Science.gov

Sample records for coincidence circuits

  1. Local changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy

    PubMed Central

    Neubauer, Florian B.; Sederberg, Audrey; MacLean, Jason N.

    2014-01-01

    During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges. PMID:25232306

  2. Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp.

    PubMed

    Bowden, Steven D; Eyres, Alison; Chung, Jade C S; Monson, Rita E; Thompson, Arthur; Salmond, George P C; Spring, David R; Welch, Martin

    2013-11-01

    Pectobacterium atrosepticum (Pca) is a Gram-negative phytopathogen which causes disease by secreting plant cell wall degrading exoenzymes (PCWDEs). Previous studies have shown that PCWDE production is regulated by (i) the intercellular quorum sensing (QS) signal molecule, 3-oxo-hexanoyl-l-homoserine lactone (OHHL), and (ii) the intracellular 'alarmone', (p)ppGpp, which reports on nutrient limitation. Here we show that these two signals form an integrated coincidence circuit which ensures that metabolically costly PCWDE synthesis does not occur unless the population is simultaneously quorate and nutrient limited. A (p)ppGpp null ΔrelAΔspoT mutant was defective in both OHHL and PCWDE production, and nutritional supplementation of wild type cultures (which suppresses (p)ppGpp production) also suppressed OHHL and PCWDE production. There was a substantial overlap in the transcriptome of a (p)ppGpp deficient relA mutant and of a QS defective expI (OHHL synthase) mutant, especially with regards to virulence-associated genes. Random transposon mutagenesis revealed that disruption of rsmA was sufficient to restore PCWDE production in the (p)ppGpp null strain. We found that the ratio of RsmA protein to its RNA antagonist, rsmB, was modulated independently by (p)ppGpp and QS. While QS predominantly controlled virulence by modulating RsmA levels, (p)ppGpp exerted regulation through the modulation of the RsmA antagonist, rsmB.

  3. Multiple channel programmable coincidence counter

    DOEpatents

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  4. Shift-register coincidence electronics system for thermal neutron counters

    SciTech Connect

    Swansen, J.E.; Collinsworth, P.R.; Krick, M.S.

    1980-04-01

    An improved shift-register, coincidence-counting logic circuit, developed for use with thermal neutron well counters, is described in detail. A distinguishing feature of the circuit is its ability to operate usefully at neutron counting rates of several hundred kHz. A portable electronics package incorporating the new coincidence logic and support circuits is also described.

  5. Coincidence Proportional Counter

    DOEpatents

    Manley, J H

    1950-11-21

    A coincidence proportional counter having a plurality of collecting electrodes so disposed as to measure the range or energy spectrum of an ionizing particle-emitting source such as an alpha source, is disclosed.

  6. Coincident disruptive coloration

    PubMed Central

    Cuthill, Innes C.; Székely, Aron

    2008-01-01

    Even if an animal matches its surroundings perfectly in colour and texture, any mismatch between the spatial phase of its pattern and that of the background, or shadow created by its three-dimensional relief, is potentially revealing. Nevertheless, for camouflage to be fully broken, the shape must be recognizable. Disruptive coloration acts against object recognition by the use of high-contrast internal colour boundaries to break up shape and form. As well as the general outline, characteristic features such as eyes and limbs must also be concealed; this can be achieved by having the colour patterns on different, but adjacent, body parts aligned to match each other (i.e. in phase). Such ‘coincident disruptive coloration’ ensures that there is no phase disjunction where body parts meet, and causes different sections of the body to blend perceptually. We tested this theory using field experiments with predation by wild birds on artificial moth-like targets, whose wings and (edible pastry) bodies had colour patterns that were variously coincident or not. We also carried out an experiment with humans searching for analogous targets on a computer screen. Both experiments show that coincident disruptive coloration is an effective mechanism for concealing an otherwise revealing body form. PMID:18990668

  7. Triple Coincidence Radioxenon Detector

    SciTech Connect

    McIntyre, Justin I.; Aalseth, Craig E.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Reeder, Paul L.

    2004-09-22

    The Automated Radioxenon Sampler/Analyzer (ARSA) built by Pacific Northwest National Laboratory (PNNL) is on e of the world’s most sensitive systems for monitoring the four radioxenon isotopes 133Xe, 133mXE, 131mXe and 135Xe. However, due to size, weight and power specifications appropriate to meet treaty-monitoring requirements; the ARSA is unsuitable for rapid deployment using modest transportation means. To transition this technology to a portable unit can be easily and rapidly deployed can be achieved by significant reductions in size, weight and power consumption if concentration were not required. As part of an exploratory effort to reduce both the size of the air sample and the gas processing requirement PNNL has developed an experimental nuclear detector to test and qualify the use of triple coincidence signatures (beta, conversion electron, x-ray) from two of the radioxenon isotopes (135Xe and 133Xe) as well as the more traditional beta-gamma coincidence signatures used by the ARSA system. The additional coincidence requirement allows for reduced passive shielding, and makes it possible for unambiguous detection of 133Xe and 153Xe in the presence of high 222Rn backgrounds. This paper will discuss the experimental setup and the results obtained for a 133Xe sample with and without 222Rn as an interference signature.

  8. Multiple channel coincidence detector and controller for microseismic data analysis

    DOEpatents

    Fasching, George E.

    1976-11-16

    A multiple channel coincidence detector circuit is provided for analyzing data either in real time or recorded data on a magnetic tape during an experiment for determining location and progression of fractures in an oil field or the like while water is being injected at high pressure in wells located in the field. The circuit is based upon the utilization of a set of parity generator trees combined with monostable multivibrators to detect the occurrence of two events at any pair of channel input terminals that are within a preselected time frame and have an amplitude above a preselected magnitude. The parity generators perform an exclusive OR function in a timing circuit composed of monostable multivibrators that serve to yield an output when two events are present in the preselected time frame. Any coincidences falling outside this time frame are considered either noise or not otherwise useful in the analysis of the recorded data. Input pulses of absolute magnitude below the low-level threshold setting of a bipolar low-level threshold detector are unwanted and therefore rejected. A control output is provided for a utilization device from a coincidence hold circuit that may be used to halt a tape search unit at the time of coincidence or perform other useful control functions.

  9. Computed neutron coincidence counting applied to passive waste assay

    SciTech Connect

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1997-11-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs.

  10. Application of length vernier in phase coincidence detection and precision frequency measurement.

    PubMed

    Miao, Miao; Wei, Zhou; Bin, Wang

    2012-02-01

    For comparison of arbitrary frequency signals, the paper proposed two levels of length vernier based on the time-space relationship are used in three levels of phase coincidence detecting circuits to extract the phase coincidence information by proper logic calculation. The length∕phase of each vernier is respectively corresponding to the accuracy and the resolution of detecting circuit. The time-space relationship is based on high-stability, high-accuracy, and high-speed of signal transmission. The method is effective to reduce the fuzzy region in the phase coincidence information and reach a higher measuring precision.

  11. Measuring circuit

    DOEpatents

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  12. Coincidence/Multiplicity Photofission Measurements

    SciTech Connect

    J.L. Jones; M.T. Swinhoe; S.J. Tobin; W. H. Geist; D.R. Norman; R.B. Rothrock; C.R. Freeman; K. J. Haskell

    2009-09-01

    An series of experiments using the Idaho National Laboratory (INL) photonuclear inspection system and a Los Alamos National Laboratory (LANL)-supplied, list-mode data acquisition method have shown enhanced performance utilizing pulsed photofission-induced, neutron coincidence counting between pulses of an up-to-10-MeV electron accelerator for nuclear material detection and identification. The enhanced inspection methodology has applicability to homeland security, treaty-related support, and weapon dismantlement applications. For the latter, this technology can directly support of Department of Energy/NA241 programmatic mission objectives relative to future Rocky Ridge-type testing campaigns for active inspection systems.

  13. Soft coincidence in late acceleration

    SciTech Connect

    Campo, Sergio del; Herrera, Ramon; Pavon, Diego

    2005-06-15

    We study the coincidence problem of late cosmic acceleration by assuming that the present ratio between dark matter and dark energy is a slowly varying function of the scale factor. As the dark energy component we consider two different candidates, first a quintessence scalar field, and then a tachyon field. In either case analytical solutions for the scale factor, the field, and the potential are derived. Both models show a good fit to the recent magnitude-redshift supernovae data. However, the likelihood contours disfavor the tachyon field model as it seems to prefer a excessively high value for the matter component.

  14. Digital coincidence counting - initial results

    NASA Astrophysics Data System (ADS)

    Butcher, K. S. A.; Watt, G. C.; Alexiev, D.; van der Gaast, H.; Davies, J.; Mo, Li; Wyllie, H. A.; Keightley, J. D.; Smith, D.; Woods, M. J.

    2000-08-01

    Digital Coincidence Counting (DCC) is a new technique in radiation metrology, based on the older method of analogue coincidence counting. It has been developed by the Australian Nuclear Science and Technology Organisation (ANSTO), in collaboration with the National Physical Laboratory (NPL) of the United Kingdom, as a faster more reliable means of determining the activity of ionising radiation samples. The technique employs a dual channel analogue-to-digital converter acquisition system for collecting pulse information from a 4π beta detector and an NaI(Tl) gamma detector. The digitised pulse information is stored on a high-speed hard disk and timing information for both channels is also stored. The data may subsequently be recalled and analysed using software-based algorithms. In this letter we describe some recent results obtained with the new acquistion hardware being tested at ANSTO. The system is fully operational and is now in routine use. Results for 60Co and 22Na radiation activity calibrations are presented, initial results with 153Sm are also briefly mentioned.

  15. Well coincidence counting and analysis

    SciTech Connect

    Lu, Ming-Shih; Teichmann, T.; Ceo, R.N.; Collins, L.L.

    1994-03-01

    In several recent papers a physical/mathematical model was developed to describe the nuclear multiplicative processes in samples containing fissile material from a general statistical viewpoint, starting with the basic underlying physical phenomena. The results of this model agreed with the established picture used in ``standard`` HLNCC (High Level Neutron Coincidence Counter) measurements, but considerably extended them, and allowed a more detailed interpretation of the underlying physical mechanisms and of the higher moments of the neutron counts. The present paper examines some recent measurements made at Y-12 (Oak Ridge) using the AWCC, in the light of this model. The results show internal consistency under a variety of conditions, and give good agreement between experiment and theory.

  16. Concepts for Alpha Coincidence Detection

    SciTech Connect

    Warren, Glen A.; Dion, Michael P.; Miller, Brian W.; Tatishvili, Gocha

    2015-03-01

    The effectiveness of conventional measurement techniques for environmental monitoring is limited by background and other interferences. We are exploring a new measurement approach involving the detection of α particles in coincidence with conversion electrons as a means to simultaneously assay environmental samples for actinides without chemical separation. The initial target isotopes studied in this work are 238Pu, 239Pu, 240Pu and 241Am. We explore various aspects of the design, such as impact of the mounting of the source material, resolution requirements and impact of a background on isotopic uncertainties. We conclude that a dual gas proportional counter and a dual-sided, large-area silicon detector could provide similar performance for the measurement scenario examined.

  17. Artifacts in digital coincidence timing

    SciTech Connect

    Moses, W. W.; Peng, Q.

    2014-10-16

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into a time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.

  18. Artifacts in Digital Coincidence Timing

    PubMed Central

    Moses, W. W.; Peng, Q.

    2014-01-01

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into a time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator. All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e., the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the “optimal” method. The purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization. PMID:25321885

  19. A portable neutron coincidence counter

    SciTech Connect

    Peurrung, A.J.; Bowyer, S.M.; Craig, R.A.; Dudder, G.B.; Knopf, M.A.; Panisko, M.E.; Reeder, P.L.; Stromswold, D.C.; Sunberg, D.S.

    1996-11-01

    Pacific Northwest National Laboratory has designed and constructed a prototype portable neutron coincidence counter intended for use in a variety of applications, such as the verification and inspection of weapons components, safety measurements for novel and challenging situations, portable portal deployment to prevent the transportation of fissile materials, uranium enrichment measurements in hard-to-reach locations, waste assays for objects that cannot be measured by existing measurement systems, and decontamination and decommissioning. The counting system weighs less than 40 kg and is composed of parts each weighing no more than 5 kg. In addition, the counter`s design is sufficiently flexible to allow rapid, reliable assembly around containers of nearly arbitrary size and shape. The counter is able to discern the presence of 1 kg of weapons-grade plutonium within an ALR-8 (30-gal drum) in roughly 100 seconds and 10 g in roughly 1000 seconds. The counter`s electronics are also designed for maximum adaptability, allowing operation under a wide variety of circumstances, including exposure to gamma-ray fields of 1 R/h. This report provides a detailed review of the design and construction process. Finally, preliminary experimental measurements that confirm the performance capabilities of this counter are discussed. 6 refs., 18 figs., 3 tabs.

  20. Multiverse understanding of cosmological coincidences

    SciTech Connect

    Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori

    2009-09-15

    There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant, the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.

  1. High-level neutron coincidence counter maintenance manual

    SciTech Connect

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  2. ADDER CIRCUIT

    DOEpatents

    Jacobsohn, D.H.; Merrill, L.C.

    1959-01-20

    An improved parallel addition unit is described which is especially adapted for use in electronic digital computers and characterized by propagation of the carry signal through each of a plurality of denominationally ordered stages within a minimum time interval. In its broadest aspects, the invention incorporates a fast multistage parallel digital adder including a plurality of adder circuits, carry-propagation circuit means in all but the most significant digit stage, means for conditioning each carry-propagation circuit during the time period in which information is placed into the adder circuits, and means coupling carry-generation portions of thc adder circuit to the carry propagating means.

  3. Artifacts in digital coincidence timing

    DOE PAGES

    Moses, W. W.; Peng, Q.

    2014-10-16

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into amore » time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.« less

  4. From Mere Coincidences to Meaningful Discoveries

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2007-01-01

    People's reactions to coincidences are often cited as an illustration of the irrationality of human reasoning about chance. We argue that coincidences may be better understood in terms of rational statistical inference, based on their functional role in processes of causal discovery and theory revision. We present a formal definition of…

  5. Sensitivity to coincidences and paranormal belief.

    PubMed

    Hadlaczky, Gergö; Westerlund, Joakim

    2011-12-01

    Often it is difficult to find a natural explanation as to why a surprising coincidence occurs. In attempting to find one, people may be inclined to accept paranormal explanations. The objective of this study was to investigate whether people with a lower threshold for being surprised by coincidences have a greater propensity to become believers compared to those with a higher threshold. Participants were exposed to artificial coincidences, which were formally defined as less or more probable, and were asked to provide remarkability ratings. Paranormal belief was measured by the Australian Sheep-Goat Scale. An analysis of the remarkability ratings revealed a significant interaction effect between Sheep-Goat score and type of coincidence, suggesting that people with lower thresholds of surprise, when experiencing coincidences, harbor higher paranormal belief than those with a higher threshold. The theoretical aspects of these findings were discussed.

  6. Redesign of the GATE PET coincidence sorter

    NASA Astrophysics Data System (ADS)

    Strydhorst, Jared; Buvat, Irène

    2016-09-01

    The GATE software platform, based on the Geant4 toolkit for simulating particle interactions with matter, enables simulation of, among other medical imaging and treatment systems, positron emission tomography. However, at least one publication (Moraes et al 2015 Phys. Med. 31 43-8) has reported discrepancies between the expected results and those obtained using GATE simulations, specifically with respect to the coincidence sorter which processes single events detected by the scanner to find coincidence pairs. In particular, the current software appears to overestimate the number of ‘true’ coincidence pairs when in multi-window mode, while the delayed coincidence window, used to estimate the randoms present in the prompt coincidence window, underestimates the randoms. Both effects are particularly evident at high count rates. We have investigated this discrepancy and reproduced the reported problems. We have also rewritten the relevant portion of the GATE code to correct the issue. In this note we describe the modifications to the coincidence sorter and repeat the simulations which previously showed unexpected results. Some discrepancies remain in the estimation of the randoms with the single-window mode which are a consequence of the algorithm itself. In multi-window mode however, the simulation agrees exactly with the expected results. The modifications to the coincidence sorter code will be incorporated into the next release of GATE (> version 7.2).

  7. GATING CIRCUITS

    DOEpatents

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  8. MULTIPLIER CIRCUIT

    DOEpatents

    Thomas, R.E.

    1959-01-20

    An electronic circuit is presented for automatically computing the product of two selected variables by multiplying the voltage pulses proportional to the variables. The multiplier circuit has a plurality of parallel resistors of predetermined values connected through separate gate circults between a first input and the output terminal. One voltage pulse is applied to thc flrst input while the second voltage pulse is applied to control circuitry for the respective gate circuits. Thc magnitude of the second voltage pulse selects the resistors upon which the first voltage pulse is imprcssed, whereby the resultant output voltage is proportional to the product of the input voltage pulses

  9. Coincidence lattices in the hyperbolic plane.

    PubMed

    Rodríguez-Andrade, M A; Aragón-González, G; Aragón, J L; Gómez-Rodríguez, A

    2011-01-01

    The problem of coincidences of lattices in the space R(p,q), with p + q = 2, is analyzed using Clifford algebra. We show that, as in R(n), any coincidence isometry can be decomposed as a product of at most two reflections by vectors of the lattice. Bases and coincidence indices are constructed explicitly for several interesting lattices. Our procedure is metric-independent and, in particular, the hyperbolic plane is obtained when p = q = 1. Additionally, we provide a proof of the Cartan-Dieudonné theorem for R(p,q), with p + q = 2, that includes an algorithm to decompose an orthogonal transformation into a product of reflections.

  10. TRIPPING CIRCUIT

    DOEpatents

    Lees, G.W.; McCormick, E.D.

    1962-05-22

    A tripping circuit employing a magnetic amplifier for tripping a reactor in response to power level, period, or instrument failure is described. A reference winding and signal winding are wound in opposite directions on the core. Current from an ion chamber passes through both windings. If the current increases at too fast a rate, a shunt circuit bypasses one or the windings and the amplifier output reverses polarity. (AEC)

  11. Coincident indices of exons and introns.

    PubMed

    Xu, J; Chen, R; Ling, L; Shen, R; Sun, J

    1993-07-01

    In this paper, the coincident index, proposed by W. F. Friedman in cryptology, is made use of in DNA sequence analysis and exon prediction. The coincident index of exons exceeds that of introns by many times, and is mainly affected by window length, which is correlated negatively with the coincident index. An optimal exon prediction scheme was obtained by experimental analysis with an orthogonal table. Besides exons, many other special sites such as tandem repeats can be identified by using the coincident index approach. The application of this approach to the ARV-2 (AIDS associated retrovirus 2) genome found three new possible coding regions and some unusual base composition regions which are probably related to definite biological functions.

  12. Determining activities of radionuclides from coincidence signatures

    NASA Astrophysics Data System (ADS)

    Warren, Glen A.; Smith, L. Eric; Aalseth, Craig E.; Ellis, Edward; Hossbach, Todd W.; Valsan, Andrei B.

    2006-05-01

    The spectral analysis of simultaneously observed photons in separate detectors may provide an invaluable tool for radioisotope identification applications. A general recursive method to determine the activity of an isotope from the observed coincidence signature rate is discussed. The method coherently accounts for effects of true coincidence summing within a single detector and detection efficiencies. A verification of the approach with computer simulations is also discussed.

  13. Simulation of triple coincidences in PET.

    PubMed

    Cal-González, J; Lage, E; Herranz, E; Vicente, E; Udias, J M; Moore, S C; Park, M-A; Dave, S R; Parot, V; Herraiz, J L

    2015-01-07

    Although current PET scanners are designed and optimized to detect double coincidence events, there is a significant amount of triple coincidences in any PET acquisition. Triple coincidences may arise from causes such as: inter-detector scatter (IDS), random triple interactions (RT), or the detection of prompt gamma rays in coincidence with annihilation photons when non-pure positron-emitting radionuclides are used (β(+)γ events). Depending on the data acquisition settings of the PET scanner, these triple events are discarded or processed as a set of double coincidences if the energy of the three detected events is within the scanner's energy window. This latter option introduces noise in the data, as at most, only one of the possible lines-of-response defined by triple interactions corresponds to the line along which the decay occurred. Several novel works have pointed out the possibility of using triple events to increase the sensitivity of PET scanners or to expand PET imaging capabilities by allowing differentiation between radiotracers labeled with non-pure and pure positron-emitting radionuclides. In this work, we extended the Monte Carlo simulator PeneloPET to assess the proportion of triple coincidences in PET acquisitions and to evaluate their possible applications. We validated the results of the simulator against experimental data acquired with a modified version of a commercial preclinical PET/CT scanner, which was enabled to acquire and process triple-coincidence events. We used as figures of merit the energy spectra for double and triple coincidences and the triples-to-doubles ratio for different energy windows and radionuclides. After validation, the simulator was used to predict the relative quantity of triple-coincidence events in two clinical scanners assuming different acquisition settings. Good agreement between simulations and preclinical experiments was found, with differences below 10% for most of the observables considered. For clinical

  14. Walther Bothe and Bruno Rossi: The birth and development of coincidence methods in cosmic-ray physics

    NASA Astrophysics Data System (ADS)

    Bonolis, Luisa

    2011-11-01

    In 1924, Walther Bothe and Hans Geiger applied a coincidence method to the study of Compton scattering with Geiger needle counters. Their experiment confirmed the existence of radiation quanta and established the validity of conservation principles in elementary processes. At the end of the 1920s, Bothe and Werner Kolhörster coupled the coincidence technique with the new Geiger-Müller counter to study cosmic rays, marking the start of cosmic-ray research as a branch of physics. The coincidence method was further refined by Bruno Rossi, who developed a vacuum-tube device capable of registering the simultaneous occurrence of electrical pulses from any number of counters with a tenfold improvement in time resolution. The electronic coincidence circuit bearing Rossi's name was instrumental in his research on the corpuscular nature and the properties of cosmic radiation during the early 1930s, a period characterized by a lively debate between Millikan and followers of the corpuscular interpretation. The Rossi coincidence circuit was also at the core of the counter-controlled cloud chamber developed by Patrick Blackett and Giuseppe Occhialini, and became one of the important ingredients of particle and nuclear physics. During the late 1930s and 1940s, coincidences, anti-coincidences and delayed coincidences played a crucial role in a series of experiments on the decay of the muon, which inaugurated the current era of particle physics.

  15. Targeting circuits

    PubMed Central

    Rajasethupathy, Priyamvada; Ferenczi, Emily; Deisseroth, Karl

    2017-01-01

    Current optogenetic methodology enables precise inhibition or excitation of neural circuits, spanning timescales as needed from the acute (milliseconds) to the chronic (many days or more), for experimental modulation of network activity and animal behavior. Such broad temporal versatility, unique to optogenetic control, is particularly powerful when combined with brain activity measurements that span both acute and chronic timescales as well. This enables, for instance, the study of adaptive circuit dynamics across the intact brain, and tuning interventions to match activity patterns naturally observed during behavior in the same individual. Although the impact of this approach has been greater on basic research than on clinical translation, it is natural to ask if specific neural circuit activity patterns discovered to be involved in controlling adaptive or maladaptive behaviors could become targets for treatment of neuropsychiatric diseases. Here we consider the landscape of such ideas related to therapeutic targeting of circuit dynamics, taking note of developments not only in optical but also in ultrasonic, magnetic, and thermal methods. We note the recent emergence of first-in-kind optogenetically-guided clinical outcomes, as well as opportunities related to the integration of interventions and readouts spanning diverse circuit-physiology, molecular, and behavioral modalities. PMID:27104976

  16. Trigger Circuit.

    DTIC Science & Technology

    A wire of Nitinol can be stretched up to a given amount and will remain in this stretched state until heated to a critical temperature. When heated...circuit of this invention provides a current pulse for the required time period to heat the Nitinol wire to its critical temperature to thereby restore the...wire to its original length. The circuit includes a high power transistor which is gated on for a controlled time to provide the required power to heat the Nitinol wire to its critical temperature. (Author)

  17. MULTIPLIER CIRCUIT

    DOEpatents

    Chase, R.L.

    1963-05-01

    An electronic fast multiplier circuit utilizing a transistor controlled voltage divider network is presented. The multiplier includes a stepped potentiometer in which solid state or transistor switches are substituted for mechanical wipers in order to obtain electronic switching that is extremely fast as compared to the usual servo-driven mechanical wipers. While this multiplier circuit operates as an approximation and in steps to obtain a voltage that is the product of two input voltages, any desired degree of accuracy can be obtained with the proper number of increments and adjustment of parameters. (AEC)

  18. Electronic circuit detects left ventricular ejection events in cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1972-01-01

    Electronic circuit processes arterial blood pressure waveform to produce discrete signals that coincide with beginning and end of left ventricular ejection. Output signals provide timing signals for computers that monitor cardiovascular systems. Circuit operates reliably for heart rates between 50 and 200 beats per minute.

  19. Coincidence imaging system with electron optics

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Jakubek, Jan; Krejci, Frantisek; Zemlicka, J.; Horacek, M.; Radlicka, T.; Vlcek, I.

    2011-05-01

    As a part of multiple-detector system for coincidence instrumental neutron activation analysis (CINAA) a new method which includes a devoted electron optic unit has been built. In order to achieve higher sensitivity, enhanced contrast and higher spatial resolution the new coincidence imaging arrangement newly incorporates to electron optic unit, source, the gamma detector and the Timepix electron detector. The electron optic unit can be configured for different electron energies. The description of the assembled apparatus, calibration and performance for different electron energies are presented.

  20. On Points of Coincidence of Two Mappings

    NASA Astrophysics Data System (ADS)

    Davidjan, V. R.

    1981-02-01

    This paper is devoted to the coincidence theory of two continuous mappings.A definition is given, in cohomological terms, of the coincidence index I_{f, g} of two continuous mappings f, g \\colon M \\to N, where M and N are connected (not necessarily compact), orientable, n-dimensional topological manifolds without boundary, f is a compact mapping and g is a proper mapping.Invariance of the index I_{f, g} under compact homotopies of f and proper homotopies of g is proved. It is shown that I_{f, g} \

  1. A generalized model for coincidence counting

    SciTech Connect

    Lu, Ming-Shih; Teichmann, T.

    1993-12-31

    A generalized model for coincidence counting has been developed based on the dual probability generating function introduced. The model accounts explicitly and simultaneously the effects of multiplication, absorption by poison and instrument detection and is applicable for a wide class of NDA including Pu in waste.

  2. Introduction to lethal circuit transformations

    NASA Astrophysics Data System (ADS)

    Fišer, Petr; Schmidt, Jan

    2015-12-01

    Logic optimization is a process that takes a logic circuit description (Boolean network) as an input and tries to refine it, to reduce its size and/or depth. An ideal optimization process should be able to devise an optimum implementation of a network in a reasonable time, given any circuit structure at the input. However, there are cases where it completely fails to produce even near-optimum solutions. Such cases are typically induced by non-standard circuit structure modifications. Surprisingly enough, such deviated structures are frequently present in standard benchmark sets too. We may only wonder whether it is an intention of the benchmarks creators, or just an unlucky coincidence. Even though synthesis tools should be primarily well suited for practical circuits, there is no guarantee that, e.g., a higher-level synthesis process will not generate such unlucky structures. Here we present examples of circuit transformations that lead to failure of most of state-of-the-art logic synthesis and optimization processes, both academic and commercial, and suggest actions to mitigate the disturbing effects.

  3. Using Compton scattering for random coincidence rejection

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Chmeissani, M.

    2016-12-01

    The Voxel Imaging PET (VIP) project presents a new approach for the design of nuclear medicine imaging devices by using highly segmented pixel CdTe sensors. CdTe detectors can achieve an energy resolution of ≈ 1% FWHM at 511 keV and can be easily segmented into submillimeter sized voxels for optimal spatial resolution. These features help in rejecting a large part of the scattered events from the PET coincidence sample in order to obtain high quality images. Another contribution to the background are random events, i.e., hits caused by two independent gammas without a common origin. Given that 60% of 511 keV photons undergo Compton scattering in CdTe (i.e. 84% of all coincidence events have at least one Compton scattering gamma), we present a simulation study on the possibility to use the Compton scattering information of at least one of the coincident gammas within the detector to reject random coincidences. The idea uses the fact that if a gamma undergoes Compton scattering in the detector, it will cause two hits in the pixel detectors. The first hit corresponds to the Compton scattering process. The second hit shall correspond to the photoelectric absorption of the remaining energy of the gamma. With the energy deposition of the first hit, one can calculate the Compton scattering angle. By measuring the hit location of the coincident gamma, we can construct the geometric angle, under the assumption that both gammas come from the same origin. Using the difference between the Compton scattering angle and the geometric angle, random events can be rejected.

  4. Coincidence velocity map imaging using a single detector

    NASA Astrophysics Data System (ADS)

    Zhao, Arthur; Sándor, Péter; Weinacht, Thomas

    2017-07-01

    We demonstrate a single-detector velocity map imaging setup which is capable of rapidly switching between coincidence and non-coincidence measurements. By rapidly switching the extraction voltages on the electrostatic lenses, both electrons and ions can be collected in coincidence with a single detector. Using a fast camera as the 2D detector avoids the saturation problem associated with traditional delay line detectors and allows for easy transitions between coincidence and non-coincidence data collection modes. This is a major advantage in setting up a low-cost and versatile coincidence apparatus. We present both coincidence and non-coincidence measurements of strong field atomic and molecular ionization.

  5. TIMING CIRCUIT

    DOEpatents

    Heyd, J.W.

    1959-07-14

    An electronic circuit is described for precisely controlling the power delivered to a load from an a-c source, and is particularly useful as a welder timer. The power is delivered in uniform pulses, produced by a thyratron, the number of pulses being controlled by a one-shot multivibrator. The starting pulse is synchronized with the a-c line frequency so that each multivlbrator cycle begins at about the same point in the a-c cycle.

  6. Measurement of beta-gamma coincidence with a multi-parameter analyzer system

    NASA Astrophysics Data System (ADS)

    Yazdanpanah-Kejani, M.; Abbasi, F.; Lamehi-Rachti, M.; Doost-Mohammadi, V.

    2017-01-01

    A new version of the Iranian Noble Gas Analyzing System (INGAS) has been improved to facilitate measurement of beta-gamma coincidence events. It employs a new prototype list-mode multi-parameter data analyzer system, MPA4300. In order to test the new version performance, it has used to obtain energy spectra from radioxenon isotopes using the detector assembly of the Iranian Noble Gas Analyzing System. The MPA4300 is able to set the coinciding parameters, extract the corresponding spectrum, and through the use of event by event list file, can replay the measurement in offline mode. A great novelty of this work is the use of internal timing circuit in MPA4300 instead of using standard pick up time modules to identify coincidence events of detectors. A detailed description of the measuring 222Rn and 131mXe is presented.

  7. Thermionic integrated circuits

    SciTech Connect

    MacRoberts, M.; Brown, D.R.; Dooley, R.; Lemons, R.; Lynn, D.; McCormick, B.; Mombourquette, C.; Sinah, D.

    1986-01-01

    Thermionic integrated circuits combine vacuum-tube technology with integrated-circuit techniques to form integrated vacuum circuits. These circuits are capable of extended operation in both high-temperature and high-radiation environments.

  8. Breaking through the false coincidence barrier in electron–ion coincidence experiments

    DOE PAGES

    Osborn, David L.; Hayden, Carl C.; Hemberger, Patrick; ...

    2016-10-31

    Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ~103 has largely precluded its use for this purpose, where a dynamic range of at least 105 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniform intensity atmore » every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2–3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar9+, whereas Ar4+ is the largest observable cluster under traditional operation. As a result, this advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.« less

  9. Breaking through the false coincidence barrier in electron–ion coincidence experiments

    SciTech Connect

    Osborn, David L.; Hayden, Carl C.; Hemberger, Patrick; Bodi, Andras; Voronova, Krisztina; Sztaray, Balint

    2016-10-31

    Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ~103 has largely precluded its use for this purpose, where a dynamic range of at least 105 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniform intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2–3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar9+, whereas Ar4+ is the largest observable cluster under traditional operation. As a result, this advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.

  10. Breaking through the false coincidence barrier in electron-ion coincidence experiments

    NASA Astrophysics Data System (ADS)

    Osborn, David L.; Hayden, Carl C.; Hemberger, Patrick; Bodi, Andras; Voronova, Krisztina; Sztáray, Bálint

    2016-10-01

    Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ˜103 has largely precluded its use for this purpose, where a dynamic range of at least 105 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniform intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2-3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar9+, whereas Ar4+ is the largest observable cluster under traditional operation. This advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.

  11. Toward a solution of the coincidence problem

    SciTech Connect

    Campo, Sergio del; Herrera, Ramon; Pavon, Diego

    2008-07-15

    The coincidence problem of late cosmic acceleration constitutes a serious riddle with regard to our understanding of the evolution of the Universe. Here we argue that this problem may someday be solved - or better understood - by expressing the Hubble expansion rate as a function of the ratio of densities (dark matter/dark energy) and observationally determining the said rate in terms of the redshift.

  12. Fast coincidence counting with active inspection systems

    NASA Astrophysics Data System (ADS)

    Mullens, J. A.; Neal, J. S.; Hausladen, P. A.; Pozzi, S. A.; Mihalczo, J. T.

    2005-12-01

    This paper describes 2nd and 3rd order time coincidence distributions measurements with a GHz processor that synchronously samples 5 or 10 channels of data from radiation detectors near fissile material. On-line, time coincidence distributions are measured between detectors or between detectors and an external stimulating source. Detector-to-detector correlations are useful for passive measurements also. The processor also measures the number of times n pulses occur in a selectable time window and compares this multiplet distribution to a Poisson distribution as a method of determining the occurrence of fission. The detectors respond to radiation emitted in the fission process induced internally by inherent sources or by external sources such as LINACS, DT generators either pulsed or steady state with alpha detectors, etc. Data can be acquired from prompt emission during the source pulse, prompt emissions immediately after the source pulse, or delayed emissions between source pulses. These types of time coincidence measurements (occurring on the time scale of the fission chain multiplication processes for nuclear weapons grade U and Pu) are useful for determining the presence of these fissile materials and quantifying the amount, and are useful for counter terrorism and nuclear material control and accountability. This paper presents the results for a variety of measurements.

  13. Circuit Connectors

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The U-shaped wire devices in the upper photo are Digi-Klipsm; aids to compact packaging of electrical and electronic devices. They serve as connectors linking the circuitry of one circuit board with another in multi-board systems. Digi-Klips were originally developed for Goddard Space Flight Center to meet a need for lightweight, reliable connectors to replace hand-wired connections formerly used in spacecraft. They are made of beryllium copper wire, noted for its excellent conductivity and its spring-like properties, which assure solid electrical contact over a long period of time.

  14. LOGIC CIRCUIT

    DOEpatents

    Strong, G.H.; Faught, M.L.

    1963-12-24

    A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)

  15. Cosmic Coincidences: Investigations for Neutron Background Suppression

    PubMed Central

    Heimbach, Craig R.

    2007-01-01

    Two experimental investigations were made in order to reduce background counts in neutron detectors. Each investigation relied upon the fact that neutron background is largely due to cosmic ray interactions with the air and ground. The first attempt was to look at neutron arrival times. Neutron events close in time were taken to have been of a common origin due to cosmic rays. The second investigation was similar, but based on coincident neutron/muon events. The investigations showed only a small effect, not practical for the suppression of neutron background. PMID:27110457

  16. Cosmic Coincidences: Investigations for Neutron Background Suppression.

    PubMed

    Heimbach, Craig R

    2007-01-01

    Two experimental investigations were made in order to reduce background counts in neutron detectors. Each investigation relied upon the fact that neutron background is largely due to cosmic ray interactions with the air and ground. The first attempt was to look at neutron arrival times. Neutron events close in time were taken to have been of a common origin due to cosmic rays. The second investigation was similar, but based on coincident neutron/muon events. The investigations showed only a small effect, not practical for the suppression of neutron background.

  17. A method for coincidence timing resolution enhancement

    SciTech Connect

    Ermis, E. E. Celiktas, C.; Pilicer, E.

    2016-05-15

    A method including the coincidence time resolution improvement for a TOF/positron emission tomography system was suggested. The spectrometer for this aim was composed of two NaI(Tl) and two plastic scintillation detectors. Experimental results were supported by FLUKA Monte Carlo simulation program by constructing the detector setup in software medium. Present experimental results verified our previous results and conclusions obtained from the suggested method. It was concluded that better resolutions would help the improvement not only on the TOF gain but also on the spatial resolution, leading to better images and helping the Physician in his/her diagnosis and treatment.

  18. A coincidence detection system based on real-time software

    NASA Astrophysics Data System (ADS)

    Ayuso, Sindulfo; José Blanco, Juan; Medina, José; Gómez-Herrero, Raúl; García-Población, Oscar; García Tejedor, Ignacio

    2016-09-01

    Conventional real-time coincidence systems use electronic circuitry to detect coincident pulses (hardware coincidence). In this work, a new concept of coincidence system based on real-time software (software coincidence) is presented. This system is based on the recurrent supervision of the analogue-to-digital converters status, which is described in detail. A prototype has been designed and built using a low-cost development platform. It has been applied to two different experimental sets for cosmic ray muon detection. Experimental muon measurements recorded simultaneously using conventional hardware coincidence and our software coincidence system have been compared, yielding identical results. These measurements have also been validated using simultaneous neutron monitor observations. This new software coincidence system provides remarkable advantages such as higher simplicity of interconnection and adjusting. Thus, our system replaces, at least, three Nuclear Instrument Modules (NIMs) required by conventional coincidence systems, reducing its cost by a factor of 40 and eliminating pulse delay adjustments.

  19. Commutation circuit for an HVDC circuit breaker

    DOEpatents

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  20. Commutation circuit for an HVDC circuit breaker

    DOEpatents

    Premerlani, W.J.

    1981-11-10

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components. 13 figs.

  1. Commutation circuit for an HVDC circuit breaker

    SciTech Connect

    Premerlani, W.J.

    1981-11-10

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components. 13 figs.

  2. A simple tachometer circuit

    NASA Technical Reports Server (NTRS)

    Dimeff, J.

    1972-01-01

    Electric circuit to measure frequency of repetitive sinusoidal or rectangular wave is presented. Components of electric circuit and method of operation are explained. Application of circuit as tachometer for automobile is discussed.

  3. Circuit monitors powerline interruptions

    NASA Technical Reports Server (NTRS)

    Simmons, N. E.; Stricklen, J. O.

    1977-01-01

    Simple circuit when combined with pulse detector detects momentary interruptions of 400-cycle ac signal. Circuit has been used during shock and vibration testing of electronic hardware to determine if tests caused interruptions of normal circuit operation.

  4. Photomultiplier blanking circuit

    NASA Technical Reports Server (NTRS)

    Mcclenahan, J. O.

    1972-01-01

    Circuit for protecting photomultiplier equipment from current surges which occur when exposed to brilliant illumination is discussed. Components of circuit and details of operation are provided. Circuit diagram to show action of blanking pulse on zener diode is included.

  5. Circuit monitors powerline interruptions

    NASA Technical Reports Server (NTRS)

    Simmons, N. E.; Stricklen, J. O.

    1977-01-01

    Simple circuit when combined with pulse detector detects momentary interruptions of 400-cycle ac signal. Circuit has been used during shock and vibration testing of electronic hardware to determine if tests caused interruptions of normal circuit operation.

  6. The Coincident Fission Fragment Detector (CFFD)

    NASA Astrophysics Data System (ADS)

    Wakhle, A.; Hammerton, K.; Kohley, Z.; Yurkon, J.; Stiefel, K.

    2017-08-01

    A Parallel Plate Avalanche Counter (PPAC) based fission detector system, called the Coincident Fission Fragment Detector (CFFD), has been developed for the ReA3 re-accelerator facility of the National Superconducting Cyclotron Laboratory (NSCL). Binary reaction kinematics are reconstructed based on position and time-of-flight measurements of fission fragments. Large area PPACs provide 1 ns level time resolution and mm level position resolution. The detectors allow measurements of fission product angular and mass distributions of heavy-ion induced fusion reactions. The 30 cm by 40 cm active area of each PPAC provides large solid angle coverage well suited for measurements of low intensity rare-isotope beams (RIBs).

  7. Estimates and Recommendations for Coincidence Geometry

    SciTech Connect

    Younes, W.; Ressler, J. J.

    2013-05-23

    When two truly coincident gamma-rays deposit their energy within the same detector, a composite pulse which is indistinguishable from one due to a single event may be recorded by that detector. This summing e effct is known to become more important as the distance from source to detector is decreased [1]. In this short report, we give a rough estimate for the size of this e ect as a function of source-to-detector distance. The formalism used in this report is taken mainly from [2], and similar results can also be found, e.g., in [1, 3, 4]. In general, the size of the e ect will depend on the exact level scheme of the nucleus studied, but for the sake of extracting numerical values, we will assume a particular level scheme in this report.

  8. Combining attosecond XUV pulses with coincidence spectroscopy

    SciTech Connect

    Sabbar, M. Heuser, S.; Boge, R.; Lucchini, M.; Cirelli, C.; Keller, U.; Gallmann, L.

    2014-10-15

    Here we present a successful combination of an attosecond beamline with a COLTRIMS apparatus, which we refer to as AttoCOLTRIMS. The setup provides either single attosecond pulses or attosecond pulse trains for extreme ultraviolet-infrared pump-probe experiments. We achieve full attosecond stability by using an active interferometer stabilization. The capability of the setup is demonstrated by means of two measurements, which lie at the heart of the COLTRIMS detector: firstly, we resolve the rotating electric field vector of an elliptically polarized few-cycle infrared laser field by attosecond streaking exploiting the access to the 3D momentum space of the charged particles. Secondly, we show streaking measurements on different atomic species obtained simultaneously in a single measurement making use of the advantage of measuring ions and electrons in coincidence. Both of these studies demonstrate the potential of the AttoCOLTRIMS for attosecond science.

  9. Alpha Coincidence Spectroscopy studied with GEANT4

    SciTech Connect

    Dion, Michael P.; Miller, Brian W.; Tatishvili, Gocha; Warren, Glen A.

    2013-11-02

    Abstract The high-energy side of peaks in alpha spectra, e.g. 241Am, as measured with a silicon detector has structure caused mainly by alpha-conversion electron and to some extent alphagamma coincidences. We compare GEANT4 simulation results to 241Am alpha spectroscopy measurements with a passivated implanted planar silicon detector. A large discrepancy between the measurements and simulations suggest that the GEANT4 photon evaporation database for 237Np (daughter of 241Am decay) does not accurately describe the conversion electron spectrum and therefore was found to have large discrepancies with experimental measurements. We describe how to improve the agreement between GEANT4 and alpha spectroscopy for actinides of interest by including experimental measurements of conversion electron spectroscopy into the photon evaporation database.

  10. Response attenuation during coincident afferent excitatory inputs.

    PubMed

    Kogo, N; Ariel, M

    1999-06-01

    The linearity of the synaptic summation of two unitary excitatory synaptic events was investigated during whole cell recordings from retinal target neurons in an eye-attached isolated brain stem preparation. Pairs of unitary excitatory postsynaptic potentials (EPSPs) were evoked by bipolar stimulation electrodes that were directed to two distinct foci on the retinal surface based on the visual receptive field boundaries. The interval between stimulation of each retinal site was incremented by 0.5-1 ms to quantify the time course of nonlinear summation using an exponential fit. Response facilitation was never observed; however, the coincident arrival of synaptic inputs caused a response attenuation in 26 of the 37 pairs studied. Twelve of the 26 pairs had time constants of their attenuation that were similar to the time constants of the decaying phases of the first EPSPs of each pair. This suggests that the attenuation of these 12 pairs may be entirely due to voltage-dependent mechanisms, such as a reduction in driving force or a change of the activity of voltage-sensitive channels. On the other hand, the 14 other pairs had their time constant of attenuation shorter than the time constants of the decaying phase of the first EPSP. In fact, the attenuation time constants were often closer to the time constants of the decaying phases of the first excitatory postsynaptic currents of each pair. This finding suggests that the attenuation of these 14 pairs involve a shunting mechanism due to the opening of synaptic channels. The presence of this conductance-dependent mechanism is supported by the finding of asymmetric effects on the time course of attenuation when the stimulation sequence was reversed. These results are discussed in terms of the processing by neurons of coincident excitatory inputs onto spatially distinct points of their dendritic trees.

  11. On coincident loop transient electromagnetic induction logging

    DOE PAGES

    Swidinsky, Andrei; Weiss, Chester J.

    2017-05-31

    Coincident loop transient induction wireline logging is examined as the borehole analog of the well-known land and airborne time-domain electromagnetic (EM) method. The concept of whole-space late-time apparent resistivity is modified from the half-space version commonly used in land and airborne geophysics and applied to the coincident loop voltages produced from various formation, borehole, and invasion models. Given typical tool diameters, off-time measurements with such an instrument must be made on the order of nanoseconds to microseconds — much more rapidly than for surface methods. Departure curves of the apparent resistivity for thin beds, calculated using an algorithm developed tomore » model the transient response of a loop in a multilayered earth, indicate that the depth of investigation scales with the bed thickness. Modeled resistivity logs are comparable in accuracy and resolution with standard frequency-domain focused induction logs. However, if measurement times are longer than a few microseconds, the thicknesses of conductors can be overestimated, whereas resistors are underestimated. Thin-bed resolution characteristics are explained by visualizing snapshots of the EM fields in the formation, where a conductor traps the electric field while two current maxima are produced in the shoulder beds surrounding a resistor. Radial profiling is studied using a concentric cylinder earth model. Results found that true formation resistivity can be determined in the presence of either oil- or water-based mud, although in the latter case, measurements must be taken several orders of magnitude later in time. Lastly, the ability to determine true formation resistivity is governed by the degree that the EM field heals after being distorted by borehole fluid and invasion, a process visualized and particularly evident in the case of conductive water-based mud.« less

  12. Neutron coincidence detectors employing heterogeneous materials

    DOEpatents

    Czirr, J. Bartley; Jensen, Gary L.

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  13. Remapping Neural Circuits, Civics, and Presidential Libraries: Coincidences? You Be the Judge

    ERIC Educational Resources Information Center

    Risinger, C. Frederick

    2008-01-01

    In this article, the author reviews the "Presidential Timeline" and 12 existing presidential library websites that will help teachers and students to focus on the presidency. The author found that some were much more "teacher-student friendly" than others. All of them had sections for educators, students, or researchers, but many include lesson…

  14. K-chameleon and the coincidence problem

    SciTech Connect

    Wei Hao; Cai Ronggen

    2005-02-15

    In this paper we present a hybrid model of k-essence and chameleon, named as k-chameleon. In this model, due to the chameleon mechanism, the directly strong coupling between the k-chameleon field and matters (cold dark matters and baryons) is allowed. In the radiation-dominated epoch, the interaction between the k-chameleon field and background matters can be neglected; the behavior of the k-chameleon therefore is the same as that of the ordinary k-essence. After the onset of matter domination, the strong coupling between the k-chameleon and matters dramatically changes the result of the ordinary k-essence. We find that during the matter-dominated epoch, only two kinds of attractors may exist: one is the familiar K attractor and the other is a completely new, dubbed C attractor. Once the Universe is attracted into the C attractor, the fraction energy densities of the k-chameleon {omega}{sub {phi}} and dust matter {omega}{sub m} are fixed and comparable, and the Universe will undergo a power-law accelerated expansion. One can adjust the model so that the K attractor does not appear. Thus, the k-chameleon model provides a natural solution to the cosmological coincidence problem.

  15. Coincidence avoidance principle in surface haptic interpretation

    PubMed Central

    Manuel, Steven G.; Klatzky, Roberta L.; Peshkin, Michael A.; Colgate, James Edward

    2015-01-01

    When multiple fingertips experience force sensations, how does the brain interpret the combined sensation? In particular, under what conditions are the sensations perceived as separate or, alternatively, as an integrated whole? In this work, we used a custom force-feedback device to display force signals to two fingertips (index finger and thumb) as they traveled along collinear paths. Each finger experienced a pattern of forces that, taken individually, produced illusory virtual bumps, and subjects reported whether they felt zero, one, or two bumps. We varied the spatial separation between these bump-like force-feedback regions, from being much greater than the finger span to nearly exactly the finger span. When the bump spacing was the same as the finger span, subjects tended to report only one bump. We found that the results are consistent with a quantitative model of perception in which the brain selects a structural interpretation of force signals that relies on minimizing coincidence stemming from accidental alignments between fingertips and inferred surface structures. PMID:25675477

  16. Coincidence avoidance principle in surface haptic interpretation.

    PubMed

    Manuel, Steven G; Klatzky, Roberta L; Peshkin, Michael A; Colgate, James Edward

    2015-02-24

    When multiple fingertips experience force sensations, how does the brain interpret the combined sensation? In particular, under what conditions are the sensations perceived as separate or, alternatively, as an integrated whole? In this work, we used a custom force-feedback device to display force signals to two fingertips (index finger and thumb) as they traveled along collinear paths. Each finger experienced a pattern of forces that, taken individually, produced illusory virtual bumps, and subjects reported whether they felt zero, one, or two bumps. We varied the spatial separation between these bump-like force-feedback regions, from being much greater than the finger span to nearly exactly the finger span. When the bump spacing was the same as the finger span, subjects tended to report only one bump. We found that the results are consistent with a quantitative model of perception in which the brain selects a structural interpretation of force signals that relies on minimizing coincidence stemming from accidental alignments between fingertips and inferred surface structures.

  17. Broadband Electromagnetic Pulses Coinciding with Sprite Luminosity

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Roussel-Dupre, R. A.; Symbalisty, E.; Chanrion, O.; van der Velde, O. A.; Odzimek, A.; Whitley, T.; Neubert, T.

    2009-12-01

    This study reports novel optical sprite observations in southern France during the summer months 2009 and the associated electromagnetic radiation emitted in the frequency range >50 kHz. About 10% of the observed sprites are associated with consecutive pulses of >50 kHz electromagnetic radiation. Some of these broadband pulses occur simultaneously with the sprite luminosity. In particular, the electromagnetic radiation of the sprite itself can coincide with a broadband pulse. This behaviour is predicted by the relativistic runaway breakdown theory, in which the lightning electromagnetic field accelerates free electrons to form a narrow particle beam shooting upward into near-Earth space. This vertical relativistic runaway breakdown describes a novel physical process within the Earth's atmosphere, even though it may occur only on extremely rare occasions, i.e., ~100 upward particle beams per day around the globe. The wealth of currently planned future space missions in this research area will greatly enhance the detection likelihood of the predicted particle beams.

  18. Incoherent coincidence imaging of space objects

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Gu, Guohua

    2016-10-01

    Incoherent Coincidence Imaging (ICI), which is based on the second or higher order correlation of fluctuating light field, has provided great potentialities with respect to standard conventional imaging. However, the deployment of reference arm limits its practical applications in the detection of space objects. In this article, an optical aperture synthesis with electronically connected single-pixel photo-detectors was proposed to remove the reference arm. The correlation in our proposed method is the second order correlation between the intensity fluctuations observed by any two detectors. With appropriate locations of single-pixel detectors, this second order correlation is simplified to absolute-square Fourier transform of source and the unknown object. We demonstrate the image recovery with the Gerchberg-Saxton-like algorithms and investigate the reconstruction quality of our approach. Numerical experiments has been made to show that both binary and gray-scale objects can be recovered. This proposed method provides an effective approach to promote detection of space objects and perhaps even the exo-planets.

  19. Solenoid-Simulation Circuit

    NASA Technical Reports Server (NTRS)

    Simon, R. A.

    1986-01-01

    Electrical properties of solenoids imitated for tests of control circuits. Simulation circuit imitates voltage and current responses of two engine-controlling solenoids. Used in tests of programs of digital engine-control circuits, also provides electronic interface with circuits imitating electrical properties of pressure sensors and linear variable-differential transformers. Produces voltages, currents, delays, and discrete turnon and turnoff signals representing operation of solenoid in engine-control relay. Many such circuits used simulating overall engine circuitry.

  20. The Higgs and top mass coincidence problem

    NASA Astrophysics Data System (ADS)

    Torrente-Lujan, E.

    2015-05-01

    On the light of the recent LHC boson discovery, we present a phenomenological evaluation of the ratio ρt = mZmt/m2H, from the LHC combined mH value, we get ((1σ)) {ρ _t}(exp) = 0.9956 ± 0.0081. This value is close to one with a precision of the order ˜ 1%. Similarly we evaluate the ratio ρWt = (mW + mt)/(2mH). From the up-to-date mass values we get ρ(exp)wt = 1.0066 ± 0.0035 (1σ). The Higgs mass is numerically close (at the 1% level) to the mH ˜ (mW + mt)/2. From these relations we can write any two mass ratios as a function of, exclusively, the Weinberg angle (with a precision of the order of 1% or better): {{{m_i}} over {{m_j}}} ≃ {fij}({θ _W}), i, j = W,Z, H, t. For example: mH/mZ ≃ 1 + √2s2θW/2, mH/mtcθW ≃ 1 - √2s2θW/2. In the limit cos θW → 1 all the masses would become equal mZ = mW = mt = mH. It is tempting to think that such a value, it is not a mere coincidence but, on naturalness grounds, a signal of some more deeper symmetry. In a model independent way, ρt can be viewed as the ratio of the highest massive representatives of the spin (0, 1/2, 1) SM and, to a very good precision the LHC evidence tell us that ms=1ms=1/2/m2s=0 ≃ 1. Somehow the "lowest" scalar particle mass is the geometric mean of the highest spin 1, 1/2 masses. We review the theoretical situation of this ratio in the SM and beyond. In the SM these relations are rather stable under RGE pointing out to some underlying UV symmetry. In the SM such a ratio hints for a non-casual relation of the type λ ≃ κ(g2 + g'2) with κ ≃ 1 + o(g/gt). Moreover the existence of relations mi/mj ≃ fij(θW) could be interpreted as a hint for a role of the SU(2)c custodial symmetry, together with other unknown mechanism. Without a symmetry at hand to explain then in the SM, it arises a Higgs mass coincidence problem, why the ratios ρt, ρWt are so close to one, can we find a mechanism that naturally

  1. Advances in coincidence time resolution for PET.

    PubMed

    Cates, Joshua W; Levin, Craig S

    2016-03-21

    Coincidence time resolution (CTR), an important parameter for time-of-flight (TOF) PET performance, is determined mainly by properties of the scintillation crystal and photodetector used. Stable production techniques for LGSO:Ce (Lu1.8Gd0.2SiO5:Ce) with decay times varying from ∼ 30-40 ns have been established over the past decade, and the decay time can be accurately controlled with varying cerium concentration (0.025-0.075 mol%). This material is promising for TOF-PET, as it has similar light output and equivalent stopping power for 511 keV annihilation photons compared to industry standard LSO:Ce and LYSO:Ce, and the decay time is improved by more than 30% with proper Ce concentration. This work investigates the achievable CTR with LGSO:Ce (0.025 mol%) when coupled to new silicon photomultipliers. Crystal element dimension is another important parameter for achieving fast timing. 20 mm length crystal elements achieve higher 511 keV photon detection efficiency, but also introduce higher scintillation photon transit time variance. 3 mm length crystals are not practical for PET, but have reduced scintillation transit time spread. The CTR between pairs of 2.9 × 2.9 × 3 mm(3) and 2.9 × 2.9 × 20 mm(3) LGSO:Ce crystals was measured to be 80 ± 4 and 122 ± 4 ps FWHM, respectively. Measurements of light yield and intrinsic decay time are also presented for a thorough investigation into the timing performance with LGSO:Ce (0.025 mol%).

  2. Hidden circuits and argumentation

    NASA Astrophysics Data System (ADS)

    Leinonen, Risto; Kesonen, Mikko H. P.; Hirvonen, Pekka E.

    2016-11-01

    Despite the relevance of DC circuits in everyday life and schools, they have been shown to cause numerous learning difficulties at various school levels. In the course of this article, we present a flexible method for teaching DC circuits at lower secondary level. The method is labelled as hidden circuits, and the essential idea underlying hidden circuits is in hiding the actual wiring of DC circuits, but to make their behaviour evident for pupils. Pupils are expected to find out the wiring of the circuit which should enhance their learning of DC circuits. We present two possible ways to utilise hidden circuits in a classroom. First, they can be used to test and enhance pupils’ conceptual understanding when pupils are expected to find out which one of the offered circuit diagram options corresponds to the actual circuit shown. This method aims to get pupils to evaluate the circuits holistically rather than locally, and as a part of that aim this method highlights any learning difficulties of pupils. Second, hidden circuits can be used to enhance pupils’ argumentation skills with the aid of argumentation sheet that illustrates the main elements of an argument. Based on the findings from our co-operating teachers and our own experiences, hidden circuits offer a flexible and motivating way to supplement teaching of DC circuits.

  3. Neutron coincidence counting with digital signal processing

    NASA Astrophysics Data System (ADS)

    Bagi, Janos; Dechamp, Luc; Dransart, Pascal; Dzbikowicz, Zdzislaw; Dufour, Jean-Luc; Holzleitner, Ludwig; Huszti, Joseph; Looman, Marc; Marin Ferrer, Montserrat; Lambert, Thierry; Peerani, Paolo; Rackham, Jamie; Swinhoe, Martyn; Tobin, Steve; Weber, Anne-Laure; Wilson, Mark

    2009-09-01

    Neutron coincidence counting is a widely adopted nondestructive assay (NDA) technique used in nuclear safeguards to measure the mass of nuclear material in samples. Nowadays, most neutron-counting systems are based on the original-shift-register technology, like the (ordinary or multiplicity) Shift-Register Analyser. The analogue signal from the He-3 tubes is processed by an amplifier/single channel analyser (SCA) producing a train of TTL pulses that are fed into an electronic unit that performs the time- correlation analysis. Following the suggestion of the main inspection authorities (IAEA, Euratom and the French Ministry of Industry), several research laboratories have started to study and develop prototypes of neutron-counting systems with PC-based processing. Collaboration in this field among JRC, IRSN and LANL has been established within the framework of the ESARDA-NDA working group. Joint testing campaigns have been performed in the JRC PERLA laboratory, using different equipment provided by the three partners. One area of development is the use of high-speed PCs and pulse acquisition electronics that provide a time stamp (LIST-Mode Acquisition) for every digital pulse. The time stamp data can be processed directly during acquisition or saved on a hard disk. The latter method has the advantage that measurement data can be analysed with different values for parameters like predelay and gate width, without repeating the acquisition. Other useful diagnostic information, such as die-away time and dead time, can also be extracted from this stored data. A second area is the development of "virtual instruments." These devices, in which the pulse-processing system can be embedded in the neutron counter itself and sends counting data to a PC, can give increased data-acquisition speeds. Either or both of these developments could give rise to the next generation of instrumentation for improved practical neutron-correlation measurements. The paper will describe the

  4. Is the ``IR Coincidence'' Just That?

    NASA Astrophysics Data System (ADS)

    Nowak, Michael A.; Wilms, Jörn; Heinz, Sebastian; Pooley, Guy; Pottschmidt, Katja; Corbel, Stephane

    2005-06-01

    Previous work by Motch et al. suggested that in the low/hard state of GX 339-4 the soft X-ray power law extrapolated backward in energy agrees with the IR flux level. Corbel & Fender later showed that the typical hard-state radio power law extrapolated forward in energy meets the backward-extrapolated X-ray power law at an IR spectral break, which was explicitly observed twice in GX 339-4. This IR coincidence has been cited as further evidence that synchrotron radiation from a jet might make a significant contribution to the observed X-rays in hard-state black hole systems. We quantitatively explore this hypothesis with a series of simultaneous radio/X-ray observations of GX 339-4, taken during its 1997, 1999, and 2002 hard states. We fit these spectra, in detector space, with a simple, but remarkably successful, doubly broken power-law model that indeed requires an IR spectral break. For these observations, the break position and the integrated radio/IR flux have stronger dependences upon the X-ray flux than the simplest jet model predictions. If one allows for a softening of the X-ray power law with increasing flux, then the jet model can agree with the observed correlation. We also find evidence that the radio flux-X-ray flux correlation previously observed in the 1997 and 1999 GX 339-4 hard states shows a parallel track for the 2002 hard state. The slope of the 2002 correlation is consistent with observations taken in prior hard states; however, the radio amplitude is reduced. We then examine the radio flux-X-ray flux correlation in Cyg X-1 through the use of 15 GHz radio data obtained with the Ryle radio telescope and Rossi X-Ray Timing Explorer data from the All-Sky Monitor and pointed observations. We again find evidence of parallel tracks, and here they are associated with ``failed transitions,'' or the beginning of a transition, to the soft state. We also find that for Cyg X-1 the radio flux is more fundamentally correlated with the hard, rather than the

  5. Is the `IR Coincidence' Just That?

    NASA Astrophysics Data System (ADS)

    Nowak, M.

    2005-09-01

    Previous work by Motch (1985) suggested that in the low/hard state of GX 339-4 the soft X-ray power-law extrapolated backward in energy agrees with the IR flux level. Corbel & Fender (2002) later showed that the typical hard state radio power-law extrapolated forward in energy meets the backward extrapolated X-ray power-law at an IR spectral break, which was explicitly observed twice in GX 339-4. This `IR coincidence' has been cited as further evidence that synchrotron radiation from a jet might make a significant contribution to the observed X-rays in hard state black hole systems. We quantitatively explore this hypothesis with a series of simultaneous radio/X-ray observations of GX 339-4, taken during its 1997, 1999, and 2002 hard states. We fit these spectra, in detector space, with a simple, but remarkably successful, doubly broken power-law model that indeed requires an IR spectral break. For these observations, the break position and the integrated radio/IR flux have stronger dependences upon the X-ray flux than the simplest jet model predictions. If one allows for a softening of the X-ray power law with increasing flux, then the jet model can agree with the observed correlation. We also find evidence that the radio flux/X-ray flux correlation previously observed in the 1997 and 1999 GX 339-4 hard states shows a `parallel track' for the 2002 hard state. The slope of the 2002 correlation is consistent with observations taken in prior hard states; however, the radio amplitude is reduced. We then examine the radio flux/X-ray flux correlation in Cyg X-1 through the use of 15 GHz radio data, obtained with the Ryle radio telescope, and Rossi X-ray Timing Explorer data, from the All Sky Monitor and pointed observations. We again find evidence of `parallel tracks', and here they are associated with `failed transitions' to, or the beginning of a transition to, the soft state. We also find that for Cyg X-1 the radio flux is more fundamentally correlated with the hard

  6. Direct decomposition of the experimental γ-γ coincidence matrix

    NASA Astrophysics Data System (ADS)

    Emelianov, B. A.; Kabina, L. P.; Kondurov, I. A.; Loginov, Yu. E.; Sushkov, P. A.

    1980-12-01

    Development here is the direct method of decomposition of the experimental matrix of γ-γ coincidences. Intensities of coincidences are calculated by an approximation of the total coincidence matrix within the framework of the chosen model of the coincidence spectra with the instrumental parameters and the a priori data on the scheme of the excited states of the nucleus under study. A two-dimensional Gaussian is used to describe an elementary coincidence peak. The volume value of the Gaussian is a measure of the γ-γ coincidence intensity in the given cascade. The method described was used for processing the experimental data in 104Rh, 108Ag, 122,124Sb and 134Cs studies via the (n, γ) reaction. The method is also valid in the analysis of any of two-parameter distributions which correspond to correlated events and which can be presented as two-dimensional matrices.

  7. Introduction to Neutron Coincidence Counter Design Based on Boron-10

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-01-22

    The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

  8. Clifford algebra approach to the coincidence problem for planar lattices.

    PubMed

    Rodríguez, M A; Aragón, J L; Verde-Star, L

    2005-03-01

    The problem of coincidences of planar lattices is analyzed using Clifford algebra. It is shown that an arbitrary coincidence isometry can be decomposed as a product of coincidence reflections and this allows planar coincidence lattices to be characterized algebraically. The cases of square, rectangular and rhombic lattices are worked out in detail. One of the aims of this work is to show the potential usefulness of Clifford algebra in crystallography. The power of Clifford algebra for expressing geometric ideas is exploited here and the procedure presented can be generalized to higher dimensions.

  9. Uranium Neutron Coincidence Collar Model Utilizing Boron-10 Lined Tubes

    SciTech Connect

    Rogers, Jeremy L.; Ely, James H.; Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-09-18

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report, providing results for model development of Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) designs, is a deliverable under Task 2 of the project.

  10. Electrical Circuits and Water Analogies

    ERIC Educational Resources Information Center

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  11. Electrical Circuits and Water Analogies

    ERIC Educational Resources Information Center

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  12. Linear integrated circuits

    NASA Astrophysics Data System (ADS)

    Young, T.

    This book is intended to be used as a textbook in a one-semester course at a variety of levels. Because of self-study features incorporated, it may also be used by practicing electronic engineers as a formal and thorough introduction to the subject. The distinction between linear and digital integrated circuits is discussed, taking into account digital and linear signal characteristics, linear and digital integrated circuit characteristics, the definitions for linear and digital circuits, applications of digital and linear integrated circuits, aspects of fabrication, packaging, and classification and numbering. Operational amplifiers are considered along with linear integrated circuit (LIC) power requirements and power supplies, voltage and current regulators, linear amplifiers, linear integrated circuit oscillators, wave-shaping circuits, active filters, DA and AD converters, demodulators, comparators, instrument amplifiers, current difference amplifiers, analog circuits and devices, and aspects of troubleshooting.

  13. (DARPA) Quantum-Limited Measurement as a Tool for Entanglement in Superconducting Circuits

    DTIC Science & Technology

    2013-08-29

    DARPA) QUANTUM-LIMITED MEASUREMENT AS A TOOL FOR ENTANGLEMENT IN SUPERCONDUCTING CIRCUITS ROBERT MCDERMOTT UNIVERSITY OF WISCONSIN SYSTEM 08/29/2013...state the junction tunnels rapidly to the continuum, producing a large and easily measured classical voltage pulse. With a single junction circuit we...achieve detection efficiencies of order 90%. With a two- junction counter circuit , we have performed a microwave-frequency coincidence counting

  14. Sense circuit arrangement

    NASA Technical Reports Server (NTRS)

    Bohning, Oliver D. (Inventor)

    1976-01-01

    A unique, two-node sense circuit is disclosed. The circuit includes a bridge comprised of resistance elements and a differential amplifier. The two-node circuit is suitably adapted to be arranged in an array comprised of a plurality of discrete bridge-amplifiers which can be selectively energized. The circuit is arranged so as to form a configuration with minimum power utilization and a reduced number of components and interconnections therebetween.

  15. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  16. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  17. Integrated Circuit Computer Analysis.

    DTIC Science & Technology

    information on this topic. The most important findings were the method used to identify combinational circuits ( Quine - McCluskey algorithm) and a clearly...defined set of limits on the problem of identifying sequential circuits. Since the Quine - McCluskey algorithm works only for combinational circuits, an

  18. Electrical Circuit Simulation Code

    SciTech Connect

    Wix, Steven D.; Waters, Arlon J.; Shirley, David

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  19. Genealogy of Chua's Circuit

    NASA Astrophysics Data System (ADS)

    Kennedy, Peter

    2013-01-01

    Since its invention in 1983, Chua's circuit has become a reference circuit for studying bifurcations and chaos. This chapter plots the evolution of the circuit from the original simulations and experimental realization of a five-element topology with a three-segment nonlinear resistor to the latest three-element design comprising a capacitor, an inductor, and a memristor.

  20. Coincidence technique to reduce geometry and matrix effects in assay

    SciTech Connect

    Zucker, M.S.; Gozani, T.; Bernatowicz, H.

    1983-01-01

    Algebraic combinations of coincidence multiplicities can be formed which are relatively independent of detection efficiency, yet proportional to the amount of nuclear material being assayed. Considering these combinations, rather than the coincidence alone as signatures, has the demonstrable advantage that the assay results are comparatively independent of sample geometry or even matrix.

  1. A recent coincidence experiment of gravitational waves with long baseline

    NASA Astrophysics Data System (ADS)

    Hu, Enke; Guan, Tongren; Yu, Bo; Tang, Mengxi; Chen, Shusen; Zheng, Qingzhang; P, F. Michelson; B, E. Moskowitz; M, S. McAshan; W, M. Fairbank; M, Bassan

    1986-12-01

    The results of coincidence experiment which was carried out in the whole month of April, 1985 by two gravitational wave detectors in stanford and in Guangzhou are presented. It is found that up to sensitivity of h cong 10-16 the number of coincident events did not excess the number expected statistically.

  2. Novel Beta-Gamma Coincidence Measurements Using Phoswich Detectors

    SciTech Connect

    Ely, James H.; Aalseth, Craig E.; Hayes, James C.; Heimbigner, Tom R.; McIntyre, Justin I.; Miley, Harry S.; Panisko, Mark E.; Ripplinger, Mike D.

    2003-09-30

    The PNNL has developed an Automated Radio-xenon Sampler/Analyzer (ARSA) for the CTBT to measure four radio-xenon isotopes using a beta-gamma coincidence counting detector. A novel method to measure beta-gamma coincidences using a phoswich detector with state-of-the-art pulse shape discrimination techniqueses has been investigated.

  3. Coincidence Prompt Gamma-Ray Neutron Activation Analysis

    SciTech Connect

    R.P. gandner; C.W. Mayo; W.A. Metwally; W. Zhang; W. Guo; A. Shehata

    2002-11-10

    The normal prompt gamma-ray neutron activation analysis for either bulk or small beam samples inherently has a small signal-to-noise (S/N) ratio due primarily to the neutron source being present while the sample signal is being obtained. Coincidence counting offers the possibility of greatly reducing or eliminating the noise generated by the neutron source. The present report presents our results to date on implementing the coincidence counting PGNAA approach. We conclude that coincidence PGNAA yields: (1) a larger signal-to-noise (S/N) ratio, (2) more information (and therefore better accuracy) from essentially the same experiment when sophisticated coincidence electronics are used that can yield singles and coincidences simultaneously, and (3) a reduced (one or two orders of magnitude) signal from essentially the same experiment. In future work we will concentrate on: (1) modifying the existing CEARPGS Monte Carlo code to incorporate coincidence counting, (2) obtaining coincidence schemes for 18 or 20 of the common elements in coal and cement, and (3) optimizing the design of a PGNAA coincidence system for the bulk analysis of coal.

  4. Recovery and normalization of triple coincidences in PET

    SciTech Connect

    Lage, Eduardo Parot, Vicente; Dave, Shivang R.; Herraiz, Joaquin L.; Moore, Stephen C.; Sitek, Arkadiusz; Park, Mi-Ae; Udías, Jose M.; Vaquero, Juan J.

    2015-03-15

    Purpose: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. Methods: To recover triple coincidences, the authors’ method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. Results: The addition of triple-coincidence events with the

  5. A simple and versatile data acquisition system for software coincidence and pulse-height discrimination in 4πβ-γ coincidence experiments.

    PubMed

    Kawada, