; Obiri-Danso, Kwasi
2016-02-04
The use of mosquito coils has gained widespread patronage in malaria-endemic countries, even though it is not a recommended preventive measure for avoiding mosquitoes. Mosquito coils contain insecticides, which are expected to vaporize slowly once the coil is lit, to provide protection against the mosquito. The mosquito coil base material contains a variety of compounds capable of burning slowly to gradually release the insecticide. The mosquito coil smoke, however, is potentially a source of indoor air pollution with implications for acute respiratory infections (ARI) and other illnesses. The present study investigated the application of mosquito coils and associated self-reported health issues in Ghana. A cross-sectional study was undertaken in which questionnaires were randomly administered to 480 households across four districts in Ghana. Respondents who exclusively applied mosquito coils were grouped as test cohort, while those who did not apply any mosquito repellency method constituted a control cohort. The test group that applied mosquito coils reported malaria incidence rate of 86.3 %. The control group that did not apply any mosquito repellency method reported an incidence rate of malaria at 72.4 %. Chi square analysis suggested that the observed difference was statistically significant (x (2) = 4.25; p = 0.04). The number of respondents who reported symptoms of cough from mosquito coil application (52.6 % incidence rate) was marginally greater than their counterparts who did not apply coils (46.1 % incidence rate). It was also found that respondents with shortage of breath, which was used as a proxy for ARI, were more likely to have applied mosquito coil. The application of mosquito coils did not necessarily reduce the incidence of malaria in the study communities. It however presented a potential respiratory risk factor, which should be further investigated by critically examining exposure to particulate matter emissions from burning coils.
I-cored Coil Probe Located Above a Conductive Plate with a Surface Hole
NASA Astrophysics Data System (ADS)
Tytko, Grzegorz; Dziczkowski, Leszek
2018-02-01
This work presents an axially symmetric mathematical model of an I-cored coil placed over a two-layered conductive material with a cylindrical surface hole. The problem was divided into regions for which the magnetic vector potential of a filamentary coil was established applying the truncated region eigenfunction expansion method. Then the final formula was developed to calculate impedance changes for a cylindrical coil with reference to both the air and to a material with no hole. The influence of a surface flaw in the conductive material on the components of coil impedance was examined. Calculations were made in Matlab for a hole with various radii and the results thereof were verified with the finite element method in COMSOL Multiphysics package. Very good consistency was achieved in all cases.
Quench monitoring and control system and method of operating same
Ryan, David Thomas; Laskaris, Evangelos Trifon; Huang, Xianrui
2006-05-30
A rotating machine comprising a superconductive coil and a temperature sensor operable to provide a signal representative of superconductive coil temperature. The rotating machine may comprise a control system communicatively coupled to the temperature sensor. The control system may be operable to reduce electric current in the superconductive coil when a signal representative of a defined superconducting coil temperature is received from the temperature sensor.
Improved l1-SPIRiT using 3D walsh transform-based sparsity basis.
Feng, Zhen; Liu, Feng; Jiang, Mingfeng; Crozier, Stuart; Guo, He; Wang, Yuxin
2014-09-01
l1-SPIRiT is a fast magnetic resonance imaging (MRI) method which combines parallel imaging (PI) with compressed sensing (CS) by performing a joint l1-norm and l2-norm optimization procedure. The original l1-SPIRiT method uses two-dimensional (2D) Wavelet transform to exploit the intra-coil data redundancies and a joint sparsity model to exploit the inter-coil data redundancies. In this work, we propose to stack all the coil images into a three-dimensional (3D) matrix, and then a novel 3D Walsh transform-based sparsity basis is applied to simultaneously reduce the intra-coil and inter-coil data redundancies. Both the 2D Wavelet transform-based and the proposed 3D Walsh transform-based sparsity bases were investigated in the l1-SPIRiT method. The experimental results show that the proposed 3D Walsh transform-based l1-SPIRiT method outperformed the original l1-SPIRiT in terms of image quality and computational efficiency. Copyright © 2014 Elsevier Inc. All rights reserved.
Toroid cavity/coil NMR multi-detector
Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.
2007-09-18
An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.
Numerical characterization of a flexible circular coil for magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.
2012-10-01
Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.
Laminated magnet field coil sheath
Skaritka, John R.
1987-12-01
a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.
Laminated magnet field coil sheath
Skaritka, J.R.
1987-05-15
A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.
Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images.
Rajan, Jeny; Veraart, Jelle; Van Audekerke, Johan; Verhoye, Marleen; Sijbers, Jan
2012-12-01
Effective denoising is vital for proper analysis and accurate quantitative measurements from magnetic resonance (MR) images. Even though many methods were proposed to denoise MR images, only few deal with the estimation of true signal from MR images acquired with phased-array coils. If the magnitude data from phased array coils are reconstructed as the root sum of squares, in the absence of noise correlations and subsampling, the data is assumed to follow a non central-χ distribution. However, when the k-space is subsampled to increase the acquisition speed (as in GRAPPA like methods), noise becomes spatially varying. In this note, we propose a method to denoise multiple-coil acquired MR images. Both the non central-χ distribution and the spatially varying nature of the noise is taken into account in the proposed method. Experiments were conducted on both simulated and real data sets to validate and to demonstrate the effectiveness of the proposed method. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solis, S. E.; Centro de Investigacion e Instrumentacion e Imagenologia Medica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340; Hernandez, J. A.
Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour ofmore » the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging.« less
NASA Astrophysics Data System (ADS)
Ahmad, Farooq; Dennis, John Ojur; Md Khir, Mohd Haris; Hamid, Nor Hisham
2012-09-01
This paper presents the calibration of Helmholtz coils for the characterization of MEMS Magnetic sensor using Fluxgate magnetometer with DAS1 Magnetic Range Data Acquisition System. The Helmholtz coils arrangement is often used to generate a uniform magnetic field in space. In the past, standard magnets were used to calibrate the Helmholtz coils. A method is presented here for calibrating these coils using a Fluxgate magnetometer and known current source, which is easier and results in greater accuracy.
Recent Insights into the Nature of Turbulence in the Solar Wind
NASA Technical Reports Server (NTRS)
Goldstein, Melvun L.
2008-01-01
During the past several years, studies of solar wind turbulence using data from Cluster and other spacecraft, and results from new numerical simulations, have revealed new aspects of solar wind turbulence. I will try to highlight some of that research. At the shortest length scales and highest frequencies, there is renewed interest in determining how the turbulence dissipates, e.g., whether by kinetic Alfven waves or whistler turbulence. Finding observational evidence for exponential damping of solar wind fluctuations has proven challenging. New studies using a combination of flux gate and search coil magnetometer data from Cluster have extended this search (in the spacecraft frame of reference) to more than 10 Hertz. New models and simulations are also being used to study the dissipation. A detailed study of fluctuations in the magnetosheath suggests that turbulent dissipation could be occurring at very thin current sheets as had been suggested by two-dimensional MHD simulations more than 20 years ago. Data from the four Cluster spacecraft, now at their maximum separation of 10,000 km provide new opportunities to investigate the symmetry properties, scale lengths, and the relative proportion of magnetic energy in parallel and perpendicular wave numbers of solar wind turbulence. By utilizing well-calibrated electron data, it has been possible to take advantage of the tetrahedral separation of Cluster in the solar wind near apogee to measure directly the compressibility and vorticity of the solar wind plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Basedmore » on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.« less
2017-01-01
This work focuses on the design of transmitting coils in weakly coupled magnetic induction communication systems. We propose several optimization methods that reduce the active, reactive and apparent power consumption of the coil. These problems are formulated as minimization problems, in which the power consumed by the transmitting coil is minimized, under the constraint of providing a required magnetic field at the receiver location. We develop efficient numeric and analytic methods to solve the resulting problems, which are of high dimension, and in certain cases non-convex. For the objective of minimal reactive power an analytic solution for the optimal current distribution in flat disc transmitting coils is provided. This problem is extended to general three-dimensional coils, for which we develop an expression for the optimal current distribution. Considering the objective of minimal apparent power, a method is developed to reduce the computational complexity of the problem by transforming it to an equivalent problem of lower dimension, allowing a quick and accurate numeric solution. These results are verified experimentally by testing a number of coil geometries. The results obtained allow reduced power consumption and increased performances in magnetic induction communication systems. Specifically, for wideband systems, an optimal design of the transmitter coil reduces the peak instantaneous power provided by the transmitter circuitry, and thus reduces its size, complexity and cost. PMID:28192463
Zanjani, Keyhan Sayadpour; Sobhy, Rodina; El-Kaffas, Rania; El-Sisi, Amal
2017-04-01
We studied the safety and efficacy of closing patent ductus arteriosus by Nit-Occlud coils via retrograde approach. This is a retrospective study of 46 attempts to close ducts by this method in two hospitals in Egypt and Iran. Ductus arteriosus was crossed by left or right Judkins or endhole catheters. The coil was delivered via the same catheter or the provided endhole catheter after exchange. The procedure was successful in 42 out of 46 attempts. Fluoroscopy and procedural times were significantly shorter when the catheter was not exchanged. This method is effective and safe for the closure of small ducts. Crossing the duct and delivering the coil by a left Judkins catheter is the easiest and fastest way to perform this method.
Quench simulation studies of TAC jelly roll superferric dipole corrector elements for the SSC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, G.
Using the computer program SSC-DTAC-T, which is a modification of the quench computer program SSC-RR to model Jelly Roll coils, the quench behavior of the dipole corrector element (TAC design with Jelly Roll winding) is studied. The simulations are made as a function of the length of the magnet, the copper-to-superconducting ratio, and the thickness of insulation surrounding the wires. The magnet is self-protected with all listed considerations. In addition, this implies that other corrector multipoles (quadrupole, sextupole, octupole, etc.), which use the same conductor winding technique, are self-protected. A passive protection system should work for these elements. 9 refs.,more » 18 figs., 1 tab.« less
Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks
NASA Technical Reports Server (NTRS)
Wilson, L. B., III
2012-01-01
We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves.
Jha, K.N.
1999-05-18
An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.
A polyvalent harmonic coil testing method for small-aperture magnets
NASA Astrophysics Data System (ADS)
Arpaia, Pasquale; Buzio, Marco; Golluccio, Giancarlo; Walckiers, Louis
2012-08-01
A method to characterize permanent and fast-pulsed iron-dominated magnets with small apertures is presented. The harmonic coil measurement technique is enhanced specifically for small-aperture magnets by (1) in situ calibration, for facing search-coil production inaccuracy, (2) rotating the magnet around its axis, for correcting systematic effects, and (3) measuring magnetic fluxes by stationary coils at different angular positions for measuring fast pulsed magnets. This method allows a quadrupole magnet for particle accelerators to be characterized completely, by assessing multipole field components, magnetic axis position, and field direction. In this paper, initially the metrological problems arising from testing small-aperture magnets are highlighted. Then, the basic ideas of the proposed method and the architecture of the corresponding measurement system are illustrated. Finally, experimental validation results are shown for small-aperture permanent and fast-ramped quadrupole magnets for the new linear accelerator Linac4 at CERN (European Organization for Nuclear Research).
Composite ceramic superconducting wires for electric motor applications
NASA Astrophysics Data System (ADS)
Halloran, John W.
1990-04-01
Silver clad polycrystalline Y-123 wire is being fabricated with a continuous reel-to-reel process. Scale-up activities are underway to produce enough wire for the field coils of the HTSC motor. Green HTSC fiber were produced in kilometer lengths, and sintered wires up to 166 meters long. The 77K Jc values are 1000-2800 A/sq cm in self field. To improve Jc of the Y-123 wire, development began on directional crystallization, including preliminary work at A. D. Little and Oak Ridge National Lab. Large lots of BiSCCO material were produced to fabricated fibers and sintered polycrystalline BiSSCO wire as rolled tape. Work continued in collaboration with Sandia and Los Alamos National Laboratories on rapid thermal processing of Y-123, with most emphasis on characterizing the rapid oxygenation effect. The design of the HTSC homopolar motor has been improved to increase the output from field coils by using six smaller coils, each with separately optimized current. Motor construction is in progress. Preliminary design is underway on a dc heteropolar motor with HTSC field windings and armature and a brushless trapped flux permanent magnet dc motor, in which the field is produced by trapped flux in an HTSC rotor.
Fuel saver based on electromagnetic induction for automotive engine
NASA Astrophysics Data System (ADS)
Siregar, Houtman P.; Sibarani, Maradu
2007-12-01
In the considered research is designed and analyzed the performance of the fuel saver which is based on electromagnetic induction for automotive diesel engine. The fuel saver which is based on permanent magnet has sold in market and its performance has tested. In comparison to the former fuel saver, in the proposed work is produced fuel saver which is based on electromagnetic induction. The considered research is the continuation of my former work. Performance of the produced fuel saver which is installed in the fuel line of internal combustion engine rig is compared to the performance of the standard internal combustion engine rig Speed of the engine, wire diameter of coil, and number of coil which is coiled in the winding of the the fuel saver are chosen as the testing variables. The considered research has succeeded to design the fuel saver which is based on electromagnetic induction for saving the automotive fuel consumption. Results of the research show that the addition of the fuel saver which is based on electromagnetic induction to the flow of the diesel fuel can significantly save the automative fuel consumption. In addition the designed fuel saver can reduce the opacity of the emission gas.
Results of availability imposed configuration details developed for K-DEMO
Brown, Tom; Titus, Peter; Brooks, Art; ...
2016-02-05
We completed a two year study using the Korean fusion demonstration reactor (K-DEMO) where we looked at key Tokamak components and configuration options in preparation of a conceptual design phase. A key part of a device configuration centers on defining an arrangement that enhances the ability to reach high availability values by defining design solutions that foster simplified maintenance operations. In order to maximize the size and minimize the number of in-vessel components enlarged TF coils were defined that incorporate a pair of windings within each coil to mitigate pressure drop issues and to reduce the cost of the coils.more » Furthermore, we defined a semi-permanent shield structure in order to develop labyrinth interfaces between double-null plasma contoured shield modules, provide an entity to align blanket components and provide support against disruption loads—with a load path that equilibrates blanket, TF and PF loads through a base structure. Blanket piping services and auxiliary systems that interface with in-vessel components have played a major role in defining the overall device arrangement—concept details will be presented along with general arrangement features and preliminary results obtained from disruption analysis.« less
Portal vein embolization with plug/coils improves hepatectomy outcome.
Malinowski, Maciej; Geisel, Dominik; Stary, Victoria; Denecke, Timm; Seehofer, Daniel; Jara, Maximillian; Baron, Annekathrin; Pratschke, Johann; Gebauer, Bernhard; Stockmann, Martin
2015-03-01
Portal vein embolization (PVE) has become the standard of care before extended hepatectomy. Various PVE methods using different embolization materials have been described. In this study, we compared PVE with polyvinyl alcohol particles alone (PVA only) versus PVA with plug or coils (PVA + plug/coils). Patients undergoing PVE before hepatectomy were included. PVA alone was used until December 2013, thereafter plug or coils were placed in addition. The volume of left lateral liver lobe (LLL), clinical parameters, and liver function tests were measured before PVE and resection. A total of 43 patients were recruited into the PVA only group and 42 were recruited into the PVA + plug/coils group. There were no major differences between groups except significantly higher total bilirubin level before PVE in the PVA only group, which improved before hepatectomy. Mean LLL volume increased by 25.7% after PVE in the PVA only group and by 44% in the PVA + plug/coils group (P < 0.001). Recanalization was significantly less common in the PVA + plug/coils group. In multivariate regression, initial LLL volume and use of plug or coils were the only parameters influencing LLL volume increase. The postoperative liver failure rate was significantly reduced in PVA + plug/coils group (P = <0.001). PVE using PVA particles together with plug or coils is a safe and efficient method to increase future liver remnant volume. The additional central embolization with plug or coils led to an increased hypertrophy, due to lower recanalization rates, and subsequently decreased incidence of postoperative liver failure. No additional procedure-specific complications were observed in this series. Copyright © 2015 Elsevier Inc. All rights reserved.
PET attenuation correction for flexible MRI surface coils in hybrid PET/MRI using a 3D depth camera
NASA Astrophysics Data System (ADS)
Frohwein, Lynn J.; Heß, Mirco; Schlicher, Dominik; Bolwin, Konstantin; Büther, Florian; Jiang, Xiaoyi; Schäfers, Klaus P.
2018-01-01
PET attenuation correction for flexible MRI radio frequency surface coils in hybrid PET/MRI is still a challenging task, as position and shape of these coils conform to large inter-patient variabilities. The purpose of this feasibility study is to develop a novel method for the incorporation of attenuation information about flexible surface coils in PET reconstruction using the Microsoft Kinect V2 depth camera. The depth information is used to determine a dense point cloud of the coil’s surface representing the shape of the coil. From a CT template—acquired once in advance—surface information of the coil is extracted likewise and converted into a point cloud. The two point clouds are then registered using a combination of an iterative-closest-point (ICP) method and a partially rigid registration step. Using the transformation derived through the point clouds, the CT template is warped and thereby adapted to the PET/MRI scan setup. The transformed CT template is converted into an attenuation map from Hounsfield units into linear attenuation coefficients. The resulting fitted attenuation map is then integrated into the MRI-based patient-specific DIXON-based attenuation map of the actual PET/MRI scan. A reconstruction of phantom PET data acquired with the coil present in the field-of-view (FoV), but without the corresponding coil attenuation map, shows large artifacts in regions close to the coil. The overall count loss is determined to be around 13% compared to a PET scan without the coil present in the FoV. A reconstruction using the new μ-map resulted in strongly reduced artifacts as well as increased overall PET intensities with a remaining relative difference of about 1% to a PET scan without the coil in the FoV.
PET attenuation correction for rigid MR Tx/Rx coils from 176Lu background activity
NASA Astrophysics Data System (ADS)
Lerche, Christoph W.; Kaltsas, Theodoris; Caldeira, Liliana; Scheins, Jürgen; Rota Kops, Elena; Tellmann, Lutz; Pietrzyk, Uwe; Herzog, Hans; Shah, N. Jon
2018-02-01
One challenge for PET-MR hybrid imaging is the correction for attenuation of the 511 keV annihilation radiation by the required RF transmit and/or RF receive coils. Although there are strategies for building PET transparent Tx/Rx coils, such optimised coils still cause significant attenuation of the annihilation radiation leading to artefacts and biases in the reconstructed activity concentrations. We present a straightforward method to measure the attenuation of Tx/Rx coils in simultaneous MR-PET imaging based on the natural 176Lu background contained in the scintillator of the PET detector without the requirement of an external CT scanner or PET scanner with transmission source. The method was evaluated on a prototype 3T MR-BrainPET produced by Siemens Healthcare GmbH, both with phantom studies and with true emission images from patient/volunteer examinations. Furthermore, the count rate stability of the PET scanner and the x-ray properties of the Tx/Rx head coil were investigated. Even without energy extrapolation from the two dominant γ energies of 176Lu to 511 keV, the presented method for attenuation correction, based on the measurement of 176Lu background attenuation, shows slightly better performance than the coil attenuation correction currently used. The coil attenuation correction currently used is based on an external transmission scan with rotating 68Ge sources acquired on a Siemens ECAT HR + PET scanner. However, the main advantage of the presented approach is its straightforwardness and ready availability without the need for additional accessories.
NASA Astrophysics Data System (ADS)
Humer, K.; Raff, S.; Prokopec, R.; Weber, H. W.
2008-03-01
A glass fiber reinforced plastic laminate, which consists of half-overlapped wrapped Kapton/R-glass-fiber reinforcing tapes vacuum-pressure impregnated in a cyanate ester/epoxy blend, is proposed as the insulation system for the ITER Toroidal Field coils. In order to assess its mechanical performance under the actual operating conditions, cryogenic (77 K) tensile and interlaminar shear tests were done after irradiation to the ITER design fluence of 1×1022 m-2 (E>0.1 MeV). The data were then used for a Finite Element Method (FEM) stress analysis. We find that the mechanical strength and the fracture behavior as well as the stress distribution and the failure criteria are strongly influenced by the winding direction and the wrapping technique of the reinforcing tapes.
NASA Astrophysics Data System (ADS)
Pawlak, Urszula; Pawlak, Marcin
2017-10-01
The article presents the material type from which the conductors of the overhead power lines are produced influences on the size of the overhang and the tension. The aim of the calculations was to present the benefits of the mechanics of the cable resulting from the type of cable used. The analysis was performed for two types of cables: aluminium with steel core and aluminium with composite core, twice span power line section. 10 different conductor-to-strand coil, wind, icing, and temperature variations were included in the calculations. The string description was made by means of a chain curve, while the horizontal component H of the tension force was determined using the bisection method. The loads were collected in accordance with applicable Eurocode.
Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun
2012-01-01
Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Results Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Conclusion Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI. PMID:22476999
A study on geometry effect of transmission coil for micro size magnetic induction coil
NASA Astrophysics Data System (ADS)
Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun
2016-05-01
The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.
Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu
2014-10-01
In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.
A Mechanical Coil Insertion System for Endovascular Coil Embolization of Intracranial Aneurysms
Haraguchi, K.; Miyachi, S.; Matsubara, N.; Nagano, Y.; Yamada, H.; Marui, N.; Sano, A.; Fujimoto, H.; Izumi, T.; Yamanouchi, T.; Asai, T.; Wakabayashi, T.
2013-01-01
Summary Like other fields of medicine, robotics and mechanization might be introduced into endovascular coil embolization of intracranial aneurysms for effective treatment. We have already reported that coil insertion force could be smaller and more stable when the coil delivery wire is driven mechanically at a constant speed. Another background is the difficulty in synchronizing operators' minds and hands when two operators control the microcatheter and the coil respectively. We have therefore developed a mechanical coil insertion system enabling a single operator to insert coils at a fixed speed while controlling the microcatheter. Using our new system, the operator manipulated the microcatheter with both hands and drove the coil using foot switches simultaneously. A delivery wire force sensor previously reported was used concurrently, allowing the operator to detect excessive stress on the wire. In vitro coil embolization was performed using three methods: simple mechanical advance of the coil; simple mechanical advance of the coil with microcatheter control; and driving (forward and backward) of the coil using foot switches in addition to microcatheter control. The system worked without any problems, and did not interfere with any procedures. In experimental coil embolization, delivery wire control using the foot switches as well as microcatheter manipulation helped to achieve successful insertion of coils. This system could offer the possibility of developing safer and more efficient coil embolization. Although we aim at total mechanization and automation of procedures in the future, microcatheter manipulation and synchronized delivery wire control are still indispensable using this system. PMID:23693038
Dosimetry of typical transcranial magnetic stimulation devices
NASA Astrophysics Data System (ADS)
Lu, Mai; Ueno, Shoogo
2010-05-01
The therapeutic staff using transcranial magnetic stimulation (TMS) devices could be exposed to magnetic pulses. In this paper, dependence of induced currents in real human man model on different coil shapes, distance between the coil and man model as well as the rotation of the coil in space have been investigated by employing impedance method. It was found that the figure-of-eight coil has less leakage magnetic field and low current density induced in the body compared with the round coil. The TMS power supply cables play an important role in the induced current density in human body. The induced current density in TMS operator decreased as the coil rotates from parallel position to perpendicular position. Our present study shows that TMS operator should stand at least 110 cm apart from the coil.
Dynamic performance of high speed solenoid valve with parallel coils
NASA Astrophysics Data System (ADS)
Kong, Xiaowu; Li, Shizhen
2014-07-01
The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinke, Rainer
A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departsmore » from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.« less
Mechanical and electrical performance characterization of partial mock-up of the ITER PF6 coil tail
NASA Astrophysics Data System (ADS)
Zhang, Z.; Song, Y.; Wu, H.; Zhang, M.; Xie, Y.; Hu, B.; Liu, F.; Shen, G.; Wu, W.; Lu, K.; Wei, J.; Bilbao, M.; Peñate, J.; Readman, P.; Sborchia, C.; Valente, P.; Smith, K.
2017-12-01
International Thermonuclear Experimental Reactor (ITER) is a full superconducting coil tokamak. The tail is an important component of Poloidal Field (PF) coil, of which the main functions are to provide the electrical isolation and transfer the longitudinal load from the last turn to the last-but-one turn. The paper focuses on an optimized mechanical structure of PF6 coil tail, which is made up of two main parts. One was welded to the last turn and the other was welded to the last-but-one turn. Both of them were connected by the mechanical coupling. The electrical isolation between the two parts was maintained by a strap made of insulating composite. In addition, as the PF6 coil is operated under the cyclic electromagnetic load during the tokamak operation, the fatigue property of the tail should be assessed and qualified at low temperature. Moreover, taking into consideration the complexity of the insulation winding process which is performed in a confined space, the wrapping process of the insulation needs to be established. Meanwhile, the high voltage (HV) tests of the tail insulation, including the direct current (DC) and alternating current (AC) tests, need to be assessed before and after the fatigue test. In this paper, a fully bonded PF6 coil tail partial mock-up (not including the weld of the tail to the last conductor turn) was designed and manufactured by simulating the actual manufacturing processes. In addition, the fatigue tests on the sample were carried out at 77 K, and the results showed the sample had good and stable fatigue properties at cryogenic temperature. The HV tests before and after the fatigue test, also including the final 30 kV breakdown DC test after the fatigue test, were carried out. The test results satisfied the requirements of ITER and were discussed in depth. Finally, the sample was destructively inspected to validate the integrity of the insulation by mechanical cross sectioning, and no voids and cracks were observed. Therefore it can be verified from the test results that the designed PF6 coil tail has good comprehensive properties, which can be applied to the formal production of the PF6 coil.
Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook
2007-03-01
To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.
Triple Halo Coil: Development and Comparison with Other TMS Coils
NASA Astrophysics Data System (ADS)
Rastogi, Priyam; Hadimani, Ravi; Jiles, David
Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.
A spiral, bi-planar gradient coil design for open magnetic resonance imaging.
Zhang, Peng; Shi, Yikai; Wang, Wendong; Wang, Yaohui
2018-01-01
To design planar gradient coil for MRI applications without discretization of continuous current density and loop-loop connection errors. In the new design method, the coil current is represented using a spiral curve function described by just a few control parameters. Using a proper parametric equation set, an ensemble of spiral contours is reshaped to satisfy the coil design requirements, such as gradient linearity, inductance and shielding. In the given case study, by using the spiral coil design, the magnetic field errors in the imaging area were reduced from 5.19% (non-spiral design) to 4.47% (spiral design) for the transverse gradient coils, and for the longitudinal gradient coil design, the magnetic field errors were reduced to 5.02% (spiral design). The numerical evaluation shows that when compared with conventional wire loop, the inductance and resistance of spiral coil was reduced by 11.55% and 8.12% for x gradient coil, respectively. A novel spiral gradient coil design for biplanar MRI systems, the new design offers better magnetic field gradients, smooth contours than the conventional connected counterpart, which improves manufacturability.
NASA Astrophysics Data System (ADS)
Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng
2018-05-01
The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldi, R.W.; Tatro, R.E.; Scanlan, R.M.
