Science.gov

Sample records for coilin phosphorylation mediates

  1. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle.

    PubMed

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A

    2015-06-12

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics.

  2. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle

    PubMed Central

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A.

    2015-01-01

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics. PMID:26068304

  3. Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications.

    PubMed

    Sanz-García, Marta; Vázquez-Cedeira, Marta; Kellerman, Efrat; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A

    2011-12-21

    Protein phosphorylation by kinases plays a central role in the regulation and coordination of multiple biological processes. In general, knowledge on kinase specificity is restricted to substrates identified in the context of specific cellular responses, but kinases are likely to have multiple additional substrates and be integrated in signaling networks that might be spatially and temporally different, and in which protein complexes and subcellular localization can play an important role. In this report the substrate specificity of atypical human vaccinia-related kinases (VRK1 and VRK2) using a human peptide-array containing 1080 sequences phosphorylated in known signaling pathways has been studied. The two kinases identify a subset of potential peptide targets, all of them result in a consensus sequence composed of at least four basic residues in peptide targets. Linear peptide arrays are therefore a useful approach in the characterization of kinases and substrate identification, which can contribute to delineate the signaling network in which VRK proteins participate. One of these target proteins is coilin; a basic protein located in nuclear Cajal bodies. Coilin is phosphorylated in Ser184 by both VRK1 and VRK2. Coilin colocalizes and interacts with VRK1 in Cajal bodies, but not with the mutant VRK1 (R358X). VRK1 (R358X) is less active than VRK1. Altered regulation of coilin might be implicated in several neurological diseases such as ataxias and spinal muscular atrophies.

  4. Coiled bodies without coilin.

    PubMed Central

    Bauer, D W; Gall, J G

    1997-01-01

    Nuclei assembled in vitro in Xenopus egg extract contain coiled bodies that have components from three different RNA processing pathways: pre-mRNA splicing, pre-rRNA processing, and histone pre-mRNA 3'-end formation. In addition, they contain SPH-1, the Xenopus homologue of p80-coilin, a protein characteristic of coiled bodies. To determine whether coilin is an essential structural component of the coiled body, we removed it from the egg extract by immunoprecipitation. We showed that nuclei with bodies morphologically identical to coiled bodies (at the light microscope level) formed in such coilin-depleted extract. As expected, these bodies did not stain with antibodies against coilin. Moreover, they failed to stain with an antibody against the Sm proteins, although Sm proteins associated with snRNAs were still present in the extract. Staining of the coilin- and Sm-depleted coiled bodies was normal with antibodies against two nucleolar proteins, fibrillarin and nucleolin. Similar results were observed when Sm proteins were depleted from egg extract: staining of the coiled bodies with antibodies against the Sm proteins and coilin was markedly reduced but bright nucleolin and fibrillarin staining remained. These immunodepletion experiments demonstrate an interdependence between coilin and Sm snRNPs and suggest that neither is essential for assembly of nucleolar components in coiled bodies. We propose that coiled bodies are structurally heterogeneous organelles in which the components of the three RNA processing pathways may occur in separate compartments. Images PMID:9017596

  5. Human UBL5 protein interacts with coilin and meets the Cajal bodies

    SciTech Connect

    Švéda, Martin; Častorálová, Markéta; Lipov, Jan; Ruml, Tomáš; Knejzlík, Zdeněk

    2013-06-28

    Highlights: •Localization of the UBL5 protein in Hela cells was determined by fluorescence microscopy and biochemical fractionation. •Colocalization of UBL5 with Cajal bodies was observed. •Interaction of UBL5 with coilin was proven by pull-down. -- Abstract: UBL5 protein, a structural homologue of ubiquitin, was shown to be involved in pre-mRNA splicing and transcription regulation in yeast and Caenorhabditis elegans, respectively. However, role of the UBL5 human orthologue is still elusive. In our study, we observed that endogenous human UBL5 that was localized in the nucleus, partially associates with Cajal bodies (CBs), nuclear domains where spliceosomal components are assembled. Simultaneous expression of exogenous UBL5 and coilin resulted in their nuclear colocalization in HeLa cells. The ability of UBL5 to interact with coilin was proved by GST pull-down assay using coilin that was either in vitro translated or extracted from HEK293T cells. Further, our results showed that the UBL5–coilin interaction was not influenced by coilin phosphorylation. These results suggest that UBL5 could be targeted to CBs via its interaction with coilin. Relation between human UBL5 protein and CBs is in the agreement with current observations about yeast orthologue Hub1 playing important role in alternative splicing.

  6. Human UBL5 protein interacts with coilin and meets the Cajal bodies.

    PubMed

    Svéda, Martin; Castorálová, Markéta; Lipov, Jan; Ruml, Tomáš; Knejzlík, Zdeněk

    2013-06-28

    UBL5 protein, a structural homologue of ubiquitin, was shown to be involved in pre-mRNA splicing and transcription regulation in yeast and Caenorhabditis elegans, respectively. However, role of the UBL5 human orthologue is still elusive. In our study, we observed that endogenous human UBL5 that was localized in the nucleus, partially associates with Cajal bodies (CBs), nuclear domains where spliceosomal components are assembled. Simultaneous expression of exogenous UBL5 and coilin resulted in their nuclear colocalization in HeLa cells. The ability of UBL5 to interact with coilin was proved by GST pull-down assay using coilin that was either in vitro translated or extracted from HEK293T cells. Further, our results showed that the UBL5-coilin interaction was not influenced by coilin phosphorylation. These results suggest that UBL5 could be targeted to CBs via its interaction with coilin. Relation between human UBL5 protein and CBs is in the agreement with current observations about yeast orthologue Hub1 playing important role in alternative splicing.

  7. Coilin: The first 25 years

    PubMed Central

    Machyna, Martin; Neugebauer, Karla M; Staněk, David

    2015-01-01

    Initially identified as a marker of coiled bodies (now Cajal bodies or CBs), the protein coilin was discovered a quarter of century ago. Coilin is now known to scaffold the CB, but its structure and function are poorly understood. Nearly devoid of predicted structural motifs, coilin has numerous reported molecular interactions that must underlie its role in the formation and function of CBs. In this review, we summarize what we have learned in the past 25 years about coilin's structure, post-transcriptional modifications, and interactions with RNA and proteins. We show that genes with homology to human coilin are found in primitive metazoans and comment on differences among model organisms. Coilin's function in Cajal body formation and RNP metabolism will be discussed in the light of these developments. PMID:25970135

  8. Interactions between coilin and PIASy partially link Cajal bodies to PML bodies.

    PubMed

    Sun, Jun; Xu, Hongzhi; Subramony, S H; Hebert, Michael D

    2005-11-01

    The eukaryotic nucleus contains a variety of dynamic structures, yet studies into the functional relationship of one type of subnuclear domain to another have been limited. For example, PML bodies and Cajal bodies associate, but the functional consequence of this association and the mediating factors are unknown. Here we report that an associated PML body/Cajal body can co-localize to an snRNA gene locus, with the Cajal body invariably situated between the PML body and the snRNA locus. Binding studies demonstrate that coilin (a Cajal body protein) directly interacts with PIASy (a PML body protein). Cell biological experiments using coilin and PIASy knockout cell lines demonstrate that interactions between coilin and PIASy account in part for the observed association of Cajal bodies with PML bodies. When the PIASy interaction region on coilin is deleted, the frequency of the association between Cajal bodies and PML bodies is reduced. These studies provide another example of coilin's role in the functional organization of the nucleus.

  9. Coilin Is Essential for Cajal Body Organization in Drosophila melanogaster

    PubMed Central

    Liu, Ji-Long; Wu, Zheng'an; Nizami, Zehra; Deryusheva, Svetlana; Rajendra, T.K.; Beumer, Kelly J.; Gao, Hongjuan; Matera, A. Gregory; Carroll, Dana

    2009-01-01

    Cajal bodies (CBs) are nuclear organelles that occur in a variety of organisms, including vertebrates, insects, and plants. They are most often identified with antibodies against the marker protein coilin. Because the amino acid sequence of coilin is not strongly conserved evolutionarily, coilin orthologues have been difficult to recognize by homology search. Here, we report the identification of Drosophila melanogaster coilin and describe its distribution in tissues of the fly. Surprisingly, we found coilin not only in CBs but also in histone locus bodies (HLBs), calling into question the use of coilin as an exclusive marker for CBs. We analyzed two null mutants in the coilin gene and a piggyBac insertion mutant, which leads to specific loss of coilin from the germline. All three mutants are homozygous viable and fertile. Cells that lack coilin also lack distinct foci of other CB markers, including fibrillarin, the survival motor neuron (SMN) protein, U2 small nuclear RNA (snRNA), U5 snRNA, and the small CB-specific (sca) RNA U85. However, HLBs are not obviously affected in coilin-null flies. Thus, coilin is required for normal CB organization in Drosophila but is not essential for viability or production of functional gametes. PMID:19158395

  10. Queuine mediated inhibition in phosphorylation of tyrosine phosphoproteins in cancer.

    PubMed

    Pathak, Chandramani; Jaiswal, Yogesh K; Vinayak, Manjula

    2008-09-01

    Protein phosphorylation or dephosphorylation is the most important regulatory switch of signal transduction contributing to control of cell proliferation. The reversibility of phosphorylation and dephosphorylation is due to the activities of kinases and phosphatase, which determine protein phosphorylation level of cell under different physiological and pathological conditions. Receptor tyrosine kinase (RTK) mediated cellular signaling is precisely coordinated and tightly controlled in normal cells which ensures regulated mitosis. Deregulation of RTK signaling resulting in aberrant activation in RTKs leads to malignant transformation. Queuine is one of the modified base of tRNA which participates in down regulation of tyrosine kinase activity. The guanine analogue queuine is a nutrient factor to eukaryotes and occurs as free base or modified nucleoside queuosine into the first anticodon position of specific tRNAs. The tRNAs are often queuine deficient in cancer and fast proliferating tissues. The present study is aimed to investigate queuine mediated inhibition in phosphorylation of tyrosine phosphorylated proteins in lymphoma bearing mouse. The result shows high level of cytosolic and membrane associated tyrosine phosphoprotein in DLAT cancerous mouse liver compared to normal. Queuine treatments down regulate the level of tyrosine phosphoproteins, which suggests that queuine is involved in regulation of mitotic signaling pathways.

  11. Regulated specific proteolysis of the Cajal body marker protein coilin.

    PubMed

    Velma, Venkatramreddy; Broome, Hanna J; Hebert, Michael D

    2012-12-01

    Cajal bodies (CB) are subnuclear domains that contain various proteins with diverse functions including the CB marker protein coilin. In this study, we investigate the proteolytic activity of calpain on coilin. Here, we report a 28-kDa cleaved coilin fragment detected by two coilin antibodies that is cell cycle regulated, with levels that are consistently reduced during mitosis. We further show that an in vitro calpain assay with full-length or C-terminal coilin recombinant protein releases the same size cleaved fragment. Furthermore, addition of exogenous RNA to purified coilin induces proteolysis by calpain. We also report that the relative levels of this cleaved coilin fragment are susceptible to changes induced by various cell stressors, and that coilin localization is affected by inhibition or knockdown of calpain both under normal and stressed conditions. Collectively, our data suggest that coilin is subjected to regulated specific proteolysis by calpain, and this processing may play a role in the regulation of coilin activity and CB formation.

  12. Coilin Shuttles between the Nucleus and Cytoplasm In Xenopus Oocytes

    PubMed Central

    Bellini, Michel; Gall, Joseph G.

    1999-01-01

    Coiled bodies are discrete nuclear organelles often identified by the marker protein p80-coilin. Because coilin is not detected in the cytoplasm by immunofluorescence and Western blotting, it has been considered an exclusively nuclear protein. In the Xenopus germinal vesicle (GV), most coilin actually resides in the nucleoplasm, although it is highly concentrated in 50–100 coiled bodies. When affinity-purified anti-coilin antibodies were injected into the cytoplasm of oocytes, they could be detected in coiled bodies within 2–3 h. Coiled bodies were intensely labeled after 18 h, whereas other nuclear organelles remained negative. Because the nuclear envelope does not allow passive diffusion of immunoglobulins, this observation suggests that anti-coilin antibodies are imported into the nucleus as an antigen–antibody complex with coilin. Newly synthesized coilin is not required, because cycloheximide had no effect on nuclear import and subsequent targeting of the antibodies. Additional experiments with myc-tagged coilin and myc-tagged pyruvate kinase confirmed that coilin is a shuttling protein. The shuttling of Nopp140, NO38/B23, and nucleolin was easily demonstrated by the targeting of their respective antibodies to the nucleoli, whereas anti-SC35 did not enter the germinal vesicle. We suggest that coilin, perhaps in association with Nopp140, may function as part of a transport system between the cytoplasm and the coiled bodies. PMID:10512877

  13. Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy.

    PubMed

    Xu, Jinxian; Chen, Jianchun; Dong, Zheng; Meyuhas, Oded; Chen, Jian-Kang

    2015-03-01

    The molecular mechanism underlying renal hypertrophy and progressive nephron damage remains poorly understood. Here we generated congenic ribosomal protein S6 (rpS6) knock-in mice expressing nonphosphorylatable rpS6 and found that uninephrectomy-induced renal hypertrophy was significantly blunted in these knock-in mice. Uninephrectomy-induced increases in cyclin D1 and decreases in cyclin E in the remaining kidney were attenuated in the knock-in mice compared with their wild-type littermates. Uninephrectomy induced rpS6 phosphorylation in the wild-type mice; however, no rpS6 phosphorylation was detected in uninephrectomized or sham-operated knock-in mice. Nonetheless, uninephrectomy stimulated comparable 4E-BP1 phosphorylation in both knock-in and wild-type mice, indicating that mTORC1 was still activated in the knock-in mice. Moreover, the mTORC1 inhibitor rapamycin prevented both rpS6 and 4E-BP1 phosphorylation, significantly blunted uninephrectomy-induced renal hypertrophy in wild-type mice, but did not prevent residual renal hypertrophy despite inhibiting 4E-BP1 phosphorylation in uninephrectomized knock-in mice. Thus, both genetic and pharmacological approaches unequivocally demonstrate that phosphorylated rpS6 is a downstream effector of the mTORC1-S6K1 signaling pathway mediating renal hypertrophy. Hence, rpS6 phosphorylation facilitates the increase in cyclin D1 and decrease in cyclin E1 that underlie the hypertrophic nature of uninephrectomy-induced kidney growth.

  14. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing.

    PubMed

    Golden, Ryan J; Chen, Beibei; Li, Tuo; Braun, Juliane; Manjunath, Hema; Chen, Xiang; Wu, Jiaxi; Schmid, Vanessa; Chang, Tsung-Cheng; Kopp, Florian; Ramirez-Martinez, Andres; Tagliabracci, Vincent S; Chen, Zhijian J; Xie, Yang; Mendell, Joshua T

    2017-02-09

    MicroRNAs (miRNAs) perform critical functions in normal physiology and disease by associating with Argonaute proteins and downregulating partially complementary messenger RNAs (mRNAs). Here we use clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) genome-wide loss-of-function screening coupled with a fluorescent reporter of miRNA activity in human cells to identify new regulators of the miRNA pathway. By using iterative rounds of screening, we reveal a novel mechanism whereby target engagement by Argonaute 2 (AGO2) triggers its hierarchical, multi-site phosphorylation by CSNK1A1 on a set of highly conserved residues (S824-S834), followed by rapid dephosphorylation by the ANKRD52-PPP6C phosphatase complex. Although genetic and biochemical studies demonstrate that AGO2 phosphorylation on these residues inhibits target mRNA binding, inactivation of this phosphorylation cycle globally impairs miRNA-mediated silencing. Analysis of the transcriptome-wide binding profile of non-phosphorylatable AGO2 reveals a pronounced expansion of the target repertoire bound at steady-state, effectively reducing the active pool of AGO2 on a per-target basis. These findings support a model in which an AGO2 phosphorylation cycle stimulated by target engagement regulates miRNA:target interactions to maintain the global efficiency of miRNA-mediated silencing.

  15. Atomic force microscopy characterization of kinase-mediated phosphorylation of a peptide monolayer

    PubMed Central

    Zhuravel, Roman; Amit, Einav; Elbaz, Shir; Rotem, Dvir; Chen, Yu-Ju; Friedler, Assaf; Yitzchaik, Shlomo; Porath, Danny

    2016-01-01

    We describe the detailed microscopic changes in a peptide monolayer following kinase-mediated phosphorylation. A reversible electrochemical transformation was observed using square wave voltammetry (SWV) in the reversible cycle of peptide phosphorylation by ERK2 followed by dephosphorylation by alkaline phosphatase. A newly developed method for analyzing local roughness, measured by atomic force microscope (AFM), showed a bimodal distribution. This may indicate either a hole-formation mechanism and/or regions on the surface in which the peptide changed its conformation upon phosphorylation, resulting in increased roughness and current. Our results provide the mechanistic basis for developing biosensors for detecting kinase-mediated phosphorylation in disease. PMID:27841355

  16. Atomic force microscopy characterization of kinase-mediated phosphorylation of a peptide monolayer

    NASA Astrophysics Data System (ADS)

    Zhuravel, Roman; Amit, Einav; Elbaz, Shir; Rotem, Dvir; Chen, Yu-Ju; Friedler, Assaf; Yitzchaik, Shlomo; Porath, Danny

    2016-11-01

    We describe the detailed microscopic changes in a peptide monolayer following kinase-mediated phosphorylation. A reversible electrochemical transformation was observed using square wave voltammetry (SWV) in the reversible cycle of peptide phosphorylation by ERK2 followed by dephosphorylation by alkaline phosphatase. A newly developed method for analyzing local roughness, measured by atomic force microscope (AFM), showed a bimodal distribution. This may indicate either a hole-formation mechanism and/or regions on the surface in which the peptide changed its conformation upon phosphorylation, resulting in increased roughness and current. Our results provide the mechanistic basis for developing biosensors for detecting kinase-mediated phosphorylation in disease.

  17. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts.

    PubMed

    Furukawa, Fukiko; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yoshida, Katsunori; Sugano, Yasushi; Yamagata, Hideo; Matsushita, Masanori; Seki, Toshihito; Inagaki, Yutaka; Nishizawa, Mikio; Fujisawa, Junichi; Inoue, Kyoichi

    2003-10-01

    Hepatic stellate cells (HSCs) spontaneously transdifferentiate into myofibroblast (MFB)-phenotype on plastic dishes. This response recapitulates the features of activation in vivo. Transforming growth factor beta (TGF-beta) plays a prominent role in stimulating liver fibrogenesis by MFBs. In quiescent HSCs, TGF-beta signaling involves TGF-beta type I receptor (TbetaRI)-mediated phosphorylation of serine residues within the conserved SSXS motif at the C-terminus of Smad2 and Smad3. The middle linker regions of Smad2 and Smad3 also are phosphorylated by mitogen-activated protein kinase (MAPK). This study elucidates the change of Smad3-mediated signals during the transdifferentiation process. By using antibodies highly specific to the phosphorylated C-terminal region and the phosphorylated linker region of Smad3, we found that TGF-beta-dependent Smad3 phosphorylation at the C-terminal region decreased, but that the phosphorylation at the linker region increased in the process of transdifferentiation. TGF-beta activated the p38 MAPK pathway, further leading to Smad3 phosphorylation at the linker region in the cultured MFBs, irrespective of Smad2. The phosphorylation promoted hetero-complex formation and nuclear translocation of Smad3 and Smad4. Once combined with TbetaRI-phosphorylated Smad2, the Smad3 and Smad4 complex bound to plasminogen activator inhibitor-type I promoter could enhance the transcription. In addition, Smad3 phosphorylation mediated by the activated TbetaRI was impaired severely in MFBs during chronic liver injury, whereas Smad3 phosphorylation at the linker region was remarkably induced by p38 MAPK pathway. In conclusion, p38 MAPK-dependent Smad3 phosphorylation promoted extracellular matrix production in MFBs both in vitro and in vivo.

  18. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  19. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission

    PubMed Central

    Jungas, Thomas; Perchey, Renaud T.; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud

    2016-01-01

    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  20. PKCdelta-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function.

    PubMed

    Greene, Michael W; Ruhoff, Mary S; Roth, Richard A; Kim, Jeong-A; Quon, Michael J; Krause, Jean A

    2006-10-27

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCdelta on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCdelta-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCdelta catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.

  1. PKC{delta}-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    SciTech Connect

    Greene, Michael W. . E-mail: michael.greene@bassett.org; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-10-27

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKC{delta} on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKC{delta}-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKC{delta} catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.

  2. Cyclic AMP-dependent phosphorylation of neuronal nitric oxide synthase mediates penile erection.

    PubMed

    Hurt, K Joseph; Sezen, Sena F; Lagoda, Gwen F; Musicki, Biljana; Rameau, Gerald A; Snyder, Solomon H; Burnett, Arthur L

    2012-10-09

    Nitric oxide (NO) generated by neuronal NO synthase (nNOS) initiates penile erection, but has not been thought to participate in the sustained erection required for normal sexual performance. We now show that cAMP-dependent phosphorylation of nNOS mediates erectile physiology, including sustained erection. nNOS is phosphorylated by cAMP-dependent protein kinase (PKA) at serine(S)1412. Electrical stimulation of the penile innervation increases S1412 phosphorylation that is blocked by PKA inhibitors but not by PI3-kinase/Akt inhibitors. Stimulation of cAMP formation by forskolin also activates nNOS phosphorylation. Sustained penile erection elicited by either intracavernous forskolin injection, or augmented by forskolin during cavernous nerve electrical stimulation, is prevented by the NOS inhibitor L-NAME or in nNOS-deleted mice. Thus, nNOS mediates both initiation and maintenance of penile erection, implying unique approaches for treating erectile dysfunction.

  3. PKCθ-Mediated PDK1 Phosphorylation Enhances T Cell Activation by Increasing PDK1 Stability

    PubMed Central

    Kang, Jung-Ah; Choi, Hyunwoo; Yang, Taewoo; Cho, Steve K.; Park, Zee-Yong; Park, Sung-Gyoo

    2017-01-01

    PDK1 is essential for T cell receptor (TCR)-mediated activation of NF-κB, and PDK1-induced phosphorylation of PKCθ is important for TCR-induced NF-κB activation. However, inverse regulation of PDK1 by PKCθ during T cell activation has not been investigated. In this study, we found that PKCθ is involved in human PDK1 phosphorylation and that its kinase activity is crucial for human PDK1 phosphorylation. Mass spectrometry analysis of wild-type PKCθ or of kinase-inactive form of PKCθ revealed that PKCθ induced phosphorylation of human PDK1 at Ser-64. This PKCθ-induced PDK1 phosphorylation positively regulated T cell activation and TCR-induced NF-κB activation. Moreover, phosphorylation of human PDK1 at Ser-64 increased the stability of human PDK1 protein. These results suggest that Ser-64 is an important phosphorylation site that is part of a positive feedback loop for human PDK1-PKCθ-mediated T cell activation. PMID:28152304

  4. Phosphorylation in isolated Chlamydomonas axonemes: a phosphoprotein may mediate the Ca2+-dependent photophobic response

    PubMed Central

    1985-01-01

    An in vitro system was devised for studying phosphorylation of Chlamydomonas reinhardtii axonemal proteins. Many of the polypeptides phosphorylated in this system could be identified as previously described axonemal components that are phosphorylated in vivo. The in vitro system apparently preserved the activities of diverse axonemal kinases without greatly altering the substrate specificity of the enzymes. The in vitro system was used to study the effect of calcium concentration on axonemal protein phosphorylation. Calcium has previously been demonstrated to initiate the axonemal reversal reaction of the photophobic response; the in vitro system made it possible to investigate the possibility that this calcium effect is mediated by protein phosphorylation. Calcium specifically altered the phosphorylation of only two axonemal proteins; the phosphorylation of an otherwise unidentified 85,000 Mr protein was repressed by calcium concentrations greater than or equal to 10(-6) M, while the phosphorylation of the previously identified 95,000 Mr protein b4 was stimulated by calcium at concentrations greater than 10(-6) M. Protein b4 is one of six polypeptides that are deficient in the mbo mutants, strains that do not exhibit a photophobic reversal reaction. Therefore, this calcium-stimulated phosphorylation may be involved in initiating the photophobic response. Neither calmodulin nor the C-kinase could be implicated in b4 phosphorylation. The calcium-dependent activation of the b4 kinase was not affected by several drugs that bind to and inhibit calmodulin, or by the addition of exogenous calmodulin. Activators and inhibitors of the calcium-phospholipid-dependent C kinase also had no effect on b4 phosphorylation. PMID:4055893

  5. Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes

    PubMed Central

    Saucerman, Jeffrey J.; Zhang, Jin; Martin, Jody C.; Peng, Lili X.; Stenbit, Antine E.; Tsien, Roger Y.; McCulloch, Andrew D.

    2006-01-01

    Compartmentation and dynamics of cAMP and PKA signaling are important determinants of specificity among cAMP’s myriad cellular roles. Both cardiac inotropy and the progression of heart disease are affected by spatiotemporal variations in cAMP/PKA signaling, yet the dynamic patterns of PKA-mediated phosphorylation that influence differential responses to agonists have not been characterized. We performed live-cell imaging and systems modeling of PKA-mediated phosphorylation in neonatal cardiac myocytes in response to G-protein coupled receptor stimuli and UV photolysis of “caged” cAMP. cAMP accumulation was rate-limiting in PKA-mediated phosphorylation downstream of the β-adrenergic receptor. Prostaglandin E1 stimulated higher PKA activity in the cytosol than at the sarcolemma, whereas isoproterenol triggered faster sarcolemmal responses than cytosolic, likely due to restricted cAMP diffusion from submembrane compartments. Localized UV photolysis of caged cAMP triggered gradients of PKA-mediated phosphorylation, enhanced by phosphodiesterase activity and PKA-mediated buffering of cAMP. These findings indicate that combining live-cell FRET imaging and mechanistic computational models can provide quantitative understanding of spatiotemporal signaling. PMID:16905651

  6. Cangrelor-Mediated Cardioprotection Requires Platelets and Sphingosine Phosphorylation.

    PubMed

    Cohen, Michael V; Yang, Xi-Ming; White, James; Yellon, Derek M; Bell, Robert M; Downey, James M

    2016-04-01

    In animal models platelet P2Y12 receptor antagonists put the heart into a protected state, not as a result of suppressed thrombosis but rather through protective signaling, similar to that for ischemic postconditioning. While both ischemic postconditioning and the P2Y12 blocker cangrelor protect blood-perfused hearts, only the former protects buffer-perfused hearts indicating that the blocker requires a blood-borne constituent or factor to protect. We used an anti-platelet antibody to make thrombocytopenic rats to test if that factor resides within the platelet. Infarct size was measured in open-chest rats subjected to 30-min ischemia/2-h reperfusion. Infarct size was not different in thrombocytopenic rats showing that preventing aggregation alone is not protective. While ischemic preconditioning could reduce infarct size in thrombocytopenic rats, the P2Y12 inhibitor cangrelor could not, indicating that it protects by interacting with some factor in the platelet. Ischemic preconditioning is known to require phosphorylation of sphingosine. In rats treated with dimethylsphingosine to block sphingosine kinase, cangrelor was no longer protective. Thus cangrelor's protective mechanism appears to also involve sphingosine kinase revealing yet another similarity to conditioning's mechanism.

  7. CDK8-Mediated STAT1-S727 Phosphorylation Restrains NK Cell Cytotoxicity and Tumor Surveillance

    PubMed Central

    Putz, Eva Maria; Gotthardt, Dagmar; Hoermann, Gregor; Csiszar, Agnes; Wirth, Silvia; Berger, Angelika; Straka, Elisabeth; Rigler, Doris; Wallner, Barbara; Jamieson, Amanda M.; Pickl, Winfried F.; Zebedin-Brandl, Eva Maria; Müller, Mathias; Decker, Thomas; Sexl, Veronika

    2013-01-01

    Summary The transcription factor STAT1 is important in natural killer (NK) cells, which provide immediate defense against tumor and virally infected cells. We show that mutation of a single phosphorylation site (Stat1-S727A) enhances NK cell cytotoxicity against a range of tumor cells, accompanied by increased expression of perforin and granzyme B. Stat1-S727A mice display significantly delayed disease onset in NK cell-surveilled tumor models including melanoma, leukemia, and metastasizing breast cancer. Constitutive phosphorylation of S727 depends on cyclin-dependent kinase 8 (CDK8). Inhibition of CDK8-mediated STAT1-S727 phosphorylation may thus represent a therapeutic strategy for stimulating NK cell-mediated tumor surveillance. PMID:23933255

  8. Perilipin Promotes HSL-Mediated Adipocyte Lipolysis via Phosphorylation-dependent and Independent Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis, in response to catecholamines, is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-ass...

  9. Serine 133 Phosphorylation Is Not Required for Hippocampal CREB-Mediated Transcription and Behavior

    ERIC Educational Resources Information Center

    Brian, Lisa A.; Lee, Bridgin G.; Lelay, John; Kaestner, Klaus H.; Blendy, Julie A.

    2015-01-01

    The cAMP response element (CRE)-binding protein, CREB, is a transcription factor whose activity in the brain is critical for long-term memory formation. Phosphorylation of Ser133 in the kinase-inducible domain (KID), that in turn leads to the recruitment of the transcriptional coactivator CREB-binding protein (CBP), is thought to mediate the…

  10. Cdc2-mediated phosphorylation of CLIP-170 is essential for its inhibition of centrosome reduplication.

    PubMed

    Yang, Xiaoming; Li, Hongchang; Liu, X Shawn; Deng, Anping; Liu, Xiaoqi

    2009-10-16

    CLIP-170, the founding member of microtubule "plus ends tracking" proteins, is involved in many critical microtubule-related functions, including recruitment of dynactin to the microtubule plus ends and formation of kinetochore-microtubule attachments during metaphase. Although it has been reported that CLIP-170 is a phosphoprotein, neither have individual phosphorylation sites been identified nor have the associated kinases been extensively studied. Herein, we identify Cdc2 as a kinase that phosphorylates CLIP-170. We show that Cdc2 interacts with CLIP-170 mediating its phosphorylation on Thr(287) in vivo. Significantly, expression of CLIP-170 with a threonine 287 to alanine substitution (T287A) results in its mislocalization, accumulation of Plk1 and cyclin B, and block of the G2/M transition. Finally, we found that depletion of CLIP-170 leads to centrosome reduplication and that Cdc2 phosphorylation of CLIP-170 is required for the process. These results demonstrate that Cdc2-mediated phosphorylation of CLIP-170 is essential for the normal function of this protein during cell cycle progression.

  11. Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses

    PubMed Central

    Okumura, Satoshi; Fujita, Takayuki; Cai, Wenqian; Jin, Meihua; Namekata, Iyuki; Mototani, Yasumasa; Jin, Huiling; Ohnuki, Yoshiki; Tsuneoka, Yayoi; Kurotani, Reiko; Suita, Kenji; Kawakami, Yuko; Hamaguchi, Shogo; Abe, Takaya; Kiyonari, Hiroshi; Tsunematsu, Takashi; Bai, Yunzhe; Suzuki, Sayaka; Hidaka, Yuko; Umemura, Masanari; Ichikawa, Yasuhiro; Yokoyama, Utako; Sato, Motohiko; Ishikawa, Fumio; Izumi-Nakaseko, Hiroko; Adachi-Akahane, Satomi; Tanaka, Hikaru; Ishikawa, Yoshihiro

    2014-01-01

    PKA phosphorylates multiple molecules involved in calcium (Ca2+) handling in cardiac myocytes and is considered to be the predominant regulator of β-adrenergic receptor–mediated enhancement of cardiac contractility; however, recent identification of exchange protein activated by cAMP (EPAC), which is independently activated by cAMP, has challenged this paradigm. Mice lacking Epac1 (Epac1 KO) exhibited decreased cardiac contractility with reduced phospholamban (PLN) phosphorylation at serine-16, the major PKA-mediated phosphorylation site. In Epac1 KO mice, intracellular Ca2+ storage and the magnitude of Ca2+ movement were decreased; however, PKA expression remained unchanged, and activation of PKA with isoproterenol improved cardiac contractility. In contrast, direct activation of EPAC in cardiomyocytes led to increased PLN phosphorylation at serine-16, which was dependent on PLC and PKCε. Importantly, Epac1 deletion protected the heart from various stresses, while Epac2 deletion was not protective. Compared with WT mice, aortic banding induced a similar degree of cardiac hypertrophy in Epac1 KO; however, lack of Epac1 prevented subsequent cardiac dysfunction as a result of decreased cardiac myocyte apoptosis and fibrosis. Similarly, Epac1 KO animals showed resistance to isoproterenol- and aging-induced cardiomyopathy and attenuation of arrhythmogenic activity. These data support Epac1 as an important regulator of PKA-independent PLN phosphorylation and indicate that Epac1 regulates cardiac responsiveness to various stresses. PMID:24892712

  12. Phosphorylation and SCF-mediated degradation regulate CREB-H transcription of metabolic targets

    PubMed Central

    Barbosa, Sónia; Carreira, Suzanne; Bailey, Daniel; Abaitua, Fernando; O'Hare, Peter

    2015-01-01

    CREB‑H, an endoplasmic reticulum–anchored transcription factor, plays a key role in regulating secretion and in metabolic and inflammatory pathways, but how its activity is modulated remains unclear. We examined processing of the nuclear active form and identified a motif around S87–S90 with homology to DSG-type phosphodegrons. We show that this region is subject to multiple phosphorylations, which regulate CREB-H stability by targeting it to the SCFFbw1a E3 ubiquitin ligase. Data from phosphatase treatment, use of phosophospecific antibody, and substitution of serine residues demonstrate phosphorylation of candidate serines in the region, with the core S87/S90 motif representing a critical determinant promoting proteasome-mediated degradation. Candidate kinases CKII and GSK-3b phosphorylate CREB-H in vitro with specificities for different serines. Prior phosphorylation with GSK-3 at one or more of the adjacent serines substantially increases S87/S90-dependent phosphorylation by CKII. In vivo expression of a dominant-negative Cul1 enhances steady-state levels of CREB‑H, an effect augmented by Fbw1a. CREB-H directly interacts with Fbw1a in a phosphorylation-dependent manner. Finally, mutations within the phosphodegron, when incorporated into the full-length protein, result in increased levels of constitutively cleaved nuclear protein and increased transcription and secretion of a key endogenous target gene, apolipoprotein A IV. PMID:26108621

  13. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis.

    PubMed

    Rosenbaek, Lena L; Kortenoeven, Marleen L A; Aroankins, Takwa S; Fenton, Robert A

    2014-05-09

    The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT.

  14. CaMKII Phosphorylation of TARPγ-8 Is a Mediator of LTP and Learning and Memory.

    PubMed

    Park, Joongkyu; Chávez, Andrés E; Mineur, Yann S; Morimoto-Tomita, Megumi; Lutzu, Stefano; Kim, Kwang S; Picciotto, Marina R; Castillo, Pablo E; Tomita, Susumu

    2016-10-05

    Protein phosphorylation is an essential step for the expression of long-term potentiation (LTP), a long-lasting, activity-dependent strengthening of synaptic transmission widely regarded as a cellular mechanism underlying learning and memory. At the core of LTP is the synaptic insertion of AMPA receptors (AMPARs) triggered by the NMDA receptor-dependent activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, the CaMKII substrate that increases AMPAR-mediated transmission during LTP remains elusive. Here, we identify the hippocampus-enriched TARPγ-8, but not TARPγ-2/3/4, as a critical CaMKII substrate for LTP. We found that LTP induction increases TARPγ-8 phosphorylation, and that CaMKII-dependent enhancement of AMPAR-mediated transmission requires CaMKII phosphorylation sites of TARPγ-8. Moreover, LTP and memory formation, but not basal transmission, are significantly impaired in mice lacking CaMKII phosphorylation sites of TARPγ-8. Together, these findings demonstrate that TARPγ-8 is a crucial mediator of CaMKII-dependent LTP and therefore a molecular target that controls synaptic plasticity and associated cognitive functions.

  15. Coilin displays differential affinity for specific RNAs in vivo and is linked to telomerase RNA biogenesis

    PubMed Central

    Broome, Hanna J.; Hebert, Michael D.

    2013-01-01

    Coilin is widely known as the protein marker of the Cajal body, a subnuclear domain important to the biogenesis of small nuclear ribonucleoproteins and telomerase, complexes that are crucial to pre-messenger RNA splicing and telomere maintenance, respectively. Extensive studies have characterized the interaction between coilin and the various other protein components of CBs and related subnuclear domains, however only a few have examined interactions between coilin and nucleic acid. We have recently published that coilin is tightly associated with nucleic acid, displays RNase activity in vitro, and isre-distributed to the rRNA-rich nucleoli in cells treated with the DNA damaging agentscisplatin or etoposide. Here, we report a specific in vivo association between coilin and ribosomal RNA (rRNA), U small nuclear RNA (snRNA) and human telomerase RNA (hTR), which is altered upon treatment with DNA damaging agents. Using chromatin IP (ChIP), we provide evidence of coilin interaction with specific regions of U snRNA gene loci. We have also utilized bacterially expressed coilin fragments in order to map the region(s) important for RNA binding and RNase activity in vitro. Additionally, we provide evidence of coilin involvement in the processing of hTR both in vitro and in vivo. PMID:23274112

  16. LK6/Mnk2a is a new kinase of alpha synuclein phosphorylation mediating neurodegeneration.

    PubMed

    Zhang, Shiqing; Xie, Jiang; Xia, Ying; Yu, Shu; Gu, Zhili; Feng, Ruili; Luo, Guanghong; Wang, Dong; Wang, Kai; Jiang, Meng; Cheng, Xiao; Huang, Hai; Zhang, Wu; Wen, Tieqiao

    2015-07-29

    Parkinson's disease (PD) is a movement disorder due to the loss of dopaminergic (DA) neurons in the substantia nigra. Alpha-synuclein phosphorylation and α-synuclein inclusion (Lewy body) become a main contributor, but little is known about their formation mechanism. Here we used protein expression profiling of PD to construct a model of their signalling network from drsophila to human and nominate major nodes that regulate PD development. We found in this network that LK6, a serine/threonine protein kinase, plays a key role in promoting α-synuclein Ser129 phosphorylation by identification of LK6 knockout and overexpression. In vivo test was further confirmed that LK6 indeed enhances α-synuclein phosphorylation, accelerates the death of dopaminergic neurons, reduces the climbing ability and shortens the the life span of drosophila. Further, MAP kinase-interacting kinase 2a (Mnk2a), a human homolog of LK6, also been shown to make α-synuclein phosphorylation and leads to α-synuclein inclusion formation. On the mechanism, the phosphorylation mediated by LK6 and Mnk2a is controlled through ERK signal pathway by phorbolmyristate acetate (PMA) avtivation and PD98059 inhibition. Our findings establish pivotal role of Lk6 and Mnk2a in unprecedented signalling networks, may lead to new therapies preventing α-synuclein inclusion formation and neurodegeneration.

  17. Regulation of DNA methylation patterns by CK2-mediated phosphorylation of Dnmt3a.

    PubMed

    Deplus, Rachel; Blanchon, Loïc; Rajavelu, Arumugam; Boukaba, Abdelhalim; Defrance, Matthieu; Luciani, Judith; Rothé, Françoise; Dedeurwaerder, Sarah; Denis, Hélène; Brinkman, Arie B; Simmer, Femke; Müller, Fabian; Bertin, Benjamin; Berdasco, Maria; Putmans, Pascale; Calonne, Emilie; Litchfield, David W; de Launoit, Yvan; Jurkowski, Tomasz P; Stunnenberg, Hendrik G; Bock, Christoph; Sotiriou, Christos; Fraga, Mario F; Esteller, Manel; Jeltsch, Albert; Fuks, François

    2014-08-07

    DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.

  18. Cajal body proteins SMN and Coilin show differential dynamic behaviour in vivo.

    PubMed

    Sleeman, Judith E; Trinkle-Mulcahy, Laura; Prescott, Alan R; Ogg, Stephen C; Lamond, Angus I

    2003-05-15

    Analysis of stable cell lines expressing fluorescently tagged survival of motor neurons protein (SMN) and coilin shows striking differences in their dynamic behaviour, both in the nucleus and during mitosis. Cajal bodies labelled with either FP-SMN or FP-coilin show similar behaviour and frequency of movements. However, fluorescence recovery after photobleaching (FRAP) studies show that SMN returns approximately 50-fold more slowly to Cajal bodies than does coilin. Time-lapse studies on cells progressing from prophase through to G1 show further differences between SMN and coilin, both in their localisation in telophase and in the timing of their re-entry into daughter nuclei. The data reveal similarities between Cajal bodies and nucleoli in their behaviour during mitosis. This in vivo study indicates that SMN and coilin interact differentially with Cajal bodies and reveals parallels in the pathway for reassembly of nucleoli and Cajal bodies following mitosis.

  19. The SMN Tudor SIM-like domain is key to SmD1 and coilin interactions and to Cajal body biogenesis.

    PubMed

    Tapia, Olga; Lafarga, Vanesa; Bengoechea, Rocio; Palanca, Ana; Lafarga, Miguel; Berciano, María T

    2014-03-01

    Cajal bodies (CBs) are nuclear organelles involved in the maturation of spliceosomal small nuclear ribonucleoproteins (snRNPs). They concentrate coilin, snRNPs and the survival motor neuron protein (SMN). Dysfunction of CB assembly occurs in spinal muscular atrophy (SMA). Here, we demonstrate that SMN is a SUMO1 target that has a small ubiquitin-related modifier (SUMO)-interacting motif (SIM)-like motif in the Tudor domain. The expression of SIM-like mutant constructs abolishes the interaction of SMN with the spliceosomal SmD1 (also known as SNRPD1), severely decreases SMN-coilin interaction and prevents CB assembly. Accordingly, the SMN SIM-like-mediated interactions are important for CB biogenesis and their dysfunction can be involved in SMA pathophysiology.

  20. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock

    PubMed Central

    Tamaru, Teruya; Hattori, Mitsuru; Honda, Kousuke; Nakahata, Yasukazu; Sassone-Corsi, Paolo; van der Horst, Gijsbertus T. J.; Ozawa, Takeaki; Takamatsu, Ken

    2015-01-01

    Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK)-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P) in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein–protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1–CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1–P-BMAL1 loop is an integral part of the core clock oscillator. PMID:26562092

  1. AKAP12 mediates PKA-induced phosphorylation of ATR to enhance nucleotide excision repair

    PubMed Central

    Jarrett, Stuart G.; Wolf Horrell, Erin M.; D'Orazio, John A.

    2016-01-01

    Loss-of-function in melanocortin 1 receptor (MC1R), a GS protein-coupled receptor that regulates signal transduction through cAMP and protein kinase A (PKA) in melanocytes, is a major inherited melanoma risk factor. Herein, we report a novel cAMP-mediated response for sensing and responding to UV-induced DNA damage regulated by A-kinase-anchoring protein 12 (AKAP12). AKAP12 is identified as a necessary participant in PKA-mediated phosphorylation of ataxia telangiectasia mutated and Rad3-related (ATR) at S435, a post-translational event required for cAMP-enhanced nucleotide excision repair (NER). Moreover, UV exposure promotes ATR-directed phosphorylation of AKAP12 at S732, which promotes nuclear translocation of AKAP12–ATR-pS435. This complex subsequently recruits XPA to UV DNA damage and enhances 5′ strand incision. Preventing AKAP12's interaction with PKA or with ATR abrogates ATR-pS435 accumulation, delays recruitment of XPA to UV-damaged DNA, impairs NER and increases UV-induced mutagenesis. Our results define a critical role for AKAP12 as an UV-inducible scaffold for PKA-mediated ATR phosphorylation, and identify a repair complex consisting of AKAP12–ATR-pS435-XPA at photodamage, which is essential for cAMP-enhanced NER. PMID:27683220

  2. NLK-mediated phosphorylation of HDAC1 negatively regulates Wnt signaling

    PubMed Central

    Masoumi, Katarzyna Chmielarska; Daams, Renée; Sime, Wondossen; Siino, Valentina; Ke, Hengning; Levander, Fredrik; Massoumi, Ramin

    2017-01-01

    The Wnt signaling pathway is essential in regulating various cellular processes. Different mechanisms of inhibition for Wnt signaling have been proposed. Besides β-catenin degradation through the proteasome, nemo-like kinase (NLK) is another molecule that is known to negatively regulate Wnt signaling. However, the mechanism by which NLK mediates the inhibition of Wnt signaling was not known. In the present study, we used primary embryonic fibroblast cells isolated from NLK-deficient mice and showed that these cells proliferate faster and have a shorter cell cycle than wild-type cells. In NLK-knockout cells, we observed sustained interaction between Lef1 and β-catenin, leading to elevated luciferase reporter of β-catenin/Lef1–mediated transcriptional activation. The mechanism for the reduced β-catenin/Lef1 promoter activation was explained by phosphorylation of HDAC1 at serine 421 via NLK. The phosphorylation of HDAC1 was achieved only in the presence of wild-type NLK because a catalytically inactive mutant of NLK was unable to phosphorylate HDAC1 and reduced the luciferase reporter of β-catenin/Lef1–mediated transcriptional activation. This result suggests that NLK and HDAC1 together negatively regulate Wnt signaling, which is vital in preventing aberrant proliferation of nontransformed primary fibroblast cells. PMID:27903773

  3. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance

    PubMed Central

    Petersen, Max C.; Madiraju, Anila K.; Gassaway, Brandon M.; Marcel, Michael; Nasiri, Ali R.; Butrico, Gina; Marcucci, Melissa J.; Zhang, Dongyan; Abulizi, Abudukadier; Zhang, Xian-Man; Philbrick, William; Hubbard, Stevan R.; Samuel, Varman T.; Rinehart, Jesse

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D), but whether NAFLD plays a causal role in the pathogenesis of T2D is uncertain. One proposed mechanism linking NAFLD to hepatic insulin resistance involves diacylglycerol-mediated (DAG-mediated) activation of protein kinase C-ε (PKCε) and the consequent inhibition of insulin receptor (INSR) kinase activity. However, the molecular mechanism underlying PKCε inhibition of INSR kinase activity is unknown. Here, we used mass spectrometry to identify the phosphorylation site Thr1160 as a PKCε substrate in the functionally critical INSR kinase activation loop. We hypothesized that Thr1160 phosphorylation impairs INSR kinase activity by destabilizing the active configuration of the INSR kinase, and our results confirmed this prediction by demonstrating severely impaired INSR kinase activity in phosphomimetic T1160E mutants. Conversely, the INSR T1160A mutant was not inhibited by PKCε in vitro. Furthermore, mice with a threonine-to-alanine mutation at the homologous residue Thr1150 (InsrT1150A mice) were protected from high fat diet–induced hepatic insulin resistance. InsrT1150A mice also displayed increased insulin signaling, suppression of hepatic glucose production, and increased hepatic glycogen synthesis compared with WT controls during hyperinsulinemic clamp studies. These data reveal a critical pathophysiological role for INSR Thr1160 phosphorylation and provide further mechanistic links between PKCε and INSR in mediating NAFLD-induced hepatic insulin resistance. PMID:27760050

  4. p38beta2-mediated phosphorylation and sumoylation of ATF7 are mutually exclusive.

    PubMed

    Camuzeaux, Barbara; Diring, Jessica; Hamard, Pierre-Jacques; Oulad-Abdelghani, Mustapha; Donzeau, Mariel; Vigneron, Marc; Kedinger, Claude; Chatton, Bruno

    2008-12-26

    The ubiquitous activating transcription factor (ATF) 7 binds as a homodimer to the cAMP response element/TPA response element motifs present in the promoters of its target genes. ATF7 is homologous to ATF2 and heterodimerizes with Jun or Fos proteins, modulating their DNA-binding specificities. We previously demonstrated that TAF12, a component of the TFIID general transcription factor, mediates ATF7 transcriptional activity through direct interactions between the two proteins. By contrast, ATF7, but not ATF2, is modified in vivo by sumoylation, which restricts its subcellular localization, thereby inhibiting its transcriptional activity. In the present study, we dissect the mechanism of this functional switch. We characterized the multisite phosphorylation of the ATF7 activation domain and identified one of the involved kinase, p38beta2 mitogen-activated protein kinase. In addition, we show that epidermal growth factor treatment results in a two-step modification mechanism of ATF7 activation domain. The Thr53 residue is phosphorylated first by a presently unknown kinase, allowing p38beta2 mitogen-activated protein kinase to modify the Thr51 residue, excluding the sumoylation of ATF7 protein. The resulting activation of transcription is related to an increased association of TAF12 with this phosphorylated form of ATF7. Our data therefore conclusively establish that sumoylation and phosphorylation of ATF7 are two antagonistic posttranslational modifications.

  5. WASH has a critical role in NK cell cytotoxicity through Lck-mediated phosphorylation

    PubMed Central

    Huang, L; Zhu, P; Xia, P; Fan, Z

    2016-01-01

    Natural killer (NK) cells are important effector cells of the innate immune system to kill certain virus-infected and transformed cells. Wiskott–Aldrich Syndrome protein (WASP) and SCAR homolog (WASH) has been identified as a member of WASP family proteins implicated in regulating the cytoskeletal reorganization, yet little is known about its function in lymphocytes. Here we demonstrate that WASH is crucial for NK cell cytotoxicity. WASH was found to colocalize with lytic granules upon NK cell activation. Knockdown of WASH expression substantially inhibited polarization and release of lytic granules to the immune synapse, resulting in the impairment of NK cell cytotoxicity. More importantly, our data also define a previously unappreciated mechanism for WASH function, in which Src family kinase Lck can interact with WASH and induce WASH phosphorylation. Mutation of tyrosine residue Y141, identified here as the major site of WASH phosphorylation, partially blocked WASH tyrosine phosphorylation and NK cell cytotoxicity. Taken together, these observations suggest that WASH has a pivotal role for regulation of NK cell cytotoxicity through Lck-mediated Y141 tyrosine phosphorylation. PMID:27441653

  6. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice.

    PubMed

    Gupta, Arun; Hunt, Clayton R; Hegde, Muralidhar L; Chakraborty, Sharmistha; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh, Mayank; Ramnarain, Deepti B; Hittelman, Walter N; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K; Ludwig, Thomas; Pandita, Raj K; Tyler, Jessica K; Pandita, Tej K

    2014-07-10

    Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.

  7. Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression.

    PubMed

    Wehrens, Xander H T; Lehnart, Stephan E; Reiken, Steven; Vest, John A; Wronska, Anetta; Marks, Andrew R

    2006-01-17

    Defective regulation of the cardiac ryanodine receptor (RyR2)/calcium release channel, required for excitation-contraction coupling in the heart, has been linked to cardiac arrhythmias and heart failure. For example, diastolic calcium "leak" via RyR2 channels in the sarcoplasmic reticulum has been identified as an important factor contributing to impaired contractility in heart failure and ventricular arrhythmias that cause sudden cardiac death. In patients with heart failure, chronic activation of the "fight or flight" stress response leads to protein kinase A (PKA) hyperphosphorylation of RyR2 at Ser-2808. PKA phosphorylation of RyR2 Ser-2808 reduces the binding affinity of the channel-stabilizing subunit calstabin2, resulting in leaky RyR2 channels. We developed RyR2-S2808A mice to determine whether Ser-2808 is the functional PKA phosphorylation site on RyR2. Furthermore, mice in which the RyR2 channel cannot be PKA phosphorylated were relatively protected against the development of heart failure after myocardial infarction. Taken together, these data show that PKA phosphorylation of Ser-2808 on the RyR2 channel appears to be a critical mediator of progressive cardiac dysfunction after myocardial infarction.

  8. Mst1-mediated phosphorylation of Bcl-xL is required for myocardial reperfusion injury

    PubMed Central

    Zhai, Peiyong; Del Re, Dominic P.; Maejima, Yasuhiro

    2016-01-01

    Mst1 is a central Ser-Thr kinase in the Hippo pathway, which promotes apoptosis and inhibits cell proliferation. We have shown previously that, in cardiomyocytes, oxidative stress activates Mst1 at mitochondria, where Mst1 phosphorylates Bcl-xL at Ser14, inducing dissociation of Bcl-xL from Bax and thereby promoting apoptosis. However, the functional significance of Ser14 phosphorylation of endogenous Bcl-xL in vivo remains elusive. We generated knockin (KI) mice in which Ser14 of Bcl-xL is replaced with Ala. KI mice were born at the expected Mendelian ratio, and adult KI mice exhibited normal cardiac morphology and function at baseline. However, KI mice were protected from myocardial ischemia/reperfusion (I/R) injury and exhibited reduced cardiomyocyte apoptosis. Although suppression of endogenous Mst1 also reduced I/R injury, there was no additive protective effect when Mst1 was inhibited in KI mice. The development of dilated cardiomyopathy induced by cardiac-specific overexpression of Mst1 was also ameliorated in KI mice. Lats2 and YAP, two other key components of the Hippo pathway, were not affected in KI mice. These results suggest that Ser14 phosphorylation of Bcl-xL plays an essential role in mediating both cardiomyocyte apoptosis and myocardial injury by acting as a key downstream mediator of Mst1 independently of the canonical Hippo pathway. PMID:27218122

  9. The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies.

    PubMed

    Machyna, Martin; Kehr, Stephanie; Straube, Korinna; Kappei, Dennis; Buchholz, Frank; Butter, Falk; Ule, Jernej; Hertel, Jana; Stadler, Peter F; Neugebauer, Karla M

    2014-11-06

    Coilin protein scaffolds Cajal bodies (CBs)-subnuclear compartments enriched in small nuclear RNAs (snRNAs)-and promotes efficient spliceosomal snRNP assembly. The molecular function of coilin, which is intrinsically disordered with no defined motifs, is poorly understood. We use UV crosslinking and immunoprecipitation (iCLIP) to determine whether mammalian coilin binds RNA in vivo and to identify targets. Robust detection of snRNA transcripts correlated with coilin ChIP-seq peaks on snRNA genes, indicating that coilin binding to nascent snRNAs is a site-specific CB nucleator. Surprisingly, several hundred small nucleolar RNAs (snoRNAs) were identified as coilin interactors, including numerous unannotated mouse and human snoRNAs. We show that all classes of snoRNAs concentrate in CBs. Moreover, snoRNAs lacking specific CB retention signals traffic through CBs en route to nucleoli, consistent with the role of CBs in small RNP assembly. Thus, coilin couples snRNA and snoRNA biogenesis, making CBs the cellular hub of small ncRNA metabolism.

  10. Tyrosine phosphorylation-independent regulation of lipopolysaccharide-mediated response by the transmembrane adaptor protein LAB.

    PubMed

    Zhu, Minghua; Fuller, Deirdre M; Ou-Yang, Chih-wen; Sullivan, Sarah A; Zhang, Weiguo

    2012-03-15

    Linker for activation of B cells (LAB)/non-T cell activation linker is a transmembrane adaptor protein that functions in immunoreceptor-mediated signaling. Published studies have shown that LAB has both positive and negative roles in regulating TCR and high-affinity Fc receptor-mediated signaling and cellular function. In this study, we showed that LAB was also expressed in dendritic cells and that LAB deficiency affected LPS-mediated signaling and cytokine production. LPS-mediated MAPK activation was enhanced in LAB(-/-) bone marrow-derived dendritic cells. These bone marrow-derived dendritic cells also produced more TNF-α, IL-6, and IL-10 than wild-type cells. Moreover, LAB(-/-) mice were hyperresponsive to LPS-induced septic shock. These data indicated that LAB has a negative role in LPS-mediated responses. By using LAB knockin mice, which harbor mutations at five membrane-distal tyrosines, we further showed that, in contrast to its role in immunoreceptor-mediated signaling, LAB function in LPS-mediated signaling pathway did not depend on its tyrosine phosphorylation. Our study suggested a novel mechanism by which LAB functions in the regulation of innate immunity.

  11. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles

    NASA Astrophysics Data System (ADS)

    Aumiller, William M.; Keating, Christine D.

    2016-02-01

    Biological cells are highly organized, with numerous subcellular compartments. Phosphorylation has been hypothesized as a means to control the assembly/disassembly of liquid-like RNA- and protein-rich intracellular bodies, or liquid organelles, that lack delimiting membranes. Here, we demonstrate that charge-mediated phase separation, or complex coacervation, of RNAs with cationic peptides can generate simple model liquid organelles capable of reversibly compartmentalizing biomolecules. Formation and dissolution of these liquid bodies was controlled by changes in peptide phosphorylation state using a kinase/phosphatase enzyme pair. The droplet-generating phase transition responded to modification of even a single serine residue. Electrostatic interactions between the short cationic peptides and the much longer polyanionic RNAs drove phase separation. Coacervates were also formed on silica beads, a primitive model for localization at specific intracellular sites. This work supports phosphoregulation of complex coacervation as a viable mechanism for dynamic intracellular compartmentalization in membraneless organelles.

  12. The Circadian Protein BMAL1 Regulates Translation in Response to S6K1-Mediated Phosphorylation.

    PubMed

    Lipton, Jonathan O; Yuan, Elizabeth D; Boyle, Lara M; Ebrahimi-Fakhari, Darius; Kwiatkowski, Erica; Nathan, Ashwin; Güttler, Thomas; Davis, Fred; Asara, John M; Sahin, Mustafa

    2015-05-21

    The circadian timing system synchronizes cellular function by coordinating rhythmic transcription via a transcription-translational feedback loop. How the circadian system regulates gene expression at the translational level remains a mystery. Here, we show that the key circadian transcription factor BMAL1 associates with the translational machinery in the cytosol and promotes protein synthesis. The mTOR-effector kinase, ribosomal S6 protein kinase 1 (S6K1), an important regulator of translation, rhythmically phosphorylates BMAL1 at an evolutionarily conserved site. S6K1-mediated phosphorylation is critical for BMAL1 to both associate with the translational machinery and stimulate protein synthesis. Protein synthesis rates demonstrate circadian oscillations dependent on BMAL1. Thus, in addition to its critical role in circadian transcription, BMAL1 is a translation factor that links circadian timing and the mTOR signaling pathway. More broadly, these results expand the role of the circadian clock to the regulation of protein synthesis.

  13. Inhibition of endocytic vesicle fusion by Plk1-mediated phosphorylation of vimentin during mitosis.

    PubMed

    Ikawa, Keisuke; Satou, Ayaka; Fukuhara, Mitsuko; Matsumura, Shigeru; Sugiyama, Naoyuki; Goto, Hidemasa; Fukuda, Mitsunori; Inagaki, Masaki; Ishihama, Yasushi; Toyoshima, Fumiko

    2014-01-01

    Endocytic vesicle fusion is inhibited during mitosis, but the molecular pathways that mediate the inhibition remain unclear. Here we uncovered an essential role of Polo-like kinase 1 (Plk1) in this mechanism. Phosphoproteomic analysis revealed that Plk1 phosphorylates the intermediate filament protein vimentin on Ser459, which is dispensable for its filament formation but is necessary for the inhibition of endocytic vesicle fusion in mitosis. Furthermore, this mechanism is required for integrin trafficking toward the cleavage furrow during cytokinesis. Our results thus identify a novel mechanism for fusion inhibition in mitosis and implicate its role in vesicle trafficking after anaphase onset.

  14. Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation

    PubMed Central

    Sun, Xu-Ying; Tuo, Qing-Zhang; Liuyang, Zhen-Yu; Xie, Ao-Ji; Feng, Xiao-Long; Yan, Xiong; Qiu, Mei; Li, Shen; Wang, Xiu-Lian; Cao, Fu-Yuan; Wang, Xiao-Chuan; Wang, Jian-Zhi; Liu, Rong

    2016-01-01

    Intracellular accumulation of the hyperphosphorylated tau is a pathological hallmark in the brain of Alzheimer disease. Activation of extrasynaptic NMDA receptors (E-NMDARs) induces excitatory toxicity that is involved in Alzheimer's neurodegeneration. However, the intrinsic link between E-NMDARs and the tau-induced neuronal damage remains elusive. In the present study, we showed in cultured primary cortical neurons that activation of E-NMDA receptors but not synaptic NMDA receptors dramatically increased tau mRNA and protein levels, with a simultaneous neuronal degeneration and decreased neuronal survival. Memantine, a selective antagonist of E-NMDARs, reversed E-NMDARs-induced tau overexpression. Activation of E-NMDARs in wild-type mouse brains resulted in neuron loss in hippocampus, whereas tau deletion in neuronal cultures and in the mouse brains rescued the E-NMDARs-induced neuronal death and degeneration. The E-NMDARs-induced tau overexpression was correlated with a reduced ERK phosphorylation, whereas the increased MEK activity, decreased binding and activity of ERK phosphatase to ERK, and increased ERK phosphorylation were observed in tau knockout mice. On the contrary, addition of tau proteins promoted ERK dephosphorylation in vitro. Taking together, these results indicate that tau overexpression mediates the excitatory toxicity induced by E-NMDAR activation through inhibiting ERK phosphorylation. PMID:27809304

  15. Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt.

    PubMed

    Zhang, Jinfang; Xu, Kai; Liu, Pengda; Geng, Yan; Wang, Bin; Gan, Wenjian; Guo, Jianping; Wu, Fei; Chin, Y Rebecca; Berrios, Christian; Lien, Evan C; Toker, Alex; DeCaprio, James A; Sicinski, Piotr; Wei, Wenyi

    2016-06-16

    The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds to and suppresses the function of mTORC2 but not mTORC1. Mechanistically, Rb, but not p107 or p130, interacts with Sin1 and blocks the access of Akt to mTORC2, leading to attenuated Akt activation and increased sensitivity to chemotherapeutic drugs. As such, inhibition of Rb phosphorylation by depleting cyclin D or using CDK4/6 inhibitors releases Rb-mediated mTORC2 suppression. This, in turn, leads to elevated Akt activation to confer resistance to chemotherapeutic drugs in Rb-proficient cells, which can be attenuated with Akt inhibitors. Therefore, our work provides a molecular basis for the synergistic usage of CDK4/6 and Akt inhibitors in treating Rb-proficient cancer.

  16. Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC.

    PubMed

    Malkani, Niyati; Biggar, Kyle; Shehab, Majida Abu; Li, Shawn Shun-Cheng; Jansson, Thomas; Gupta, Madhulika B

    2016-04-15

    Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth.

  17. ERK1/2-mediated phosphorylation of myometrial caldesmon during pregnancy and labor.

    PubMed

    Li, Yunping; Je, Hyun-Dong; Malek, Sabah; Morgan, Kathleen G

    2003-01-01

    We used a timed-pregnant rat model to track changes in myometrial contractility during pregnancy and labor and to correlate these changes with upstream signaling events. Myometrium was harvested from CO(2)-euthanized rats. Although contraction amplitudes increased at 16 and 20 days of pregnancy, contraction incidence and area under the force curve were inhibited, consistent with the myometrial quiescence of pregnancy. The Ca(2+) sensitivity of contraction was decreased at 20 days of pregnancy and this was partially reversed in labor. The protein content of h-caldesmon (h-CaD) was increased in pregnancy. A 40-fold increase in the signal from a phospho-CaD antibody specific for phosphorylation at an ERK1/2 site occurred during labor. ERK1/2 activation increased significantly at the onset of labor. Myosin light chain phosphorylation (LC20-P) increased significantly in labor compared with the nonpregnant state. Thus we conclude that the increase in CaD protein content during pregnancy may contribute to a suppression of the contractility of pregnant myometrium. Conversely, CaD phosphorylation, through an ERK1/2-mediated signaling pathway, as well as an increase in basal LC20-P, is suggested to contribute to the reversal of inhibition and promote contraction of the uterus during labor.

  18. Groucho suppresses Pax2 transactivation by inhibition of JNK-mediated phosphorylation.

    PubMed

    Cai, Yi; Brophy, Patrick D; Levitan, Inna; Stifani, Stefano; Dressler, Gregory R

    2003-10-15

    Pax proteins are DNA-binding transcription factors that regulate embryonic development through the activation and repression of downstream target genes. The Pax2 gene is absolutely required for kidney development and for patterning specific regions of the nervous system such as the eye, ear and hindbrain. The Pax2/5/8 family of proteins contains both transcription activation and repression domains. The activation domain of Pax2 is phosphorylated by the c-Jun N-terminal kinase (JNK) to enhance Pax2-dependent transcription. In this report, we demonstrate that the Groucho/TLE family protein, Grg4, interacts with Pax2 to suppress transactivation. Grg4 is able to specifically inhibit phosphorylation of the Pax2 activation domain, even in the presence of activated JNK. Furthermore, the Grg4 interaction and suppression of phosphorylation depends on Pax2 binding to its target DNA sequence and is independent of histone deacetylation. These data suggest a new model for Groucho mediated suppression of transcription through the specific inhibition of modifications in the activation domain of a transactivator.

  19. RNA polymerase II C-terminal heptarepeat domain Ser-7 phosphorylation is established in a mediator-dependent fashion.

    PubMed

    Boeing, Stefan; Rigault, Caroline; Heidemann, Martin; Eick, Dirk; Meisterernst, Michael

    2010-01-01

    The largest subunit of RNA polymerase II (RNAPII) C-terminal heptarepeat domain (CTD) is subject to phosphorylation during initiation and elongation of transcription by RNA polymerase II. Here we study the molecular mechanisms leading to phosphorylation of Ser-7 in the human enzyme. Ser-7 becomes phosphorylated before initiation of transcription at promoter regions. We identify cyclin-dependent kinase 7 (CDK7) as one responsible kinase. Phosphorylation of both Ser-5 and Ser-7 is fully dependent on the cofactor complex Mediator. A subform of Mediator associated with an active RNAPII is critical for preinitiation complex formation and CTD phosphorylation. The Mediator-RNAPII complex independently recruits TFIIB and CDK7 to core promoter regions. CDK7 phosphorylates Ser-7 selectively in the context of an intact preinitiation complex. CDK7 is not the only kinase that can modify Ser-7 of the CTD. ChIP experiments with chemical inhibitors provide evidence that other yet to be identified kinases further phosphorylate Ser-7 in coding regions.

  20. Self-association of Coilin Reveals a Common Theme in Nuclear Body Localization

    PubMed Central

    Hebert, Michael D.; Matera, A. Gregory

    2000-01-01

    We have found that coilin, the marker protein for Cajal bodies (coiled bodies, CBs), is a self-interacting protein, and we have mapped the domain responsible for this activity to the amino-terminus. Together with a nuclear localization signal, the self-interaction domain is necessary and sufficient for localization to CBs. Overexpression of various wild-type and mutant coilin constructs in HeLa cells results in disruption of both CBs and survival motor neurons (SMN) gems. Additionally, we have identified a cryptic nucleolar localization signal (NoLS), within the coilin protein, which may be exposed in specific coilin phospho-isoforms. The implications of these findings are discussed in light of the fact that other proteins known to localize within nuclear bodies (e.g., PML, SMN and Sam68) can also self-associate. Thus protein self-interaction appears to be a general feature of nuclear body marker proteins. PMID:11102515

  1. Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels.

    PubMed

    Murbartián, Janet; Lei, Qiubo; Sando, Julianne J; Bayliss, Douglas A

    2005-08-26

    Background potassium channels determine membrane potential and input resistance and serve as prominent effectors for modulatory regulation of cellular excitability. TREK-1 is a two-pore domain background K+ channel (KCNK2, K2P2.1) that is sensitive to a variety of physicochemical and humoral factors. In this work, we used a recombinant expression system to show that activation of G alpha(q)-coupled receptors leads to inhibition of TREK-1 channels via protein kinase C (PKC), and we identified a critical phosphorylation site in a key regulatory domain that mediates inhibition of the channel. In HEK 293 cells co-expressing TREK-1 and either the thyrotropin-releasing hormone receptor (TRHR1) or the Orexin receptor (Orx1R), agonist stimulation induced robust channel inhibition that was suppressed by a bisindolylmaleimide PKC inhibitor but not by a protein kinase A blocker ((R(p))-cAMP-S). Channel inhibition by agonists or by direct activators of PKC (phorbol dibutyrate) and PKA (forskolin) was disrupted not only by alanine or aspartate mutations at an identified PKA site (Ser-333) in the C terminus, but also at a more proximal regulatory site in the cytoplasmic C terminus (Ser-300); S333A and S300A mutations enhanced basal TREK-1 current, whereas S333D and S300D substitutions mimicked phosphorylation and strongly diminished currents. When studied in combination, TREK-1 current density was enhanced in S300A/S333D but reduced in S300D/S333A mutant channels. Channel mutants were expressed and appropriately targeted to cell membranes. Together, these data support a sequential phosphorylation model in which receptor-induced kinase activation drives modification at Ser-333 that enables subsequent phosphorylation at Ser-300 to inhibit TREK-1 channel activity.

  2. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception.

    PubMed

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E; Nordmann, Grégory C; Schladt, Moritz; Milenkovic, Vladimir M; Kulkarni, Ashok B; Wetzel, Christian H

    2016-02-23

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca(2+)-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity.

  3. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception

    PubMed Central

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E.; Nordmann, Grégory C.; Schladt, Moritz; Milenkovic, Vladimir M.; Kulkarni, Ashok B.; Wetzel, Christian H.

    2016-01-01

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca2+-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity. PMID:26902776

  4. Mutational analysis of p80 coilin indicates a functional interaction between coiled bodies and the nucleolus

    PubMed Central

    1995-01-01

    Coiled bodies are conserved subnuclear domains found in both plant and animal cells. They contain a subset of splicing snRNPs and several nucleolar antigens, including Nopp140 and fibrillarin. In addition, autoimmune patient sera have identified a coiled body specific protein, called p80 coilin. In this study we show that p80 coilin is ubiquitously expressed in human tissues. The full-length human p80 coilin protein correctly localizes in coiled bodies when exogenously expressed in HeLa cells using a transient transfection assay. Mutational analysis identifies separate domains in the p80 coilin protein that differentially affect its subnuclear localization. The data show that p80 coilin has a nuclear localization signal, but this is not sufficient to target the protein to coiled bodies. The results indicate that localization in coiled bodies is not determined by a simple motif analogous to the NLS motifs involved in nuclear import. A specific carboxy-terminal deletion in p80 coilin results in the formation of pseudo-coiled bodies that are unable to recruit splicing snRNPs. This causes a loss of endogenous coiled bodies. A separate class of mutant coilin proteins are shown to localize in fibrillar structures that surround nucleoli. These mutants also lead to loss of endogenous coiled bodies, produce a dramatic disruption of nucleolar architecture and cause a specific segregation of nucleolar antigens. The structural change in nucleoli is accompanied by the loss of RNA polymerase I activity. These data indicate that p80 coilin plays an important role in subnuclear organization and suggest that there may be a functional interaction between coiled bodies and nucleoli. PMID:7490287

  5. Warts phosphorylates Mud to promote Pins-mediated mitotic spindle orientation in Drosophila independent of Yorkie

    PubMed Central

    Dewey, Evan B.; Sanchez, Desiree; Johnston, Christopher A.

    2015-01-01

    SUMMARY Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily-conserved cell proliferation pathway. PMID:26592339

  6. Human cells lacking coilin and Cajal bodies are proficient in telomerase assembly, trafficking and telomere maintenance.

    PubMed

    Chen, Yanlian; Deng, Zhiqiang; Jiang, Shuai; Hu, Qian; Liu, Haiying; Songyang, Zhou; Ma, Wenbin; Chen, Shi; Zhao, Yong

    2015-01-01

    The RNA component of human telomerase (hTR) localizes to Cajal bodies, and it has been proposed that Cajal bodies play a role in the assembly of telomerase holoenzyme and telomerase trafficking. Here, the role of Cajal bodies was examined in Human cells deficient of coilin (i.e. coilin-knockout (KO) cells), in which no Cajal bodies are detected. In coilin-KO cells, a normal level of telomerase activity is detected and interactions between core factors of holoenzyme are preserved, indicating that telomerase assembly occurs in the absence of Cajal bodies. Moreover, dispersed hTR aggregates and forms foci specifically during S and G2 phase in coilin-KO cells. Colocalization of these hTR foci with telomeres implies proper telomerase trafficking, independent of Cajal bodies. Therefore, telomerase adds similar numbers of TTAGGG repeats to telomeres in coilin-KO and controls cells. Overexpression of TPP1-OB-fold blocks cell cycle-dependent formation of hTR foci and inhibits telomere extension. These findings suggest that telomerase assembly, trafficking and extension occur with normal efficiency in Cajal bodies deficient human cells. Thus, Cajal bodies, as such, are not essential in these processes, although it remains possible that non-coilin components of Cajal bodies and/or telomere binding proteins (e.g. TPP1) do play roles in telomerase biogenesis and telomere homeostasis.

  7. Human cells lacking coilin and Cajal bodies are proficient in telomerase assembly, trafficking and telomere maintenance

    PubMed Central

    Chen, Yanlian; Deng, Zhiqiang; Jiang, Shuai; Hu, Qian; Liu, Haiying; Songyang, Zhou; Ma, Wenbin; Chen, Shi; Zhao, Yong

    2015-01-01

    The RNA component of human telomerase (hTR) localizes to Cajal bodies, and it has been proposed that Cajal bodies play a role in the assembly of telomerase holoenzyme and telomerase trafficking. Here, the role of Cajal bodies was examined in Human cells deficient of coilin (i.e. coilin-knockout (KO) cells), in which no Cajal bodies are detected. In coilin-KO cells, a normal level of telomerase activity is detected and interactions between core factors of holoenzyme are preserved, indicating that telomerase assembly occurs in the absence of Cajal bodies. Moreover, dispersed hTR aggregates and forms foci specifically during S and G2 phase in coilin-KO cells. Colocalization of these hTR foci with telomeres implies proper telomerase trafficking, independent of Cajal bodies. Therefore, telomerase adds similar numbers of TTAGGG repeats to telomeres in coilin-KO and controls cells. Overexpression of TPP1-OB-fold blocks cell cycle-dependent formation of hTR foci and inhibits telomere extension. These findings suggest that telomerase assembly, trafficking and extension occur with normal efficiency in Cajal bodies deficient human cells. Thus, Cajal bodies, as such, are not essential in these processes, although it remains possible that non-coilin components of Cajal bodies and/or telomere binding proteins (e.g. TPP1) do play roles in telomerase biogenesis and telomere homeostasis. PMID:25477378

  8. Neural Differentiation in HDAC1-Depleted Cells Is Accompanied by Coilin Downregulation and the Accumulation of Cajal Bodies in Nucleoli

    PubMed Central

    Krejčí, Jana; Legartová, Soňa

    2017-01-01

    Cajal bodies (CBs) are important compartments containing accumulated proteins that preferentially regulate RNA-related nuclear events, including splicing. Here, we studied the nuclear distribution pattern of CBs in neurogenesis. In adult brains, coilin was present at a high density, but CB formation was absent in the nuclei of the choroid plexus of the lateral ventricles. Cells of the adult hippocampus were characterized by a crescent-like morphology of coilin protein. We additionally observed a 70 kDa splice variant of coilin in adult mouse brains, which was different to embryonic brains and mouse pluripotent embryonic stem cells (mESCs), characterized by the 80 kDa standard variant of coilin. Here, we also showed that depletion of coilin is induced during neural differentiation and HDAC1 deficiency in mESCs caused coilin accumulation inside the fibrillarin-positive region of the nucleoli. A similar distribution pattern was observed in adult brain hippocampi, characterized by lower levels of both coilin and HDAC1. In summary, we observed that neural differentiation and HDAC1 deficiency lead to coilin depletion and coilin accumulation in body-like structures inside the nucleoli. PMID:28337219

  9. Neural Differentiation in HDAC1-Depleted Cells Is Accompanied by Coilin Downregulation and the Accumulation of Cajal Bodies in Nucleoli.

    PubMed

    Krejčí, Jana; Legartová, Soňa; Bártová, Eva

    2017-01-01

    Cajal bodies (CBs) are important compartments containing accumulated proteins that preferentially regulate RNA-related nuclear events, including splicing. Here, we studied the nuclear distribution pattern of CBs in neurogenesis. In adult brains, coilin was present at a high density, but CB formation was absent in the nuclei of the choroid plexus of the lateral ventricles. Cells of the adult hippocampus were characterized by a crescent-like morphology of coilin protein. We additionally observed a 70 kDa splice variant of coilin in adult mouse brains, which was different to embryonic brains and mouse pluripotent embryonic stem cells (mESCs), characterized by the 80 kDa standard variant of coilin. Here, we also showed that depletion of coilin is induced during neural differentiation and HDAC1 deficiency in mESCs caused coilin accumulation inside the fibrillarin-positive region of the nucleoli. A similar distribution pattern was observed in adult brain hippocampi, characterized by lower levels of both coilin and HDAC1. In summary, we observed that neural differentiation and HDAC1 deficiency lead to coilin depletion and coilin accumulation in body-like structures inside the nucleoli.

  10. Phosphorylation mediated structural and functional changes in pentameric ligand-gated ion channels: implications for drug discovery.

    PubMed

    Talwar, Sahil; Lynch, Joseph W

    2014-08-01

    Pentameric ligand-gated ion channels (pLGICs) mediate numerous physiological processes, including fast neurotransmission in the brain. They are targeted by a large number of clinically-important drugs and disruptions to their function are associated with many neurological disorders. The phosphorylation of pLGICs can result in a wide range of functional consequences. Indeed, many neurological disorders result from pLGIC phosphorylation. For example, chronic pain is caused by the protein kinase A-mediated phosphorylation of α3 glycine receptors and nicotine addiction is mediated by the phosphorylation of α4- or α7-containing nicotinic receptors. A recent study demonstrated that phosphorylation can induce a global conformational change in a pLGIC that propagates to the neurotransmitter-binding site. Here we present evidence that phosphorylation-induced global conformational changes may be a universal phenomenon in pLGICs. This raises the possibility of designing drugs to specifically treat disease-modified pLGICs. This review summarizes some of the opportunities available in this area.

  11. Role of STAT3 Phosphorylation in Ethanol-Mediated Proliferation of Breast Cancer Cells

    PubMed Central

    Narayanan, Poornima devi; Nandabalan, Sangeetha Kadapakkam

    2016-01-01

    Purpose In this study, we investigated the molecular mechanism involved in ethanol (EtOH)-mediated proliferation of breast cancer cells. Methods EtOH concentration was optimized by studying its effect on cell proliferation in MCF-7 and MDA MB-231 cells. We used flow cytometry and immunoblot analysis to evaluate the increased proliferation caused by the optimized concentrations of EtOH. The mechanism of EtOH-mediated proliferation was determined using reactive oxygen species (ROS) release assay, reverse transcription polymerase chain reaction, and immunoblot studies. Gene silencing followed by quantitative real-time polymerase chain reaction studies and inhibitor studies indicated the involvement of signal transducer and activator of transcription 3 (STAT3) in EtOH-mediated breast cancer proliferation. Results Exposure to EtOH caused an increase in cell proliferation and an accumulation of cells in S-phase in MCF-7 (347 µM EtOH) and MDA MB-231 (173 µM EtOH) cells. Additionally, increased release of ROS and the expression of pro-inflammatory cytokines, such as interleukin 6 and tumor necrosis factor α, confirmed that the proliferation was induced by the ROS-linked inflammatory response in breast cancer. The proinflammatory response was followed by phosphorylation of STAT3. The importance of STAT3 activation in EtOH-mediated proliferation was confirmed through the silencing of STAT3, followed by an investigation on the expression of cyclins and matrix metalloproteinases. Finally, studies using specific inhibitors indicated that the EtOH-mediated effect on STAT3 activation could be regulated by phosphoinositide-3-kinase and Janus kinase 2. Conclusion The study demonstrates the involvement of STAT3 signaling in EtOH-mediated breast cancer proliferation. PMID:27382387

  12. COMPARATIVE ANALYSES OF DIFFERENTIALLY-INDUCED TCR-MEDIATED PHOSPHORYLATION PATHWAYS IN T LYMPHOMA CELLS

    PubMed Central

    Ortiz, Serina; Lee, Wenhui; Smith, David; Forman, Stephen J.; Lee, Terry D.; Liu, Chih-Pin

    2011-01-01

    Activation of T lymphoma cells expressing Syk, but not ZAP-70 tyrosine kinase, has been shown to negatively regulate cell activation and activation induced cell death (AICD), perhaps due to differential induction of tyrosine phosphorylation modified proteins. To better understand the role of these proteins and their associated molecules/pathways, we studied a previously described model of T lymphoma cells expressing either a kinase-activated chimeric Syk or ZAP-70 genetically linked to TCR ζ chain (Z/Syk or Z/ZAP cells, respectively). To help identify molecules and pathways linked to cell activation or AICD, a comparative semi-quantitative proteomics-based approach was utilized to analyze tyrosine phosphorylated protein immunoprecipitates from 2 min short-term activated Z/Syk or Z/ZAP cells. Using the resulting bioinformatics datasets, we identified several differentially immunoprecipitated proteins that could be validated biochemically. More tyrosine-phosphorylated and phosphotyrosine-associated proteins were found in Z/Syk than in Z/ZAP cells. Proteins involved in different unique functional pathways were induced in these cells and showed altered intermolecular interactions in varied pathways. Remarkably, 41% of differentially identified proteins in Z/Syk cells belonged to cell cycle or vesicle/trafficking pathways. In contrast, 21% of such proteins in Z/ZAP cells belonged to metabolism pathways. Therefore, molecular pathways involved in post-translational modifications linked to distinct cellular/physiological functions are differentially activated, which may contribute to varied activation and AICD responses of these cells. In summary, we identified proteins belonging to novel differentially activated pathways involved in TCR-mediated signaling, which may be targets for regulating activation and AICD of T lymphoma cells and for potential cancer therapy. PMID:21127342

  13. Evidence of ectokinase-mediated phosphorylation of osteopontin and bone sialoprotein by osteoblasts during bone formation in vitro.

    PubMed Central

    Zhu, X; Luo, C; Ferrier, J M; Sodek, J

    1997-01-01

    Osteopontin (OPN) and bone sialoprotein (BSP) are phosphorylated glycoproteins that, together with osteonectin/secreted protein, acidic, rich in cysteine (SPARC) and osteocalcin, comprise the major non-collagen proteins of bone. Although phosphorylation of OPN and BSP, which is known to influence the biological properties of these proteins, has been shown to occur intracellularly, recent studies have demonstrated ectokinase activity in bone cell populations [Mikuni-Takagaki, Kakai, Satoyoshi, Kawano, Suzuki, Kawase and Saito (1995) J. Bone Miner. Res. 10, 231-241]. To determine whether OPN and BSP are phosphorylated by ectokinase activity we have used [gamma-32P]ATP and [gamma-32P]GTP as cell-impenetrable phosphate donors to analyse for ectokinase activity in osteoblastic UMR106.06 cells and fetal rat calvarial cells (FRCCs). By pulse-labelling confluent cells with radiolabelled nucleotides, the phosphorylation of endogenous and exogenously added OPN and BSP was demonstrated together with the labelling of a number of cell surface proteins. These phosphorylation reactions were inhibited by a cell-impermeable ectokinase inhibitor, K252b, and cell surface phosphorylation was also inhibited by exogenously added OPN and BSP substrates, indicating competition for the ectokinase enzyme. However, phosphorylation of OPN and BSP, both of which can mediate cell attachment through Arg-Gly-Asp (RGD) motifs, was not inhibited by an RGD peptide, suggesting that binding of OPN and BSP to cell surface integrins is not required. In similar experiments, ectokinase-mediated phosphorylation of OPN and BSP was demonstrated during mineralized tissue formation by FRCCs in vitro. These studies demonstrate that OPN and BSP secreted by bone cells are phosphorylated by a casein kinase II-like ectokinase present on the surface of osteoblastic cells. PMID:9169595

  14. SCO2 Mediates Oxidative Stress-Induced Glycolysis to Oxidative Phosphorylation Switch in Hematopoietic Stem Cells.

    PubMed

    Du, Wei; Amarachintha, Surya; Wilson, Andrew F; Pang, Qishen

    2016-04-01

    Fanconi anemia (FA) is an inherited bone marrow (BM) failure syndrome, presumably resulting from defects in hematopoietic stem cells (HSCs). Normal HSCs depend more on glycolysis than on oxidative phosphorylation (OXPHOS) for energy production. Here, we show that FA HSCs are more sensitive to the respiration inhibitor NaN3 treatment than to glycolytic inhibitor 2-deoxy-d-glucose (2-DG), indicating more dependence on OXPHOS. FA HSCs undergo glycolysis-to-OXPHOS switch in response to oxidative stress through a p53-dependent mechanism. Metabolic stresses induce upregulation of p53 metabolic targets in FA HSCs. Inactivation of p53 in FA HSCs prevents glycolysis-to-OXPHOS switch. Furthermore, p53-deficient FA HSCs are more sensitive to 2-DG-mediated metabolic stress. Finally, oxidative stress-induced glycolysis-to-OXPHOS switch is mediated by synthesis of cytochrome c oxidase 2 (SCO2). These findings demonstrate p53-mediated OXPHOS function as a compensatory alteration in FA HSCs to ensure a functional but mildly impaired energy metabolism and suggest a cautious approach to manipulating p53 signaling in FA.

  15. HILI destabilizes microtubules by suppressing phosphorylation and Gigaxonin-mediated degradation of TBCB

    PubMed Central

    Tan, Hao; Liao, Hua; Zhao, Lianfang; Lu, Yilu; Jiang, Siyuan; Tao, Dachang; Liu, Yunqiang; Ma, Yongxin

    2017-01-01

    Human PIWIL2, aka HILI, is a member of PIWI protein family and overexpresses in various tumors. However, the underlying mechanisms of HILI in tumorigenesis remain largely unknown. TBCB has a critical role in regulating microtubule dynamics and is overexpressed in many cancers. Here we report that HILI inhibits Gigaxonin-mediated TBCB ubiquitination and degradation by interacting with TBCB, promoting the binding between HSP90 and TBCB, and suppressing the interaction between Gigaxonin and TBCB. Meanwhile, HILI can also reduce phosphorylation level of TBCB induced by PAK1. Our results showed that HILI suppresses microtubule polymerization and promotes cell proliferation, migration and invasion via TBCB for the first time, revealing a novel mechanism for HILI in tumorigenesis. PMID:28393858

  16. ATM-mediated phosphorylation of the chromatin remodeling enzyme BRG1 modulates DNA double-strand break repair.

    PubMed

    Kwon, S-J; Park, J-H; Park, E-J; Lee, S-A; Lee, H-S; Kang, S W; Kwon, J

    2015-01-15

    ATP-dependent chromatin remodeling complexes such as SWI/SNF (SWItch/Sucrose NonFermentable) have been implicated in DNA double-strand break (DSB) repair and damage responses. However, the regulatory mechanisms that control the function of chromatin remodelers in DNA damage response are largely unknown. Here, we show that ataxia telangiectasia mutated (ATM) mediates the phosphorylation of BRG1, the catalytic ATPase of the SWI/SNF complex that contributes to DSB repair by binding γ-H2AX-containing nucleosomes via interaction with acetylated histone H3 and stimulating γ-H2AX formation, at Ser-721 in response to DNA damage. ATM-mediated phosphorylation of BRG1 occurs rapidly and transiently after DNA damage. Phosphorylated BRG1 binds γ-H2AX-containing nucleosomes to form the repair foci. The Ser-721 phosphorylation of BRG1 is critical for binding γ-H2AX-containing nucleosomes and stimulating γ-H2AX formation and DSB repair. BRG1 binds to acetylated H3 peptides much better after phosphorylation at Ser-721 by DNA damage. However, the phosphorylation of Ser-721 does not significantly affect the ATPase and transcriptional activities of BRG1. These results, establishing BRG1 as a novel and functional ATM substrate, suggest that the ATM-mediated phosphorylation of BRG1 facilitates DSB repair by stimulating the association of this remodeler with γ-H2AX nucleosomes via enhancing the affinity to acetylated H3. Our work also suggests that the mechanism of BRG1 stimulation of DNA repair is independent of the remodeler's enzymatic or transcriptional activities.

  17. TFIIH phosphorylation of the Pol II CTD stimulates Mediator dissociation from the preinitiation complex and promoter escape

    PubMed Central

    Wong, Koon Ho; Jin, Yi; Struhl, Kevin

    2014-01-01

    The transition between transcriptional initiation and elongation by RNA polymerase (Pol) II is associated with phosphorylation of its C-terminal tail (CTD). Depletion of Kin28, the TFIIH subunit that phosphorylates the CTD, does not affect elongation but causes Pol II occupancy profiles to shift upstream in a FACT-independent manner indicative of a defect in promoter escape. Stronger defects in promoter escape are linked to stronger effects on preinitiation complex formation and transcription, suggesting that impairment in promoter escape results in premature dissociation of general factors and Pol II near the promoter. Kin28 has a stronger effect on genes whose transcription is dependent on SAGA as opposed to TFIID. Strikingly, Kin28 depletion causes a dramatic increase in Mediator at the core promoter. These observations suggest that TFIIH phosphorylation of the CTD causes Mediator dissociation, thereby permitting rapid promoter escape of Pol II from the preinitiation complex. PMID:24746699

  18. {beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation.

    PubMed

    Ahn, Seungkirl; Kim, Jihee; Hara, Makoto R; Ren, Xiu-Rong; Lefkowitz, Robert J

    2009-03-27

    beta-Arrestins, originally discovered as terminators of G protein-coupled receptor signaling, have more recently been appreciated to also function as signal transducers in their own right, although the consequences for cellular physiology have not been well understood. Here we demonstrate that beta-arrestin-2 mediates anti-apoptotic cytoprotective signaling stimulated by a typical 7-transmembrane receptor the angiotensin ATII 1A receptor, expressed endogenously in rat vascular smooth muscle cells or by transfection in HEK-293 cells. Receptor stimulation leads to concerted activation of two pathways, ERK/p90RSK and PI3K/AKT, which converge to phosphorylate and inactivate the pro-apoptotic protein BAD. Anti-apoptotic effects as well as pathway activities can be stimulated by an angiotensin analog (SII), which has been previously shown to activate beta-arrestin but not G protein-dependent signaling, and are abrogated by beta-arrestin-2 small interfering RNA. These findings establish a key role for beta-arrestin-2 in mediating cellular cytoprotective functions by a 7-transmembrane receptor and define the biochemical pathways involved.

  19. Stress Induces p38 MAPK-mediated Phosphorylation and Inhibition of Drosha-dependent Cell Survival

    PubMed Central

    Yang, Qian; Li, Wenming; She, Hua; Dou, Juan; Duong, Duc M; Du, Yuhong; Yang, Shao-Hua; Seyfried, Nicholas T.; Fu, Haian; Gao, Guodong; Mao, Zixu

    2015-01-01

    SUMMARY MicroRNAs (miRNAs) regulate the translational potential of their mRNA targets and control many cellular processes. The key step in canonical miRNA biogenesis is the cleavage of the primary transcripts by the nuclear RNase III enzyme Drosha. Emerging evidence suggests that the miRNA biogenic cascade is tightly controlled. However, little is known whether Drosha is regulated. Here we show that Drosha is targeted by stress. Under stress, p38 MAPK directly phosphorylates Drosha at its N-terminus. This reduces its interaction with DiGeorge syndrome critical region 8, and promotes its nuclear export and degradation by calpain. This regulatory mechanism mediates stress-induced inhibition of Drosha function. Reduction of Drosha sensitizes cells to stress and increases death. In contrast, increase in Drosha attenuates stress-induced death. These findings reveal a critical regulatory mechanism by which stress engages p38 MAPK pathway to destabilize Drosha and inhibit Drosha-mediated cellular survival. PMID:25699712

  20. Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors.

    PubMed

    Ditte, Peter; Dequiedt, Franck; Svastova, Eliska; Hulikova, Alzbeta; Ohradanova-Repic, Anna; Zatovicova, Miriam; Csaderova, Lucia; Kopacek, Juraj; Supuran, Claudiu T; Pastorekova, Silvia; Pastorek, Jaromir

    2011-12-15

    In the hypoxic regions of a tumor, carbonic anhydrase IX (CA IX) is an important transmembrane component of the pH regulatory machinery that participates in bicarbonate transport. Because tumor pH has implications for growth, invasion, and therapy, determining the basis for the contributions of CA IX to the hypoxic tumor microenvironment could lead to new fundamental and practical insights. Here, we report that Thr443 phosphorylation at the intracellular domain of CA IX by protein kinase A (PKA) is critical for its activation in hypoxic cells, with the fullest activity of CA IX also requiring dephosphorylation of Ser448. PKA is activated by cAMP, which is elevated by hypoxia, and we found that attenuating PKA in cells disrupted CA IX-mediated extracellular acidification. Moreover, following hypoxia induction, CA IX colocalized with the sodium-bicarbonate cotransporter and other PKA substrates in the leading edge membranes of migrating tumor cells, in support of the concept that bicarbonate metabolism is spatially regulated at cell surface sites with high local ion transport and pH control. Using chimeric CA IX proteins containing heterologous catalytic domains derived from related CA enzymes, we showed that CA IX activity was modulated chiefly by the intracellular domain where Thr443 is located. Our findings indicate that CA IX is a pivotal mediator of the hypoxia-cAMP-PKA axis, which regulates pH in the hypoxic tumor microenvironment.

  1. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    EPA Science Inventory

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)
    Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  2. Immunoreceptor tyrosine-based inhibitory motif (ITIM)-mediated inhibitory signaling is regulated by sequential phosphorylation mediated by distinct nonreceptor tyrosine kinases: a case study involving PECAM-1.

    PubMed

    Tourdot, Benjamin E; Brenner, Michelle K; Keough, Kathleen C; Holyst, Trudy; Newman, Peter J; Newman, Debra K

    2013-04-16

    The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing nonreceptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton's tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals.

  3. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14.

    PubMed

    Park, Ji-Man; Jung, Chang Hwa; Seo, Minchul; Otto, Neil Michael; Grunwald, Douglas; Kim, Kwan Hyun; Moriarity, Branden; Kim, Young-Mi; Starker, Colby; Nho, Richard Seonghun; Voytas, Daniel; Kim, Do-Hyung

    2016-01-01

    ULK1 (unc-51 like autophagy activating kinase 1), the key mediator of MTORC1 signaling to autophagy, regulates early stages of autophagosome formation in response to starvation or MTORC1 inhibition. How ULK1 regulates the autophagy induction process remains elusive. Here, we identify that ATG13, a binding partner of ULK1, mediates interaction of ULK1 with the ATG14-containing PIK3C3/VPS34 complex, the key machinery for initiation of autophagosome formation. The interaction enables ULK1 to phosphorylate ATG14 in a manner dependent upon autophagy inducing conditions, such as nutrient starvation or MTORC1 inhibition. The ATG14 phosphorylation mimics nutrient deprivation through stimulating the kinase activity of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex and facilitates phagophore and autophagosome formation. By monitoring the ATG14 phosphorylation, we determined that the ULK1 activity requires BECN1/Beclin 1 but not the phosphatidylethanolamine (PE)-conjugation machinery and the PIK3C3 kinase activity. Monitoring the phosphorylation also allowed us to identify that ATG9A is required to suppress the ULK1 activity under nutrient-enriched conditions. Furthermore, we determined that ATG14 phosphorylation depends on ULK1 and dietary conditions in vivo. These results define a key molecular event for the starvation-induced activation of the ATG14-containing PtdIns3K complex by ULK1, and demonstrate hierarchical relations between the ULK1 activation and other autophagy proteins involved in phagophore formation.

  4. Regulation of human polλ by ATM-mediated phosphorylation during non-homologous end joining.

    PubMed

    Sastre-Moreno, Guillermo; Pryor, John M; Moreno-Oñate, Marta; Herrero-Ruiz, Andrés M; Cortés-Ledesma, Felipe; Blanco, Luis; Ramsden, Dale A; Ruiz, Jose F

    2017-03-01

    DNA double strand breaks (DSBs) trigger a variety of cellular signaling processes, collectively termed the DNA-damage response (DDR), that are primarily regulated by protein kinase ataxia-telangiectasia mutated (ATM). Among DDR activated processes, the repair of DSBs by non-homologous end joining (NHEJ) is essential. The proper coordination of NHEJ factors is mainly achieved through phosphorylation by an ATM-related kinase, the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), although the molecular basis for this regulation has yet to be fully elucidated. In this study we identify the major NHEJ DNA polymerase, DNA polymerase lambda (Polλ), as a target for both ATM and DNA-PKcs in human cells. We show that Polλ is efficiently phosphorylated by DNA-PKcs in vitro and predominantly by ATM after DSB induction with ionizing radiation (IR) in vivo. We identify threonine 204 (T204) as a main target for ATM/DNA-PKcs phosphorylation on human Polλ, and establish that its phosphorylation may facilitate the repair of a subset of IR-induced DSBs and the efficient Polλ-mediated gap-filling during NHEJ. Molecular evidence suggests that Polλ phosphorylation might favor Polλ interaction with the DNA-PK complex at DSBs. Altogether, our work provides the first demonstration of how Polλ is regulated by phosphorylation to connect with the NHEJ core machinery during DSB repair in human cells.

  5. Protein kinase A activation of the surfactant protein B gene is mediated by phosphorylation of thyroid transcription factor 1.

    PubMed

    Yan, C; Whitsett, J A

    1997-07-11

    Thyroid transcription factor 1 (TTF-1) is a homeodomain-containing nuclear transcription factor expressed in epithelial cells of the lung and thyroid. TTF-1 binds to and activates the transcription of genes expressed selectively in the respiratory epithelium including pulmonary surfactant A, B, C and Clara cell secretory protein. Transfection with a plasmid encoding the cyclic AMP-dependent protein kinase (protein kinase A; PKA) catalytic subunit, Cat-beta, stimulated the phosphorylation of a TTF-1-flag fusion protein 6-7-fold in H441 pulmonary adenocarcinoma cells. Recombinant TTF-1 was phosphorylated by purified PKA catalytic subunit in the presence of [gamma-32P]ATP. PKA catalytic subunit family members, Cat-alpha and Cat-beta, markedly enhanced the transcriptional activation of surfactant B gene promoters by TTF-1 in vitro. Peptide mapping was used to identify a PKA phosphorylation site at the NH2 terminus of TTF-1. A 17-amino acid synthetic peptide comprising this site completely inhibited the PKA-dependent phosphorylation of TTF-1 in vitro. A substitution mutation of TTF-1 (Thr9 two head right arrow Ala) abolished phosphorylation by PKA and reduced transactivation of the surfactant B gene promoter. Transfection with a plasmid encoding the cAMP regulatory element binding factor inhibited transcriptional activity of the surfactant protein B gene promoter. Phosphorylation of TTF-1 mediates PKA-dependent activation of surfactant protein B gene transcription.

  6. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    SciTech Connect

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-04-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.

  7. ECE-1 influences prostate cancer cell invasion via ET-1-mediated FAK phosphorylation and ET-1-independent mechanisms.

    PubMed

    Whyteside, A R; Hinsley, E E; Lambert, L A; McDermott, P J; Turner, A J

    2010-08-01

    Plasma concentrations of the mitogenic peptide endothelin-1 (ET-1) are significantly elevated in men with metastatic prostate cancer (PC). ET-1 also contributes to the transition of hormonally regulated androgen-dependent PC to androgen-independent disease. ET-1 is generated from big-ET-1 by endothelin-converting enzyme (ECE-1). ECE-1 is present in PC cell lines and primary tissue and is elevated in primary malignant stromal cells compared with benign. siRNA or shRNA-mediated knockdown of endogenous ECE-1 in either the epithelial or stromal compartment significantly reduced PC cell (PC-3) invasion and migration. The re-addition of ET-1 only partially recovered the effect, suggesting ET-1-dependent and -independent functions for ECE-1 in pPC. The ET-1-independent effect of ECE-1 on PC invasion may be due to modulation of downstream signalling events. Addition of an ECE-1 specific inhibitor to PC-3 cells reduced phosphorylation of focal adhesion kinase (FAK), a signalling molecule known to play a role in PC. siRNA-mediated knockdown of ECE-1 resulted in a significant reduction in FAK phosphorylation. Accordingly, transient ECE-1 overexpression in PNT1-a cells increased FAK phosphorylation. In conclusion, ECE-1 influences PC cell invasion via both ET-1-mediated FAK phosphorylation and ET-1 independent mechanisms.

  8. Human p80-coilin is targeted to sphere organelles in the amphibian germinal vesicle.

    PubMed Central

    Wu, Z; Murphy, C; Gall, J G

    1994-01-01

    Cultured vertebrate cells often display one or more coiled bodies in their nuclei. These are spherical structures approximately 0.5-1.0 micron in diameter that contain high concentrations of small nuclear ribonucleoproteins (snRNPs); they are distinct from nuclear speckles and nucleoli, the other major sites of snRNP concentration. Coiled bodies in human cells contain a unique protein, p80-coilin, that has an M(r) = 80 kDa. Cloned p80-coilin cDNA encodes 576 amino acids with a calculated molecular weight of 62.6 kDa. To determine which of several snRNP-containing structures in the amphibian germinal vesicle (GV) might be the homologue of coiled bodies, we injected myc-tagged transcripts of full-length human p80-coilin into the cytoplasm of Xenopus oocytes and followed the fate of the translated proteins with an antibody specific for the tag. Western blots of GV proteins showed rapid appearance of both full-length and truncated p80-coilin in the nucleus. Immunofluorescent staining of spread GV contents demonstrated specific uptake of p80-coilin by the sphere organelle within 1 h after injection. Similar experiments were performed with a series of deletion constructs that lacked progressively longer segments from the carboxy terminus. A construct that contained only the first 102 amino acids (18% of the molecule) was specifically targeted to the sphere organelle. Conversely, a construct lacking the first 92 amino acids failed to localize, although it was imported into the GV. Thus, a relatively short region at the amino terminus of human p80-coilin is both necessary and sufficient for localization in the sphere organelle. Sphere organelles in the GV and coiled bodies in somatic nuclei are clearly related in composition. We suggest that they are homologous organelles with similar functions in preassembly and sorting of RNA processing components. Differences in their composition suggest functional specialization in the two cell types. Images PMID:7532471

  9. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress.

    PubMed

    Chen, Yu-Hung; Jones, Mathew J K; Yin, Yandong; Crist, Sarah B; Colnaghi, Luca; Sims, Robert J; Rothenberg, Eli; Jallepalli, Prasad V; Huang, Tony T

    2015-04-16

    Excess dormant origins bound by the minichromosome maintenance (MCM) replicative helicase complex play a critical role in preventing replication stress, chromosome instability, and tumorigenesis. In response to DNA damage, replicating cells must coordinate DNA repair and dormant origin firing to ensure complete and timely replication of the genome; how cells regulate this process remains elusive. Herein, we identify a member of the Fanconi anemia (FA) DNA repair pathway, FANCI, as a key effector of dormant origin firing in response to replication stress. Cells lacking FANCI have reduced number of origins, increased inter-origin distances, and slowed proliferation rates. Intriguingly, ATR-mediated FANCI phosphorylation inhibits dormant origin firing while promoting replication fork restart/DNA repair. Using super-resolution microscopy, we show that FANCI co-localizes with MCM-bound chromatin in response to replication stress. These data reveal a unique role for FANCI as a modulator of dormant origin firing and link timely genome replication to DNA repair.

  10. ATM and GLUT1-S490 Phosphorylation Regulate GLUT1 Mediated Transport in Skeletal Muscle

    PubMed Central

    Andrisse, Stanley; Patel, Gaytri D.; Chen, Joseph E.; Webber, Andrea M.; Spears, Larry D.; Koehler, Rikki M.; Robinson-Hill, Rona M.; Ching, James K.; Jeong, Imju; Fisher, Jonathan S.

    2013-01-01

    Objective The glucose and dehydroascorbic acid (DHA) transporter GLUT1 contains a phosphorylation site, S490, for ataxia telangiectasia mutated (ATM). The objective of this study was to determine whether ATM and GLUT1-S490 regulate GLUT1. Research Design and Methods L6 myoblasts and mouse skeletal muscles were used to study the effects of ATM inhibition, ATM activation, and S490 mutation on GLUT1 localization, trafficking, and transport activity. Results In myoblasts, inhibition of ATM significantly diminished cell surface GLUT1, glucose and DHA transport, GLUT1 externalization, and association of GLUT1 with Gα-interacting protein-interacting protein, C-terminus (GIPC1), which has been implicated in recycling of endosomal proteins. In contrast, ATM activation by doxorubicin (DXR) increased DHA transport, cell surface GLUT1, and the GLUT1/GIPC1 association. S490A mutation decreased glucose and DHA transport, cell surface GLUT1, and interaction of GLUT1 with GIPC1, while S490D mutation increased transport, cell surface GLUT1, and the GLUT1/GIPC1 interaction. ATM dysfunction or ATM inhibition reduced DHA transport in extensor digitorum longus (EDL) muscles and decreased glucose transport in EDL and soleus. In contrast, DXR increased DHA transport in EDL. Conclusions These results provide evidence that ATM and GLUT1-S490 promote cell surface GLUT1 and GLUT1-mediated transport in skeletal muscle associated with upregulation of the GLUT1/GIPC1 interaction. PMID:23776597

  11. Kindling alters neurosteroid-induced modulation of phasic and tonic GABAA receptor-mediated currents: role of phosphorylation.

    PubMed

    Kia, Arash; Ribeiro, Fabiola; Nelson, Renee; Gavrilovici, Cezar; Ferguson, Stephen S G; Poulter, Michael O

    2011-03-01

    We have previously shown that after kindling (a model of temporal lobe epilepsy), the neuroactive steroid tetrahydrodeoxycorticosterone (THDOC) was unable to augment GABA type A receptor (GABA(A))-mediated synaptic currents occurring on pyramidal cells of the piriform cortex. Phosphorylation of GABA(A) receptors has been shown previously to alter the activity of THDOC, so we tested the hypothesis that kindling induces changes in the phosphorylation of GABA(A) receptors and this accounts for the loss in efficacy. To assay whether GABA(A) receptors are more phosphorylated after kindling, we examined the phosphorylation state of the β3 subunit and found that it was increased. Incubation of brain slices with the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) (100 nM) also increased phosphorylation in the same assay. In patch clamp, recordings from non-kindled rat brain slices PMA also reduced the activity of THDOC in a manner that was identical to what is observed after kindling. We also found that the tonic current was no longer augmented by THODC after kindling and PMA treatment. The protein kinase C (PKC) antagonist bisindolylmaleimide I blocked the effects PMA on the synaptic but not the tonic currents. However, the broad spectrum PKC antagonist staurosporine blocked the effects of PMA on the tonic currents, implying that different PKC isoforms phosphorylate GABA(A) receptors responsible for phasic and tonic currents. The phosphatase activator Li(+) palmitate restored the 'normal' activity of THDOC on synaptic currents in kindled brain slices but not the tonic currents. These data demonstrate that kindling enhances the phosphorylation state of GABA(A) receptors expressed in pyramidal neurons reducing THDOC efficacy.

  12. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation*

    PubMed Central

    Kim, Bhumsoo; Figueroa-Romero, Claudia; Pacut, Crystal; Backus, Carey; Feldman, Eva L.

    2015-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPKSer-485, but not AMPKThr-172, phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPKSer-485, but not AMPKThr-172, hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPKSer-485 hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPKS485A mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPKSer-485 hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPKSer-485 phosphorylation to the increased risk of AD in obesity and diabetes. PMID:26100639

  13. Coilin, the signature protein of Cajal bodies, differentially modulates the interactions of plants with viruses in widely different taxa.

    PubMed

    Shaw, Jane; Love, Andrew J; Makarova, Svetlana S; Kalinina, Natalia O; Harrison, Bryan D; Taliansky, Michael E

    2014-01-01

    Cajal bodies (CBs) are distinct nuclear bodies physically and functionally associated with the nucleolus. In addition to their traditional function in coordinating maturation of certain nuclear RNAs, CBs participate in cell cycle regulation, development, and regulation of stress responses. A key "signature" component of CBs is coilin, the scaffolding protein essential for CB formation and function. Using an RNA silencing (loss-of-function) approach, we describe here new phenomena whereby coilin also affects, directly or indirectly, a variety of interactions between host plants and viruses that have RNA or DNA genomes. Moreover, the effects of coilin on these interactions are manifested differently: coilin contributes to plant defense against tobacco rattle virus (tobravirus), tomato black ring virus (nepovirus), barley stripe mosaic virus (hordeivirus), and tomato golden mosaic virus (begomovirus). In contrast, with potato virus Y (potyvirus) and turnip vein clearing virus (tobamovirus), coilin serves to increase virus pathogenicity. These findings show that interactions with coilin (or CBs) may involve diverse mechanisms with different viruses and that these mechanisms act at different phases of virus infection. Thus, coilin (CBs) has novel, unexpected natural functions that may be recruited or subverted by plant viruses for their own needs or, in contrast, are involved in plant defense mechanisms that suppress host susceptibility to the viruses.

  14. Coilin is rapidly recruited to UVA-induced DNA lesions and γ-radiation affects localized movement of Cajal bodies.

    PubMed

    Bártová, Eva; Foltánková, Veronika; Legartová, Soňa; Sehnalová, Petra; Sorokin, Dmitry V; Suchánková, Jana; Kozubek, Stanislav

    2014-01-01

    Cajal bodies are important nuclear structures containing proteins that preferentially regulate RNA-related metabolism. We investigated the cell-type specific nuclear distribution of Cajal bodies and the level of coilin, a protein of Cajal bodies, in non-irradiated and irradiated human tumor cell lines and embryonic stem (ES) cells. Cajal bodies were localized in different nuclear compartments, including DAPI-poor regions, in the proximity of chromocenters, and adjacent to nucleoli. The number of Cajal bodies per nucleus was cell cycle-dependent, with higher numbers occurring during G2 phase. Human ES cells contained a high coilin level in the nucleoplasm, but coilin-positive Cajal bodies were also identified in nuclei of mouse and human ES cells. Coilin, but not SMN, recognized UVA-induced DNA lesions, which was cell cycle-independent. Treatment with γ-radiation reduced the localized movement of Cajal bodies in many cell types and GFP-coilin fluorescence recovery after photobleaching was very fast in nucleoplasm in comparison with GFP-coilin recovery in DNA lesions. By contrast, nucleolus-localized coilin displayed very slow fluorescence recovery after photobleaching, which indicates very slow rates of protein diffusion, especially in nucleoli of mouse ES cells.

  15. A Novel Mode for Integrin-mediated Signaling: Tethering Is Required for Phosphorylation of FAK Y397

    PubMed Central

    Shi, Qi; Boettiger, David

    2003-01-01

    The common model for integrin mediated signaling is based on integrin clustering and the potential for that clustering to recruit signaling molecules including FAK and src. The clustering model for transmembrane signaling originated with the analysis of the EGF receptor signaling and remains the predominant model. The roles for substrate-bound ligand and ligand occupancy in integrin-mediated signaling are less clear. A kinetic model was established using HT1080 cells in which there was a linear relationship between the strength of adhesion, the proportion of α5β1 integrin that could be chemically cross-linked, and the number of receptor-ligand bonds. This graded signal produced a similarly graded response measured by the level of specific phosphorylation of FAK Y397. FAK Y397 phosphorylation could also be induced by antibody bound to the substrate. In contrast, clustering of α5β1 on suspended cells with either antibody to β1 or by clustering of soluble ligand bound to α5β1 induced the phosphorylation of FAK Y861 but not Y397. There were no differences in signaling when activating antibodies were compared with blocking antibodies, presence or absence of ligand. Only tethering of α5β1 to the substrate was required for induction of FAK Y397 phosphorylation. PMID:12960434

  16. H3S10 phosphorylation-mediated transcriptional regulation by Aurora kinase A.

    PubMed

    Kim, Se-Ryeon; Kim, Kee-Beom; Chae, Yun-Cheol; Park, Jin Woo; Seo, Sang-Beom

    2016-01-01

    Histone H3S10 phosphorylation has been known as a cell cycle-specific marker and has a role in transcriptional activation. Various kinases phosphorylate H3S10 in different species, however, the role of the mitotic serine/threonine protein kinase Aurora A (AURKA) is largely unknown. Here we present evidence that AURKA phosphorylates H3S10 and activates target gene transcription. We show that down-regulation of AURKA level during leukemia cell differentiation results in decreased H3S10 phosphorylation level. We further show that AURKA is recruited to target gene promoters and activates transcription via H3S10 phosphorylation. Furthermore, this recruitment can be disrupted by the AURKA inhibitor Alisertib and results in H3K9-me2 recruitment by G9a.

  17. Heparin stimulates epidermal growth factor receptor-mediated phosphorylation of tyrosine and threonine residues.

    PubMed

    Revis-Gupta, S; Abdel-Ghany, M; Koland, J; Racker, E

    1991-07-15

    We have described previously that in extracts of A431 cells epidermal growth factor (EGF) stimulates the phosphorylation of tyrosine as well as of threonine residues in the EGF receptor and in lipocortin 1. We now report that heparin at low concentrations also stimulates the autophosphorylation of the EGF receptor and of the recombinant 56-kDa domain of the EGF receptor that lacks the EGF binding site. To study the stimulations of phosphorylation of threonine residues, a fusion protein was prepared with glutathione S-transferase (GST) and an EGF receptor fragment, TK8 (residues 647-688), that contains the threonine phosphorylation site but no tyrosine. We show that the phosphorylation of threonine residues in GST-TK8 by extracts of A431 cells is stimulated by heparin but not by EGF. These and other results suggest that heparin acts as a chaperone, a substrate modulator, that enhances the susceptibility of the substrate to phosphorylation by protein kinases.

  18. Lens fiber connexin turnover and caspase-3-mediated cleavage are regulated alternately by phosphorylation.

    PubMed

    Yin, Xinye; Liu, Jialu; Jiang, Jean X

    2008-05-01

    Lens connexins are phosphorylated in vivo; however, the function and regulation of the phosphorylation remain largely unknown. We have previously identified an in vivo phosphorylation site, Ser(364), at the COOH terminus of lens connexin (Cx) Cx45.6 and phosphorylation appears to regulate connexin protein turnover. To assess the specific mechanism of Ser(364) phosphorylation in Cx45.6, exogenous wild type and Ser(364) mutant Cx45.6 were expressed in primary lens cultures through retroviral infection. Cx45.6 turnover was attenuated primarily by proteasomal inhibitors and to a lesser extent by lysosomal inhibitors. Furthermore, the level of Cx45.6 protein in ubiquitin co-expressed cells was significantly reduced as compared to the cells expressing Cx45.6 alone. Moreover, overexpression of ubiquitin led to a more significant decrease in wild type Cx45.6 than Cx45.6(S364A), a mutant deficient of phosphorylation site at Ser(364), although we did not detect any difference in the levels of ubiquitination between wild type and mutant Cx45.6. Interestingly, the mutant mimicking constitutive phosphorylation, Cx45.6(S364D), partially prevented the cleavage of Cx45.6 by caspase-3. Together, our data suggest that phosphorylation of Cx45.6 at Ser(364) appears to stimulate Cx45.6 turnover primarily through proteasome pathway and this phosphorylation inhibits the cleavage of Cx45.6 by caspase-3. These findings provide further insights into regulatory mechanism of the specific phosphorylation of connexins in the lens.

  19. PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation.

    PubMed

    Plum, Laura Marie; Brieger, Anne; Engelhardt, Gabriela; Hebel, Silke; Nessel, Andreas; Arlt, Marcus; Kaltenberg, Jennifer; Schwaneberg, Ulrich; Huber, Michael; Rink, Lothar; Haase, Hajo

    2014-07-01

    Free zinc ions (Zn(2+)) participate in several signaling pathways. The aim of the present study was to investigate a potential involvement of Zn(2+) in the PI3K/Akt pathway of interleukin (IL)-2 signaling in T-cells. The IL-2 receptor triggers three major pathways, ERK1/2, JAK/STAT5, and PI3K/Akt. We have previously shown that an IL-2-mediated release of lysosomal Zn(2+) into the cytoplasm activates ERK1/2, but not STAT5. In the present study, Akt phosphorylation in response to IL-2 was abrogated by the Zn(2+) chelator N,N,N',N'-tetrakis-2(pyridyl-methyl)ethylenediamine, and was induced by treatment with Zn(2+) and the ionophore pyrithione. The latter were ineffective in cells that were treated with siRNA against the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatase that degrades the lipid second messenger PI(3,4,5)P3, which is produced by PI3K and leads to activation of Akt. Inhibition of recombinant PTEN by Zn(2+)in vitro yielded an IC50 of 0.59 nM. Considering a resting free cytoplasmic Zn(2+) level of 0.2 nM in the T-cell line CTLL-2, this seems ideally suited for dynamic regulation by cellular Zn(2+). Oxidation with H2O2 and supplementation with Zn(2+) led to similar changes in the CD spectrum of PTEN. Moreover, Zn(2+) partially prevented the oxidation of cysteines 71 and 124. Hence, we hypothesize that zinc signals affect the IL-2-dependent PI3K/Akt pathway by inhibiting the negative regulator PTEN through binding with a sub-nanomolar affinity to cysteine residues that are essential for its catalytic activity.

  20. p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase.

    PubMed

    Barrows, Douglas; Schoenfeld, Sarah M; Hodakoski, Cindy; Silkov, Antonina; Honig, Barry; Couvillon, Anthony; Shymanets, Aliaksei; Nürnberg, Bernd; Asara, John M; Parsons, Ramon

    2015-11-27

    Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 2 (PREX2) is a guanine nucleotide exchange factor (GEF) for the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase, facilitating the exchange of GDP for GTP on Rac1. GTP-bound Rac1 then activates its downstream effectors, including p21-activated kinases (PAKs). PREX2 and Rac1 are frequently mutated in cancer and have key roles within the insulin-signaling pathway. Rac1 can be inactivated by multiple mechanisms; however, negative regulation by insulin is not well understood. Here, we show that in response to being activated after insulin stimulation, Rac1 initiates its own inactivation by decreasing PREX2 GEF activity. Following PREX2-mediated activation of Rac1 by the second messengers PIP3 or Gβγ, we found that PREX2 was phosphorylated through a PAK-dependent mechanism. PAK-mediated phosphorylation of PREX2 reduced GEF activity toward Rac1 by inhibiting PREX2 binding to PIP3 and Gβγ. Cell fractionation experiments also revealed that phosphorylation prevented PREX2 from localizing to the cellular membrane. Furthermore, the onset of insulin-induced phosphorylation of PREX2 was delayed compared with AKT. Altogether, we propose that second messengers activate the Rac1 signal, which sets in motion a cascade whereby PAKs phosphorylate and negatively regulate PREX2 to decrease Rac1 activation. This type of regulation would allow for transient activation of the PREX2-Rac1 signal and may be relevant in multiple physiological processes, including diseases such as diabetes and cancer when insulin signaling is chronically activated.

  1. p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase*

    PubMed Central

    Barrows, Douglas; Schoenfeld, Sarah M.; Hodakoski, Cindy; Silkov, Antonina; Honig, Barry; Couvillon, Anthony; Shymanets, Aliaksei; Nürnberg, Bernd; Asara, John M.; Parsons, Ramon

    2015-01-01

    Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 2 (PREX2) is a guanine nucleotide exchange factor (GEF) for the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase, facilitating the exchange of GDP for GTP on Rac1. GTP-bound Rac1 then activates its downstream effectors, including p21-activated kinases (PAKs). PREX2 and Rac1 are frequently mutated in cancer and have key roles within the insulin-signaling pathway. Rac1 can be inactivated by multiple mechanisms; however, negative regulation by insulin is not well understood. Here, we show that in response to being activated after insulin stimulation, Rac1 initiates its own inactivation by decreasing PREX2 GEF activity. Following PREX2-mediated activation of Rac1 by the second messengers PIP3 or Gβγ, we found that PREX2 was phosphorylated through a PAK-dependent mechanism. PAK-mediated phosphorylation of PREX2 reduced GEF activity toward Rac1 by inhibiting PREX2 binding to PIP3 and Gβγ. Cell fractionation experiments also revealed that phosphorylation prevented PREX2 from localizing to the cellular membrane. Furthermore, the onset of insulin-induced phosphorylation of PREX2 was delayed compared with AKT. Altogether, we propose that second messengers activate the Rac1 signal, which sets in motion a cascade whereby PAKs phosphorylate and negatively regulate PREX2 to decrease Rac1 activation. This type of regulation would allow for transient activation of the PREX2-Rac1 signal and may be relevant in multiple physiological processes, including diseases such as diabetes and cancer when insulin signaling is chronically activated. PMID:26438819

  2. Coilin Can Form a Complex with the U7 Small Nuclear Ribonucleoprotein

    PubMed Central

    Bellini, Michel; Gall, Joseph G.

    1998-01-01

    Coiled bodies (CBs) in the amphibian oocyte nucleus are spherical structures up to 10 μm or more in diameter, much larger than their somatic counterparts, which rarely exceed 1 μm. Oocyte CBs may have smaller granules attached to their surface or embedded within them, which are identical in structure and composition to the many hundreds of B-snurposomes found free in the nucleoplasm. The matrix of the CBs contains the diagnostic protein p80-coilin, which is colocalized with the U7 small nuclear ribonucleoprotein (snRNP), whereas the attached and embedded B-snurposomes contain splicing snRNPs. A few of the 50–100 CBs in the oocyte nucleus are attached to lampbrush chromosomes at the histone gene loci. By coimmunoprecipitation we show that coilin and the U7 snRNP can form a weak but specific complex in the nucleoplasm, which is dependent on the special U7 Sm-binding site. Under the same conditions coilin does not associate with the U1 and U2 snRNPs. Coilin is a nucleic acid-binding protein, as shown by its interaction with single-stranded DNA and with poly r(U) and poly r(G). We suggest that an important function of coilin is to form a transient complex with the U7 snRNP and accompany it to the CBs. In the case of CBs attached to chromosomes at the histone gene loci, the U7 snRNP is thus brought close to the actual site of histone pre-mRNA transcription. PMID:9763457

  3. Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na+-K+-ATPase.

    PubMed

    Han, Fei; Bossuyt, Julie; Martin, Jody L; Despa, Sanda; Bers, Donald M

    2010-12-01

    Phospholemman (PLM) is a major target for phosphorylation mediated by both PKA (at Ser68) and PKC (at both Ser63 and Ser68) in the heart. In intact cardiac myocytes, PLM associates with and inhibits Na(+)-K(+)-ATPase (NKA), mainly by reducing its affinity for internal Na(+). The inhibition is relieved upon PLM phosphorylation by PKA or PKC. The aim here was to distinguish the role of the Ser63 and Ser68 PLM phosphorylation sites in mediating kinase-induced modulation of NKA function. We expressed wild-type (WT) PLM and S63A, S68A, and AA (Ser63 and Ser68 to alanine double mutant) PLM mutants in HeLa cells that stably express rat NKA-α(1) and we measured the effect of PKA and PKC activation on NKA-mediated intracellular Na(+) concentration decline. PLM expression (WT or mutant) significantly decreased the apparent NKA affinity for internal Na(+) and had no significant effect on the maximum pump rate (V(max)). PKA activation with forskolin (20 μM) restored NKA Na(+) affinity in cells expressing WT but not AA PLM and did not affect V(max) in either case. Similarly, PKC activation with 300 nM phorbol 12,13-dibutyrate increased NKA Na(+) affinity in cells expressing WT, S63A, and S68A PLM and had no effect in cells expressing AA PLM. Neither forskolin nor phorbol 12,13-dibutyrate affected NKA function in the absence of PLM. We conclude that PLM phosphorylation at either Ser63 or Ser68 is both necessary and sufficient for completely relieving the PLM-induced NKA inhibition.

  4. The Med1 Subunit of the Mediator Complex Induces Liver Cell Proliferation and Is Phosphorylated by AMP Kinase*

    PubMed Central

    Viswakarma, Navin; Jia, Yuzhi; Bai, Liang; Gao, Qian; Lin, Bingliang; Zhang, Xiaohong; Misra, Parimal; Rana, Ajay; Jain, Sanjay; Gonzalez, Frank J.; Zhu, Yi-Jun; Thimmapaya, Bayar; Reddy, Janardan K.

    2013-01-01

    Mediator, a large multisubunit protein complex, plays a pivotal role in gene transcription by linking gene-specific transcription factors with the preinitiation complex and RNA polymerase II. In the liver, the key subunit of the Mediator complex, Med1, interacts with several nuclear receptors and transcription factors to direct gene-specific transcription. Conditional knock-out of Med1 in the liver showed that hepatocytes lacking Med1 did not regenerate following either partial hepatectomy or treatment with certain nuclear receptor activators and failed to give rise to tumors when challenged with carcinogens. We now report that the adenovirally driven overexpression of Med1 in mouse liver stimulates hepatocyte DNA synthesis with enhanced expression of DNA replication, cell cycle control, and liver-specific genes, indicating that Med1 alone is necessary and sufficient for liver cell proliferation. Importantly, we demonstrate that AMP-activated protein kinase (AMPK), an important cellular energy sensor, interacts with, and directly phosphorylates, Med1 in vitro at serine 656, serine 756, and serine 796. AMPK also phosphorylates Med1 in vivo in mouse liver and in cultured primary hepatocytes and HEK293 and HeLa cells. In addition, we demonstrate that PPARα activators increase AMPK-mediated Med1 phosphorylation in vivo. Inhibition of AMPK by compound C decreased hepatocyte proliferation induced by Med1 and also by the PPARα activators fenofibrate and Wy-14,643. Co-treatment with compound C attenuated PPARα activator-inducible fatty acid β-oxidation in liver. Our results suggest that Med1 phosphorylation by its association with AMPK regulates liver cell proliferation and fatty acid oxidation, most likely as a downstream effector of PPARα and AMPK. PMID:23943624

  5. Tyrosine phosphorylated c-Cbl regulates platelet functional responses mediated by outside-in signaling.

    PubMed

    Buitrago, Lorena; Langdon, Wallace Y; Sanjay, Archana; Kunapuli, Satya P

    2011-11-17

    c-Cbl protein functions as an E3 ligase and scaffolding protein, where 3 residues, Y700, Y731, and Y774, upon phosphorylation, have been shown to initiate several signaling cascades. In this study, we investigated the role of these phospho-tyrosine residues in the platelet functional responses after integrin engagement. We observed that c-Cbl Y700, Y731 and Y774 undergo phosphorylation upon platelet adhesion to immobilized fibrinogen, which was inhibited in the presence of PP2, a pan-src family kinase (SFK) inhibitor, suggesting that c-Cbl is phosphorylated downstream of SFKs. However, OXSI-2, a Syk inhibitor, significantly reduced c-Cbl phosphorylation at residues Y774 and Y700, without affecting Y731 phosphorylation. Interestingly, PP2 inhibited both platelet-spreading on fibrinogen as well as clot retraction, whereas OXSI-2 blocked only platelet-spreading, suggesting a differential role of these tyrosine residues. The physiologic role of c-Cbl and Y731 was studied using platelets from c-Cbl KO and c-Cbl(YF/YF) knock-in mice. c-Cbl KO and c-Cbl(YF/YF) platelets had a significantly reduced spreading over immobilized fibrinogen. Furthermore, clot retraction with c-Cbl KO and c-Cbl(YF/YF) platelets was drastically delayed. These results indicate that c-Cbl and particularly its phosphorylated residue Y731 plays an important role in platelet outside-in signaling contributing to platelet-spreading and clot retraction.

  6. Enhancement of BACE1 Activity by p25/Cdk5-Mediated Phosphorylation in Alzheimer’s Disease

    PubMed Central

    Lee, Hye-Won; Seo, Hyemyung; Kim, Jeong Hee; Chung, Sul-Hee

    2015-01-01

    The activity of beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is elevated during aging and in sporadic Alzheimer’s disease (AD), but the underlying mechanisms of this change are not well understood. p25/Cyclin-dependent kinase 5 (Cdk5) has been implicated in the pathogenesis of several neurodegenerative diseases, including AD. Here, we describe a potential mechanism by which BACE activity is increased in AD brains. First, we show that BACE1 is phosphorylated by the p25/Cdk5 complex at Thr252 and that this phosphorylation increases BACE1 activity. Then, we demonstrate that the level of phospho-BACE1 is increased in the brains of AD patients and in mammalian cells and transgenic mice that overexpress p25. Furthermore, the fraction of p25 prepared from iodixanol gradient centrifugation was unexpectedly protected by protease digestion, suggesting that p25/Cdk5-mediated BACE1 phosphorylation may occur in the lumen. These results reveal a link between p25 and BACE1 in AD brains and suggest that upregulated Cdk5 activation by p25 accelerates AD pathogenesis by enhancing BACE1 activity via phosphorylation. PMID:26317805

  7. Akt Phosphorylates Wnt Coactivator and Chromatin Effector Pygo2 at Serine 48 to Antagonize Its Ubiquitin/Proteasome-mediated Degradation*

    PubMed Central

    Li, Qiuling; Li, Yuewei; Gu, Bingnan; Fang, Lei; Zhou, Pengbo; Bao, Shilai; Huang, Lan; Dai, Xing

    2015-01-01

    Pygopus 2 (Pygo2/PYGO2) is an evolutionarily conserved coactivator and chromatin effector in the Wnt/β-catenin signaling pathway that regulates cell growth and differentiation in various normal and malignant tissues. Although PYGO2 is highly overexpressed in a number of human cancers, the molecular mechanism underlying its deregulation is largely unknown. Here we report that Pygo2 protein is degraded through the ubiquitin/proteasome pathway and is posttranslationally stabilized through phosphorylation by activated phosphatidylinositol 3-kinase/Akt signaling. Specifically, Pygo2 is stabilized upon inhibition of the proteasome, and its intracellular level is regulated by Cullin 4 (Cul4) and DNA damage-binding protein 1 (DDB1), components of the Cul4-DDB1 E3 ubiquitin ligase complex. Furthermore, Pygo2 is phosphorylated at multiple residues, and Akt-mediated phosphorylation at serine 48 leads to its decreased ubiquitylation and increased stability. Finally, we provide evidence that Akt and its upstream growth factors act in parallel with Wnt to stabilize Pygo2. Taken together, our findings highlight chromatin regulator Pygo2 as a common node downstream of oncogenic Wnt and Akt signaling pathways and underscore posttranslational modification, particularly phosphorylation and ubiquitylation, as a significant mode of regulation of Pygo2 protein expression. PMID:26170450

  8. p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair

    PubMed Central

    Wang, Qi-En; Han, Chunhua; Zhao, Ran; Wani, Gulzar; Zhu, Qianzheng; Gong, Li; Battu, Aruna; Racoma, Ira; Sharma, Nidhi; Wani, Altaf A.

    2013-01-01

    Besides the primary histone acetyltransferase (HAT)-mediated chromatin remodeling function, co-transcriptional factor, p300, is also known to play a distinct role in DNA repair. However, the exact mechanism of p300 function in DNA repair has remained unclear and difficult to discern due to the phosphorylation and degradation of p300 in response to DNA damage. Here, we have demonstrated that p300 is only degraded in the presence of specific DNA lesions, which are the substrates of nucleotide excision repair (NER) pathway. In contrast, DNA double-strand breaks fail to degrade p300. Degradation is initiated by phosphorylation of p300 at serine 1834, which is catalyzed by the cooperative action of p38 mitogen-activated protein kinases and Akt kinases. In depth, functional analysis revealed that (i) p300 and CBP act redundantly in repairing ultraviolet (UV) lesions, (ii) the phosphorylation of p300 at S1834 is critical for efficient removal of UV-induced cyclobutane pyrimidine dimers and (iii) p300 is recruited to DNA damage sites located within heterochromatin. Taken together, we conclude that phosphorylated p300 initially acetylates histones to relax heterochromatin to allow damage recognition factors access to damage DNA. Thereupon, p300 is promptly degraded to allow the sequential recruitment of downstream repair proteins for successful execution of NER. PMID:23275565

  9. Hepcidin inhibits Smad3 phosphorylation in hepatic stellate cells by impeding ferroportin-mediated regulation of Akt

    PubMed Central

    Han, Chang Yeob; Koo, Ja Hyun; Kim, Sung Hoon; Gardenghi, Sara; Rivella, Stefano; Strnad, Pavel; Hwang, Se Jin; Kim, Sang Geon

    2016-01-01

    Hepatic stellate cell (HSC) activation on liver injury facilitates fibrosis. Hepatokines affecting HSCs are largely unknown. Here we show that hepcidin inhibits HSC activation and ameliorates liver fibrosis. We observe that hepcidin levels are inversely correlated with exacerbation of fibrosis in patients, and also confirm the relationship in animal models. Adenoviral delivery of hepcidin to mice attenuates liver fibrosis induced by CCl4 treatment or bile duct ligation. In cell-based assays, either hepcidin from hepatocytes or exogenous hepcidin suppresses HSC activation by inhibiting TGFβ1-mediated Smad3 phosphorylation via Akt. In activated HSCs, ferroportin is upregulated, which can be prevented by hepcidin treatment. Similarly, ferroportin knockdown in HSCs prohibits TGFβ1-inducible Smad3 phosphorylation and increases Akt phosphorylation, whereas ferroportin over-expression has the opposite effect. HSC-specific ferroportin deletion also ameliorates liver fibrosis. In summary, hepcidin suppresses liver fibrosis by impeding TGFβ1-induced Smad3 phosphorylation in HSCs, which depends on Akt activated by a deficiency of ferroportin. PMID:28004654

  10. Constitutive Smad linker phosphorylation in melanoma: a mechanism of resistance to transforming growth factor-β-mediated growth inhibition.

    PubMed

    Cohen-Solal, Karine A; Merrigan, Kim T; Chan, Joseph L-K; Goydos, James S; Chen, Wenjin; Foran, David J; Liu, Fang; Lasfar, Ahmed; Reiss, Michael

    2011-06-01

    Melanoma cells are resistant to transforming growth factor-β (TGFβ)-induced cell-cycle arrest. In this study, we investigated a mechanism of resistance involving a regulatory domain, called linker region, in Smad2 and Smad3, main downstream effectors of TGFβ. Melanoma cells in culture and tumor samples exhibited constitutive Smad2 and Smad3 linker phosphorylation. Treatment of melanoma cells with the MEK1/2 inhibitor, U0126, or the two pan-CDK and GSK3 inhibitors, Flavopiridol and R547, resulted in decreased linker phosphorylation of Smad2 and Smad3. Overexpression of the linker phosphorylation-resistant Smad3 EPSM mutant in melanoma cells resulted in an increase in expression of p15(INK4B) and p21(WAF1) , as compared with cells transfected with wild-type (WT) Smad3. In addition, the cell numbers of EPSM Smad3-expressing melanoma cells were significantly reduced compared with WT Smad3-expressing cells. These results suggest that the linker phosphorylation of Smad3 contributes to the resistance of melanoma cells to TGFβ-mediated growth inhibition.

  11. PDGF-BB-mediated activation of p42(MAPK) is independent of PDGF beta-receptor tyrosine phosphorylation.

    PubMed

    Cartel, N J; Liu, J; Wang, J; Post, M

    2001-10-01

    Herein, we investigated the activity of mitogen-activated protein kinase (MAPK), a key component of downstream signaling events, which is activated subsequent to platelet-derived growth factor (PDGF)-BB stimulation. Specifically, p42(MAPK) activity peaked 60 min after addition of PDGF-BB, declined thereafter, and was determined not to be a direct or necessary component of glycosaminoglycan (GAG) synthesis. PDGF-BB also activated MAPK kinase 2 (MAPKK2) but had no effect on MAPKK1 and Raf-1 activity. Chemical inhibition of Janus kinase, phosphatidylinositol 3-kinase, Src kinase, or tyrosine phosphorylation inhibition of the PDGF beta-receptor (PDGFR-beta) did not abrogate PDGF-BB-induced p42(MAPK) activation or its threonine or tyrosine phosphorylation. A dominant negative cytoplasmic receptor for hyaluronan-mediated motility variant 4 (RHAMMv4), a regulator of MAPKK-MAPK interaction and activation, did not inhibit PDGF-BB-induced p42(MAPK) activation nor did a construct expressing PDGFR-beta with cytoplasmic tyrosines mutated to phenylalanine. However, overexpression of a dominant negative PDGFR-beta lacking the cytoplasmic signaling domain abrogated p42(MAPK) activity. These results suggest that PDGF-BB-mediated activation of p42(MAPK) requires the PDGFR-beta but is independent of its tyrosine phosphorylation.

  12. Protein kinase A-mediated CREB phosphorylation is an oxidant-induced survival pathway in alveolar type II cells

    PubMed Central

    Barlow, Christy A.; Kitiphongspattana, Kajorn; Siddiqui, Nazli; Roe, Michael W.; Mossman, Brooke T.

    2008-01-01

    Oxidant stress plays a role in the pathogenesis of pulmonary diseases, including fibrotic lung disease and cancer. We previously found that hydrogen peroxide (H2O2) initiates an increase in Ca2+/cAMP-response element binding protein (CREB) phosphorylation in C10 alveolar type II cells that requires activation of extracellular regulated kinases 1/2 (ERK1/2). Here, we investigated the role of crosstalk between protein kinase A (PKA) and epidermal growth factor receptor (EGFR) in oxidant-induced signaling to ERK1/2 and CREB in C10 cells. Application of H2O2 increased nuclear accumulation of PKA, and inhibition of PKA with H89 reduced oxidant-mediated phosphorylation of both CREB and ERK1/2. Single cell measurements of cAMP and redox status, using a FRET-based biosensor and a redox-sensitive GFP, respectively, indicated that H2O2 increases production of cAMP that correlates with redox state. Inhibition of EGFR activity decreased both H2O2-induced CREB phosphorylation and translocation of PKA to the nucleus, suggesting that crosstalk between PKA and EGFR underlies the oxidant-induced CREB response. Furthermore, knockdown of CREB expression using siRNA led to a decrease in bcl-2 and an increase in oxidant-induced apoptosis. Together these data reveal a novel role for crosstalk between PKA, ERK1/2 and CREB that mediates cell survival during oxidant stress. PMID:18392938

  13. RIP1 maintains DNA integrity and cell proliferation by regulating PGC-1α-mediated mitochondrial oxidative phosphorylation and glycolysis.

    PubMed

    Chen, W; Wang, Q; Bai, L; Chen, W; Wang, X; Tellez, C S; Leng, S; Padilla, M T; Nyunoya, T; Belinsky, S A; Lin, Y

    2014-07-01

    Aerobic glycolysis or the Warburg effect contributes to cancer cell proliferation; however, how this glucose metabolism pathway is precisely regulated remains elusive. Here we show that receptor-interacting protein 1 (RIP1), a cell death and survival signaling factor, regulates mitochondrial oxidative phosphorylation and aerobic glycolysis. Loss of RIP1 in lung cancer cells suppressed peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression, impairing mitochondrial oxidative phosphorylation and accelerating glycolysis, resulting in spontaneous DNA damage and p53-mediated cell proliferation inhibition. Thus, although aerobic glycolysis within a certain range favors cancer cell proliferation, excessive glycolysis causes cytostasis. Our data suggest that maintenance of glycolysis by RIP1 is pivotal to cancer cell energy homeostasis and DNA integrity and may be exploited for use in anticancer therapy.

  14. RIP1 maintains DNA integrity and cell proliferation by regulating PGC-1α-mediated mitochondrial oxidative phosphorylation and glycolysis

    PubMed Central

    Chen, W; Wang, Q; Bai, L; Chen, W; Wang, X; Tellez, C S; Leng, S; Padilla, M T; Nyunoya, T; Belinsky, S A; Lin, Y

    2014-01-01

    Aerobic glycolysis or the Warburg effect contributes to cancer cell proliferation; however, how this glucose metabolism pathway is precisely regulated remains elusive. Here we show that receptor-interacting protein 1 (RIP1), a cell death and survival signaling factor, regulates mitochondrial oxidative phosphorylation and aerobic glycolysis. Loss of RIP1 in lung cancer cells suppressed peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression, impairing mitochondrial oxidative phosphorylation and accelerating glycolysis, resulting in spontaneous DNA damage and p53-mediated cell proliferation inhibition. Thus, although aerobic glycolysis within a certain range favors cancer cell proliferation, excessive glycolysis causes cytostasis. Our data suggest that maintenance of glycolysis by RIP1 is pivotal to cancer cell energy homeostasis and DNA integrity and may be exploited for use in anticancer therapy. PMID:24583643

  15. Differential Phosphoproteomics of Fibroblast Growth Factor Signaling: Identification of Src Family Kinase-Mediated Phosphorylation Events

    PubMed Central

    2010-01-01

    Activation of signal transduction by the receptor tyrosine kinase, fibroblast growth factor receptor (FGFR), results in a cascade of protein−protein interactions that rely on the occurrence of specific tyrosine phosphorylation events. One such protein recruited to the activated receptor complex is the nonreceptor tyrosine kinase, Src, which is involved in both initiation and termination of further signaling events. To gain a further understanding of the tyrosine phosphorylation events that occur during FGF signaling, with a specific focus on those that are dependent on Src family kinase (SFK) activity, we have applied SILAC combined with chemical inhibition of SFK activity to search for phosphorylation events that are dependent on SFK activity in FGF stimulated cells. In addition, we used a more targeted approach to carry out high coverage phosphopeptide mapping of one Src substrate protein, the multifunctional adaptor Dok1, and to identify SFK-dependent Dok1 binding partners. From these analyses we identify 80 SFK-dependent phosphorylation events on 40 proteins. We further identify 18 SFK-dependent Dok1 interactions and 9 SFK-dependent Dok1 phosphorylation sites, 6 of which had not previously been known to be SFK-dependent. PMID:20225815

  16. PECAM-1 Affects GSK-3β-Mediated β-Catenin Phosphorylation and Degradation

    PubMed Central

    Biswas, Purba; Canosa, Sandra; Schoenfeld, David; Schoenfeld, Jonathan; Li, Puyau; Cheas, Lydia C.; Zhang, Jin; Cordova, Alfredo; Sumpio, Bauer; Madri, Joseph A.

    2006-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) regulates a variety of endothelial and immune cell biological responses. PECAM-1-null mice exhibit prolonged and increased permeability after inflammatory insults. We observed that in PECAM-1-null endothelial cells (ECs), β-catenin remained tyrosine phosphorylated, coinciding with a sustained increase in permeability. Src homology 2 domain containing phosphatase 2 (SHP-2) association with β-catenin was diminished in PECAM-1-null ECs, suggesting that lack of PECAM-1 inhibits the ability of this adherens junction component to become dephosphorylated, promoting a sustained increase in permeability. β-Catenin/Glycogen synthase kinase 3 (GSK-3β) association and β-catenin serine phosphorylation levels were increased and β-catenin expression levels were reduced in PECAM-1-null ECs. Glycogen synthase kinase 3 (GSK-3β) serine phosphorylation (inactivation) was blunted in PECAM-1-null ECs after histamine treatment or shear stress. Our data suggest that PECAM-1 serves as a critical dynamic regulator of endothelial barrier permeability. On stimulation by a vasoactive substance or shear stress, PECAM-1 became tyrosine phosphorylated, enabling recruitment of SHP-2 and tyrosine-phosphorylated β-catenin to its cytoplasmic domain, facilitating dephosphorylation of β-catenin, and allowing reconstitution of adherens junctions. In addition, PECAM-1 modulated the levels of β-catenin by regulating the activity of GSK-3β, which in turn affected the serine phosphorylation of β-catenin and its proteosomal degradation, affecting the ability of the cell to reform adherens junctions in a timely fashion. PMID:16816383

  17. Anesthetic Isoflurane Increases Phosphorylated Tau Levels Mediated by Caspase Activation and Aβ Generation

    PubMed Central

    Dong, Yuanlin; Wu, Xu; Xu, Zhipeng; Zhang, Yiying; Xie, Zhongcong

    2012-01-01

    Anesthetic isoflurane has been shown to promote Alzheimer’s disease (AD) neuropathogenesis by inducing caspase activation and accumulation of β-amyloid (Aβ). Phosphorylation of tau protein is another important feature of AD neuropathogenesis. However, the effects of isoflurane on phosphorylated tau levels remain largely to be determined. We therefore set out to determine whether isoflurane can increase phosphorylated tau levels. 5 to 8 month-old wild-type and AD transgenic mice [B6.Cg-Tg (APPswe, PSEN1dE9)85Dbo/J] were treated with 1.4% isoflurane for two hours. The mice brain tissues were harvested at six, 12 and 24 hours after the anesthesia. For the in vitro studies, primary neurons from wild-type and the AD transgenic mice were exposed to 2% isoflurane for six hours, and were harvested at the end of anesthesia. The harvested brain tissues and neurons were subjected to Western blot analysis by which the levels of phosphorylated tau protein at Serine 262 (Tau-PS262) were determined. Here we show that the isoflurane anesthesia increased Tau-PS262 levels in brain tissues and primary neurons from the wild-type and AD transgenic mice. Moreover, the isoflurane anesthesia may induce a greater increase in Tau-PS262 levels in primary neurons and brain tissues from the AD transgenic mice. Finally, caspase activation inhibitor Z-VAD and Aβ generation inhibitor L-685,458 attenuated the isoflurane-induced increases in Tau-PS262 levels. In conclusion, clinically relevant isoflurane anesthesia increases phosphorylated tau levels, which may result from the isoflurane-induced caspase activation and Aβ generation. These findings will promote more studies to determine the effects of anesthetics on tau phosphorylation. PMID:22745746

  18. A co-coculture system reveals the involvement of intercellular pathways as mediators of the lutropin receptor (LHR)-stimulated ERK1/2 phosphorylation in Leydig cells

    PubMed Central

    Shiraishi, Koji; Ascoli, Mario

    2007-01-01

    Co-cultures of lutropin receptor (LHR) positive and negative Leydig cells were used to test the hypothesis that the LHR provokes phosphorylation of the extracellular regulated kinases (ERK1/2) using intracellular and intercellular pathways. Addition of hCG to MA-10 cells (LHR positive) stimulates phosphorylation of the EGF receptor (EGFR) and ERK1/2 whereas addition of hCG to I-10 cells (LHR negative) does not. Addition of hCG to co-cultures of MA-10 and I-10 cells rapidly stimulates the phosphorylation of the EGFR and ERK1/2 in I-10 cells, however. Transfection of interfering constructs show that the LHR-mediated activation of Fyn in MA-10 cells is necessary for the phosphorylation of the EGFR and ERK1/2 in I-10 cells. This pathway can also be demonstrated in MA-10 cells but the phosphorylation of ERK1/2 in MA-10 cells also involves a second pathway mediated by protein kinase A (PKA). We propose that the LHR-mediated stimulation of the ERK1/2 cascade in Leydig cells depends on two independent pathways. One is intracellular and is mediated by PKA. The second is mediated by Fyn and it involves the release of soluble factors that act to phosphorylate the EGFR in an autocrine/paracrine fashion. PMID:17727840

  19. C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.

    PubMed

    Somasundaram, Preethi; Wyrick, Glenn R; Fernandez, Diego Carlos; Ghahari, Alireza; Pinhal, Cindy M; Simmonds Richardson, Melissa; Rupp, Alan C; Cui, Lihong; Wu, Zhijian; Brown, R Lane; Badea, Tudor Constantin; Hattar, Samer; Robinson, Phyllis R

    2017-03-07

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and mediate several non-image-forming visual functions, including circadian photoentrainment and the pupillary light reflex (PLR). ipRGCs act as autonomous photoreceptors via the intrinsic melanopsin-based phototransduction pathway and as a relay for rod/cone input via synaptically driven responses. Under low light intensities, where only synaptically driven rod/cone input activates ipRGCs, the duration of the ipRGC response will be determined by the termination kinetics of the rod/cone circuits. Little is known, however, about the termination kinetics of the intrinsic melanopsin-based phototransduction pathway and its contribution to several melanopsin-mediated behaviors. Here, we show that C-terminal phosphorylation of melanopsin determines the recovery kinetics of the intrinsic melanopsin-based photoresponse in ipRGCs, the duration of the PLR, and the speed of reentrainment. In contrast, circadian phase alignment and direct effects of light on activity (masking) are not influenced by C-terminal phosphorylation of melanopsin. Electrophysiological measurements demonstrate that expression of a virally encoded melanopsin lacking all C-terminal phosphorylation sites (C terminus phosphonull) leads to a prolonged intrinsic light response. In addition, mice expressing the C terminus phosphonull in ipRGCs reentrain faster to a delayed light/dark cycle compared with mice expressing virally encoded WT melanopsin; however, the phase angle of entrainment and masking were indistinguishable. Importantly, a sustained PLR in the phosphonull animals is only observed at brighter light intensities that activate melanopsin phototransduction, but not at dimmer light intensities that activate only the rod/cone pathway. Taken together, our results highlight how the kinetics of the melanopsin photoresponse differentially regulate distinct light-mediated behaviors.

  20. Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice.

    PubMed

    Shan, Jian; Kushnir, Alexander; Betzenhauser, Matthew J; Reiken, Steven; Li, Jingdong; Lehnart, Stephan E; Lindegger, Nicolas; Mongillo, Marco; Mohler, Peter J; Marks, Andrew R

    2010-12-01

    During the classic "fight-or-flight" stress response, sympathetic nervous system activation leads to catecholamine release, which increases heart rate and contractility, resulting in enhanced cardiac output. Catecholamines bind to β-adrenergic receptors, causing cAMP generation and activation of PKA, which phosphorylates multiple targets in cardiac muscle, including the cardiac ryanodine receptor/calcium release channel (RyR2) required for muscle contraction. PKA phosphorylation of RyR2 enhances channel activity by sensitizing the channel to cytosolic calcium (Ca²+). Here, we found that mice harboring RyR2 channels that cannot be PKA phosphorylated (referred to herein as RyR2-S2808A+/+ mice) exhibited blunted heart rate and cardiac contractile responses to catecholamines (isoproterenol). The isoproterenol-induced enhancement of ventricular myocyte Ca²+ transients and fractional shortening (contraction) and the spontaneous beating rate of sinoatrial nodal cells were all blunted in RyR2-S2808A+/+ mice. The blunted cardiac response to catecholamines in RyR2-S2808A+/+ mice resulted in impaired exercise capacity. RyR2-S2808A+/+ mice were protected against chronic catecholaminergic-induced cardiac dysfunction. These studies identify what we believe to be new roles for PKA phosphorylation of RyR2 in both the heart rate and contractile responses to acute catecholaminergic stimulation.

  1. Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban

    PubMed Central

    Gustavsson, Martin; Verardi, Raffaello; Mullen, Daniel G.; Mote, Kaustubh R.; Traaseth, Nathaniel J.; Gopinath, T.; Veglia, Gianluigi

    2013-01-01

    The membrane protein complex between the sarcoplasmic reticulum Ca2+-ATPase (SERCA) and phospholamban (PLN) controls Ca2+ transport in cardiomyocytes, thereby modulating cardiac contractility. β-Adrenergic-stimulated phosphorylation of PLN at Ser-16 enhances SERCA activity via an unknown mechanism. Using solid-state nuclear magnetic resonance spectroscopy, we mapped the physical interactions between SERCA and both unphosphorylated and phosphorylated PLN in membrane bilayers. We found that the allosteric regulation of SERCA depends on the conformational equilibrium of PLN, whose cytoplasmic regulatory domain interconverts between three different states: a ground T state (helical and membrane associated), an excited R state (unfolded and membrane detached), and a B state (extended and enzyme-bound), which is noninhibitory. Phosphorylation at Ser-16 of PLN shifts the populations toward the B state, increasing SERCA activity. We conclude that PLN’s conformational equilibrium is central to maintain SERCA’s apparent Ca2+ affinity within a physiological window. This model represents a paradigm shift in our understanding of SERCA regulation by posttranslational phosphorylation and suggests strategies for designing innovative therapeutic approaches to enhance cardiac muscle contractility. PMID:24101520

  2. Novel Regulation of Parkin Function Through c-Abl-Mediated Tyrosine Phosphorylation: Implications for Parkinson's Disease

    PubMed Central

    Imam, Syed Z.; Zhou, Qing; Yamamoto, Ayako; Valente, Anthony J.; Ali, Syed F.; Bains, Mona; Roberts, James L.; Kahle, Philipp J.; Clark, Robert A.; Li, Senlin

    2011-01-01

    Mutations in parkin, an E3 ubiquitin ligase, are most common cause of autosomal-recessive Parkinson's disease (PD). Here, we show that the stress-signaling non-receptor tyrosine-kinase c-Abl links parkin to sporadic forms of PD via tyrosine phosphorylation. Under oxidative and dopaminergic stress, c-Abl was activated in cultured neuronal cells and in striatum of adult C57 mice. Activated c-Abl was found in the striatum of PD patients. Concomitantly, parkin was tyrosine-phosphorylated, causing loss ofit's ubiquitin ligase and cytoprotective activities, and the accumulation of parkin substrates, AIMP2 (p38/JTV-1) and FBP-1. STI-571, a selective c-Abl inhibitor, prevented tyrosine phosphorylation of parkin and restored its E3 ligase activity and cytoprotective function both in vitro and in vivo. Our results suggest that tyrosine phosphorylation of parkin by c-Abl is a major post-translational modification that leads to loss of parkin function and disease progression in sporadic PD. Moreover, inhibition of c-Abl offers new therapeutic opportunities for blocking PD progression. PMID:21209200

  3. Salubrinal-Mediated Upregulation of eIF2α Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells.

    PubMed

    Jeon, Yong-Joon; Kim, Jin Hyun; Shin, Jong-Il; Jeong, Mini; Cho, Jaewook; Lee, Kyungho

    2016-02-01

    Eukaryotic translation initiation factor 2 alpha (eIF2α), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of eIF2α phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of eIF2α in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of eIF2α, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of eIF2α phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of eIF2α by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells.

  4. Role of oxidative phosphorylation and ATP release in mediating birth-related pulmonary vasodilation in fetal lambs.

    PubMed

    Konduri, Girija G; Mattei, Janine

    2002-10-01

    We investigated the hypothesis that birth-related pulmonary vasodilation is mediated in part by an increase in oxidative phosphorylation and ATP release in response to oxygen exposure at birth. Studies were done in fetal lambs to evaluate the independent effects of oxygen, lung distension alone, or lung distension accompanied by oxygenation and shear stress on fetal pulmonary blood flow and resistance and plasma ATP levels in the pulmonary artery. The effect of each intervention was evaluated in lambs assigned to one of three groups: control or pretreatment with 2,4-dinitrophenol or antimycin-A, inhibitors of oxidative phosphorylation. Exposure to oxygen alone or with lung distension was associated with increases in plasma ATP levels and pulmonary blood flow and a decrease in pulmonary vascular resistance. Plasma ATP levels did not change during lung distension alone. 2,4-Dinitrophenol and antimycin-A attenuated the pulmonary vasodilator response to oxygen but did not attenuate the response to lung distension alone. An increase in oxidative phosphorylation and ATP release during oxygen exposure may contribute to birth-related pulmonary vasodilation in fetal lambs.

  5. Nicotine enhances the cyclic AMP-dependent protein kinase-mediated phosphorylation of alpha4 subunits of neuronal nicotinic receptors.

    PubMed

    Hsu, Y N; Edwards, S C; Wecker, L

    1997-12-01

    Studies determined whether alpha4beta2 or alpha3beta2 neuronal nicotinic receptors expressed in Xenopus oocytes are substrates for cyclic AMP-dependent protein kinase (PKA) and whether nicotine affects receptor phosphorylation. The cRNAs for the subunits were coinjected into oocytes, and cells were incubated for 24 h in the absence or presence of nicotine (50 nM for alpha4beta2 and 500 nM for alpha3beta2 receptors). Nicotine did not interfere with the isolation of the receptors. When receptors isolated from oocytes expressing alpha4beta2 receptors were incubated with [gamma-32P]ATP and the catalytic subunit of PKA, separated by electrophoresis, and visualized by autoradiography, a labeled phosphoprotein with the predicted molecular size of the alpha4 subunit was present. Phosphorylation of alpha4 subunits of alpha4beta2 receptors increased within the first 5 min of incubation with nicotine and persisted for 24 h. In contrast, receptors isolated from oocytes expressing alpha3beta2 receptors did not exhibit a labeled phosphoprotein corresponding to the size of the alpha3 subunit. Results suggest that the PKA-mediated phosphorylation of alpha4 and not alpha3 subunits may explain the differential inactivation by nicotine of these receptor subtypes expressed in oocytes.

  6. Rho-ROCK-dependent ezrin-radixin-moesin phosphorylation regulates Fas-mediated apoptosis in Jurkat cells.

    PubMed

    Hébert, Marylise; Potin, Sophie; Sebbagh, Michaël; Bertoglio, Jacques; Bréard, Jacqueline; Hamelin, Jocelyne

    2008-11-01

    Upon engagement by its ligand, the Fas receptor (CD95/APO-1) is oligomerized in a manner dependent on F-actin. It has been shown that ezrin, a member of the ERM (ezrin-radixin-moesin) protein family can link Fas to the actin cytoskeleton. We show herein that in Jurkat cells, not only ezrin but also moesin can associate with Fas. The same observation was made in activated human peripheral blood T cells. Fas/ezrin or moesin (E/M) association increases in Jurkat cells following Fas triggering and occurs concomitantly with the formation of SDS- and 2-ME-stable high molecular mass Fas aggregates. Ezrin and moesin have to be present together for the formation of Fas aggregates since down-regulation of either ezrin or moesin expression with small interfering RNAs completely inhibits Fas aggregate formation. Although FADD (Fas-associated death domain protein) and caspase-8 associate with Fas in the absence of E/M, subsequent events such as caspase-8 activation and sensitivity to apoptosis are decreased. During the course of Fas stimulation, ezrin and moesin become phosphorylated, respectively, on T567 and on T558. This phosphorylation is mediated by the kinase ROCK (Rho-associated coiled coil-containing protein kinase) I subsequently to Rho activation. Indeed, inhibition of either Rho or ROCK prevents ezrin and moesin phosphorylation, abrogates the formation of Fas aggregates, and interferes with caspase-8 activation. Thus, phosphorylation of E/M by ROCK is involved in the early steps of apoptotic signaling following Fas triggering and regulates apoptosis induction.

  7. Chronic baclofen desensitizes GABA(B)-mediated G-protein activation and stimulates phosphorylation of kinases in mesocorticolimbic rat brain.

    PubMed

    Keegan, Bradley M T; Beveridge, Thomas J R; Pezor, Jeffrey J; Xiao, Ruoyu; Sexton, Tammy; Childers, Steven R; Howlett, Allyn C

    2015-08-01

    The GABAB receptor is a therapeutic target for CNS and neuropathic disorders; however, few preclinical studies have explored effects of chronic stimulation. This study evaluated acute and chronic baclofen treatments on GABAB-activated G-proteins and signaling protein phosphorylation as indicators of GABAB signaling capacity. Brain sections from rats acutely administered baclofen (5 mg/kg, i.p.) showed no significant differences from controls in GABAB-stimulated GTPγS binding in any brain region, but displayed significantly greater phosphorylation/activation of focal adhesion kinase (pFAK(Tyr397)) in mesocorticolimbic regions (caudate putamen, cortex, hippocampus, thalamus) and elevated phosphorylated/activated glycogen synthase kinase 3-β (pGSK3β(Tyr216)) in the prefrontal cortex, cerebral cortex, caudate putamen, nucleus accumbens, thalamus, septum, and globus pallidus. In rats administered chronic baclofen (5 mg/kg, t.i.d. for five days), GABAB-stimulated GTPγS binding was significantly diminished in the prefrontal cortex, septum, amygdala, and parabrachial nucleus compared to controls. This effect was specific to GABAB receptors: there was no effect of chronic baclofen treatment on adenosine A1-stimulated GTPγS binding in any region. Chronically-treated rats also exhibited increases in pFAK(Tyr397) and pGSK3β(Tyr216) compared to controls, and displayed wide-spread elevations in phosphorylated dopamine- and cAMP-regulated phosphoprotein-32 (pDARPP-32(Thr34)) compared to acutely-treated or control rats. We postulate that those neuroadaptive effects of GABAB stimulation mediated by G-proteins and their sequelae correlate with tolerance to several of baclofen's effects, whereas sustained signaling via kinase cascades points to cross-talk between GABAB receptors and alternative mechanisms that are resistant to desensitization. Both desensitized and sustained signaling pathways should be considered in the development of pharmacotherapies targeting the GABA

  8. Hh-induced Smoothened conformational switch is mediated by differential phosphorylation at its C-terminal tail in a dose- and position-dependent manner.

    PubMed

    Fan, Junkai; Liu, Yajuan; Jia, Jianhang

    2012-06-15

    The activation of Smoothened (Smo) requires phosphorylation at three clusters of Serine residues in Drosophila Hedgehog (Hh) signaling. However, the mechanism by which phosphorylation promotes Smo conformational change and subsequently activates Smo in response to Hh gradient remains unclear. Here, we show that the conformational states of Smo are determined by not only the amount but also the position of the negative charges provided by phosphorylation. By using a Smo phospho-specific antibody, we demonstrate that Smo is differentially phosphorylated at three clusters of serine residues in response to levels of Hh activity. Mutating the first cluster, compared to mutating the other clusters, impairs Smo activity more severely, whereas mutating the last cluster prohibits C-terminus dimerization. In addition, phosphorylation of the membrane proximal cluster promotes phosphorylation of the distal cluster. We propose a zipper-lock model in which the gradual phosphorylation at these clusters induces a gradual conformational change in the Smo cytoplasmic tail, which promotes the interaction between Smo and Costal2 (Cos2). Moreover, we show that Hh regulates both PKA and CK1 phosphorylation of Smo. Thus, the differential phosphorylation of Smo mediates the thresholds of Hh activity.

  9. Endothelin-1 stimulates catalase activity through the PKCδ-mediated phosphorylation of serine 167.

    PubMed

    Rafikov, Ruslan; Kumar, Sanjiv; Aggarwal, Saurabh; Hou, Yali; Kangath, Archana; Pardo, Daniel; Fineman, Jeffrey R; Black, Stephen M

    2014-02-01

    Our previous studies have shown that endothelin-1 (ET-1) stimulates catalase activity in endothelial cells and in lambs with acute increases in pulmonary blood flow (PBF), without altering gene expression. The purpose of this study was to investigate the molecular mechanism by which this occurs. Exposing pulmonary arterial endothelial cells to ET-1 increased catalase activity and decreased cellular hydrogen peroxide (H2O2) levels. These changes correlated with an increase in serine-phosphorylated catalase. Using the inhibitory peptide δV1.1, this phosphorylation was shown to be protein kinase Cδ (PKCδ) dependent. Mass spectrometry identified serine 167 as the phosphorylation site. Site-directed mutagenesis was used to generate a phospho-mimic (S167D) catalase. Activity assays using recombinant protein purified from Escherichia coli or transiently transfected COS-7 cells demonstrated that S167D catalase had an increased ability to degrade H2O2 compared to the wild-type enzyme. Using a phospho-specific antibody, we were able to verify that pS167 catalase levels are modulated in lambs with acute increases in PBF in the presence and absence of the ET receptor antagonist tezosentan. S167 is located on the dimeric interface, suggesting it could be involved in regulating the formation of catalase tetramers. To evaluate this possibility we utilized analytical gel filtration to examine the multimeric structure of recombinant wild-type and S167D catalase. We found that recombinant wild-type catalase was present as a mixture of monomers and dimers, whereas S167D catalase was primarily tetrameric. Further, the incubation of wild-type catalase with PKCδ was sufficient to convert wild-type catalase into a tetrameric structure. In conclusion, this is the first report indicating that the phosphorylation of catalase regulates its multimeric structure and activity.

  10. Dexmedetomidine-Induced Contraction in the Isolated Endothelium-Denuded Rat Aorta Involves PKC-δ-mediated JNK Phosphorylation.

    PubMed

    Yu, Jongsun; Ok, Seong-Ho; Kim, Won Ho; Cho, Hyunhoo; Park, Jungchul; Shin, Il-Woo; Lee, Heon Keun; Chung, Young-Kyun; Choi, Mun-Jeoung; Kwon, Seong-Chun; Sohn, Ju-Tae

    2015-01-01

    Vasoconstriction mediated by the highly selective alpha-2 adrenoceptor agonist dexmedetomidine leads to transiently increased blood pressure and severe hypertension. The dexmedetomidine-induced contraction involves the protein kinase C (PKC)-mediated pathway. However, the main PKC isoform involved in the dexmedetomidine-induced contraction remains unknown. The goal of this in vitro study was to examine the specific PKC isoform that contributes to the dexmedetomidine-induced contraction in the isolated rat aorta. The endothelium-denuded rat aorta was suspended for isometric tension recording. Dexmedetomidine dose-response curves were generated in the presence or absence of the following inhibitors: the pan-PKC inhibitor, chelerythrine; the PKC-α and -β inhibitor, Go6976; the PKC-α inhibitor, safingol; the PKC-β inhibitor, ruboxistaurin; the PKC-δ inhibitor, rottlerin; the c-Jun NH2-terminal kinase (JNK) inhibitor, SP600125; and the myosin light chain kinase inhibitor, ML-7 hydrochloride. Western blot analysis was used to examine the effect of rottlerin on dexmedetomidine-induced PKC-δ expression and JNK phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) and to investigate the effect of dexmedetomidine on PKC-δ expression in VSMCs transfected with PKC-δ small interfering RNA (siRNA) or control siRNA. Chelerythrine as well as SP600125 and ML-7 hydrochloride attenuated the dexmedetomidine-induced contraction. Go6976, safingol, and ruboxistaurin had no effect on the dexmedetomidine-induced contraction, whereas rottlerin inhibited the dexmedetomidine-induced contraction. Dexmedetomidine induced PKC-δ expression, whereas rottlerin and PKC-δ siRNA transfection inhibited dexmedetomidine-induced PKC-δ expression. Dexmedetomidine also induced JNK phosphorylation, which was inhibited by rottlerin. Taken together, these results suggest that the dexmedetomidine-induced contraction involves PKC-δ-dependent JNK phosphorylation in the isolated rat aorta.

  11. DNA-dependent protein kinase mediates V(D)J recombination via RAG2 phosphorylation.

    PubMed

    Hah, Young-Sool; Lee, Jung Hwa; Kim, Deok Ryong

    2007-05-31

    V(D)J recombination, a site-specific gene rearrangement process occurring during the lymphocyte development, begins with DNA double strand breaks by two recombination activating gene products (RAG1/2) and finishes with the repair process by several proteins including DNA-dependent protein kinase (DNA-PK). In this report, we found that RAG2 was specifically phosphorylated by DNA-PK at the 365(th) serine residue, and this phosphorylated RAG2 affected the V(D)J recombination activity in cells in the GFP expression-based assay. While the V(D)J recombination activity between wild-type RAG2 and mutant S365A RAG2 in the assay using a signal joint substrate was undistinguishable in DNA-PK deficient cells (M059J), the activity with wild-type RAG2 was largely increased in DNA-PK proficient cells (M059K) in comparison with mutant RAG2, suggesting that RAG2 phosphorylation by DNA-PK plays a crucial role in the signal joint formation during V(D)J recombination.

  12. Regulation of Rnd3 Localization and Function By PKCα-Mediated Phosphorylation

    PubMed Central

    Madigan, James P.; Bodemann, Brian O.; Brady, Donita C.; Dewar, Brian J.; Keller, Patricia J.; Leitges, Michael; Philips, Mark R.; Ridley, Anne J.; Der, Channing J.; Cox, Adrienne D.

    2010-01-01

    The Rnd proteins (Rnd1, Rnd2 and Rnd3/RhoE) form a distinct branch of the Rho family of small GTPases. Altered Rnd3 expression causes changes in cytoskeletal organization and cell cycle progression. Rnd3 functions to decrease RhoA activity, but how Rnd3 itself is regulated to cause these changes is still under investigation. Unlike other Rho family proteins, Rnd3 is regulated not by GTP/GDP cycling, but at the level of expression and by posttranslational modifications such as prenylation and phosphorylation. We show here that, upon PKC agonist stimulation, Rnd3 undergoes an electrophoretic mobility shift and its subcellular localization becomes enriched at internal membranes. These changes are blocked by inhibition of conventional PKC isoforms and do not occur in PKCα-null cells or to a nonphosphorylatable mutant of Rnd3. We further show that PKCα directly phosphorylates Rnd3 in an in vitro kinase assay. Additionally, we provide evidence that the phosphorylation status of Rnd3 has a direct effect on its ability to block signaling from the Rho-ROCK pathway. These results identify an additional mechanism of regulation and provide clarification of how Rnd3 modulates Rho signaling to alter cytoskeletal organization. PMID:19723022

  13. Phosphorylation of p53 by LRRK2 induces microglial tumor necrosis factor α-mediated neurotoxicity.

    PubMed

    Ho, Dong Hwan; Seol, Wongi; Eun, Jin Hwan; Son, Il-Hong

    2017-01-22

    Leucine-rich repeat kinase (LRRK2), a major causal gene of Parkinson's disease (PD), functions as a kinase. The most prevalent mutation of LRRK2 is G2019S. It exhibits increased kinase activity compared to the wildtype LRRK2. Previous studies have shown that LRRK2 can phosphorylate p53 at T304 and T377 of threonine-X-arginine (TXR) motif in neurons. Reduction of LRRK2 expression or inhibition of LRRK2 kinase activity has been shown to be able to alleviate LPS-induced neuroinflammation in microglia cells. In this study, we found that LRRK2 could also phosphorylate p53 in microglia model BV2 cells. Transfection of BV2 with phosphomimetic p53 T304/377D significantly increased the secretion of pro-inflammatory cytokine TNFα compared to BV2 transfected with p53 wild type after LPS treatment. In addition, conditioned media from these transfected cells increased the death of dopaminergic neuronal SN4741 cells. Moreover, such neurotoxic effect was rescued by co-treatment with the conditioned media and etanercept, a TNFα blocking antibody. Furthermore, TNFα secretion was significantly increased in primary microglia derived from G2019S transgenic mice treated with LPS compared to that in cells derived from their littermates. These results suggest that LRRK2 kinase activity in microglia can contribute to neuroinflammation in PD via phosphorylating p53 at T304 and T377 site.

  14. Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer's disease β-amyloid production

    PubMed Central

    Rezai-Zadeh, Kavon; Douglas Shytle, R; Bai, Yun; Tian, Jun; Hou, Huayan; Mori, Takashi; Zeng, Jin; Obregon, Demian; Town, Terrence; Tan, Jun

    2009-01-01

    Abstract Glycogen synthase kinase 3 (GSK-3) dysregulation is implicated in the two Alzheimer's disease (AD) pathological hallmarks: β-amyloid plaques and neurofibrillary tangles. GSK-3 inhibitors may abrogate AD pathology by inhibiting amyloidogenic γ-secretase cleavage of amyloid precursor protein (APP). Here, we report that the citrus bioflavonoid luteolin reduces amyloid-β (Aβ) peptide generation in both human ‘Swedish’ mutant APP transgene-bearing neuron-like cells and primary neurons. We also find that luteolin induces changes consistent with GSK-3 inhibition that (i) decrease amyloidogenic γ-secretase APP processing, and (ii) promote presenilin-1 (PS1) carboxyl-terminal fragment (CTF) phosphorylation. Importantly, we find GSK-3α activity is essential for both PS1 CTF phosphorylation and PS1-APP interaction. As validation of these findings in vivo, we find that luteolin, when applied to the Tg2576 mouse model of AD, decreases soluble Aβ levels, reduces GSK-3 activity, and disrupts PS1-APP association. In addition, we find that Tg2576 mice treated with diosmin, a glycoside of a flavonoid structurally similar to luteolin, display significantly reduced Aβ pathology. We suggest that GSK-3 inhibition is a viable therapeutic approach for AD by impacting PS1 phosphorylation-dependent regulation of amyloidogenesis. PMID:18410522

  15. Myosin IIA Heavy Chain Phosphorylation Mediates Adhesion Maturation and Protrusion in Three Dimensions.

    PubMed

    Rai, Vandana; Thomas, Dustin G; Beach, Jordan R; Egelhoff, Thomas T

    2017-02-24

    Non-muscle myosin II (NMII) is a conserved force-producing cytoskeletal enzyme with important but poorly understood roles in cell migration. To investigate myosin heavy chain (MHC) phosphorylation roles in 3D migration, we expressed GFP-tagged NMIIA wild-type or mutant constructs in cells depleted of endogenous NMIIA protein. We find that individual mutation or double mutation of Ser-1916 or Ser-1943 to alanine potently blocks recruitment of GFP-NM-IIA filaments to leading edge protrusions in 2D, and this in turn blocks maturation of anterior focal adhesions. When placed in 3D collagen gels, cells expressing wild-type GFP MHC-IIA behave like parental cells, displaying robust and active formation and retraction of protrusions. However, cells depleted of NMIIA or cells expressing the mutant GFP MHC-IIA display severe defects in invasion and in stabilizing protrusions in 3D. These studies reveal an NMIIA-specific role in 3D invasion that requires competence for NMIIA phosphorylation at Ser-1916 and Ser-1943. In sum, these results demonstrate a critical and previously unrecognized role for NMIIA phosphorylation in 3D invasion.

  16. Microinjection of Anti-coilin Antibodies Affects the Structure of Coiled Bodies

    PubMed Central

    Almeida, Fátima; Saffrich, Rainer; Ansorge, Wilhelm; Carmo-Fonseca, Maria

    1998-01-01

    The coiled body is a distinct subnuclear domain enriched in small nuclear ribonucleoprotein particles (snRNPs) involved in processing of pre-mRNA. Although the function of the coiled body is still unknown, current models propose that it may have a role in snRNP biogenesis, transport, or recycling. Here we describe that anti-coilin antibodies promote a specific disappearance of the coiled body in living human cells, thus providing a novel tool for the functional analysis of this structure. Monoclonal antibodies (mAbs) were raised against recombinant human coilin, the major structural protein of the coiled body. Four mAbs are shown to induce a progressive disappearance of coiled bodies within ∼6 h after microinjection into the nucleus of HeLa cells. After their disappearance, coiled bodies are not seen to re-form, although injected cells remain viable for at least 3 d. Epitope mapping reveals that the mAbs recognize distinct amino acid motifs scattered along the complete coilin sequence. By 24 and 48 h after injection of antibodies that promote coiled body disappearance, splicing snRNPs are normally distributed in the nucleoplasm, the nucleolus remains unaffected, and the cell cycle progresses normally. Furthermore, cells devoid of coiled bodies for ∼24 h maintain the ability to splice both adenoviral pre-mRNAs and transiently overexpressed human β-globin transcripts. In conclusion, within the time range of this study, no major nuclear abnormalities are detected after coiled body disappearance. PMID:9722604

  17. G Protein-coupled Receptor Kinase-mediated Phosphorylation Regulates Post-endocytic Trafficking of the D2 Dopamine Receptor*S⃞

    PubMed Central

    Namkung, Yoon; Dipace, Concetta; Javitch, Jonathan A.; Sibley, David R.

    2009-01-01

    We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D2 dopamine receptor (DAR). Agonist activation of D2 DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D2 DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [35S]GTPγS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D2 DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor. PMID:19332542

  18. ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair.

    PubMed

    Somyajit, Kumar; Basavaraju, Shivakumar; Scully, Ralph; Nagaraju, Ganesh

    2013-05-01

    The RAD51 paralogs XRCC3 and RAD51C have been implicated in homologous recombination (HR) and DNA damage responses. However, the molecular mechanism(s) by which these paralogs regulate HR and DNA damage signaling remains obscure. Here, we show that an SQ motif serine 225 in XRCC3 is phosphorylated by ATR kinase in an ATM signaling pathway. We find that RAD51C but not XRCC2 is essential for XRCC3 phosphorylation, and this modification follows end resection and is specific to S and G2 phases. XRCC3 phosphorylation is required for chromatin loading of RAD51 and HR-mediated repair of double-strand breaks (DSBs). Notably, in response to DSBs, XRCC3 participates in the intra-S-phase checkpoint following its phosphorylation and in the G2/M checkpoint independently of its phosphorylation. Strikingly, we find that XRCC3 distinctly regulates recovery of stalled and collapsed replication forks such that phosphorylation is required for the HR-mediated recovery of collapsed replication forks but is dispensable for the restart of stalled replication forks. Together, these findings suggest that XRCC3 is a new player in the ATM/ATR-induced DNA damage responses to control checkpoint and HR-mediated repair.

  19. Target gene specificity of USF-1 is directed via p38-mediated phosphorylation-dependent acetylation.

    PubMed

    Corre, Sébastien; Primot, Aline; Baron, Yorann; Le Seyec, Jacques; Goding, Colin; Galibert, Marie-Dominique

    2009-07-10

    How transcription factors interpret the output from signal transduction pathways to drive distinct programs of gene expression is a key issue that underpins development and disease. The ubiquitously expressed basic-helix-loop-helix leucine zipper upstream stimulating factor-1 binds E-box regulatory elements (CANNTG) to regulate a wide number of gene networks. In particular, USF-1 is a key component of the tanning process. Following UV irradiation, USF-1 is phosphorylated by the p38 stress-activated kinase on threonine 153 and directly up-regulates expression of the POMC, MC1R, TYR, TYRP-1 and DCT genes. However, how phosphorylation on Thr-153 might affect the activity of USF-1 is unclear. Here we show that, in response to DNA damage, oxidative stress and cellular infection USF-1 is acetylated in a phospho-Thr-153-dependent fashion. Phospho-acetylated USF-1 is nuclear and interacts with DNA but displays altered gene regulatory properties. Phospho-acetylated USF-1 is thus proposed to be associated with loss of transcriptional activation properties toward several target genes implicated in pigmentation process and cell cycle regulation. The identification of this critical stress-dependent USF-1 modification gives new insights into understanding USF-1 gene expression modulation associated with cancer development.

  20. Histones-mediated lymphocyte apoptosis during sepsis is dependent on p38 phosphorylation and mitochondrial permeability transition.

    PubMed

    Liu, Zhan-Guo; Ni, Shu-Yuan; Chen, Gui-Ming; Cai, Jing; Guo, Zhen-Hui; Chang, Ping; Li, Yu-Sheng

    2013-01-01

    Lymphocyte apoptosis is one reason for immunoparalysis seen in sepsis, although the triggers are unknown. We hypothesized that molecules in plasma, which are up-regulated during sepsis, may be responsible for this. In this study, peripheral lymphocyte apoptosis caused by extracellular histones was confirmed both in mouse and human primary lymphocytes, in which histones induced lymphocyte apoptosis dose-dependently and time-dependently. To identify which intracellular signal pathways were activated, phosphorylation of various mitogen-activated protein kinases (MAPKs) were evaluated during this process, and p38 inhibitor (SB203580) was used to confirm the role of p38 in lymphocyte apoptosis induced by histones. To investigate the mitochondrial injury during these processes, we analyzed Bcl2 degradation and Rhodamine 123 to assess mitochondrial-membrane stability, via cyclosporin A as an inhibitor for mitochondrial permeability transition (MPT). Then, caspase 3 activation was also checked by western-blotting. We found that p38 phosphorylation, mitochondrial injury and caspase 3 activation occurred dose-dependently in histones-mediated lymphocyte apoptosis. We also observed that p38 inhibitor SB203580 decreased lymphocyte apoptotic ratio by 49% (P<0.05), and inhibition of MPT protected lymphocytes from apoptosis. Furthermore, to investigate whether histones are responsible for lymphocyte apoptosis, various concentrations of histone H4 neutralization antibodies were co-cultured with human primary lymphocytes and plasma from cecal ligation and puncture (CLP) mice or sham mice. The results showed that H4 neutralization antibody dose-dependently blocked lymphocyte apoptosis caused by septic plasma in vitro. These data demonstrate for the first time that extracellular histones, especially H4, play a vital role in lymphocyte apoptosis during sepsis which is dependent on p38 phosphorylation and mitochondrial permeability transition. Neutralizing H4 can inhibit lymphocyte

  1. The anti-adipogenic effect of PGRN on porcine preadipocytes involves ERK1,2 mediated PPARγ phosphorylation.

    PubMed

    Yang, Hao; Cheng, Jia; Song, Ziyi; Li, Xinjian; Zhang, Zhenyu; Mai, Yin; Pang, Weijun; Shi, Xin'e; Yang, Gongshe

    2013-12-01

    Recent researches indicate that PGRN is closely related to diabetes and is regarded as a novel adipokine associated with obesity development, affecting adipocyte biology. In the present study, we investigated the effects and mechanisms of PGRN on porcine preadipocytes differentiation. Porcine preadipocytes were induced to differentiation with the addition of lentivirius-expressed PGRN shRNA at the early or late stage of induction period, and in the presence or absence of recombinant PGRN protein. The effects of PGRN on adipogenic genes expression and ERK activation were investigated. At the early stage of induction, knockdown of PGRN promoted differentiation, evidenced by enhanced lipid accumulation, upregulation of adipocyte markers, as well as master adipogenic transcription factors, PPARγ and C/EBPα. While, decreasing PGRN expression at the late stage of induction (day 3) had no effect on differentiation. These results suggested that PGRN functions in the early adipogenic events. Conversely, porcine preadipocytes differentiation was impaired by MDI and recombinant PGRN protein induction, the expressions of adipocyte markers were decreased. Further studies revealed that PGRN can specifically facilitate ERK1,2 activation, and this activation can be abolished by U0126. Moreover, PPARγ phosphorylation at serine 112 site was increased by PGRN treatment, which could reduce the transcriptional activity of PPARγ. We conclude that PGRN inhibits adipogenesis in porcine preadipocytes partially through ERK activation mediated PPARγ phosphorylation.

  2. EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma.

    PubMed

    Yan, Junli; Li, Boheng; Lin, Baohong; Lee, Pei Tsung; Chung, Tae-Hoon; Tan, Joy; Bi, Chonglei; Lee, Xue Ting; Selvarajan, Viknesvaran; Ng, Siok-Bian; Yang, Henry; Yu, Qiang; Chng, Wee-Joo

    2016-08-18

    The best-understood mechanism by which EZH2 exerts its oncogenic function is through polycomb repressive complex 2 (PRC2)-mediated gene repression, which requires its histone methyltransferase activity. However, small-molecule inhibitors of EZH2 that selectively target its enzymatic activity turn out to be potent only for lymphoma cells with EZH2-activating mutation. Intriguingly, recent discoveries, including ours, have placed EZH2 into the category of transcriptional coactivators and thus raised the possibility of noncanonical signaling pathways. However, it remains unclear how EZH2 switches to this catalytic independent function. In the current study, using natural killer/T-cell lymphoma (NKTL) as a disease model, we found that phosphorylation of EZH2 by JAK3 promotes the dissociation of the PRC2 complex leading to decreased global H3K27me3 levels, while it switches EZH2 to a transcriptional activator, conferring higher proliferative capacity of the affected cells. Gene expression data analysis also suggests that the noncanonical function of EZH2 as a transcriptional activator upregulates a set of genes involved in DNA replication, cell cycle, biosynthesis, stemness, and invasiveness. Consistently, JAK3 inhibitor was able to significantly reduce the growth of NKTL cells, in an EZH2 phosphorylation-dependent manner, whereas various compounds recently developed to inhibit EZH2 methyltransferase activity have no such effect. Thus, pharmacological inhibition of JAK3 activity may provide a promising treatment option for NKTL through the novel mechanism of suppressing noncanonical EZH2 activity.

  3. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies

    PubMed Central

    Niceta, Marcello; Stellacci, Emilia; Gripp, Karen W.; Zampino, Giuseppe; Kousi, Maria; Anselmi, Massimiliano; Traversa, Alice; Ciolfi, Andrea; Stabley, Deborah; Bruselles, Alessandro; Caputo, Viviana; Cecchetti, Serena; Prudente, Sabrina; Fiorenza, Maria T.; Boitani, Carla; Philip, Nicole; Niyazov, Dmitriy; Leoni, Chiara; Nakane, Takaya; Keppler-Noreuil, Kim; Braddock, Stephen R.; Gillessen-Kaesbach, Gabriele; Palleschi, Antonio; Campeau, Philippe M.; Lee, Brendan H.L.; Pouponnot, Celio; Stella, Lorenzo; Bocchinfuso, Gianfranco; Katsanis, Nicholas; Sol-Church, Katia; Tartaglia, Marco

    2015-01-01

    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development. PMID:25865493

  4. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies.

    PubMed

    Niceta, Marcello; Stellacci, Emilia; Gripp, Karen W; Zampino, Giuseppe; Kousi, Maria; Anselmi, Massimiliano; Traversa, Alice; Ciolfi, Andrea; Stabley, Deborah; Bruselles, Alessandro; Caputo, Viviana; Cecchetti, Serena; Prudente, Sabrina; Fiorenza, Maria T; Boitani, Carla; Philip, Nicole; Niyazov, Dmitriy; Leoni, Chiara; Nakane, Takaya; Keppler-Noreuil, Kim; Braddock, Stephen R; Gillessen-Kaesbach, Gabriele; Palleschi, Antonio; Campeau, Philippe M; Lee, Brendan H L; Pouponnot, Celio; Stella, Lorenzo; Bocchinfuso, Gianfranco; Katsanis, Nicholas; Sol-Church, Katia; Tartaglia, Marco

    2015-05-07

    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development.

  5. A Phosphorylation Tag for Uranyl Mediated Protein Purification and Photo Assisted Tag Removal

    PubMed Central

    Zhang, Qiang; Jørgensen, Thomas J. D.; Nielsen, Peter E.; Møllegaard, Niels Erik

    2014-01-01

    Most protein purification procedures include an affinity tag fused to either the N or C-terminal end of the protein of interest as well as a procedure for tag removal. Tag removal is not straightforward and especially tag removal from the C-terminal end is a challenge due to the characteristics of enzymes available for this purpose. In the present study, we demonstrate the utility of the divalent uranyl ion in a new procedure for protein purification and tag removal. By employment of a GFP (green florescence protein) recombinant protein we show that uranyl binding to a phosphorylated C-terminal tag enables target protein purification from an E. coli extract by immobilized uranyl affinity chromatography. Subsequently, the tag can be efficiently removed by UV-irradiation assisted uranyl photocleavage. We therefore suggest that the divalent uranyl ion (UO22+) may provide a dual function in protein purification and subsequent C-terminal tag removal procedures. PMID:24599526

  6. Pin1-mediated Sp1 phosphorylation by CDK1 increases Sp1 stability and decreases its DNA-binding activity during mitosis.

    PubMed

    Yang, Hang-Che; Chuang, Jian-Ying; Jeng, Wen-Yih; Liu, Chia-I; Wang, Andrew H-J; Lu, Pei-Jung; Chang, Wen-Chang; Hung, Jan-Jong

    2014-12-16

    We have shown that Sp1 phosphorylation at Thr739 decreases its DNA-binding activity. In this study, we found that phosphorylation of Sp1 at Thr739 alone is necessary, but not sufficient for the inhibition of its DNA-binding activity during mitosis. We demonstrated that Pin1 could be recruited to the Thr739(p)-Pro motif of Sp1 to modulate the interaction between phospho-Sp1 and CDK1, thereby facilitating CDK1-mediated phosphorylation of Sp1 at Ser720, Thr723 and Thr737 during mitosis. Loss of the C-terminal end of Sp1 (amino acids 741-785) significantly increased Sp1 phosphorylation, implying that the C-terminus inhibits CDK1-mediated Sp1 phosphorylation. Binding analysis of Sp1 peptides to Pin1 by isothermal titration calorimetry indicated that Pin1 interacts with Thr739(p)-Sp1 peptide but not with Thr739-Sp1 peptide. X-ray crystallography data showed that the Thr739(p)-Sp1 peptide occupies the active site of Pin1. Increased Sp1 phosphorylation by CDK1 during mitosis not only stabilized Sp1 levels by decreasing interaction with ubiquitin E3-ligase RNF4 but also caused Sp1 to move out of the chromosomes completely by decreasing its DNA-binding activity, thereby facilitating cell cycle progression. Thus, Pin1-mediated conformational changes in the C-terminal region of Sp1 are critical for increased CDK1-mediated Sp1 phosphorylation to facilitate cell cycle progression during mitosis.

  7. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    SciTech Connect

    Honma, Yuichi; Harada, Masaru

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.

  8. Senescence may mediate conversion of tau phosphorylation-induced apoptotic escape to neurodegeneration.

    PubMed

    Wang, Jian-Zhi; Wang, Zhi-Hao

    2015-08-01

    Neurodegeneration is the characteristic pathology in the brains of Alzheimer's disease (AD). However, the nature and molecular mechanism leading to the degeneration are not clarified. Given that only the neurons filled with neurofibrillary tangles survive to the end stage of the disease and the major component of the tangles is the hyperphosphorylated tau proteins, it is conceivable that tau hyperphosphorylation must play a crucial role in AD neurodegeneration. We have demonstrated that tau hyperphosphorylation renders the cells more resistant to the acute apoptosis. The molecular mechanisms involve substrate competition of tau and β-catenin for glycogen synthase kinase 3β (GSK-3β); activation of Akt; preservation of Bcl-2 and suppression of Bax, cytosolic cytochrome-c, and caspase-3 activity; and upregulation of unfolded protein response (UPR), i.e., up-regulating phosphorylation of PERK, eIF2 and IRE1 with an increased cleavage of ATF6 and ATF4. On the other hand, tau hyperphosphorylation promotes its intracellular accumulation and disrupts axonal transport; hyperphosphorylated tau also impairs cholinergic function and inhibits proteasome activity. These findings indicate that tau hyperphosphorylation and its intracellular accumulation play dual role in the evolution of AD. We speculate that transient tau phosphorylation helps cells abort from an acute apoptosis, while persistent tau hyperphosphorylation/accumulation may trigger cell senescence that eventually causes a chronic neurodegeneration. Therefore, the nature of "AD neurodegeneration" may represent a new type of tau-regulated chronic neuron death; and the stage of cell senescence may provide a broad window for the intervention of AD.

  9. Roles of Us8A and Its Phosphorylation Mediated by Us3 in Herpes Simplex Virus 1 Pathogenesis

    PubMed Central

    Kato, Akihisa; Ando, Tomoko; Oda, Shinya; Watanabe, Mizuki; Koyanagi, Naoto; Arii, Jun

    2016-01-01

    ABSTRACT The herpes simplex virus 1 (HSV-1) Us8A gene overlaps the gene that encodes glycoprotein E (gE). Previous studies have investigated the roles of Us8A in HSV-1 infection using null mutations in Us8A and gE; therefore, the role of Us8A remains to be elucidated. In this study, we investigated the function of Us8A and its phosphorylation at serine 61 (Ser-61), which we recently identified as a phosphorylation site by mass spectrometry-based phosphoproteomic analysis of HSV-1-infected cells, in HSV-1 pathogenesis. We observed that (i) the phosphorylation of Us8A Ser-61 in infected cells was dependent on the activity of the virus-encoded Us3 protein kinase; (ii) the Us8A null mutant virus exhibited a 10-fold increase in the 50% lethal dose for virulence in the central nervous system (CNS) of mice following intracranial infection compared with a repaired virus; (iii) replacement of Ser-61 with alanine (S61A) in Us8A had little effect on virulence in the CNS of mice following intracranial infection, whereas it significantly reduced the mortality of mice following ocular infection to levels similar to the Us8A null mutant virus; (iv) the Us8A S61A mutation also significantly reduced viral yields in mice following ocular infection, mainly in the trigeminal ganglia and brains; and (v) a phosphomimetic mutation at Us8A Ser-61 restored wild-type viral yields and virulence. Collectively, these results indicate that Us8A is a novel HSV-1 virulence factor and suggest that the Us3-mediated phosphorylation of Us8A Ser-61 regulates Us8A function for viral invasion into the CNS from peripheral sites. IMPORTANCE The DNA genomes of viruses within the subfamily Alphaherpesvirinae are divided into unique long (UL) and unique short (Us) regions. Us regions contain alphaherpesvirus-specific genes. Recently, high-throughput sequencing of ocular isolates of HSV-1 showed that Us8A was the most highly conserved of 13 herpes simplex virus 1 (HSV-1) genes mapped to the Us region

  10. Phosphorylation of GSK-3β mediates Intralipid-induced cardioprotection against Ischemia/Reperfusion injury

    PubMed Central

    Rahman, Siamak; Li, Jingyuan; Bopassa, Jean Chrisostome; Umar, Soban; Iorga, Andrea; Partownavid, Parisa; Eghbali, Mansoureh

    2012-01-01

    Background Intralipid, a brand name for the first safe fat emulsion for human use, has been shown to be cardioprotective. However, the mechanism of this protection is not known. Here we investigated the molecular mechanism(s) of Intralipid-induced cardioprotection against ischemia/reperfusion injury, particularly the role of GSK-3β and mitochondiral permeability transition pore in this protective action. Methods In-vivo rat hearts or isolated Langendorff-perfused mouse hearts were subjected to ischemia followed by reperfusion with Intralipid (1% in ex-vivo and one bolus of 20% in in-vivo) or vehicle. The hemodynamic function, infarct size, threshold for the opening of mitochondiral permeability transition pore and phosphorylation levels of Akt/ERK/GSK-3β were measured. Results Administration of Intralipid at the onset of reperfusion resulted in ~70% reduction in infarct size in the in-vivo rat model. Intralipid also significantly improved functional recovery of isolated Langendorff-perfused mouse hearts as the rate pressure product was increased from 2999±863mmHg*beats/min in control to 13676±611 mmHg*beats/min (Mean±SEM) and the infarct size was markedly smaller (18.3±2.4% vs. 54.8±2.9% in control, P<0.01). The Intralipid-induced cardioprotection was fully abolished by LY294002, a specific inhibitor of PI3K, but only partially by PD98059, a specific ERK inhibitor. Intralipid also increased the phosphorylation levels of Akt/ERK1/GSK-3β by 8, 3 and 9 fold, respectively. The opening of mitochondiral permeability transition pore was inhibited by Intralipid as calcium retention capacity was higher in Intralipid group (274.3±8.4nM/mg vs. 168.6±9.6nM/mg control). Conclusions Postischemic treatment with Intralipid inhibits the opening of mitochondiral permeability transition pore and protects the heart through GSK-3β via PI3K/Akt/ERK pathways. PMID:21691195

  11. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation

    PubMed Central

    Lin, Tien-chen; Neuner, Annett; Schlosser, Yvonne T; Scharf, Annette ND; Weber, Lisa; Schiebel, Elmar

    2014-01-01

    Budding yeast Spc110, a member of γ-tubulin complex receptor family (γ-TuCR), recruits γ-tubulin complexes to microtubule (MT) organizing centers (MTOCs). Biochemical studies suggest that Spc110 facilitates higher-order γ-tubulin complex assembly (Kollman et al., 2010). Nevertheless the molecular basis for this activity and the regulation are unclear. Here we show that Spc110 phosphorylated by Mps1 and Cdk1 activates γ-TuSC oligomerization and MT nucleation in a cell cycle dependent manner. Interaction between the N-terminus of the γ-TuSC subunit Spc98 and Spc110 is important for this activity. Besides the conserved CM1 motif in γ-TuCRs (Sawin et al., 2004), a second motif that we named Spc110/Pcp1 motif (SPM) is also important for MT nucleation. The activating Mps1 and Cdk1 sites lie between SPM and CM1 motifs. Most organisms have both SPM-CM1 (Spc110/Pcp1/PCNT) and CM1-only (Spc72/Mto1/Cnn/CDK5RAP2/myomegalin) types of γ-TuCRs. The two types of γ-TuCRs contain distinct but conserved C-terminal MTOC targeting domains. DOI: http://dx.doi.org/10.7554/eLife.02208.001 PMID:24842996

  12. P-glycoprotein Mediates Postoperative Peritoneal Adhesion Formation by Enhancing Phosphorylation of the Chloride Channel-3

    PubMed Central

    Deng, Lulu; Li, Qin; Lin, Guixian; Huang, Dan; Zeng, Xuxin; Wang, Xinwei; Li, Ping; Jin, Xiaobao; Zhang, Haifeng; Li, Chunmei; Chen, Lixin; Wang, Liwei; Huang, Shulin; Shao, Hongwei; Xu, Bin; Mao, Jianwen

    2016-01-01

    P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl- current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions. PMID:26877779

  13. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium.

    PubMed

    Palanisamy, Arun P; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D; Kuppuswamy, Dhandapani

    2015-12-01

    Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium.

  14. Effects of adrenaline on whole-body glucose metabolism and insulin-mediated regulation of glycogen synthase and PKB phosphorylation in human skeletal muscle.

    PubMed

    Jensen, Jørgen; Ruge, Toralph; Lai, Yu-Chiang; Svensson, Maria K; Eriksson, Jan W

    2011-02-01

    In the present study, we investigated the effect of adrenaline on insulin-mediated regulation of glucose and fat metabolism with focus on regulation of skeletal muscle PKB, GSK-3, and glycogen synthase (GS) phosphorylation. Ten healthy subjects (5 men and 5 women) received a 240-minute intravenous infusion of adrenaline (0.05 μg/[kg min]) or saline; after 120 minutes, a hyperinsulinemic-euglycemic clamp was added. Adrenaline infusion increased blood glucose concentration by approximately 50%, but the hyperinsulinemic clamp normalized blood glucose within 30 minutes. Glucose infusion rate during the last hour was approximately 60% lower during adrenaline infusion compared with saline (4.3 ± 0.5 vs 11.2 ± 0.6 mg/kg lean body mass per minute). Insulin increased PKB Ser⁴⁷³, PKB Thr³⁰⁸, and GSK-3β Ser⁹ phosphorylation in skeletal muscles; coinfusion of adrenaline did not influence insulin-stimulated PKB and GSK-3 phosphorylation. Adrenaline alone did not influence phosphorylation of PKB and GSK-3β. Insulin increased GS fractional activity and decreased GS Ser⁶⁴¹ and Ser⁶⁴⁵,⁶⁴⁹,⁶⁵³,⁶⁵⁷ phosphorylation. In the presence of adrenaline, insulin did neither activate GS nor dephosphorylate GS Ser⁶⁴¹. Surprisingly, GS Ser⁷ phosphorylation was not influenced by adrenaline. Adrenaline increased plasma lactate concentration; and muscle glycogen content was reduced in skeletal muscle the day after adrenaline infusion, supporting that insulin does not stimulate glycogen synthesis in skeletal muscles when adrenaline is present. In conclusion, adrenaline did not influence basal or insulin-stimulated PKB and GSK-3β phosphorylation in muscles, but completely blocked insulin-mediated GS activation and Ser⁶⁴¹ dephosphorylation. Still, insulin normalized adrenaline-mediated hyperglycemia.

  15. Focal Adhesion Kinase-mediated Phosphorylation of Beclin1 Protein Suppresses Cardiomyocyte Autophagy and Initiates Hypertrophic Growth*♦

    PubMed Central

    Cheng, Zhaokang; Zhu, Qiang; Dee, Rachel; Opheim, Zachary; Mack, Christopher P.; Cyr, Douglas M.; Taylor, Joan M.

    2017-01-01

    Autophagy is an evolutionarily conserved intracellular degradation/recycling system that is essential for cellular homeostasis but is dysregulated in a number of diseases, including myocardial hypertrophy. Although it is clear that limiting or accelerating autophagic flux can result in pathological cardiac remodeling, the physiological signaling pathways that fine-tune cardiac autophagy are poorly understood. Herein, we demonstrated that stimulation of cardiomyocytes with phenylephrine (PE), a well known hypertrophic agonist, suppresses autophagy and that activation of focal adhesion kinase (FAK) is necessary for PE-stimulated autophagy suppression and subsequent initiation of hypertrophic growth. Mechanistically, we showed that FAK phosphorylates Beclin1, a core autophagy protein, on Tyr-233 and that this post-translational modification limits Beclin1 association with Atg14L and reduces Beclin1-dependent autophagosome formation. Remarkably, although ectopic expression of wild-type Beclin1 promoted cardiomyocyte atrophy, expression of a Y233E phosphomimetic variant of Beclin1 failed to affect cardiomyocyte size. Moreover, genetic depletion of Beclin1 attenuated PE-mediated/FAK-dependent initiation of myocyte hypertrophy in vivo. Collectively, these findings identify FAK as a novel negative regulator of Beclin1-mediated autophagy and indicate that this pathway can facilitate the promotion of compensatory hypertrophic growth. This novel mechanism to limit Beclin1 activity has important implications for treating a variety of pathologies associated with altered autophagic flux. PMID:27994061

  16. Florfenicol inhibits allergic airway inflammation in mice by p38 MAPK-mediated phosphorylation of GATA 3.

    PubMed

    Xinxin, Ci; Chi, Chen; Xiao, Chu; Xue, Xu; Yongjun, Yang; Junqing, Cui; Xuming, Deng

    2011-02-01

    Florfenicol has been shown to possess anti-inflammatory activity. However, its possible use for asthma has not yet been studied. First we investigated the anti-inflammatory properties of florfenicol using mice asthma model. BALB/c mice were immunized and challenged by ovalbumin. Treatment with florfenicol caused a marked reduction in inflammatory cells and three Th2 type cytokines in the bronchoalveolar lavage fluids of mice. The levels of ovalbumin-specific IgE and airway hyperresponsiveness were significantly altered after treatment with florfenicol. Histological studies using H&E and AB-PAS staining demonstrate that florfenicol substantially inhibited ovalbumin-induced inflammatory cells infiltration in lung tissue and goblet cell hyperplasia in the airway. These results were similar to those obtained with dexamethasone treatment. We then investigated which signal transduction mechanisms could be implicated in florfenicol activity. Our results suggested that the protective effect of florfenicol was mediated by the inhibition of the p38 MAPK-mediated phosphorylation of GATA 3.

  17. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    EPA Science Inventory

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
    Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
    Center fo...

  18. cAMP-dependent protein kinase and c-Jun N-terminal kinase mediate stathmin phosphorylation for the maintenance of interphase microtubules during osmotic stress.

    PubMed

    Yip, Yan Y; Yeap, Yvonne Y C; Bogoyevitch, Marie A; Ng, Dominic C H

    2014-01-24

    Dynamic microtubule changes after a cell stress challenge are required for cell survival and adaptation. Stathmin (STMN), a cytoplasmic microtubule-destabilizing phosphoprotein, regulates interphase microtubules during cell stress, but the signaling mechanisms involved are poorly defined. In this study ectopic expression of single alanine-substituted phospho-resistant mutants demonstrated that STMN Ser-38 and Ser-63 phosphorylation were specifically required to maintain interphase microtubules during hyperosmotic stress. STMN was phosphorylated on Ser-38 and Ser-63 in response to hyperosmolarity, heat shock, and arsenite treatment but rapidly dephosphorylated after oxidative stress treatment. Two-dimensional PAGE and Phos-tag gel analysis of stress-stimulated STMN phospho-isoforms revealed rapid STMN Ser-38 phosphorylation followed by subsequent Ser-25 and Ser-63 phosphorylation. Previously, we delineated stress-stimulated JNK targeting of STMN. Here, we identified cAMP-dependent protein kinase (PKA) signaling as responsible for stress-induced STMN Ser-63 phosphorylation. Increased cAMP levels induced by cholera toxin triggered potent STMN Ser-63 phosphorylation. Osmotic stress stimulated an increase in PKA activity and elevated STMN Ser-63 and CREB (cAMP-response element-binding protein) Ser-133 phosphorylation that was substantially attenuated by pretreatment with H-89, a PKA inhibitor. Interestingly, PKA activity and subsequent phosphorylation of STMN were augmented in the absence of JNK activation, indicating JNK and PKA pathway cross-talk during stress regulation of STMN. Taken together our study indicates that JNK- and PKA-mediated STMN Ser-38 and Ser-63 phosphorylation are required to preserve interphase microtubules in response to hyperosmotic stress.

  19. Decreased STAT3 Phosphorylation Mediates Cell Swelling in Ammonia-Treated Astrocyte Cultures

    PubMed Central

    Jayakumar, Arumugam R.; Curtis, Kevin M.; Panickar, Kiran S.; Shamaladevi, Nagarajarao; Norenberg, Michael D.

    2016-01-01

    Brain edema, due largely to astrocyte swelling, and the subsequent increase in intracranial pressure and brain herniation, are major complications of acute liver failure (ALF). Elevated level of brain ammonia has been strongly implicated in the development of astrocyte swelling associated with ALF. The means by which ammonia brings about astrocyte swelling, however, is incompletely understood. Recently, oxidative/nitrosative stress and associated signaling events, including activation of mitogen-activated protein kinases (MAPKs), as well as activation of the transcription factor, nuclear factor-kappaB (NF-κB), have been implicated in the mechanism of ammonia-induced astrocyte swelling. Since these signaling events are known to be regulated by the transcription factor, signal transducer and activator of transcription 3 (STAT3), we examined the state of STAT3 activation in ammonia-treated cultured astrocytes, and determined whether altered STAT3 activation and/or protein expression contribute to the ammonia-induced astrocyte swelling. STAT3 was found to be dephosphorylated (inactivated) at Tyrosine705 in ammonia-treated cultured astrocytes. Total STAT3 protein level was also reduced in ammonia-treated astrocytes. We also found a significant increase in protein tyrosine phosphatase receptor type-1 (PTPRT-1) protein expression in ammonia-treated cultured astrocytes, and that inhibition of PTPRT-1 enhanced the phosphorylation of STAT3 after ammonia treatment. Additionally, exposure of cultured astrocytes to inhibitors of protein tyrosine phosphatases diminished the ammonia-induced cell swelling, while cultured astrocytes over-expressing STAT3 showed a reduction in the astrocyte swelling induced by ammonia. Collectively, these studies strongly suggest that inactivation of STAT3 represents a critical event in the mechanism of the astrocyte swelling associated with acute liver failure. PMID:27918421

  20. Coilin association with Box C/D scaRNA suggests a direct role for the Cajal body marker protein in scaRNP biogenesis

    PubMed Central

    Enwerem, Isioma I.; Velma, Venkatramreddy; Broome, Hanna J.; Kuna, Marija; Begum, Rowshan A.; Hebert, Michael D.

    2014-01-01

    ABSTRACT Spliceosomal small nuclear ribonucleoproteins (snRNPs) are enriched in the Cajal body (CB). Guide RNAs, known as small Cajal body-specific RNAs (scaRNAs), direct modification of the small nuclear RNA (snRNA) component of the snRNP. The protein WRAP53 binds a sequence motif (the CAB box) found in many scaRNAs and the RNA component of telomerase (hTR) and targets these RNAs to the CB. We have previously reported that coilin, the CB marker protein, associates with certain non-coding RNAs. For a more comprehensive examination of the RNAs associated with coilin, we have sequenced the RNA isolated from coilin immunocomplexes. A striking preferential association of coilin with the box C/D scaRNAs 2 and 9, which lack a CAB box, was observed. This association varied by treatment condition and WRAP53 knockdown. In contrast, reduction of WRAP53 did not alter the level of coilin association with hTR. Additional studies showed that coilin degrades/processes scaRNA 2 and 9, associates with active telomerase and can influence telomerase activity. These findings suggest that coilin plays a novel role in the biogenesis of box C/D scaRNPs and telomerase. PMID:24659245

  1. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  2. Phosphorylation of STAT3 mediates the induction of cyclooxygenase-2 by cortisol in the human amnion at parturition.

    PubMed

    Wang, Wangsheng; Guo, Chunming; Zhu, Ping; Lu, Jiangwen; Li, Wenjiao; Liu, Chao; Xie, Huiliang; Myatt, Leslie; Chen, Zi-Jiang; Sun, Kang

    2015-10-27

    The induction of cyclooxygenase-2 (COX-2) and subsequent production of prostaglandin E2 (PGE2) by cortisol in the amnion contrast with the effect of cortisol on most other tissues, but this proinflammatory effect of cortisol may be a key event in human parturition (labor). We evaluated the underlying mechanism activated by cortisol in primary human amnion fibroblasts. Exposure of the amnion fibroblasts to cortisol led to the activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, which induced the phosphorylation of the kinase SRC and STAT3 (signal transducer and activator of transcription 3). STAT3 interacted with the glucocorticoid receptor (GR) and the transcription factor CREB-1 (cAMP response element-binding protein 1) at the promoter of the gene encoding COX-2, which promoted the production of the secreted prostaglandin PGE2. PGE2 activates the prostaglandin receptors EP2 and EP4, which stimulate cAMP-PKA signaling. Thus, cortisol reinforced the activation of cAMP-PKA signaling through an SRC-STAT3-COX-2-PGE2-mediated feedback loop. Inhibiting STAT3, SRC, or the cAMP-PKA pathway attenuated the cortisol-stimulated induction of COX-2 and PGE2 production in amnion fibroblasts. In human amnion tissue, the amount of phosphorylated STAT3 correlated positively with that of cortisol, COX-2, and PGE2, and all were more abundant in tissue obtained after active labor than in tissue obtained from cesarean surgeries in the absence of labor. These results indicated that the coordinated recruitment of STAT3, CREB-1, and GR to the promoter of the gene encoding COX-2 contributes to the feed-forward induction of COX-2 activity and prostaglandin synthesis in the amnion during parturition.

  3. Real-time imaging elucidates the role of H2O2 in regulating kinetics of epidermal growth factor-induced and Src-mediated tyrosine phosphorylation signaling

    NASA Astrophysics Data System (ADS)

    Su, Ting; Li, Xiangyong; Liu, Nisha; Pan, Shaotao; Lu, Jinling; Yang, Jie; Zhang, Zhihong

    2012-07-01

    Reversible oxidation is emerging as an important regulatory mechanism in protein tyrosine phosphorylation. Generation of hydrogen peroxide (H2O2), upon growth factor stimulation, is hypothesized to inhibit activity of protein tyrosine phosphatases (PTPs). This ensures that protein tyrosine kinases can elevate the steady-state level of protein tyrosine phosphorylation, which then allows propagation of the tyrosine phosphorylation signal. However, the effects of H2O2 on the kinetics of tyrosine phosphorylation signaling remain poorly understood, especially in living cells. Therefore, we used a genetically encoded Src kinase-specific biosensor based on fluorescence resonance energy transfer (FRET) to image the kinetics of the Src-mediated tyrosine phosphorylation signaling (Src signaling) induced by epidermal growth factor (EGF). We examined the kinetics under increased and decreased H2O2 levels. Through a straightforward, quantitative analysis method which characterized the signaling kinetics, we demonstrated that H2O2 modulated the amplitude and duration of the signal by inhibiting PTPs' activity. Our evidence also suggested the effect of H2O2 on Src activation is mediated by H2O2-dependent inhibition of PTPs. Furthermore, we provide evidence showing global elevation of intracellular H2O2 level attenuates EGF-induced Src signaling.

  4. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    PubMed

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells.

  5. In vitro neutrophil migration requires protein kinase c-delta (δ-PKC) mediated MARCKS (Myristoylated Alanine Rich C-Kinase Substrate) phosphorylation

    PubMed Central

    Sung, Eui Jae; Adler, Kenneth B.; Jones, Samuel L.

    2015-01-01

    Dysregulated release of neutrophil reactive oxygen species and proteolytic enzymes contributes to both acute and chronic inflammatory diseases. Therefore, molecular regulators of these processes are potential targets for new anti-inflammatory therapies. We have shown previously that MARCKS (Myristoylated Alanine Rich C-Kinase Substrate), a well-known PKC substrate protein, is a key regulator of neutrophil functions. In the current study we investigate the role of PKC-mediated MARCKS phosphorylation in neutrophil migration and adhesion in vitro. We report that treatment of human neutrophils with the δ-PKC inhibitor rottlerin significantly attenuates fMLF induced MARCKS phosphorylation (IC50 = 5.709 μM), adhesion (IC50 = 8.4 uM) and migration (IC50 = 6.7 uM); while α-, β- and ζ-PKC inhibitors had no significant effect. We conclude that δ-PKC mediated MARCKS phosphorylation is essential for human neutrophil migration and adhesion in vitro. These results implicate δ-PKC mediated MARCKS phosphorylation as a key step in the inflammatory response of neutrophils. PMID:25515270

  6. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease

    PubMed Central

    Martin, Ian; Kim, Jungwoo Wren; Lee, Byoung Dae; Kang, Ho Chul; Xu, Jin-Chong; Jia, Hao; Stankowski, Jeannette; Kim, Min-Sik; Zhong, Jun; Kumar, Manoj; Andrabi, Shaida A.; Xiong, Yulan; Dickson, Dennis W.; Wszolek, Zbigniew K.; Pandey, Akhilesh; Dawson, Ted M.; Dawson, Valina L.

    2014-01-01

    Summary Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and sporadic Parkinson's disease (PD). Elevated LRRK2 kinase activity and neurodegeneration are linked, but the phosphosubstrate that connects LRRK2 kinase activity to neurodegeneration is not known. Here, we show that ribosomal protein s15 is a key pathogenic LRRK2 substrate in Drosophila and human neuron PD models. Phospho-deficient s15 carrying a threonine 136 to alanine substitution rescues dopamine neuron degeneration and age-related locomotor deficits in G2019S LRRK2 transgenic Drosophila and substantially reduces G2019S LRRK2-mediated neurite loss and cell death in human dopamine and cortical neurons. Remarkably, pathogenic LRRK2 stimulates both cap-dependent and cap-independent mRNA translation, and induces a bulk increase in protein synthesis in Drosophila, which can be prevented by phospho-deficient T136A s15. These results reveal a novel mechanism of PD pathogenesis linked to elevated LRRK2 kinase activity and aberrant protein synthesis in vivo. PMID:24725412

  7. Glutaredoxin-2 Is Required to Control Oxidative Phosphorylation in Cardiac Muscle by Mediating Deglutathionylation Reactions*

    PubMed Central

    Mailloux, Ryan J.; Xuan, Jian Ying; McBride, Skye; Maharsy, Wael; Thorn, Stephanie; Holterman, Chet E.; Kennedy, Christopher R. J.; Rippstein, Peter; deKemp, Robert; da Silva, Jean; Nemer, Mona; Lou, Marjorie; Harper, Mary-Ellen

    2014-01-01

    Glutaredoxin-2 (Grx2) modulates the activity of several mitochondrial proteins in cardiac tissue by catalyzing deglutathionylation reactions. However, it remains uncertain whether Grx2 is required to control mitochondrial ATP output in heart. Here, we report that Grx2 plays a vital role modulating mitochondrial energetics and heart physiology by mediating the deglutathionylation of mitochondrial proteins. Deletion of Grx2 (Grx2−/−) decreased ATP production by complex I-linked substrates to half that in wild type (WT) mitochondria. Decreased respiration was associated with increased complex I glutathionylation diminishing its activity. Tissue glucose uptake was concomitantly increased. Mitochondrial ATP output and complex I activity could be recovered by restoring the redox environment to that favoring the deglutathionylated states of proteins. Grx2−/− hearts also developed left ventricular hypertrophy and fibrosis, and mice became hypertensive. Mitochondrial energetics from Grx2 heterozygotes (Grx2+/−) were also dysfunctional, and hearts were hypertrophic. Intriguingly, Grx2+/− mice were far less hypertensive than Grx2−/− mice. Thus, Grx2 plays a vital role in modulating mitochondrial metabolism in cardiac muscle, and Grx2 deficiency leads to pathology. As mitochondrial ATP production was restored by the addition of reductants, these findings may be relevant to novel redox-related therapies in cardiac disease. PMID:24727547

  8. SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation

    PubMed Central

    Saraceno, C; Marcello, E; Di Marino, D; Borroni, B; Claeysen, S; Perroy, J; Padovani, A; Tramontano, A; Gardoni, F; Di Luca, M

    2014-01-01

    A disintegrin and metalloproteinase 10 (ADAM10) is the major α-secretase that catalyzes the amyloid precursor protein (APP) ectodomain shedding in the brain and prevents amyloid formation. Its activity depends on correct intracellular trafficking and on synaptic membrane insertion. Here, we describe that in hippocampal neurons the synapse-associated protein-97 (SAP97), an excitatory synapse scaffolding element, governs ADAM10 trafficking from dendritic Golgi outposts to synaptic membranes. This process is mediated by a previously uncharacterized protein kinase C phosphosite in SAP97 SRC homology 3 domain that modulates SAP97 association with ADAM10. Such mechanism is essential for ADAM10 trafficking from the Golgi outposts to the synapse, but does not affect ADAM10 transport from the endoplasmic reticulum. Notably, this process is altered in Alzheimer's disease brains. These results help in understanding the mechanism responsible for the modulation of ADAM10 intracellular path, and can constitute an innovative therapeutic strategy to finely tune ADAM10 shedding activity towards APP. PMID:25429624

  9. Semaphorin3A-induced axonal transport mediated through phosphorylation of Axin-1 by GSK3β.

    PubMed

    Hida, Tomonobu; Nakamura, Fumio; Usui, Hiroshi; Takeuchi, Kan; Yamashita, Naoya; Goshima, Yoshio

    2015-02-19

    The establishment of neuronal polarity is necessary for proper neuronal wiring. Semaphorin3A (Sema3A), originally identified as a repulsive axon guidance molecule, exerts a wide variety of biological functions through signaling pathways including sequential phosphorylation of collapsin response mediator protein by cyclin-dependent kinase-5 (Cdk5) and glycogen synthase kinase-3β (GSK3β). Sema3A acts on its receptor neuropilin-1 to regulate axonal transport. To delineate mechanism by which Sema3A induces axonal transport, we investigate whether GSK3β is involved in mediating Sema3A-induced axonal transport. 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione, an inhibitor of GSK3β, suppressed Sema3A-induced antero- and retrograde axonal transport. Introduction of either GSK3β mutants, GSK3β-L128A or K85M, suppressed Sema3A-induced axonal transport. On the other hand, introduction of GSK3β-R96A did not affect the Sema3A effect, suggesting that unprimed substrates are primarily involved in Sema3A-induced axonal transport. Overexpression of a partial fragment of frequently rearranged in advanced T-cell lymphomas 1 (FRATtide), which interferes the interaction between GSK3β and Axis inhibitor-1 (Axin-1), also suppressed Sema3A-induced transport. siRNA knockdown of Axin-1, an unprimed substrate of GSK3β, suppressed Sema3A-induced antero- and retrograde axonal transport. These results indicate that GSK3β and Axin-1 are involved in Sema3A-induced bidirectional axonal transport. This finding should provide a clue for understanding of mechanisms of a wide variety of biological activities of Sema3A.

  10. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis

    PubMed Central

    Wike, Candice L; Graves, Hillary K; Hawkins, Reva; Gibson, Matthew D; Ferdinand, Michelle B; Zhang, Tao; Chen, Zhihong; Hudson, Damien F; Ottesen, Jennifer J; Poirier, Michael G; Schumacher, Jill; Tyler, Jessica K

    2016-01-01

    Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.11402.001 PMID:26878753

  11. Polo-like kinase 1 mediates BRCA1 phosphorylation and recruitment at DNA double-strand breaks

    PubMed Central

    Chabalier-Taste, Corinne; Canitrot, Yvan; Calsou, Patrick; Larminat, Florence

    2016-01-01

    Accurate repair of DNA double-strand breaks (DSB) caused during DNA replication and by exogenous stresses is critical for the maintenance of genomic integrity. There is growing evidence that the Polo-like kinase 1 (Plk1) that plays a number of pivotal roles in cell proliferation can directly participate in regulation of DSB repair. In this study, we show that Plk1 regulates BRCA1, a key mediator protein required to efficiently repair DSB through homologous recombination (HR). Following induction of DSB, BRCA1 concentrates in distinctive large nuclear foci at damage sites where multiple DNA repair factors accumulate. First, we found that inhibition of Plk1 shortly before DNA damage sensitizes cells to ionizing radiation and reduces DSB repair by HR. Second, we provide evidence that BRCA1 foci formation induced by DSB is reduced when Plk1 is inhibited or depleted. Third, we identified BRCA1 as a novel Plk1 substrate and determined that Ser1164 is the major phosphorylation site for Plk1 in vitro. In cells, mutation of Plk1 sites on BRCA1 significantly delays BRCA1 foci formation following DSB, recapitulating the phenotype observed upon Plk1 inhibition. Our data then assign a key function to Plk1 in BRCA1 foci formation at DSB, emphasizing Plk1 importance in the HR repair of human cells. PMID:26745677

  12. Phosphorylation-mediated stabilization of Bora in mitosis coordinates Plx1/Plk1 and Cdk1 oscillations

    PubMed Central

    Feine, Oren; Hukasova, Elvira; Bruinsma, Wytse; Freire, Raimundo; Fainsod, Abraham; Gannon, Julian; Mahbubani, Hiro M; Lindqvist, Arne; Brandeis, Michael

    2014-01-01

    Cdk1 and Plk1/Plx1 activation leads to their inactivation through negative feedback loops. Cdk1 deactivates itself by activating the APC/C, consequently generating embryonic cell cycle oscillations. APC/C inhibition by the mitotic checkpoint in somatic cells and the cytostatic factor (CSF) in oocytes sustain the mitotic state. Plk1/Plx1 targets its co-activator Bora for degradation, but it remains unclear how embryonic oscillations in Plx1 activity are generated, and how Plk1/Plx1 activity is sustained during mitosis. We show that Plx1-mediated degradation of Bora in interphase generates oscillations in Plx1 activity and is essential for development. In CSF extracts, phosphorylation of Bora on the Cdk consensus site T52 blocks Bora degradation. Upon fertilization, Calcineurin dephosphorylates T52, triggering Plx1 oscillations. Similarly, we find that GFP-Bora is degraded when Plk1 activity spreads to somatic cell cytoplasm before mitosis. Interestingly, GFP–Bora degradation stops upon mitotic entry when Cdk1 activity is high. We hypothesize that Cdk1 controls Bora through an incoherent feedforward loop synchronizing the activities of mitotic kinases. PMID:24675888

  13. Imiquimod directly inhibits Hedgehog signalling by stimulating adenosine receptor/protein kinase A-mediated GLI phosphorylation

    PubMed Central

    Wolff, F; Loipetzberger, A; Gruber, W; Esterbauer, H; Aberger, F; Frischauf, A M

    2013-01-01

    Imiquimod (IMQ), a nucleoside analogue of the imidazoquinoline family, is used in the topical treatment of basal cell carcinoma (BCC) and other skin diseases. It is reported to be a TLR7 and TLR8 agonist and, as such, initiates a Th1 immune response by activating sentinel cells in the vicinity of the tumour. BCC is a hedgehog (HH)-driven malignancy with oncogenic glioma-associated oncogene (GLI) signalling activated in a ligand-independent manner. Here we show that IMQ can also directly repress HH signalling by negatively modulating GLI activity in BCC and medulloblastoma cells. Further, we provide evidence that the repressive effect of IMQ on HH signalling is not dependent on TLR/MYD88 signalling. Our results suggest a mechanism for IMQ engaging adenosine receptors (ADORAs) to control GLI signalling. Pharmacological activation of ADORA with either an ADORA agonist or IMQ resulted in a protein kinase A (PKA)-mediated GLI phosphorylation and reduction in GLI activator levels. The activation of PKA and HH pathway target gene downregulation in response to IMQ were abrogated by ADORA inhibition. Furthermore, activated Smoothened signalling, which positively signals to GLI transcription factors, could be effectively counteracted by IMQ. These results reveal a previously unknown mode of action of IMQ in the treatment of BCC and also suggest a role for ADORAs in the regulation of oncogenic HH signalling. PMID:23995793

  14. Functional impact of Aurora A-mediated phosphorylation of HP1γ at serine 83 during cell cycle progression

    PubMed Central

    2013-01-01

    Background Previous elegant studies performed in the fission yeast Schizosaccharomyces pombe have identified a requirement for heterochromatin protein 1 (HP1) for spindle pole formation and appropriate cell division. In mammalian cells, HP1γ has been implicated in both somatic and germ cell proliferation. High levels of HP1γ protein associate with enhanced cell proliferation and oncogenesis, while its genetic inactivation results in meiotic and mitotic failure. However, the regulation of HP1γ by kinases, critical for supporting mitotic progression, remains to be fully characterized. Results We report for the first time that during mitotic cell division, HP1γ colocalizes and is phosphorylated at serine 83 (Ser83) in G2/M phase by Aurora A. Since Aurora A regulates both cell proliferation and mitotic aberrations, we evaluated the role of HP1γ in the regulation of these phenomena using siRNA-mediated knockdown, as well as phosphomimetic and nonphosphorylatable site-directed mutants. We found that genetic downregulation of HP1γ, which decreases the levels of phosphorylation of HP1γ at Ser83 (P-Ser83-HP1γ), results in mitotic aberrations that can be rescued by reintroducing wild type HP1γ, but not the nonphosphorylatable S83A-HP1γ mutant. In addition, proliferation assays showed that the phosphomimetic S83D-HP1γ increases 5-ethynyl-2´-deoxyuridine (EdU) incorporation, whereas the nonphosphorylatable S83A-HP1γ mutant abrogates this effect. Genome-wide expression profiling revealed that the effects of these mutants on mitotic functions are congruently reflected in G2/M gene expression networks in a manner that mimics the on and off states for P-Ser83-HP1γ. Conclusions This is the first description of a mitotic Aurora A-HP1γ pathway, whose integrity is necessary for the execution of proper somatic cell division, providing insight into specific types of posttranslational modifications that associate to distinct functional outcomes of this important chromatin

  15. NMDA receptor mediated phosphorylation of GluR1 subunits contributes to the appearance of calcium-permeable AMPA receptors after mechanical stretch injury

    PubMed Central

    Spaethling, Jennifer; Le, Linda; Meaney, David F

    2016-01-01

    Alterations in neuronal cytosolic calcium is a key mediator of the traumatic brain injury (TBI) pathobiology, but less is known of the role and source of calcium in shaping early changes in synaptic receptors and neural circuits after TBI. In this study, we examined the calcium source and potential phosphorylation events leading to insertion of calcium-permeable AMPARs (CP-AMPARs) after in vitro traumatic brain injury, a receptor subtype that influences neural circuit dynamics for hours to days following injury. We found that both synaptic and NR2B-containing NMDARs contribute significantly to the calcium influx following stretch injury. Moreover, an early and sustained phosphorylation of the S-831 site of the GluR1 subunit appeared after mechanical injury, and this phosphorylation was blocked with the inhibition of either synaptic NMDARs or NR2B-containing NMDARs. In comparison, mechanical injury led to no significant change in the S-845 phosphorylation of the GluR1 subunit. Although no change in S-845 phosphorylation appeared in injured cultures, we observed that inhibition of NR2B-containing NMDARs significantly increased S-845 phosphorylation one hour after injury while blockade of synaptic NMDARs did not change S-845 phosphorylation at any time point following injury. These findings show that a broad class of NMDARs are activated in parallel and that targeting either subpopulation will reverse some of the consequences of mechanical injury, providing distinct paths to treat the effects of mechanical injury on neural circuits after TBI. PMID:22426393

  16. Characterization of a rapid, blue light-mediated change in detectable phosphorylation of a plasma membrane protein from etiolated pea (Pisum sativum L. ) seedlings

    SciTech Connect

    Short, T.W.; Briggs, W.R. )

    1990-01-01

    When crude microsomal membranes from apical stem segments of etiolated Pisum sativum L. cv Alaska are mixed in vitro with {gamma}-({sup 32}P)ATP, a phosphorylated band of apparent molecular mass 120 kilodaltons can be detected on autoradiographs of sodium dodecyl sulfate electrophoresis gels. If the stem sections are exposed to blue light immediately prior to membrane isolation, this band is not evident. Comparisons of the kinetics, tissue distribution, and dark recovery of the phosphorylation response with those published for blue light mediated phototropism or rapid growth inhibition indicate that the phosphorylation could be linked to one or both of the reactions described. However, the fluence-response relationships for the change in detectable phosphorylation match quite closely those reported for phototropism but not those for growth inhibition. Blue light has also been found to regulate the capacity for in vitro phosphorylation of a second protein. It has an apparent molecular mass of 84 kilodaltons and is localized primarily in basal stem sections.

  17. Anchorage mediated by integrin alpha6beta4 to laminin 5 (epiligrin) regulates tyrosine phosphorylation of a membrane-associated 80-kD protein

    PubMed Central

    1996-01-01

    Detachment of basal keratinocytes from basement membrane signals a differentiation cascade. Two integrin receptors alpha6beta4 and alpha3beta1 mediate adhesion to laminin 5 (epiligrin), a major extracellular matrix protein in the basement membrane of epidermis. By establishing a low temperature adhesion system at 4 degrees C, we were able to examine the exclusive role of alpha6beta4 in adhesion of human foreskin keratinocyte (HFK) and the colon carcinoma cell LS123. We identified a novel 80-kD membrane-associated protein (p80) that is tyrosine phosphorylated in response to dissociation of alpha6beta4 from laminin 5. The specificity of p80 phosphorylation for laminin 5 and alpha6beta4 was illustrated by the lack of regulation of p80 phosphorylation on collagen, fibronectin, or poly-L-lysine surfaces. We showed that blocking of alpha3beta1 function using inhibitory mAbs, low temperature, or cytochalasin D diminished tyrosine phosphorylation of focal adhesion kinase but not p80 phosphorylation. Therefore, under our assay conditions, p80 phosphorylation is regulated by alpha6beta4, while motility via alpha3beta1 causes phosphorylation of focal adhesion kinase. Consistent with a linkage between p80 dephosphorylation and alpha6beta4 anchorage to laminin 5, we found that phosphatase inhibitor sodium vanadate, which blocked the p80 dephosphorylation, prevented the alpha6beta4-dependent cell anchorage to laminin 5 at 4degreesC. In contrast, adhesion at 37 degrees C via alpha3beta1 was unaffected. Furthermore, by in vitro kinase assay, we identified a kinase activity for p80 phosphorylation in suspended HFKs but not in attached cells. The kinase activity, alpha6beta4, and its associated adhesion structure stable anchoring contacts were all cofractionated in the Triton- insoluble cell fraction that lacks alpha3beta1. Thus, regulation of p80 phosphorylation, through the activities of p80 kinase and phosphatase, correlates with alpha6beta4-SAC anchorage to laminin 5 at 4

  18. Juvenile hormone stimulated tyrosine kinase-mediated protein phosphorylation in the CNS of the silk worm, Bombyx mori.

    PubMed

    Arif, A; Shanavas, A; Murthy, Ch R K; Dutta-Gupta, Aparna

    2002-07-01

    In vitro studies with the larval CNS of the silkworm, Bombyx mori revealed the phosphorylation of a 48-kDa protein, which was not dependent on cyclic nucleotides. Studies also revealed modest phosphorylation of this protein by a calcium-dependent but calmodulin-independent mechanism. However, phosphorylation of this protein was greatly enhanced in the presence of juvenile hormone (JH) I by a calcium-independent mechanism. This stimulatory effect of JH was seen in both homogenates as well as in intact CNS of Bombyx. Immunoblotting studies revealed the cross-reaction of this 48-kDa protein with phosphotyrosine monoclonal antibody and the phosphorylation of this protein was inhibited by genistein. This study suggests that the 48-kDa protein is a substrate for tyrosine kinase. The phosphorylation of this protein was also observed in other larval tissues such as salivary gland, fat body, and epidermis of Bombyx.

  19. Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product

    PubMed Central

    Tucker, Karen E.; Berciano, Maria Teresa; Jacobs, Erica Y.; LePage, David F.; Shpargel, Karl B.; Rossire, Jennifer J.; Chan, Edward K.L.; Lafarga, Miguel; Conlon, Ronald A.; Matera, A. Gregory

    2001-01-01

    Cajal bodies (CBs) are nuclear suborganelles involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs). In addition to snRNPs, they are highly enriched in basal transcription and cell cycle factors, the nucleolar proteins fibrillarin (Fb) and Nopp140 (Nopp), the survival motor neuron (SMN) protein complex, and the CB marker protein, p80 coilin. We report the generation of knockout mice lacking the COOH-terminal 487 amino acids of coilin. Northern and Western blot analyses demonstrate that we have successfully removed the full-length coilin protein from the knockout animals. Some homozygous mutant animals are viable, but their numbers are reduced significantly when crossed to inbred backgrounds. Analysis of tissues and cell lines from mutant animals reveals the presence of extranucleolar foci that contain Fb and Nopp but not other typical nucleolar markers. These so-called “residual” CBs neither condense Sm proteins nor recruit members of the SMN protein complex. Transient expression of wild-type mouse coilin in knockout cells results in formation of CBs and restores these missing epitopes. Our data demonstrate that full-length coilin is essential for proper formation and/or maintenance of CBs and that recruitment of snRNP and SMN complex proteins to these nuclear subdomains requires sequences within the coilin COOH terminus. PMID:11470819

  20. Identification of proteolytic activities in ROS 17/2.8 cell lysates which cleave peptide substrates for protein kinase C-mediated phosphorylation.

    PubMed

    Guidon, P T; Harrison, P

    1996-04-01

    We have observed two proteolytic activities in cell lysates from the rat osteoblastic osteosarcoma cell line ROS 17/2.8 which are capable of cleaving a peptide substrate for protein kinase C-mediated phosphorylation, and other peptides containing similar sequences. Both activities are inhibited by Pefabloc, a serine protease inhibitor, while one of the activities is inhibited by either EDTA or aprotinin. The protease inhibitors pepstatin, bestatin, E-64, leupeptin and phosphoramidon do not block either of these proteolytic activities.

  1. Calcium-Mediated Induction of Paradoxical Growth following Caspofungin Treatment Is Associated with Calcineurin Activation and Phosphorylation in Aspergillus fumigatus.

    PubMed

    Juvvadi, Praveen R; Muñoz, Alberto; Lamoth, Frédéric; Soderblom, Erik J; Moseley, M Arthur; Read, Nick D; Steinbach, William J

    2015-08-01

    The echinocandin antifungal drug caspofungin at high concentrations reverses the growth inhibition of Aspergillus fumigatus, a phenomenon known as the "paradoxical effect," which is not consistently observed with other echinocandins (micafungin and anidulafungin). Previous studies of A. fumigatus revealed the loss of the paradoxical effect following pharmacological or genetic inhibition of calcineurin, yet the underlying mechanism is poorly understood. Here, we utilized a codon-optimized bioluminescent Ca(2+) reporter aequorin expression system in A. fumigatus and showed that caspofungin elicits a transient increase in cytosolic free Ca(2+) ([Ca(2+)]c) in the fungus that acts as the initial trigger of the paradoxical effect by activating calmodulin-calcineurin signaling. While the increase in [Ca(2+)]c was also observed upon treatment with micafungin, another echinocandin without the paradoxical effect, a higher [Ca(2+)]c increase was noted with the paradoxical-growth concentration of caspofungin. Treatments with a Ca(2+)-selective chelator, BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid], or the L-type Ca(2+) channel blocker verapamil abolished caspofungin-mediated paradoxical growth in both the wild-type and the echinocandin-resistant (EMFR-S678P) strains. Concomitant with increased [Ca(2+)]c levels at higher concentrations of caspofungin, calmodulin and calcineurin gene expression was enhanced. Phosphoproteomic analysis revealed that calcineurin is activated through phosphorylation at its serine-proline-rich region (SPRR), a domain previously shown to be essential for regulation of hyphal growth, only at a paradoxical-growth concentration of caspofungin. Our results indicate that as opposed to micafungin, the increased [Ca(2+)]c at high concentrations of caspofungin activates calmodulin-calcineurin signaling at both a transcriptional and a posttranslational level and ultimately leads to paradoxical fungal growth.

  2. FLASH and NPAT positive but not Coilin positive Cajal Bodies correlate with cell ploidy.

    PubMed

    Bongiorno-Borbone, Lucilla; De Cola, Antonella; Vernole, Patrizia; Finos, Livio; Barcaroli, Daniela; Knight, Richard A; Melino, Gerry; De Laurenzi, Vincenzo

    2008-08-01

    Cajal Bodies are one of many specialised organelles contained in the eukaryotic cell nucleus, and are involved in a number of functions, including regulation of replication-dependent histone gene transcription. In normal diploid cells their number varies between 0 and 4 depending on the cell cycle phase, although in cancer cell lines their number is extremely variable and it has been suggested that it correlates with cell ploidy. Here we show that in mammalian cells, as in Drosophila, two distinct though functionally related bodies exist: a histone gene locus body and a Cajal Body. The first one can be detected using FLASH or NPAT as markers while the second is labelled using antibodies against Coilin. Only the number of FLASH/NPAT histone gene locus bodies correlates with ploidy and only these organelles appear to be regulated during the cell cycle. Finally, we show that the two organelles completely co-localize during the S phase of the cell cycle.

  3. Pharmacological inhibition of PTEN attenuates cognitive deficits caused by neonatal repeated exposures to isoflurane via inhibition of NR2B-mediated tau phosphorylation in rats.

    PubMed

    Tan, Lei; Chen, Xin; Wang, Wei; Zhang, Jianfang; Li, Shiyong; Zhao, Yilin; Wang, Jintao; Luo, Ailin

    2017-03-01

    Evidence has shown that children exposed to repeated anesthesia in early childhood display long-term cognitive disabilities. However, the underlying mechanisms remain largely unclear. Our previous study has indicated the involvement of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in isoflurane-induced decrease of self-renewal capacity in hippocampal neural precursor cells. Additionally, it is demonstrated by others that PTEN inhibition could protect against cognitive impairment via reduction of tau phosphorylation in the alzheimer's disease model. Therefore, in the present in vivo study, we aimed to examine the effects of PTEN inhibition on the cognitive dysfunction and tau hyperphosphorylation caused by neonatal repeated exposures to isoflurane. Our results showed that the neonatal repeated exposures to isoflurane resulted in the activation of PTEN in the hippocampus. The treatment of PTEN inhibitor BPV (pic) restored PSD-95 synthesis, and attenuated tau phosphorylation as well as the cognitive dysfunction caused by the repeated isoflurane exposures. In addition, BPV (pic) treatment reversed the activation of NR2B-containing NMDARs induced by repeated isoflurane exposures, while in turn, the antagonism of NR2B subunit with ifenprodil alleviated tau phosphorylation, indicating a possible role of NR2B as the downstream of PTEN in mediating tau phosphorylation in the neonatal rats repeatedly exposed to isoflurane. In conclusion, our results reveal a novel role of PTEN in mediating tau phosphorylation and cognitive deficits caused by neonatal repeated exposures to isoflurane, implying that targeting on PTEN may be a potential therapeutic approach for the anesthetic-related cognitive decline in the developing brain.

  4. Phosphorylation of the pyruvate dehydrogenase complex precedes HIF-1-mediated effects and pyruvate dehydrogenase kinase 1 upregulation during the first hours of hypoxic treatment in hepatocellular carcinoma cells

    PubMed Central

    Zimmer, Andreas David; Walbrecq, Geoffroy; Kozar, Ines; Behrmann, Iris; Haan, Claude

    2016-01-01

    The pyruvate dehydrogenase complex (PDC) is an important gatekeeper enzyme connecting glycolysis to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, it has a strong impact on the glycolytic flux as well as the metabolic phenotype of a cell. PDC activity is regulated via reversible phosphorylation of three serine residues on the pyruvate dehydrogenase (PDH) E1α subunit. Phosphorylation of any of these residues by the PDH kinases (PDKs) leads to a strong decrease in PDC activity. Under hypoxia, the inactivation of the PDC has been described to be dependent on the hypoxia-inducible factor 1 (HIF-1)-induced PDK1 protein upregulation. In this study, we show in two hepatocellular carcinoma cell lines (HepG2 and JHH-4) that, during the adaptation to hypoxia, PDH is already phosphorylated at time points preceding HIF-1-mediated transcriptional events and PDK1 protein upregulation. Using siRNAs and small molecule inhibitor approaches, we show that this inactivation of PDC is independent of HIF-1α expression but that the PDKs need to be expressed and active. Furthermore, we show that reactive oxygen species might be important for the induction of this PDH phosphorylation since it correlates with the appearance of an altered redox state in the mitochondria and is also inducible by H2O2 treatment under normoxic conditions. Overall, these results show that neither HIF-1 expression nor PDK1 upregulation is necessary for the phosphorylation of PDH during the first hours of the adaptation to hypoxia. PMID:27800515

  5. Increased phosphorylation of collapsin response mediator protein-2 at Thr514 correlates with β-amyloid burden and synaptic deficits in Lewy body dementias.

    PubMed

    Xing, Huayang; Lim, Yun-An; Chong, Joyce R; Lee, Jasinda H; Aarsland, Dag; Ballard, Clive G; Francis, Paul T; Chen, Christopher P; Lai, Mitchell K P

    2016-09-08

    Collapsin response mediator protein-2 (CRMP2) regulates axonal growth cone extension, and increased CRMP2 phosphorylation may lead to axonal degeneration. Axonal and synaptic pathology is an important feature of Lewy body dementias (LBD), but the state of CRMP2 phosphorylation (pCRMP2) as well as its correlations with markers of neurodegeneration have not been studied in these dementias. Hence, we measured CRMP2 phosphorylation at Thr509, Thr514 and Ser522, as well as markers of β-amyloid (Aβ), tau-phosphorylation, α-synuclein and synaptic function in the postmortem neocortex of a longitudinally assessed cohort of LBD patients characterized by low (Parkinson's disease dementia, PDD) and high (dementia with Lewy bodies, DLB) burden of Alzheimer type pathology. We found specific increases of pCRMP2 at Thr514 in DLB, but not PDD. The increased CRMP2 phosphorylation correlated with fibrillogenic Aβ as well as with losses of markers for axon regeneration (β-III-tubulin) and synaptic integrity (synaptophysin) in LBD. In contrast, pCRMP2 alterations did not correlate with tau-phosphorylation or α-synuclein, and also appear unrelated to immunoreactivities of putative upstream kinases glycogen synthase kinase 3β and cyclin-dependent kinase 5, as well as to protein phosphatase 2A. In conclusion, increased pCRMP2 may underlie the axonal pathology of DLB, and may be a novel therapeutic target. However, antecedent signaling events as well as the nature of pCRMP2 association with Aβ and other neuropathologic markers require further study.

  6. P2X-mediated AMPA receptor internalization and synaptic depression is controlled by two CaMKII phosphorylation sites on GluA1 in hippocampal neurons

    PubMed Central

    Pougnet, Johan-Till; Compans, Benjamin; Martinez, Audrey; Choquet, Daniel; Hosy, Eric; Boué-Grabot, Eric

    2016-01-01

    Plasticity at excitatory synapses can be induced either by synaptic release of glutamate or the release of gliotransmitters such as ATP. Recently, we showed that postsynaptic P2X2 receptors activated by ATP released from astrocytes downregulate synaptic AMPAR, providing a novel mechanism by which glial cells modulate synaptic activity. ATP- and lNMDA-induced depression in the CA1 region of the hippocampus are additive, suggesting distinct molecular pathways. AMPARs are homo-or hetero-tetramers composed of GluA1-A4. Here, we first show that P2X2-mediated AMPAR inhibition is dependent on the subunit composition of AMPAR. GluA3 homomers are insensitive and their presence in heteromers alters P2X-mediated inhibition. Using a mutational approach, we demonstrate that the two CaMKII phosphorylation sites S567 and S831 located in the cytoplasmic Loop1 and C-terminal tail of GluA1 subunits, respectively, are critical for P2X2-mediated AMPAR inhibition recorded from co-expressing Xenopus oocytes and removal of surface AMPAR at synapses of hippocampal neurons imaged by the super-resolution dSTORM technique. Finally, using phosphorylation site-specific antibodies, we show that P2X-induced depression in hippocampal slices produces a dephosphorylation of the GluA1 subunit at S567, contrary to NMDAR-mediated LTD. These findings indicate that GluA1 phosphorylation of S567 and S831 is critical for P2X2-mediated AMPAR internalization and ATP-driven synaptic depression. PMID:27624155

  7. The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells.

    PubMed

    de Paula, Cesar Augusto Dias; Santiago, Fernando Enrique; de Oliveira, Adriele Silva Alves; Oliveira, Fernando Augusto; Almeida, Maria Camila; Carrettiero, Daniel Carneiro

    2016-05-01

    Inclusions of phosphorylated tau (p-tau) are a hallmark of many neurodegenerative disorders classified as "tauopathy," of which Alzheimer's disease is the most prevalent form. Dysregulation of tau phosphorylation disrupts neuron structure and function, and hyperphosphorylated tau aggregates to form neurotoxic inclusions. The abundance of ubiquitin in tau inclusions suggests a defect in ubiquitin-mediated tau protein degradation by the proteasome. Under the temperature of 37 °C, the co-chaperone BAG2 protein targets phosphorylated tau for degradation via by a more-efficient, ubiquitin-independent pathway. In both in vivo and in vitro studies, cold exposure induces the accumulation of phosphorylated tau protein. The SH-SY5Y cell line differentiates into neuron-like cells on treatment with retinoic acid and is an established model for research on the effects of cold on tau phosphorylation. The aim of the present study was to investigate whether BAG2 mediates the cold-induced accumulation of phosphorylated tau protein. Our findings show that cold exposure causes a decrease in BAG2 expression in undifferentiated cells. Conversely, BAG2 expression is increased in differentiated cells exposed to cold. Further, undifferentiated cells exposed to cold had an increased proportion of p-tau to total tau, suggesting an accumulation of p-tau that is consistent with decreased levels of BAG2. Overexpression of BAG2 in cold-exposed undifferentiated cells restored levels of p-tau to those of 37 °C undifferentiated control. Interestingly, although BAG2 expression increased in differentiated cells, this increase was not accompanied by a decrease in the proportion of p-tau to total tau. Further, overexpression of BAG2 in cold exposed differentiated cells showed no significant difference in p-tau levels compared to 37 °C controls. Taken together, these data show that expression of BAG2 is differently regulated in a differentiation-dependent context. Our results suggest that

  8. Src-Mediated Phosphorylation of the Tyrosine Phosphatase PRL-3 Is Required for PRL-3 Promotion of Rho Activation, Motility and Invasion

    PubMed Central

    Fiordalisi, James J.; Dewar, Brian J.; Graves, Lee M.; Madigan, James P.; Cox, Adrienne D.

    2013-01-01

    The metastasis-associated tyrosine phosphatase PRL-3/PTP4A is upregulated in numerous cancers, but the mechanisms modulating PRL-3 activity other than its expression levels have not been investigated. Here we report evidence for both Src-dependent tyrosine phosphorylation of PRL-3 and Src-mediated regulation of PRL-3 biological activities. We used structural mutants, pharmacological inhibitors and siRNA to demonstrate Src-dependent phosphorylation of endogenous PRL-3 in SW480 colon cancer cells. We also demonstrated that PRL-3 was not tyrosine phosphorylated in SYF mouse embryo fibroblasts deficient in Src, Yes and Fyn unless Src was re-expressed. Further, we show that platelet-derived growth factor (PDGF) can stimulate PRL-3 phosphorylation in a Src-dependent manner. Finally, we show that PRL-3-induced cell motility, Matrigel invasion and activation of the cytoskeleton-regulating small GTPase RhoC were abrogated in the presence of the phosphodeficient PRL-3 mutant Y53F, or by use of a Src inhibitor. Thus, PRL-3 requires the activity of a Src kinase, likely Src itself, to promote these cancer-associated phenotypes. Our data establish a model for the regulation of PRL-3 by Src that supports the possibility of their coordinate roles in signaling pathways promoting invasion and metastasis, and supports simultaneous use of novel molecularly targeted therapeutics directed at these proteins. PMID:23691193

  9. Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes.

    PubMed

    Adenuga, David; Rahman, Irfan

    2010-06-01

    Histone deacetylase 2 (HDAC2) mediates the repression of pro-inflammatory genes by deacetylating core histones, RelA/p65 and the glucocorticoid receptor. Reduced level of HDAC2 is associated with steroid resistant inflammation caused by cigarette smoke (CS)-derived oxidants and aldehydes. However, the molecular mechanisms regulating HDAC2 in response to CS and aldehydes is not known. Here, we report that CS extract, and aldehyde acrolein induced phosphorylation of HDAC2 which was abolished by mutations at serine sites S(394), S(411), S(422) and S(424). HDAC2 phosphorylation required direct interaction with serine-phosphorylated protein kinase CK2alpha and involved reduced HDAC2 deacetylase activity. Furthermore, HDAC2 phosphorylation was required for HDAC2 interaction with transcription factors, co-repressor complex formation, CBP recruitment, acetylation on lysine residues and modulates transrepression activity. Thus, phospho-acetylation of HDAC2 negatively regulates its deacetylase activity which has implications in steroid resistance in chronic inflammatory conditions.

  10. Src-mediated phosphorylation of the tyrosine phosphatase PRL-3 is required for PRL-3 promotion of Rho activation, motility and invasion.

    PubMed

    Fiordalisi, James J; Dewar, Brian J; Graves, Lee M; Madigan, James P; Cox, Adrienne D

    2013-01-01

    The metastasis-associated tyrosine phosphatase PRL-3/PTP4A is upregulated in numerous cancers, but the mechanisms modulating PRL-3 activity other than its expression levels have not been investigated. Here we report evidence for both Src-dependent tyrosine phosphorylation of PRL-3 and Src-mediated regulation of PRL-3 biological activities. We used structural mutants, pharmacological inhibitors and siRNA to demonstrate Src-dependent phosphorylation of endogenous PRL-3 in SW480 colon cancer cells. We also demonstrated that PRL-3 was not tyrosine phosphorylated in SYF mouse embryo fibroblasts deficient in Src, Yes and Fyn unless Src was re-expressed. Further, we show that platelet-derived growth factor (PDGF) can stimulate PRL-3 phosphorylation in a Src-dependent manner. Finally, we show that PRL-3-induced cell motility, Matrigel invasion and activation of the cytoskeleton-regulating small GTPase RhoC were abrogated in the presence of the phosphodeficient PRL-3 mutant Y53F, or by use of a Src inhibitor. Thus, PRL-3 requires the activity of a Src kinase, likely Src itself, to promote these cancer-associated phenotypes. Our data establish a model for the regulation of PRL-3 by Src that supports the possibility of their coordinate roles in signaling pathways promoting invasion and metastasis, and supports simultaneous use of novel molecularly targeted therapeutics directed at these proteins.

  11. Actin depolymerization mediated loss of SNTA1 phosphorylation and Rac1 activity has implications on ROS production, cell migration and apoptosis.

    PubMed

    Bhat, Sehar Saleem; Parray, Arif Ali; Mushtaq, Umar; Fazili, Khalid Majid; Khanday, Firdous Ahmad

    2016-06-01

    Alpha-1-syntrophin (SNTA1) and Rac1 are part of a signaling pathway via the dystrophin glycoprotein complex (DGC). Both SNTA1 and Rac1 proteins are over-expressed in various carcinomas. It is through the DGC signaling pathway that SNTA1 has been shown to act as a link between the extra cellular matrix, the internal cell signaling apparatus and the actin cytoskeleton. SNTA1 is involved in the modulation of the actin cytoskeleton and actin reorganization. Rac1 also controls actin cytoskeletal organization in the cell. In this study, we present the interplay between f-actin, SNTA1 and Rac1. We analyzed the effect of actin depolymerization on SNTA1 tyrosine phosphorylation and Rac1 activity using actin depolymerizing drugs, cytochalasin D and latrunculin A. Our results indicate a marked decrease in the tyrosine phosphorylation of SNTA1 upon actin depolymerization. Results suggest that actin depolymerization mediated loss of SNTA1 phosphorylation leads to loss of interaction between SNTA1 and Rac1, with a concomitant loss of Rac1 activation. The loss of SNTA1tyrosine phosphorylation and Rac1 activity by actin depolymerization results in increased apoptosis, decreased cell migration and decreased reactive oxygen species (ROS) levels in breast carcinoma cells. Collectively, our results present a possible role of f-actin in the SNTA1-Rac1 signaling pathway and implications of actin depolymerization on cell migration, ROS production and apoptosis.

  12. βTrCP-Mediated Proteolysis of NF-κB1 p105 Requires Phosphorylation of p105 Serines 927 and 932

    PubMed Central

    Lang, Valerie; Janzen, Julia; Fischer, Gregory Zvi; Soneji, Yasmina; Beinke, Sören; Salmeron, Andres; Allen, Hamish; Hay, Ronald T.; Ben-Neriah, Yinon; Ley, Steven C.

    2003-01-01

    NF-κB1 p105 functions both as a precursor of NF-κB1 p50 and as a cytoplasmic inhibitor of NF-κB. Following the stimulation of cells with tumor necrosis factor alpha (TNF-α), the IκB kinase (IKK) complex rapidly phosphorylates NF-κB1 p105 on serine 927 in the PEST region. This phosphorylation is essential for TNF-α to trigger p105 degradation, which releases the associated Rel/NF-κB subunits to translocate into the nucleus and regulate target gene transcription. Serine 927 resides in a conserved motif (Asp-Ser927-Gly-Val-Glu-Thr-Ser932) homologous to the IKK target sequence in IκBα. In this study, TNF-α-induced p105 proteolysis was revealed to additionally require the phosphorylation of serine 932. Experiments with IKK1−/− and IKK2−/− double knockout embryonic fibroblasts demonstrate that the IKK complex is essential for TNF-α to stimulate phosphorylation on p105 serines 927 and 932. Furthermore, purified IKK1 and IKK2 can each phosphorylate a glutathione S-transferase-p105758-967 fusion protein on both regulatory serines in vitro. IKK-mediated p105 phosphorylation generates a binding site for βTrCP, the receptor subunit of an SCF-type ubiquitin E3 ligase, and depletion of βTrCP by RNA interference blocks TNF-α-induced p105 ubiquitination and proteolysis. Phosphopeptide competition experiments indicate that βTrCP binds p105 more effectively when both serines 927 and 932 are phosphorylated. Interestingly, however, βTrCP affinity for the IKK-phosphorylated sequence on p105 is substantially lower than that on IκBα. Thus, it appears that reduced p105 recruitment of βTrCP and subsequent ubiquitination may contribute to delayed p105 proteolysis after TNF-α stimulation relative to that for IκBα. PMID:12482991

  13. Insulin-like growth factors inhibit dendritic cell-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38 dephosphorylation.

    PubMed

    Huang, Ching-Ting; Chang, Ming-Cheng; Chen, Yu-Li; Chen, Tsung-Ching; Chen, Chi-An; Cheng, Wen-Fang

    2015-04-01

    Insulin-like growth factors (IGFs) can promote tumorigenesis via inhibiting the apoptosis of cancer cells. The relationship between IGFs and dendritic cell (DC)-mediated immunity were investigated. Advanced-stage ovarian carcinoma patients were first evaluated to show higher IGF-1 and IGF-2 concentrations in their ascites than early-stage patients. IGFs could suppress DCs' maturation, antigen presenting abilities, and the ability to activate antigen-specific CD8(+) T cell. IGF-treated DCs also secreted higher concentrations of IL-10 and TNF-α. IGF-treated DCs showed decreased ERK1/2 phosphorylation and reduced p38 dephosphorylation. The percentages of matured DCs in the ascites were significantly lower in the IGF-1 or IGF-2 highly-expressing WF-3 tumor-bearing mice. The IGF1R inhibitor - NVP-AEW541, could block the effects of IGFs to rescue DCs' maturation and to restore DC-mediated antigen-specific immunity through enhancing ERK1/2 phosphorylation and p38 dephosphorylation. IGFs can inhibit DC-mediated anti-tumor immunity through suppressing maturation and function and the IGF1R inhibitor could restore the DC-mediated anti-tumor immunity. Blockade of IGFs could be a potential strategy for cancer immunotherapy.

  14. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity

    PubMed Central

    Wang, Y; Sun, H; Wang, J; Wang, H; Meng, L; Xu, C; Jin, M; Wang, B; Zhang, Y; Zhang, Y; Zhu, T

    2016-01-01

    EZH2 is a histone methyltransferase whose functions in stem cells and tumor cells are well established. Accumulating evidence shows that EZH2 has critical roles in T cells and could be a promising therapeutic target for several immune diseases. To further reveal the novel functions of EZH2 in human T cells, protein co-immunoprecipitation combined mass spectrometry was conducted and several previous unknown EZH2-interacting proteins were identified. Of them, we focused on a DNA damage responsive protein, Ku80, because of the limited knowledge regarding EZH2 in the DNA damage response. Then, we demonstrated that instead of being methylated by EZH2, Ku80 bridges the interaction between the DNA-dependent protein kinase (DNA-PK) complex and EZH2, thus facilitating EZH2 phosphorylation. Moreover, EZH2 histone methyltransferase activity was enhanced when Ku80 was knocked down or DNA-PK activity was inhibited, suggesting DNA-PK-mediated EZH2 phosphorylation impairs EZH2 histone methyltransferase activity. On the other hand, EZH2 inhibition increased the DNA damage level at the late phase of T-cell activation, suggesting EZH2 involved in genomic integrity maintenance. In conclusion, our study is the first to demonstrate that EZH2 is phosphorylated by the DNA damage responsive complex DNA-PK and regulates DNA damage-mediated T-cell apoptosis, which reveals a novel functional crosstalk between epigenetic regulation and genomic integrity. PMID:27468692

  15. Accumulation and Phosphorylation of RecQ-Mediated Genome Instability Protein 1 (RMI1) at Serine 284 and Serine 292 during Mitosis

    PubMed Central

    Xu, Chang; Wang, Yan; Wang, Lu; Wang, Qin; Du, Li-Qing; Fan, Saijun; Liu, Qiang; Li, Lei

    2015-01-01

    Chromosome instability usually leads to tumorigenesis. Bloom syndrome (BS) is a genetic disease associated with chromosome instability. The BS gene product, BLM, has been reported to function in the spindle assembly checkpoint (SAC) to prevent chromosome instability. BTR complex, composed of BLM, topoisomerase IIIα (Topo IIIα), RMI1 (RecQ-mediated genome instability protein 1, BLAP75) and RMI2 (RecQ-mediated genome instability protein 2, BLAP18), is crucial for maintaining genome stability. Recent work has demonstrated that RMI2 also plays critical role in SAC. However, little is know about RMI1 regulation during the cell cycle. Here we present that RMI1 protein level does not change through G1, S and G2 phases, but significantly increases in M phase. Moreover, phosphorylation of RMI1 occurs in mitosis. Upon microtubule-disturbing agent, RMI1 is phosphorylated primarily at the sites of Serine 284 and Serine 292, which does not interfere with the formation of BTR complex. Additionally, this phosphorylation is partially reversed by roscovitine treatment, implying cycling-dependent kinase 1 (CDK1) might be one of the upstream kinases. PMID:26556339

  16. Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex

    PubMed Central

    Drobic, Bojan; Pérez-Cadahía, Beatriz; Yu, Jenny; Kung, Sam Kam-Pun; Davie, James R.

    2010-01-01

    Upon activation of the ERK and p38 MAPK pathways, the MSK1/2-mediated nucleosomal response, including H3 phosphorylation at serine 28 or 10, is coupled with the induction of immediate-early (IE) gene transcription. The outcome of this response, varying with the stimuli and cellular contexts, ranges from neoplastic transformation to neuronal synaptic plasticity. Here, we used sequential co-immunoprecipitation assays and sequential chromatin immunoprecipitation (ChIP) assays on mouse fibroblast 10T1/2 and MSK1 knockdown 10T1/2 cells to show that H3 serine 28 and 10 phosphorylation leads to promoter remodeling. MSK1, in complexes with phospho-serine adaptor 14-3-3 proteins and BRG1 the ATPase subunit of the SWI/SNF remodeler, is recruited to the promoter of target genes by transcription factors such as Elk-1 or NF-κB. Following MSK1-mediated H3 phosphorylation, BRG1 associates with the promoter of target genes via 14-3-3 proteins, which act as scaffolds. The recruited SWI/SNF remodels nucleosomes at the promoter of IE genes enabling the binding of transcription factors like JUN and the onset of transcription. PMID:20129940

  17. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS.

    PubMed

    Wang, Weiye; Ha, Chang Hoon; Jhun, Bong Sook; Wong, Chelsea; Jain, Mukesh K; Jin, Zheng-Gen

    2010-04-08

    Fluid shear stress generated by steady laminar blood flow protects vessels from atherosclerosis. Krüppel-like factor 2 (KLF2) and endothelial nitric oxide synthase (eNOS) are fluid shear stress-responsive genes and key mediators in flow anti-inflammatory and antiatherosclerotic actions. However, the molecular mechanisms underlying flow induction of KLF2 and eNOS remain largely unknown. Here, we show a novel role of histone deacetylase 5 (HDAC5) in flow-mediated KLF2 and eNOS expression. We found for the first time that fluid shear stress stimulated HDAC5 phosphorylation and nuclear export in endothelial cells through a calcium/calmodulin-dependent pathway. Consequently, flow induced the dissociation of HDAC5 and myocyte enhancer factor-2 (MEF2) and enhanced MEF2 transcriptional activity, which leads to expression of KLF2 and eNOS. Adenoviral overexpression of a HDAC5 phosphorylation-defective mutant (Ser259/Ser498 were replaced by Ala259/Ala498, HDAC5-S/A), which shows resistance to flow-induced nuclear export, suppressed flow-mediated MEF2 transcriptional activity and expression of KLF2 and eNOS. Importantly, HDAC5-S/A attenuated the flow-inhibitory effect on monocyte adhesion to endothelial cells. Taken together, our results reveal that phosphorylation-dependent derepression of HDAC5 mediates flow-induced KLF2 and eNOS expression as well as flow anti-inflammation, and suggest that HDAC5 could be a potential therapeutic target for the prevention of atherosclerosis.

  18. High Stoichiometry Phosphorylation of Talin at T144/T150 or S446 Produces Contrasting Effects on Calpain-mediated Talin Cleavage and Cell Migration.

    PubMed

    Li, Youjun; Luo, Xiaoyong; Sun, Yang; Cui, Zhenyi; Liu, Yizhou; Liu, Rushi; Guo, Xiangrong

    2016-01-01

    Focal adhesions are large multi-protein complexes that serve as the linkage between extracellular matrix (ECM) and actin cytoskeleton and control the network of signaling cascades underlying cell migration. Talin plays a key role in focal adhesion turnover, and calpain-mediated proteolysis of talin is central to focal adhesion disassembly, but its regulation is not well elucidated. Here we demonstrate that talin phosphorylation at three high stoichiometry sites on its head domain, T144 and T150, or S446, have contrasting effects on calpain-mediated cleavage of talin and cell migration by using site-directed mutagenesis to inhibit phosphorylation. Expression of talin(T144A+T150A) stimulated calpain-mediated cleavage of talin and accelerated focal adhesion disassembly, whereas expression of talin(S446A) fully inhibited talin cleavage by calpain, preventing focal adhesion disassembly. A large decrease in phospho-threonine or phospho-serine levels was seen with talin(T144A+T150A) or talin(S446A) respectively, while more active ERK was present in talin(T144A+T150A) than in talin(S446A). Cell adhesion and transwell assays using uniformly expressing cells showed that expression of talin(T144A+T150A) or talin(S446A) have opposing effects on cell adhesion and migration. These findings define and highlight the integral role of site-specific high stoichiometry phosphorylation of talin in regulating calpain-mediated cleavage of talin and focal adhesion disassembly, thus controlling adhesion stability, cell adhesion and ultimately, cell migration.

  19. snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN.

    PubMed

    Sleeman, J E; Ajuh, P; Lamond, A I

    2001-12-01

    Splicing snRNPs (small nuclear ribonucleoproteins) are essential sub-units of the spliceosome. Here we report the establishment of stable cell lines expressing fluorescently tagged SmB, a core snRNP protein. Analysis of these stable cell lines has allowed us to characterize the nuclear pathway that leads to snRNP accumulation in nuclear speckles and has identified a limiting nucleolar step in the pathway that can be saturated by overexpression of Sm proteins. After nuclear import, newly assembled snRNPs accumulate first in a subset of Cajal bodies that contain both p80-coilin and the survival of motor neurons protein (SMN) and not in bodies that contain p80-coilin but lack SMN. Treatment of cells with leptomycin B (LMB) inhibits both the accumulation of snRNPs in nuclear bodies and their subsequent accumulation in speckles. The formation of Cajal bodies is enhanced by Sm protein expression and the assembly of new snRNPs. Formation of heterokaryons between HeLa cell lines expressing Sm proteins and primary cells that usually lack Cajal bodies results in the detection of Cajal bodies in primary cell nuclei. Transient over-expression of exogenous SmB alone is sufficient to induce correspondingly transient Cajal body formation in primary cells. These data indicate that the level of snRNP protein expression and snRNP assembly, rather than the expression levels of p80-coilin or SMN, may be a key trigger for Cajal body formation.

  20. Phosphorylation of signal transducer and activator of transcription 1 reduces bortezomib-mediated apoptosis in cancer cells

    PubMed Central

    Kao, C; Chao, A; Tsai, C L; Lin, C Y; Chuang, W C; Chen, H W; Yen, T C; Wang, T H; Lai, C H; Wang, H S

    2013-01-01

    The potent and selective proteasome inhibitor bortezomib has shown remarkable antitumor activity and is now entering clinical trials for several cancers. However, the molecular mechanisms by which bortezomib induces cytotoxicity in ovarian cancer cells still remain unclear. In this study, we show that bortezomib induced apoptosis, which was demonstrated by the downregulation of antiapoptotic molecules (Bcl-2, Bcl-XL, p-Bad, and p-AKT) and the upregulation of proapoptotic proteins (p21, p27, and cleaved-Bid) in ovarian cancer cell lines. Moreover, bortezomib stimulates Janus kinase (JAK) phosphorylation and activates heat-shock transcription factor-1 (HSF-1) and heat-shock protein 70 (HSP70), ultimately leading to signal transducer and activator of transcription 1 (STAT1) phosphorylation. Phosphorylated STAT1 partially counteracted apoptosis induced by bortezomib in cancer cells. These findings suggest that the antitumor activity of bortezomib in ovarian cancer can be improved by inhibiting bortezomib-induced STAT1 phosphorylation. This effect can be achieved by STAT1 knockdown, HSP70 knockdown, JAK inhibition, or the addition of cisplatin, one of the most commonly used anticancer drugs. These results provide the first evidence that STAT1 phosphorylation can play a role in bortezomib resistance by exerting antiapoptotic effects. They also suggest the possibility to abolish or reduce bortezomib chemoresistance in ovarian cancer by the addition of cisplatin or JAK inhibitors. PMID:23449448

  1. Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells.

    PubMed

    Chatterji, Tanushree; Varkaris, Andreas S; Parikh, Nila U; Song, Jian H; Cheng, Chien-Jui; Schweppe, Rebecca E; Alexander, Stephanie; Davis, John W; Troncoso, Patricia; Friedl, Peter; Kuang, Jian; Lin, Sue-Hwa; Gallick, Gary E

    2015-04-30

    To study the role of FAK signaling complexes in promoting metastatic properties of prostate cancer (PCa) cells, we selected stable, highly migratory variants, termed PC3 Mig-3 and DU145 Mig-3, from two well-characterized PCa cell lines, PC3 and DU145. These variants were not only increased migration and invasion in vitro, but were also more metastatic to lymph nodes following intraprostatic injection into nude mice. Both PC3 Mig-3 and DU145 Mig-3 were specifically increased in phosphorylation of FAK Y861. We therefore examined potential alterations in Src family kinases responsible for FAK phosphorylation and determined only Yes expression was increased. Overexpression of Yes in PC3 parental cells and src-/-fyn-/-yes-/- fibroblasts selectively increased FAK Y861 phosphorylation, and increased migration. Knockdown of Yes in PC3 Mig-3 cells decreased migration and decreased lymph node metastasis following orthotopic implantation of into nude mice. In human specimens, Yes expression was increased in lymph node metastases relative to paired primary tumors from the same patient, and increased pFAK Y861 expression in lymph node metastases correlated with poor prognosis. These results demonstrate a unique role for Yes in phosphorylation of FAK and in promoting PCa metastasis. Therefore, phosphorylated FAK Y861 and increased Yes expression may be predictive markers for PCa metastasis.

  2. Tyrosine phosphorylation of HSC70 and its interaction with RFC mediates methotrexate resistance in murine L1210 leukemia cells.

    PubMed

    Liu, Tuoen; Singh, Ratan; Rios, Zechary; Bhushan, Alok; Li, Mengxiong; Sheridan, Peter P; Bearden, Shawn E; Lai, James C K; Agbenowu, Senyo; Cao, Shousong; Daniels, Christopher K

    2015-02-01

    We previously identified and characterized a 66-68 kDa membrane-associated, tyrosine phosphorylated protein in murine leukemia L1210 cells as HSC70 which is a methotrexate (MTX)-binding protein. In order to further characterize the functional role of HSC70 in regulating MTX resistance in L1210 cells, we first showed that HSC70 colocalizes and interacts with reduced folate carrier (RFC) in L1210 cells by confocal laser scanning microscopy and Duolink in situ proximity ligation assay. The tyrosine phosphorylation status of HSC70 found in the membrane fraction was different from the parental L1210/0 and cisplatin (CDDP)-MTX cross resistant L1210/DDP cells. In MTX-binding assays, HSC70 from L1210/DDP cells showed less affinity for MTX-agarose beads than that of L1210/0 cells. In addition, genistein (a tyrosine phosphorylation inhibitor) significantly enhanced the resistance of L1210/0 cells to MTX. Moreover, site-directed mutation studies indicated the importance of tyrosine phosphorylation of HSC70 in regulating its binding to MTX. These findings suggest that tyrosine phosphorylation of HSC70 regulates the transportation of MTX into the cells via the HSC70-RFC system and contributes to MTX resistance in L1210 cells.

  3. Phosphorylation of Nuclear Phospholipase C β1 by Extracellular Signal-Regulated Kinase Mediates the Mitogenic Action of Insulin-Like Growth Factor I

    PubMed Central

    Xu, Aimin; Suh, Pann-Ghill; Marmy-Conus, Nelly; Pearson, Richard B.; Seok, Oh Yong; Cocco, Lucio; Gilmour, R. Stewart

    2001-01-01

    It is well established that a phosphoinositide (PI) cycle which is operationally distinct from the classical plasma membrane PI cycle exists within the nucleus, where it is involved in both cell proliferation and differentiation. However, little is known about the regulation of the nuclear PI cycle. Here, we report that nucleus-localized phospholipase C (PLC) β1, the key enzyme for the initiation of this cycle, is a physiological target of extracellular signal-regulated kinase (ERK). Stimulation of Swiss 3T3 cells with insulin-like growth factor I (IGF-I) caused rapid nuclear translocation of activated ERK and concurrently induced phosphorylation of nuclear PLC β1, which was completely blocked by the MEK inhibitor PD 98059. Coimmunoprecipitation detected a specific association between the activated ERK and PLC β1 within the nucleus. In vitro studies revealed that recombinant PLC β1 could be efficiently phosphorylated by activated mitogen-activated protein kinase but not by PKA. The ERK phosphorylation site was mapped to serine 982, which lies within a PSSP motif located in the characteristic carboxy-terminal tail of PLC β1. In cells overexpressing a PLC β1 mutant in which serine 982 is replaced by glycine (S982G), IGF-I failed to activate the nuclear PI cycle, and its mitogenic effect was also markedly attenuated. Expression of S982G was found to inhibit ERK-mediated phosphorylation of endogenous PLC β1. This result suggests that ERK-evoked phosphorylation of PLC β1 at serine 982 plays a critical role in the activation of the nuclear PI cycle and is also crucial to the mitogenic action of IGF-I. PMID:11287604

  4. AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation

    PubMed Central

    Baritaud, M; Cabon, L; Delavallée, L; Galán-Malo, P; Gilles, M-E; Brunelle-Navas, M-N; Susin, S A

    2012-01-01

    The alkylating DNA-damage agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) induces a form of caspase-independent necroptosis implicating the mitochondrial flavoprotein apoptosis-inducing factor (AIF). Following the activation of PARP-1 (poly(ADP-ribose) polymerase-1), calpains, BID (BH3 interacting domain death agonist), and BAX (Bcl-2-associated X protein), the apoptogenic form of AIF (tAIF) is translocated to the nucleus where, associated with Ser139-phosphorylated histone H2AX (γH2AX), it creates a DNA-degrading complex that provokes chromatinolysis and cell death by necroptosis. The generation of γH2AX is crucial for this form of cell death, as mutation of H2AX Ser139 to Ala or genetic ablation of H2AX abolish both chromatinolysis and necroptosis. On the contrary, reintroduction of H2AX-wt or the phosphomimetic H2AX mutant (H2AX-S139E) into H2AX−/− cells resensitizes to MNNG-triggered necroptosis. Employing a pharmacological approach and gene knockout cells, we also demonstrate in this paper that the phosphatidylinositol-3-OH kinase-related kinases (PIKKs) ATM (ataxia telangiectasia mutated) and DNA-dependent protein kinase (DNA-PK) mediate γH2AX generation and, consequently, MNNG-induced necroptosis. By contrast, H2AX phosphorylation is not regulated by ATR or other H2AX-related kinases, such as JNK. Interestingly, ATM and DNA-PK phosphorylate H2AX at Ser139 in a synergistic manner with different kinetics of activation. Early after MNNG treatment, ATM generates γH2AX. Further, DNA-PK contributes to H2AX Ser139 phosphorylation. In revealing the pivotal role of PIKKs in MNNG-induced cell death, our data uncover a milestone in the mechanisms regulating AIF-mediated caspase-independent necroptosis. PMID:22972376

  5. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  6. PIP3 but not PIP2 increases GLUT4 surface expression and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation in 3T3L1 adipocytes.

    PubMed

    Manna, Prasenjit; Jain, Sushil K

    2013-09-01

    Phosphatidylinositol-3,4,5-triphosphate (PIP3) and phosphatidylinositol-4,5-biphosphate (PIP2) are two well-known membrane bound polyphosphoinositides. Diabetes is associated with impaired glucose metabolism. Using a 3T3L1 adipocyte cell model, this study investigated the role of PIP3 and PIP2 on insulin stimulated glucose metabolism in high glucose (HG) treated cells. Exogenous PIP3 supplementation (1, 5, or 10 nM) increased the phosphorylation of AKT and PKCζ/λ, which in turn upregulated GLUT4 total protein expression as well as its surface expression, glucose uptake, and glucose utilization in cells exposed to HG (25 mM); however, PIP2 had no effect. Comparative signal silencing studies with antisense AKT2 and antisense PKCζ revealed that phosphorylation of PKCζ/λ is more effective in PIP3 mediated GLUT4 activation and glucose utilization than in AKT phosphorylation. Supplementation with PIP3 in combination with insulin enhanced glucose uptake and glucose utilization compared to PIP2 with insulin, or insulin alone, in HG-treated adipocytes. This suggests that a decrease in cellular PIP3 levels may cause impaired insulin sensitivity in diabetes. PIP3 supplementation also prevented HG-induced MCP-1 and resistin secretion and lowered adiponectin levels. This study for the first time demonstrates that PIP3 but not PIP2 plays an important role in GLUT4 upregulation and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation. Whether PIP3 levels in blood can be used as a biomarker of insulin resistance in diabetes needs further investigation.

  7. ATP synthase-mediated proton fluxes and phosphorylation in rat liver mitochondria: dependence on delta mu H.

    PubMed

    Zoratti, M; Petronilli, V; Azzone, G F

    1986-08-13

    The dependence of the proton flux through the ATP synthases of rat liver mitochondria on a driving force composed mainly of a potassium diffusion potential was determined and compared with the relationship between rate of phosphorylation and delta mu H given by titrations with the respiratory inhibitor malonate. The two functions are in good agreement in the lower part of the delta mu H range covered. However, the maximal proton fluxes through the ATP synthases are much lower than needed to account for the rate of State 3 phosphorylation sustained by the same mitochondria oxidizing succinate. Possible reasons for this behavior are discussed.

  8. Paxillin promotes colorectal tumor invasion and poor patient outcomes via ERK-mediated stabilization of Bcl-2 protein by phosphorylation at Serine 87.

    PubMed

    Huang, Chi-Chou; Wu, De-Wei; Lin, Po-Lin; Lee, Huei

    2015-04-20

    Stabilization of Bcl-2 protein by paxillin (PXN)-mediated ERK activation was recently reported to cause an unfavorable response to 5-Fluorouracil-based chemotherapy. Here, we present evidence from cell and animal models to demonstrate that stabilization of Bcl-2 protein by phosphorylation at Serine 87 (pBcl-2-S87) via PXN-mediated ERK activation is responsible for cancer cell invasiveness and occurs via upregulation of MMP2 expression. Immunostainings of 190 tumors resected from colorectal cancer patients indicated that PXN expression was positively correlated with Bcl-2, pBcl-2-S87, and MMP2 expression. A positive correlation of pBcl-2-S87 with Bcl-2 and MMP2 was also observed in this study population. Patients with high PXN, Bcl-2, pBcl-2-S87, and MMP2 had poor overall survival (OS) and shorter relapse free survival (RFS). In conclusion, PXN promotes Bcl-2 phosphorylation at Serine 87 via PXN-mediated ERK activation, and its stabilization associated with increased tumor formation efficacy in mice and poor patient outcome in colorectal cancer patients.

  9. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation.

    PubMed

    Meinke, Stephan; Watzl, Carsten

    2013-01-01

    2B4 (CD244) and NK-T-B-antigen (NTB-A, CD352) are activating receptors on human natural killer (NK) cells and belong to the family of signaling lymphocyte activation molecule (SLAM)-related receptors (SRR). Engagement of these receptors leads to phosphorylation of their cytoplasmic tails and recruitment of the adapter proteins SLAM-associated protein (SAP) and Ewing's sarcoma-activated transcript-2 (EAT-2). X-linked lymphoproliferative syndrome (XLP) is a severe immunodeficiency that results from mutations in the SAP gene. 2B4 and NTB-A-mediated cytotoxicity are abrogated in XLP NK cells. To elucidate the molecular basis for this defect we analyzed early signaling events in SAP knockdown cells. Similar to XLP NK cells, knockdown of SAP in primary human NK cells leads to a reduction of 2B4 and NTB-A-mediated cytotoxicity. We found that early signaling events such as raft recruitment and receptor phosphorylation are not affected by the absence of SAP, indicating the defect in the absence of SAP is downstream of these events. In addition, knockdown of EAT-2 does not impair 2B4 or NTB-A-mediated cytotoxicity. Surprisingly, EAT-2 recruitment to both receptors is abrogated in the absence of SAP, revealing a novel cooperativity between these adapters.

  10. Nitric oxide and brassinosteroids mediated fungal endophyte-induced volatile oil production through protein phosphorylation pathways in Atractylodes lancea plantlets.

    PubMed

    Ren, Cheng-Gang; Dai, Chuan-Chao

    2013-11-01

    Fungal endophytes have been isolated from almost every plant, infecting their hosts without causing visible disease symptoms, and yet have still proved to be involved in plant secondary metabolites accumulation. To decipher the possible physiological mechanisms of the endophytic fungus-host interaction, the role of protein phosphorylation and the relationship between endophytic fungus-induced kinase activity and nitric oxide (NO) and brassinolide (BL) in endophyte-enhanced volatile oil accumulation in Atractylodes lancea plantlets were investigated using pharmacological and biochemical approaches. Inoculation with the endophytic fungus Gilmaniella sp. AL12 enhanced the activities of total protein phosphorylation, Ca²⁺-dependent protein kinase, and volatile oil accumulation in A. lancea plantlets. The upregulation of protein kinase activity could be blocked by the BL inhibitor brassinazole. Furthermore, pretreatments with the NO-specific scavenger cPTIO significantly reduced the increased activities of protein kinases in A. lancea plantlets inoculated with endophytic fungus. Pretreatments with different protein kinase inhibitors also reduced fungus-induced NO production and volatile oil accumulation, but had barely no effect on the BL level. These data suggest that protein phosphorylation is required for endophyte-induced volatile oil production in A. lancea plantlets, and that crosstalk between protein phosphorylation and the NO pathway may occur and act as a downstream signaling event of the BL pathway.

  11. CaMKII-γ mediates phosphorylation of BAD at Ser170 to regulate cytokine-dependent survival and proliferation.

    PubMed

    Hojabrpour, Payman; Waissbluth, Ivan; Ghaffari, Mazyar; Cox, Michael E; Duronio, Vincent

    2012-02-15

    Phosphorylation of the BH3 (Bcl-2 homology domain 3)-only protein BAD (Bcl-2/Bcl-X(L)-antagonist, causing cell death) can either directly disrupt its association with the pro-survival proteins Bcl-X(L) and/or Bcl-2, or cause association of BAD with 14-3-3 proteins. In the present study, we further characterize phosphorylation of BAD at Ser170, a unique site with unclear function. We provide further evidence that mutation of Ser170 to a phospho-mimetic aspartic acid residue (S170D) can have a profound inhibitory effect on the pro-apoptosis function of BAD. Furthermore, mutated BAD with an alanine substitution inhibited cell proliferation, slowing progression specifically through S-phase. We identify the kinase responsible for phosphorylation at this site as CaMKII-γ (γ isoform of Ca2+/calmodulin-dependent kinase II), but not the other three isoforms of CaMKII, revealing an extraordinary specificity among these closely related kinases. Furthermore, cytokine treatment increased BAD-Ser170-directed CaMKII-γ activity and phosphorylation of CaMKII-γ at an activating site, and CaMKII activity directed to the BAD-Ser170 site was elevated during S-phase. Treating cells with a selective inhibitor of CaMKII caused apoptosis in cells expressing BAD, but not in cells expressing the BAD-S170D mutant. The present study provides support for BAD-Ser170 phosphorylation playing a key role not only in regulating BAD's pro-apoptotic activity, but also in cell proliferation.

  12. Pectenotoxin-2 induces G2/M phase cell cycle arrest in human breast cancer cells via ATM and Chk1/2-mediated phosphorylation of cdc25C.

    PubMed

    Moon, Dong-Oh; Kim, Mun-Ock; Nam, Taek-Jeong; Kim, Se-Kwon; Choi, Yung Hyun; Kim, Gi-Young

    2010-07-01

    Although pectenotoxin-2 (PTX-2) is known to regulate the actin depolymerization and to induce apoptosis through downregulation of telomerase activity, little is known on its effect on the cell cycle regulation. Therefore, we investigated the effects of PTX-2 on G2/M arrest in human breast cancer cells (MDA-MB-231 and MCF-7). Treatment with PTX-2 significantly suppressed cell proliferation and induced G2/M phase arrest through down-regulation of cyclin B1 and cdc2 expression, but also through phosphorylation of cdc25C. We found increased phosphorylation of ATM and Chk1/2 in a PTX-2 dose-dependent manner. Furthermore, treatment with PTX-2 increased H2O2 generation with correlated G2/M arrest. Our results showed that ATM- and Chk1/2-mediated phosphorylation of cdc25C plays a major role in G2/M arrest, but not in H2O2 generation induced by PTX-2 treatment. We also observed that PTX-2-induced cell cycle arrest was not restricted to p53 status in human breast cancer cells.

  13. Attenuation of synaptic toxicity and MARK4/PAR1-mediated Tau phosphorylation by methylene blue for Alzheimer’s disease treatment

    PubMed Central

    Sun, Wenchao; Lee, Seongsoo; Huang, Xiaoran; Liu, Song; Inayathullah, Mohammed; Kim, Kwang-Min; Tang, Hongxiang; Ashford, J. Wesson; Rajadas, Jayakumar

    2016-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disease characterized by genotypic and phenotypic heterogeneity. Critical components of the two AD pathological pathways, Aβ-amyloidosis and Tauopathy, have been considered as therapeutic targets. Among them, much effort is focused on aberrant Tau phosphorylation and targeting Tau-phosphorylating kinases. Methylene blue (MB), a phenothiazine dye that crosses the blood-brain barrier, has been shown to hit multiple molecular targets involved in AD and have beneficial effects in clinical studies. Here we present evidence that microtubule affinity-regulating kinase (MARK4) is a novel target of MB. MB partially rescued the synaptic toxicity in Drosophila larva overexpressing PAR1 (MARK analog). In 293T culture, MB decreased MARK4-mediated Tau phosphorylation in a dose dependent manner. Further studies revealed a two-fold mechanism by MB including down-regulation of MARK4 protein level through ubiquitin-proteasome pathway and inhibition of MARK4 kinase activity in vitro. This study highlights the importance of MARK4 as a viable target for Tauopathy and provides fresh insight into the complex mechanism used by MB to treat AD. PMID:27708431

  14. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta.

  15. Inhibitory phosphorylation of Cdk1 mediates prolonged prophase I arrest in female germ cells and is essential for female reproductive lifespan

    PubMed Central

    Adhikari, Deepak; Busayavalasa, Kiran; Zhang, Jingjing; Hu, Mengwen; Risal, Sanjiv; Bayazit, Mustafa Bilal; Singh, Meenakshi; Diril, M Kasim; Kaldis, Philipp; Liu, Kui

    2016-01-01

    A unique feature of female germ cell development in mammals is their remarkably long arrest at the prophase of meiosis I, which lasts up to 50 years in humans. Both dormant and growing oocytes are arrested at prophase I and completely lack the ability to resume meiosis. Here, we show that the prolonged meiotic arrest of female germ cells is largely achieved via the inhibitory phosphorylation of Cdk1 (cyclin-dependent kinase 1). In two mouse models where we have introduced mutant Cdk1T14AY15F which cannot be inhibited by phosphorylation (Cdk1AF) in small meiotically incompetent oocytes, the prophase I arrest is interrupted, leading to a premature loss of female germ cells. We show that in growing oocytes, Cdk1AF leads to premature resumption of meiosis with condensed chromosomes and germinal vesicle breakdown followed by oocyte death, whereas in dormant oocytes, Cdk1AF leads to oocyte death directly, and both situations damage the ovarian reserve that maintains the female reproductive lifespan, which should be around 1 year in mice. Furthermore, interruption of the inhibitory phosphorylation of Cdk1 results in DNA damage, which is accompanied by induction of the Chk2 (checkpoint kinase 2)-p53/p63-dependent cell death pathway, which eventually causes global oocyte death. Together, our data demonstrate that the phosphorylation-mediated suppression of Cdk1 activity is one of the crucial factors that maintain the lengthy prophase arrest in mammalian female germ cells, which is essential for preserving the germ cell pool and reproductive lifespan in female mammals. PMID:27767095

  16. Nox4 NAD(P)H Oxidase Mediates Src-dependent Tyrosine Phosphorylation of PDK-1 in Response to Angiotensin II

    PubMed Central

    Block, Karen; Eid, Assaad; Griendling, Kathy K.; Lee, Duck-Yoon; Wittrant, Yohann; Gorin, Yves

    2008-01-01

    Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to hypertrophy and extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces an increase in PDK-1 (3-phosphoinositide-dependent protein kinase-1) kinase activity that required its phosphorylation on tyrosine 9 and 373/376. Introduction into the cells of PDK-1, mutated on these tyrosine residues or kinase-inactive, attenuates Ang II-induced hypertrophy and fibronectin accumulation. Ang II-mediated PDK-1 activation and tyrosine phosphorylation (total and on residues 9 and 373/376) are inhibited in cells transfected with small interfering RNA for Src, indicating that Src is upstream of PDK-1. In cells expressing oxidation-resistant Src mutant C487A, Ang II-induced hypertrophy and fibronectin expression are prevented, suggesting that the pathway is redox-sensitive. Ang II also up-regulates Nox4 protein, and siNox4 abrogates the Ang II-induced increase in intracellular reactive oxygen species (ROS) generation. Small interfering RNA for Nox4 also inhibits Ang II-induced activation of Src and PDK-1 tyrosine phosphorylation (total and on residues 9 and 373/376), demonstrating that Nox4 functions upstream of Src and PDK-1. Importantly, inhibition of Nox4, Src, or PDK-1 prevents the stimulatory effect of Ang II on fibronectin accumulation and cell hypertrophy. This work provides the first evidence that Nox4-derived ROS are responsible for Ang II-induced PDK-1 tyrosine phosphorylation and activation through stimulation of Src. Importantly, this pathway contributes to Ang II-induced MC hypertrophy and fibronectin accumulation. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal hypertrophy and fibrosis. PMID:18559349

  17. Angiotensin II stimulates calcineurin activity in proximal tubule epithelia through AT-1 receptor-mediated tyrosine phosphorylation of the PLC-gamma1 isoform.

    PubMed

    Lea, Janice P; Jin, Shao G; Roberts, Brian R; Shuler, Michael S; Marrero, Mario B; Tumlin, James A

    2002-07-01

    Angiotensin II (AngII) contributes to the maintenance of extracellular fluid volume by regulating sodium transport in the nephron. In nonepithelial cells, activation of phospholipase C (PLC) by AT-1 receptors stimulates the generation of 1,4,5-trisphosphate (IP(3)) and the release of intracellular calcium. Calcineurin, a serine-threonine phosphatase, is activated by calcium and calmodulin, and both PLC and calcineurin have been linked to sodium transport in the proximal tubule. An examination of whether AngII activates calcineurin in a model of proximal tubule epithelia (LLC-PK1 cells) was performed; AngII increased calcineurin activity within 30 s. An examination of whether AngII activates PLC in proximal tubule epithelia was also performed after first showing that all three families of PLC isoforms are present in LLC-PK1 cells. Application of AngII increased IP(3) generation by 60% within 15 s, which coincided with AngII-induced tyrosine phosphorylation of the PLC-gamma1 isoform also observed at 15 s. AngII-induced tyrosine phosphorylation was blocked by the AT-1 receptor antagonist, Losartan. Subsequently, an inhibitor of tyrosine phosphorylation blocked the AngII-induced activation of calcineurin, as did coincubation with an inhibitor of PLC activity and with an antagonist of the AT-1 receptor. It is therefore concluded that AngII stimulates calcineurin phosphatase activity in proximal tubule epithelial cells through a mechanism involving AT-1 receptor-mediated tyrosine phosphorylation of the PLC isoform.

  18. mTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3

    SciTech Connect

    Busch, Susann; Renaud, Stephen J.; Schleussner, Ekkehard; Graham, Charles H.; Markert, Udo R.

    2009-06-10

    The intracellular signaling molecule mammalian target of rapamycin (mTOR) is essential for cell growth and proliferation. It is involved in mouse embryogenesis, murine trophoblast outgrowth and linked to tumor cell invasiveness. In order to assess the role of mTOR in human trophoblast invasion we analyzed the in vitro invasiveness of HTR-8/SVneo immortalized first-trimester trophoblast cells in conjunction with enzyme secretion upon mTOR inhibition and knockdown of mTOR protein expression. Additionally, we also tested the capability of mTOR to trigger signal transducer and activator of transcription (STAT)-3 by its phosphorylation status. Rapamycin inhibited mTOR kinase activity as demonstrated with a lower phosphorylation level of the mTOR substrate p70 S6 kinase (S6K). With the use of rapamycin and siRNA-mediated mTOR knockdown we could show that cell proliferation, invasion and secretion of matrix-metalloproteinases (MMP)-2 and -9, urokinase-like plasminogen activator (uPA) and its major physiological uPA inhibitor (PAI)-1 were inhibited. While tyrosine phosphorylation of STAT3 was unaffected by mTOR inhibition and knockdown, serine phosphorylation was diminished. We conclude that mTOR signaling is one major mechanism in a tightly regulated network of intracellular signal pathways including the JAK/STAT system to regulate invasion in human trophoblast cells by secretion of enzymes that remodel the extra-cellular matrix (ECM) such as MMP-2, -9, uPA and PAI-1. Dysregulation of mTOR may contribute to pregnancy-related pathologies caused through impaired trophoblast invasion.

  19. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    SciTech Connect

    Kumari, Gita; Mahalingam, S.

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  20. G Protein-Coupled Receptor Kinase 3 and Protein Kinase C Phosphorylate the Distal C-Terminal Tail of the Chemokine Receptor CXCR4 and Mediate Recruitment of Beta-Arrestin.

    PubMed

    Luo, Jiansong; Busillo, John M; Stumm, Ralf; Benovic, Jeffrey L

    2017-03-22

    Phosphorylation of G protein-coupled receptors (GPCRs) is a key event for cell signaling and regulation of receptor function. Previously, using tandem mass spectrometry, we identified two phosphorylation sites at the distal C-terminal tail of the chemokine receptor CXCR4, but were unable to determine which specific residues were phosphorylated. Here, we demonstrate that serines 346 and/or 347 (Ser-346/7) of CXCR4 are phosphorylated upon stimulation with the agonist CXCL12 as well as a CXCR4 pepducin, ATI-2341. ATI-2341, a Gi-biased CXCR4 agonist, induced more robust phosphorylation of Ser-346/7 compared to CXCL12. Knockdown of GRK2, GRK3 or GRK6 reduced CXCL12-induced phosphorylation of Ser-346/7 with GRK3 knockdown having the strongest effect, while inhibition of the conventional PKC isoforms reduced phosphorylation of Ser-346/7 induced by either CXCL12 or ATI-2341. The loss of GRK3- or PKC-mediated phosphorylation of Ser-346/7 impaired the recruitment of β-arrestin to CXCR4. We also found that a pseudo-substrate peptide inhibitor for PKCζ effectively inhibited CXCR4 phosphorylation and signaling, most likely by functioning as a non-specific CXCR4 antagonist. Together, these studies demonstrate the role Ser-346/7 plays in arrestin recruitment and initiation of the process of receptor desensitization and provide insight into the dysregulation of CXCR4 observed in patients with various forms of WHIM syndrome.

  1. Phosphorylation events implicating p38 and PI3K mediate tungstate-effects in MIN6 beta cells.

    PubMed

    Piquer, Sandra; Barceló-Batllori, Sílvia; Julià, Marta; Marzo, Nuria; Nadal, Belen; Guinovart, Joan J; Gomis, Ramon

    2007-06-29

    Oral administration of sodium tungstate is an effective treatment for diabetes in animal models. Several lines of evidence indicate the pancreatic beta cell as one of the targets of tungstate action. Here, we examined the molecular mechanism by which this compound exerts its effects on the beta cell line MIN6. Tungstate treatment induced phosphorylation and subsequent activation of p38 and PI3K which in turn are implicated in tungstate PDX-1 nuclear localization and activation. Although no effect was observed in glucose-induced insulin secretion we found that tungstate activates basal insulin release, a process driven, at least in part, by activation of p38. These results show a direct involvement of p38 and PI3K phosphorylation in the mechanism of action of tungstate in the beta cell.

  2. Phosphorylation events implicating p38 and PI3K mediate tungstate-effects in MIN6 beta cells

    SciTech Connect

    Piquer, Sandra; Gomis, Ramon . E-mail: rgomis@clinic.ub.es

    2007-06-29

    Oral administration of sodium tungstate is an effective treatment for diabetes in animal models. Several lines of evidence indicate the pancreatic beta cell as one of the targets of tungstate action. Here, we examined the molecular mechanism by which this compound exerts its effects on the beta cell line MIN6. Tungstate treatment induced phosphorylation and subsequent activation of p38 and PI3K which in turn are implicated in tungstate PDX-1 nuclear localization and activation. Although no effect was observed in glucose-induced insulin secretion we found that tungstate activates basal insulin release, a process driven, at least in part, by activation of p38. These results show a direct involvement of p38 and PI3K phosphorylation in the mechanism of action of tungstate in the beta cell.

  3. A distant coilin homologue is required for the formation of cajal bodies in Arabidopsis.

    PubMed

    Collier, Sarah; Pendle, Alison; Boudonck, Kurt; van Rij, Tjeerd; Dolan, Liam; Shaw, Peter

    2006-07-01

    Cajal bodies (CBs) are subnuclear bodies that are widespread in eukaryotes, being found in mammals, many other vertebrates and in all plant species so far examined. They are mobile structures, moving, fusing, and budding within the nucleus. Here we describe a screen for Arabidopsis mutants with altered CBs and describe mutants that have smaller Cajal bodies (ncb-2, ncb-3), lack them altogether (ncb-1), have increased numbers of CBs (pcb) or have flattened CBs (ccb). We have identified the gene affected in the ncb mutants as a distant homolog of the vertebrate gene that encodes coilin (At1g13030) and have termed the resulting protein Atcoilin. A T-DNA insertional mutant in this gene (ncb-4) also lacks Cajal bodies. Overexpression of Atcoilin cDNA in ncb-1 restores Cajal bodies, which recruit U2B'' as in the wild type, but which are, however, much larger than in the wild type. Thus we have shown that At1g13030 is required for Cajal body formation in Arabidopsis, and we hypothesize that the level of its expression is correlated with Cajal body size. The Atcoilin gene is unaffected in pcb and ccb, suggesting that other genes can also affect CBs.

  4. A Distant Coilin Homologue Is Required for the Formation of Cajal Bodies in Arabidopsis

    PubMed Central

    Collier, Sarah; Pendle, Alison; Boudonck, Kurt; van Rij, Tjeerd; Dolan, Liam

    2006-01-01

    Cajal bodies (CBs) are subnuclear bodies that are widespread in eukaryotes, being found in mammals, many other vertebrates and in all plant species so far examined. They are mobile structures, moving, fusing, and budding within the nucleus. Here we describe a screen for Arabidopsis mutants with altered CBs and describe mutants that have smaller Cajal bodies (ncb-2, ncb-3), lack them altogether (ncb-1), have increased numbers of CBs (pcb) or have flattened CBs (ccb). We have identified the gene affected in the ncb mutants as a distant homolog of the vertebrate gene that encodes coilin (At1g13030) and have termed the resulting protein Atcoilin. A T-DNA insertional mutant in this gene (ncb-4) also lacks Cajal bodies. Overexpression of Atcoilin cDNA in ncb-1 restores Cajal bodies, which recruit U2B″ as in the wild type, but which are, however, much larger than in the wild type. Thus we have shown that At1g13030 is required for Cajal body formation in Arabidopsis, and we hypothesize that the level of its expression is correlated with Cajal body size. The Atcoilin gene is unaffected in pcb and ccb, suggesting that other genes can also affect CBs. PMID:16624863

  5. Regulation of NHE3 by lysophosphatidic acid is mediated by phosphorylation of NHE3 by RSK2

    PubMed Central

    No, Yi Ran; He, Peijian; Yoo, Byong Kwon

    2015-01-01

    Na+/H+ exchange by Na+/H+ exchanger 3 (NHE3) is a major route of sodium absorption in the intestine and kidney. We have shown previously that lysophosphatidic acid (LPA), a small phospholipid produced ubiquitously by all types of cells, stimulates NHE3 via LPA5 receptor. Stimulation of NHE3 activity by LPA involves LPA5 transactivating EGF receptor (EGFR) in the apical membrane. EGFR activates proline-rich tyrosine kinase 2 (Pyk2) and ERK, both of which are necessary for NHE3 regulation. However, Pyk2 and ERK are regulated by EGFR via independent pathways and appear to converge on an unidentified intermediate that ultimately targets NHE3. The p90 ribosomal S6 kinase (RSK) family of Ser/Thr protein kinases is a known effector of EGFR and ERK. Hence, we hypothesized that RSK may be the convergent effector of Pyk2 and ERK although it is not known whether Pyk2 regulates RSK. In this study, we show that Pyk2 is necessary for the maintenance of phosphoinositide-dependent kinase 1 (PDK1) autophosphorylation, and knockdown of Pyk2 or PDK1 mitigated LPA-induced phosphorylation of RSK and stimulation of NHE3 activity. Additionally, we show that RSK2, but not RSK1, is responsible for NHE3 regulation. RSK2 interacts with NHE3 at the apical membrane domain, where it phosphorylates NHE3. Alteration of S663 of NHE3 ablated LPA-induced phosphorylation of NHE3 and stimulation of the transport activity. Our study identifies RSK2 as a new kinase that regulates NHE3 activity by direct phosphorylation. PMID:25855080

  6. Involvement of PI 3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis.

    PubMed

    Quan, Juan-Hua; Cha, Guang-Ho; Zhou, Wei; Chu, Jia-Qi; Nishikawa, Yoshifumi; Lee, Young-Ha

    2013-04-01

    Toxoplasma gondii-infected cells are resistant to various apoptotic stimuli, however, the role of the pro-apoptotic BH3-only Bad protein in T. gondii-imposed inhibition of host cell apoptosis in connection with the phosphoinositide 3-kinase (PI3K)-PKB/Akt pathway was not well delineated. Here, we investigated the signaling patterns of Bad, Bax and PKB/Akt in T. gondii-infected and uninfected THP-1 cells treated with staurosporine (STS) or PI3K inhibitors. STS treatment, without T. gondii infection, reduced the viability of THP-1 cells in proportion to STS concentration and triggered many cellular death events such as caspase-3 and -9 activation, Bax translocation, cytochrome c release from host cell mitochondria into cytosol, and PARP cleavage in the host cell. However, T. gondii infection eliminated the STS-triggered mitochondrial apoptotic events described above. Additionally, T. gondii infection in vitro and in vivo induced the phosphorylation of PKB/Akt and Bad in a parasite-load-dependent manner which subsequently inhibited Bax translocation. The PI3K inhibitors, LY294002 and Wortmannin, both blocked parasite-induced phosphorylation of PKB/Akt and Bad. Furthermore, THP-1 cells pretreated with these PI3K inhibitors showed reduced phosphorylation of Bad in a dose-dependent manner and subsequently failed to inhibit the Bax translocation, also these cells also failed to overcome the T. gondii-imposed inhibition of host cell apoptosis. These data demonstrate that the PI3K-PKB/Akt pathway may be one of the major route for T. gondii in the prevention of host cell apoptosis and T. gondii phosphorylates the pro-apoptotic Bad protein to prevent apoptosis.

  7. Btk29A-mediated tyrosine phosphorylation of armadillo/β-catenin promotes ring canal growth in Drosophila oogenesis.

    PubMed

    Hamada-Kawaguchi, Noriko; Nishida, Yasuyoshi; Yamamoto, Daisuke

    2015-01-01

    Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.

  8. Anticancer peptide CIGB-300 binds to nucleophosmin/B23, impairs its CK2-mediated phosphorylation, and leads to apoptosis through its nucleolar disassembly activity.

    PubMed

    Perera, Yasser; Farina, Hernán G; Gil, Jeovanis; Rodriguez, Arielis; Benavent, Fernando; Castellanos, Lila; Gómez, Roberto E; Acevedo, Boris E; Alonso, Daniel F; Perea, Silvio E

    2009-05-01

    CIGB-300, formerly known as P15-tat, is a proapoptotic peptide with established antiproliferative activity in vitro and antitumoral activity in vivo. This hypothesis-driven peptide was initially selected for its ability to impair the in vitro CK2-mediated phosphorylation in one of its substrates through direct binding to the conserved acidic phosphoaceptor domain. However, the actual in vivo target(s) on human cancer cells among the hundreds of CK2 substrates as well as the subsequent events that lead to apoptosis on tumor cells remains to be determined. In this work, we identified the multifunctional oncoprotein nucleophosmin/B23 as a major target for CIGB-300. In vivo, the CIGB-300-B23 interaction was shown by pull-down experiments and confirmed by the early in situ colocalization of both molecules in the cell nucleolus. Moreover, CIGB-300 inhibits the CK2-mediated phosphorylation of B23 in a dose-dependent fashion both in vitro and in vivo as shown using the recombinant GST fusion protein and the metabolic labeling approach, respectively. Such phosphorylation impairment was correlated with the ability of CIGB-300 to induce nucleolar disassembly as documented by the use of established markers for nucleolar structure. Finally, we showed that such a sequence of events leads to the rapid and massive onset of apoptosis both at the molecular and cellular levels. Collectively, these findings provide important clues by which the CIGB-300 peptide exerts its proapoptotic effect on tumor cells and highlights the suitability of the B23/CK2 pathway for cancer-targeted therapy.

  9. Genistein stimulates fatty acid oxidation in a leptin receptor-independent manner through the JAK2-mediated phosphorylation and activation of AMPK in skeletal muscle.

    PubMed

    Palacios-González, Berenice; Zarain-Herzberg, Angel; Flores-Galicia, Isabel; Noriega, Lilia G; Alemán-Escondrillas, Gabriela; Zariñan, Teresa; Ulloa-Aguirre, Alfredo; Torres, Nimbe; Tovar, Armando R

    2014-01-01

    Obesity is a public health problem that contributes to the development of insulin resistance, which is associated with an excessive accumulation of lipids in skeletal muscle tissue. There is evidence that soy protein can decrease the ectopic accumulation of lipids and improves insulin sensitivity; however, it is unknown whether soy isoflavones, particularly genistein, can stimulate fatty acid oxidation in the skeletal muscle. Thus, we studied the mechanism by which genistein stimulates fatty acid oxidation in the skeletal muscle. We showed that genistein induced the expression of genes of fatty acid oxidation in the skeletal muscle of Zucker fa/fa rats and in leptin receptor (ObR)-silenced C2C12 myotubes through AMPK phosphorylation. Furthermore, the genistein-mediated AMPK phosphorylation occurred via JAK2, which was possibly activated through a mechanism that involved cAMP. Additionally, the genistein-mediated induction of fatty acid oxidation genes involved PGC1α and PPARδ. As a result, we observed that genistein increased fatty acid oxidation in both the control and silenced C2C12 myotubes, as well as a decrease in the RER in mice, suggesting that genistein can be used in strategies to decrease lipid accumulation in the skeletal muscle.

  10. Reduction of α1GABAA receptor mediated by tyrosine kinase C (PKC) phosphorylation in a mouse model of fragile X syndrome

    PubMed Central

    Zhao, Weidong; Wang, Jiaqin; Song, Shunyi; Li, Fang; Yuan, Fangfang

    2015-01-01

    Fragile X syndrome (FXS) caused by lack of fragile X mental retardation protein (Fmr1) is the most common cause of inherited intellectual disability and characterized by many cognitive disturbances like attention deficit, autistic behavior, and audiogenic seizure and have region-specific altered expression of some gamma-aminobutyric acid (GABAA) receptor subunits. Quantitative real-time polymerase chain reaction and western blot experiments were performed in the cultured cortical neurons and forebrain obtained from wild-type (WT) and Fmr1 KO mice demonstrate the reduction in the expression of α1 gamma-aminobutyric acid (α1GABAA) receptor, phospho-α1GABAA receptor, PKC and phosphor-PKC in Fmr1 KO mice comparing with WT mice, both in vivo and in vitro. Furthermore, we found that the phosphorylation of the α1GABAA receptor was mediated by PKC. Our results elucidate that the lower phosphorylation of the α1GABAA receptor mediated by PKC neutralizes the seizure-promoting effects in Fmr1 KO mice and point to the potential therapeutic targets of α1GABAA agonists for the treatment of fragile X syndrome. PMID:26550246

  11. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata.

    PubMed

    Matsumoto, Joao Paulo Pontes; Almeida, Marina Gomes; Castilho-Martins, Emerson Augusto; Costa, Maisa Aparecida; Fior-Chadi, Debora Rejane

    2014-08-01

    Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation.

  12. Alpha particles induce pan-nuclear phosphorylation of H2AX in primary human lymphocytes mediated through ATM.

    PubMed

    Horn, Simon; Brady, Darren; Prise, Kevin

    2015-10-01

    The use of high linear energy transfer radiations in the form of carbon ions in heavy ion beam lines or alpha particles in new radionuclide treatments has increased substantially over the past decade and will continue to do so due to the favourable dose distributions they can offer versus conventional therapies. Previously it has been shown that exposure to heavy ions induces pan-nuclear phosphorylation of several DNA repair proteins such as H2AX and ATM in vitro. Here we describe similar effects of alpha particles on ex vivo irradiated primary human peripheral blood lymphocytes. Following alpha particle irradiation pan-nuclear phosphorylation of H2AX and ATM, but not DNA-PK and 53BP1, was observed throughout the nucleus. Inhibition of ATM, but not DNA-PK, resulted in the loss of pan-nuclear phosphorylation of H2AX in alpha particle irradiated lymphocytes. Pan-nuclear gamma-H2AX signal was rapidly lost over 24h at a much greater rate than foci loss. Surprisingly, pan-nuclear gamma-H2AX intensity was not dependent on the number of alpha particle induced double strand breaks, rather the number of alpha particles which had traversed the cell nucleus. This distinct fluence dependent damage signature of particle radiation is important in both the fields of radioprotection and clinical oncology in determining radionuclide biological dosimetry and may be indicative of patient response to new radionuclide cancer therapies.

  13. Alternative splicing of Bim and Erk-mediated Bim(EL) phosphorylation are dispensable for hematopoietic homeostasis in vivo.

    PubMed

    Clybouw, C; Merino, D; Nebl, T; Masson, F; Robati, M; O'Reilly, L; Hübner, A; Davis, R J; Strasser, A; Bouillet, P

    2012-06-01

    The pro-apoptotic BH3-only protein Bim has a major role in hematopoietic homeostasis, particularly in the lymphocyte compartment, where it strongly affects immune function. The three major Bim isoforms (Bim(EL), Bim(L) and Bim(S)) are generated by alternative splicing. Bim(EL), the most abundant isoform, contains a unique sequence that has been reported to be the target of phosphorylation by several MAP kinases. In particular, Erk1/2 has been shown to interact with Bim(EL) through the DEF2 domain of Bim(EL) and specifically phosphorylate this isoform, thereby targeting it for ubiquitination and proteasomal degradation. To examine the physiological importance of this mechanism of regulation and of the alternative splicing of Bim, we have generated several Bim knock-in mouse strains and analyzed their hematopoietic system. Although mutation in the DEF2 domain reduces Bim(EL) degradation in some circumstances, this mutation did not significantly increase Bim's pro-apoptotic activity in vivo nor impact on the homeostasis of the hematopoietic system. We also show that Bim(EL) and Bim(L) are interchangeable, and that Bim(S) is dispensable for the function of Bim. Hence, we conclude that physiological regulation of Bim relies on mechanisms independent of its alternative splicing or the Erk-dependent phosphorylation of Bim(EL).

  14. Human linker histones: interplay between phosphorylation and O-β-GlcNAc to mediate chromatin structural modifications

    PubMed Central

    2011-01-01

    Eukaryotic chromatin is a combination of DNA and histone proteins. It is established fact that epigenetic mechanisms are associated with DNA and histones. Initial studies emphasize on core histones association with DNA, however later studies prove the importance of linker histone H1 epigenetic. There are many types of linker histone H1 found in mammals. These subtypes are cell specific and their amount in different types of cells varies as the cell functions. Many types of post-translational modifications which occur on different residues in each subtype of linker histone H1 induce conformational changes and allow the different subtypes of linker histone H1 to interact with chromatin at different stages during cell cycle which results in the regulation of transcription and gene expression. Proposed O-glycosylation of linker histone H1 promotes condensation of chromatin while phosphorylation of linker histone H1 is known to activate transcription and gene regulation by decondensation of chromatin. Interplay between phosphorylation and O-β-GlcNAc modification on Ser and Thr residues in each subtype of linker histone H1 in Homo sapiens during cell cycle may result in diverse functional regulation of proteins. This in silico study describes the potential phosphorylation, o-glycosylation and their possible interplay sites on conserved Ser/Thr residues in various subtypes of linker histone H1 in Homo sapiens. PMID:21749719

  15. Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-{alpha}/{beta} signaling

    SciTech Connect

    Caignard, Gregory; Guerbois, Mathilde; Labernardiere, Jean-Louis; Jacob, Yves; Jones, Louis M.; Wild, Fabian; Tangy, Frederic Vidalain, Pierre-Olivier

    2007-11-25

    Viruses have evolved various strategies to escape the antiviral activity of type I interferons (IFN-{alpha}/{beta}). For measles virus, this function is carried by the polycistronic gene P that encodes, by an unusual editing strategy, for the phosphoprotein P and the virulence factor V (MV-V). MV-V prevents STAT1 nuclear translocation by either sequestration or phosphorylation inhibition, thereby blocking IFN-{alpha}/{beta} pathway. We show that both the N- and C-terminal domains of MV-V (PNT and VCT) contribute to the inhibition of IFN-{alpha}/{beta} signaling. Using the two-hybrid system and co-affinity purification experiments, we identified STAT1 and Jak1 as interactors of MV-V and demonstrate that MV-V can block the direct phosphorylation of STAT1 by Jak1. A deleterious mutation within the PNT domain of MV-V (Y110H) impaired its ability to interact and block STAT1 phosphorylation. Thus, MV-V interacts with at least two components of IFN-{alpha}/{beta} receptor complex to block downstream signaling.

  16. HDAC Inhibitor-Mediated Beta-Cell Protection Against Cytokine-Induced Toxicity Is STAT1 Tyr701 Phosphorylation Independent

    PubMed Central

    Dahllöf, Mattias S.; Christensen, Dan P.; Harving, Mette; Wagner, Bridget K.; Mandrup-Poulsen, Thomas

    2015-01-01

    Histone deacetylase (HDAC) inhibition protects pancreatic beta-cells against apoptosis induced by the combination of the proinflammatory cytokines interleukin (IL)-1β and interferon (IFN)-γ. Decreased expression of cell damage-related genes is observed on the transcriptional level upon HDAC inhibition using either IL-1β or IFN-γ alone. Whereas HDAC inhibition has been shown to regulate NFκB-activity, related primarily to IL-1β signaling, it is unknown whether the inhibition of HDACs affect IFN-γ signaling in beta-cells. Further, in non-beta-cells, there is a dispute whether HDAC inhibition regulates IFN-γ signaling at the level of STAT1 Tyr701 phosphorylation. Using different small molecule HDAC inhibitors with varying class selectivity, INS-1E wild type and stable HDAC1-3 knockdown pancreatic INS-1 cell lines, we show that IFN-γ-induced Cxcl9 and iNos expression as well as Cxcl9 and GAS reporter activity were decreased by HDAC inhibition in a STAT1 Tyr701 phosphorylation-independent fashion. In fact, knockdown of HDAC1 increased IFN-γ-induced STAT1 phosphorylation. PMID:25062500

  17. Akt1-mediated Gata3 phosphorylation controls the repression of IFNγ in memory-type Th2 cells

    PubMed Central

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Endo, Yusuke; Kato, Miki; Shinoda, Kenta; Suzuki, Akane; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I.; Nakayama, Toshinori

    2016-01-01

    Th2 cells produce Th2 cytokines such as IL-4, IL-5 and IL-13, but repress Th1 cytokine IFNγ. Recent studies have revealed various distinct memory-type Th2 cell subsets, one of which produces a substantial amount of IFNγ in addition to Th2 cytokines, however it remains unclear precisely how these Th2 cells produce IFNγ. We herein show that phosphorylation of Gata3 at Ser308, Thr315 and Ser316 induces dissociation of a histone deacetylase Hdac2 from the Gata3/Chd4 repressive complex in Th2 cells. We also identify Akt1 as a Gata3-phosphorylating kinase, and the activation of Akt1 induces derepression of Tbx21 and Ifng expression in Th2 cells. Moreover, T-bet-dependent IFNγ expression in IFNγ-producing memory Th2 cells appears to be controlled by the phosphorylation status of Gata3 in human and murine systems. Thus, this study highlights the molecular basis for posttranslational modifications of Gata3 that control the regulation of IFNγ expression in memory Th2 cells. PMID:27053161

  18. Retrieval of the Alzheimer's amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated

    PubMed Central

    2010-01-01

    Background Retrograde transport of several transmembrane proteins from endosomes to the trans-Golgi network (TGN) occurs via Rab 5-containing endosomes, mediated by clathrin and the recently characterized retromer complex. This complex and one of its putative sorting receptor components, SorLA, were reported to be associated to late onset Alzheimer's disease (AD). The pathogenesis of this neurodegenerative disorder is still elusive, although accumulation of amyloidogenic Abeta is a hallmark. This peptide is generated from the sucessive β- and γ- secretase proteolysis of the Alzheimer's amyloid precursor protein (APP), events which are associated with endocytic pathway compartments. Therefore, APP targeting and time of residence in endosomes would be predicted to modulate Abeta levels. However, the formation of an APP- and retromer-containing protein complex with potential functions in retrieval of APP from the endosome to the TGN had, to date, not been demonstrated directly. Further, the motif(s) in APP that regulate its sorting to the TGN have not been characterized. Results Through the use of APP-GFP constructs, we show that APP containing endocytic vesicles targeted for the TGN, are also immunoreactive for clathrin-, Rab 5- and VPS35. Further, they frequently generate protruding tubules near the TGN, supporting an association with a retromer-mediated pathway. Importantly, we show for the first time, that mimicking APP phosphorylation at S655, within the APP 653YTSI656 basolateral motif, enhances APP retrieval via a retromer-mediated process. The phosphomimetic APP S655E displays decreased APP lysosomal targeting, enhanced mature half-life, and decreased tendency towards Abeta production. VPS35 downregulation impairs the phosphorylation dependent APP retrieval to the TGN, and decreases APP half-life. Conclusions We reported for the first time the importance of APP phosphorylation on S655 in regulating its retromer-mediated sorting to the TGN or lysosomes

  19. A mitochondrial kinase complex is essential to mediate an ERK1/2-dependent phosphorylation of a key regulatory protein in steroid biosynthesis.

    PubMed

    Poderoso, Cecilia; Converso, Daniela P; Maloberti, Paula; Duarte, Alejandra; Neuman, Isabel; Galli, Soledad; Cornejo Maciel, Fabiana; Paz, Cristina; Carreras, María C; Poderoso, Juan J; Podestá, Ernesto J

    2008-01-16

    ERK1/2 is known to be involved in hormone-stimulated steroid synthesis, but its exact roles and the underlying mechanisms remain elusive. Both ERK1/2 phosphorylation and steroidogenesis may be triggered by cAMP/cAMP-dependent protein kinase (PKA)-dependent and-independent mechanisms; however, ERK1/2 activation by cAMP results in a maximal steroidogenic rate, whereas canonical activation by epidermal growth factor (EGF) does not. We demonstrate herein by Western blot analysis and confocal studies that temporal mitochondrial ERK1/2 activation is obligatory for PKA-mediated steroidogenesis in the Leydig-transformed MA-10 cell line. PKA activity leads to the phosphorylation of a constitutive mitochondrial MEK1/2 pool with a lower effect in cytosolic MEKs, while EGF allows predominant cytosolic MEK activation and nuclear pERK1/2 localization. These results would explain why PKA favors a more durable ERK1/2 activation in mitochondria than does EGF. By means of ex vivo experiments, we showed that mitochondrial maximal steroidogenesis occurred as a result of the mutual action of steroidogenic acute regulatory (StAR) protein -a key regulatory component in steroid biosynthesis-, active ERK1/2 and PKA. Our results indicate that there is an interaction between mitochondrial StAR and ERK1/2, involving a D domain with sequential basic-hydrophobic motifs similar to ERK substrates. As a result of this binding and only in the presence of cholesterol, ERK1/2 phosphorylates StAR at Ser(232). Directed mutagenesis of Ser(232) to a non-phosphorylable amino acid such as Ala (StAR S232A) inhibited in vitro StAR phosphorylation by active ERK1/2. Transient transfection of MA-10 cells with StAR S232A markedly reduced the yield of progesterone production. In summary, here we show that StAR is a novel substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric protein kinase complex that regulates cholesterol transport. The role of MAPKs in mitochondrial function is underlined.

  20. Claudin-5, -7, and -18 suppress proliferation mediated by inhibition of phosphorylation of Akt in human lung squamous cell carcinoma.

    PubMed

    Akizuki, Risa; Shimobaba, Shun; Matsunaga, Toshiyuki; Endo, Satoshi; Ikari, Akira

    2017-02-01

    Abnormal expression of claudin (CLDN) subtypes has been reported in various solid cancers. However, it is unknown which subtype plays a key role in the regulation of proliferation in cancer cells. The expression of CLDN3-5, 7, and 18 in human lung squamous carcinoma tissues was lower than that in normal tissue. Here, we examined which combination of exogenous CLDNs expression inhibits proliferation and the molecular mechanism using human lung squamous RERF-LC-AI cells. Real-time polymerase chain reaction and western blotting showed that CLDN3-5, 7, and 18 are little expressed in RERF-LC-AI cells. In the exogenously transfected cells, CLDN5, 7, and 18 were distributed in the cell-cell contact areas concomitant with ZO-1, a tight junctional scaffolding protein, whereas CLDN3 and 4 were not. Cell proliferation was individually and additively suppressed by CLDN5, 7, and 18. The expression of these CLDNs showed no cytotoxicity compared with mock cells. CLDN5, 7, and 18 increased p21 and decreased cyclin D1, resulting in the suppression of cell cycle G1-S transition. The expression of these CLDNs inhibited phosphorylation of Akt without affecting phosphorylated ERK1/2. Furthermore, these CLDNs inhibited the nuclear localization of Akt and its association with 3-phosphoinositide-dependent protein kinase-1 (PDK1). The suppression of G1-S transition caused by CLDN5, 7, and 18 was rescued by the expression of constitutively active-Akt. We suggest that the reduction of CLDN5, 7, and 18 expression loses the suppressive ability of interaction between PDK1 and Akt and causes sustained phosphorylation of Akt, resulting in the disordered proliferation in lung squamous carcinoma cells.

  1. Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells

    PubMed Central

    Lapel, Martin; Weston, Philip; Strassheim, Derek; Karoor, Vijaya; Burns, Nana; Lyubchenko, Taras; Paucek, Petr; Stenmark, Kurt R.

    2016-01-01

    Angiogenesis is an energy-demanding process; however, the role of cellular energy pathways and their regulation by extracellular stimuli, especially extracellular nucleotides, remain largely unexplored. Using metabolic inhibitors of glycolysis (2-deoxyglucose) and oxidative phosphorylation (OXPHOS) (oligomycin, rotenone, and FCCP), we demonstrate that glycolysis and OXPHOS are both essential for angiogenic responses of vasa vasorum endothelial cell (VVEC). Treatment with P2R agonists, ATP, and 2-methylthioadenosine diphosphate trisodium salt (MeSADP), but not P1 receptor agonist, adenosine, increased glycolytic activity in VVEC (measured by extracellular acidification rate and lactate production). Stimulation of glycolysis was accompanied by increased levels of phospho-phosphofructokinase B3, hexokinase (HK), and GLUT-1, but not lactate dehydrogenase. Moreover, extracellular ATP and MeSADP, and to a lesser extent adenosine, increased basal and maximal oxygen consumption rates in VVEC. These effects were potentiated when the cells were cultured in 20 mM galactose and 5 mM glucose compared with 25 mM glucose. Treatment with P2R agonists decreased phosphorylation of pyruvate dehydrogenase (PDH)-E1α and increased succinate dehydrogenase (SDH), cytochrome oxidase IV, and β-subunit of F1F0 ATP synthase expression. In addition, P2R stimulation transiently elevated mitochondrial Ca2+ concentration, implying involvement of mitochondria in VVEC angiogenic activation. We also demonstrated a critical role of phosphatidylinositol 3-kinase and Akt pathways in lactate production, PDH-E1α phosphorylation, and the expression of HK, SDH, and GLUT-1 in ATP-stimulated VVEC. Together, our findings suggest that purinergic and metabolic regulation of VVEC energy pathways is essential for VV angiogenesis and may contribute to pathologic vascular remodeling in pulmonary hypertension. PMID:27856430

  2. Cell survival after UV radiation stress in the unicellular chlorophyte Dunaliella tertiolecta is mediated by DNA repair and MAPK phosphorylation

    PubMed Central

    García-Gómez, Candela; Segovia, María

    2012-01-01

    Ultraviolet radiation (UVR) induces damage in a variety of organisms, and cells may adapt by developing repair or tolerance mechanisms to counteract such damage; otherwise, the cellular fate is cell death. Here, the effect of UVR-induced cell damage and the associated signalling and repair mechanisms by which cells are able to survive was studied in Dunaliella tertiolecta. UVR did not cause cell death, as shown by the absence of SYTOX Green-positive labelling cells. Ultrastructure analysis by transmission electron microscopy demonstrated that the cells were alive but were subjected to morphological changes such as starch accumulation, chromatin disaggregation, and chloroplast degradation. This behaviour paralleled a decrease in F v/F m and the formation of cyclobutane–pyrimidine dimers, showing a 10-fold increase at the end of the time course. There was a high accumulation of the repressor of transcriptional gene silencing (ROS1), as well as the cell proliferation nuclear antigen (PCNA) in UVR-treated cells, revealing activation of DNA repair mechanisms. The degree of phosphorylation of c-Jun N-terminal kinase (JNK) and p38-like mitogen-activated protein kinases was higher in UVR-exposed cells; however, the opposite occurred with the phosphorylated extracellular signal-regulated kinase (ERK). This confirmed that both JNK and p38 need to be phosphorylated to trigger the stress response, as well as the fact that cell division is arrested when an ERK is dephosphorylated. In parallel, both DEVDase and WEHDase caspase-like enzymatic activities were active even though the cells were not dead, suggesting that these proteases must be considered within a wider frame of stress proteins, rather than specifically being involved in cell death in these organisms. PMID:22859678

  3. GSK-3 mediated phosphorylation couples ER-Golgi transport and nuclear stabilisation of the CREB-H transcription factor to mediate Apolipoprotein secretion.

    PubMed

    Barbosa, Sónia; Carreira, Suzanne; O'Hare, Peter

    2017-04-05

    CREB-H, an ER-anchored transcription factor plays a key role in regulating secretion in metabolic pathways, particularly triglyceride homeostasis. It controls the production both of secretory pathway components and cargoes including apolipoproteins ApoA-IV and ApoC-II, contributing to VLDL/HDL distribution and lipolysis. The key mechanism controlling CREB-H activity involves its ER retention and forward transport to the Golgi, where it is cleaved by Golgi-resident proteases releasing the N-terminal product which traffics to the nucleus to effect transcriptional responses. Here we show that a serine-rich motif, termed the P-motif located in the N-terminus between serines 73 to 90, controls release of the precursor transmembrane form from the ER and its forward transport to the Golgi. This motif is subject to GSK-3 phosphorylation promoting ER-retention while mutation of target serines or drug inhibition of GSK-3 activity, co-ordinately induces both forward transport of the precursor and cleavage, resulting in nuclear import. We previously showed that for the nuclear product, the P-motif is subject to multiple phosphorylations which regulate stability by targeting the protein to the SCF(Fbw1a) E3 ubiquitin ligase. Thus phosphorylation at the P-motif provides integrated control of CREB-H function, coupling intercompartmental transport in the cytoplasm with stabilisation of the active form in the nucleus.

  4. Phosphorylation by Akt1 Promotes Skp2 Cytoplasmic Localization and Impairs APC/Cdh1-mediated Skp2 Destruction

    PubMed Central

    Gao, Daming; Inuzuka, Hiroyuki; Tseng, Alan; Chin, Rebecca Y.; Toker, Alex; Wei, Wenyi

    2010-01-01

    Deregulated Skp2 function promotes cell transformation, and this is consistent with observations of Skp2 over-expression in many human cancers. However, the mechanisms underlying elevated Skp2 expression remain elusive. Here we report that the serine/threonine protein kinase Akt1, but not Akt2, directly controls Skp2 stability by a mechanism that involves degradation by the APC/Cdh1 ubiquitin ligase complex. We further show that Akt1 phosphorylates Skp2 at Ser72, which is required to disrupt the interaction between Cdh1 and Skp2. In addition, we show that Ser72 is localized within a putative Nuclear Localization Sequence (NLS) and that phosphorylation of Ser72 by Akt leads to Skp2 cytoplasmic translocation. This finding expands our knowledge of how specific signaling kinase cascades influence proteolysis governed by APC/Cdh1 complexes, and provides evidence that elevated Akt activity and cytoplasmic Skp2 expression may be causative for cancer progression. PMID:19270695

  5. Novel roles for LIX1L in promoting cancer cell proliferation through ROS1-mediated LIX1L phosphorylation

    PubMed Central

    Nakamura, Satoki; Kahyo, Tomoaki; Tao, Hong; Shibata, Kiyoshi; Kurabe, Nobuya; Yamada, Hidetaka; Shinmura, Kazuya; Ohnishi, Kazunori; Sugimura, Haruhiko

    2015-01-01

    Herein, we report the characterization of Limb expression 1-like, (LIX1L), a putative RNA-binding protein (RBP) containing a double-stranded RNA binding motif, which is highly expressed in various cancer tissues. Analysis of MALDI-TOF/TOF mass spectrometry and RNA immunoprecipitation-sequencing of interacting proteins and the microRNAs (miRNAs) bound to LIX1L revealed that LIX1L interacts with proteins (RIOK1, nucleolin and PABPC4) and miRNAs (has-miRNA-520a-5p, −300, −216b, −326, −190a, −548b-3p, −7–5p and −1296) in HEK-293 cells. Moreover, the reduction of phosphorylated Tyr136 (pTyr136) in LIX1L through the homeodomain peptide, PY136, inhibited LIX1L-induced cell proliferation in vitro, and PY136 inhibited MKN45 cell proliferation in vivo. We also determined the miRNA-targeted genes and showed that was apoptosis induced through the reduction of pTyr136. Moreover, ROS1, HCK, ABL1, ABL2, JAK3, LCK and TYR03 were identified as candidate kinases responsible for the phosphorylation of Tyr136 of LIX1L. These data provide novel insights into the biological significance of LIX1L, suggesting that this protein might be an RBP, with implications for therapeutic approaches for targeting LIX1L in LIX1L-expressing cancer cells. PMID:26310847

  6. HIV-1 Tat-associated RNA polymerase C-terminal domain kinase, CDK2, phosphorylates CDK7 and stimulates Tat-mediated transcription.

    PubMed Central

    Nekhai, Sergei; Zhou, Meisheng; Fernandez, Anne; Lane, William S; Lamb, Ned J C; Brady, John; Kumar, Ajit

    2002-01-01

    HIV-1 gene expression is regulated by a viral transactivator protein (Tat) which induces transcriptional elongation of HIV-1 long tandem repeat (LTR). This induction requires hyperphosphorylation of the C-terminal domain (CTD) repeats of RNA polymerase II (Pol II). To achieve CTD hyperphosphorylation, Tat stimulates CTD kinases associated with general transcription factors of the promoter complex, specifically TFIIH-associated CDK7 and positive transcription factor b-associated CDK9 (cyclin-dependent kinase 9). Other studies indicate that Tat may bind an additional CTD kinase that regulates the target-specific phosphorylation of RNA Pol II CTD. We previously reported that Tat-associated T-cell-derived kinase (TTK), purified from human primary T-cells, stimulates Tat-dependent transcription of HIV-1 LTR in vivo [Nekhai, Shukla, Fernandez, Kumar and Lamb (2000) Virology 266, 246-256]. In the work presented here, we characterized the components of TTK by biochemical fractionation and the function of TTK in transcription assays in vitro. TTK uniquely co-purified with CDK2 and not with either CDK9 or CDK7. Tat induced the TTK-associated CDK2 kinase to phosphorylate CTD, specifically at Ser-2 residues. The TTK fraction restored Tat-mediated transcription activation of HIV-1 LTR in a HeLa nuclear extract immunodepleted of CDK9, but not in the HeLa nuclear extract double-depleted of CDK9 and CDK7. Direct microinjection of the TTK fraction augmented Tat transactivation of HIV-1 LTR in human primary HS68 fibroblasts. The results argue that TTK-associated CDK2 may function to maintain target-specific phosphorylation of RNA Pol II that is essential for Tat transactivation of HIV-1 promoter. They are also consistent with the observed cell-cycle-specific induction of viral gene transactivation. PMID:12049628

  7. Loss of dopamine D1 receptors and diminished D1/5 receptor-mediated ERK phosphorylation in the periaqueductal gray after spinal cord lesion

    PubMed Central

    Voulalas, Pamela J.; Ji, Yadong; Jiang, Li; Asgar, Jamila; Ro, Jin Y.; Masri, Radi

    2016-01-01

    Neuropathic pain resulting from spinal cord injury is often accompanied by maladaptive plasticity of the central nervous system, including the opioid receptor-rich periaqueductal gray (PAG). Evidence suggests that sensory signaling via the PAG is robustly modulated by dopamine D1- and D2-like receptors, but the effect of damage to the spinal cord on D1 and D2 receptor protein expression and function in the PAG has not been examined. Here we show that 21 days after a T10 or C6 spinothalamic tract lesion, both mice and rats display a remarkable decline in the expression of D1 receptors in the PAG, revealed by western blot analysis. These changes were associated with a significant reduction in hindpaw withdrawal thresholds in lesioned animals compared to sham-operated controls. We investigated the consequences of diminished D1 receptor levels by quantifying D1-like receptor-mediated phosphorylation of ERK1,2 and CREB, events that have been observed in numerous brain structures. In naïve animals, western blot analysis revealed that ERK1,2, but not CREB phosphorylation was significantly increased in the PAG by the D1-like agonist SKF 81297. Using immunohistochemistry, we found that SKF 81297 increased ERK1,2 phosphorylation in the PAG of sham animals. However, in lesioned animals, basal pERK1,2 levels were elevated and did not significantly increase after exposure to SKF 81297. Our findings provide support for the hypothesis that molecular adaptions resulting in a decrease in D1 receptor expression and signaling in the PAG are a consequence of SCL. PMID:27932310

  8. Phosphorylation and IGF-1-mediated dephosphorylation pathways control the activity and the pharmacological properties of skeletal muscle chloride channels

    PubMed Central

    De Luca, Annamaria; Pierno, Sabata; Liantonio, Antonella; Camerino, Claudia; Conte Camerino, Diana

    1998-01-01

    In the present study we tested the hypothesis that insulin-like growth factor-1 (IGF-1) modulates resting chloride conductance (GCl) of rat skeletal muscle by activating a phosphatase and that the chloride channel, based on the activity of phosphorylating-dephosphorylating pathways, has different sensitivity to specific ligands, such as the enantiomers of 2-(p-chlorophenoxy) propionic acid (CPP).For this purpose GCl in EDL muscle isolated from adult rat was first lowered by treatment with 5 nM 4-β-phorbol 12,13 dibutyrate (4-β-PDB), presumably activating protein kinase C (PKC). The effects of IGF-1 and of the enantiomers of CPP on GCl were then tested.IGF-1 (3.3 nM) had no effect of GCl on EDL muscle fibres in normal physiological solution, whereas it completely counteracted the 30% decrease of GCl induced by 4-β-PDB. No effects of IGF-1 were observed on GCl lowered by the phosphatase inhibitor okadaic acid (0.25 μM).Ceramide, reported to activate on okadaic acid-sensitive phosphatase, mimicked the effects of IGF-1. In fact, N-acetyl-sphingosine (2.5–5 μM), not very effective in control conditions, increased the GCl lowered by the phorbol ester, but not the GCl lowered by okadaic acid.In the presence of 4-β-PDB, GCl was differently affected by the enantiomers of CPP. The S(−)-CPP was remarkably less potent in producing the concentration-dependent reduction of GCl, whereas the R(+)-CPP caused an increase of GCl at all the concentrations tested.In conclusion, the PKC-induced lowering of GCl is counteracted by IGF-1 through an okadaic acid sensitive phosphatase, and this effect can have therapeutic relevance in situations characterized by excessive channel phosphorylation. In turn the phosphorylation state of the channel can modulate the effects and the therapeutic potential of direct channel ligands. PMID:9806330

  9. beta1-integrin mediates asbestos-induced phosphorylation of AKT and ERK1/2 in a rat pleural mesothelial cell line.

    PubMed

    Berken, Antje; Abel, Josef; Unfried, Klaus

    2003-11-20

    Integrin-mediated signalling has been implicated in asbestos-induced carcinogenesis. In studies here, we examined signal transduction events associated with integrin-directed cell reactions triggered by crocidolite asbestos in the pleural mesothelial cell line 4/4 RM-4. Crocidolite fibres induced a significant time- and dose-dependent activation of the extracellular-signal-regulated kinases ERK1 and ERK2. ERK activation was specifically inhibited by integrin-blocking agents, that are integrin-binding peptides containing the sequence arginine-glycine-aspartic acid (RGD), and monoclonal antibodies against the integrin beta1-chain. Integrin-dependent activation of ERK1/2 in response to asbestos appeared to be independent of focal adhesion kinase pp125FAK (FAK) since FAK autophosphorylation remained unaffected in crocidolite-exposed mesothelial cells. Instead, we observed striking similarities in the kinetics of asbestos-induced ERK1/2 responses and phosphorylation of protein kinase B (AKT) at serine 473, a possible target residue for integrin-linked kinase. As with ERK activation, asbestos-induced AKT stimulation was significantly blocked by both the RGD-peptide and the beta1-integrin antibodies. These studies are the first to establish that in mesothelial cells ERK1/2 and AKT are simultaneously phosphorylated upon asbestos exposure in a beta1-integrin-dependent manner.

  10. Regulation of mATG9 trafficking by Src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy

    PubMed Central

    Zhou, Changqian; Ma, Kaili; Gao, Ruize; Mu, Chenglong; Chen, Linbo; Liu, Qiangqiang; Luo, Qian; Feng, Du; Zhu, Yushan; Chen, Quan

    2017-01-01

    Autophagy requires diverse membrane sources and involves membrane trafficking of mATG9, the only membrane protein in the ATG family. However, the molecular regulation of mATG9 trafficking for autophagy initiation remains unclear. Here we identified two conserved classic adaptor protein sorting signals within the cytosolic N-terminus of mATG9, which mediate trafficking of mATG9 from the plasma membrane and trans-Golgi network (TGN) via interaction with the AP1/2 complex. Src phosphorylates mATG9 at Tyr8 to maintain its endocytic and constitutive trafficking in unstressed conditions. In response to starvation, phosphorylation of mATG9 at Tyr8 by Src and at Ser14 by ULK1 functionally cooperate to promote interactions between mATG9 and the AP1/2 complex, leading to redistribution of mATG9 from the plasma membrane and juxta-nuclear region to the peripheral pool for autophagy initiation. Our findings uncover novel mechanisms of mATG9 trafficking and suggest a coordination of basal and stress-induced autophagy. PMID:27934868

  11. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer

    PubMed Central

    Nacerddine, Karim; Beaudry, Jean-Bernard; Ginjala, Vasudeva; Westerman, Bart; Mattiroli, Francesca; Song, Ji-Ying; van der Poel, Henk; Ponz, Olga Balagué; Pritchard, Colin; Cornelissen-Steijger, Paulien; Zevenhoven, John; Tanger, Ellen; Sixma, Titia K.; Ganesan, Shridar; van Lohuizen, Maarten

    2012-01-01

    Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis. PMID:22505453

  12. A Digital Compendium of Genes Mediating the Reversible Phosphorylation of Proteins in Fe-Deficient Arabidopsis Roots

    PubMed Central

    Lan, Ping; Li, Wenfeng; Schmidt, Wolfgang

    2013-01-01

    Post-translational modifications of proteins such as reversible phosphorylation provide an important but understudied regulatory network that controls important nodes in the adaptation of plants to environmental conditions. Iron (Fe) is an essential mineral nutrient for plants, but due to its low solubility often a limiting factor for optimal growth. To understand the role of protein phosphorylation in the regulation of cellular Fe homeostasis, we analyzed the expression of protein kinases (PKs) and phosphatases (PPs) in Arabidopsis roots by mining differentially expressed PK and PP genes. Transcriptome analysis using RNA-seq revealed that subsets of 203 PK and 39 PP genes were differentially expressed under Fe-deficient conditions. Functional modules of these PK and PP genes were further generated based on co-expression analysis using the MACCU toolbox on the basis of 300 publicly available root-related microarray data sets. Results revealed networks comprising 87 known or annotated PK and PP genes that could be subdivided into one large and several smaller highly co-expressed gene modules. The largest module was composed of 58 genes, most of which have been assigned to the leucine-rich repeat protein kinase superfamily and associated with the biological processes “hypotonic salinity response,” “potassium ion import,” and “cellular potassium ion homeostasis.” The comprehensive transcriptional information on PK and PP genes in iron-deficient roots provided here sets the stage for follow-up experiments and contributes to our understanding of the post-translational regulation of Fe deficiency and potassium ion homeostasis. PMID:23761801

  13. Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation*

    PubMed Central

    Deng, Guoping; Nagai, Yasuhiro; Xiao, Yan; Li, Zhiyuan; Dai, Shujia; Ohtani, Takuya; Banham, Alison; Li, Bin; Wu, Shiaw-Lin; Hancock, Wayne; Samanta, Arabinda; Zhang, Hongtao; Greene, Mark I.

    2015-01-01

    Regulation of the extent of immune responses is a requirement to maintain self-tolerance and limit inflammatory processes. CD4+CD25+Foxp3+ regulatory T (Treg) cells play a role in regulation. The Foxp3 transcription factor is considered a dominant regulator for Treg cell development and function. Foxp3 function itself is directly regulated by multiple posttranslational modifications that occur in response to various external stimuli. The Foxp3 protein is a component of several dynamic macromolecular regulatory complexes. The complexes change constituents over time and through different signals to regulate the development and function of regulatory T cells. Here we identified a mechanism regulating Foxp3 level and activity that operates through discrete phosphorylation. The Pim-2 kinase can phosphorylate Foxp3, leading to decreased suppressive functions of Treg cells. The amino-terminal domain of Foxp3 is modified at several sites by Pim-2 kinase. This modification leads to altered expression of proteins related to Treg cell functions and increased Treg cell lineage stability. Treg cell suppressive function can be up-regulated by either pharmacologically inhibiting Pim-2 kinase activity or by genetically knocking out Pim-2 in rodent Treg cells. Deficiency of Pim-2 activity increases murine host resistance to dextran sodium sulfate-induced colitis in vivo, and a Pim-2 small molecule kinase inhibitor also modified Treg cell functions. Our studies define a pathway for limiting the regulation of Foxp3 function because the Pim-2 kinase represents a potential therapeutic target for modulating the Treg cell suppressive activities in controlling immune responses. PMID:25987564

  14. Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation.

    PubMed

    Deng, Guoping; Nagai, Yasuhiro; Xiao, Yan; Li, Zhiyuan; Dai, Shujia; Ohtani, Takuya; Banham, Alison; Li, Bin; Wu, Shiaw-Lin; Hancock, Wayne; Samanta, Arabinda; Zhang, Hongtao; Greene, Mark I

    2015-08-14

    Regulation of the extent of immune responses is a requirement to maintain self-tolerance and limit inflammatory processes. CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells play a role in regulation. The Foxp3 transcription factor is considered a dominant regulator for Treg cell development and function. Foxp3 function itself is directly regulated by multiple posttranslational modifications that occur in response to various external stimuli. The Foxp3 protein is a component of several dynamic macromolecular regulatory complexes. The complexes change constituents over time and through different signals to regulate the development and function of regulatory T cells. Here we identified a mechanism regulating Foxp3 level and activity that operates through discrete phosphorylation. The Pim-2 kinase can phosphorylate Foxp3, leading to decreased suppressive functions of Treg cells. The amino-terminal domain of Foxp3 is modified at several sites by Pim-2 kinase. This modification leads to altered expression of proteins related to Treg cell functions and increased Treg cell lineage stability. Treg cell suppressive function can be up-regulated by either pharmacologically inhibiting Pim-2 kinase activity or by genetically knocking out Pim-2 in rodent Treg cells. Deficiency of Pim-2 activity increases murine host resistance to dextran sodium sulfate-induced colitis in vivo, and a Pim-2 small molecule kinase inhibitor also modified Treg cell functions. Our studies define a pathway for limiting the regulation of Foxp3 function because the Pim-2 kinase represents a potential therapeutic target for modulating the Treg cell suppressive activities in controlling immune responses.

  15. Probing the mechanisms underlying modulation of quinidine sensitivity to cardiac IKs block by protein kinase A-mediated IKs phosphorylation

    PubMed Central

    Yang, Tao; Kanki, Hideaki; Zhang, Wei; Roden, Dan M

    2009-01-01

    Background and purpose: Cardiac IKs is enhanced by protein kinase A (PKA) stimulation. And PKA-stimulated IKs is about threefold less sensitive to quinidine block than basal current. In this study, we further tested two competing hypotheses: IKs phosphorylation either (i) modulates access of blocking drugs to a binding site; or (ii) destabilizes the drug–channel interaction. Experimental approach: To distinguish between these hypotheses, we studied quinidine block of IKs channels in which three PKA site residues of the α-subunit KCNQ1 were mutated with a bulky negative charged aspartic acid (D). To study alleviation of IKs block by quinidine, we compared activating current at +60 mV, either with or without 5 s hyperpolarizing prepulses to −120 mV. Key results: Without PKA stimulation, quinidine (100 µM) blocked wild-type current to a similar extent with and without the prepulse (93 ± 2% of pre-drug current at +60 mV vs. 95 ± 1%). With PKA-stimulated wild-type channels, however, there was less block with the hyperpolarization to −120 mV: at +60 mV, block was 71 ± 2% (−prepulse) versus 58 ± 3% (+prepulse). Individual D-mutations and the triple-D mutant were resistant to quinidine block similar to that seen with PKA-stimulated wild-type IKs. Conclusions and implications: We conclude that phosphorylation-induced insertion of bulky negative charges alleviates quinidine block and that PKA-induced stimulation, by conferring negative charges to the channels, blunts IKs block as the interaction between the channels and blockers becomes destabilized. These effects would be of clinical significance in providing protective mechanisms against pro-arrhythmias caused by drug-induced inhibition of IKs and IKr. PMID:19522859

  16. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH)

    PubMed Central

    Duan, Zhen-Zhen; Zhang, Feng; Li, Feng-Ying; Luan, Yi-Fei; Guo, Peng; Li, Yi-Hang; Liu, Yong; Qi, Su-Hua

    2016-01-01

    It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment. PMID:27385592

  17. HIV-1 Triggers WAVE2 Phosphorylation in Primary CD4 T Cells and Macrophages, Mediating Arp2/3-dependent Nuclear Migration*

    PubMed Central

    Spear, Mark; Guo, Jia; Turner, Amy; Yu, Dongyang; Wang, Weifeng; Meltzer, Beatrix; He, Sijia; Hu, Xiaohua; Shang, Hong; Kuhn, Jeffrey; Wu, Yuntao

    2014-01-01

    The human immunodeficiency virus type 1 (HIV-1) initiates receptor signaling and early actin dynamics during viral entry. This process is required for viral infection of primary targets such as resting CD4 T cells. WAVE2 is a component of a multiprotein complex linking receptor signaling to dynamic remodeling of the actin cytoskeleton. WAVE2 directly activates Arp2/3, leading to actin nucleation and filament branching. Although several bacterial and viral pathogens target Arp2/3 for intracellular mobility, it remains unknown whether HIV-1 actively modulates the Arp2/3 complex through virus-mediated receptor signal transduction. Here we report that HIV-1 triggers WAVE2 phosphorylation at serine 351 through gp120 binding to the chemokine coreceptor CXCR4 or CCR5 during entry. This phosphorylation event involves both Gαi-dependent and -independent pathways, and is conserved both in X4 and R5 viral infection of resting CD4 T cells and primary macrophages. We further demonstrate that inhibition of WAVE2-mediated Arp2/3 activity through stable shRNA knockdown of Arp3 dramatically diminished HIV-1 infection of CD4 T cells, preventing viral nuclear migration. Inhibition of Arp2/3 through a specific inhibitor, CK548, also drastically inhibited HIV-1 nuclear migration and infection of CD4 T cells. Our results suggest that Arp2/3 and the upstream regulator, WAVE2, are essential co-factors hijacked by HIV for intracellular migration, and may serve as novel targets to prevent HIV transmission. PMID:24415754

  18. Phosphorylation and activation of Ca(2+)-sensitive cytosolic phospholipase A2 in MCII mast cells mediated by high-affinity Fc receptor for IgE.

    PubMed Central

    Currie, S; Roberts, E F; Spaethe, S M; Roehm, N W; Kramer, R M

    1994-01-01

    In the present study we examined the activation of Ca(2+)-sensitive cytosolic phospholipase A2 (cPLA2) after aggregation of cell-surface high-affinity Fc receptors for IgE (Fc epsilon RI) on mast cells. MCII mast cells (a factor-dependent bone-marrow-derived murine mast cell line) produce significant amounts of leukotriene C4 (LTC4) (70 ng/10(6) cells) on cross-linking of Fc epsilon RI. Using enzymic and immunochemical analysis we found that cPLA2 is the predominant form of this enzyme in MCII mast cells (0.2 micrograms/mg of total protein) and other forms (i.e. secretory PLA2 or Ca2+ independent cytosolic PLA2) could not be detected. Therefore MCII mast cells represent an excellent cellular model for the study of the biochemical mechanism(s) responsible for Fc epsilon RI-induced activation of cPLA2 and the involvement of cPLA2 in Fc epsilon RI-mediated production of LTC4. After activation of Fc epsilon RI by cross-linking, cPLA2 in MCII mast cells exhibited a decreased electrophoretic mobility and its enzyme activity was increased 3-fold. Treatment with phosphatase reversed both the altered electrophoretic mobility and the enhanced enzyme activity demonstrating that they were the result of Fc epsilon RI-induced phosphorylation. On cross-linking of Fc epsilon RI, cPLA2 was phosphorylated within 30 s and appeared to be an early substrate for Fc epsilon RI-activated protein kinases in MCII mast cells. Tyrosine phosphorylation may be a critical component in this process, as genistein, an inhibitor of protein tyrosine kinases, blocked the activation of cPLA2. Using anti-phosphotyrosine antibodies we observed that the activating phosphorylation was not on tyrosine residues of cPLA2, indicating that tyrosine kinases participate upstream in the signalling cascade that couples Fc epsilon RI to cPLA2. We conclude that in MCII mast cells cPLA2 is activated by kinase-dependent mechanisms and may be responsible for Fc epsilon RI-induced mobilization of arachidonic acid for the

  19. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy

    PubMed Central

    Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V.; Ding, Jindong; Ip, Colin S.; Gu, Hongmei; Akin, Debra; Dunn, William A.; Bowes Rickman, Catherine; Lewin, Alfred S.; Grant, Maria B.; Boulton, Michael E.

    2017-01-01

    p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative

  20. Induction of tyrosine phosphorylation during ICAM-3 and LFA-1-mediated intercellular adhesion, and its regulation by the CD45 tyrosine phosphatase

    PubMed Central

    1994-01-01

    Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase

  1. Determination of GPCR Phosphorylation Status: Establishing a Phosphorylation Barcode.

    PubMed

    Prihandoko, Rudi; Bradley, Sophie J; Tobin, Andrew B; Butcher, Adrian J

    2015-06-01

    G protein-coupled receptors (GPCRs) are rapidly phosphorylated following agonist occupation in a process that mediates receptor uncoupling from its cognate G protein, a process referred to as desensitization. In addition, this process provides a mechanism by which receptors can engage with arrestin adaptor molecules and couple to downstream signaling pathways. The importance of this regulatory process has been highlighted recently by the understanding that ligands can direct receptor signaling along one pathway in preference to another, the phenomenon of signaling bias that is partly mediated by the phosphorylation status or phosphorylation barcode of the receptor. Methods to determine the phosphorylation status of a GPCR in vitro and in vivo are necessary to understand not only the physiological mechanisms involved in GPCR signaling, but also to fully examine the signaling properties of GPCR ligands. This unit describes detailed methods for determining the overall phosphorylation pattern on a receptor (the phosphorylation barcode), as well as mass spectrometry approaches that can define the precise sites that become phosphorylated. These techniques, coupled with the generation and characterization of receptor phosphorylation-specific antibodies, provide a full palate of techniques necessary to determine the phosphorylation status of any given GPCR subtype.

  2. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis.

    PubMed

    LeBleu, Valerie S; O'Connell, Joyce T; Gonzalez Herrera, Karina N; Wikman, Harriet; Pantel, Klaus; Haigis, Marcia C; de Carvalho, Fernanda Machado; Damascena, Aline; Domingos Chinen, Ludmilla Thome; Rocha, Rafael M; Asara, John M; Kalluri, Raghu

    2014-10-01

    Cancer cells can divert metabolites into anabolic pathways to support their rapid proliferation and to accumulate the cellular building blocks required for tumour growth. However, the specific bioenergetic profile of invasive and metastatic cancer cells is unknown. Here we report that migratory/invasive cancer cells specifically favour mitochondrial respiration and increased ATP production. Invasive cancer cells use the transcription coactivator peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PPARGC1A, also known as PGC-1α) to enhance oxidative phosphorylation, mitochondrial biogenesis and the oxygen consumption rate. Clinical analysis of human invasive breast cancers revealed a strong correlation between PGC-1α expression in invasive cancer cells and the formation of distant metastases. Silencing of PGC-1α in cancer cells suspended their invasive potential and attenuated metastasis without affecting proliferation, primary tumour growth or the epithelial-to-mesenchymal program. Inherent genetics of cancer cells can determine the transcriptome framework associated with invasion and metastasis, and mitochondrial biogenesis and respiration induced by PGC-1α are also essential for functional motility of cancer cells and metastasis.

  3. Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation.

    PubMed

    Diez-Bello, R; Jardin, I; Salido, G M; Rosado, J A

    2016-11-16

    Store-operated Ca(2+) entry (SOCE) is a major mechanism for the regulation of intracellular Ca(2+) homeostasis and cellular function. Emerging evidence has revealed that altered expression and function of the molecular determinants of SOCE play a critical role in the development or maintenance of several cancer hallmarks, including enhanced proliferation and migration. Here we show that, in the acute myeloid leukemia cell line HL60, Orai2 is highly expressed at the transcript level, followed by the expression of Orai1. Using fluorescence Ca(2+) imaging we found that Orai2 silencing significantly attenuated thapsigargin-induced SOCE, as well as knockdown of Orai1, while silencing the expression of both channels almost completely reduced SOCE, thus suggesting that SOCE in these cells is strongly dependent on Orai1 and Orai2. On the other hand, the expression of TRPC1, TRPC3 and TRPC6 is almost absent at the transcript and protein level. Bromodeoxyuridine cell proliferation assay revealed that Orai1 and Orai2 expression silencing significantly reduced HL60 cell proliferation. Furthermore, knockdown of Orai1 and Orai2 significantly attenuated the ability of HL60 to migrate in vitro as determined by transwell migration assay, probably due to the impairment of FAK tyrosine phosphorylation. These findings provide evidence for a role for Orai1 and Orai2, in SOCE and migration in the human HL60 promyeloblastic cell line. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.

  4. Protein phosphorylation in stomatal movement

    PubMed Central

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2014-01-01

    As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation. PMID:25482764

  5. Phosphorylation of Ser1928 mediates the enhanced activity of the L-type Ca2+ channel Cav1.2 by the β2-adrenergic receptor in neurons

    PubMed Central

    Qian, Hai; Patriarchi, Tommaso; Price, Jennifer L.; Matt, Lucas; Lee, Boram; Nieves-Cintrón, Madeline; Buonarati, Olivia R.; Chowdhury, Dhrubajyoti; Nanou, Evanthia; Nystoriak, Matthew A.; Catterall, William A.; Poomvanicha, Montatip; Hofmann, Franz; Navedo, Manuel F.; Hell, Johannes W.

    2017-01-01

    The L-type Ca2+ channel Cav1.2 controls multiple functions throughout the body including heart rate and neuronal excitability. It is a key mediator of fight-or-flight stress responses triggered by a signaling pathway involving β-adrenergic receptors (βARs), cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA). PKA readily phosphorylates Ser1928 in Cav1.2 in vitro and in vivo, including in rodents and humans. However, S1928A knock-in (KI) mice have normal PKA-mediated L-type channel regulation in the heart, indicating that Ser1928 is not required for regulation of cardiac Cav1.2 by PKA in this tissue. We report that augmentation of L-type currents by PKA in neurons was absent in S1928A KI mice. Furthermore, S1928A KI mice failed to induce long-term potentiation in response to prolonged theta-tetanus (PTT-LTP), a form of synaptic plasticity that requires Cav1.2 and enhancement of its activity by the β2-adrenergic receptor (β2AR)–cAMP–PKA cascade. Thus, there is an unexpected dichotomy in the control of Cav1.2 by PKA in cardiomyocytes and hippocampal neurons. PMID:28119465

  6. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  7. GILZ overexpression attenuates endoplasmic reticulum stress-mediated cell death via the activation of mitochondrial oxidative phosphorylation.

    PubMed

    André, Fanny; Corazao-Rozas, Paola; Idziorek, Thierry; Quesnel, Bruno; Kluza, Jérome; Marchetti, Philippe

    2016-09-16

    The Glucocorticoïd-induced leucine zipper (GILZ) protein has profound anti-inflammatory activities in haematopoietic cells. GILZ regulates numerous signal transduction pathways involved in proliferation and survival of normal and neoplastic cells. Here, we have demonstrated the potential of GILZ in alleviating apoptosis induced by ER stress inducers. Whereas the glucocorticoid, dexamethasone, protects from tunicamycin-induced cell death, silencing endogeneous GILZ in dexamethasone-treated cancer cells alter the capacity of glucocorticoids to protect from tunicamycin-mediated apoptosis. Under ER stress conditions, overexpression of GILZ significantly reduced activation of mitochondrial pathway of apoptosis by maintaining Bcl-xl level. GILZ protein affects the UPR signaling shifting the balance towards pro-survival signals as judged by down-regulation of CHOP, ATF4, XBP1s mRNA and increase in GRP78 protein level. Interestingly, GILZ sustains high mitochondrial OXPHOS during ER stress and cytoprotection mediated by GILZ is abolished in cells depleted of mitochondrial DNA, which are OXPHOS-deficient. These findings reveal a new role of GILZ, which acts as a cytoprotector against ER stress through a pathway involving mitochondrial OXPHOS.

  8. Phosphorylated CaMKII post-synaptic binding to NR2B subunits in the anterior cingulate cortex mediates visceral pain in visceral hypersensitive rats.

    PubMed

    Li, Ying; Zhang, Xu; Liu, Haiyan; Cao, Zhijun; Chen, Shengliang; Cao, Bing; Liu, Jin

    2012-05-01

    The NR2B subunit of NMDA receptor in the anterior cingulate cortex (ACC) is up-regulated in viscerally hypersensitive (VH) rats induced by colonic anaphylaxis. It plays a critical role in modulation of ACC sensitization and visceral pain responses. Given the key role of calcium/calmodulin-dependent protein kinase II (CaMKII) in synaptic plasticity and behavior learning and memory, we hypothesize that phosphorylation of CaMKII binding to NR2B mediates visceral pain in VH states. We performed in vivo electroporation of CaMKII siRNA produced inhibition of colorectal distension-induced visceromotor response in the VH rats. The NR2B, CaMKII and P-CaMKII-Thr²⁸⁶ protein levels were increased in 180%, 220% and 304% fold in the post-synaptic density (PSD) fraction in VH rats separately. Western blotting following co-immunoprecipitation showed that P-CaMKII-Thr²⁸⁶ bound to NR2B in the PSD, which was increased to 267% of control in VH rats. Administration of CaMKII antagonist Antennapedia-CaMKIINtide suppressed visceromotor response in VH rats in parallel with decrease of NR2B levels and reduction of the NR2B-P-CaMKII-Thr²⁸⁶ protein complex in PSD. In conclusion, CaMKII is a critical signaling molecule in the ACC glutamatergic synaptic transmission and phosphorylation of CaMKII at Thr286, which binds to NR2B subunit at post-synaptic site, modulates visceral pain in viscerally hypersensitive state.

  9. Protein Kinase A-Mediated Phosphorylation of cMyBP-C Increases Proximity of Myosin Heads to Actin in Resting Myocardium

    SciTech Connect

    Colson, Brett A; Bekyarova, Tanya; Locher, Matthew R; Fitzsimons, Daniel P; Irving, Thomas C; Moss, Richard L

    2008-09-16

    Protein kinase A-mediated (PKA) phosphorylation of cardiac myosin binding protein C (cMyBP-C) accelerates the kinetics of cross-bridge cycling and may relieve the tether-like constraint of myosin heads imposed by cMyBP-C. We favor a mechanism in which cMyBP-C modulates cross-bridge cycling kinetics by regulating the proximity and interaction of myosin and actin. To test this idea, we used synchrotron low-angle x-ray diffraction to measure interthick filament lattice spacing and the equatorial intensity ratio, I{sub 11}/I{sub 10}, in skinned trabeculae isolated from wild-type and cMyBP-C null (cMyBP-C{sup -/-}) mice. In wild-type myocardium, PKA treatment appeared to result in radial or azimuthal displacement of cross-bridges away from the thick filaments as indicated by an increase (approximately 50%) in I{sub 11}/I{sub 10} (0.22{+-}0.03 versus 0.33{+-}0.03). Conversely, PKA treatment did not affect cross-bridge disposition in mice lacking cMyBP-C, because there was no difference in I{sub 11}/I{sub 10} between untreated and PKA-treated cMyBP-C{sup -/-} myocardium (0.40{+-}0.06 versus 0.42{+-}0.05). Although lattice spacing did not change after treatment in wild-type (45.68{+-}0.84 nm versus 45.64{+-}0.64 nm), treatment of cMyBP-C{sup -/-} myocardium increased lattice spacing (46.80{+-}0.92 nm versus 49.61{+-}0.59 nm). This result is consistent with the idea that the myofilament lattice expands after PKA phosphorylation of cardiac troponin I, and when present, cMyBP-C, may stabilize the lattice. These data support our hypothesis that tethering of cross-bridges by cMyBP-C is relieved by phosphorylation of PKA sites in cMyBP-C, thereby increasing the proximity of cross-bridges to actin and increasing the probability of interaction with actin on contraction.

  10. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway.

  11. Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation.

    PubMed Central

    Wolff, M R; Buck, S H; Stoker, S W; Greaser, M L; Mentzer, R M

    1996-01-01

    To examine the role of alterations in myofibrillar function in human dilated cardiomyopathies, we determined isometric tension-calcium relations in permeabilized myocytesized myofibrillar preparations (n = 16) obtained from left ventricular biopsies from nine patients with dilated cardiomyopathy (DCM) during cardiac transplantation or left ventricular assist device implantation. Similar preparations (n = 10) were obtained from six normal hearts used for cardiac transplantation. Passive and maximal Ca2+-activated tensions were similar for the two groups. However, the calcium sensitivity of isometric tension was increased in DCM compared to nonfailing preparations ([Ca2+]50=2.46+/-0.49 microM vs 3.24+/-0.51 microM, P < 0.001). In vitro treatment with the catalytic subunit of protein kinase A (PKA) decreased calcium sensitivity of tension to a greater degree in failing than in normal preparations. Further, isometric tension-calcium relations in failing and normal myofibrillar preparations were similar after PKA treatment. These findings suggest that the increased calcium sensitivity of isometric tension in DCM may be due at least in part to a reduction of the beta-adrenergically mediated (PKA-dependent) phosphorylation of myofibrillar regulatory proteins such as troponin I and/or C-protein. PMID:8690789

  12. CPEB4 is regulated during cell cycle by ERK2/Cdk1-mediated phosphorylation and its assembly into liquid-like droplets

    PubMed Central

    Guillén-Boixet, Jordina; Buzon, Víctor; Salvatella, Xavier; Méndez, Raúl

    2016-01-01

    The four members of the vertebrate CPEB family of RNA-binding proteins share similar RNA-binding domains by which they regulate the translation of CPE-containing mRNAs, thereby controlling cell cycle and differentiation or synaptic plasticity. However, the N-terminal domains of CPEBs are distinct and contain specific regulatory post-translational modifications that presumably differentially integrate extracellular signals. Here we show that CPEB4 activity is regulated by ERK2- and Cdk1-mediated hyperphosphorylation. These phosphorylation events additively activate CPEB4 in M-phase by maintaining it in its monomeric state. In contrast, unphosphorylated CPEB4 phase separates into inactive, liquid-like droplets through its intrinsically disordered regions in the N-terminal domain. This dynamic and reversible regulation of CPEB4 is coordinated with that of CPEB1 through Cdk1, which inactivates CPEB1 while activating CPEB4, thereby integrating phase-specific signal transduction pathways to regulate cell cycle progression. DOI: http://dx.doi.org/10.7554/eLife.19298.001 PMID:27802129

  13. Nemo phosphorylates Even-skipped and promotes Eve-mediated repression of odd-skipped in even parasegments during Drosophila embryogenesis.

    PubMed

    Braid, Lorena R; Lee, Wendy; Uetrecht, Andrea C; Swarup, Sharan; Papaianni, Gina; Heiler, Amanda; Verheyen, Esther M

    2010-07-01

    Drosophila nemo (nmo) and other Nemo-like kinase family members (Nlks) are well-established key regulators of numerous conserved signaling pathways, such as Wg and BMP. nmo mutants display pleiotropic defects at different developmental stages, including the embryo. In this study we describe a detailed characterization of embryonic cuticle patterning defects associated with maternal loss of nmo. nmo mutant embryos consistently show segmentation defects, most frequently fusions of pairs of denticle belts in alternating segments. These phenotypes are reminiscent of those associated with defects in pair-rule patterning. Genetic interaction studies demonstrate that Nmo promotes Even-skipped (Eve) activity and is required to promote the expression of the Eve target, engrailed (en), in even numbered parasegments. We find that Nmo regulates a subset of Eve activities by stimulating Eve-mediated suppression of the odd-skipped (odd) repressor. Furthermore, we isolate Nmo in a protein complex with Eve and show that Nmo phosphorylates Eve in in vitro kinase assays. These studies reveal a novel role for the Nmo kinase in embryonic pattern formation through its regulation of the homeodomain-containing transcription factor Eve.

  14. Dopamine promotes NMDA receptor hypofunction in the retina through D1 receptor-mediated Csk activation, Src inhibition and decrease of GluN2B phosphorylation

    PubMed Central

    Socodato, Renato; Santiago, Felipe N.; Portugal, Camila C.; Domith, Ivan; Encarnação, Thaísa G.; Loiola, Erick C.; Ventura, Ana L. M.; Cossenza, Marcelo; Relvas, João B.; Castro, Newton G.; Paes-de-Carvalho, Roberto

    2017-01-01

    Dopamine and glutamate are critical neurotransmitters involved in light-induced synaptic activity in the retina. In brain neurons, dopamine D1 receptors (D1Rs) and the cytosolic protein tyrosine kinase Src can, independently, modulate the behavior of NMDA-type glutamate receptors (NMDARs). Here we studied the interplay between D1Rs, Src and NMDARs in retinal neurons. We reveal that dopamine-mediated D1R stimulation provoked NMDAR hypofunction in retinal neurons by attenuating NMDA-gated currents, by preventing NMDA-elicited calcium mobilization and by decreasing the phosphorylation of NMDAR subunit GluN2B. This dopamine effect was dependent on upregulation of the canonical D1R/adenylyl cyclase/cAMP/PKA pathway, of PKA-induced activation of C-terminal Src kinase (Csk) and of Src inhibition. Accordingly, knocking down Csk or overexpressing a Csk phosphoresistant Src mutant abrogated the dopamine-induced NMDAR hypofunction. Overall, the interplay between dopamine and NMDAR hypofunction, through the D1R/Csk/Src/GluN2B pathway, might impact on light-regulated synaptic activity in retinal neurons. PMID:28098256

  15. Caveolin-1 Mediates Low-Intensity Ultrasound-Induced Apoptosis via Downregulation of Signal Transducer and Activator of Transcription 3 Phosphorylation in Laryngeal Carcinoma Cells.

    PubMed

    Ye, Qingsheng; Meng, Cuida; Shen, Yannan; Ji, Jianjun; Wang, Xiaochun; Zhou, Sheng; Jia, Lili; Wang, Yanqun

    2016-09-01

    Low-intensity ultrasound therapy has been found to be a potential tool in the management of malignant tumors in recent years. However, the molecular mechanism underlying low-intensity ultrasound-induced apoptosis is still not clear. In this study, we investigated the effects of low-intensity ultrasound-induced apoptosis in HEp-2 cells. We found that low-intensity ultrasound significantly induced apoptosis, and the expression level of caveolin-1 (Cav-1) was dramatically increased after ultrasound treatment of HEp-2 cells. After inhibiting the expression level of Cav-1 using siRNA transfection, we found that the cellular apoptosis induced by low-intensity ultrasound was significantly suppressed. In addition, inhibition of Cav-1 expression promoted phosphorylation of signal transducer and activator of transcription 3 (STAT3), suggesting that the STAT3 signaling pathway was involved in low-intensity ultrasound-induced apoptosis via Cav-1 regulation. Our results indicate that Cav-1/STAT3 signaling pathway may mediate low-intensity ultrasound-induced apoptosis, and this technology could potentially be used clinically for the treatment of cancers.

  16. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    SciTech Connect

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  17. Bisphenol-A rapidly promotes dynamic changes in hippocampal dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDA receptor subunit NR2B

    SciTech Connect

    Xu Xiaohong Ye Yinping; Li Tao; Chen Lei; Tian Dong; Luo Qingqing; Lu Mei

    2010-12-01

    Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs. The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.

  18. Nobiletin, a citrus flavonoid with neurotrophic action, augments protein kinase A-mediated phosphorylation of the AMPA receptor subunit, GluR1, and the postsynaptic receptor response to glutamate in murine hippocampus.

    PubMed

    Matsuzaki, Kentaro; Miyazaki, Kenichi; Sakai, Seiichiro; Yawo, Hiromu; Nakata, Norihito; Moriguchi, Shigeki; Fukunaga, Kohji; Yokosuka, Akihito; Sashida, Yutaka; Mimaki, Yoshihiro; Yamakuni, Tohru; Ohizumi, Yasushi

    2008-01-14

    Nobiletin isolated from citrus peels prevents bulbectomy- and amyloid-beta protein-induced memory impairment in rodents. In the present study, using combined methods of biochemistry and electrophysiology, we examined the effects of nobiletin on phosphorylation of GluR1 receptor, the subunit of alpha-amino-3-hydroxy-5-methyl-D-aspartate (AMPA) receptors, and the receptor-mediated synaptic transmission in the hippocampus, a region implicated in memory formation, in culture and/or in slices. Western blot analysis showed that nobiletin-stimulated phosphorylation of multiple protein kinase A (PKA) substrates at 10 min following the treatment in cultured hippocampal neurons. In the cultured neurons, this natural compound also increased not only PKA activity, but also phosphorylation of GluR1 receptor at a PKA phosphorylation site, Ser 845, which has been demonstrated to be critical for synaptic plasticity, including enhancement of postsynaptic glutamate response, and important for spatial memory in vivo. The increased phosphorylation of GluR1 receptor at Ser 845 was abolished by H89 (N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride), the PKA inhibitor, but not U0126 (1,4-diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) butadiene), the mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, in the cultured neurons. An increment of the phosphorylation of GluR1 receptor at Ser 845 was induced by nobiletin in the hippocampal slices as well. Furthermore, our electrophysiological analysis showed that nobiletin potentiated the AMPA receptor-mediated synaptic transmission at Schaffer collateral-CA1 pyramidal cell synapses in the hippocampal slices. This potentiation induced by the natural compound was not accompanied by the changes in paired-pulse ratio, and partially occluded the long-term potentiation, indicating the possible involvement of the postsynaptic mechanism. These findings suggest that nobiletin probably up-regulates synaptic transmission

  19. Pomegranate fruit extract modulates UV-B-mediated phosphorylation of mitogen-activated protein kinases and activation of nuclear factor kappa B in normal human epidermal keratinocytes paragraph sign.

    PubMed

    Afaq, Farrukh; Malik, Arshi; Syed, Deeba; Maes, Daniel; Matsui, Mary S; Mukhtar, Hasan

    2005-01-01

    Excessive exposure of solar ultraviolet (UV) radiation, particularly its UV-B component, to humans causes many adverse effects that include erythema, hyperplasia, hyperpigmentation, immunosuppression, photoaging and skin cancer. In recent years, there is increasing use of botanical agents in skin care products. Pomegranate derived from the tree Punica granatum contains anthocyanins (such as delphinidin, cyanidin and pelargonidin) and hydrolyzable tannins (such as punicalin, pedunculagin, punicalagin, gallagic and ellagic acid esters of glucose) and possesses strong antioxidant and anti-inflammatory properties. Recently, we have shown that pomegranate fruit extract (PFE) possesses antitumor promoting effects in a mouse model of chemical carcinogenesis. To begin to establish the effect of PFE for humans in this study, we determined its effect on UV-B-induced adverse effects in normal human epidermal keratinocytes (NHEK). We first assessed the effect of PFE on UV-B-mediated phosphorylation of mitogen-activated protein kinases (MAPK) pathway in NHEK. Immunoblot analysis demonstrated that the treatment of NHEK with PFE (10-40 microg/mL) for 24 h before UV-B (40 mJ/cm(2)) exposure dose dependently inhibited UV-B-mediated phosphorylation of ERKl/2, JNK1/2 and p38 protein. We also observed that PFE (20 microg/mL) inhibited UV-B-mediated phosphorylation of MAPK in a time-dependent manner. Furthermore, in dose- and time-dependent studies, we evaluated the effect of PFE on UV-B-mediated activation of nuclear factor kappa B (NF-kappaB) pathway. Using Western blot analysis, we found that PFE treatment of NHEK resulted in a dose- and time-dependent inhibition of UV-B-mediated degradation and phosphorylation of IkappaBalpha and activation of IKKalpha. Using immunoblot analysis, enzyme-linked immunosorbent assay and electrophoretic mobility shift assay, we found that PFE treatment to NHEK resulted in a dose- and time-dependent inhibition of UV-B-mediated nuclear translocation and

  20. Transcription, Signaling Receptor Activity, Oxidative Phosphorylation, and Fatty Acid Metabolism Mediate the Presence of Closely Related Species in Distinct Intertidal and Cold-Seep Habitats.

    PubMed

    Van Campenhout, Jelle; Vanreusel, Ann; Van Belleghem, Steven; Derycke, Sofie

    2015-12-03

    Bathyal cold seeps are isolated extreme deep-sea environments characterized by low species diversity while biomass can be high. The Håkon Mosby mud volcano (Barents Sea, 1,280 m) is a rather stable chemosynthetic driven habitat characterized by prominent surface bacterial mats with high sulfide concentrations and low oxygen levels. Here, the nematode Halomonhystera hermesi thrives in high abundances (11,000 individuals 10 cm(-2)). Halomonhystera hermesi is a member of the intertidal Halomonhystera disjuncta species complex that includes five cryptic species (GD1-5). GD1-5's common habitat is characterized by strong environmental fluctuations. Here, we compared the transcriptomes of H. hermesi and GD1, H. hermesi's closest relative. Genes encoding proteins involved in oxidative phosphorylation are more strongly expressed in H. hermesi than in GD1, and many genes were only observed in H. hermesi while being completely absent in GD1. Both observations could in part be attributed to high sulfide concentrations and low oxygen levels. Additionally, fatty acid elongation was also prominent in H. hermesi confirming the importance of highly unsaturated fatty acids in this species. Significant higher amounts of transcription factors and genes involved in signaling receptor activity were observed in GD1 (many of which were completely absent in H. hermesi), allowing fast signaling and transcriptional reprogramming which can mediate survival in dynamic intertidal environments. GC content was approximately 8% higher in H. hermesi coding unigenes resulting in differential codon usage between both species and a higher proportion of amino acids with GC-rich codons in H. hermesi. In general our results showed that most pathways were active in both environments and that only three genes are under natural selection. This indicates that also plasticity should be taken in consideration in the evolutionary history of Halomonhystera species. Such plasticity, as well as possible

  1. Sigma-1 receptor-mediated increase in spinal p38 MAPK phosphorylation leads to the induction of mechanical allodynia in mice and neuropathic rats.

    PubMed

    Moon, Ji-Young; Roh, Dae-Hyun; Yoon, Seo-Yeon; Kang, Suk-Yun; Choi, Sheu-Ran; Kwon, Soon-Gu; Choi, Hoon-Seong; Han, Ho-Jae; Beitz, Alvin J; Lee, Jang-Hern

    2013-09-01

    The direct activation of the spinal sigma-1 receptor (Sig-1R) produces mechanical allodynia (MA) and thermal hyperalgesia (TH) in mice. In addition, the blockade of the spinal Sig-1R prevents the induction of MA, but not TH in chronic constriction injury (CCI)-induced neuropathic rats. The present study was designed to investigate whether the increase in spinal p38 MAPK phosphorylation (p-p38 MAPK) mediates Sig-1R-induced MA or TH in mice and the induction of MA in neuropathic rats. MA and TH were evaluated using von Frey filaments and a hot-plate apparatus, respectively. Neuropathic pain was produced by CCI of the right sciatic nerve in rats. Western blot assay and immunohistochemistry were performed to determine the changes of p-p38 MAPK expression in the spinal cord. Intrathecal (i.t.) injection of PRE084, a selective Sig-1R agonist, into naïve mice time-dependently increased the expression of p-p38 MAPK, which was blocked by pretreatment with BD1047, a Sig-1R antagonist. I.t. pretreatment with SB203580, a p38 MAPK inhibitor also dose-dependently inhibited PRE084-induced MA, whereas TH induction was not affected. In CCI rats, i.t. injection of BD1047 during the induction phase (postoperative days 0 to 5) reduced the CCI-induced increase in p-p38 MAPK. In addition, i.t. SB203580 treatment during the induction phase also suppressed the development of CCI-induced MA, but not TH. Conversely, i.t. SB203580 treatment during the maintenance phase (postoperative days 15 to 20) had no effect on CCI-induced MA or TH. These results demonstrate that the increase in spinal p-p38 MAPK is closely associated with the induction of Sig-1R mediated MA, but not TH. Sigma-1 receptor modulation of p-p38 MAPK also plays an important role in the induction, but not the maintenance, of MA in neuropathic pain.

  2. Blocking GSK3β-mediated dynamin1 phosphorylation enhances BDNF-dependent TrkB endocytosis and the protective effects of BDNF in neuronal and mouse models of Alzheimer's disease.

    PubMed

    Liu, Xiang-Hua; Geng, Zhao; Yan, Jing; Li, Ting; Chen, Qun; Zhang, Qun-Ye; Chen, Zhe-Yu

    2015-02-01

    Endocytosis of tropomyosin related kinase B (TrkB) receptors has critical roles in brain-derived neurotrophic factor (BDNF) mediated signal transduction and biological function, however the mechanism that is governing TrkB endocytosis is still not completely understood. In this study, we showed that GSK3β, a key kinase in neuronal development and survival, could regulate TrkB endocytosis through phosphorylating dynamin1 (Dyn1) but not dynamin2 (Dyn2). Moreover, we found that beta-amyloid (Aβ) oligomer exposure could impair BDNF-dependent TrkB endocytosis and Akt activation through enhancing GSK3β activity in cultured hippocampal neurons, which suggested that BDNF-induced TrkB endocytosis and the subsequent signaling were impaired in neuronal model of Alzheimer's disease (AD). Notably, we found that inhibiting GSK3β phosphorylating Dyn1 by using TAT-Dyn1SpS could rescue the impaired TrkB endocytosis and Akt activation upon BDNF stimuli under Aβ exposure. Finally, TAT-Dyn1SpS could facilitate BDNF-mediated neuronal survival and cognitive enhancement in mouse models of AD. These results clarified a role of GSK3β in BDNF-dependent TrkB endocytosis and the subsequent signaling, and provided a potential new strategy by inhibiting GSK3β-induced Dyn1 phosphorylation for AD treatment.

  3. Transcription, Signaling Receptor Activity, Oxidative Phosphorylation, and Fatty Acid Metabolism Mediate the Presence of Closely Related Species in Distinct Intertidal and Cold-Seep Habitats

    PubMed Central

    Van Campenhout, Jelle; Vanreusel, Ann; Van Belleghem, Steven; Derycke, Sofie

    2016-01-01

    Bathyal cold seeps are isolated extreme deep-sea environments characterized by low species diversity while biomass can be high. The Håkon Mosby mud volcano (Barents Sea, 1,280 m) is a rather stable chemosynthetic driven habitat characterized by prominent surface bacterial mats with high sulfide concentrations and low oxygen levels. Here, the nematode Halomonhystera hermesi thrives in high abundances (11,000 individuals 10 cm−2). Halomonhystera hermesi is a member of the intertidal Halomonhystera disjuncta species complex that includes five cryptic species (GD1-5). GD1-5’s common habitat is characterized by strong environmental fluctuations. Here, we compared the transcriptomes of H. hermesi and GD1, H. hermesi’s closest relative. Genes encoding proteins involved in oxidative phosphorylation are more strongly expressed in H. hermesi than in GD1, and many genes were only observed in H. hermesi while being completely absent in GD1. Both observations could in part be attributed to high sulfide concentrations and low oxygen levels. Additionally, fatty acid elongation was also prominent in H. hermesi confirming the importance of highly unsaturated fatty acids in this species. Significant higher amounts of transcription factors and genes involved in signaling receptor activity were observed in GD1 (many of which were completely absent in H. hermesi), allowing fast signaling and transcriptional reprogramming which can mediate survival in dynamic intertidal environments. GC content was approximately 8% higher in H. hermesi coding unigenes resulting in differential codon usage between both species and a higher proportion of amino acids with GC-rich codons in H. hermesi. In general our results showed that most pathways were active in both environments and that only three genes are under natural selection. This indicates that also plasticity should be taken in consideration in the evolutionary history of Halomonhystera species. Such plasticity, as well as possible

  4. ERK mediates anti-apoptotic effect through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to DNA damage in normal human embryonic fibroblast (HEF) cells.

    PubMed

    Heo, Jee-In; Oh, Soo-Jin; Kho, Yoon-Jung; Kim, Jeong-Hyeon; Kang, Hong-Joon; Park, Seong-Hoon; Kim, Hyun-Seok; Shin, Jong-Yeon; Kim, Min-Ju; Kim, Sung Chan; Park, Jae-Bong; Kim, Jaebong; Lee, Jae-Yong

    2011-04-01

    Since anti-apoptotic effect of ERK has not been elucidated clearly in DNA-damage-induced cell death, the role of ERK was examined in normal HEF cells treated with mild DNA damage using etoposide or camptothecin. ERK was activated by DNA damage in HEF cells. PD98059 increased apoptosis and reduced DNA-damage-induced p21Waf1/Cip1/Sdi level. Depletion of p21Waf1/Cip1/Sdi induced cell death and PD98059 induced additional cell death. DNA-damage-induced increase in cytoplasmic localization and phosphorylation of threonine residues of p21Waf1/Cip1/Sdi was reversed by PD98059. Thus, the results suggest that ERK pathway mediates anti-apoptotic effects through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to mild DNA damage.

  5. CASEIN KINASE-MEDIATED PHOSPHORYLATION OF SERINE 839 IS NECESSARY FOR BASOLATERAL LOCALIZATION OF THE Ca2+-ACTIVATED NON-SELECTIVE CATION CHANNEL TRPM4

    PubMed Central

    Cerda, Oscar; Cáceres, Mónica; Park, Kang-Sik; Leiva-Salcedo, Elías; Romero, Aníbal; Varela, Diego

    2014-01-01

    TRPM4 is a Ca2+-activated non-selective cation channel expressed in a wide range of human tissues. TRPM4 participates in a variety of physiological processes such as T cell activation, myogenic vasoconstriction and allergic reactions. TRPM4 Ca2+ sensitivity is enhanced by calmodulin (CaM) and phosphathydilinositol 4, 5-biphosphate (PI(4,5)P2) binding, as well as, under certain conditions, PKC activation. However, information as to the mechanisms of modulation of this channel remain unknown, including direct identification of phosphorylation sites on TRPM4 and their role in channel features. Here, we use mass-spectrometric-based proteomic approaches (immunoprecipitation and tandem mass spectrometry), to unambiguously identify S839 as a phosphorylation site present on human TRPM4 expressed in a human cell line. Site-directed mutagenesis employing a serine to alanine mutation to eliminate phosphorylation, and a phospho-mimetic aspartate mutation, as well as biochemical and immunocytochemical experiments, revealed a role for S839 phosphorylation in the basolateral expression of TRPM4 channels in epithelial cells. Moreover, we demonstrated that casein kinase 1 (CK1) phosphorylates S839 and is responsible for the basolateral localization of TRPM4. PMID:25231975

  6. CD74 interacts with CD44 and enhances tumorigenesis and metastasis via RHOA-mediated cofilin phosphorylation in human breast cancer cells

    PubMed Central

    Liu, Zhiyong; Chu, Shuzhou; Yao, Shun; Li, Yu; Fan, Songqing; Sun, Xiaoyang; Su, Ling; Liu, Xiangguo

    2016-01-01

    CD74, also known as Ii, was initially considered to participate primarily in antigen presentation. Subsequent studies have shown that CD74 is highly expressed in various types of tumor cells and has multiple roles in a variety of biological processes. CD74 is thought to promote breast cancer metastasis, but the molecular mechanism remains elusive. In the present study, our results showed that CD74 was more highly expressed on the membrane and in the cytoplasm of breast cancer tissues than in control breast tissues. Consistently, CD74 downregulation reduced MDA-MB-231 cell invasion and migration and suppressed protrusions in breast cancer cells. Moreover, CD74 overexpression promoted the phosphorylation of the actin-severing protein cofilin (CFL1), resulting in actin polymerization in breast cancer cells. CD44 was required for the up-regulation of CFL1 phosphorylation by CD74 because CD44 knockdown downregulated CD74-induced CFL1 phosphorylation, while CD74 overexpression could not rescue CFL1 phosphorylation. Moreover, RHOA is necessary for CFL1 phosphorylation and cell migration induced by CD74 in breast cancer cells. Our findings highlight the critical role of CD74 in breast cancer metastasis. New drugs and antibodies targeting CD74 may be effective strategies for breast cancer therapy. PMID:27626171

  7. Matefin/SUN-1 Phosphorylation on Serine 43 Is Mediated by CDK-1 and Required for Its Localization to Centrosomes and Normal Mitosis in C. elegans Embryos

    PubMed Central

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    Matefin/SUN-1 is an evolutionary conserved C. elegans inner nuclear membrane SUN-domain protein. By creating a bridge with the KASH-domain protein ZYG-12, it connects the nucleus to cytoplasmic filaments and organelles. Matefin/SUN-1 is expressed in the germline where it undergoes specific phosphorylation at its N-terminal domain, which is required for germline development and homologous chromosome pairing. The maternally deposited matefin/SUN-1 is then essential for embryonic development. Here, we show that in embryos, serine 43 of matefin/SUN-1 (S43) is phosphorylated in a CDK-1 dependent manner and is localized throughout the cell cycle mostly to centrosomes. By generating animals expressing phosphodead S43A and phosphomimetic S43E mutations, we show that phosphorylation of S43 is required to maintain centrosome integrity and function, as well as for the localization of ZYG-12 and lamin. Expression of S43E in early embryos also leads to an increase in chromatin structural changes, decreased progeny and to almost complete embryonic lethality. Down regulation of emerin further increases the occurrence of chromatin organization abnormalities, indicating possible collaborative roles for these proteins that is regulated by S43 phosphorylation. Taken together, these results support a role for phosphorylation of serine 43 in matefin/SUN-1 in mitosis. PMID:26927181

  8. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179.

    PubMed

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-07-12

    Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser(1179)) in a time-dependent manner (up to 40min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca(2+) levels. Treatment with KN-93, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. This study suggests that FIR radiation increases NO production via increasing CaMKII-mediated eNOS-Ser(1179) phosphorylation but TRPV channels may not be involved in this pathway. Our results may provide the molecular mechanism by which FIR radiation improves endothelial function.

  9. ROS mediates interferon gamma induced phosphorylation of Src, through the Raf/ERK pathway, in MCF-7 human breast cancer cell line.

    PubMed

    Zibara, Kazem; Zeidan, Asad; Bjeije, Hassan; Kassem, Nouhad; Badran, Bassam; El-Zein, Nabil

    2017-03-01

    Interferon gamma (IFN-ɣ) is a pleiotropic cytokine which plays dual contrasting roles in cancer. Although IFN-ɣ has been clinically used to treat various malignancies, it was recently shown to have protumorigenic activities. Reactive oxygen species (ROS) are overproduced in cancer cells, mainly due to NADPH oxidase activity, which results into several changes in signaling pathways. In this study, we examined IFN-ɣ effect on the phosphorylation levels of key signaling proteins, through ROS production, in the human breast cancer cell line MCF-7. After treatment by IFN-ɣ, results showed a significant increase in the phosphorylation of STAT1, Src, raf, AKT, ERK1/2 and p38 signaling molecules, in a time specific manner. Src and Raf were found to be involved in early stages of IFN-ɣ signaling since their phosphorylation increased very rapidly. Selective inhibition of Src-family kinases resulted in an immediate significant decrease in the phosphorylation status of Raf and ERK1/2, but not p38 and AKT. On the other hand, IFN-ɣ resulted in ROS generation, through H2O2 production, whereas pre-treatment with the ROS inhibitor NAC caused ROS inhibition and a significant decrease in the phosphorylation levels of AKT, ERK1/2, p38 and STAT1. Moreover, pretreatment with a selective NOX1 inhibitor resulted in a significant decrease of AKT phosphorylation. Finally, no direct relationship was found between ROS production and calcium mobilization. In summary, IFN-ɣ signaling in MCF-7 cell line is ROS-dependent and follows the Src/Raf/ERK pathway whereas its signaling through the AKT pathway is highly dependent on NOX1.

  10. Protein kinase A can block EphA2 receptor–mediated cell repulsion by increasing EphA2 S897 phosphorylation

    PubMed Central

    Barquilla, Antonio; Lamberto, Ilaria; Noberini, Roberta; Heynen-Genel, Susanne; Brill, Laurence M.; Pasquale, Elena B.

    2016-01-01

    The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 “canonical” signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 “noncanonical” signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1–induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein–coupled receptors such as the β2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the β2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells. PMID:27385333

  11. Neural differentiation of brain-derived neurotrophic factor-expressing human umbilical cord blood-derived mesenchymal stem cells in culture via TrkB-mediated ERK and β-catenin phosphorylation and following transplantation into the developing brain.

    PubMed

    Lim, Jung Yeon; Park, Sang In; Kim, Seong Muk; Jun, Jin Ae; Oh, Ji Hyeon; Ryu, Chung Hun; Jeong, Chang Hyun; Park, Sun Hwa; Park, Soon A; Oh, Wonil; Chang, Jong Wook; Jeun, Sin-Soo

    2011-01-01

    The ability of mesenchymal stem cells (MSCs) to differentiate into neural cells makes them potential replacement therapeutic candidates in neurological diseases. Presently, overexpression of brain-derived neurotrophic factor (BDNF), which is crucial in the regulation of neural progenitor cell differentiation and maturation during development, was sufficient to convert the mesodermal cell fate of human umbilical cord blood-derived MSCs (hUCB-MSCs) into a neuronal fate in culture, in the absence of specialized induction chemicals. BDNF overexpressing hUCB-MSCs (MSCs-BDNF) yielded an increased number of neuron-like cells and, surprisingly, increased the expression of neuronal phenotype markers in a time-dependent manner compared with control hUCB-MSCs. In addition, MSCs-BDNF exhibited a decreased labeling for MSCs-related antigens such as CD44, CD73, and CD90, and decreased potential to differentiate into mesodermal lineages. Phosphorylation of the receptor tyrosine kinase B (TrkB), which is a receptor of BDNF, was increased significantly in MSC-BDNF. BDNF overexpression also increased the phosphorylation of β-catenin and extracellular signal-regulated kinases (ERKs). Inhibition of TrkB availability by treatment with the TrkB-specific inhibitor K252a blocked the BDNF-stimulated phosphorylation of β-catenin and ERKs, indicating the involvement of both the β-catenin and ERKs signals in the BDNF-stimulated and TrkB-mediated neural differentiation of hUCB-MSCs. Reduction of β-catenin availability using small interfering RNA-mediated gene silencing inhibited ERKs phosphorylation. However, β-catenin activation was maintained. In addition, inhibition of β-catenin and ERKs expression levels abrogated the BDNF-stimulated upregulation of neuronal phenotype markers. Furthermore, MSC-BDNF survived and migrated more extensively when grafted into the lateral ventricles of neonatal mouse brain, and differentiated significantly into neurons in the olfactory bulb and

  12. Spinal serum-inducible and glucocorticoid-inducible kinase 1 mediates neuropathic pain via kalirin and downstream PSD-95-dependent NR2B phosphorylation in rats.

    PubMed

    Peng, Hsien-Yu; Chen, Gin-Den; Lai, Cheng-Yuan; Hsieh, Ming-Chun; Lin, Tzer-Bin

    2013-03-20

    The coupling of the spinal postsynaptic density-95 (PSD-95) with the glutamatergic N-methyl-d-aspartate receptor NR2B subunit and the subsequent NR2B phosphorylation contribute to pain-related plasticity. Increasing evidence reveals that kalirin, a Rho-guanine nucleotide exchange factor, modulates PSD-95-NR2B-dependent neuroplasticity. Our laboratory recently demonstrated that serum-inducible and glucocorticoid-inducible kinase 1 (SGK1) participates in inflammation-associated pain hypersensitivity by modulating spinal glutamatergic neurotransmission. Because kalirin is one of the proteins in PSD that is highly phosphorylated by various kinases, we tested whether kalirin could be a downstream target of spinal SGK1 that participates in neuropathic pain development via regulation of the PSD-95-NR2B coupling-dependent phosphorylation of NR2B. We observed that spinal nerve ligation (SNL, L5) in male Sprague Dawley rats resulted in behavioral allodynia, which was associated with phosphorylated SGK1 (pSGK1), kalirin, and phosphorylated NR2B (pNR2B) expression and an increase in pSGK1-kalirin-PSD-95-pNR2B coprecipitation in the ipsilateral dorsal horn (L4-L5). SNL-enhanced kalirin immunofluorescence was coincident with pSGK1, PSD-95, and pNR2B immunoreactivity. Small-interfering RNA (siRNA) that targeted spinal kalirin mRNA expression (10 μg, 10 μl; i.t.) reduced SNL-induced allodynia, kalirin and pNR2B expression, as well as kalirin-PSD-95 and PSD-95-pNR2B coupling and costaining without affecting SGK1 phosphorylation. Daily administration of GSK-650394 (an SGK1 antagonist; 100 nm, 10 μl, i.t.) not only exhibited effects similar to the kalirin mRNA-targeting siRNA but also attenuated pSGK1-kalirin costaining and SGK1-kalirin coupling. We suggest that nerve injury could induce spinal SGK1 phosphorylation that subsequently interacts with and upregulates kalirin to participate in neuropathic pain development via PSD-95-NR2B coupling-dependent NR2B phosphorylation.

  13. A novel mode of regulation of the Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR mediated by Stk1 protein phosphorylation.

    PubMed

    Canova, Marc J; Baronian, Grégory; Brelle, Solène; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie

    2014-04-25

    The Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR is known as an important response regulator, member of the VraTSR three-component signal transduction system that modulates the expression of the cell wall stress stimulon in response to a number of different cell wall active antibiotics. Given its crucial role in regulating gene expression in response to antibiotic challenges, VraR must be tightly regulated. We report here for the first time in S. aureus convergence of two major signal transduction systems, serine/threonine protein kinase and two (three)-component systems. We demonstrate that VraR can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation negatively affects its DNA-binding properties. Mass spectrometric analyses and site-directed mutagenesis identified Thr106, Thr119, Thr175 and Thr178 as phosphoacceptors. A S. aureus ΔvraR mutant expressing a VraR derivative that mimics constitutive phosphorylation, VraR_Asp, still exhibited markedly decreased antibiotic resistance against different cell wall active antibiotics, when compared to the wild-type, suggesting that VraR phosphorylation may represent a novel and presumably more general mechanism of regulation of the two (three)-component systems in staphylococci.

  14. Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid.

    PubMed

    Maierhofer, Tobias; Diekmann, Marion; Offenborn, Jan Niklas; Lind, Christof; Bauer, Hubert; Hashimoto, Kenji; S Al-Rasheid, Khaled A; Luan, Sheng; Kudla, Jörg; Geiger, Dietmar; Hedrich, Rainer

    2014-09-09

    Under drought stress, abscisic acid (ABA) triggers closure of leaf cell pores called stomata, which are formed by two specialized cells called guard cells in plant epidermis. Two pathways downstream of ABA stimulate phosphorylation of the S-type anion channels SLAC1 (slow anion channel associated 1) and SLAH3 (SLAC1 homolog 3), which causes these channels to open, reducing guard cell volume and triggering stomatal closure. One branch involves OST1 (open stomata 1), a calcium-independent SnRK2-type kinase, and the other branch involves calcium-dependent protein kinases of the CPK (calcium-dependent protein kinase) family. We used coexpression analyses in Xenopus oocytes to show that the calcineurin B-like (CBL) calcium sensors CBL1 and CBL9 and their interacting protein kinase CIPK23 also triggered SLAC1 and SLAH3 opening. We analyzed whether regulation of SLAC1 opening by these different families of kinases involved the same or different sites on SLAC1 by measuring channel conductance of SLAC1 with mutations in the putative phosphorylation sites in the amino or carboxyl termini coexpressed with specific kinases in Xenopus oocytes. SLAC1 mutants lacking the OST1-phosphorylated site were still activated by CPK or by CBL/CIPK complexes. Phosphorylation and activation of SLAC1 by any of the kinases were inhibited by the phosphatase ABI1 (ABA insensitive 1), which is inactivated in response to ABA signaling. These findings identified CBL/CIPK complexes as potential regulators of stomatal aperture through S-type anion channels and indicated that phosphorylation at distinct sites enables SLAC1 activation by both calcium-dependent and calcium-independent pathways downstream of ABA.

  15. Insulin receptors mediate growth effects in cultured fetal neurons. II. Activation of a protein kinase that phosphorylates ribosomal protein S6

    SciTech Connect

    Heidenreich, K.A.; Toledo, S.P. )

    1989-09-01

    As an initial attempt to identify early steps in insulin action that may be involved in the growth responses of neurons to insulin, we investigated whether insulin receptor activation increases the phosphorylation of ribosomal protein S6 in cultured fetal neurons and whether activation of a protein kinase is involved in this process. When neurons were incubated for 2 h with 32Pi, the addition of insulin (100 ng/ml) for the final 30 min increased the incorporation of 32Pi into a 32K microsomal protein. The incorporation of 32Pi into the majority of other neuronal proteins was unaltered by the 30-min exposure to insulin. Cytosolic extracts from insulin-treated neurons incubated in the presence of exogenous rat liver 40S ribosomes and (gamma-32P)ATP displayed a 3- to 8-fold increase in the phosphorylation of ribosomal protein S6 compared to extracts from untreated cells. Inclusion of cycloheximide during exposure of the neurons to insulin did not inhibit the increased cytosolic kinase activity. Activation of S6 kinase activity by insulin was dose dependent (seen at insulin concentration as low as 0.1 ng/ml) and reached a maximum after 20 min of incubation. Addition of phosphatidylserine, diolein, and Ca2+ to the in vitro kinase reaction had no effect on the phosphorylation of ribosomal protein S6. Likewise, treatment of neurons with (Bu)2cAMP did not alter the phosphorylation of ribosomal protein S6 by neuronal cytosolic extracts. We conclude that insulin activates a cytosolic protein kinase that phosphorylates ribosomal S6 in neurons and is distinct from protein kinase-C and cAMP-dependent protein kinase. Stimulation of this kinase may play a role in insulin signal transduction in neurons.

  16. Extracellular Signal-regulated Kinase Mediates Phosphorylation of Tropomyosin-1 to Promote Cytoskeleton Remodeling in Response to Oxidative Stress: Impact on Membrane Blebbing

    PubMed Central

    Houle, François; Rousseau, Simon; Morrice, Nick; Luc, Mario; Mongrain, Sébastien; Turner, Christopher E.; Tanaka, Sakae; Moreau, Pierre; Huot, Jacques

    2003-01-01

    Oxidative stress induces in endothelial cells a quick and transient coactivation of both stress-activated protein kinase-2/p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. We found that inhibiting the ERK pathway resulted, within 5 min of oxidative stress, in a misassembly of focal adhesions characterized by mislocalization of key proteins such as paxillin. The focal adhesion misassembly that followed ERK inhibition with the mitogen-activated protein kinase kinase (MEK) inhibitor PD098059 (2′-amino-3′-methoxyflavone) or with a kinase negative mutant of ERK in the presence of H2O2 resulted in a quick and intense membrane blebbing that was associated with important damage to the endothelium. We isolated by two-dimensional gel electrophoresis a PD098059-sensitive phosphoprotein of 38 kDa that we identified, by mass spectrometry, as tropomyosin-1. In fact, H2O2 induced a time-dependent phosphorylation of tropomyosin that was sensitive to inhibition by PD098059 and UO126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butanediane). Tropomyosin phosphorylation was also induced by expression of a constitutively activated form of MEK1 (MEKCA), which confirms that its phosphorylation resulted from the activation of ERK. In unstimulated cells, tropomyosin-1 was found diffuse in the cells, whereas it quickly colocalized with actin and stress fibers upon stimulation of ERK by H2O2 or by expression of MEKCA. We propose that phosphorylation of tropomyosin-1 downstream of ERK by contributing to formation of actin filaments increases cellular contractility and promotes the formation of focal adhesions. Incidentally, ML-7 (1-[5iodonaphthalene-1-sulfonyl]homopiperazine, HCl), an inhibitor of cell contractility, inhibited phosphorylation of tropomyosin and blocked the formation of stress fibers and focal adhesions, which also led to membrane blebbing in the presence of oxidative stress. Our finding that tropomyosin-1 is phosphorylated

  17. Troponin I Mutations R146G and R21C Alter Cardiac Troponin Function, Contractile Properties, and Modulation by Protein Kinase A (PKA)-mediated Phosphorylation*

    PubMed Central

    Cheng, Yuanhua; Rao, Vijay; Tu, An-yue; Lindert, Steffen; Wang, Dan; Oxenford, Lucas; McCulloch, Andrew D.; McCammon, J. Andrew; Regnier, Michael

    2015-01-01

    Two hypertrophic cardiomyopathy-associated cardiac troponin I (cTnI) mutations, R146G and R21C, are located in different regions of cTnI, the inhibitory peptide and the cardiac-specific N terminus. We recently reported that these regions may interact when Ser-23/Ser-24 are phosphorylated, weakening the interaction of cTnI with cardiac TnC. Little is known about how these mutations influence the affinity of cardiac TnC for cTnI (KC-I) or contractile kinetics during β-adrenergic stimulation. Here, we tested how cTnIR146G or cTnIR21C influences contractile activation and relaxation and their response to protein kinase A (PKA). Both mutations significantly increased Ca2+ binding affinity to cTn (KCa) and KC-I. PKA phosphorylation resulted in a similar reduction of KCa for all complexes, but KC-I was reduced only with cTnIWT. cTnIWT, cTnIR146G, and cTnIR21C were complexed into cardiac troponin and exchanged into rat ventricular myofibrils, and contraction/relaxation kinetics were measured ± PKA phosphorylation. Maximal tension (Tmax) was maintained for cTnIR146G- and cTnIR21C-exchanged myofibrils, and Ca2+ sensitivity of tension (pCa50) was increased. PKA phosphorylation decreased pCa50 for cTnIWT-exchanged myofibrils but not for either mutation. PKA phosphorylation accelerated the early slow phase relaxation for cTnIWT myofibrils, especially at Ca2+ levels that the heart operates in vivo. Importantly, this effect was blunted for cTnIR146G- and cTnIR21C-exchanged myofibrils. Molecular dynamics simulations suggest both mutations inhibit formation of intra-subunit contacts between the N terminus and the inhibitory peptide of cTnI that is normally seen with WT-cTn upon PKA phosphorylation. Together, our results suggest that cTnIR146G and cTnIR21C blunt PKA modulation of activation and relaxation kinetics by prohibiting cardiac-specific N-terminal interaction with the cTnI inhibitory peptide. PMID:26391394

  18. Cobalt chloride-mediated protein kinase Cα (PKCα) phosphorylation induces hypoxia-inducible factor 1α (HIF1α) in the nucleus of gastric cancer cell.

    PubMed

    Rath, Suvasmita; Anand, Aditya; Ghosh, Nilabh; Das, Lopamudra; Kokate, Shrikant B; Dixit, Pragyesh; Majhi, Swetapadma; Rout, Niranjan; Singh, Shivaram P; Bhattacharyya, Asima

    2016-02-26

    Hypoxia promotes cancer progression, and metastasis. The major protein expressed in hypoxic solid cancer is hypoxia-inducible factor 1 (HIF1). We show that enhanced phosphorylation of a conventional protein kinase C isoform, PKCα, at threonine 638 (T(638)) by hypoxia-mimetic cobalt chloride induces HIF1α in nuclei of gastric epithelial cells (GECs). Moreover, phospho-T(638)-PKCα (P-PKCα) interacts with p300-HIF1α complex in the nuclei of hypoxic GECs and PKCα phosphorylation at T(638) enhances transcriptional activity of HIF1α. High P-PKCα expression in neoplastic gastric cancer biopsy samples as compared to nonneoplastic samples suggests that P-PKCα might act as an indicator of gastric cancer progression.

  19. Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair.

    PubMed

    Malewicz, Michal; Kadkhodaei, Banafsheh; Kee, Nigel; Volakakis, Nikolaos; Hellman, Ulf; Viktorsson, Kristina; Leung, Chuen Yan; Chen, Benjamin; Lewensohn, Rolf; van Gent, Dik C; Chen, David J; Perlmann, Thomas

    2011-10-01

    DNA-dependent protein kinase (DNA-PK) is a central regulator of DNA double-strand break (DSB) repair; however, the identity of relevant DNA-PK substrates has remained elusive. NR4A nuclear orphan receptors function as sequence-specific DNA-binding transcription factors that participate in adaptive and stress-related cell responses. We show here that NR4A proteins interact with the DNA-PK catalytic subunit and, upon exposure to DNA damage, translocate to DSB foci by a mechanism requiring the activity of poly(ADP-ribose) polymerase-1 (PARP-1). At DNA repair foci, NR4A is phosphorylated by DNA-PK and promotes DSB repair. Notably, NR4A transcriptional activity is entirely dispensable in this function, and core components of the DNA repair machinery are not transcriptionally regulated by NR4A. Instead, NR4A functions directly at DNA repair sites by a process that requires phosphorylation by DNA-PK. Furthermore, a severe combined immunodeficiency (SCID)-causing mutation in the human gene encoding the DNA-PK catalytic subunit impairs the interaction and phosphorylation of NR4A at DSBs. Thus, NR4As represent an entirely novel component of DNA damage response and are substrates of DNA-PK in the process of DSB repair.

  20. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation

    PubMed Central

    Ye, Zhengxu; Huang, Jinghui; He, Fei; Xiao, Wei; Hu, Xueyu; Luo, Zhuojing

    2016-01-01

    Electrical stimulation (ES)-triggered up-regulation of brain-derived neurotrophic factor (BDNF) and neurite outgrowth in cultured rat postnatal dorsal root ganglion neurons (DRGNs) is calcium (Ca2+)-dependent. The effects of increased Ca2+ on BDNF up-regulation and neurite outgrowth remain unclear. We showed here that ES increased phosphorylation of the cAMP-response element binding protein (CREB). Blockade of Ca2+ suppressed CREB phosphorylation and neurite outgrowth. Down-regulation of phosphorylated (p)-CREB reduced BDNF transcription and neurite outgrowth triggered by ES. Furthermore, blockade of calmodulin-dependent protein kinase II (CaMKII) using the inhibitors KN93 or KN62 reduced p-CREB, and specific knockdown of the CaMKIIα or CaMKIIβ subunit was sufficient to suppress p-CREB. Recombinant BDNF or hyperforin reversed the effects of Ca2+ blockade and CaMKII knockdown. Taken together, these data establish a potential signaling pathway of Ca2+-CaMKII-CREB in neuronal activation. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent BDNF transcription and neurite outgrowth triggered by ES. These findings might help further investigation of complex molecular signaling networks in ES-triggered nerve regeneration in vivo. PMID:27611779

  1. MAPKAPK-2 modulates p38-MAPK localization and small heat shock protein phosphorylation but does not mediate the injury associated with p38-MAPK activation during myocardial ischemia

    PubMed Central

    Gorog, Diana A.; Jabr, Rita I; Tanno, Masaya; Sarafraz, Negin; Clark, James E.; Fisher, Simon G.; Cao, Xou Bin; Bellahcene, Mohamed; Dighe, Kushal; Kabir, Alamgir M. N.; Quinlan, Roy A.; Kato, Kanefusa; Gaestel, Matthias; Marber, Michael S.

    2009-01-01

    MAPKAPK-2 (MK2) is a protein kinase activated downstream of p38-MAPK which phosphorylates the small heat shock proteins HSP27 and αB crystallin and modulates p38-MAPK cellular distribution. p38-MAPK activation is thought to contribute to myocardial ischemic injury; therefore, we investigated MK2 effects on ischemic injury and p38 cellular localization using MK2-deficient mice (KO). Immunoblotting of extracts from Langendorff-perfused hearts subjected to aerobic perfusion or global ischemia or reperfusion showed that the total and phosphorylated p38 levels were significantly lower in MK2−/− compared to MK2+/+ hearts at baseline, but the ratio of phosphorylated/total p38 was similar. These results were confirmed by cellular fractionation and immunoblotting for both cytosolic and nuclear compartments. Furthermore, HSP27 and αB crsytallin phosphorylation were reduced to baseline in MK2−/− hearts. On semiquantitative immunofluorescence laser confocal microscopy of hearts during aerobic perfusion, the mean total p38 fluorescence was significantly higher in the nuclear compared to extranuclear (cytoplasmic, sarcomeric, and sarcolemmal compartments) in MK2+/+ hearts. However, although the increase in phosphorylated p38 fluorescence intensity in all compartments following ischemia in MK2+/+ hearts was lost in MK2−/− hearts, it was basally elevated in nuclei of MK2−/− hearts and was similar to that seen during ischemia in MK2+/+ hearts. Despite these differences, similar infarct volumes were recorded in wild-type MK2+/+ and MK2−/− hearts, which were decreased by the p38 inhibitor SB203580 (1 μM) in both genotypes. In conclusion, p38 MAPK-induced myocardial ischemic injury is not modulated by MK2. However, the absence of MK2 perturbs the cellular distribution of p38. The preserved nuclear distribution of active p38 MAPK in MK2−/− hearts and the conserved response to SB203580 suggests that activation of p38 MAPK may contribute to injury

  2. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    SciTech Connect

    Kim, Seon Sook; Lee, Eun Hye; Lee, Kooyeon; Jo, Su-Hyun; Seo, Su Ryeon

    2015-04-17

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression.

  3. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    PubMed

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  4. Protein Kinase RNA-Like Endoplasmic Reticulum Kinase-Mediated Bcl-2 Protein Phosphorylation Contributes to Evodiamine-Induced Apoptosis of Human Renal Cell Carcinoma Cells

    PubMed Central

    Wu, Wen-Shin; Chien, Chih-Chiang; Chen, Yen-Chou; Chiu, Wen-Ta

    2016-01-01

    We investigated the anticancer mechanism of evodiamine (EVO) against the viability of human A498 renal cell carcinoma (RCC) cells in vitro and in vivo. The in vitro study showed that EVO decreased the viability of A498 cells with the occurrence of apoptotic characteristics such as hypodiploid cells, DNA ladders, chromatin-condensed cells, and cleaved caspase (Casp)-3/poly(ADP ribose) polymerase (PARP) proteins. Pharmacological studies using chemical inhibitors of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) indicated that phosphorylation of the c-Jun N-terminal kinase (JNK) protein participated in EVO-induced cell death of A498 cells, and application of the JNK inhibitor, SP600125 (SP), inhibited EVO-induced cleavage of the Casp-3/PARP proteins and chromatin condensation according to Giemsa staining. EVO disruption of the mitochondrial membrane potential (MMP) with increased protein levels of the phosphorylated Bcl-2 protein (p-Bcl-2) was prevented by JNK inhibitors in A498 cells. A structure-activity relationship study showed that a methyl group at position 14 in EVO was important for its apoptotic effects and increased p-Bcl-2 protein in A498 cells. Furthermore, significant increases in the phosphorylated endoplasmic reticular stress protein, protein kinase RNA-like endoplasmic reticulum kinase (p-PERK at Thr980), by EVO were detected in A498 cells, and the PERK inhibitor, GSK2606414, significantly suppressed EVO-induced apoptosis, p-JNK, p-PERK, and cleaved PARP proteins. The in vivo study showed that EVO significantly reduced RCC growth elicited by a subcutaneous injection of A498 cells, and an increased protein level of p-PERK was observed according to an immunohistochemical analysis. Apoptosis by EVO was also demonstrated in other RCC cells such as 786-O, ACHN, and Caki-1 cells. This is the first study to demonstrate the anti-RCC effect of EVO via apoptosis in vitro and in vivo, and activation of JNK and PERK to induce Bcl-2

  5. Tyrosine phosphorylation of WW proteins

    PubMed Central

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  6. Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation

    SciTech Connect

    Aoyama, Kazumasa; Fukumoto, Yasunori; Ishibashi, Kenichi; Kubota, Sho; Morinaga, Takao; Horiike, Yasuyoshi; Yuki, Ryuzaburo; Takahashi, Akinori; Nakayama, Yuji; Yamaguchi, Naoto

    2011-12-10

    c-Abl tyrosine kinase, which is ubiquitously expressed, has three nuclear localization signals and one nuclear export signal and can shuttle between the nucleus and the cytoplasm. c-Abl plays important roles in cell proliferation, adhesion, migration, and apoptosis. Recently, we developed a pixel imaging method for quantitating the level of chromatin structural changes and showed that nuclear Src-family tyrosine kinases are involved in chromatin structural changes upon growth factor stimulation. Using this method, we show here that nuclear c-Abl induces chromatin structural changes in a manner dependent on the tyrosine kinase activity. Expression of nuclear-targeted c-Abl drastically increases the levels of chromatin structural changes, compared with that of c-Abl. Intriguingly, nuclear-targeted c-Abl induces heterochromatic profiles of histone methylation and acetylation, including hypoacetylation of histone H4 acetylated on lysine 16 (H4K16Ac). The level of heterochromatic histone modifications correlates with that of chromatin structural changes. Adriamycin-induced DNA damage stimulates translocation of c-Abl into the nucleus and induces chromatin structural changes together with H4K16 hypoacetylation. Treatment with trichostatin A, a histone deacetylase inhibitor, blocks chromatin structural changes but not nuclear tyrosine phosphorylation by c-Abl. These results suggest that nuclear c-Abl plays an important role in chromatin dynamics through nuclear tyrosine phosphorylation-induced heterochromatic histone modifications.

  7. Detection of a mitochondrial kinase complex that mediates PKA-MEK-ERK-dependent phosphorylation of mitochondrial proteins involved in the regulation of steroid biosynthesis.

    PubMed

    Paz, Cristina; Poderoso, Cecilia; Maloberti, Paula; Cornejo Maciel, Fabiana; Mendez, Carlos; Poderoso, Juan J; Podestá, Ernesto J

    2009-01-01

    In order to achieve the goal of this article, as an example we will describe the strategies followed to analyze the presence of the multi-kinase complex at the mitochondria and the posttranslational modification of two key mitochondrial proteins, which participate in the regulation of cholesterol transport across the mitochondrial membranes and in the regulation of steroid biosynthesis. Hormones, ions or growth factors modulate steroid biosynthesis by the posttranslational phosphorylation of proteins. The question still remains on how phosphorylation events transmit a specific signal to its mitochondrial site of action. Cholesterol transport requires specific interactions in mitochondria between several proteins including a multi-kinase complex. The presence of this multi-kinase complex at the mitochondria reveals the importance of the posttranslational modification of mitochondrial proteins for its activity and functions. The activation of PKA triggers the posttranslational modification of the mitochondrial acyl-CoA thioesterase (Acot2), which releases arachidonic acid (AA) in the mitochondria, and the activation of a kinase cascade that leads to the phoshorylation of the steroidogenic acute regulatory (StAR) protein. The function of StAR is to facilitate the access of cholesterol to the first enzyme of the biosynthesis process and its induction is dependent on Acot2 and intramitochondrial AA release. Truncation of the StAR protein is associated with the steroid deficiency disease, congenital lipoid adrenal hyperplasia.

  8. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.

    PubMed

    Liu, Ziyan; Jia, Yuxin; Ding, Yanglin; Shi, Yiting; Li, Zhen; Guo, Yan; Gong, Zhizhong; Yang, Shuhua

    2017-04-06

    In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.

  9. Repression of GCN5 Histone Acetyltransferase Activity via Bromodomain-Mediated Binding and Phosphorylation by the Ku–DNA-Dependent Protein Kinase Complex

    PubMed Central

    Barlev, Nickolai A.; Poltoratsky, Vladimir; Owen-Hughes, Tom; Ying, Carol; Liu, Lin; Workman, Jerry L.; Berger, Shelley L.

    1998-01-01

    GCN5, a putative transcriptional adapter in humans and yeast, possesses histone acetyltransferase (HAT) activity which has been linked to GCN5’s role in transcriptional activation in yeast. In this report, we demonstrate a functional interaction between human GCN5 (hGCN5) and the DNA-dependent protein kinase (DNA-PK) holoenzyme. Yeast two-hybrid screening detected an interaction between the bromodomain of hGCN5 and the p70 subunit of the human Ku heterodimer (p70-p80), which is the DNA-binding component of DNA-PK. Interaction between intact hGCN5 and Ku70 was shown biochemically using recombinant proteins and by coimmunoprecipitation of endogenous proteins following chromatography of HeLa nuclear extracts. We demonstrate that the catalytic subunit of DNA-PK phosphorylates hGCN5 both in vivo and in vitro and, moreover, that the phosphorylation inhibits the HAT activity of hGCN5. These findings suggest a possible regulatory mechanism of HAT activity. PMID:9488450

  10. PERK mediates eIF2α phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease.

    PubMed

    Devi, Latha; Ohno, Masuo

    2014-10-01

    Emerging evidence suggests that aberrant phosphorylation of eukaryotic initiation factor-2α (eIF2α) may induce synaptic failure and neurodegeneration through persistent translational inhibition of global protein synthesis. However, elevated phospho-eIF2α also paradoxically causes translational activation of a subset of messenger RNAs such as the β-secretase enzyme, β-site APP-cleaving enzyme 1 (BACE1) and cAMP response element binding protein (CREB) repressor, activating transcription factor 4 (ATF4). Therefore, we tested whether genetic reduction of the eIF2α kinase PERK may prevent these deleterious events and mitigate Alzheimer's disease (AD)-like neuropathology and cognitive impairments in the 5XFAD mouse model. PERK haploinsufficiency blocked overactivation of the PERK-eIF2α pathway, as evidenced by significant reductions in phosphorylation of PERK and eIF2α, in 5XFAD mice. PERK haploinsufficiency was sufficient to rescue memory deficits and cholinergic neurodegeneration in this AD model. Notably, PERK haploinsufficiency also prevented BACE1 elevations, resulting in reduced levels of amyloid-β peptides and plaque burden in 5XFAD mice. Moreover, CREB dysfunction was restored in PERK(+/-)·5XFAD mice concomitant with reversal of ATF4 upregulation. Together, these findings suggest that PERK may be a disease-modifying therapeutic target to prevent multiple memory-disrupting mechanisms associated with AD.

  11. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  12. PKCγ-mediated phosphorylation of GluA1 in the PSD of spinal dorsal horn neurons accompanies neuropathic pain and dephosphorylation by calcineurin is associated with prolonged analgesia

    PubMed Central

    Miletic, Gordana; Hermes, Jessie L.; Bosscher, Georgia L.; Meier, Brenton M.; Miletic, Vjekoslav

    2015-01-01

    Loss of calcineurin (protein phosphatase 3) activity and protein content in the post-synaptic density (PSD) of spinal dorsal horn neurons was associated with pain behavior following chronic constriction injury (CCI) of the rat sciatic nerve, and intrathecal administration of the phosphatase provided prolonged analgesia (Miletic et al., Pain 2013;154:2024-2033). In this study we examined if one consequence of the loss of calcineurin was the persistent phosphorylation of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid receptors (AMPAR) in the PSD. This would allow continual activation of AMPAR at the synapse to help maintain a long-lasting enhancement of synaptic function, i.e., neuropathic pain. We also investigated if the phosphorylation was mediated by protein kinase A (PKA), protein kinase C gamma (PKCγ) or calcium-calmodulin dependent kinase II (CaMKII), and if the prolonged calcineurin analgesia was associated with GluA1 dephosphorylation. Mechanical thresholds and thermal latencies were obtained before CCI. Seven days later the behavioral testing was repeated before saline, calcineurin or the specific peptide inhibitors of PKA (PKI-tide), PKCγ (PKC 19-31) or CaMKII (AIP-2) were injected intrathecally. The behavior was retested before the animals were euthanized and their PSD isolated. All CCI animals developed mechanical and thermal hypersensitivity. This was associated with phosphorylation of GluA1 in the ipsilateral PSD at Ser831 (but not Ser845) by PKCγ and not by PKA or CaMKII. Intrathecal treatment with calcineurin provided prolonged analgesia and this was accompanied by GluA1 dephosphorylation. Therapy with calcineurin may prove useful in the prolonged clinical management of well-established neuropathic pain. PMID:26270583

  13. Protein kinase C gamma-mediated phosphorylation of GluA1 in the postsynaptic density of spinal dorsal horn neurons accompanies neuropathic pain, and dephosphorylation by calcineurin is associated with prolonged analgesia.

    PubMed

    Miletic, Gordana; Hermes, Jessie L; Bosscher, Georgia L; Meier, Brenton M; Miletic, Vjekoslav

    2015-12-01

    Loss of calcineurin (protein phosphatase 3) activity and protein content in the postsynaptic density (PSD) of spinal dorsal horn neurons was associated with pain behavior after chronic constriction injury (CCI) of the rat sciatic nerve, and intrathecal administration of the phosphatase provided prolonged analgesia (Miletic et al. 2013). In this study, we examined whether one consequence of the loss of calcineurin was the persistent phosphorylation of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid (AMPAR) receptors in the PSD. This would allow continual activation of AMPAR receptors at the synapse to help maintain a long-lasting enhancement of synaptic function, ie, neuropathic pain. We also investigated if the phosphorylation was mediated by protein kinase A (PKA), protein kinase C gamma (PKCγ), or calcium-calmodulin dependent kinase II (CaMKII), and if the prolonged calcineurin analgesia was associated with GluA1 dephosphorylation. Mechanical thresholds and thermal latencies were obtained before CCI. Seven days later, the behavioral testing was repeated before saline, calcineurin, or the specific peptide inhibitors of PKA (PKI-tide), PKCγ (PKC 19-31), or CaMKII (autocamtide-2-related inhibitory peptide) were injected intrathecally. The behavior was retested before the animals were euthanized and their PSD isolated. All CCI animals developed mechanical and thermal hypersensitivity. This was associated with phosphorylation of GluA1 in the ipsilateral PSD at Ser831 (but not Ser845) by PKCγ and not by PKA or CaMKII. Intrathecal treatment with calcineurin provided prolonged analgesia, and this was accompanied by GluA1 dephosphorylation. Therapy with calcineurin may prove useful in the prolonged clinical management of well-established neuropathic pain.

  14. Skeletal muscle–specific eukaryotic translation initiation factor 2α phosphorylation controls amino acid metabolism and fibroblast growth factor 21–mediated non–cell-autonomous energy metabolism

    PubMed Central

    Miyake, Masato; Nomura, Akitoshi; Ogura, Atsushi; Takehana, Kenji; Kitahara, Yoshihiro; Takahara, Kazuna; Tsugawa, Kazue; Miyamoto, Chinobu; Miura, Naoko; Sato, Ryosuke; Kurahashi, Kiyoe; Harding, Heather P.; Oyadomari, Miho; Ron, David; Oyadomari, Seiichi

    2016-01-01

    The eukaryotic translation initiation factor 2α (eIF2α) phosphorylation-dependent integrated stress response (ISR), a component of the unfolded protein response, has long been known to regulate intermediary metabolism, but the details are poorly worked out. We report that profiling of mRNAs of transgenic mice harboring a ligand-activated skeletal muscle–specific derivative of the eIF2α protein kinase R-like ER kinase revealed the expected up-regulation of genes involved in amino acid biosynthesis and transport but also uncovered the induced expression and secretion of a myokine, fibroblast growth factor 21 (FGF21), that stimulates energy consumption and prevents obesity. The link between the ISR and FGF21 expression was further reinforced by the identification of a small-molecule ISR activator that promoted Fgf21 expression in cell-based screens and by implication of the ISR-inducible activating transcription factor 4 in the process. Our findings establish that eIF2α phosphorylation regulates not only cell-autonomous proteostasis and amino acid metabolism, but also affects non–cell-autonomous metabolic regulation by induced expression of a potent myokine.—Miyake, M., Nomura, A., Ogura, A., Takehana, K., Kitahara, Y., Takahara, K., Tsugawa, K., Miyamoto, C., Miura, N., Sato, R., Kurahashi, K., Harding, H. P., Oyadomari, M., Ron, D., Oyadomari, S. Skeletal muscle–specific eukaryotic translation initiation factor 2α phosphorylation controls amino acid metabolism and fibroblast growth factor 21–mediated non–cell-autonomous energy metabolism. PMID:26487695

  15. Serine 204 phosphorylation and O-β-GlcNAC interplay of IGFBP-6 as therapeutic indicator to regulate IGF-II functions in viral mediated hepatocellular carcinoma.

    PubMed

    Ahmad, Waqar; Shabbiri, Khadija; Ijaz, Bushra; Asad, Sultan; Nazar, Noreen; Nazar, Shazia; Fouzia, Kiran; Kausar, Humera; Gull, Sana; Sarwar, Muhammad T; Shahid, Imaran; Hassan, Sajida

    2011-05-08

    Hepatocellular carcinoma is mainly associated with viral hepatitis B and C. Activation of cell growth stimulator IGF-II gene is observed in tumor formation especially in viral associated hepatocellular carcinoma. Elevated IGF-II levels are indicator of increased risk for cholangiocellular and hepatocellular carcinomas through over saturation of IGF-II binding capacities with IGF receptors leading to cellular dedifferentiation. In HCV, core protein is believed to trans-activate host IGF-II receptor through PKC pathway and the inhibition of tumor cell growth can be achieved by blocking IGF-II pathway either at transcriptional level or increasing its binding with IGFBPs (Insulin like growth factor proteins) at C-terminal, so that it is not available in free form. IGFBP-6 is a specific inhibitor of IGF-II actions. Affinity of IGFBPs with IGFs is controlled by post-translational modifications. Phosphorylation of IGFBPs inhibits IGFs action on target cells while O-glycosylation prevents binding of IGFBP-6 to glycosaminoglycans and cell membranes and resulting in a 10-fold higher affinity for IGF-II. O-glycosylation and phosphorylation operate the functional expression of cellular proteins, this switching on and off the protein expression is difficult to monitor in vivo. By using neural network based prediction methods, we propose that alternate O-β-GlcNAc modification and phosphorylation on Ser 204 control the binding of IGFBP-6 with IGF-II. This information may be used for developing new therapies by regulating IGFBP-6 assembly with IGF-II to minimize the risk of viral associated hepatocellular carcinoma. We can conclude that during HCV/HBV infection, O-β-GlcNAc of IGFBP-6 at Ser 204 diminish their binding with IGF-II, increase IGF-II cellular expression and promote cancer progression which can lead to hepatocellular carcinoma. Furthermore, this site can be used for developing new therapies to control the IGF-II actions during viral infection to minimize the risk of

  16. Serine 204 phosphorylation and O-β-GlcNAC interplay of IGFBP-6 as therapeutic indicator to regulate IGF-II functions in viral mediated hepatocellular carcinoma

    PubMed Central

    2011-01-01

    Hepatocellular carcinoma is mainly associated with viral hepatitis B and C. Activation of cell growth stimulator IGF-II gene is observed in tumor formation especially in viral associated hepatocellular carcinoma. Elevated IGF-II levels are indicator of increased risk for cholangiocellular and hepatocellular carcinomas through over saturation of IGF-II binding capacities with IGF receptors leading to cellular dedifferentiation. In HCV, core protein is believed to trans-activate host IGF-II receptor through PKC pathway and the inhibition of tumor cell growth can be achieved by blocking IGF-II pathway either at transcriptional level or increasing its binding with IGFBPs (Insulin like growth factor proteins) at C-terminal, so that it is not available in free form. IGFBP-6 is a specific inhibitor of IGF-II actions. Affinity of IGFBPs with IGFs is controlled by post-translational modifications. Phosphorylation of IGFBPs inhibits IGFs action on target cells while O-glycosylation prevents binding of IGFBP-6 to glycosaminoglycans and cell membranes and resulting in a 10-fold higher affinity for IGF-II. O-glycosylation and phosphorylation operate the functional expression of cellular proteins, this switching on and off the protein expression is difficult to monitor in vivo. By using neural network based prediction methods, we propose that alternate O-β-GlcNAc modification and phosphorylation on Ser 204 control the binding of IGFBP-6 with IGF-II. This information may be used for developing new therapies by regulating IGFBP-6 assembly with IGF-II to minimize the risk of viral associated hepatocellular carcinoma. We can conclude that during HCV/HBV infection, O-β-GlcNAc of IGFBP-6 at Ser 204 diminish their binding with IGF-II, increase IGF-II cellular expression and promote cancer progression which can lead to hepatocellular carcinoma. Furthermore, this site can be used for developing new therapies to control the IGF-II actions during viral infection to minimize the risk of

  17. Genome-wide analysis of regulation of gene expression and H3K9me2 distribution by JIL-1 kinase mediated histone H3S10 phosphorylation in Drosophila

    PubMed Central

    Cai, Weili; Wang, Chao; Li, Yeran; Yao, Changfu; Shen, Lu; Liu, Sanzhen; Bao, Xiaomin; Schnable, Patrick S.; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M.

    2014-01-01

    In this study we have determined the genome-wide relationship of JIL-1 kinase mediated H3S10 phosphorylation with gene expression and the distribution of the epigenetic H3K9me2 mark. We show in wild-type salivary gland cells that the H3S10ph mark is predominantly enriched at active genes whereas the H3K9me2 mark is largely associated with inactive genes. Comparison of global transcription profiles in salivary glands from wild-type and JIL-1 null mutant larvae revealed that the expression levels of 1539 genes changed at least 2-fold in the mutant and that a substantial number (49%) of these genes were upregulated whereas 51% were downregulated. Furthermore, the results showed that downregulation of genes in the mutant was correlated with higher levels or acquisition of the H3K9me2 mark whereas upregulation of a gene was correlated with loss of or diminished H3K9 dimethylation. These results are compatible with a model where gene expression levels are modulated by the levels of the H3K9me2 mark independent of the state of the H3S10ph mark, which is not required for either transcription or gene activation to occur. Rather, H3S10 phosphorylation functions to indirectly maintain active transcription by counteracting H3K9 dimethylation and gene silencing. PMID:24598257

  18. Genome-wide analysis of regulation of gene expression and H3K9me2 distribution by JIL-1 kinase mediated histone H3S10 phosphorylation in Drosophila.

    PubMed

    Cai, Weili; Wang, Chao; Li, Yeran; Yao, Changfu; Shen, Lu; Liu, Sanzhen; Bao, Xiaomin; Schnable, Patrick S; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M

    2014-05-01

    In this study we have determined the genome-wide relationship of JIL-1 kinase mediated H3S10 phosphorylation with gene expression and the distribution of the epigenetic H3K9me2 mark. We show in wild-type salivary gland cells that the H3S10ph mark is predominantly enriched at active genes whereas the H3K9me2 mark is largely associated with inactive genes. Comparison of global transcription profiles in salivary glands from wild-type and JIL-1 null mutant larvae revealed that the expression levels of 1539 genes changed at least 2-fold in the mutant and that a substantial number (49%) of these genes were upregulated whereas 51% were downregulated. Furthermore, the results showed that downregulation of genes in the mutant was correlated with higher levels or acquisition of the H3K9me2 mark whereas upregulation of a gene was correlated with loss of or diminished H3K9 dimethylation. These results are compatible with a model where gene expression levels are modulated by the levels of the H3K9me2 mark independent of the state of the H3S10ph mark, which is not required for either transcription or gene activation to occur. Rather, H3S10 phosphorylation functions to indirectly maintain active transcription by counteracting H3K9 dimethylation and gene silencing.

  19. ROS inhibit autophagy by downregulating ULK1 mediated by the phosphorylation of p53 in selenite-treated NB4 cells.

    PubMed

    Ci, Y; Shi, K; An, J; Yang, Y; Hui, K; Wu, P; Shi, L; Xu, C

    2014-11-27

    Reactive oxygen species (ROS) have an important role in regulating various cellular processes. Our previous study confirmed that selenite, an anti-tumour agent, triggered apoptosis through the production of ROS in multiple types of cancer cells. In this study, we discovered that ROS also inhibited protective autophagy by decreasing the expression of ULK1, an initiator of autophagy, in selenite-treated NB4 cells. Further experiments demonstrated that p-p53 (S392), a phosphorylation event promoted by p70S6K, bound to the promoter of ULK1 and modulated its expression. Experiments in a mouse tumour model with NB4 cells provided in vivo confirmation of the alterations in the p70S6K/p53/ULK1 axis. Collectively, our results show that ROS inhibited autophagy by downregulating the p70S6K/p53/ULK1 axis in selenite-treated NB4 cells.

  20. Phosphorylation of cofilin-1 by ERK confers HDAC inhibitor resistance in hepatocellular carcinoma cells via decreased ROS-mediated mitochondria injury.

    PubMed

    Liao, P-H; Hsu, H-H; Chen, T-S; Chen, M-C; Day, C-H; Tu, C-C; Lin, Y-M; Tsai, F-J; Kuo, W-W; Huang, C-Y

    2017-04-06

    Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Despite the availability of several treatment strategies, resistance to chemotherapeutic agents, which limits the effectiveness of anticancer drugs, is a major problem in cancer therapy. In this study, we used a histone deacetylases inhibitor (HDACi) to establish drug-resistant HCC cells and further analyzed the molecular mechanisms underlying the development of resistance in HCC cells. Compared with the parental cells, HDACi-resistant cells showed high metastatic and pro-survival abilities. Two-dimensional electrophoresis data showed that the cofilin-1 (CFL-1) protein was altered in HDACi-resistant cells and was highly expressed in resistant cells compared with parental cells. The molecular function of CFL-1 is actin depolymerization, and it is involved in tumor metastasis. In this study, we showed that CFL-1 inhibition decreased cell migration and increased cell apoptosis in HDACi-resistant cells. We observed that HDACi induced ROS accumulation in cells and apoptosis via promotion of the CFL-1 interaction with Bax and CFL-1 translocation to the mitochondria, resulting in cytochrome C release. Importantly, phosphorylation of CFL-1 by activated extracellular signal-regulated kinases 1 and 2 (ERK1/2) confers strong protection against HDAC inhibitor-induced cell injury. p-CFL-1 shows a loss of affinity with Bax and will not translocate to mitochondria, stably remaining in the cytoplasm. These results indicate that phosphorylation to inactivate CFL-1 decreased the chemosensitivity to HDAC inhibitors and resulting in drug resistance of HCC cells.

  1. CDK5-mediated phosphorylation of p19INK4d avoids DNA damage-induced neurodegeneration in mouse hippocampus and prevents loss of cognitive functions.

    PubMed

    Ogara, María Florencia; Belluscio, Laura M; de la Fuente, Verónica; Berardino, Bruno G; Sonzogni, Silvina V; Byk, Laura; Marazita, Mariela; Cánepa, Eduardo T

    2014-07-01

    DNA damage, which perturbs genomic stability, has been linked to cognitive decline in the aging human brain, and mutations in DNA repair genes have neurological implications. Several studies have suggested that DNA damage is also increased in brain disorders such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise mechanisms connecting DNA damage with neurodegeneration remain poorly understood. CDK5, a critical enzyme in the development of the central nervous system, phosphorylates a number of synaptic proteins and regulates dendritic spine morphogenesis, synaptic plasticity and learning. In addition to these physiological roles, CDK5 has been involved in the neuronal death initiated by DNA damage. We hypothesized that p19INK4d, a member of the cell cycle inhibitor family INK4, is involved in a neuroprotective mechanism activated in response to DNA damage. We found that in response to genotoxic injury or increased levels of intracellular calcium, p19INK4d is transcriptionally induced and phosphorylated by CDK5 which provides it with greater stability in postmitotic neurons. p19INK4d expression improves DNA repair, decreases apoptosis and increases neuronal survival under conditions of genotoxic stress. Our in vivo experiments showed that decreased levels of p19INK4d rendered hippocampal neurons more sensitive to genotoxic insult resulting in the loss of cognitive abilities that rely on the integrity of this brain structure. We propose a feedback mechanism by which the neurotoxic effects of CDK5-p25 activated by genotoxic stress or abnormal intracellular calcium levels are counteracted by the induction and stabilization of p19INK4d protein reducing the adverse consequences on brain functions.

  2. Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin

    PubMed Central

    1991-01-01

    Antibodies producing an unusual immunofluorescent pattern were identified in the sera of patients with diverse autoimmune features. This pattern was characterized by the presence of up to six round discrete nuclear bodies in interphase cell nuclei. Immunoblotting analysis showed that these sera recognized an 80-kD nuclear protein, and affinity-purified anti-p80 antibody from the protein band reproduced the fluorescent staining of nuclear bodies. Colloidal gold immunoelectron microscopy showed that the affinity-purified anti-p80 antibody recognized the coiled body, an ultramicroscopic nuclear structure probably first described by the Spanish cytologist Ramon y Cajal. Five cDNA clones were isolated from a MOLT-4 cell lambda gt-11 expression library using human antibody and oligonucleotide probes. The longest cDNA insert was 2.1 kb and had an open reading frame of 405 amino acids. A clone encoding a 14-kD COOH-terminal region of the protein was used for expression of a beta-galactosidase fusion protein. An epitope was present in this COOH-terminal 14-kD region, which was recognized by 18 of 20 sera with anti-p80 reactivity, and affinity- purified antibody from the recombinant protein also reacted in immunofluorescence to show specific staining of the coiled body. This is the first demonstration and molecular cloning of a protein that appears to have particular identification with the coiled body, and it was designated p80-coilin. Autoantibody to p80-coilin may be useful for the elucidation of the structure and function of the coiled body, and the availability of a cDNA sequence could be helpful in further studies to clarify the clinical significance of this autoantibody response. PMID:2033369

  3. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases.

    PubMed

    Mistafa, Oras; Ghalali, Aram; Kadekar, Sandeep; Högberg, Johan; Stenius, Ulla

    2010-09-03

    Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3-5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21(cip1) complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.

  4. Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer.

    PubMed

    Basbous, Jihane; Chalbos, Dany; Hipskind, Robert; Jariel-Encontre, Isabelle; Piechaczyk, Marc

    2007-06-01

    Fra-1, a transcription factor that is phylogenetically and functionally related to the proto-oncoprotein c-Fos, controls many essential cell functions. It is expressed in many cell types, albeit with differing kinetics and abundances. In cells reentering the cell cycle, Fra-1 expression is transiently stimulated albeit later than that of c-Fos and for a longer time. Moreover, Fra-1 overexpression is found in cancer cells displaying high Erk1/2 activity and has been linked to tumorigenesis. One crucial point of regulation of Fra-1 levels is controlled protein degradation, the mechanism of which remains poorly characterized. Here, we have combined genetic, pharmacological, and signaling studies to investigate this process in nontransformed cells and to elucidate how it is altered in cancer cells. We report that the intrinsic instability of Fra-1 depends on a single destabilizer contained within the C-terminal 30 to 40 amino acids. Two serines therein, S252 and S265, are phosphorylated by kinases of the Erk1/2 pathway, which compromises protein destruction upon both normal physiological induction and tumorigenic constitutive activation of this cascade. Our data also indicate that Fra-1, like c-Fos, belongs to a small group of proteins that may, under certain circumstances, undergo ubiquitin-independent degradation by the proteasome. Our work reveals both similitudes and differences between Fra-1 and c-Fos degradation mechanisms. In particular, the presence of a single destabilizer within Fra-1, instead of two that are differentially regulated in c-Fos, explains the much faster turnover of the latter when cells traverse the G(0)/G(1)-to-S-phase transition. Finally, our study offers further insights into the signaling-regulated expression of the other Fos family proteins.

  5. Herbal formulation, Yukmi-jihang-tang-Jahage, regulates bone resorption by inhibition of phosphorylation mediated by tyrosine kinase Src and cyclooxygenase expression.

    PubMed

    Jin, Un-Ho; Kim, Dong-Il; Lee, Tae-Kyun; Lee, Dong-Nyung; Kim, June-Ki; Lee, In-Seon; Kim, Cheorl-Ho

    2006-07-19

    Anti-bone resorption properties of the Korean herbal medicine, Yukmi-jihang-tang (YJ), which is comprised of seven herbs such as Rehmannia glutinosa Libosch, Dioscorea japonica THUNB, Cornus officinalis SIEB et. ZUCC, Smilax glabra ROXB, Paeonia suffruticosa ANDR, Alisma platago-aquatica var. orientale SAMUELS and Hominis placenta, were investigated. Cyclooxygenase-2 (COX-2) and tyrosine kinase involve on prostaglandin E2 (PGE2) production in mouse calvarial osteoblasts stimulated by cytokine interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and/or interleukin-6 (IL-6). IL-1beta and IL-6 and to a lesser extent TNF-alpha, enhanced COX-2 mRNA levels in calvarial osteoblasts. TGF-beta, YJ (100microg/ml) and their combinations of YJ+TGF-beta reduced the COX-2 mRNA level, PGE2 biosynthesis and bone resorption induced by IL-1beta, TNF-alpha, IL-6 or their combination. Finally, YJ inhibits in vitro and in vivo bone resorption by inhibition of phosphorylation of peptide substrates. The parathyroid hormone-induced bone resorption in mouse fetal long bone cultures was inhibited with an IC(50) of 16microg/ml. YJ dose-dependently reduced the hypercalcemia induced in mice by IL-1beta and partly prevented bone loss and microarchitectural changes in young ovariectomized rats, showing that the protective effect on bone was exerted via the inhibition of bone resorption. These results indicate that the synergy between IL-beta, TNF-alpha, IL-6 on PGE2 production is due to an enhanced gene expression of COX-2 and that tyrosine kinase(s) are involved in the signal transduction of COX-2 in mouse calvarial osteoblasts. Thus, YJ as a possible Src family kinase inhibitor may be useful for the treatment of diseases associated with elevated bone loss. This result also suggested that the YJ extracts is effective for bone resorptive action in bone cells.

  6. Examining site-specific GPCR phosphorylation.

    PubMed

    Butcher, Adrian J; Tobin, Andrew B; Kong, Kok Choi

    2011-01-01

    Phosphorylation of G protein-coupled receptors (GPCRs) is one of the most prominent post-translation modifications mediated by agonist stimulation. This process has been shown to result not only in receptor desensitisation but also, via the recruitment of arrestin adaptor proteins, to promote receptor coupling to numerous signalling pathways. Furthermore, there is now a growing body of evidence suggesting that GPCRs may employ phosphorylation as a mechanism to regulate their cell-type-specific signalling, hence generating tissue-specific functions. These advances have resulted partly from improved methods used in the determination of phospho-acceptor sites on GPCRs and improved analysis of the consequences of phosphorylation. This chapter aims to describe the methods used in our laboratory for the investigation of site-specific phosphorylation of the M₃-muscarinic receptor. These methods could easily be applied in the study of other receptors.

  7. Importance of tyrosine phosphorylation in receptor kinase complexes.

    PubMed

    Macho, Alberto P; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-05-01

    Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants.

  8. Inhibition of 4EBP phosphorylation mediates the cytotoxic effect of mechanistic target of rapamycin kinase inhibitors in aggressive B-cell lymphomas.

    PubMed

    Bi, Chengfeng; Zhang, Xuan; Lu, Ting; Zhang, Xiaoyan; Wang, Xianhuo; Meng, Bin; Zhang, Huilai; Wang, Ping; Vose, Julie M; Chan, Wing C; McKeithan, Timothy W; Fu, Kai

    2017-04-01

    Mechanistic target of rapamycin (mTOR) complex 1 is a central integrator of nutrient and growth factor inputs that controls cell growth in eukaryotes. The second generation of mTOR kinase inhibitors (TORKi), directly targeting the mTOR catalytic site, are more effective than rapamycin and its analogs in cancer treatment, particularly in inducing apoptosis. However, the mechanism underlying the cytotoxic effect of TORKi remains elusive. Herein, we demonstrate that TORKi-induced apoptosis is predominantly dependent on the loss of mTOR complex 1-mediated 4EBP activation. Knocking out RICTOR, a key component of mTOR complex 2, or inhibiting p70S6K has little effect on TORKi-induced apoptosis. Conversely, increasing the eIF4E:4EBP ratio by either overexpressing eIF4E or knocking out 4EBP1/2 protects lymphoma cells from TORKi-induced cytotoxicity. Furthermore, downregulation of MCL1 expression plays an important role in TORKi-induced apoptosis, whereas BCL-2 overexpression confers resistance to TORKi treatment. We further show that the therapeutic effect of TORKi in aggressive B-cell lymphomas can be predicted by BH3 profiling, and improved by combining it with pro-apoptotic drugs, especially BCL-2 inhibitors, both in vitro and in vivo Taken together, the study herein provides mechanistic insight into TORKi cytotoxicity and identified a potential way to optimize its efficacy in the clinical treatment of aggressive B-cell lymphoma.

  9. [Phosphorylation of tau protein].

    PubMed

    Uchida, T; Ishiguro, K

    1990-05-01

    In aged human brain and particularly in Alzheimer's disease brain, paired helical filaments (PHFs) accumulate in the neuronal cell. Recently, it has been found that the highly phosphorylated tau protein, one of the microtubule-associated proteins (MAPs), is a component of PHF. The authors attempted to clarify the mechanism underlying the accumulation of PHF from the following two aspects; 1) What is the mechanism of phosphorylation of tau protein? 2) Is the highly phosphorylated tau protein capable of forming PHFs? From rat or bovine microtubule proteins we partially purified and characterized a novel protein kinase that specifically phosphorylated tau and MAP2 among many proteins in the brain extract, and which formed a PHF epitope on the phosphorylated human tau. This enzyme was one of the protein serine/threonine kinases and was independent of known second messengers. The phosphorylation of tau by this enzyme was stimulated by tubulin under the condition of microtubule formation, suggesting that the phosphorylation of tau could occur concomitantly with microtubule formation in the brain. Since this kinase was usually bound to tau but not directly to tubulin, the enzyme was associated with microtubules through tau. From these properties related to tau, this kinase is designated as tau protein kinase. The tau that been phosphorylated with this kinase using [gamma-32P]ATP as a phosphate donor, was digested by endoprotinase Lys-C to produce three labeled fragments, K1, K2 and K3. These three fragments were sequenced and the phosphorylation sites on tau by this kinase were identified. The K2 fragment overlapped with the tau-1 site known to be one of the phosphorylation site in PHF. This result strengthens the possibility that tau protein phosphorylated by tau protein kinase is incorporated into PHF. Tubulin binding sites on tau were located between K1 and K3 fragments, while K2 fragment was located in the neighboring to N-terminus of K1. No phosphorylated sites were

  10. 5-HT1A receptor-mediated phosphorylation of extracellular signal-regulated kinases (ERK1/2) is modulated by regulator of G protein signaling protein 19.

    PubMed

    Wang, Qin; Terauchi, Akiko; Yee, Christopher H; Umemori, Hisashi; Traynor, John R

    2014-09-01

    The 5-HT1A receptor is a G protein coupled receptor (GPCR) that activates G proteins of the Gαi/o family. 5-HT1A receptors expressed in the raphe, hippocampus and prefrontal cortex are implicated in the control of mood and are targets for anti-depressant drugs. Regulators of G protein signaling (RGS) proteins are members of a large family that play important roles in signal transduction downstream of G protein coupled receptors (GPCRs). The main role of RGS proteins is to act as GTPase accelerating proteins (GAPs) to dampen or negatively regulate GPCR-mediated signaling. We have shown that a mouse expressing Gαi2 that is insensitive to all RGS protein GAP activity has an anti-depressant-like phenotype due to increased signaling of postsynaptic 5-HT1A receptors, thus implicating the 5-HT1A receptor-Gαi2 complex as an important target. Here we confirm that RGS proteins act as GAPs to regulate signaling to adenylate cyclase and the mitogen-activated protein kinase (MAPK) pathway downstream of the 5-HT1A receptor, using RGS-insensitive Gαi2 protein expressed in C6 cells. We go on to use short hairpin RNA (shRNA) to show that RGS19 is responsible for the GAP activity in C6 cells and also that RGS19 acts as a GAP for 5-HT1A receptor signaling in human neuroblastoma SH-SY5Y cells and primary hippocampal neurons. In addition, in both cell types the synergy between 5-HT1A receptor and the fibroblast growth factor receptor 1 in stimulating the MAPK pathway is enhanced following shRNA reduction of RGS19 expression. Thus RGS19 may be a viable new target for anti-depressant medications.

  11. Vasopressin induces dopamine release and cyclic AMP efflux from the brain of water-deprived rats: inhibitory effect of vasopressin V2 receptor-mediated phosphorylation.

    PubMed

    Tyagi, M G; Handa, R K; Stephen, P M; Bapna, J S

    1998-01-01

    The neurohypophyseal hormone vasopressin (AVP) is widely distributed throughout the central nervous system. It acts as an excitatory transmitter in the CNS and plays an important physiological role in water and electrolyte homeostasis. However, water deprivation has been shown to induce changes in the levels of monoamines, but there is little knowledge about the influence of AVP on monoamine levels after water deprivation. In this study, we investigated the effect of AVP and its receptor antagonists on alterations in dopamine (DA) release and cyclic adenosine 3',5' monophosphate (cAMP) efflux from rat brain slices following water deprivation. Striatal brain slices (500 microm thick) were incubated in a medium with or without AVP (0. 1-1.0 microM) for 30 min. After 2 h of washout in normal medium, high KCl (40 mM)-evoked DA release and cAMP efflux from the rat brain slices were examined. In the brain slices of euhydrated animals, treatment with AVP slightly altered DA release and cAMP efflux from the brain. This increase in DA release and cAMP efflux was not significantly affected by the addition of a calcium/calmodulin-dependent protein phosphatase, calcineurin (20 microM), to the incubation medium or either by a V1 or V2 AVP receptor antagonist. In contrast, AVP significantly increased the DA release and enhanced the cAMP efflux from the brain slices of water-deprived animals. The AVP-induced increase of brain response in the water-deprived animals was significantly attenuated by a V2 receptor antagonist, partially by calcineurin, but not by a V1 receptor antagonist. The present results suggest that AVP may play a role in water-deprivation-induced DA release and cAMP efflux, which is possibly mediated through the activation of the V2 receptor. The V2 receptor action is attenuated by calcium/calmodulin-dependent dephosphorlyation of some cellular proteins critical for signal transduction.

  12. Transduction of Growth or Mitogenic Signals into Translational Activation of TOP mRNAs Is Fully Reliant on the Phosphatidylinositol 3-Kinase-Mediated Pathway but Requires neither S6K1 nor rpS6 Phosphorylation

    PubMed Central

    Stolovich, Miri; Tang, Hua; Hornstein, Eran; Levy, Galit; Cohen, Ruth; Bae, Sun Sik; Birnbaum, Morris J.; Meyuhas, Oded

    2002-01-01

    Translation of terminal oligopyrimidine tract (TOP) mRNAs, which encode multiple components of the protein synthesis machinery, is known to be controlled by mitogenic stimuli. We now show that the ability of cells to progress through the cell cycle is not a prerequisite for this mode of regulation. TOP mRNAs can be translationally activated when PC12 or embryonic stem (ES) cells are induced to grow (increase their size) by nerve growth factor and retinoic acid, respectively, while remaining mitotically arrested. However, both growth and mitogenic signals converge via the phosphatidylinositol 3-kinase (PI3-kinase)-mediated pathway and are transduced to efficiently translate TOP mRNAs. Translational activation of TOP mRNAs can be abolished by LY294002, a PI3-kinase inhibitor, or by overexpression of PTEN as well as by dominant-negative mutants of PI3-kinase or its effectors, PDK1 and protein kinase Bα (PKBα). Likewise, overexpression of constitutively active PI3-kinase or PKBα can relieve the translational repression of TOP mRNAs in quiescent cells. Both mitogenic and growth signals lead to phosphorylation of ribosomal protein S6 (rpS6), which precedes the translational activation of TOP mRNAs. Nevertheless, neither rpS6 phosphorylation nor its kinase, S6K1, is essential for the translational response of these mRNAs. Thus, TOP mRNAs can be translationally activated by growth or mitogenic stimuli of ES cells, whose rpS6 is constitutively unphosphorylated due to the disruption of both alleles of S6K1. Similarly, complete inhibition of mammalian target of rapamycin (mTOR) and its effector S6K by rapamycin in various cell lines has only a mild repressive effect on the translation of TOP mRNAs. It therefore appears that translation of TOP mRNAs is primarily regulated by growth and mitogenic cues through the PI3-kinase pathway, with a minor role, if any, for the mTOR pathway. PMID:12417714

  13. The Neuroprotective Effect of Lithium in cannabinoid Dependence is Mediated through Modulation of Cyclic AMP, ERK1/2 and GSK-3β Phosphorylation in Cerebellar Granular Neurons of Rat

    PubMed Central

    Rahimi, Hamid Reza; Ghahremani, Mohammad Hossein; Dehpour, Ahmad Reza; Sharifzadeh, Mohammad; Ejtemaei-Mehr, Shahram; Razmi, Ali; Ostad, Seyed Nasser

    2015-01-01

    Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate the cannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this are unclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2) and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. This is mediated through cannabinoid receptor 1 (CB1) enriched in cerebellar granular neurons (CGNs). Accordingly, the present study aimed to investigate the mechanism of modulatory/neuroprotective effects of Li on a cannabinoid agonist (WIN 55,212-2 (WIN))-induced dependence, through quantitative analysis of some involved proteins such as ERK1/2, GSK-3β and related signaling pathways including their phosphorylated forms; and cAMP level as the other molecular mechanisms leading to dependence, in CGNs model. The CGNs were prepared from 7-day-old Wistar rat pup in a 12-well plate, pretreated with Li (1mM) and an ERK1/2 inhibitor SL327 (SL, 10 µM). The WIN (1 µM) was added 30 minutes prior to treatment and AM251 (AM, 1 µM), as a cannabinoid antagonist was co-treated with WIN. The cAMP level, as an indicator of cannabinoid-induced dependence, was measured by ELISA following forskolin (FSK) stimulation. Western blot analyses determined the phosphorylated forms of ERK1/2 (p-ERK1/2), GSK-3β (p-GSK-3β) as well as their total expressions in various treatment times and doses in CGNs. WIN alone could down regulate the cAMP/p-ERK1/2 cascade compared to AM treatment. However, P-GSK-3β was up-regulated with Li and WIN or with SL and Li pretreatment to AM-induced cellular response, which was the highest 60 minutes after CGNs exposure. Results further suggested the potential role of Li pretreatment to diminish the development of cannabinoid-induced dependence/neuronal injury through possible mechanisms of modulating the cAMP/p-ERK1/2 cascade independent of p-GSK-3β signaling pathway in-vitro. PMID:26664379

  14. Sequential Phosphorylation of Smoothened Transduces Graded Hedgehog Signaling

    PubMed Central

    Su, Ying; Ospina, Jason K.; Zhang, Junzheng; Michelson, Andrew P.; Schoen, Adam M.; Zhu, Alan Jian

    2012-01-01

    The correct interpretation of a gradient of the morphogen Hedgehog (Hh) during development requires phosphorylation of the Hh signaling activator Smoothened (Smo); however, the molecular mechanism by which Smo transduces graded Hh signaling is not well understood. We show that regulation of the phosphorylation status of Smo by distinct phosphatases at specific phosphorylated residues creates differential thresholds of Hh signaling. Phosphorylation of Smo was initiated by adenosine 3′,5′-monophosphate (cAMP)–dependent protein kinase (PKA) and further enhanced by casein kinase I (CKI). We found that protein phosphatase 1 (PP1) directly dephosphorylated PKA-phosphorylated Smo to reduce signaling mediated by intermediate concentrations of Hh, whereas PP2A specifically dephosphorylated PKA-primed, CKI-phosphorylated Smo to restrict signaling by high concentrations of Hh. We also established a functional link between sequentially phosphorylated Smo species and graded Hh activity. Thus, we propose a sequential phosphorylation model in which precise interpretation of morphogen concentration can be achieved upon versatile phosphatase-mediated regulation of the phosphorylation status of an essential activator in developmental signaling. PMID:21730325

  15. Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins ezrin/radixin/moesin by mammalian Ste20-4 to protect cells from oxidative stress.

    PubMed

    Fidalgo, Miguel; Guerrero, Ana; Fraile, María; Iglesias, Cristina; Pombo, Celia M; Zalvide, Juan

    2012-03-30

    While studying the functions of CCM3/PDCD10, a gene encoding an adaptor protein whose mutation results in vascular malformations, we have found that it is involved in a novel response to oxidative stress that results in phosphorylation and activation of the ezrin/radixin/moesin (ERM) family of proteins. This phosphorylation protects cells from accidental cell death induced by oxidative stress. We also present evidence that ERM phosphorylation is performed by the GCKIII kinase Mst4, which is activated and relocated to the cell periphery after oxidative stress. The cellular levels of Mst4 and its activation after oxidative stress depend on the presence of CCM3, as absence of the latter impairs the phosphorylation of ERM proteins and enhances death of cells exposed to reactive oxygen species. These findings shed new light on the response of cells to oxidative stress and identify an important pathophysiological situation in which ERM proteins and their phosphorylation play a significant role.

  16. LRRK2 Mediated Changes in TAU Phosphorylation

    DTIC Science & Technology

    2012-10-01

    c ausative factor for inherited PD [1-4] and in multiple Genome Wide Association Studies ( GWAS ) it has also been found to be associated with PD [5...Kwok, H.H., Tan, L.C., Zhao, W.T., Prakash, K.M., Au, W.L., Pavanni, R., Ng, Y.Y., Satake, W., Zhao, Y., et al. (2010). Analysis of GWAS -linked

  17. Phosphorylation: Implications in Cancer.

    PubMed

    Singh, Vishakha; Ram, Mahendra; Kumar, Rajesh; Prasad, Raju; Roy, Birendra Kumar; Singh, Kaushal Kumar

    2017-02-01

    Post translational modifications (PTMs) are involved in variety of cellular activities and phosphorylation is one of the most extensively studied PTM, which regulates a number of cellular functions like cell growth, differentiation, apoptosis and cell signaling in healthy condition. However, alterations in phosphorylation pathways result in serious outcomes in the form of diseases, especially cancer. Many signalling pathways including Tyrosine kinase, MAP kinase, Cadherin-catenin complex, Cyclin-dependent kinase etc. are major players of the cell cycle and deregulation in their phosphorylation-dephosphorylation cascade has been shown to be manifested in the form of various types of cancers. Tyrosine kinase family encompasses the greatest number of oncoproteins. MAPK cascade has an importance role in cancer growth and progression. Bcl-2 family proteins serve either proapoptotic or antiapoptotic function. Cadherin-catenin complex regulates cell adhesion properties and cyclins are the key regulators of cell cycle. Altered phosphorylations in any of the above pathways are strongly associated with cancer, at the same time they serve as the potential tergets for drug development against cancer. Drugs targeting tyrosine kinase are potent anticancer drugs. Inhibitors of MEK, PI3K and ERK signalling pathways are undergoing clinical trials. Thus, drugs targeting phosphorylation pathways represent a promising area for cancer therapy.

  18. Starch phosphorylation: insights and perspectives.

    PubMed

    Mahlow, Sebastian; Orzechowski, Sławomir; Fettke, Joerg

    2016-07-01

    During starch metabolism, the phosphorylation of glucosyl residues of starch, to be more precise of amylopectin, is a repeatedly observed process. This phosphorylation is mediated by dikinases, the glucan, water dikinase (GWD) and the phosphoglucan, water dikinase (PWD). The starch-related dikinases utilize ATP as dual phosphate donor transferring the terminal γ-phosphate group to water and the β-phosphate group selectively to either C6 position or C3 position of a glucosyl residue within amylopectin. By the collaborative action of both enzymes, the initiation of a transition of α-glucans from highly ordered, water-insoluble state to a less order state is realized and thus the initial process of starch degradation. Consequently, mutants lacking either GWD or PWD reveal a starch excess phenotype as well as growth retardation. In this review, we focus on the increased knowledge collected over the last years related to enzymatic properties, the precise definition of the substrates, the physiological implications, and discuss ongoing questions.

  19. Phosphorylation regulates mycobacterial proteasome.

    PubMed

    Anandan, Tripti; Han, Jaeil; Baun, Heather; Nyayapathy, Seeta; Brown, Jacob T; Dial, Rebekah L; Moltalvo, Juan A; Kim, Min-Seon; Yang, Seung Hwan; Ronning, Donald R; Husson, Robert N; Suh, Joowon; Kang, Choong-Min

    2014-09-01

    Mycobacterium tuberculosis possesses a proteasome system that is required for the microbe to resist elimination by the host immune system. Despite the importance of the proteasome in the pathogenesis of tuberculosis, the molecular mechanisms by which proteasome activity is controlled remain largely unknown. Here, we demonstrate that the α-subunit (PrcA) of the M. tuberculosis proteasome is phosphorylated by the PknB kinase at three threonine residues (T84, T202, and T178) in a sequential manner. Furthermore, the proteasome with phosphorylated PrcA enhances the degradation of Ino1, a known proteasomal substrate, suggesting that PknB regulates the proteolytic activity of the proteasome. Previous studies showed that depletion of the proteasome and the proteasome-associated proteins decreases resistance to reactive nitrogen intermediates (RNIs) but increases resistance to hydrogen peroxide (H2O2). Here we show that PknA phosphorylation of unprocessed proteasome β-subunit (pre-PrcB) and α-subunit reduces the assembly of the proteasome complex and thereby enhances the mycobacterial resistance to H2O2 and that H2O2 stress diminishes the formation of the proteasome complex in a PknA-dependent manner. These findings indicate that phosphorylation of the M. tuberculosis proteasome not only modulates proteolytic activity of the proteasome, but also affects the proteasome complex formation contributing to the survival of M. tuberculosis under oxidative stress conditions.

  20. Struvite and prebiotic phosphorylation.

    NASA Technical Reports Server (NTRS)

    Handschuh, G. J.; Orgel, L. E.

    1973-01-01

    Struvite rather than apatite or amorphous calcium phosphate is precipitated when phosphate is added to seawater containing more than 0.01M NH4+ ions. Struvite may have precipitated from evaporating seawater on the primitive earth, and may have been important for prebiotic phosphorylation.

  1. Protein phosphorylation and photorespiration.

    PubMed

    Hodges, M; Jossier, M; Boex-Fontvieille, E; Tcherkez, G

    2013-07-01

    Photorespiration allows the recycling of carbon atoms of 2-phosphoglycolate produced by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenase activity, as well as the removal of potentially toxic metabolites. The photorespiratory pathway takes place in the light, encompasses four cellular compartments and interacts with several other metabolic pathways and functions. Therefore, the regulation of this cycle is probably of paramount importance to plant metabolism, however, our current knowledge is poor. To rapidly respond to changing conditions, proteins undergo a number of different post-translational modifications that include acetylation, methylation and ubiquitylation, but protein phosphorylation is probably the most common. The reversible covalent addition of a phosphate group to a specific amino acid residue allows the modulation of protein function, such as activity, subcellular localisation, capacity to interact with other proteins and stability. Recent data indicate that many photorespiratory enzymes can be phosphorylated, and thus it seems that the photorespiratory cycle is, in part, regulated by protein phosphorylation. In this review, the known phosphorylation sites of each Arabidopsis thaliana photorespiratory enzyme and several photorespiratory-associated proteins are described and discussed. A brief account of phosphoproteomic protocols is also given since the published data compiled in this review are the fruit of this approach.

  2. Ketamine inhibits tumor necrosis factor-{alpha} and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    SciTech Connect

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha} and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms

  3. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation.

    PubMed

    Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through

  4. Pathogenic PS1 phosphorylation at Ser367

    PubMed Central

    Maesako, Masato; Horlacher, Jana; Zoltowska, Katarzyna M; Kastanenka, Ksenia V; Kara, Eleanna; Svirsky, Sarah; Keller, Laura J; Li, Xuejing; Hyman, Bradley T; Bacskai, Brian J; Berezovska, Oksana

    2017-01-01

    The high levels of serine (S) and threonine (T) residues within the Presenilin 1 (PS1) N-terminus and in the large hydrophilic loop region suggest that the enzymatic function of PS1/γ-secretase can be modulated by its ‘phosphorylated’ and ‘dephosphorylated’ states. However, the functional outcome of PS1 phosphorylation and its significance for Alzheimer’s disease (AD) pathogenesis is poorly understood. Here, comprehensive analysis using FRET-based imaging reveals that activity-driven and Protein Kinase A-mediated PS1 phosphorylation at three domains (domain 1: T74, domain 2: S310 and S313, domain 3: S365, S366, and S367), with S367 being critical, is responsible for the PS1 pathogenic ‘closed’ conformation, and resulting increase in the Aβ42/40 ratio. Moreover, we have established novel imaging assays for monitoring PS1 conformation in vivo, and report that PS1 phosphorylation induces the pathogenic conformational shift in the living mouse brain. These phosphorylation sites represent potential new targets for AD treatment. DOI: http://dx.doi.org/10.7554/eLife.19720.001 PMID:28132667

  5. A grammar inference approach for predicting kinase specific phosphorylation sites.

    PubMed

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  6. Anillin Phosphorylation Controls Timely Membrane Association and Successful Cytokinesis

    PubMed Central

    Kim, Hyunjung; Johnson, James M.; Brahma, Sarang; Burkard, Mark E.

    2017-01-01

    During cytokinesis, a contractile ring generates the constricting force to divide a cell into two daughters. This ring is composed of filamentous actin and the motor protein myosin, along with additional structural and regulatory proteins, including anillin. Anillin is a required scaffold protein that links the actomyosin ring to membrane and its organizer, RhoA. However, the molecular basis for timely action of anillin at cytokinesis remains obscure. Here, we find that phosphorylation regulates efficient recruitment of human anillin to the equatorial membrane. Anillin is highly phosphorylated in mitosis, and is a substrate for mitotic kinases. We surveyed function of 46 residues on anillin previously found to be phosphorylated in human cells to identify those required for cytokinesis. Among these sites, we identified S635 as a key site mediating cytokinesis. Preventing S635 phosphorylation adjacent to the AH domain disrupts anillin concentration at the equatorial cortex at anaphase, whereas a phosphomimetic mutant, S635D, partially restores this localization. Time-lapse videomicroscopy reveals impaired recruitment of S635A anillin to equatorial membrane and a transient unstable furrow followed by ultimate failure in cytokinesis. A phosphospecific antibody confirms phosphorylation at S635 in late cytokinesis, although it does not detect phosphorylation in early cytokinesis, possibly due to adjacent Y634 phosphorylation. Together, these findings reveal that anillin recruitment to the equatorial cortex at anaphase onset is enhanced by phosphorylation and promotes successful cytokinesis. PMID:28081137

  7. FSCB phosphorylation regulates mouse spermatozoa capacitation through suppressing SUMOylation of ROPN1/ROPN1L

    PubMed Central

    Zhang, Xinqi; Chen, Mingrui; Yu, Renyi; Liu, Benli; Tian, Zhiqiang; Liu, Shunli

    2016-01-01

    Fibrous sheath CABYR binding protein (FSCB) is regulated by protein kinase A (PKA)-mediated tyrosine phosphorylation in the spermatozoa capacitation. Recently, we showed that FSCB phosphorylation activated spermatozoa motility. Nevertheless, the underlying mechanisms have not been completely elucidated. Here, we showed that FSCB phosphorylation inhibited SUMOylation of two crucial proteins ROPN1/ROPN1L that are associated with PKA/A kinase activity and spermatozoa motility. Suppression of SUMOylation of ROPN1/ROPN1L mimicked the effects of FSCB phosphorylation on spermatozoa motility. Immunoprecipitation assay showed that phosphorylated FSCB had a significantly higher affinity to ROPN1/ROPN1L than non-phosphorylated FSCB. Together, our data suggest that FSCB phosphorylation may regulate mouse spermatozoa capacitation through suppressing SUMOylation of ROPN1/ROPN1L, which sheds new light on creating a therapeutic strategy targeting FSCB phosphorylation in the study of infertility. PMID:27398160

  8. MAP kinases phosphorylate rice WRKY45.

    PubMed

    Ueno, Yoshihisa; Yoshida, Riichiro; Kishi-Kaboshi, Mitsuko; Matsushita, Akane; Jiang, Chang-Jie; Goto, Shingo; Takahashi, Akira; Hirochika, Hirohiko; Takatsuji, Hiroshi

    2013-06-01

    WRKY45 transcription factor is a central regulator of disease resistance mediated by the salicylic acid (SA) signaling pathway in rice. SA-activated WRKY45 protein induces the accumulation of its own mRNA. However, the mechanism underlying this regulation is still unknown. Here, we report three lines of evidence showing that a mitogen-activated protein kinase (MAPK) cascade is involved in this regulation. An inhibitor of MAPK kinase (MAPKK) suppressed the increase in WRKY45 transcript level in response to SA. Two MAPKs, OsMPK4 and OsMPK6, phosphorylated WRKY45 protein in vitro. The activity of OsMPK6 was rapidly upregulated by SA treatment in rice cells. These results suggest that WRKY45 is regulated by MAPK-dependent phosphorylation in the SA pathway.

  9. PEITC-mediated inhibition of mRNA translation is associated with both inhibition of mTORC1 and increased eIF2α phosphorylation in established cell lines and primary human leukemia cells

    PubMed Central

    Yeomans, Alison; Lemm, Elizabeth; Wilmore, Sarah; Cavell, Breeze E.; Valle-Argos, Beatriz; Krysov, Sergey; Hidalgo, Marina Sanchez; Leonard, Elodie; Willis, Anne E.; Forconi, Francesco; Stevenson, Freda K.; Steele, Andrew J.; Coldwell, Mark J.; Packham, Graham

    2016-01-01

    Increased mRNA translation drives carcinogenesis and is an attractive target for the development of new anti-cancer drugs. In this work, we investigated effects of phenethylisothiocyanate (PEITC), a phytochemical with chemopreventive and anti-cancer activity, on mRNA translation. PEITC rapidly inhibited global mRNA translation in human breast cancer-derived MCF7 cells and mouse embryonic fibroblasts (MEFs). In addition to the known inhibitory effects of PEITC on mTORC1 activity, we demonstrate that PEITC increased eIF2α phosphorylation. PEITC also increased formation of stress granules which are typically associated with eIF2α phosphorylation and accumulation of translationally stalled mRNAs. Analysis of genetically modified MEFs demonstrated that optimal inhibition of global mRNA translation by PEITC was dependent on eIF2α phosphorylation, but not mTORC1 inhibition. We extended this study into primary leukemic B cells derived from patients with chronic lymphocytic leukaemia (CLL). CLL cells were stimulated in vitro with anti-IgM to mimic binding of antigen, a major driver of this leukemia. In CLL cells, PEITC increased eIF2α phosphorylation, inhibited anti-IgM-induced mTORC1 activation and decreased both basal and anti-IgM-induced global mRNA translation. PEITC also inhibited transcription and translation of MYC mRNA and accumulation of the MYC oncoprotein, in anti-IgM-stimulated cells. Moreover, treatment of CLL cells with PEITC and the BTK kinase inhibitor ibrutinib decreased anti-IgM-induced translation and induced cell death to a greater extent than either agent alone. Therefore, PEITC can inhibit both global and mRNA specific translation (including MYC) via effects on multiple regulatory pathways. Inhibition of mRNA translation may contribute to the chemopreventive and anti-cancer effects of PEITC. PMID:27579538

  10. Studying the Roles of GRK2-Mediated Smad2/3 Phosphorylation as a Negative Feedback Mechanism of TGF-Beta Signaling and a Target of Breast Cancer Therapeutics

    DTIC Science & Technology

    2014-01-01

    as blocking this pathway could slow down metastasis in animal models. Since Smad2 and Smad3 are transcription factors, they are not ideal drug...through different mechanisms. Whereas GRK2 phosphorylates a defined serine/threonine residue on the linker region of the Smad, BCAR3 recruits another...500) and a rabbit anti-phospho- Smad3 antibody (#9520, Cell Signaling, 1:500), or Alexa568-labled Phalloidin (Life Technologies). Cells were then

  11. Regulation of renal fibrosis by Smad3 Thr388 phosphorylation.

    PubMed

    Qu, Xinli; Li, Xueling; Zheng, Yaowu; Ren, Yi; Puelles, Victor G; Caruana, Georgina; Nikolic-Paterson, David J; Li, Jinhua

    2014-04-01

    Transforming growth factor-β (TGF-β) promotes tissue fibrosis via receptor-mediated phosphorylation of the receptor-activated Smad2/3, together with Smad4. Of these, Smad3 plays a major profibrotic role in mouse models of tissue fibrosis. Transcriptional activity of the Smad3 protein is regulated by phosphorylation of residues in the C-terminal domain and the linker region. Herein, we examined the role of a novel phosphorylation site within the MH2 domain (T388) in the regulation of Smad3 activity. Confocal microscopy using an Smad3 phosphorylated T388-specific antibody identified phosphorylation of Smad3 T388 in myofibroblasts and tubular epithelial cells in human focal and segmental glomerulosclerosis and mouse models of unilateral ureteric obstruction and diabetic nephropathy, whereas phosphorylated T388 was largely absent in normal kidney. In vitro, TGF-β1 induced phosphorylation of Smad3 T388 in a biphasic pattern. A point mutation of T388/V in an Smad3 construct demonstrated that phosphorylation of T388 promotes Smad3 binding to Smad4 and CDK8, but was not necessary for nuclear translocation. Furthermore, T388 phosphorylation was required for TGF-β-induced collagen I gene promoter activity and extracellular matrix production in cultured fibroblasts. In conclusion, our study identifies phosphorylation of T388 in the Smad3 MH2 domain as an important mechanism that regulates the profibrotic TGF-β/Smad3 signaling pathway, which has direct relevance to human and experimental fibrotic kidney disease.

  12. De-phosphorylation of TR{alpha}-1 by p44/42 MAPK inhibition enhances T{sub 3}-mediated GLUT5 gene expression in the intestinal cell line Caco-2 cells

    SciTech Connect

    Mochizuki, Kazuki; Sakaguchi, Naomi; Takabe, Satsuki; Goda, Toshinao . E-mail: gouda@fns1.u-shizuoka-ken.ac.jp

    2007-08-10

    Thyroid hormone and p44/42 MAPK inactivation are important in intestinal differentiation. We demonstrated not only that treatment with p44/42 MAPK inhibitor U0126 in intestinal cell line Caco-2 cells reduced the phosphorylation of serine and threonine residues of TR{alpha}-1, but also that T{sub 3} and U0126 synergistically induced GLUT5 gene expression. EMSA demonstrated that the binding activity of TR{alpha}-1-RXR heterodimer on GLUT5-TRE in nuclear proteins of Caco-2 cells was synergistically enhanced by co-incubation in vitro with T{sub 3} and CIAP, which strongly de-phosphorylates proteins. ChIP and transfection assays revealed that co-treatment of T{sub 3} and U0126 induces TR{alpha}-1-RXR binding to GLUT5-TRE on the human GLUT5 enhancer region, and recruitment of the transcriptional complex in cells. These results suggest that inactivation of p44/42 MAPK enhances T{sub 3}-induced GLUT5 gene expression in Caco-2 cells through increasing TR{alpha}-1 transactivity and binding activity to the GLUT5-TRE, probably due to de-phosphorylation of TR{alpha}-1.

  13. Protein kinase B/Akt phosphorylates and inhibits the cardiac Na+/H+ exchanger NHE1.

    PubMed

    Snabaitis, Andrew K; Cuello, Friederike; Avkiran, Metin

    2008-10-10

    Sarcolemmal Na(+)/H(+) exchanger (NHE) activity is mediated by NHE isoform 1 (NHE1), which is subject to regulation by protein kinases. Our objectives were to determine whether NHE1 is phosphorylated by protein kinase B (PKB), identify any pertinent phosphorylation site(s), and delineate the functional consequences of such phosphorylation. Active PKBalpha phosphorylated in vitro a glutathione S-transferase (GST)-NHE1 fusion protein comprising amino acids 516 to 815 of the NHE1 carboxyl-terminal regulatory domain. PKBalpha-mediated phosphorylation of GST-NHE1 fusion proteins containing overlapping segments of this region localized the targeted residues to the carboxyl-terminal 190 amino acids (625 to 815) of NHE1. Mass spectrometry and phosphorylation analysis of mutated (Ser-->Ala) GST-NHE1 fusion proteins revealed that PKBalpha-mediated phosphorylation of NHE1 occurred principally at Ser648. Far-Western assays demonstrated that PKBalpha-mediated Ser648 phosphorylation abrogated calcium-activated calmodulin (CaM) binding to the regulatory domain of NHE1. In adult rat ventricular myocytes, adenovirus-mediated expression of myristoylated PKBalpha (myr-PKBalpha) increased cellular PKB activity, as confirmed by increased glycogen synthase kinase 3beta phosphorylation. Heterologously expressed myr-PKBalpha was present in the sarcolemma, colocalized with NHE1 at the intercalated disc regions, increased NHE1 phosphorylation, and reduced NHE1 activity following intracellular acidosis. Conversely, pharmacological inhibition of endogenous PKB increased NHE1 activity following intracellular acidosis. Our data suggest that NHE1 is a novel PKB substrate and that its PKB-mediated phosphorylation at Ser648 inhibits sarcolemmal NHE activity during intracellular acidosis, most likely by interfering with CaM binding and reducing affinity for intracellular H(+).

  14. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    PubMed Central

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  15. Phosphorylation site prediction in plants.

    PubMed

    Yao, Qiuming; Schulze, Waltraud X; Xu, Dong

    2015-01-01

    Protein phosphorylation events on serine, threonine, and tyrosine residues are the most pervasive protein covalent bond modifications in plant signaling. Both low and high throughput studies reveal the importance of phosphorylation in plant molecular biology. Although becoming more and more common, the proteome-wide screening on phosphorylation by experiments remains time consuming and costly. Therefore, in silico prediction methods are proposed as a complementary analysis tool to enhance the phosphorylation site identification, develop biological hypothesis, or help experimental design. These methods build statistical models based on the experimental data, and they do not have some of the technical-specific bias, which may have advantage in proteome-wide analysis. More importantly computational methods are very fast and cheap to run, which makes large-scale phosphorylation identifications very practical for any types of biological study. Thus, the phosphorylation prediction tools become more and more popular. In this chapter, we will focus on plant specific phosphorylation site prediction tools, with essential illustration of technical details and application guidelines. We will use Musite, PhosPhAt and PlantPhos as the representative tools. We will present the results on the prediction of the Arabidopsis protein phosphorylation events to give users a general idea of the performance range of the three tools, together with their strengths and limitations. We believe these prediction tools will contribute more and more to the plant phosphorylation research community.

  16. Protein tyrosine phosphorylation in streptomycetes.

    PubMed

    Waters, B; Vujaklija, D; Gold, M R; Davies, J

    1994-07-01

    Using phosphotyrosine-specific antibodies, we demonstrate that in several Streptomyces spp. a variety of proteins are phosphorylated on tyrosine residues. Tyrosine phosphorylation was found in a number of Streptomyces species including Streptomyces lividans, Streptomyces hygroscopicus and Streptomyces lavendulae. Each species exhibited a unique pattern of protein tyrosine phosphorylation. Moreover, the patterns of tyrosine phosphorylation varied during the growth phase and were also influenced by culture conditions. We suggest that metabolic shifts during the complex growth cycle of these filamentous bacteria, and possibly secondary metabolic pathways, may be controlled by the action of protein tyrosine kinases and phosphatases, as has been demonstrated in signal transduction pathways in eukaryotic organisms.

  17. Phosphoglycerate Kinase 1 Phosphorylates Beclin1 to Induce Autophagy.

    PubMed

    Qian, Xu; Li, Xinjian; Cai, Qingsong; Zhang, Chuanbao; Yu, Qiujing; Jiang, Yuhui; Lee, Jong-Ho; Hawke, David; Wang, Yugang; Xia, Yan; Zheng, Yanhua; Jiang, Bing-Hua; Liu, David X; Jiang, Tao; Lu, Zhimin

    2017-03-02

    Autophagy is crucial for maintaining cell homeostasis. However, the precise mechanism underlying autophagy initiation remains to be defined. Here, we demonstrate that glutamine deprivation and hypoxia result in inhibition of mTOR-mediated acetyl-transferase ARD1 S228 phosphorylation, leading to ARD1-dependent phosphoglycerate kinase 1 (PGK1) K388 acetylation and subsequent PGK1-mediated Beclin1 S30 phosphorylation. This phosphorylation enhances ATG14L-associated class III phosphatidylinositol 3-kinase VPS34 activity by increasing the binding of phosphatidylinositol to VPS34. ARD1-dependent PGK1 acetylation and PGK1-mediated Beclin1 S30 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumorigenesis. Furthermore, PGK1 K388 acetylation levels correlate with Beclin1 S30 phosphorylation levels and poor prognosis in glioblastoma patients. Our study unearths an important mechanism underlying cellular-stress-induced autophagy initiation in which the protein kinase activity of the metabolic enzyme PGK1 plays an instrumental role and reveals the significance of the mutual regulation of autophagy and cell metabolism in maintaining cell homeostasis.

  18. Opposing effects of Elk-1 multisite phosphorylation shape its response to ERK activation.

    PubMed

    Mylona, Anastasia; Theillet, Francois-Xavier; Foster, Charles; Cheng, Tammy M; Miralles, Francesc; Bates, Paul A; Selenko, Philipp; Treisman, Richard

    2016-10-14

    Multisite phosphorylation regulates many transcription factors, including the serum response factor partner Elk-1. Phosphorylation of the transcriptional activation domain (TAD) of Elk-1 by the protein kinase ERK at multiple sites potentiates recruitment of the Mediator transcriptional coactivator complex and transcriptional activation, but the roles of individual phosphorylation events had remained unclear. Using time-resolved nuclear magnetic resonance spectroscopy, we found that ERK2 phosphorylation proceeds at markedly different rates at eight TAD sites in vitro, which we classified as fast, intermediate, and slow. Mutagenesis experiments showed that phosphorylation of fast and intermediate sites promoted Mediator interaction and transcriptional activation, whereas modification of slow sites counteracted both functions, thereby limiting Elk-1 output. Progressive Elk-1 phosphorylation thus ensures a self-limiting response to ERK activation, which occurs independently of antagonizing phosphatase activity.

  19. Regulation of divalent metal transporter-1 by serine phosphorylation

    PubMed Central

    Seo, Young Ah; Kumara, Ruvin; Wetli, Herbert; Wessling-Resnick, Marianne

    2016-01-01

    Divalent metal transporter-1 (DMT1) mediates dietary iron uptake across the intestinal mucosa and facilitates peripheral delivery of iron released by transferrin in the endosome. Here, we report that classical cannabinoids (Δ9-tetrahydrocannabinol, Δ9-THC), nonclassical cannabinoids (CP 55,940), aminoalkylindoles (WIN 55,212-2) and endocannabinoids (anandamide) reduce 55Fe and 54Mn uptake by HEK293T(DMT1) cells stably expressing the transporter. siRNA knockdown of cannabinoid receptor type 2 (CB2) abrogated inhibition. CB2 is a G-protein (GTP-binding protein)-coupled receptor that negatively regulates signal transduction cascades involving serine/threonine kinases. Immunoprecipitation experiments showed that DMT1 is serine-phosphorylated under basal conditions, but that treatment with Δ9-THC reduced phosphorylation. Site-directed mutation of predicted DMT1 phosphosites further showed that substitution of serine with alanine at N-terminal position 43 (S43A) abolished basal phosphorylation. Concordantly, both the rate and extent of 55Fe uptake in cells expressing DMT1(S43A) was reduced compared with those expressing wild-type DMT1. Among kinase inhibitors that affected DMT1-mediated iron uptake, staurosporine also reduced DMT1 phosphorylation confirming a role for serine phosphorylation in iron transport regulation. These combined data indicate that phosphorylation at serine 43 of DMT1 promotes transport activity, whereas dephosphorylation is associated with loss of iron uptake. Since anti-inflammatory actions mediated through CB2 would be associated with reduced DMT1 phosphorylation, we postulate that this pathway provides a means to reduce oxidative stress by limiting iron uptake. PMID:27681840

  20. Sequence- and Structure-Based Analysis of Tissue-Specific Phosphorylation Sites

    PubMed Central

    Karabulut, Nermin Pinar; Frishman, Dmitrij

    2016-01-01

    Phosphorylation is the most widespread and well studied reversible posttranslational modification. Discovering tissue-specific preferences of phosphorylation sites is important as phosphorylation plays a role in regulating almost every cellular activity and disease state. Here we present a comprehensive analysis of global and tissue-specific sequence and structure properties of phosphorylation sites utilizing recent proteomics data. We identified tissue-specific motifs in both sequence and spatial environments of phosphorylation sites. Target site preferences of kinases across tissues indicate that, while many kinases mediate phosphorylation in all tissues, there are also kinases that exhibit more tissue-specific preferences which, notably, are not caused by tissue-specific kinase expression. We also demonstrate that many metabolic pathways are differentially regulated by phosphorylation in different tissues. PMID:27332813

  1. A DNA break– and phosphorylation-dependent positive feedback loop promotes immunoglobulin class-switch recombination

    PubMed Central

    Vuong, Bao Q; Ucher, Anna J; Donghia, Nina M; Gu, Xiwen; Nicolas, Laura; Nowak, Urszula; Rahman, Numa; Strout, Matthew P; Mills, Kevin D; Stavnezer, Janet; Chaudhuri, Jayanta

    2014-01-01

    The ability of activation-induced cytidine deaminase (AID) to efficiently mediate class-switch recombination (CSR) is dependent on its phosphorylation at Ser38; however, the trigger that induces AID phosphorylation and the mechanism by which phosphorylated AID drives CSR have not been elucidated. Here we found that phosphorylation of AID at Ser38 was induced by DNA breaks. Conversely, in the absence of AID phosphorylation, DNA breaks were not efficiently generated at switch (S) regions in the immunoglobulin heavy-chain locus (Igh), consistent with a failure of AID to interact with the endonuclease APE1. Additionally, deficiency in the DNA-damage sensor ATM impaired the phosphorylation of AID at Ser38 and the interaction of AID with APE1. Our results identify a positive feedback loop for the amplification of DNA breaks at S regions through the phosphorylation- and ATM-dependent interaction of AID with APE1. PMID:24097111

  2. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation.

    PubMed

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan M F; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul M K

    2015-08-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser(65))--which lies within its ubiquitin-like domain (Ubl)--and indirectly through phosphorylation of ubiquitin at Ser(65). How Ser(65)-phosphorylated ubiquitin (ubiquitin(Phospho-Ser65)) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitin(Phospho-Ser65) binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser(65) by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitin(Phospho-Ser65), thereby promoting Parkin Ser(65) phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser(65) phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitin(Phospho-Ser65) to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser(65). Finally, purified Parkin maximally phosphorylated at Ser(65) in vitro cannot be further activated by the addition of ubiquitin(Phospho-Ser65). Our results thus suggest that a major role of ubiquitin(Phospho-Ser65) is to promote PINK1-mediated phosphorylation of Parkin at Ser(65), leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser(65)-binding pocket on the surface of Parkin that is critical for the ubiquitin(Phospho-Ser65) interaction. This study provides new mechanistic insights into Parkin activation by ubiquitin(Phospho-Ser65), which could aid in the development of Parkin

  3. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation

    PubMed Central

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan MF; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul MK

    2015-01-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser65)—which lies within its ubiquitin-like domain (Ubl)—and indirectly through phosphorylation of ubiquitin at Ser65. How Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitinPhospho-Ser65 binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser65 by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitinPhospho-Ser65, thereby promoting Parkin Ser65 phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser65 phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitinPhospho-Ser65 to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser65. Finally, purified Parkin maximally phosphorylated at Ser65 in vitro cannot be further activated by the addition of ubiquitinPhospho-Ser65. Our results thus suggest that a major role of ubiquitinPhospho-Ser65 is to promote PINK1-mediated phosphorylation of Parkin at Ser65, leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser65-binding pocket on the surface of Parkin that is critical for the ubiquitinPhospho-Ser65 interaction. This study provides new mechanistic insights into Parkin activation by ubiquitinPhospho-Ser65, which could aid in the development of Parkin activators that mimic the effect of

  4. Danggui Buxue Tang, Chinese Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, Induces Production of Nitric Oxide in Endothelial Cells: Signaling Mediated by Phosphorylation of Endothelial Nitric Oxide Synthase.

    PubMed

    Gong, Amy G W; Lau, K M; Zhang, Laura M L; Lin, H Q; Dong, Tina T X; Tsim, Karl W K

    2016-03-01

    Danggui Buxue Tang, an ancient Chinese herbal decoction containing Astragali Radix and Angelicae Sinensis Radix at the weight ratio of 5:1, is used to mitigate menopausal syndromes in women. The pharmacological properties of Danggui Buxue Tang have been illustrated in bone development, blood enhancement, and immune stimulation. Here, we extended the possible pharmacological role of Danggui Buxue Tang in cardiovascular function. In cultured human umbilical vein endothelial cells, the application of Danggui Buxue Tang induced the release of nitric oxide and the phosphorylation of endothelial nitric oxide synthase and Akt kinase in time- and dose-dependent manners. The robust activation of nitric oxide signaling, however, required the boiling of Astragali Radix and Angelicae Sinensis Radix together, i.e., as Danggui Buxue Tang instead of other herbal extracts. The Danggui Buxue Tang-induced phosphorylation of endothelial nitric oxide synthase and Akt kinase in human umbilical vein endothelial cells were fully blocked by treatment with an endothelial nitric oxide synthase inhibitor (L-NAME), a PI3K/Akt inhibitor (LY294002), and a Ca(2+) chelator (BAPTA-AM). In parallel, the blockage of endothelial nitric oxide synthase and Akt activation subsequently fully abolished the Danggui Buxue Tang-induced nitric oxide production.

  5. Heat Shock Protein HSP27 Secretion by Ovarian Cancer Cells Is Linked to Intracellular Expression Levels, Occurs Independently of the Endoplasmic Reticulum Pathway and HSP27's Phosphorylation Status, and Is Mediated by Exosome Liberation

    PubMed Central

    Klinkmann, Gerd; Diesing, Karoline; Koensgen, Dominique; Burchardt, Martin

    2017-01-01

    The heat shock protein HSP27 has been correlated in ovarian cancer (OC) patients with aggressiveness and chemoresistance and, therefore, represents a promising potential biomarker for OC diagnosis, prognosis, and treatment response. Notably, secretion of soluble HSP27 has been described by a few cell types and may take place as well in OC cells. Therefore, we studied HSP27 secretion mechanisms under diverse cellular conditions in an OC cell model system. Secretion of HSP27 was characterized after overexpression of HSP27 by transfected plasmids and after heat shock. Intra- and extracellular HSP27 amounts were assessed by Western blotting and ELISA. Protein secretion was blocked by brefeldin A and the impact of the HSP27 phosphorylation status was analyzed overexpressing HSP27 phosphomutants. The present study demonstrated that HSP27 secretion by OVCAR-3 and SK-OV-3 cells depends on intracellular HSP27 concentrations. Moreover, HSP27 secretion is independent of the endoplasmic reticulum secretory pathway and HSP27 phosphorylation. Notably, analysis of OC cell-born exosomes not only confirmed the concentration-dependent correlation of HSP27 expression and secretion but also demonstrated a concentration-dependent incorporation of HSP27 protein into exosomes. Thus, secreted HSP27 may become more important as an extracellular factor which controls the tumor microenvironment and might be a noninvasive biomarker. PMID:28325957

  6. N-->S phosphoryl migration in phosphoryl glutathion.

    PubMed

    Yang, H J; Liu, J; Zhao, Y F

    1993-07-01

    It was found that in the case of N-(diisopropylphosphoryl) glutathion (reduced form), 2, N-->S phosphoryl migration took place, but not for N,N-bis(diisopropylphosphoryl) glutathion (oxidized form) or N-diisopropylphosphoryl cysteine. These results were deduced by 31P-NMR tracing experiments. It was shown that phosphoryl migration was catalyzed by an intramolecular carboxyl group, and a mechanism involving a mixed carboxyl-phosphoric anhydride was proposed. A competitive reaction between the amino and thiol group toward diisopropyl phosphite indicated that the phospho-thiol derived from N-(diisopropylphosphoryl) glutathion (reduced form), 2, did not result from direct phosphorylation of the thiol group. N,S-Bis(diisopropylphosphoryl) glutathion provides an authentic sample to confirm the migrated phosphoryl thiol product.

  7. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells

    SciTech Connect

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen; Lu, Yan; Shen, Pingping

    2014-03-10

    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21{sup Waf1/Cip1} and p27{sup Kip1} descended in PPARγ1{sup S84D} stable HT1080 cell, whereas the expression of p18{sup INK4C} was not changed. Moreover, compared to the PPARγ1{sup S84A}, PPARγ1{sup S84D} up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. - Highlights: • Phosphorylation attenuates PPARγ1 transcriptional activity. • Phosphorylated PPARγ1 promotes HT1080 cells proliferation. • PPARγ1 phosphorylation regulates cell cycle by mediating expression of cell cycle regulators. • PPARγ1 phosphorylation reduces sensitivity to agonist and anticancer drug. • Our findings establish PPARγ1 phosphorylation as a critical event in HT1080

  8. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    PubMed Central

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  9. Phosphorylation and Interaction with the 14-3-3 Protein of the Plasma Membrane H+-ATPase are Involved in the Regulation of Magnesium-Mediated Increases in Aluminum-Induced Citrate Exudation in Broad Bean (Vicia faba. L).

    PubMed

    Chen, Qi; Kan, Qi; Wang, Ping; Yu, Wenqian; Yu, Yuzhen; Zhao, Yan; Yu, Yongxiong; Li, Kunzhi; Chen, Limei

    2015-06-01

    Several studies have shown that external application of micromolar magnesium (Mg) can increase the resistance of legumes to aluminum (Al) stress by enhancing Al-induced citrate exudation. However, the exact mechanism underlying this regulation remains unknown. In this study, the physiological and molecular mechanisms by which Mg enhances Al-induced citrate exudation to alleviate Al toxicity were investigated in broad bean. Micromolar concentrations of Mg that alleviated Al toxicity paralleled the stimulation of Al-induced citrate exudation and increased the activity of the plasma membrane (PM) H(+)-ATPase. Northern blot analysis shows that a putative MATE-like gene (multidrug and toxic compound extrusion) was induced after treatment with Al for 4, 8 and 12 h, whereas the mRNA abundance of the MATE-like gene showed no significant difference between Al plus Mg and Al-only treatments during the entire treatment period. Real-time reverse transcription-PCR (RT-PCR) and Western blot analyses suggest that the transcription and translation of the PM H(+)-ATPase were induced by Al but not by Mg. In contrast, immunoprecipitation suggests that Mg enhanced the phosphorylation levels of VHA2 and its interaction with the vf14-3-3b protein under Al stress. Taken together, our results suggest that micromolar concentrations of Mg can alleviate the Al rhizotoxicity by increasing PM H(+)-ATPase activity and Al-induced citrate exudation in YD roots. This enhancement is likely to be attributable to Al-induced increases in the expression of the MATE-like gene and vha2 and Mg-induced changes in the phosphorylation levels of VHA2, thus changing its interaction with the vf14-3-3b protein.

  10. Oxidative and Photosynthetic Phosphorylation Mechanisms

    ERIC Educational Resources Information Center

    Wang, Jui H.

    1970-01-01

    Proposes a molecular mechanism for the coupling of phosphorylation to electron transport in both mitochondria and chloroplasts. Justifies the proposed reaction schemes in terms of thermodynamics and biochemical data. Suggests how areobic respiration could have evolved. (EB)

  11. Palmitoylation gates phosphorylation-dependent regulation of BK potassium channels.

    PubMed

    Tian, Lijun; Jeffries, Owen; McClafferty, Heather; Molyvdas, Adam; Rowe, Iain C M; Saleem, Fozia; Chen, Lie; Greaves, Jennifer; Chamberlain, Luke H; Knaus, Hans-Guenther; Ruth, Peter; Shipston, Michael J

    2008-12-30

    Large conductance calcium- and voltage-gated potassium (BK) channels are important regulators of physiological homeostasis and their function is potently modulated by protein kinase A (PKA) phosphorylation. PKA regulates the channel through phosphorylation of residues within the intracellular C terminus of the pore-forming alpha-subunits. However, the molecular mechanism(s) by which phosphorylation of the alpha-subunit effects changes in channel activity are unknown. Inhibition of BK channels by PKA depends on phosphorylation of only a single alpha-subunit in the channel tetramer containing an alternatively spliced insert (STREX) suggesting that phosphorylation results in major conformational rearrangements of the C terminus. Here, we define the mechanism of PKA inhibition of BK channels and demonstrate that this regulation is conditional on the palmitoylation status of the channel. We show that the cytosolic C terminus of the STREX BK channel uniquely interacts with the plasma membrane via palmitoylation of evolutionarily conserved cysteine residues in the STREX insert. PKA phosphorylation of the serine residue immediately upstream of the conserved palmitoylated cysteine residues within STREX dissociates the C terminus from the plasma membrane, inhibiting STREX channel activity. Abolition of STREX palmitoylation by site-directed mutagenesis or pharmacological inhibition of palmitoyl transferases prevents PKA-mediated inhibition of BK channels. Thus, palmitoylation gates BK channel regulation by PKA phosphorylation. Palmitoylation and phosphorylation are both dynamically regulated; thus, cross-talk between these 2 major posttranslational signaling cascades provides a mechanism for conditional regulation of BK channels. Interplay of these distinct signaling cascades has important implications for the dynamic regulation of BK channels and physiological homeostasis.

  12. The phosphorylated C-terminus of cAR1 plays a role in cell-type-specific gene expression and STATa tyrosine phosphorylation.

    PubMed

    Briscoe, C; Moniakis, J; Kim, J Y; Brown, J M; Hereld, D; Devreotes, P N; Firtel, R A

    2001-05-01

    cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localization, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphorylation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on

  13. Phosphorylation regulates human OCT4.

    PubMed

    Brumbaugh, Justin; Hou, Zhonggang; Russell, Jason D; Howden, Sara E; Yu, Pengzhi; Ledvina, Aaron R; Coon, Joshua J; Thomson, James A

    2012-05-08

    The transcription factor OCT4 is fundamental to maintaining pluripotency and self-renewal. To better understand protein-level regulation of OCT4, we applied liquid chromatography-MS to identify 14 localized sites of phosphorylation, 11 of which were previously unknown. Functional analysis of two sites, T234 and S235, suggested that phosphorylation within the homeobox region of OCT4 negatively regulates its activity by interrupting sequence-specific DNA binding. Mutating T234 and S235 to mimic constitutive phosphorylation at these sites reduces transcriptional activation from an OCT4-responsive reporter and decreases reprogramming efficiency. We also cataloged 144 unique phosphopeptides on known OCT4 interacting partners, including SOX2 and SALL4, that copurified during immunoprecipitation. These proteins were enriched for phosphorylation at motifs associated with ERK signaling. Likewise, OCT4 harbored several putative ERK phosphorylation sites. Kinase assays confirmed that ERK2 phosphorylated these sites in vitro, providing a direct link between ERK signaling and the transcriptional machinery that governs pluripotency.

  14. Phosphorylation regulates human OCT4

    PubMed Central

    Brumbaugh, Justin; Russell, Jason D.; Howden, Sara E.; Yu, Pengzhi; Ledvina, Aaron R.; Coon, Joshua J.; Thomson, James A.

    2012-01-01

    The transcription factor OCT4 is fundamental to maintaining pluripotency and self-renewal. To better understand protein-level regulation of OCT4, we applied liquid chromatography–MS to identify 14 localized sites of phosphorylation, 11 of which were previously unknown. Functional analysis of two sites, T234 and S235, suggested that phosphorylation within the homeobox region of OCT4 negatively regulates its activity by interrupting sequence-specific DNA binding. Mutating T234 and S235 to mimic constitutive phosphorylation at these sites reduces transcriptional activation from an OCT4-responsive reporter and decreases reprogramming efficiency. We also cataloged 144 unique phosphopeptides on known OCT4 interacting partners, including SOX2 and SALL4, that copurified during immunoprecipitation. These proteins were enriched for phosphorylation at motifs associated with ERK signaling. Likewise, OCT4 harbored several putative ERK phosphorylation sites. Kinase assays confirmed that ERK2 phosphorylated these sites in vitro, providing a direct link between ERK signaling and the transcriptional machinery that governs pluripotency. PMID:22474382

  15. Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1.

    PubMed

    Hennige, Anita M; Stefan, Norbert; Kapp, Katja; Lehmann, Rainer; Weigert, Cora; Beck, Alexander; Moeschel, Klaus; Mushack, Joanne; Schleicher, Erwin; Häring, Hans-Ulrich

    2006-06-01

    Insulin resistance in skeletal muscle is found in obesity and type 2 diabetes. A mechanism for impaired insulin signaling in peripheral tissues is the inhibition of insulin action through serine phosphorylation of insulin receptor substrate (Irs) proteins that abolish the coupling of Irs proteins to the activated insulin receptor. Recently, we described serine-318 as a protein kinase C (PKC)-dependent phosphorylation site in Irs1 (Ser-318) activated by hyperinsulinemia. Here we show in various cell models that the adipose hormone leptin, a putative mediator in obesity-related insulin resistance, promotes phosphorylation of Ser-318 in Irs1 by a janus kinase 2, Irs2, and PKC-dependent pathway. Mutation of Ser-318 to alanine abrogates the inhibitory effect of leptin on insulin-induced Irs1 tyrosine phosphorylation and glucose uptake in L6 myoblasts. In C57Bl/6 mice, Ser-318 phosphorylation levels in muscle tissue were enhanced by leptin and insulin administration in lean animals while in diet-induced obesity Ser-318 phosphorylation levels were already up-regulated in the basal state, and further stimulation was diminished. In analogy, in lymphocytes of obese hyperleptinemic human subjects basal Ser-318 phosphorylation levels were increased compared to lean individuals. During a hyperinsulinemic euglycemic clamp, the increment in Ser-318 phosphorylation observed in lean individuals was absent in obese. In summary, these data suggest that phosphorylation of Ser-318 in Irs1 mediates the inhibitory signal of leptin on the insulin-signaling cascade in obese subjects.

  16. Genome-Wide Analysis of Phosphorylated PhoP Binding to Chromosomal DNA Reveals Several Novel Features of the PhoPR-Mediated Phosphate Limitation Response in Bacillus subtilis

    PubMed Central

    Salzberg, Letal I.; Botella, Eric; Hokamp, Karsten; Antelmann, Haike; Maaß, Sandra; Becher, Dörte; Noone, David

    2015-01-01

    ABSTRACT The PhoPR two-component signal transduction system controls one of three responses activated by Bacillus subtilis to adapt to phosphate-limiting conditions (PHO response). The response involves the production of enzymes and transporters that scavenge for phosphate in the environment and assimilate it into the cell. However, in B. subtilis and some other Firmicutes bacteria, cell wall metabolism is also part of the PHO response due to the high phosphate content of the teichoic acids attached either to peptidoglycan (wall teichoic acid) or to the cytoplasmic membrane (lipoteichoic acid). Prompted by our observation that the phosphorylated WalR (WalR∼P) response regulator binds to more chromosomal loci than are revealed by transcriptome analysis, we established the PhoP∼P bindome in phosphate-limited cells. Here, we show that PhoP∼P binds to the chromosome at 25 loci: 12 are within the promoters of previously identified PhoPR regulon genes, while 13 are newly identified. We extend the role of PhoPR in cell wall metabolism showing that PhoP∼P binds to the promoters of four cell wall-associated operons (ggaAB, yqgS, wapA, and dacA), although none show PhoPR-dependent expression under the conditions of this study. We also show that positive autoregulation of phoPR expression and full induction of the PHO response upon phosphate limitation require PhoP∼P binding to the 3′ end of the phoPR operon. IMPORTANCE The PhoPR two-component system controls one of three responses mounted by B. subtilis to adapt to phosphate limitation (PHO response). Here, establishment of the phosphorylated PhoP (PhoP∼P) bindome enhances our understanding of the PHO response in two important ways. First, PhoPR plays a more extensive role in adaptation to phosphate-limiting conditions than was deduced from transcriptome analyses. Among 13 newly identified binding sites, 4 are cell wall associated (ggaAB, yqgS, wapA, and dacA), revealing that PhoPR has an extended involvement

  17. Cellular progesterone receptor phosphorylation in response to ligands activating protein kinases

    SciTech Connect

    Rao, K.V.; Peralta, W.D.; Greene, G.L.; Fox, C.F.

    1987-08-14

    Progesterone receptors were immunoprecipitated with monoclonal antibodies KD68 from lysates of human breast carcinoma T47D cells labelled to steady state specific activity with /sup 32/Pi. The 120 kDa /sup 32/P-labelled progesterone receptor band was resolved by polyacrylamide gel electrophoresis and identified by autoradiography. Phosphoamino acid analysis revealed serine phosphorylation, but no threonine or tyrosine phosphorylation. Treatment of the /sup 32/Pi-labelled cells with EGF, TPA or dibutyryl cAMP had no significant quantitative effect on progesterone receptor phosphorylation, though the EGF receptor and the cAMP-dependent protein kinases have been reported to catalyze phosphorylation of purified avian progesterone receptor preparations in cell free systems. Progesterone receptor phosphorylation on serine residues was increased by 2-fold in cells treated with 10 nM progesterone; EGF had no effect on progesterone-mediated progesterone receptor phosphorylation.

  18. Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells

    SciTech Connect

    Truong Le Xuan Nguyen; Choi, Joung Woo; Lee, Sang Bae; Ye, Keqiang; Woo, Soo-Dong; Lee, Kyung-Hoon; Ahn, Jee-Yin . E-mail: jyahn@med.skku.ac.kr

    2006-10-20

    Nerve growth factor (NGF) elicits Akt translocation into the nucleus, where it phosphorylates nuclear targets. Here, we describe that Akt phosphorylation can promote the nuclear translocation of Akt and is necessary for its nuclear retention. Overexpression of Akt-K179A, T308A, S473A-mutant failed to show either nuclear translocation or nuclear Akt phosphorylation, whereas expression of wild-type counterpart elicited profound Akt phosphorylation and induced nuclear translocation under NGF stimulation. Employing the PI3K inhibitor and a variety of mutants PI3K, we showed that nuclear translocation of Akt was mediated by activation of PI3K, and Akt phosphorylation status in the nucleus required PI3K activity. Thus the activity of PI3K might contribute to the nuclear translocation of Akt, and that Akt phosphorylation is essential for its nuclear retention under NGF stimulation conditions.

  19. NGF-activated protein tyrosine phosphatase 1B mediates the phosphorylation and degradation of I-kappa-Balpha coupled to NF-kappa-B activation, thereby controlling dendrite morphology.

    PubMed

    Chacón, Pedro J; Arévalo, María Angeles; Tébar, Alfredo Rodríguez

    2010-04-01

    NGF diminishes dendrite complexity in cultured hippocampal neurons by decreasing the number of primary and secondary dendrites, while increasing the length of those that remain. The transduction pathway used by NGF to provoke dendrite elongation involves the activation of NF-kappa-B and the expression of the homologues of Enhancer-of-split 1 gene. Here, we define important steps that link NGF with NF-kappa-B activation, through the activity of protein tyrosine phosphatase 1B (PTP1B). Binding of NGF to p75(NTR) stimulates PTP1B activity, which can be blocked by either pharmacological inhibition of the phosphatase or by transfecting neurons with a dn PTP1B isoform, whereby NGF is no longer able to stimulate dendrite growth. Indeed, overexpressing PTP1B alone provoked dendrite growth and further studies revealed a role for the src kinase downstream of PTP1B. Again, loss of src activity largely cancelled out the capacity of NGF to promote dendrite growth, whereas overexpression of v-src in neurons was sufficient to promote dendrite growth. Finally, the NGF/p75(NTR)/PTP1B/src kinase pathway led to the tyrosine phosphorylation of I-kappa-Balpha prior to its degradation, an event that is necessary for NF-kappa-B activation. Indeed, the dendrite growth response to NGF was lost when neurons were transfected with a mutant form of I-kappa-Balpha that lacks tyr42. Thus, our data suggest that PTP1B fulfils a central role in the NGF signalling that controls dendrite patterning in hippocampal neurons.

  20. Exendin-4-loaded PLGA microspheres relieve cerebral ischemia/reperfusion injury and neurologic deficits through long-lasting bioactivity-mediated phosphorylated Akt/eNOS signaling in rats

    PubMed Central

    Chien, Chiang-Ting; Jou, Ming-Jia; Cheng, Tai-Yu; Yang, Chih-Hui; Yu, Tzu-Ying; Li, Ping-Chia

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) receptor activation in the brain provides neuroprotection. Exendin-4 (Ex-4), a GLP-1 analog, has seen limited clinical usage because of its short half-life. We developed long-lasting Ex-4-loaded poly(D,L-lactide-co-glycolide) microspheres (PEx-4) and explored its neuroprotective potential against cerebral ischemia in diabetic rats. Compared with Ex-4, PEx-4 in the gradually degraded microspheres sustained higher Ex-4 levels in the plasma and cerebrospinal fluid for at least 2 weeks and improved diabetes-induced glycemia after a single subcutaneous administration (20 μg/day). Ten minutes of bilateral carotid artery occlusion (CAO) combined with hemorrhage-induced hypotension (around 30 mm Hg) significantly decreased cerebral blood flow and microcirculation in male Wistar rats subjected to streptozotocin-induced diabetes. CAO increased cortical O2− levels by chemiluminescence amplification and prefrontal cortex edema by T2-weighted magnetic resonance imaging analysis. CAO significantly increased aquaporin 4 and glial fibrillary acidic protein expression and led to cognition deficits. CAO downregulated phosphorylated Akt/endothelial nitric oxide synthase (p-Akt/p-eNOS) signaling and enhanced nuclear factor (NF)-κBp65/intercellular adhesion molecule-1 (ICAM-1) expression, endoplasmic reticulum (ER) stress, and apoptosis in the cerebral cortex. PEx-4 was more effective than Ex-4 to improve CAO-induced oxidative injury and cognitive deficits. The neuroprotection provided by PEx-4 was through p-Akt/p-eNOS pathways, which suppressed CAO-enhanced NF-κB/ICAM-1 signaling, ER stress, and apoptosis. PMID:26058696

  1. Lysophosphatidylcholine Triggers TLR2- and TLR4-Mediated Signaling Pathways but Counteracts LPS-Induced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-κB Translocation and MAPK/ERK Phosphorylation

    PubMed Central

    Carneiro, Alan Brito; Iaciura, Bruna Maria Ferreira; Nohara, Lilian Lie; Lopes, Carla Duque; Veas, Esteban Mauricio Cordero; Mariano, Vania Sammartino; Bozza, Patricia Torres; Lopes, Ulisses Gazos; Atella, Georgia Correa; Almeida, Igor Correia; Silva-Neto, Mário Alberto Cardoso

    2013-01-01

    Background Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. Methodology/Principal Findings HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-қB activation and IL-8 production. These data were confirmed by Western blot analysis of NF-қB translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-қB translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. Conclusions/Significance The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression. PMID:24312681

  2. Akt phosphorylates and regulates Pdcd4 tumor suppressor protein.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-12-15

    Programmed cell death 4 (Pdcd4) is a tumor suppressor protein that interacts with eukaryotic initiation factor 4A and inhibits protein synthesis. Pdcd4 also suppresses the transactivation of activator protein-1 (AP-1)-responsive promoters by c-Jun. The Akt (protein kinase B) serine/threonine kinase is a key mediator of phosphoinositide 3-kinase pathway involved in the regulation of cell proliferation, survival, and growth. Because Pdcd4 has two putative Akt phosphorylation sites at Ser(67) and Ser(457), we investigated whether Akt phosphorylates and regulates Pdcd4. Our results show that Akt specifically phosphorylates Ser(67) and Ser(457) residues of Pdcd4 in vitro and in vivo. We further show that phosphorylation of Pdcd4 by Akt causes nuclear translocation of Pdcd4. Using luciferase assay, we show that phosphorylation of Pdcd4 by Akt also causes a significant decrease of the ability of Pdcd4 to interfere with the transactivation of AP-1-responsive promoter by c-Jun.

  3. Paxillin-kinase-linker tyrosine phosphorylation regulates directional cell migration.

    PubMed

    Yu, Jianxin A; Deakin, Nicholas O; Turner, Christopher E

    2009-11-01

    Directed cell migration requires the coordination of growth factor and cell adhesion signaling and is of fundamental importance during embryonic development, wound repair, and pathological conditions such as tumor metastasis. Herein, we demonstrate that the ArfGAP, paxillin-kinase-linker (PKL/GIT2), is tyrosine phosphorylated in response to platelet-derived growth factor (PDGF) stimulation, in an adhesion dependent manner and is necessary for directed cell migration. Using a combination of pharmacological inhibitors, knockout cells and kinase mutants, FAK, and Src family kinases were shown to mediate PDGF-dependent PKL tyrosine phosphorylation. In fibroblasts, expression of a PKL mutant lacking the principal tyrosine phosphorylation sites resulted in loss of wound-induced cell polarization as well as directional migration. PKL phosphorylation was necessary for PDGF-stimulated PKL binding to the focal adhesion protein paxillin and expression of paxillin or PKL mutants defective in their respective binding motifs recapitulated the polarization defects. RNA interference or expression of phosphorylation mutants of PKL resulted in disregulation of PDGF-stimulated Rac1 and PAK activities, reduction of Cdc42 and Erk signaling, as well as mislocalization of betaPIX. Together these studies position PKL as an integral component of growth factor and cell adhesion cross-talk signaling, controlling the development of front-rear cell polarity and directional cell migration.

  4. Reciprocal Phosphorylation and Palmitoylation Control Dopamine Transporter Kinetics*

    PubMed Central

    Moritz, Amy E.; Rastedt, Danielle E.; Stanislowski, Daniel J.; Shetty, Madhur; Smith, Margaret A.; Vaughan, Roxanne A.; Foster, James D.

    2015-01-01

    The dopamine transporter is a neuronal protein that drives the presynaptic reuptake of dopamine (DA) and is the major determinant of transmitter availability in the brain. Dopamine transporter function is regulated by protein kinase C (PKC) and other signaling pathways through mechanisms that are complex and poorly understood. Here we investigate the role of Ser-7 phosphorylation and Cys-580 palmitoylation in mediating steady-state transport kinetics and PKC-stimulated transport down-regulation. Using both mutational and pharmacological approaches, we demonstrate that these post-translational modifications are reciprocally regulated, leading to transporter populations that display high phosphorylation-low palmitoylation or low phosphorylation-high palmitoylation. The balance between the modifications dictates transport capacity, as conditions that promote high phosphorylation or low palmitoylation reduce transport Vmax and enhance PKC-stimulated down-regulation, whereas conditions that promote low phosphorylation or high palmitoylation increase transport Vmax and suppress PKC-stimulated down-regulation. Transitions between these functional states occur when endocytosis is blocked or undetectable, indicating that the modifications kinetically regulate the velocity of surface transporters. These findings reveal a novel mechanism for control of DA reuptake that may represent a point of dysregulation in DA imbalance disorders. PMID:26424792

  5. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers.

    PubMed

    Sumioka, Akio; Yan, Dan; Tomita, Susumu

    2010-06-10

    Neurons use neurotransmitters to communicate across synapses, constructing neural circuits in the brain. AMPA-type glutamate receptors are the predominant excitatory neurotransmitter receptors mediating fast synaptic transmission. AMPA receptors localize at synapses by forming protein complexes with transmembrane AMPA receptor regulatory proteins (TARPs) and PSD-95-like membrane-associated guanylate kinases. Among the three classes of ionotropic glutamate receptors (AMPA, NMDA, and kainate type), AMPA receptor activity is most regulatable by neuronal activity to adjust synaptic strength. Here, we mutated the prototypical TARP, stargazin, and found that TARP phosphorylation regulates synaptic AMPA receptor activity in vivo. We also found that stargazin interacts with negatively charged lipid bilayers in a phosphorylation-dependent manner and that the lipid interaction inhibited stargazin binding to PSD-95. Cationic lipids dissociated stargazin from lipid bilayers and enhanced synaptic AMPA receptor activity in a stargazin phosphorylation-dependent manner. Thus, TARP phosphorylation plays a critical role in regulating AMPA receptor-mediated synaptic transmission via a lipid bilayer interaction.

  6. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers

    PubMed Central

    Sumioka, Akio; Yan, Dan; Tomita, Susumu

    2010-01-01

    Summary Neurons use neurotransmitters to communicate across synapses, constructing neural circuits in the brain. AMPA-type glutamate receptors are the predominant excitatory neurotransmitter receptors mediating fast synaptic transmission. AMPA receptors localize at synapses by forming protein complexes with transmembrane AMPA receptor regulatory proteins (TARPs) and PSD-95-like MAGUKs. Among the three classes of ionotropic glutamate receptors (AMPA-, NMDA, kainate-type), AMPA receptor activity is most regulatable by neuronal activity to adjust synaptic strength. Here, we mutated the prototypical TARP, stargazin, and found that TARP phosphorylation regulates synaptic AMPA receptor activity in vivo. We also found that stargazin interacts with negatively-charged lipid bilayers in its phosphorylation dependent manner, and that the lipid interaction inhibited stargazin binding to PSD-95. Cationic lipids dissociated stargazin from lipid bilayers and enhanced synaptic AMPA receptor activity in a stargazin phosphorylation-dependent manner. Thus, TARP phosphorylation plays a critical role in regulating AMPA receptor-mediated synaptic transmission via a lipid bilayer interaction. PMID:20547132

  7. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    SciTech Connect

    Inesta-Vaquera, Francisco A.; Campbell, David G.; Arthur, J. Simon C.; Cuenda, Ana

    2010-08-13

    Research highlights: {yields} hDlg is phosphorylated during mitosis in multiple residues. {yields} Prospho-hDlg is excluded from the midbody during mitosis. {yields} hDlg is not phosphorylated by p38{gamma} or JNK1/2 during mitosis. {yields} ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  8. Coincident regulation of PKCdelta in human platelets by phosphorylation of Tyr311 and Tyr565 and phospholipase C signalling.

    PubMed

    Hall, Kellie J; Jones, Matthew L; Poole, Alastair W

    2007-09-15

    PKC (protein kinase C)d plays a complex role in platelets, having effects on both positive and negative signalling functions. It is phosphorylated on tyrosine residues in response to thrombin and collagen, and it has recently been shown that Tyr311 is phosphorylated in response to PAR (protease-activated receptor) 1 and PAR4 receptor activation. In the present study, we show that Tyr311 and Tyr565 are phosphorylated in response to thrombin, and have examined the interplay between phosphorylation and the classical lipid-mediated activation of PKCd. Phosphorylation of both Tyr311 and Tyr565 is dependent on Src kinase and PLC (phospholipase C) activity in response to thrombin. Importantly, direct allosteric activation of PKCd with PMA also induced phosphorylation of Tyr311 and Tyr565, and this was dependent on the activity of Src kinases, but not PLC. Membrane recruitment of PKCd is essential for phosphorylation of this tyrosine residue, but tyrosine phosphorylation is not required for membrane recruitment of PKCd. Both thrombin and PMA induce recruitment of PKCd to the membrane, and for thrombin, this recruitment is a PLC-dependent process. In order to address the functional role of tyrosine residue phosphorylation of PKCd, we demonstrate that phosphorylation can potentiate the activity of the kinase, although phosphorylation does not play a role in membrane recruitment of the kinase. PKCd is therefore regulated in a coincident fashion, PLC-dependent signals recruiting it to the plasma membrane and by phosphorylation on tyrosine residues, potentiating its activity.

  9. The mammalian circadian clock protein period counteracts cryptochrome in phosphorylation dynamics of circadian locomotor output cycles kaput (CLOCK).

    PubMed

    Matsumura, Ritsuko; Tsuchiya, Yoshiki; Tokuda, Isao; Matsuo, Takahiro; Sato, Miho; Node, Koichi; Nishida, Eisuke; Akashi, Makoto

    2014-11-14

    The circadian transcription factor CLOCK exhibits a circadian oscillation in its phosphorylation levels. Although it remains unclear whether this phosphorylation contributes to circadian rhythm generation, it has been suggested to be involved in transcriptional activity, intracellular localization, and degradative turnover of CLOCK. Here, we obtained direct evidence that CLOCK phosphorylation may be essential for autonomous circadian oscillation in clock gene expression. Importantly, we found that the circadian transcriptional repressors Cryptochrome (CRY) and Period (PER) showed an opposite effect on CLOCK phosphorylation; CRY impaired BMAL1-dependent CLOCK phosphorylation, whereas PER protected the phosphorylation against CRY. Interestingly, unlike PER1 and PER2, PER3 did not exert a protective action, which correlates with the phenotypic differences among mice lacking the Per genes. Further studies on the regulatory mechanism of CLOCK phosphorylation would thus lead to elucidation of the mechanism of CRY-mediated transcriptional repression and an understanding of the true role of PER in the negative feedback system.

  10. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    SciTech Connect

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  11. Phosphorylation and dephosphorylation of spectrin.

    PubMed

    Fairbanks, G; Avruch, J; Dino, J E; Patel, V P

    1978-01-01

    The phosphorylation of spectrin polypeptide 2 is thought to be involved in the metabolically dependent regulation of red cell shape and deformability. Spectrin phosphorylation is not affected by cAMP. The reaction in isolated membranes resembles the cAMP-independent, salt-stimulated phosphorylation of an exogenous substrate, casein, by enzyme(s) present both in isolated membranes and cytoplasmic extracts. Spectrin kinase is selectively eluted from membranes by 0.5 M NaCl and co-fractionates with eluted casein kinase. Phosphorylation of band 3 in the membrane is inhibited by salt, but the band 3 kinase is otherwise indistinguishable operationally from spectrin kinase. The membrane-bound casein (spectrin) kinase is not eluted efficiently with spectrin at low ionic strength; about 80% of the activity is apparently bound at sites (perhaps on or near band 3) other than spectrin. Partitioning of casein kinase between cytoplasm and membrane is metabolically dependent; the proportion of casein kinase on the membrane can range from 25% to 75%, but for fresh cells is normally about 40%. Dephosphorylation of phosphorylated spectrin has not been studied intensively. Slow release of 32Pi from [32P] spectrin on the membrane can be demonstrated, but phosphatase activity measured against solubilized [32P] spectrin is concentrated in the cytoplasm. The crude cytoplasmic phosphospectrin phosphatase is inhibited by various anions--notably, ATP and 2,3-DPG at physiological concentrations. Regulation of spectrin phosphorylation in intact cells has not been studied. We speculate that spectrin phosphorylation state may be regulated 1) by metabolic intermediates and other internal chemical signals that modulate kinase and phosphatase activities per se or determine their intracellular localization and 2) by membrane deformation that alters enzyme-spectrin interaction locally. Progress in the isolation and characterization of spectrin kinase and phosphospectrin phosphatase should lead to

  12. Cell Cycle Regulated Phosphorylation of the Telomere-Associated Protein TIN2

    PubMed Central

    Yang, Shuqun; Counter, Christopher M.

    2013-01-01

    The protein TIN2 is a member of telomere-binding protein complex that serves to cap and protect mammalian chromosome ends. As a number of proteins in this complex are phosphorylated in a cell cycle-dependent manner, we investigated whether TIN2 is modified by phosphorylation as well. We performed phospho-proteomic analysis of human TIN2, and identified two phosphorylated residues, serines 295 and 330. We demonstrated that both these sites were phosphorylated during mitosis in human cells, as detected by Phos-tag reagent and phosphorylation-specific antibodies. Phosphorylation of serines 295 and 330 appeared to be mediated, at least in part, by the mitotic kinase RSK2. Specifically, phosphorylation of TIN2 at both these residues was increased upon expression of RSK2 and reduced by an inhibitor of the RSK family of kinases. Moreover, RSK2 phosphorylated TIN2 in vitro. The identification of these specifically timed post-translational events during the cell cycle suggests a potential mitotic regulation of TIN2 by phosphorylation. PMID:23977114

  13. Phosphorylation in halobacterial signal transduction.

    PubMed Central

    Rudolph, J; Tolliday, N; Schmitt, C; Schuster, S C; Oesterhelt, D

    1995-01-01

    Regulated phosphorylation of proteins has been shown to be a hallmark of signal transduction mechanisms in both Eubacteria and Eukarya. Here we demonstrate that phosphorylation and dephosphorylation are also the underlying mechanism of chemo- and phototactic signal transduction in Archaea, the third branch of the living world. Cloning and sequencing of the region upstream of the cheA gene, known to be required for chemo- and phototaxis in Halobacterium salinarium, has identified cheY and cheB analogs which appear to form part of an operon which also includes cheA and the following open reading frame of 585 nucleotides. The CheY and CheB proteins have 31.3 and 37.5% sequence identity compared with the known signal transduction proteins CheY and CheB from Escherichia coli, respectively. The biochemical activities of both CheA and CheY were investigated following their expression in E.coli, isolation and renaturation. Wild-type CheA could be phosphorylated in a time-dependent manner in the presence of [gamma-32P]ATP and Mg2+, whereas the mutant CheA(H44Q) remained unlabeled. Phosphorylated CheA was dephosphorylated rapidly by the addition of wild-type CheY. The mutant CheY(D53A) had no effect on phosphorylated CheA. The mechanism of chemo- and phototactic signal transduction in the Archaeon H.salinarium, therefore, is similar to the two-component signaling system known from chemotaxis in the eubacterium E.coli. Images PMID:7556066

  14. How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria†

    PubMed Central

    Deutscher, Josef; Francke, Christof; Postma, Pieter W.

    2006-01-01

    The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens. PMID:17158705

  15. Insulin-like growth factor-I-stimulated Akt phosphorylation and oligodendrocyte progenitor cell survival require cholesterol-enriched membranes.

    PubMed

    Romanelli, Robert J; Mahajan, Kedar R; Fulmer, Clifton G; Wood, Teresa L

    2009-11-15

    Previously we showed that insulin-like growth factor-I (IGF-I) promotes sustained phosphorylation of Akt in oligodendrocyte progenitor cells (OPCs) and that Akt phosphorylation is required for survival of these cells. The direct mechanisms, however, by which IGF-I promotes Akt phosphorylation are currently undefined. Recently, cholesterol-enriched membranes (CEMs) have been implicated in regulation of growth factor-mediated activation of the PI3K/Akt pathway and survival of mature oligodendrocytes; however, less is know about their role in OPC survival. In the present study, we investigate the role of CEMs in IGF-I-mediated Akt phosphorylation and OPC survival. We report that acute disruption of membrane cholesterol with methyl-beta-cyclodextrin results in altered OPC morphology and inhibition of IGF-I-mediated Akt phosphorylation. We also report that long-term inhibition of cholesterol biosynthesis with 25-hydroxycholesterol blocks IGF-I stimulated Akt phosphorylation and cell survival. Moreover, we show that the PI3K regulatory subunit, p85, Akt, and the IGF-IR are sequestered within cholesterol-enriched fractions in steady-state stimulation of the IGF-IR and that phosphorylated Akt and IGF-IR are present in cholesterol-enriched fractions with IGF-I stimulation. Together, the results of these studies support a role for CEMs or "lipid rafts" in IGF-I-mediated Akt phosphorylation and provide a better understanding of the mechanisms by which IGF-I promotes OPC survival.

  16. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation

    PubMed Central

    Acin-Perez, Rebeca; Gatti, Domenico L.; Bai, Yidong; Manfredi, Giovanni

    2011-01-01

    Summary Rapid regulation of oxidative phosphorylation is crucial for mitochondrial adaptation to swift changes in fuels availability and energy demands. An intra-mitochondrial signaling pathway regulates cytochrome oxidase (COX), the terminal enzyme of the respiratory chain, through reversible phosphorylation. We find that PKA-mediated phosphorylation of a COX subunit dictates mammalian mitochondrial energy fluxes, and identify the specific residue (S58) of COX subunit IV-1 (COXIV-1) that is involved in this mechanism of metabolic regulation. Using protein mutagenesis, molecular dynamics simulations, and induced fit docking, we show that mitochondrial energy metabolism regulation by phosphorylation of COXIV-1 is coupled with prevention of COX allosteric inhibition by ATP. This regulatory mechanism is essential for efficient oxidative metabolism and cell survival. We propose that S58 COXIV-1 phosphorylation has evolved as a metabolic switch that allows mammalian mitochondria to rapidly toggle between energy utilization and energy storage. PMID:21641552

  17. Function of Estrogen Receptor Tryosine Phosphorylation

    DTIC Science & Technology

    1998-07-01

    6219 TITLE: Function of Estrogen Receptor Tryosine Phosphorylation PRINCIPAL INVESTIGATOR: Matthew R. Yudt CONTRACTING ORGANIZATION: University of...Estrogen Receptor Tryosine Phosphorylation ~DAMD17-96-1-6219 6. AUTHOR(S) Matthew R. Yudt 7. PERFORMING ORGANIZATION NAME11S) AND AODRESS(ES...this model, tyrosine 537 (Y537) phosphorylation of one monomer interacts with another tyrosine phosphorylated monomer to constitute an hER dimer

  18. Phosphorylation and recruitment of Syk by immunoreceptor tyrosine-based activation motif-based phosphorylation of tamalin.

    PubMed

    Hirose, Masayuki; Kitano, Jun; Nakajima, Yoshiaki; Moriyoshi, Koki; Yanagi, Shigeru; Yamamura, Hirohei; Muto, Takanori; Jingami, Hisato; Nakanishi, Shigetada

    2004-07-30

    Tamalin is a scaffold protein that forms a multiple protein assembly including metabotropic glutamate receptors (mGluRs) and several postsynaptic and protein-trafficking scaffold proteins in distinct mode of protein-protein association. In the present investigation, we report that tamalin possesses a typical immunoreceptor tyrosine-based activation motif (ITAM), which enables Syk kinase to be recruited and phosphorylated by the Src family kinases. Coimmunoprecipitation analysis of rat brain membrane fractions showed that tamalin is present in a multimolecular protein assembly comprising not only mGluR1 but also c-Src, Fyn, and a protein phosphatase, SHP-2. The protein association of both tamalin and c-Src, as determined by truncation analysis of mGluR1 in COS-7 cells, occurred at the carboxyl-terminal tail of mGluR1. Mutation analysis of tyrosine with phenylalanine in COS-7 cells revealed that paired tyrosines at the ITAM sequence of tamalin are phosphorylated preferentially by c-Src and Fyn, and this phosphorylation can recruit Syk kinase and enables it to be phosphorylated by the Src family kinases. The phosphorylated tyrosines at the ITAM sequence of tamalin were highly susceptible to dephosphorylation by protein-tyrosine phosphatases in COS-7 cells. Importantly, tamalin was endogenously phosphorylated and associated with Syk in retinoic acid-treated P19 embryonal carcinoma cells that undergo neuron-like differentiation. The present investigation demonstrates that tamalin is a novel signaling molecule that possesses a PDZ domain and a PDZ binding motif and mediates Syk signaling in an ITAM-based fashion.

  19. Akt-dependent Girdin phosphorylation regulates repair processes after acute myocardial infarction.

    PubMed

    Hayano, Shinji; Takefuji, Mikito; Maeda, Kengo; Noda, Tomonori; Ichimiya, Hitoshi; Kobayashi, Koichi; Enomoto, Atsushi; Asai, Naoya; Takahashi, Masahide; Murohara, Toyoaki

    2015-11-01

    Myocardial infarction is a leading cause of death, and cardiac rupture following myocardial infarction leads to extremely poor prognostic feature. A large body of evidence suggests that Akt is involved in several cardiac diseases. We previously reported that Akt-mediated Girdin phosphorylation is essential for angiogenesis and neointima formation. The role of Girdin expression and phosphorylation in myocardial infarction, however, is not understood. Therefore, we employed Girdin-deficient mice and Girdin S1416A knock-in (Girdin(SA/SA)) mice, replacing the Akt phosphorylation site with alanine, to address this question. We found that Girdin was expressed and phosphorylated in cardiac fibroblasts in vitro and that its phosphorylation was crucial for the proliferation and migration of cardiac fibroblasts. In vivo, Girdin was localized in non-cardiomyocyte interstitial cells and phosphorylated in α-smooth muscle actin-positive cells, which are likely to be cardiac myofibroblasts. In an acute myocardial infarction model, Girdin(SA/SA) suppressed the accumulation and proliferation of cardiac myofibroblasts in the infarcted area. Furthermore, lower collagen deposition in Girdin(SA/SA) mice impaired cardiac repair and resulted in increased mortality attributed to cardiac rupture. These findings suggest an important role of Girdin phosphorylation at serine 1416 in cardiac repair after acute myocardial infarction and provide insights into the complex mechanism of cardiac rupture through the Akt/Girdin-mediated regulation of cardiac myofibroblasts.

  20. Sites and roles of phosphorylation of the human cytomegalovirus DNA polymerase subunit UL44

    SciTech Connect

    Silva, Laurie A.; Strang, Blair L.; Lin, Eric W.; Kamil, Jeremy P.; Coen, Donald M.

    2011-09-01

    The human cytomegalovirus DNA polymerase subunit UL44 is a phosphoprotein, but its sites and roles of phosphorylation have not been investigated. We compared sites of phosphorylation of UL44 in vitro by the viral protein kinase UL97 and cyclin-dependent kinase 1 with those in infected cells. Transient treatment of infected cells with a UL97 inhibitor greatly reduced labeling of two minor UL44 phosphopeptides. Viruses containing alanine substitutions of most UL44 residues that are phosphorylated in infected cells exhibited at most modest effects on viral DNA synthesis and yield. However, substitution of highly phosphorylated sites adjacent to the nuclear localization signal abolished viral replication. The results taken together are consistent with UL44 being phosphorylated directly by UL97 during infection, and a crucial role for phosphorylation-mediated nuclear localization of UL44 for viral replication, but lend little support to the widely held hypothesis that UL97-mediated phosphorylation of UL44 is crucial for viral DNA synthesis.

  1. Phosphorylation of 4EBP by oral leucine administration was suppressed in the skeletal muscle of PGC-1α knockout mice.

    PubMed

    Yoshimura, Ryoji; Minami, Kimiko; Matsuda, Junichiro; Sawada, Naoki; Miura, Shinji; Kamei, Yasutomi

    2016-01-01

    Leucine is known to increase mTOR-mediated phosphorylation of 4EBP. In this study, leucine was administered to skeletal muscle-PGC-1α knockout mice. We observed attenuated 4EBP phosphorylation in the skeletal muscle, but not in the liver, of the PGC-1α knockout mice. These data suggest that skeletal muscle-PGC-1α is important for leucine-mediated mTOR activation and protein biosynthesis.

  2. Different modes of endothelial-smooth muscle cell interaction elicit differential β-catenin phosphorylations and endothelial functions.

    PubMed

    Chang, Shun-Fu; Chen, Li-Jing; Lee, Pei-Ling; Lee, Ding-Yu; Chien, Shu; Chiu, Jeng-Jiann

    2014-02-04

    β-Catenin phosphorylation plays important roles in modulating its functions, but the effects of different phosphorylated forms of β-catenin in response to heterocellular interaction are unclear. Here we investigated whether distinct modes of phosphorylation on β-catenin could be triggered through heterocellular interactions between endothelial cells (ECs) and smooth muscle cells (SMCs), and the consequent modulation of EC functions. ECs were cocultured with SMCs to initiate direct contact and paracrine interaction. EC-SMC coculture induced EC β-catenin phosphorylations simultaneously at tyrosine 142 (Tyr142) and serine 45/threonine 41 (Ser45/Thr41) at the cytoplasm/nuclei and the membrane, respectively. Treating ECs with SMC-conditional medium induced β-catenin phosphorylation only at Ser45/Thr41. These findings indicate that different phosphorylation effects of EC-SMC coculture were induced through heterocellular direct contact and paracrine effects, respectively. Using specific blocking peptides, antagonists, and siRNAs, we found that the β-catenin Tyr142-phosphorylation was mediated by connexin 43/Fer and that the β-catenin Ser45/Thr41-phosphorylation was mediated by SMC-released bone morphogenetic proteins through VE-cadherin and bone morphogenetic protein receptor-II/Smad5. Transfecting ECs with β-catenin-Tyr142 or -Ser45 mutants showed that these two phosphorylated forms of β-catenin modulate differential EC function: The Tyr142-phosphorylated β-catenin stimulates vascular cell-adhesion molecule-1 expression to increase EC-monocytic adhesion, but the Ser45/Thr41-phosphorylated β-catenin attenuates VE-cadherin-dependent junction structures to increase EC permeability. Our findings provide new insights into the understanding of regulatory complexities of distinct modes of β-catenin phosphorylations under EC-SMC interactions and suggest that different phosphorylated forms of β-catenin play important roles in modulating vascular pathophysiology

  3. Phosphorylation of Jak2 on Ser523 Inhibits Jak2-Dependent Leptin Receptor Signaling†

    PubMed Central

    Ishida-Takahashi, Ryoko; Rosario, Felicia; Gong, Yusong; Kopp, Keely; Stancheva, Zlatina; Chen, Xiaohong; Feener, Edward P.; Myers, Martin G.

    2006-01-01

    The leptin receptor, LRb, and other cytokine receptors are devoid of intrinsic enzymatic activity and rely upon the activity of constitutively associated Jak family tyrosine kinases to mediate intracellular signaling. In order to clarify mechanisms by which Jak2, the cognate LRb-associated Jak kinase, is regulated and mediates downstream signaling, we employed tandem mass spectroscopic analysis to identify phosphorylation sites on Jak2. We identified Ser523 as the first-described site of Jak2 serine phosphorylation and demonstrated that this site is phosphorylated on Jak2 from intact cells and mouse spleen. Ser523 was highly phosphorylated in HEK293 cells independently of LRb-Jak2 activation, suggesting a potential role for the phosphorylation of Ser523 in the regulation of LRb by other pathways. Indeed, mutation of Ser523 sensitized and prolonged signaling by Jak2 following activation by the intracellular domain of LRb. The effect of Ser523 on Jak2 function was independent of Tyr570-mediated inhibition. Thus, the phosphorylation of Jak2 on Ser523 inhibits Jak2 activity and represents a novel mechanism for the regulation of Jak2-dependent cytokine signaling. PMID:16705160

  4. Syndecan-4 phosphorylation is a control point for integrin recycling.

    PubMed

    Morgan, Mark R; Hamidi, Hellyeh; Bass, Mark D; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J

    2013-03-11

    Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration.

  5. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  6. Phosphorylation of tau is regulated by PKN.

    PubMed

    Taniguchi, T; Kawamata, T; Mukai, H; Hasegawa, H; Isagawa, T; Yasuda, M; Hashimoto, T; Terashima, A; Nakai, M; Mori, H; Ono, Y; Tanaka, C

    2001-03-30

    For the phosphorylation state of microtubule-associated protein, tau plays a pivotal role in regulating microtubule networks in neurons. Tau promotes the assembly and stabilization of microtubules. The potential for tau to bind to microtubules is down-regulated after local phosphorylation. When we investigated the effects of PKN activation on tau phosphorylation, we found that PKN triggers disruption of the microtubule array both in vitro and in vivo and predominantly phosphorylates tau in microtubule binding domains (MBDs). PKN has a catalytic domain highly homologous to protein kinase C (PKC), a kinase that phosphorylates Ser-313 (= Ser-324, the number used in this study) in MBDs. Thus, we identified the phosphorylation sites of PKN and PKC subtypes (PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, -zeta, and -lambda) in MBDs. PKN phosphorylates Ser-258, Ser-320, and Ser-352, although all PKC subtypes phosphorylate Ser-258, Ser-293, Ser-324, and Ser-352. There is a PKN-specific phosphorylation site, Ser-320, in MBDs. HIA3, a novel phosphorylation-dependent antibody recognizing phosphorylated tau at Ser-320, showed immunoreactivity in Chinese hamster ovary cells expressing tau and the active form of PKN, but not in Chinese hamster ovary cells expressing tau and the inactive form of PKN. The immunoreactivity for phosphorylated tau at Ser-320 increased in the presence of a phosphatase inhibitor, FK506 treatment, which means that calcineurin (protein phosphatase 2B) may be involved in dephosphorylating tau at Ser-320 site. We also noted that PKN reduces the phosphorylation recognized by the phosphorylation-dependent antibodies AT8, AT180, and AT270 in vivo. Thus PKN serves as a regulator of microtubules by specific phosphorylation of tau, which leads to disruption of tubulin assembly.

  7. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action

    PubMed Central

    Eldar-Finkelman, Hagit; Krebs, Edwin G.

    1997-01-01

    The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an “unregulated” mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance. PMID:9275179

  8. Phosphorylation acts positively and negatively to regulate MRTF-A subcellular localisation and activity

    PubMed Central

    Panayiotou, Richard; Miralles, Francesc; Pawlowski, Rafal; Diring, Jessica; Flynn, Helen R; Skehel, Mark; Treisman, Richard

    2016-01-01

    The myocardin-related transcription factors (MRTF-A and MRTF-B) regulate cytoskeletal genes through their partner transcription factor SRF. The MRTFs bind G-actin, and signal-regulated changes in cellular G-actin concentration control their nuclear accumulation. The MRTFs also undergo Rho- and ERK-dependent phosphorylation, but the function of MRTF phosphorylation, and the elements and signals involved in MRTF-A nuclear export are largely unexplored. We show that Rho-dependent MRTF-A phosphorylation reflects relief from an inhibitory function of nuclear actin. We map multiple sites of serum-induced phosphorylation, most of which are S/T-P motifs and show that S/T-P phosphorylation is required for transcriptional activation. ERK-mediated S98 phosphorylation inhibits assembly of G-actin complexes on the MRTF-A regulatory RPEL domain, promoting nuclear import. In contrast, S33 phosphorylation potentiates the activity of an autonomous Crm1-dependent N-terminal NES, which cooperates with five other NES elements to exclude MRTF-A from the nucleus. Phosphorylation thus plays positive and negative roles in the regulation of MRTF-A. DOI: http://dx.doi.org/10.7554/eLife.15460.001 PMID:27304076

  9. Pea DNA Topoisomerase I Is Phosphorylated and Stimulated by Casein Kinase 2 and Protein Kinase C

    PubMed Central

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-01-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg2+-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants. PMID:12913165

  10. Jade-1S phosphorylation induced by CK1α contributes to cell cycle progression.

    PubMed

    Borgal, Lori; Rinschen, Markus M; Dafinger, Claudia; Liebrecht, Valérie I; Abken, Hinrich; Benzing, Thomas; Schermer, Bernhard

    2016-01-01

    The PHD zinc finger protein Jade-1S is a component of the HBO1 histone acetyltransferase complex and binds chromatin in a cell cycle-dependent manner. Jade-1S also acts as an E3 ubiquitin ligase for the canonical Wnt effector protein β-catenin and is influenced by CK1α-mediated phosphorylation. To further elucidate the functional impact of this phosphorylation, we used a stable, low-level expression system to express either wild-type or mutant Jade-1S lacking the N-terminal CK1α phosphorylation motif. Interactome analyses revealed that the Jade-1S mutant unable to be phosphorylated by CK1α has an increased binding affinity to proteins involved in chromatin remodelling, histone deacetylation, transcriptional repression, and ribosome biogenesis. Interestingly, cells expressing the mutant displayed an elongated cell shape and a delay in cell cycle progression. Finally, phosphoproteomic analyses allowed identification of a Jade-1S site phosphorylated in the presence of CK1α but closely resembling a PLK1 phosphorylation motif. Our data suggest that Jade-1S phosphorylation at an N-terminal CK1α motif creates a PLK1 phospho-binding domain. We propose CK1α phosphorylation of Jade 1S to serve as a molecular switch, turning off chromatin remodelling functions of Jade-1S and allowing timely cell cycle progression. As Jade-1S protein expression in the kidney is altered upon renal injury, this could contribute to understanding mechanisms underlying epithelial injury repair.

  11. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    NASA Technical Reports Server (NTRS)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  12. CDK1 phosphorylates WRN at collapsed replication forks

    PubMed Central

    Palermo, Valentina; Rinalducci, Sara; Sanchez, Massimo; Grillini, Francesca; Sommers, Joshua A.; Brosh, Robert M.; Zolla, Lello; Franchitto, Annapaola; Pichierri, Pietro

    2016-01-01

    Regulation of end-processing is critical for accurate repair and to switch between homologous recombination (HR) and non-homologous end joining (NHEJ). End resection is a two-stage process but very little is known about regulation of the long-range resection, especially in humans. WRN participates in one of the two alternative long-range resection pathways mediated by DNA2 or EXO1. Here we demonstrate that phosphorylation of WRN by CDK1 is essential to perform DNA2-dependent end resection at replication-related DSBs, promoting HR, replication recovery and chromosome stability. Mechanistically, S1133 phosphorylation of WRN is dispensable for relocalization in foci but is involved in the interaction with the MRE11 complex. Loss of WRN phosphorylation negatively affects MRE11 foci formation and acts in a dominant negative manner to prevent long-range resection altogether, thereby licensing NHEJ at collapsed forks. Collectively, we unveil a CDK1-dependent regulation of the WRN-DNA2-mediated resection and identify an undescribed function of WRN as a DSB repair pathway switch. PMID:27634057

  13. Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke.

    PubMed

    Adenuga, David; Yao, Hongwei; March, Thomas H; Seagrave, Jeanclare; Rahman, Irfan

    2009-04-01

    Cigarette smoke (CS)-induced lung inflammation involves the reduction of histone deacetylase 2 (HDAC2) abundance, which is associated with steroid resistance in patients with chronic obstructive pulmonary disease and in individuals with severe asthma who smoke cigarettes. However, the molecular mechanism of CS-mediated reduction of HDAC2 is not clearly known. We hypothesized that HDAC2 is phosphorylated and subsequently degraded by the proteasome in vitro in macrophages (MonoMac6), human bronchial and primary small airway epithelial cells, and in vivo in mouse lungs in response to chronic CS exposure. Cigarette smoke extract (CSE) exposure in MonoMac6 and in bronchial and airway epithelial cells led to phosphorylation of HDAC2 on serine/threonine residues by a protein kinase CK2-mediated mechanism, decreased HDAC2 activity, and increased ubiquitin-proteasome-dependent HDAC2 degradation. CK2 and proteasome inhibitors reversed CSE-mediated HDAC2 degradation, whereas serine/threonine phosphatase inhibitor, okadaic acid, caused phosphorylation and subsequent ubiquitination of HDAC2. CS-induced HDAC2 phosphorylation was detected in mouse lungs from 2 weeks to 4 months of CS exposure, and mice showed significantly lower lung HDAC2 levels. Thus, CS-mediated down-regulation of HDAC2 in human macrophages and lung epithelial cells in vitro and in mouse lung in vivo involves the induction of serine/threonine phosphorylation and proteasomal degradation, which may have implications for steroid resistance and abnormal inflammation caused by cigarette smoke.

  14. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.

    PubMed

    Haberny, S L; Carr, K D

    2005-01-01

    Biological drive states exert homeostatic control in part by increasing the reinforcing effects of environmental incentive stimuli. An apparent by-product of this adaptive response is the enhanced acquisition of drug self-administration behavior in food-restricted (FR) animals. While previous research has demonstrated increased central sensitivity to rewarding effects of abused drugs and direct dopamine (DA) receptor agonists in FR subjects, the underlying neurobiology is not well understood. Recently, it was demonstrated that intracerebroventricular (i.c.v.) injection of the D-1 DA receptor agonist, SKF-82958 produces a stronger activation of striatal extracellular signal-regulated kinase (ERK) 1/2 and cyclic AMP response element-binding protein (CREB) in FR relative to ad libitum (AL) fed rats. The main purpose of the present study was to characterize the involvement and mechanisms of interaction between NMDA receptor function and the augmented cellular responses to D-1 DA receptor stimulation in nucleus accumbens (NAc) of FR rats. In experiment 1, Western immunoblotting was used to demonstrate that i.c.v. injection of SKF-82958 (20 microg) produces greater phosphorylation of the NMDA NR1 subunit and calcium-calmodulin kinase II (CaMK II) in NAc of FR as compared with AL rats. In experiment 2, pretreatment of subjects with the NMDA antagonist, MK-801 (1.0 mg/kg, i.p.) decreased SKF-82958-induced activation of CaMK II, ERK1/2 and CREB, and reversed the augmenting effect of FR on activation of all three proteins. In experiment 3, pretreatment with the mitogen-activated protein kinase/ERK kinase inhibitor SL-327 (60 mg/kg, i.p.) suppressed SKF-82958- induced activation of ERK1/2 and reversed the augmenting effect of FR on CREB activation. These results point to specific neuroadaptations in the NAc of FR rats whereby D-1 DA receptor stimulation leads to increased NMDA NR1 subunit phosphorylation and consequent increases in NMDA receptor-dependent CaMK II and ERK1

  15. The Usp8 deubiquitination enzyme is post-translationally modified by tyrosine and serine phosphorylation.

    PubMed

    Meijer, Inez M J; Kerperien, JoAnn; Sotoca, Ana M; van Zoelen, Everardus J J; van Leeuwen, Jeroen E M

    2013-04-01

    The ERBB1-ERBB4 receptors belong to a family of receptor tyrosine kinases that trigger a network of signaling pathways after ligand binding, thereby regulating cellular growth, differentiation and development. Ligand-induced signaling through ERBB1, also known as EGFR, is attenuated by the clathrin-dependent receptor-mediated endocytosis and RING E3-ligase Cbl-mediated receptor ubiquitination, which is followed by incorporation into multi-vesicular bodies (MVBs) and subsequent degradation in lysosomes. Before incorporation into MVBs, the EGFR is deubiquitinated by Usp8. We previously demonstrated that Usp8 is tyrosine phosphorylated in an EGFR- and SRC-kinase dependent manner. In the present study we show that overexpression of constitutively active SRC enhances constitutive and ligand-induced Usp8 tyrosine phosphorylation. We also show that enhanced endosomal recycling of the EGFR induced by TGFα stimulation is associated with decreased Usp8 tyrosine phosphorylation. We therefore hypothesize that tyrosine phosphorylation of Usp8 could regulate the function of Usp8. To identify Usp8 tyrosine phosphorylation site(s), we used Usp8 deletion constructs, site-directed mutagenesis of nine individual Usp8 tyrosine residues and mass spectrometry (MS) analysis. Our results demonstrate that the MIT-domain is necessary for ligand-induced tyrosine phosphorylation of Usp8 1-504. However, mutation of three MIT domain tyrosine residues did not abolish Usp8 tyrosine phosphorylation. Similar results were obtained upon mutation of six exposed tyrosine residues in the Rhod domain and linker region. Repeated MS analysis of both Usp8 WT and C748A mutants readily detected serine phosphorylation, including the S680 14-3-3 binding site, but did not reveal any phospho-tyrosine residues. Notably, mutation of the tyrosine residue in the Usp8 14-3-3 binding motif (Y679) did not abolish phosphoserine-dependent binding of 14-3-3 to Usp8. Our findings are most consistent with the model that MIT

  16. Phosphorylation and dephosphorylation regulate APC/CCdh1 substrate degradation

    PubMed Central

    Simpson-Lavy, Kobi J; Zenvirth, Drora; Brandeis, Michael

    2015-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/CCdh1 mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1m11 mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/CCdh1 substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation. PMID:26252546

  17. Region-dependent dynamics of cAMP response element-binding protein phosphorylation in the basal ganglia

    PubMed Central

    Liu, Fu-Chin; Graybiel, Ann M.

    1998-01-01

    The cAMP response element-binding protein (CREB) is an activity-dependent transcription factor that is involved in neural plasticity. The kinetics of CREB phosphorylation have been suggested to be important for gene activation, with sustained phosphorylation being associated with downstream gene expression. If so, the duration of CREB phosphorylation might serve as an indicator for time-sensitive plastic changes in neurons. To screen for regions potentially involved in dopamine-mediated plasticity in the basal ganglia, we used organotypic slice cultures to study the patterns of dopamine- and calcium-mediated CREB phosphorylation in the major subdivisions of the striatum. Different durations of CREB phosphorylation were evoked in the dorsal and ventral striatum by activation of dopamine D1-class receptors. The same D1 stimulus elicited (i) transient phosphorylation (≤15 min) in the matrix of the dorsal striatum; (ii) sustained phosphorylation (≤2 hr) in limbic-related structures including striosomes, the nucleus accumbens, the fundus striati, and the bed nucleus of the stria terminalis; and (iii) prolonged phosphorylation (up to 4 hr or more) in cellular islands in the olfactory tubercle. Elevation of Ca2+ influx by stimulation of L-type Ca2+ channels, NMDA, or KCl induced strong CREB phosphorylation in the dorsal striatum but not in the olfactory tubercle. These findings differentiate the response of CREB to dopamine and calcium signals in different striatal regions and suggest that dopamine-mediated CREB phosphorylation is persistent in limbic-related regions of the neonatal basal ganglia. The downstream effects activated by persistent CREB phosphorylation may include time-sensitive neuroplasticity modulated by dopamine. PMID:9539803

  18. The Dictyostelium MAPK ERK1 is phosphorylated in a secondary response to early developmental signaling.

    PubMed

    Schwebs, David J; Hadwiger, Jeffrey A

    2015-01-01

    Previous reports have suggested that the two mitogen-activated protein kinases (MAPKs) in Dictyostelium discoideum, ERK1 and ERK2, can be directly activated in response to external cAMP even though these MAPKs play different roles in the developmental life cycle. To better characterize MAPK regulation, the levels of phosphorylated MAPKs were analyzed in response to external signals. Only ERK2 was rapidly phosphorylated in response to the chemoattractants, cAMP and folate. In contrast, the phosphorylation of ERK1 occurred as a secondary or indirect response to these stimuli and this phosphorylation was enhanced by cell-cell interactions, suggesting that other external signals can activate ERK1. The phosphorylation of ERK1 or ERK2 did not require the function of the other MAPK in these responses. Folate stimulation of a chimeric population of erk1- and gα4- cells revealed that the phosphorylation of ERK1 could be mediated through an intercellular signal other than folate. Loss of ERK1 function suppressed the developmental delay and the deficiency in anterior cell localization associated with gα5- mutants suggesting that ERK1 function can be down regulated through Gα5 subunit-mediated signaling. However, no major changes in the phosphorylation of ERK1 were observed in gα5- cells suggesting that the Gα5 subunit signaling pathway does not regulate the phosphorylation of ERK1. These findings suggest that the activation of ERK1 occurs as a secondary response to chemoattractants and that other cell-cell signaling mechanisms contribute to this activation. Gα5 subunit signaling can down regulate ERK1 function to promote prestalk cell development but not through major changes to the level of phosphorylated ERK1.

  19. Phosphodiesterases Regulate BAY 41-2272-Induced VASP Phosphorylation in Vascular Smooth Muscle Cells

    PubMed Central

    Adderley, Shaquria P.; Joshi, Chintamani N.; Martin, Danielle N.; Tulis, David Anthony

    2012-01-01

    BAY 41-2272 (BAY), a stimulator of soluble guanylyl cyclase, increases cyclic nucleotides and inhibits proliferation of vascular smooth muscle cells (VSMCs). In this study, we elucidated mechanisms of action of BAY in its regulation of vasodilator-stimulated phosphoprotein (VASP) with an emphasis on VSMC phosphodiesterases (PDEs). BAY alone increased phosphorylation of VASPSer239 and VASPSer157, respective indicators of PKG and PKA signaling. IBMX, a non-selective inhibitor of PDEs, had no effect on BAY-induced phosphorylation at VASPSer239 but inhibited phosphorylation at VASPSer157. Selective inhibitors of PDE3 or PDE4 attenuated BAY-mediated increases at VASPSer239 and VASPSer157, whereas PDE5 inhibition potentiated BAY-mediated increases only at VASPSer157. In comparison, 8Br-cGMP increased phosphorylation at VASPSer239 and VASPSer157 which were not affected by selective PDE inhibitors. In the presence of 8Br-cAMP, inhibition of either PDE4 or PDE5 decreased VASPSer239 phosphorylation and inhibition of PDE3 increased phosphorylation at VASPSer239, while inhibition of PDE3 or PDE4 increased and PDE5 inhibition had no effect on VASPSer157 phosphorylation. These findings demonstrate that BAY operates via cAMP and cGMP along with regulation by PDEs to phosphorylate VASP in VSMCs and that the mechanism of action of BAY in VSMCs is different from that of direct cyclic nucleotide analogs with respect to VASP phosphorylation and the involvement of PDEs. Given a role for VASP as a critical cytoskeletal protein, these findings provide evidence for BAY as a regulator of VSMC growth and a potential therapeutic agent against vasculoproliferative disorders. PMID:22347188

  20. Rictor regulates phosphorylation of the novel protein kinase C Apl II in Aplysia sensory neurons.

    PubMed

    Labban, Margaret; Dyer, John R; Sossin, Wayne S

    2012-09-01

    Rapamycin-insensitive companion of TOR (Rictor) is a conserved component of target of rapamycin complex 2 (TORC2), a complex implicated in phosphorylation of a number of signal transduction-related kinases, including protein kinase Cs (PKCs) at their 'hydrophobic' site in the carboxy-terminal extension domain. In the marine mollusk, Aplysia californica, an increase in phosphorylation of the novel PKC, Apl II, at the hydrophobic site is associated with a protein synthesis-dependent increase in synaptic strength seen after continuous application of serotonin. To determine if Rictor plays a role in this increase, we cloned the Aplysia ortholog of Rictor (ApRictor). An siRNA-mediated decrease in ApRictor levels in Aplysia sensory neurons led to a decrease in the phosphorylation of PKC Apl II at the hydrophobic site suggesting a role for ApRictor in hydrophobic site phosphorylation. However, over-expression of ApRictor was not sufficient to increase phosphorylation of PKC Apl II. Continuous application of serotonin increased phosphorylation of PKC Apl II at the hydrophobic site in cultured sensory neurons, and this was blocked by Torin, which inhibits both TORC1 and TORC2. Over-expression of ApRictor did not lead to change in the magnitude of serotonin-mediated phosphorylation, but did lead to a small increase in the membrane localization of phosphorylated PKC Apl II. In conclusion, these studies implicate Rictor in phosphorylation of a novel PKC during synaptic plasticity and suggest an additional role for Rictor in regulating the localization of PKCs.

  1. A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa.

    PubMed

    Lewis, B; Aitken, R J

    2001-01-01

    Rat spermatozoa from both the caput and cauda epididymidis were shown to generate superoxide anion (O2-.) both spontaneously and following stimulation with NAD(P)H. Caput spermatozoa gave a significantly greater O2- response to NADPH stimulation than caudal cells, whereas in both cell types the responses to exogenous NADPH and NADH were approximately equivalent. Analysis of H2O2 production revealed that this oxidant was generated only by caudal epididymal cells and only in these cells did the stimulation of reactive oxygen species (ROS) production with NADPH lead to an increase in tyrosine phosphorylation. Stimulation of ROS production with NADPH increased intracellular cyclic adenosine monophosphate (cAMP) levels in both caput and caudal epididymal cells, but only in caudal cells did cAMP stimulate tyrosine phosphorylation, in keeping with the NADPH results. On the basis of these findings we propose that tyrosine phosphorylation in rat spermatozoa is driven by ROS acting via 2 different but complementary mechanisms; O2-. stimulates tyrosine kinase activity indirectly through the elevation of intracellular cAMP while H2O2 acts directly on the kinase/phosphatase system, stimulating the former and inhibiting the latter. Zinc was examined as a potential regulator of this signal transduction cascade and was shown to suppress tyrosine phosphorylation in caput cells but to promote this activity in caudal spermatozoa, possibly through an inhibitory effect on tyrosine phosphatase activity. These results reveal the maturation of a redox-regulated, cAMP-mediated, signal transduction cascade during epididymal transit in the rat that is sensitive to zinc and plays a key role in the control of tyrosine phosphorylation events associated with capacitation.

  2. Multisite Phosphorylation of NuMA-Related LIN-5 Controls Mitotic Spindle Positioning in C. elegans

    PubMed Central

    Portegijs, Vincent; van Mourik, Tim; Akhmanova, Anna; Heck, Albert J. R.; van den Heuvel, Sander

    2016-01-01

    During cell division, the mitotic spindle segregates replicated chromosomes to opposite poles of the cell, while the position of the spindle determines the plane of cleavage. Spindle positioning and chromosome segregation depend on pulling forces on microtubules extending from the centrosomes to the cell cortex. Critical in pulling force generation is the cortical anchoring of cytoplasmic dynein by a conserved ternary complex of Gα, GPR-1/2, and LIN-5 proteins in C. elegans (Gα–LGN–NuMA in mammals). Previously, we showed that the polarity kinase PKC-3 phosphorylates LIN-5 to control spindle positioning in early C. elegans embryos. Here, we investigate whether additional LIN-5 phosphorylations regulate cortical pulling forces, making use of targeted alteration of in vivo phosphorylated residues by CRISPR/Cas9-mediated genetic engineering. Four distinct in vivo phosphorylated LIN-5 residues were found to have critical functions in spindle positioning. Two of these residues form part of a 30 amino acid binding site for GPR-1, which we identified by reverse two-hybrid screening. We provide evidence for a dual-kinase mechanism, involving GSK3 phosphorylation of S659 followed by phosphorylation of S662 by casein kinase 1. These LIN-5 phosphorylations promote LIN-5–GPR-1/2 interaction and contribute to cortical pulling forces. The other two critical residues, T168 and T181, form part of a cyclin-dependent kinase consensus site and are phosphorylated by CDK1-cyclin B in vitro. We applied a novel strategy to characterize early embryonic defects in lethal T168,T181 knockin substitution mutants, and provide evidence for sequential LIN-5 N-terminal phosphorylation and dephosphorylation in dynein recruitment. Our data support that phosphorylation of multiple LIN-5 domains by different kinases contributes to a mechanism for spatiotemporal control of spindle positioning and chromosome segregation. PMID:27711157

  3. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase.

    PubMed

    Lee, Kyung-Jong; Saha, Janapriya; Sun, Jingxin; Fattah, Kazi R; Wang, Shu-Chi; Jakob, Burkhard; Chi, Linfeng; Wang, Shih-Ya; Taucher-Scholz, Gisela; Davis, Anthony J; Chen, David J

    2016-02-29

    Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.

  4. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets.

    PubMed

    Mohan, Nimmy; Sudheesh, A P; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S

    2015-08-18

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3'-end processing.

  5. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase

    PubMed Central

    Lee, Kyung-Jong; Saha, Janapriya; Sun, Jingxin; Fattah, Kazi R.; Wang, Shu-Chi; Jakob, Burkhard; Chi, Linfeng; Wang, Shih-Ya; Taucher-Scholz, Gisela; Davis, Anthony J.; Chen, David J.

    2016-01-01

    Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells. PMID:26712563

  6. Modulation of cell spreading and migration by pp125FAK phosphorylation.

    PubMed Central

    Sankar, S.; Mahooti-Brooks, N.; Hu, G.; Madri, J. A.

    1995-01-01

    We provide evidence for both matrix-dependent and pp60v-src tyrosine kinase-dependent modulation of cell migration via tyrosine phosphorylation of pp125FAK, a focal adhesion kinase, thought to be involved in integrin-mediated signaling. Enhanced pp125FAK tyrosine phosphorylation and cell spreading was associated with decreased migration. Cells plated on type I collagen were less spread and exhibited lower levels of pp125FAK tyrosine phosphorylation and faster migration rates compared with cells on fibronectin that were well spread, which exhibited enhanced levels of pp125FAK tyrosine phosphorylation and slower migration rates. Inside-out signaling via expression of pp60v-src or its kinase-negative mutant caused a decrease in cell migration by changing the extent of pp125FAK tyrosine phosphorylation to above or below the levels obtained with control cells plated on fibronectin. Hence, pp125FAK tyrosine phosphorylation appears to play a role in the signaling cascade pathway involved in regulation of extracellular matrix-modulated, integrin-mediated cell migration. Images Figure 1 Figure 2 Figure 3 PMID:7677174

  7. Phosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in Soybean[OPEN

    PubMed Central

    2015-01-01

    Signaling pathways mediated by heterotrimeric G-protein complexes comprising Gα, Gβ, and Gγ subunits and their regulatory RGS (Regulator of G-protein Signaling) protein are conserved in all eukaryotes. We have shown that the specific Gβ and Gγ proteins of a soybean (Glycine max) heterotrimeric G-protein complex are involved in regulation of nodulation. We now demonstrate the role of Nod factor receptor 1 (NFR1)-mediated phosphorylation in regulation of the G-protein cycle during nodulation in soybean. We also show that during nodulation, the G-protein cycle is regulated by the activity of RGS proteins. Lower or higher expression of RGS proteins results in fewer or more nodules, respectively. NFR1 interacts with RGS proteins and phosphorylates them. Analysis of phosphorylated RGS protein identifies specific amino acids that, when phosphorylated, result in significantly higher GTPase accelerating activity. These data point to phosphorylation-based regulation of G-protein signaling during nodule development. We propose that active NFR1 receptors phosphorylate and activate RGS proteins, which help maintain the Gα proteins in their inactive, trimeric conformation, resulting in successful nodule development. Alternatively, RGS proteins might also have a direct role in regulating nodulation because overexpression of their phospho-mimic version leads to partial restoration of nodule formation in nod49 mutants. PMID:26498905

  8. Cyclic AMP-dependent protein kinase phosphorylation facilitates GABA(B) receptor-effector coupling.

    PubMed

    Couve, A; Thomas, P; Calver, A R; Hirst, W D; Pangalos, M N; Walsh, F S; Smart, T G; Moss, S J

    2002-05-01

    GABA (gamma-aminobutyric acid)(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Here we show that the functional coupling of GABA(B)R1/GABA(B)R2 receptors to inwardly rectifying K(+) channels rapidly desensitizes. This effect is alleviated after direct phosphorylation of a single serine residue (Ser892) in the cytoplasmic tail of GABA(B)R2 by cyclic AMP (cAMP)-dependent protein kinase (PKA). Basal phosphorylation of this residue is evident in rat brain membranes and in cultured neurons. Phosphorylation of Ser892 is modulated positively by pathways that elevate cAMP concentration, such as those involving forskolin and beta-adrenergic receptors. GABA(B) receptor agonists reduce receptor phosphorylation, which is consistent with PKA functioning in the control of GABA(B)-activated currents. Mechanistically, phosphorylation of Ser892 specifically enhances the membrane stability of GABA(B) receptors. We conclude that signaling pathways that activate PKA may have profound effects on GABA(B) receptor-mediated synaptic inhibition. These results also challenge the accepted view that phosphorylation is a universal negative modulator of G protein-coupled receptors.

  9. Connexin 35/36 is phosphorylated at regulatory sites in the retina

    PubMed Central

    Kothmann, W. Wade; Li, Xiaofan; Burr, Gary S.; O’Brien, John

    2007-01-01

    Connexin 35/36 is the most widespread neuronal gap junction protein in the retina and central nervous system. Electrical and/or tracer coupling in a number of neuronal circuits that express this connexin are regulated by light adaptation. In many cases the regulation of coupling depends on signaling pathways that activate protein kinases such as PKA, and Cx35 has been shown to be regulated by PKA phosphorylation in cell culture systems. To examine whether phosphorylation might regulate Cx35/36 in the retina we developed phospho-specific polyclonal antibodies against the two regulatory phosphorylation sites of Cx35 and examined the phosphorylation state of this connexin in the retina. Western blot analysis with hybrid bass retinal membrane preparations showed Cx35 to be phosphorylated at both the Ser110 and Ser276 sites, and this labeling was eliminated by alkaline phosphatase digestion. The homologous sites of mouse and rabbit Cx36 were also phosphorylated in retinal membrane preparations. Quantitative confocal immunofluorescence analysis showed gap junctions identified with a monoclonal anti-Cx35 antibody to have variable levels of phosphorylation at both the Ser110 and Ser276 sites. Unusual gap junctions that could be identified by their large size (up to 32 μm2) and location in the IPL showed a prominent shift in phosphorylation state from heavily phosphorylated in nighttime, dark-adapted retina to weakly phosphorylated in daytime, light-adapted retina. Both Ser110 and Ser276 sites showed significant changes in this manner. Under both lighting conditions other gap junctions varied from non-phosphorylated to heavily phosphorylated. We predict that changes in the phosphorylation states of these sites correlate with changes in the degree of coupling through Cx35/36 gap junctions. This leads to the conclusion that connexin phosphorylation mediates changes in coupling in some retinal networks. However, these changes are not global and likely occur in a cell type

  10. Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription

    PubMed Central

    Ammosova, Tatyana; Berro, Reem; Jerebtsova, Marina; Jackson, Angela; Charles, Sharroya; Klase, Zachary; Southerland, William; Gordeuk, Victor R; Kashanchi, Fatah; Nekhai, Sergei

    2006-01-01

    Background Transcription of HIV-1 genes is activated by HIV-1 Tat protein, which induces phosphorylation of RNA polymerase II (RNAPII) C-terminal domain (CTD) by CDK9/cyclin T1. Earlier we showed that CDK2/cyclin E phosphorylates HIV-1 Tat in vitro. We also showed that CDK2 induces HIV-1 transcription in vitro and that inhibition of CDK2 expression by RNA interference inhibits HIV-1 transcription and viral replication in cultured cells. In the present study, we analyzed whether Tat is phosphorylated in cultured cells by CDK2 and whether Tat phosphorylation has a regulatory effect on HIV-1 transcription. Results We analyzed HIV-1 Tat phosphorylation by CDK2 in vitro and identified Ser16 and Ser46 residues of Tat as potential phosphorylation sites. Tat was phosphorylated in HeLa cells infected with Tat-expressing adenovirus and metabolically labeled with 32P. CDK2-specific siRNA reduced the amount and the activity of cellular CDK2 and significantly decreased phosphorylation of Tat. Tat co-migrated with CDK2 on glycerol gradient and co-immunoprecipitated with CDK2 from the cellular extracts. Tat was phosphorylated on serine residues in vivo, and mutations of Ser16 and Ser46 residues of Tat reduced Tat phosphorylation in vivo. Mutation of Ser16 and Ser46 residues of Tat reduced HIV-1 transcription in transiently transfected cells. The mutations of Tat also inhibited HIV-1 viral replication and Tat phosphorylation in the context of the integrated HIV-1 provirus. Analysis of physiological importance of the S16QP(K/R)19 and S46YGR49 sequences of Tat showed that Ser16 and Ser46 and R49 residues are highly conserved whereas mutation of the (K/R)19 residue correlated with non-progression of HIV-1 disease. Conclusion Our results indicate for the first time that Tat is phosphorylated in vivo; Tat phosphorylation is likely to be mediated by CDK2; and phosphorylation of Tat is important for HIV-1 transcription. PMID:17083724

  11. FT-IR analysis of phosphorylated protein

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Yoshihashi, Sachiko S.; Chihara, Kunihiro; Awazu, Kunio

    2004-09-01

    Phosphorylation and dephosphorylation, which are the most remarkable posttranslational modifications, are considered to be important chemical reactions that control the activation of proteins. We examine the phosphorylation analysis method by measuring the infrared absorption peak of phosphate group that observed at about 1070cm-1 (9.4μm) with Fourier Transform Infrared Spectrometer (FT-IR). This study indicates that it is possible to identify a phosphorylation by measuring the infrared absorption peak of phosphate group observed at about 1070 cm-1 with FT-IR method. As long as target peptides have the same amino acid sequence, it is possible to identify the phosphorylated sites (threonine, serine and tyrosine).

  12. Biphasic regulation of myosin light chain phosphorylation by p21-activated kinase modulates intestinal smooth muscle contractility.

    PubMed

    Chu, Ji; Pham, Ngoc T; Olate, Nicole; Kislitsyna, Karina; Day, Mary-Clare; LeTourneau, Phillip A; Kots, Alexander; Stewart, Rand