1984-03-01
Two 12-tesla superconducting insert coils are being designed by General Dynamics Convair Division for the axicell regions of MFTF-B for Lawrence Livermore National Laboratory. A major challenge of this project is to ensure that combined fabrication and operational strains induced in the conductor are within stringent limitations of the relatively brittle Nb/sub 3/Sn superconductor filaments. These coils are located in the axicell region of MFTF-B. They have a clear-bore diameter of 36.195cm (14.25 inches) and consist of 27 double pancakes (i.e., 54 pancakes per coil) would on an electrically insulated 304LN stainless steel/bobbin helium vessel. Each pancake has 57 turnsmore » separated by G-10CR insulation. The complete winding bundle has 4.6 million ampere-turns and uniform current density of 2007 A/cm/sup 2/. In conjunction with the other magnets in the system, they produce a 12-tesla central field and a 12.52-tesla peak field. A multifilamentary Nb/sub 3/Sn conductor was selected to meet these requirements. The conductor consists of a monolithic insert soldered into a copper stabilizer. Sufficient cross-sectional area and work-hardening of the copper stabilizer has been provided for the conductor to self-react the electromagnetic Lorentz force induced hoop stresses with normal operational tensile strains less than 0.07 percent.« less
Ali, Mohamed Sultan Mohamed; AbuZaiter, Alaa; Schlosser, Colin; Bycraft, Brad; Takahata, Kenichi
2014-01-01
This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF). The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA). The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit's resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/μm or more for a full out-of-plane travel range of 466 μm and an average actuation velocity of up to 155 μm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device. PMID:25014100
Three-phase receiving coil of wireless power transmission system for gastrointestinal robot
NASA Astrophysics Data System (ADS)
Jia, Z. W.; Jiang, T.; Liu, Y.
2017-11-01
Power shortage is the bottleneck for the wide application of gastrointestinal (GI) robot. Owing to the limited volume and free change of orientation of the receiving set in GI trace, the optimal of receiving set is the key point to promote the transmission efficiency of wireless power transmission system. A new type of receiving set, similar to the winding of three-phase asynchronous motor, is presented and compared with the original three-dimensional orthogonal coil. Considering the given volume and the space utilization ratio, the three-phase and the three-orthogonal ones are the parameters which are optimized and compared. Both the transmission efficiency and stability are analyzed and verified by in vitro experiments. Animal experiments show that the new one could provide at least 420 mW power in volume of Φ11 × 13mm with a uniformity of 78.3% for the GI robot.
NASA Astrophysics Data System (ADS)
Hashizume, H.; Ito, S.; Yanagi, N.; Tamura, H.; Sagara, A.
2018-02-01
Segment fabrication is now a candidate for the design of superconducting helical magnets in the helical fusion reactor FFHR-d1, which adopts the joint winding of high-temperature superconducting (HTS) helical coils as a primary option and the ‘remountable’ HTS helical coil as an advanced option. This paper reports on recent progress in two key technologies: the mechanical joints (remountable joints) of the HTS conductors and the metal porous media inserted into the cooling channel for segment fabrication. Through our research activities it has been revealed that heat treatment during fabrication of the joint can reduce joint resistance and its dispersion, which can shorten the fabrication process and be applied to bent conductor joints. Also, heat transfer correlations of the cooling channel were established to evaluate heat transfer performance with various cryogenic coolants based on the correlations to analyze the thermal stability of the joint.
Design optimization of superconducting coils based on asymmetrical characteristics of REBCO tapes
NASA Astrophysics Data System (ADS)
Hong, Zhiyong; Li, Wenrong; Chen, Yanjun; Gömöry, Fedor; Frolek, Lubomír; Zhang, Min; Sheng, Jie
2018-07-01
Angle dependence Ic(B,θ) of superconducting tape is a crucial parameter to calculate the influence of magnetic field during the design of superconducting applications,. This paper focuses on the asymmetrical characteristics found in REBCO tapes and further applications based on this phenomenon. This paper starts with angle dependence measurements of different HTS tapes, asymmetrical characteristics are found in some of the testing samples. On basis of this property, optimization of superconducting coils in superconducting motor, transformer and insert magnet is discussed by simulation. Simplified experiments which represent the structure of insert magnet were carried out to prove the validity of numerical studies. Conclusions obtained in this paper show that the asymmetrical property of superconducting tape is quite important in design of superconducting applications, and optimized winding technique based on this property can be used to improve the performance of superconducting devices.
Electromagnetic energy harvesting from a dual-mass pendulum oscillator
NASA Astrophysics Data System (ADS)
Wang, Hongyan; Tang, Jiong
2016-04-01
This paper presents the analysis of a type of vibration energy harvester composed of an electromagnetic pendulum oscillator combined to an elastic main structure. In this study, the elastic main structure connected to the base is considered as a single degree-of-freedom (DOF) spring-mass-damper subsystem. The electromagnetic pendulum oscillator is considered as a dual-mass two-frequency subsystem, which is composed of a hollow bar with a tip winded coil and a magnetic mass with a spring located in the hollow bar. As the pendulum swings, the magnetic mass can move along the axial direction of the bar. Thus, the relative motion between the magnet and the coil induces a wire current. A mathematical model of the coupled system is established. The system dynamics a 1:2:1 internal resonance. Parametric analysis is carried out to demonstrate the effect of the excitation acceleration, excitation frequency, load resistance, and frequency tuning parameters on system performance.
Repulsive force support system feasibility study
NASA Technical Reports Server (NTRS)
Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.
1987-01-01
A new concept in magnetic levitation and control is introduced for levitation above a plane. A set of five vertical solenoid magnets mounted flush below the plane supports and controls the model in five degrees of freedom. The compact system of levitation coils is contained in a space 2.4 m (96 in) diameter by 1 m (40 in) deep with the top of the levitation system 0.9 m (36 in) below the center line of the suspended model. The levitated model has a permanent magnet core held in position by the five parallel superconductive solenoids symmetrically located in a circle. The control and positioning system continuously corrects for model position in five dimensions using computer current pulses superimposed on the levitation coil base currents. The conceptual designs include: superconductive and Nd-Fe-B permanent magnet model cores and levitation solenoids of either superconductive, cryoresistive, or room temperature windings.
Spherical, rolling magnet generators for passive energy harvesting from human motion
NASA Astrophysics Data System (ADS)
Bowers, Benjamin J.; Arnold, David P.
2009-09-01
In this work, non-resonant, vibrational energy harvester architectures intended for human-motion energy scavenging are researched. The basic design employs a spherical, unidirectionally magnetized permanent magnet (NdFeB) ball that is allowed to move arbitrarily in a spherical cavity wrapped with copper coil windings. As the ball rotates and translates within the cage, the time-varying magnetic flux induces a voltage in the coil according to Faraday's Law. Devices ranging from 1.5 cm3 to 4 cm3 in size were tested under human activity scenarios—held in the user's hand or placed in the user's pocket while walking (4 km h-1) and running (14.5 km h-1). These harvesters have demonstrated rms voltages ranging from ~80 mV to 700 mV and time-averaged power densities up to 0.5 mW cm-3.
Design, Fabrication, and Test of a Superconducting Dipole Magnet Based on Tilted Solenoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caspi, S.; Dietderich, D. R.; Ferracin, P.
2007-06-01
It can be shown that, by superposing two solenoid-like thin windings that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is 'cos-theta' like and the resulting magnetic field in the bore is a pure dipole. As a proof of principle, such a magnet was designed, built and tested as part of a summer undergraduate intern project. The measured field in the 25mm bore, 4 single strand layers using NbTi superconductor, exceeded 1 T. The simplicity of this high field quality design, void of typical wedges end-spacers and coil assembly, is especiallymore » suitable for insert-coils using High Temperature Superconducting wire as well as for low cost superconducting accelerator magnets for High Energy Physics. Details of the design, construction and test are reported.« less
NASA Astrophysics Data System (ADS)
Hayashi, K.; Matsui, H.; Kawano, H.; Yamamoto, T.; Kokubun, S.
1994-12-01
Whistler mode waves observed in the upstream region very close to the bow-shock is focused from the initial survey for magnetic fed data in a frequency range between 1Hz and 50Hz observed by the search coil magnetometer on board the Geotail satellite. Based on the three component wave form data polarization and wave-normal characteristics of foreshock waves is first shown as dynamic spectra for the whole Fourier components of the 50 Hz band width. Intense whistler mode waves generated in the foot region of the bow-shock are found strongly controlled in the observed polarization dependent on the angle between directions of the wave propagation and the solar wind flow but not very dependent on frequency. Our simple scheme to derive the ware characteristics which is effective to survey large amount of data continuously growing is also introduced.
Magic-Angle-Spinning NMR Magnet Development: Field Analysis and Prototypes
Voccio, John; Hahn, Seungyong; Park, Dong Keun; Ling, Jiayin; Kim, Youngjae; Bascuñán, Juan; Iwasa, Yukikazu
2013-01-01
We are currently working on a program to complete a 1.5 T/75 mm RT bore magic-angle-spinning nuclear magnetic resonance magnet. The magic-angle-spinning magnet comprises a z-axis 0.866-T solenoid and an x-axis 1.225-T dipole, each to be wound with NbTi wire and operated at 4.2 K in persistent mode. A combination of the fields creates a 1.5-T field pointed at 54.74 degrees (magic angle) from the rotation (z) axis. In the first year of this 3-year program, we have completed magnetic analysis and design of both coils. Also, using a winding machine of our own design and fabrication, we have wound several prototype dipole coils with NbTi wire. As part of this development, we have repeatedly made successful persistent NbTi-NbTi joints with this multifilamentary NbTi wire. PMID:24058275
Eight-channel transmit/receive body MRI coil at 3T.
Vernickel, P; Röschmann, P; Findeklee, C; Lüdeke, K-M; Leussler, Ch; Overweg, J; Katscher, U; Grässlin, I; Schünemann, K
2007-08-01
Multichannel transmit magnetic resonance imaging (MR) systems have the potential to compensate for signal-intensity variations occurring at higher field strengths due to wave propagation effects in tissue. Methods such as RF shimming and local excitation in combination with parallel transmission can be applied to compensate for these effects. Moreover, parallel transmission can be applied to ease the excitation of arbitrarily shaped magnetization patterns. The implementation of these methods adds new requirements in terms of MRI hardware. This article describes the design of a decoupled eight-element transmit/receive body coil for 3T. The setup of the coil is explained, starting with standard single-channel resonators. Special focus is placed on the decoupling of the elements to obtain independent RF resonators. After a brief discussion of the underlying theory, the properties and limitations of the coil are outlined. Finally, the functionality and capabilities of the coil are demonstrated using RF measurements as well as MRI sequences.
Analysis and decoupling control of a permanent magnet spherical actuator.
Zhang, Liang; Chen, Weihai; Liu, Jingmeng; Wu, Xingming
2013-12-01
This paper presents the analysis and decoupling control of a spherical actuator, which is capable of performing three degree-of-freedom motion in one joint. The proposed actuator consists of a rotor with multiple PM (Permanent Magnet) poles in a circle and a stator with circumferential coils in three layers. Based on this actuator design, a decoupling control approach is developed. Unlike existing control methods that each coil is responsible for both the spinning and tilting motion, the proposed control strategy specifies the function of each coil. Specifically, the spinning motion is governed by the middle layer coils with a step control approach; while the tilting motion is regulated by upper and lower coils with a computed torque control method. Experiments have been conducted on the prototype to verify the validity of the design procedure, and the experimental results demonstrate the effectiveness of the analysis and control strategy.
Method Apparatus And System For Detecting Seismic Waves In A Borehole
West, Phillip B.; Sumstine, Roger L.
2006-03-14
A method, apparatus and system for detecting seismic waves. A sensing apparatus is deployed within a bore hole and may include a source magnet for inducing a magnetic field within a casing of the borehole. An electrical coil is disposed within the magnetic field to sense a change in the magnetic field due to a displacement of the casing. The electrical coil is configured to remain substantially stationary relative to the well bore and its casing along a specified axis such that displacement of the casing induces a change within the magnetic field which may then be sensed by the electrical coil. Additional electrical coils may be similarly utilized to detect changes in the same or other associated magnetic fields along other specified axes. The additional sensor coils may be oriented substantially orthogonally relative to one another so as to detect seismic waves along multiple orthogonal axes in three dimensional space.
A curve fitting method for extrinsic camera calibration from a single image of a cylindrical object
NASA Astrophysics Data System (ADS)
Winkler, A. W.; Zagar, B. G.
2013-08-01
An important step in the process of optical steel coil quality assurance is to measure the proportions of width and radius of steel coils as well as the relative position and orientation of the camera. This work attempts to estimate these extrinsic parameters from single images by using the cylindrical coil itself as the calibration target. Therefore, an adaptive least-squares algorithm is applied to fit parametrized curves to the detected true coil outline in the acquisition. The employed model allows for strictly separating the intrinsic and the extrinsic parameters. Thus, the intrinsic camera parameters can be calibrated beforehand using available calibration software. Furthermore, a way to segment the true coil outline in the acquired images is motivated. The proposed optimization method yields highly accurate results and can be generalized even to measure other solids which cannot be characterized by the identification of simple geometric primitives.
Waldman, Vincent M; Stanage, Tyler H; Mims, Alexandra; Norden, Ian S; Oakley, Martha G
2015-06-01
The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N- and C- terminal regions pack against one another to form a globular ATPase domain. This "head" domain is connected to a central, globular, "hinge" or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50-nm coiled-coil domain of MukB, the divergent SMC protein found in γ-proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled-coil domain. We find that, in contrast to the relatively complicated coiled-coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled-coil interruptions. Near the middle of the domain is a break in coiled-coil structure in which there are three more residues on the C-terminal strand than on the N-terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled-coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled-coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans. © 2015 Wiley Periodicals, Inc.
Man-portable Vector Time Domain EMI Sensor and Discrimination Processing
2012-04-16
points of each winding are coincident. Each receiver coil is wound helically on a set of 10 grooves etched on the surface of the cube; 36- gauge wire...subset of the data, and inject various levels of noise into the position of the MPV in order to gauge the robustness of the discrimination results...as possible. The quantity φ also provides a metric to gauge goodness of fit, being essentially an average percent error: Benjamin Barrowes, Kevin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, R.; Ambrosio, G.; Barzi, E.
Feasibility study of 15-Tesla dipole magnets wound with a new copper stabilized RHQT Nb{sub 3}Al Rutherford cable is presented. A new practical long copper stabilized RHQT Nb{sub 3}Al strand is presented, which is being developed and manufactured at the National Institute of Material Science (NIMS) in Japan. It has achieved a non-copper J{sub c} of 1000A/mm{sup 2} at 15 Tesla at 4.2K, with a copper over non-copper ratio of 1.04, and a filament size less than 50 microns. For this design study a short Rutherford cable with 28 Nb{sub 3}Al strands of 1 mm diameter will be fabricated late thismore » year. The cosine theta magnet cross section is designed using ROXIE, and the stress and strain in the coil is estimated and studied with the characteristics of the Nb{sub 3}Al strand. The advantages and disadvantages of the Nb{sub 3}Al cable are compared with the prevailing Nb{sub 3}Sn cable from the point of view of stress-strain, J{sub c}, and possible degradation of stabilizer due to cabling. The Nb{sub 3}Al coil of the magnet, which will be made by wind and react method, has to be heat treated at 800 degree C for 10 hours. As preparation for the 15 Tesla magnet, a series of tests on strand and Rutherford cables are considered.« less
NASA Astrophysics Data System (ADS)
Hekmati, Arsalan; Aliahmadi, Mehdi
2016-12-01
High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.
Localizing on-scalp MEG sensors using an array of magnetic dipole coils.
Pfeiffer, Christoph; Andersen, Lau M; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F; Oostenveld, Robert
2018-01-01
Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject's head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject's head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method.
Localizing on-scalp MEG sensors using an array of magnetic dipole coils
Andersen, Lau M.; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F.; Oostenveld, Robert
2018-01-01
Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject’s head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject’s head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method. PMID:29746486
NASA Astrophysics Data System (ADS)
Ghosh, Pratik
1992-01-01
The investigations focussed on in vivo NMR imaging studies of magnetic particles with and within neural cells. NMR imaging methods, both Fourier transform and projection reconstruction, were implemented and new protocols were developed to perform "Neuronal Tracing with Magnetic Labels" on small animal brains. Having performed the preliminary experiments with neuronal tracing, new optimized coils and experimental set-up were devised. A novel gradient coil technology along with new rf-coils were implemented, and optimized for future use with small animals in them. A new magnetic labelling procedure was developed that allowed labelling of billions of cells with ultra -small magnetite particles in a short time. The relationships among the viability of such cells, the amount of label and the contrast in the images were studied as quantitatively as possible. Intracerebral grafting of magnetite labelled fetal rat brain cells made it possible for the first time to attempt monitoring in vivo the survival, differentiation, and possible migration of both host and grafted cells in the host rat brain. This constituted the early steps toward future experiments that may lead to the monitoring of human brain grafts of fetal brain cells. Preliminary experiments with direct injection of horse radish peroxidase-conjugated magnetite particles into neurons, followed by NMR imaging, revealed a possible non-invasive alternative, allowing serial study of the dynamic transport pattern of tracers in single living animals. New gradient coils were built by using parallel solid-conductor ribbon cables that could be wrapped easily and quickly. Rapid rise times provided by these coils allowed implementation of fast imaging methods. Optimized rf-coil circuit development made it possible to understand better the sample-coil properties and the associated trade -offs in cases of small but conducting samples.
Magnetic navigation of an untethered micro device using four stationary coils.
Ha, Yong H; Choi, Kyung M; Han, Byung H; Cho, Min H; Lee, Soo Y
2009-01-01
We introduce a magnetic navigation of a small magnet using four stationary coils. We used a Maxwell gradient coil to get magnetic propulsion force and three Helmholtz coils to control the moving direction of the magnet in the magnetic navigation. Using a three-channel coil driver with output capacity of 320A, we performed magnetic navigation of a small NdFeB magnet with the size of 10 mm x 10 mm x 12 mm on a horizontal plane. When navigated with a slow speed of about 1 mm/s, the magnet kept track of any arbitrary navigational path. We expect the proposed magnetic navigation method can be easily incorporated into the system for human applications since it does not use any moving coils.
NASA Astrophysics Data System (ADS)
Chen, Xiaowei; Wang, Wenping; Wan, Min
2013-12-01
It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.
Physical–chemical determinants of coil conformations in globular proteins
Perskie, Lauren L; Rose, George D
2010-01-01
We present a method with the potential to generate a library of coil segments from first principles. Proteins are built from α-helices and/or β-strands interconnected by these coil segments. Here, we investigate the conformational determinants of short coil segments, with particular emphasis on chain turns. Toward this goal, we extracted a comprehensive set of two-, three-, and four-residue turns from X-ray–elucidated proteins and classified them by conformation. A remarkably small number of unique conformers account for most of this experimentally determined set, whereas remaining members span a large number of rare conformers, many occurring only once in the entire protein database. Factors determining conformation were identified via Metropolis Monte Carlo simulations devised to test the effectiveness of various energy terms. Simulated structures were validated by comparison to experimental counterparts. After filtering rare conformers, we found that 98% of the remaining experimentally determined turn population could be reproduced by applying a hydrogen bond energy term to an exhaustively generated ensemble of clash-free conformers in which no backbone polar group lacks a hydrogen-bond partner. Further, at least 90% of longer coil segments, ranging from 5- to 20 residues, were found to be structural composites of these shorter primitives. These results are pertinent to protein structure prediction, where approaches can be divided into either empirical or ab initio methods. Empirical methods use database-derived information; ab initio methods rely on physical–chemical principles exclusively. Replacing the database-derived coil library with one generated from first principles would transform any empirically based method into its corresponding ab initio homologue. PMID:20512968
Method to improve superconductor cable
Borden, A.R.
1984-03-08
A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.
Larzábal, Mariano; Mercado, Elsa C.; Vilte, Daniel A.; Salazar-González, Hector; Cataldi, Angel; Navarro-Garcia, Fernando
2010-01-01
Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry. Methods/Principal Findings We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments. Conclusions Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis. PMID:20140230
Topologies for three-phase wound-field salient rotor switched-flux machines for HEV applications
NASA Astrophysics Data System (ADS)
Khan, Faisal; Sulaiman, Erwan; Ahmad, Md Zarafi; Husin, Zhafir Aizat; Mazlan, Mohamed Mubin Aizat
2015-05-01
Wound-field switched-flux machines (WFSFM) have an intrinsic simplicity and high speed that make them well suited to many hybrid electric vehicle (HEV) applications. However, overlap armature and field windings raised the copper losses in these machines. Furthermore, in previous design segmented-rotor is used which made the rotor less robust. To overcome these problems, this paper presents novel topologies for three-phase wound-field switched-flux machines. Both armature and field winding are located on the stator and rotor is composed of only stack of iron. Non-overlap armature and field windings and toothed-rotor are the clear advantages of these topologies as the copper losses gets reduce and rotor becomes more robust. Design feasibility and performance analysis of 12 slots and different rotor pole numbers are examined on the basis of coil arrangement test, peak armature flux linkage, back emf, cogging torque and average torque by using Finite Element Analysis(FEA).
On the analysis of using 3-coil wireless power transfer system in retinal prosthesis.
Bai, Shun; Skafidas, Stan
2014-01-01
Designing a wireless power transmission system(WPTS) using inductive coupling has been investigated extensively in the last decade. Depending on the different configurations of the coupling system, there have been various designing methods to optimise the power transmission efficiency based on the tuning circuitry, quality factor optimisation and geometrical configuration. Recently, a 3-coil WPTS was introduced in retinal prosthesis to overcome the low power transferring efficiency due to low coupling coefficient. Here we present a method to analyse this 3-coil WPTS using the S-parameters to directly obtain maximum achievable power transferring efficiency. Through electromagnetic simulation, we brought a question on the condition of improvement using 3-coil WPTS in powering retinal prosthesis.
Magnetic particle testing of turbine blades mounted on the turbine rotor shaft
NASA Astrophysics Data System (ADS)
Imbert, Clement; Rampersad, Krishna
1992-07-01
An outline is presented of the general technique of magnetic particle inspection (MPI) of turbine blades mounted on the turbine rotor shaft with specific reference to the placement of the magnetizing coils. In particular, this study reports on the use of MPI in the examination of martensitic stainless steel turbine blades in power plants in Trinidad and Tobago in order to establish procedures for the detection of discontinuities. The techniques described are applicable to ferromagnetic turbine blades in general. The two practical techniques mentioned are the method of placing a preformed coil over a number of blades in one row and the method of wrapping the coil around the rotor shaft across an entire row of blades. Of the two methods, the former is preferred to the latter one, because there is greater uniformity of magnetic flux induced and lower current required to induce adequate flux density with the preformed coil. However, both methods provide satisfactory magnetic flux, and either can be used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeev, A. V.; Maltseva, D. V.; Ivanov, V. A., E-mail: ivanov@polly.phys.msu.ru
We study force-extension curves of a single semiflexible chain consisting of several rigid rods connected by flexible spacers. The atomic force microscopy and laser optical or magnetic tweezers apparatus stretching these rod-coil macromolecules are discussed. In addition, the stretching by external isotropic force is analyzed. The main attention is focused on computer simulation and analytical results. We demonstrate that the force-extension curves for rod-coil chains composed of two or three rods of equal length differ not only quantitatively but also qualitatively in different probe methods. These curves have an anomalous shape for a chain of two rods. End-to-end distributions ofmore » rod-coil chains are calculated by Monte Carlo method and compared with analytical equations. The influence of the spacer’s length on the force-extension curves in different probe methods is analyzed. The results can be useful for interpreting experiments on the stretching of rod-coil block-copolymers.« less
NASA Astrophysics Data System (ADS)
Kilic, V. T.; Unal, E.; Demir, H. V.
2017-07-01
We propose and demonstrate a highly effective method of enhancing coupling and power transfer efficiency in inductive heating systems composed of planar coils. The proposed method is based on locating ring-shaped ferrites in the inner side of the coils in the same plane. Measurement results of simple inductive heating systems constructed with either a single or a pair of conventional circular coils show that, with the in-plane inner ferrites, the total dissipated power of the system is increased by over 65%. Also, with three-dimensional full electromagnetic solutions, it is found that power transfer efficiency of the system is increased up to 92% with the inner ferrite placement. The proposed method is promising to be used for efficiency enhancement in inductive heating applications, especially in all-surface induction hobs.
MLAA-based RF surface coil attenuation estimation in hybrid PET/MR imaging
NASA Astrophysics Data System (ADS)
Heußer, Thorsten; Rank, Christopher M.; Freitag, Martin T.; Kachelrieß, Marc
2017-03-01
Attenuation correction (AC) for both patient and hardware attenuation of the 511 keV annihilation photons is required for accurate PET quantification. In hybrid PET/MR imaging, AC for stationary hardware components such as patient table and MR head coil is performed using CT{derived attenuation templates. AC for flexible hardware components such as MR radiofrequency (RF) surface coils is more challenging. Registration{based approaches, aligning scaled CT{derived attenuation templates with the current patient position, have been proposed but are not used in clinical routine. Ignoring RF coil attenuation has been shown to result in regional activity underestimation values of up to 18 %. We propose to employ a modified version of the maximum{ likelihood reconstruction of attenuation and activity (MLAA) algorithm to obtain an estimate of the RF coil attenuation. Starting with an initial attenuation map not including the RF coil, the attenuation update of MLAA is applied outside the body outline only, allowing to estimate RF coil attenuation without changing the patient attenuation map. Hence, the proposed method is referred to as external MLAA (xMLAA). In this work, xMLAA for RF surface coil attenuation estimation is investigated using phantom and patient data acquired with a Siemens Biograph mMR. For the phantom data, average activity errors compared to the ground truth was reduced from -8:1% to +0:8% when using the proposed method. Patient data revealed an average activity underestimation of -6:1% for the abdominal region and -5:3% for the thoracic region when ignoring RF coil attenuation.
Method of making radio frequency ion source antenna
Ehlers, Kenneth W.; Leung, Ka-Ngo
1988-01-01
In the method, the radio frequency (RF) antenna is made by providing a clean coil made of copper tubing or other metal conductor, which is coated with a tacky organic binder, and then with a powdered glass frit, as by sprinkling the frit uniformly over the binder. The coil is then heated internally in an inert gas atmosphere, preferably by passing an electrical heating current along the coil. Initially, the coil is internally heated to about 200.degree. C. to boil off the water from the binder, and then to about 750.degree. C.-850.degree. C. to melt the glass frit, while also burning off the organic binder. The melted frit forms a molten glass coating on the metal coil, which is then cooled to solidify the glass, so that the metal coil is covered with a thin continuous homogeneous impervious glass coating of substantially uniform thickness. The glass coating affords complete electrical insulation and complete dielectric protection for the metal coil of the RF antenna, to withstand voltage breakdown and to prevent sputtering, while also doubling the plasma generating efficiency of the RF antenna, when energized with RF power in the vacuum chamber of an ion source for a particle accelerator or the like. The glass frit preferably contains apprxoimately 45% lead oxide.
A 3T Sodium and Proton Composite Array Breast Coil
Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.
2013-01-01
Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740
Method of making radio frequency ion source antenna and such antenna
Ehlers, K.W.; Leung, K.N.
1985-05-22
In the method, the radio frequency (rf) antenna is made by providing a clean coil made of copper tubing or other metal conductor, which is coated with a tacky organic binder, and then with a powdered glass frit, as by sprinkling the frit uniformly over the binder. The coil is then heated internally in an inert gas atmosphere, preferably by passing an electrical heating current along the coil. Initially, the coil is internally heated to about 200/sup 0/C to boil off the water from the binder, and then to about 750 to 850/sup 0/C to melt the glass frit, while also burning off the organic binder. The melted frit forms a molten glass coating on the metal coil, which is then cooled to solidify the glass, so that the metal coil is covered with a thin continuous homogeneous impervious glass coating of substantially uniform thickness. The glass coating affords complete electrical insulation and complete dielectric protection for the metal coil of the rf antenna, to withstand voltage breakdown and to prevent sputtering, while also doubling the plasma generating efficiency of the rf antenna, when energized with RF power in the vacuum chamber of an ion source for a particle accelerator or the like. The glass frit preferably contains approximately 45% lead oxide.
AC loss modelling and experiment of two types of low-inductance solenoidal coils
NASA Astrophysics Data System (ADS)
Liang, Fei; Yuan, Weijia; Zhang, Min; Zhang, Zhenyu; Li, Jianwei; Venuturumilli, Sriharsha; Patel, Jay
2016-11-01
Low-inductance solenoidal coils, which usually refer to the nonintersecting type and the braid type, have already been employed to build superconducting fault current limiters because of their fast recovery and low inductance characteristics. However, despite their usage there is still no systematical simulation work concerning the AC loss characteristics of the coils built with 2G high temperature superconducting tapes perhaps because of their complicated structure. In this paper, a new method is proposed to simulate both types of coils with 2D axisymmetric models solved by H formulation. Following the simulation work, AC losses of both types of low inductance solenoidal coils are compared numerically and experimentally, which verify that the model works well in simulating non-inductive coils. Finally, simulation works show that pitch has significant impact to AC loss of both types of coils and the inter-layer separation has different impact to the AC loss of braid type of coil in case of different applied currents. The model provides an effective tool for the design optimisation of SFCLs built with non-inductive solenoidal coils.
Electric generator using a triangular diamagnetic levitating rotor system.
Ho, Joe Nhut; Wang, Wei-Chih
2009-02-01
This paper describes a feasibility study of creating a small low friction and low maintenance generator using a diamagnetically stabilized levitating rotor. The planar rotor described in this paper uses a triangular configuration of magnets that generates emf by passing over coils placed below the rotor. Equations were developed to predict the generated emf from coils with two different coil geometries. Additionally, this paper provides a method for estimating optimal coil size and position for the planar rotor presented for both segmental arc and circular coils to obtain maximum power output. Experiments demonstrated that the emf generated in the coils matches well with the predicted wave forms for each case, and the optimization theory gives good prediction to outcome of induced waveforms. For the segmental arc coil design, the induced emf was 1.7 mV at a radial frequency of 21.8 rad/s. For the circular coil design, the emf was 1.25 mV at a radial frequency of 28.1 rad/s.
Construction and Operation of an Internal Coil Device, RT-1, with a High-Temperature Superconductor
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi; Yoshida, Zensho; Morikawa, Junji; Saito, Haruhiko; Watanabe, Sho; Yano, Yoshihisa; Mizumaki, Shoichi; Tosaka, Taizo
An internal coil device called Ring Trap-1 (RT-1) has been constructed to explore an innovative concept for a high-beta plasma based on a new relaxation theory. A high-temperature superconductor (HTS) Bi-2223 tape is employed for the internal coil of RT-1. The coil is cooled to 20 K with helium gas supplied by G-M refrigerators, and charged to a magnetomotive force of 250 kA using an external power supply. For these cooling and charging methods, we have developed several innovative techniques such as a demountable transfer tube system, persistent current switch, detachable electrode, and others. In addition, we have paid much attention to the deterioration of the HTS tape during the fabrication of the internal coil. As a result, we have demonstrated that the decay of the persistent current of the internal coil is ˜1% during 8 h. The internal coil is lifted with a levitation coil located at the upper region of the vacuum vessel. The coil position monitored with laser sensors is feedback controlled through the regulation of the levitation coil current. Stable levitation for a few hours has been demonstrated for various plasma experiments.
Quench simulation studies of the TAC Jelly Roll superferric dipole corrector elements for the SSC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, G.
Using the computer program SSC-DTAC-T, which is a modification of the quench computer program SSC-RR, to model Jelly Roll coils, the quench behavior of the dipole corrector element (TAC design with Jelly roll winding) is studied. The simulations are made as a function of the length of the magnet, the copper to superconducting ratio, and the thickness of insulation surrounding the wires. The magnet is quite well self-protected under all of these considerations. In addition, this implies that the other corrector multipoles (quadrupole, sextupole, octupole, etc.) which use the same conductor winding technique are self-protected. A passive protection system ismore » likely to work for these elements. 6 refs., 2 figs., 1 tab.« less
Observation of Turbulent Intermittency Scaling with Magnetic Helicity in an MHD Plasma Wind Tunnel
NASA Astrophysics Data System (ADS)
Schaffner, D. A.; Wan, A.; Brown, M. R.
2014-04-01
The intermittency in turbulent magnetic field fluctuations has been observed to scale with the amount of magnetic helicity injected into a laboratory plasma. An unstable spheromak injected into the MHD wind tunnel of the Swarthmore Spheromak Experiment displays turbulent magnetic and plasma fluctuations as it relaxes into a Taylor state. The level of intermittency of this turbulence is determined by finding the flatness of the probability distribution function of increments for magnetic pickup coil fluctuations B˙(t). The intermittency increases with the injected helicity, but spectral indices are unaffected by this variation. While evidence is provided which supports the hypothesis that current sheets and reconnection sites are related to the generation of this intermittent signal, the true nature of the observed intermittency remains unknown.
Hessian matrix approach for determining error field sensitivity to coil deviations
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.; Song, Yuntao; Wan, Yuanxi
2018-05-01
The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code (Zhu et al 2018 Nucl. Fusion 58 016008) is utilized to provide fast and accurate calculations of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.
The numeric calculation of eddy current distributions in transcranial magnetic stimulation.
Tsuyama, Seichi; Hyodo, Akira; Sekino, Masaki; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji
2008-01-01
Transcranial magnetic stimulation (TMS) is a method to stimulate neurons in the brain. It is necessary to obtain eddy current distributions and determine parameters such as position, radius and bend-angle of the coil to stimulate target area exactly. In this study, we performed FEM-based numerical simulations of eddy current induced by TMS using three-dimentional human head model with inhomogeneous conductivity. We used double-cone coil and changed the coil radius and bend-angle of coil. The result of computer simulation showed that as coil radius increases, the eddy current became stronger everywhere. And coil with bend-angle of 22.5 degrees induced stronger eddy current than the coil with bendangle of 0 degrees. Meanwhile, when the bend-angle was 45 degrees, eddy current became weaker than these two cases. This simulation allowed us to determine appropriate parameter easier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paprottka, P. M., E-mail: philipp.paprottka@med.lmu.de, E-mail: philipp.paprottka@med.uni-muenchen.de; Paprottka, K. J., E-mail: karolin.paprottka@med.lmu.de; Walter, A., E-mail: alexandra.Walter@campus.lmu.de
2015-08-15
PurposeTo evaluate the safety of radioembolization (RE) with {sup 90}Yttrium ({sup 90}Y) resin microspheres depending on coiling or no-coiling of aberrant/high-risk vessels.Materials and MethodsEarly and late toxicity after 566 RE procedures were analyzed retrospectively in accordance with the National Cancer Institute’s Common Terminology Criteria for Adverse Events (CTCAE v3.0). For optimal safety, aberrant vessels were either coil embolized (n = 240/566, coiling group) or a more peripheral position of the catheter tip was chosen to treat right or left liver lobes (n = 326/566, no-coiling group).ResultsClinically relevant late toxicities (≥Grade 3) were observed in 1 % of our overall cohort. The no-coiling group had significantlymore » less “any” (P = 0.0001) or “clinically relevant” (P = 0.0003) early toxicity. There was no significant difference (P > 0.05) in delayed toxicity in the coiling versus the no-coiling group. No RE-induced liver disease was noted after all 566 procedures.ConclusionRE with {sup 90}Y resin microspheres is a safe and effective treatment option. Performing RE without coil embolization of aberrant vessels prior to treatment could be an alternative for experienced centers.« less
System and method for cooling a super-conducting device
Bray, James William [Niskayuna, NY; Steinbach, Albert Eugene [Schenectady, NY; Dawson, Richard Nils [Voorheesville, NY; Laskaris, Evangelos Trifon [Schenectady, NY; Huang, Xianrul [Clifton Park, NY
2008-01-08
A system and method for cooling a superconductive rotor coil. The system comprises a rotatable shaft coupled to the superconductive rotor coil. The rotatable shaft may comprise an axial passageway extending through the rotatable shaft and a first passageway extending through a wall of the rotatable shaft to the axial passageway. The axial passageway and the first passageway are operable to convey a cryogenic fluid to the superconductive rotor coil through the wall of the rotatable shaft. A cryogenic transfer coupling may be provided to supply cryogenic fluid to the first passageway.
Stellarator Coil Design and Plasma Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long-Poe Ku and Allen H. Boozer
2010-11-03
The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are givenmore » that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.« less
Synthetic signal injection using inductive coupling
Marro, Kenneth I.; Lee, Donghoon; Shankland, Eric G.; Mathis, Clinton M.; Hayes, Cecil E.; Amara, Catherine E.; Kushmerick, Martin J.
2009-01-01
Conversion of MR signals into units of metabolite concentration requires a very high level of diligence to account for the numerous parameters and transformations that affect the proportionality between the quantity of excited nuclei in the acquisition volume and the integrated area of the corresponding peak in the spectrum. We describe a method that eases this burden with respect to the transformations that occur during and following data acquisition. The conceptual approach is similar to the ERETIC method, which uses a pre-calibrated, artificial reference signal as a calibration factor to accomplish the conversion. The distinguishing feature of our method is that the artificial signal is introduced strictly via induction, rather than radiation. We tested a prototype probe that includes a second RF coil rigidly positioned close to the receive coil so that there was constant mutual inductance between them. The artificial signal was transmitted through the second RF coil and acquired by the receive coil in parallel with the real signal. Our results demonstrate that the calibration factor is immune to changes in sample resistance. This is a key advantage because it removes the cumbersome requirement that coil loading conditions be the same for the calibration sample as for experimental samples. The method should be adaptable to human studies and could allow more practical and accurate quantification of metabolite content. PMID:18595750
Synthetic signal injection using inductive coupling.
Marro, Kenneth I; Lee, Donghoon; Shankland, Eric G; Mathis, Clinton M; Hayes, Cecil E; Amara, Catherine E; Kushmerick, Martin J
2008-09-01
Conversion of MR signals into units of metabolite concentration requires a very high level of diligence to account for the numerous parameters and transformations that affect the proportionality between the quantity of excited nuclei in the acquisition volume and the integrated area of the corresponding peak in the spectrum. We describe a method that eases this burden with respect to the transformations that occur during and following data acquisition. The conceptual approach is similar to the ERETIC method, which uses a pre-calibrated, artificial reference signal as a calibration factor to accomplish the conversion. The distinguishing feature of our method is that the artificial signal is introduced strictly via induction, rather than radiation. We tested a prototype probe that includes a second RF coil rigidly positioned close to the receive coil so that there was constant mutual inductance between them. The artificial signal was transmitted through the second RF coil and acquired by the receive coil in parallel with the real signal. Our results demonstrate that the calibration factor is immune to changes in sample resistance. This is a key advantage because it removes the cumbersome requirement that coil loading conditions be the same for the calibration sample as for experimental samples. The method should be adaptable to human studies and could allow more practical and accurate quantification of metabolite content.
Synthetic signal injection using inductive coupling
NASA Astrophysics Data System (ADS)
Marro, Kenneth I.; Lee, Donghoon; Shankland, Eric G.; Mathis, Clinton M.; Hayes, Cecil E.; Amara, Catherine E.; Kushmerick, Martin J.
2008-09-01
Conversion of MR signals into units of metabolite concentration requires a very high level of diligence to account for the numerous parameters and transformations that affect the proportionality between the quantity of excited nuclei in the acquisition volume and the integrated area of the corresponding peak in the spectrum. We describe a method that eases this burden with respect to the transformations that occur during and following data acquisition. The conceptual approach is similar to the ERETIC method, which uses a pre-calibrated, artificial reference signal as a calibration factor to accomplish the conversion. The distinguishing feature of our method is that the artificial signal is introduced strictly via induction, rather than radiation. We tested a prototype probe that includes a second RF coil rigidly positioned close to the receive coil so that there was constant mutual inductance between them. The artificial signal was transmitted through the second RF coil and acquired by the receive coil in parallel with the real signal. Our results demonstrate that the calibration factor is immune to changes in sample resistance. This is a key advantage because it removes the cumbersome requirement that coil loading conditions be the same for the calibration sample as for experimental samples. The method should be adaptable to human studies and could allow more practical and accurate quantification of metabolite content.
Lu, Mai; Ueno, Shoogo
2017-01-01
Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS) are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA) coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8) coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality.
NASA Astrophysics Data System (ADS)
Saffari, H.; Moosavi, R.
2014-11-01
In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.
An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
NASA Astrophysics Data System (ADS)
Hua, Li; Shu-Lin, Zhang; Chao-Xiang, Zhang; Xiang-Yan, Kong; Xiao-Ming, Xie
2016-06-01
For a practical superconducting quantum interference device (SQUID) based measurement system, the Tesla/volt coefficient must be accurately calibrated. In this paper, we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils. The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil. By applying magnetic fields through a three-dimensional Helmholtz coil, the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields. Calibration with alternating current (AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current (DC) calibration to avoid possible effects due to eddy current. In our experiment, a calibration relative error of about 6.89 × 10-4 is obtained, and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils. The method does not need precise alignment of the magnetometer inside the Helmholtz coil. It can be used for the multichannel magnetometer system calibration effectively and accurately. Project supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04020200) and the Shanghai Municipal Science and Technology Commission Project, China (Grant No. 15DZ1940902).
Soho and Cluster - The scientific instruments
NASA Technical Reports Server (NTRS)
Domingo, V.; Schmidt, R.; Poland, A. I.; Goldstein, M. L.
1988-01-01
The mission goals and instrumentation of the Soho and cluster spacecraft to be launched in 1995 as part of the international Solar-Terrestrial Science Program are discussed. Instruments such as normal-incidence, grazing-incidence, and EUV coronal spectrometers aboard the Soho spacecraft will study the origin of the solar wind and the physical properties of the solar atmosphere. The four Cluster spacecraft will measure electric and magnetic fields, plasmas, and energetic particles using instruments including a wide-band receiver system, a relaxation sounder, and a search coil magnetometer.
Special Inspector General for Iraq Reconstruction
2012-10-30
security facilities at Umm Qasr slipped three months.227 Because these upgrades might not be completed until aft er the OSC-I sites are transitioned...Basrah 11/18/2011 1/23/2013 1.1 0.6 0.5 Procure Electrical Coil Winding Machines Multiple 7/26/2012 11/23/2012 0.7 – 0.7 PHC Repairs in Central Iraq...complex in Baghdad continued to be the second-largest ongo- ing project. Once again, the schedule slipped . In April, USACE reported that it expected the
Development of a superconducting claw-pole linear test-rig
NASA Astrophysics Data System (ADS)
Radyjowski, Patryk; Keysan, Ozan; Burchell, Joseph; Mueller, Markus
2016-04-01
Superconducting generators can help to reduce the cost of energy for large offshore wind turbines, where the size and mass of the generator have a direct effect on the installation cost. However, existing superconducting generators are not as reliable as the alternative technologies. In this paper, a linear test prototype for a novel superconducting claw-pole topology, which has a stationary superconducting coil that eliminates the cryocooler coupler will be presented. The issues related to mechanical, electromagnetic and thermal aspects of the prototype will be presented.
Eddy current simulation in thick cylinders of finite length induced by coils of arbitrary geometry.
Sanchez Lopez, Hector; Poole, Michael; Crozier, Stuart
2010-12-01
Eddy currents are inevitably induced when time-varying magnetic field gradients interact with the metallic structures of a magnetic resonance imaging (MRI) scanner. The secondary magnetic field produced by this induced current degrades the spatial and temporal performance of the primary field generated by the gradient coils. Although this undesired effect can be minimized by using actively and/or passively shielded gradient coils and current pre-emphasis techniques, a residual eddy current still remains in the MRI scanner structure. Accurate simulation of these eddy currents is important in the successful design of gradient coils and magnet cryostat vessels. Efficient methods for simulating eddy currents are currently restricted to cylindrical-symmetry. The approach presented in this paper divides thick conducting cylinders into thin layers (thinner than the skin depth) and expresses the current density on each as a Fourier series. The coupling between each mode of the Fourier series with every other is modeled with an inductive network method. In this way, the eddy currents induced in realistic cryostat surfaces by coils of arbitrary geometry can be simulated. The new method was validated by simulating a canonical problem and comparing the results against a commercially available software package. An accurate skin depth of 2.76 mm was calculated in 6 min with the new method. The currents induced by an actively shielded x-gradient coil were simulated assuming a finite length cylindrical cryostat consisting of three different conducting materials. Details of the temporal-spatial induced current diffusion process were simulated through all cryostat layers, which could not be efficiently simulated with any other method. With this data, all quantities that depend on the current density, such as the secondary magnetic field, are simply evaluated. Copyright © 2010 Elsevier Inc. All rights reserved.
Superelliptical insert gradient coil with a field-modifying layer for breast imaging.
Moon, Sung M; Goodrich, K Craig; Hadley, J Rock; Kim, Seong-Eun; Zeng, Gengsheng L; Morrell, Glen R; McAlpine, Matthew A; Chronik, Blaine A; Parker, Dennis L
2011-03-01
Many MRI applications such as dynamic contrast-enhanced MRI of the breast require high spatial and temporal resolution and can benefit from improved gradient performance, e.g., increased gradient strength and reduced gradient rise time. The improved gradient performance required to achieve high spatial and temporal resolution for this application may be achieved by using local insert gradients specifically designed for a target anatomy. Current flat gradient systems cannot create an imaging volume large enough to accommodate both breasts; further, their gradient fields are not homogeneous, dropping off rapidly with distance from the gradient coil surface. To attain an imaging volume adequate for bilateral breast MRI, a planar local gradient system design has been modified into a superellipse shape, creating homogeneous gradient volumes that are 182% (Gx), 57% (Gy), and 75% (Gz) wider (left/right direction) than those of the corresponding standard planar gradient. Adding an additional field-modifying gradient winding results in an additional improvement of the homogeneous gradient field near the gradient coil surface over the already enlarged homogeneous gradient volumes of the superelliptical gradients (67%, 89%, and 214% for Gx, Gy, and Gz respectively). A prototype y-gradient insert has been built to demonstrate imaging and implementation characteristics of the superellipse gradient in a 3 T MRI system. Copyright © 2010 Wiley-Liss, Inc.
New Generation of Superconducting Solenoids for Heavy-Ion Linac Application
NASA Astrophysics Data System (ADS)
Ostroumov, P. N.; Kim, S. H.; Lessner, E. S.; Shepard, K. W.; Laxdal, R. E.
2002-01-01
The beam dynamics of superconducting (SC) heavy-ion linacs operating in the velocity range below 0.4c require a compact accelerating-focusing lattice. The use of SC solenoids together with SC RF resonators within a common cryostat can solve the real-estate problem. The solenoids must have low fringe fields to avoid magnetic-flux capture in the SC RF resonators. Also, incorporating dipole steering coils together with the SC solenoids in one magnet assembly can increase the compactness of the linac lattice. R&D work has been carried out to determine the feasibility of combining the three elements of high solenoid field, low fringe field, and integral dipole field, into one compact package. A 9-Tesla magnet has been initially designed and will be prototyped, with the goal of eventually developing 14-Tesla solenoids of similar design. The most important design issues are: (1) to minimize stray field in the RF cavity region using SC bucking coils and (2) to achieve adequate mechanical stability of the transverse dipole windings in the presence of forces produced by the solenoid/bucking coil assembly. The assembly, including terminals, switches, and protection circuit, are designed to fit inside a 25-cm diameter helium reservoir. The results of the preliminary design of the solenoid, including numerical simulations of the beam dynamics, are reported.
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Hirata, Hiroshi
2014-02-01
This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.
Simplified Hybrid-Secondary Uncluttered Machine And Method
Hsu, John S [Oak Ridge, TN
2005-05-10
An electric machine (40, 40') has a stator (43) and a rotor (46) and a primary air gap (48) has secondary coils (47c, 47d) separated from the rotor (46) by a secondary air gap (49) so as to induce a slip current in the secondary coils (47c, 47d). The rotor (46, 76) has magnetic brushes (A, B, C, D) or wires (80) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments. A method of providing a slip energy controller is also disclosed.
NASA Astrophysics Data System (ADS)
Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan
2015-12-01
This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.
Eddy current probe with foil sensor mounted on flexible probe tip and method of use
Viertl, John R. M.; Lee, Martin K.
2001-01-01
A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.
Nonlinear analysis and characteristics of inductive galloping energy harvesters
NASA Astrophysics Data System (ADS)
Dai, H. L.; Yang, Y. W.; Abdelkefi, A.; Wang, L.
2018-06-01
This paper presents an investigation on analysis and characteristics of aerodynamic electromagnetic energy harvesters. The source of aeroelastic oscillations results from galloping of a prismatic structure. A nonlinear distributed-parameter model is developed representing the dynamics of the transverse degree of freedom and the electric current induced in the coil. Firstly, we perform a linear analysis to study the impacts of the external electrical resistance, magnet placement, electromagnetic coupling coefficient, and internal resistance in the coil on the cut-in speed of instability of the coupled electroaeroelastic system. It is demonstrated that these parameters have significant impacts on cut-in speed of instability of the harvester system. Subsequently, a nonlinear analysis is implemented to explore the influences of these parameters on the output property of the energy harvester. The results show that there exists an optimal external electrical resistance which maximizes the output power of the harvester, and this optimal value varies with the magnet's placement, wind speed, electromagnetic coupling coefficient and internal resistance of the coil. It is also demonstrated that an increase in the distance between the clamped end and the magnet, an increase in the electromagnetic coupling coefficient, and/or a decrease in the internal resistance of the coil are accompanied by an increase in the level of the harvested power and a decrease in the tip displacement of the bluff body which is associated with a resistive-shunt damping effect in the harvester. The implemented studies give a constructive guidance to design and enhance the output performance of aerodynamic electromagnetic energy harvesters.
NASA Astrophysics Data System (ADS)
Kim, Youngsun
2017-05-01
The most common structure used for current transformers (CTs) consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD) may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC) or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF) characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM). The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.
Design and test of current limiting modules using YBCO-coated conductors
NASA Astrophysics Data System (ADS)
Schmidt, W.; Gamble, B.; Kraemer, H.-P.; Madura, D.; Otto, A.; Romanosky, W.
2010-01-01
Within the cooperation between American Superconductor Corporation (AMSC) and Siemens Corporate Technology we have investigated the fault current limiting performance of YBCO-coated conductors (also called second-generation or 2G HTS wires) stabilized with stainless steel laminates. Design rules for the length and width of the wire depending on utility grid requirements have been established. Bifilar coils have been manufactured and tested with a typical limitation period of 50 ms under stepwise increasing voltage loads to determine the maximum temperature the wires can withstand without degradation. Coils have been assembled into limiter modules demonstrating uniform tripping of the individual coils and recovery within seconds. At present this cooperation is proceeding within a joint project funded by the US Department of Energy (DOE) that encompasses the design, construction and testing of a 115 kV FCL for power transmission within a time frame of 4-5 years, and additional partners. Besides AMSC and Siemens, Nexans contributes the high voltage terminations and Los Alamos National Lab investigates the ac losses. Installation and testing are planned for a Southern California Edison substation. The module planned for the transmission voltage application consists of 63 horizontally arranged coils connected in parallel and series to account for a rated current of 1.2 kArms and voltage of 31 kVrms plus margins. The rated voltage of the module is considerably lower than the line to ground voltage in the 115 kV grid owing to our shunted limiter concept. The shunt reactor connected in parallel to the module outside the cryostat allows for adjustment of the limited current and reduces voltage drop across the module in case of a fault. The fault current reduction ratio is 42% for our present design. A subscale module comprising six full-size coils has been assembled and tested recently to validate the coil performance and coil winding technique. The module had a critical current of 425 ADC and a nominal power of 2.52 MV A at 77 K. A complete series of tests with applied voltage up to 8.4 kVrms, prospective short circuit current up to 26.6 kArms and variation of phase angle at initiation of the fault has been performed. After more than 40 switching tests the critical current of the module remained unchanged, indicating that no degradation of the wire occurred.
Modelling and Optimization of Four-Segment Shielding Coils of Current Transformers
Gao, Yucheng; Zhao, Wei; Wang, Qing; Qu, Kaifeng; Li, He; Shao, Haiming; Huang, Songling
2017-01-01
Applying shielding coils is a practical way to protect current transformers (CTs) for large-capacity generators from the intensive magnetic interference produced by adjacent bus-bars. The aim of this study is to build a simple analytical model for the shielding coils, from which the optimization of the shielding coils can be calculated effectively. Based on an existing stray flux model, a new analytical model for the leakage flux of partial coils is presented, and finite element method-based simulations are carried out to develop empirical equations for the core-pickup factors of the models. Using the flux models, a model of the common four-segment shielding coils is derived. Furthermore, a theoretical analysis is carried out on the optimal performance of the four-segment shielding coils in a typical six-bus-bars scenario. It turns out that the “all parallel” shielding coils with a 45° starting position have the best shielding performance, whereas the “separated loop” shielding coils with a 0° starting position feature the lowest heating value. Physical experiments were performed, which verified all the models and the conclusions proposed in the paper. In addition, for shielding coils with other than the four-segment configuration, the analysis process will generally be the same. PMID:28587137
Modelling and Optimization of Four-Segment Shielding Coils of Current Transformers.
Gao, Yucheng; Zhao, Wei; Wang, Qing; Qu, Kaifeng; Li, He; Shao, Haiming; Huang, Songling
2017-05-26
Applying shielding coils is a practical way to protect current transformers (CTs) for large-capacity generators from the intensive magnetic interference produced by adjacent bus-bars. The aim of this study is to build a simple analytical model for the shielding coils, from which the optimization of the shielding coils can be calculated effectively. Based on an existing stray flux model, a new analytical model for the leakage flux of partial coils is presented, and finite element method-based simulations are carried out to develop empirical equations for the core-pickup factors of the models. Using the flux models, a model of the common four-segment shielding coils is derived. Furthermore, a theoretical analysis is carried out on the optimal performance of the four-segment shielding coils in a typical six-bus-bars scenario. It turns out that the "all parallel" shielding coils with a 45° starting position have the best shielding performance, whereas the "separated loop" shielding coils with a 0° starting position feature the lowest heating value. Physical experiments were performed, which verified all the models and the conclusions proposed in the paper. In addition, for shielding coils with other than the four-segment configuration, the analysis process will generally be the same.
Approach for removing ghost-images in remote field eddy current testing of ferromagnetic pipes
NASA Astrophysics Data System (ADS)
Luo, Q. W.; Shi, Y. B.; Wang, Z. G.; Zhang, W.; Zhang, Y.
2016-10-01
In the non-destructive testing of ferromagnetic pipes based on remote field eddy currents, an array of sensing coils is often used to detect local defects. While testing, the image that is obtained by sensing coils exhibits a ghost-image, which originates from both the transmitter and sensing coils passing over the same defects in pipes. Ghost-images are caused by transmitters and lead to undesirable assessments of defects. In order to remove ghost-images, two pickup coils are coaxially set to each other in remote field. Due to the time delay between differential signals tested by the two pickup coils, a Wiener deconvolution filter is used to identify the artificial peaks that lead to ghost-images. Because the sensing coils and two pickup coils all receive the same signal from one transmitter, they all contain the same artificial peaks. By subtracting the artificial peak values obtained by the two pickup coils from the imaging data, the ghost-image caused by the transmitter is eliminated. Finally, a relatively highly accurate image of local defects is obtained by these sensing coils. With proposed method, there is no need to subtract the average value of the sensing coils, and it is sensitive to ringed defects.
Dental MRI using a dedicated RF-coil at 3 Tesla.
Prager, Marcel; Heiland, Sabine; Gareis, Daniel; Hilgenfeld, Tim; Bendszus, Martin; Gaudino, Chiara
2015-12-01
To assess the benefit of a dedicated surface coil to visualize dental structures in comparison to standard head/neck coil. Measurements were performed using the standard head/neck coil and a dedicated array coil for dental MRI at 3 T. As MRI methods, we used a T1-weighted spin-echo sequence with and without spectral fat saturation, a T2-weighted turbo-spin-echo sequence and a 3-dimensional T2-weighted SPACE sequence. Measurements were performed in a phantom to examine sensitivity profiles. Then the signal gain in dental structures was examined in volunteers and in a patient. As expected for a surface coil, the signal gain of the dental coil was highest at the surface of the phantom and decreased with increasing distance to the coil; it was >120% even at a depth of 30 mm, measured from the centre of the coil. The signal gain within the pulp of the volunteers ranged between 236 and 413%. The dedicated array coil offers a significantly higher signal within the region of interest for dental MR imaging thus allowing for better depiction of pathologies within the periodontium and for delineation and tracking of the branches of the maxillary and mandibular nerves. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Approach for removing ghost-images in remote field eddy current testing of ferromagnetic pipes.
Luo, Q W; Shi, Y B; Wang, Z G; Zhang, W; Zhang, Y
2016-10-01
In the non-destructive testing of ferromagnetic pipes based on remote field eddy currents, an array of sensing coils is often used to detect local defects. While testing, the image that is obtained by sensing coils exhibits a ghost-image, which originates from both the transmitter and sensing coils passing over the same defects in pipes. Ghost-images are caused by transmitters and lead to undesirable assessments of defects. In order to remove ghost-images, two pickup coils are coaxially set to each other in remote field. Due to the time delay between differential signals tested by the two pickup coils, a Wiener deconvolution filter is used to identify the artificial peaks that lead to ghost-images. Because the sensing coils and two pickup coils all receive the same signal from one transmitter, they all contain the same artificial peaks. By subtracting the artificial peak values obtained by the two pickup coils from the imaging data, the ghost-image caused by the transmitter is eliminated. Finally, a relatively highly accurate image of local defects is obtained by these sensing coils. With proposed method, there is no need to subtract the average value of the sensing coils, and it is sensitive to ringed defects.
Cross-linking reveals laminin coiled-coil architecture
Armony, Gad; Jacob, Etai; Moran, Toot; Levin, Yishai; Mehlman, Tevie; Levy, Yaakov; Fass, Deborah
2016-01-01
Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins. PMID:27815530
Ueno, Shoogo
2017-01-01
Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS) are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA) coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8) coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality. PMID:28586349
Mohammadi, Abdolreza Rashidi; Chen, Keqin; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi
2011-12-15
The rupture of a cerebral aneurysm is the most common cause of subarachnoid hemorrhage. Endovascular embolization of the aneurysms by implantation of Guglielmi detachable coils (GDC) has become a major treatment approach in the prevention of a rupture. Implantation of the coils induces formation of tissues over the coils, embolizing the aneurysm. However, blood entry into the coiled aneurysm often occurs due to failures in the embolization process. Current diagnostic methods used for aneurysms, such as X-ray angiography and computer tomography, are ineffective for continuous monitoring of the disease and require extremely expensive equipment. Here we present a novel technique for wireless monitoring of cerebral aneurysms using implanted embolization coils as radiofrequency resonant sensors that detect the blood entry. The experiments show that commonly used embolization coils could be utilized as electrical inductors or antennas. As the blood flows into a coil-implanted aneurysm, parasitic capacitance of the coil is modified because of the difference in permittivity between the blood and the tissues grown around the coil, resulting in a change in the coil's resonant frequency. The resonances of platinum GDC-like coils embedded in aneurysm models are detected to show average responses of 224-819 MHz/ml to saline injected into the models. This preliminary demonstration indicates a new possibility in the use of implanted GDC as a wireless sensor for embolization failures, the first step toward realizing long-term, noninvasive, and cost-effective remote monitoring of cerebral aneurysms treated with coil embolization. Copyright © 2011 Elsevier B.V. All rights reserved.
Avdievich, Nikolai I.; Oh, Suk-Hoon; Hetherington, Hoby P.; Collins, Christopher M.
2010-01-01
Purpose To improve the homogeneity of transmit volume coils at high magnetic fields (≥ 4 T). Due to RF field/ tissue interactions at high fields, 4–8 T, the transmit profile from head-sized volume coils shows a distinctive pattern with relatively strong RF magnetic field B1 in the center of the brain. Materials and Methods In contrast to conventional volume coils at high field strengths, surface coil phased arrays can provide increased RF field strength peripherally. In theory, simultaneous transmission from these two devices could produce a more homogeneous transmission field. To minimize interactions between the phased array and the volume coil, counter rotating current (CRC) surface coils consisting of two parallel rings carrying opposite currents were used for the phased array. Results Numerical simulations and experimental data demonstrate that substantial improvements in transmit field homogeneity can be obtained. Conclusion We have demonstrated the feasibility of using simultaneous transmission with human head-sized volume coils and CRC phased arrays to improve homogeneity of the transmit RF B1 field for high-field MRI systems. PMID:20677280
Monorail snare technique for the recovery of stretched platinum coils: technical case report.
Fiorella, David; Albuquerque, Felipe C; Deshmukh, Vivek R; McDougall, Cameron G
2005-07-01
Coil stretching represents a potentially hazardous technical complication not infrequently encountered during the embolization of cerebral aneurysms. Often, the stretched coil cannot be advanced into the aneurysm or withdrawn intact. The operator is then forced to attempt to retract the damaged coil, which may result in coil breakage, leaving behind a significant length of potentially thrombogenic stretched coil material within the parent vessel. To overcome this problem, we devised a technique to snare the distal, unstretched, intact portion of the platinum coil by use of the indwelling microcatheter and stretched portion of the coil as a monorail guide. We have used this technique successfully in four patients to snare coils stretched during cerebral aneurysm embolization. Three of these patients were undergoing Neuroform (Boston Scientific/Target, Fremont, CA) stent-supported coil embolization of unruptured aneurysms. In all cases, the snare was advanced easily to the targeted site for coil engagement by use of the microcatheter as a monorail guide. Once the intact distal segment of the coil was ensnared, coil removal was uneventful, with no disturbance of the remainder of the indwelling coil pack or Neuroform stent. A 2-mm Amplatz Goose Neck microsnare (Microvena Corp., White Bear Lake, MN) was placed through a Prowler-14 microcatheter (Cordis Corp., Miami, FL). The hub of the indwelling SL-10 microcatheter (Boston Scientific, Natick, MA) was then cut away with a scalpel, leaving the coil pusher wire intact, and removed. The open 2-mm snare was then advanced over the outside of the coil pusher wire and microcatheter. The snare and Prowler-14 microcatheter were then advanced into the guiding catheter (6- or 7-French) as a unit over the indwelling SL-10 microcatheter. By use of the SL-10 microcatheter and coil as a "monorail" guide, the snare was advanced over and beyond the microcatheter and the stretched portion of the coil until the snare was in position to engage the distal unstretched coil. At this point, the snare was then closed around the intact portion of the coil, and the microcatheters, snare, and coil were removed as a unit. The monorail snare technique represents a fast, safe, and easy method by which a stretched coil can be removed.
Wei, Xile; Li, Yao; Lu, Meili; Wang, Jiang; Yi, Guosheng
2017-11-14
Multi-coil arrays applied in transcranial magnetic stimulation (TMS) are proposed to accurately stimulate brain tissues and modulate neural activities by an induced electric field (EF). Composed of numerous independently driven coils, a multi-coil array has alternative energizing strategies to evoke EFs targeting at different cerebral regions. To improve the locating resolution and the stimulating focality, we need to fully understand the variation properties of induced EFs and the quantitative control method of the spatial arrangement of activating coils, both of which unfortunately are still unclear. In this paper, a comprehensive analysis of EF properties was performed based on multi-coil arrays. Four types of planar multi-coil arrays were used to study the relationship between the spatial distribution of EFs and the structure of stimuli coils. By changing coil-driven strategies in a basic 16-coil array, we find that an EF induced by compactly distributed coils decays faster than that induced by dispersedly distributed coils, but the former has an advantage over the latter in terms of the activated brain volume. Simulation results also indicate that the attenuation rate of an EF induced by the 36-coil dense array is 3 times and 1.5 times greater than those induced by the 9-coil array and the 16-coil array, respectively. The EF evoked by the 36-coil dispense array has the slowest decay rate. This result demonstrates that larger multi-coil arrays, compared to smaller ones, activate deeper brain tissues at the expense of decreased focality. A further study on activating a specific field of a prescribed shape and size was conducted based on EF variation. Accurate target location was achieved with a 64-coil array 18 mm in diameter. A comparison between the figure-8 coil, the planar array, and the cap-formed array was made and demonstrates an improvement of multi-coil configurations in the penetration depth and the focality. These findings suggest that there is a tradeoff between attenuation rate and focality in the application of multi-coil arrays. Coil-energizing strategies and array dimensions should be based on an adequate evaluation of these two important demands and the topological structure of target tissues.
Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf
2016-01-01
Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923
Multi-mode Intravascular RF Coil for MRI-guided Interventions
Kurpad, Krishna N.; Unal, Orhan
2011-01-01
Purpose To demonstrate the feasibility of using a single intravascular RF probe connected to the external MRI system via a single coaxial cable to perform active tip tracking and catheter visualization, and high SNR intravascular imaging. Materials and Methods A multi-mode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. Results The multi-mode coil behaves as an inductively-coupled transmit coil. Forward looking capability of 6mm is measured. Greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil is demonstrated. Simultaneous active tip tracking and catheter visualization is demonstrated. Conclusions It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multi-mode intravascular RF coil that is connected to the external system via a single coaxial cable. PMID:21448969
Hessian matrix approach for determining error field sensitivity to coil deviations.
Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.; ...
2018-03-15
The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code [Zhu et al., Nucl. Fusion 58(1):016008 (2018)] is utilized to provide fast and accurate calculationsmore » of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.« less
Design of Range Adaptive Wireless Power Transfer System Using Non-coaxial Coils
NASA Astrophysics Data System (ADS)
Yang, Dongsheng; Won, Sokhui; Hong, Huan
2017-05-01
Wireless Power Transfer (WPT) is a remarkable technology because of its convenience and applicability in harsh environment. Particularly, Magnetic Coupling WPT (MC-WPT) is a proper method to midrange power transfer, but the frequency splitting at over-coupling range, which is related with transfer distance, is challenge of transmission efficiency. In order to overcome this phenomenon, recently the range adaptive WPT is proposed. In this paper, we aim to the type with a set of non-coaxial driving coils, so that this may remove the connection wires from PA (Power Amplifier) to driving coil. And, when the radius of driving coil is changed, on the different gaps between driving and TX coils, coupling coefficient between these is computed in both cases of coaxial and non-coaxial configurations. In addition, the designing steps for 4-coil WPT system using non-coaxial coils are described with the example. Finally, the reliability of this topology has been proved and simulated with PSPICE.
Hessian matrix approach for determining error field sensitivity to coil deviations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.
The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code [Zhu et al., Nucl. Fusion 58(1):016008 (2018)] is utilized to provide fast and accurate calculationsmore » of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.« less
Hybrid-secondary uncluttered permanent magnet machine and method
Hsu, John S.
2005-12-20
An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.
Trends in tungsten coil atomic spectrometry
NASA Astrophysics Data System (ADS)
Donati, George L.
Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective methods for trace metal determinations in several different samples, representing an important asset in today's analytical chemistry.
Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro
2010-01-01
Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859
Electromagnetic diagnostic system for the Keda Torus eXperiment
NASA Astrophysics Data System (ADS)
Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong
2017-09-01
A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on basic machine operating information and future studies.
NASA Astrophysics Data System (ADS)
Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng
2018-05-01
Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.
NASA Technical Reports Server (NTRS)
Henderson, Robert A.; Schrag, Robert L.
1987-01-01
A method of modelling a system consisting of a cylindrical coil with its axis perpendicular to a metal plate of finite thickness, and a simple electrical circuit for producing a transient current in the coil, is discussed in the context of using such a system for de-icing aircraft surfaces. A transmission line model of the coil and metal plate is developed as the heart of the system model. It is shown that this transmission model is central to calculation of the coil impedance, the coil current, the magnetic fields established on the surfaces of the metal plate, and the resultant total force between the coil and the plate. FORTRAN algorithms were developed for numerical calculation of each of these quantities, and the algorithms were applied to an experimental prototype system in which these quantities had been measured. Good agreement is seen to exist between the predicted and measured results.
Fast and efficient wireless power transfer via transitionless quantum driving.
Paul, Koushik; Sarma, Amarendra K
2018-03-07
Shortcut to adiabaticity (STA) techniques have the potential to drive a system beyond the adiabatic limits. Here, we present a robust and efficient method for wireless power transfer (WPT) between two coils based on the so-called transitionless quantum driving (TQD) algorithm. We show that it is possible to transfer power between the coils significantly fast compared to its adiabatic counterpart. The scheme is fairly robust against the variations in the coupling strength and the coupling distance between the coils. Also, the scheme is found to be reasonably immune to intrinsic losses in the coils.
Magnetic Catheter Manipulation in the Interventional MRI Environment
Wilson, Mark W.; Martin, Alastair B.; Lillaney, Prasheel; Losey, Aaron D.; Yee, Erin J.; Bernhardt, Anthony; Malba, Vincent; Evans, Lee; Sincic, Ryan; Saeed, Maythem; Arenson, Ronald L.; Hetts, Steven W.
2013-01-01
Purpose To evaluate deflection capability of a prototype endovascular catheter, which is remotely magnetically steerable, for use in the interventional MRI environment. Materials and Methods Copper coils were mounted on the tips of commercially available 2.3 – 3.0 Fr microcatheters. The coils were fabricated in a novel manner by plasma vapor deposition of a copper layer followed by laser lithography of the layer into coils. Orthogonal helical (solenoid) and saddle-shaped (Helmholtz) coils were mounted on a single catheter tip. Microcatheters were tested in water bath phantoms in a 1.5T clinical MRI scanner, with variable simultaneous currents applied to the coils. Catheter tip deflection was imaged in the axial plane utilizing a “real-time” steady-state free precession (SSFP) MRI sequence. Degree of deflection and catheter tip orientation were measured for each current application. Results The catheter tip was clearly visible in the longitudinal and axial planes. Magnetic field artifacts were visible when the orthogonal coils at the catheter tip were energized. Variable amounts of current applied to a single coil demonstrated consistent catheter deflection in all water bath experiments. Changing current polarity reversed the observed direction of deflection, whereas current applied to two different coils resulted in deflection represented by the composite vector of individual coil activations. Microcatheter navigation through the vascular phantom was successful through control of applied current to one or more coils. Conclusion Controlled catheter deflection is possible with laser lithographed multi-axis coil tipped catheters in the MRI environment. PMID:23707097
Berwick, Matthew R.; Slope, Louise N.; Smith, Caitlin F.; King, Siobhan M.; Newton, Sarah L.; Gillis, Richard B.; Adams, Gary G.; Rowe, Arthur J.; Harding, Stephen E.; Britton, Melanie M.
2016-01-01
Herein, we establish for the first time the design principles for lanthanide coordination within coiled coils, and the important consequences of binding site translation. By interrogating design requirements and by systematically translating binding site residues, one can influence coiled coil stability and more importantly, the lanthanide coordination chemistry. A 10 Å binding site translation along a coiled coil, transforms a coordinatively saturated Tb(Asp)3(Asn)3 site into one in which three exogenous water molecules are coordinated, and in which the Asn layer is no longer essential for binding, Tb(Asp)3(H2O)3. This has a profound impact on the relaxivity of the analogous Gd(iii) coiled coil, with more than a four-fold increase in the transverse relaxivity (21 to 89 mM–1 s–1), by bringing into play, in addition to the outer sphere mechanism present for all Gd(iii) coiled coils, an inner sphere mechanism. Not only do these findings warrant further investigation for possible exploitation as MRI contrast agents, but understanding the impact of binding site translation on coordination chemistry has important repercussions for metal binding site design, taking us an important step closer to the predictable and truly de novo design of metal binding sites, for new functional applications. PMID:29899946
Sci—Thur AM: YIS - 08: Constructing an Attenuation map for a PET/MR Breast coil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, John C.; Imaging, Lawson Health Research Institute, Knoxville, TN; London Regional Cancer Program, Knoxville, TN
2014-08-15
In 2013, around 23000 Canadian women and 200 Canadian men were diagnosed with breast cancer. An estimated 5100 women and 55 men died from the disease. Using the sensitivity of MRI with the selectivity of PET, PET/MRI combines anatomical and functional information within the same scan and could help with early detection in high-risk patients. MRI requires radiofrequency coils for transmitting energy and receiving signal but the breast coil attenuates PET signal. To correct for this PET attenuation, a 3-dimensional map of linear attenuation coefficients (μ-map) of the breast coil must be created and incorporated into the PET reconstruction process.more » Several approaches have been proposed for building hardware μ-maps, some of which include the use of conventional kVCT and Dual energy CT. These methods can produce high resolution images based on the electron densities of materials that can be converted into μ-maps. However, imaging hardware containing metal components with photons in the kV range is susceptible to metal artifacts. These artifacts can compromise the accuracy of the resulting μ-map and PET reconstruction; therefore high-Z components should be removed. We propose a method for calculating μ-maps without removing coil components, based on megavoltage (MV) imaging with a linear accelerator that has been detuned for imaging at 1.0MeV. Containers of known geometry with F18 were placed in the breast coil for imaging. A comparison between reconstructions based on the different μ-map construction methods was made. PET reconstructions with our method show a maximum of 6% difference over the existing kVCT-based reconstructions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesgin, Ibrahim; Hasse, Quentin; Ivanyushenkov, Yury
The use of second-generation high-temperature superconducting-coated conductors enables an enhancement of the performance of undulator magnets. However, preventing the motion of the wire and providing sufficient conduction cooling to the winding stacks have remained challenges. In this study, we have evaluated epoxy impregnation techniques to address these issues. Epoxy resin was prepared with different nanopowders and the effect on the performance of the undulator coil pack was investigated. All epoxy impregnated coils showed smaller n values and some degree of deterioration of the critical current I c. The I c degradation was most pronounced for epoxy mixed with high aspectmore » ratio multiwalled carbon nanotubes (MWCNTs). It has been found that the crack formation in the epoxy results in plastic deformation of the copper stabilizer layer, which causes the underlying ceramic REBCO superconducting layer to crack resulting in degradation of the superconducting tape performance. As a result, careful adjustment of epoxy thickness surrounding the superconductor and the powder ratio in the epoxy eliminate the performance degradation.« less
Distributed transverse stress measurement along an optic fiber using polarimetric OFDR.
Wei, Changjiang; Chen, Hongxin; Chen, Xiaojun; Chen, David; Li, Zhihong; Yao, X Steve
2016-06-15
We report a novel polarimetric optical frequency domain reflectometer (P-OFDR) that can simultaneously measure both space-resolved transverse stresses and light back-reflections along an optic fiber with sub-mm spatial resolution. By inducing transversal stresses and optical back-reflections at multiple points along a length of optic fiber, we demonstrate that our system can unambiguously distinguish the stresses from the back-reflections of a fiber with a fiber length longer than 800 m, a spatial resolution of 0.5 mm, a maximum stress level of up to 200 kpsi (1379 Mpa), a minimum stress of about 10 kpsi (69 Mpa), and a stress measurement uncertainty of 10%. We show that our P-OFDR can clearly identify the locations and magnitudes of the stresses inside a fiber coil induced during a fiber winding process. The P-OFDR can be used for fiber health monitoring for critical fiber links, fiber gyro coil characterization, and other distributed fiber sensing applications.
Flexible, 31 channel breast coil for enhanced parallel imaging performance at 3T
Hancu, Ileana; Fiveland, Eric; Park, Keith; Giaquinto, Randy O.; Rohling, Kenneth; Wiesinger, Florian
2015-01-01
Purpose To design, build and characterize the performance of a novel 3T, 31 channel breast coil. Methods A flexible breast coil, accommodating all breast sizes while preserving close to unity filling factors in all configurations, was designed and built. Its performance was compared to the performance of the current state-of-the-art, 16 channel breast coil (Sentinelle coil, Hologic, Bedford, MA, USA), in phantoms and in vivo. Results Better axilla coverage and lower inter-coil coupling (12% vs. 26%, as characterized by the average off-diagonal elements of the noise correlation matrix) was exhibited by our 31 channel coil compared to the 16 channel coil. Breast area SNR increases of 68% (phantom) and 28 ± 31% (in vivo) were demonstrated in the 3 volunteers studied when the 31 channel coil was used. For the 31 channel/16 channel arrays, respectively, two dimensional acceleration factors of L/R × S/I = 4.3 × 2.4 resulted in average g-factors of 1.10/1.68 (in vitro) and 1.28/2.75 (in vivo); acceleration factors of L/R × A/P = 3.0 × 2.8 resulted in average g-factors of 1.06/1.54 (in vitro) and 1.05/1.12 (in vivo). Conclusion A high performance breast coil was built; its capabilities were demonstrated in phantom and normal volunteer imaging experiments. PMID:25772214
Measurement of heating coil temperature for e-cigarettes with a “top-coil” clearomizer
Wang, Ping; Ito, Kazuhide; Fowles, Jeff; Shusterman, Dennis; Jaques, Peter A.; Kumagai, Kazukiyo
2018-01-01
Objectives To determine the effect of applied power settings, coil wetness conditions, and e-liquid compositions on the coil heating temperature for e-cigarettes with a “top-coil” clearomizer, and to make associations of coil conditions with emission of toxic carbonyl compounds by combining results herein with the literature. Methods The coil temperature of a second generation e-cigarette was measured at various applied power levels, coil conditions, and e-liquid compositions, including (1) measurements by thermocouple at three e-liquid fill levels (dry, wet-through-wick, and full-wet), three coil resistances (low, standard, and high), and four voltage settings (3–6 V) for multiple coils using propylene glycol (PG) as a test liquid; (2) measurements by thermocouple at additional degrees of coil wetness for a high resistance coil using PG; and (3) measurements by both thermocouple and infrared (IR) camera for high resistance coils using PG alone and a 1:1 (wt/wt) mixture of PG and glycerol (PG/GL). Results For single point thermocouple measurements with PG, coil temperatures ranged from 322 ‒ 1008°C, 145 ‒ 334°C, and 110 ‒ 185°C under dry, wet-through-wick, and full-wet conditions, respectively, for the total of 13 replaceable coil heads. For conditions measured with both a thermocouple and an IR camera, all thermocouple measurements were between the minimum and maximum across-coil IR camera measurements and equal to 74% ‒ 115% of the across-coil mean, depending on test conditions. The IR camera showed details of the non-uniform temperature distribution across heating coils. The large temperature variations under wet-through-wick conditions may explain the large variations in formaldehyde formation rate reported in the literature for such “top-coil” clearomizers. Conclusions This study established a simple and straight-forward protocol to systematically measure e-cigarette coil heating temperature under dry, wet-through-wick, and full-wet conditions. In addition to applied power, the composition of e-liquid, and the devices’ ability to efficiently deliver e-liquid to the heating coil are important product design factors effecting coil operating temperature. Precautionary temperature checks on e-cigarettes under manufacturer-recommended normal use conditions may help to reduce the health risks from exposure to toxic carbonyl emissions associated with coil overheating. PMID:29672571
Case studies from Oman for coiled tubing deployed completion techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.W.; Conrad, B.
1996-09-01
Although the use of ultra-large coiled tubing to complete wells is relatively new, it is gaining widespread industry application. This paper will detail the equipment necessary to perform an operation of this type and will present information from several case studies in Oman in which an operator has successfully deployed completion equipment on 3-1/2-inch-OD coiled tubing. In addition to a discussion of the equipment required to perform the necessary operations, the trial parameters that were established by this operator will be given. The information presented has been selected to allow an initial evaluation to be made of coiled tubing completionsmore » in general and will help to determine whether this method can prove to be less expensive than traditional rig-based completions. The topics presented have been chosen to provide the reader with a thorough understanding of the techniques and preparation needed to execute a coiled tubing completion. The summary of experiences will conclude that this innovative completion technique can be a viable method for completing wells. Although long-term advantages regarding production and well maintenance cannot yet be determined, the operator`s experiences to date have confirmed his initial belief that use of coiled tubing in ultra-large continuous-pipe applications can be cost effective.« less
NASA Astrophysics Data System (ADS)
Basemore, Alphonso; Ali, Halima; Watson, Michael; Punjabi, Alkesh
1996-11-01
We calculate the variation in area of the stochastic scrape-off layer of a single-null divertor tokamak resulting from the effects of an externally placed dipole coil using the Method of Maps (Punjabi A, Verma A and Boozer A, Phys Rev Lett), 69, 3322 (1992) and J Plasma Phys, 52, 91 (1994). The unperturbed magnetic topology is represented by the Symmetric Simple Map (Ali H, Watson M, Mayer C, Punjabi A and Boozer A, Bull Am Phys Soc), 40, 1855 (1995). The effects of the dipole coil are repesented by the Dipole Map (Ali H, Watson M, Punjabi A and Boozer A, Sherwood Mtg), paper 1C20 (1996). A single dipole coil is placed across from the X-point below the last good surface. The strength of the dipole perturbation and the distance of the coil from last good surface are varied. The area of the stochastic layer is calculated using the method of fractal dimension. This work is supported by US DOE OFES. Alphonso Basemore is a HU CFRT Summer Fusion High School Workshop scholar from Mount Tabor High School in North Carolina. He is supported by NASA under its NASA SharpPlus Program.
Liu, W; Collins, C M; Smith, M B
2005-03-01
A numerical model of a female body is developed to study the effects of different body types with different coil drive methods on radio-frequency magnetic ( B 1 ) field distribution, specific energy absorption rate (SAR), and intrinsic signal-to-noise ratio (ISNR) for a body-size birdcage coil at 64 and 128 MHz. The coil is loaded with either a larger, more muscular male body model (subject 1) or a newly developed female body model (subject 2), and driven with two-port (quadrature), four-port, or many (ideal) sources. Loading the coil with subject 1 results in significantly less homogeneous B 1 field, higher SAR, and lower ISNR than those for subject 2 at both frequencies. This dependence of MR performance and safety measures on body type indicates a need for a variety of numerical models representative of a diverse population for future calculations. The different drive methods result in similar B 1 field patterns, SAR, and ISNR in all cases.
NASA Astrophysics Data System (ADS)
Hao, Changduan; Zhang, Ming; Ding, Yonghua; Rao, Bo; Cen, Yishun; Zhuang, Ge
2012-01-01
A set of four in-vessel saddle coils was designed to generate a helical field on the J-TEXT tokamak to study the influences of the external perturbation field on plasma. The coils are fed with alternating current up to 10 kA at frequency up to 10 kHz. Due to the special structure, complex thermal environment and limited space in the vacuum chamber, it is very important to make sure that the coils will not be damaged when undergoing the huge electromagnetic forces in the strong toroidal field, and that their temperatures don't rise too much and destroy the insulation. A 3D finite element model is developed in this paper using the ANSYS code, stresses are analyzed to find the worst condition, and a mounting method is then established. The results of the stress and modal analyses show that the mounting method meets the strength requirements. Finally, a thermal analysis is performed to study the cooling process and the temperature distribution of the coils.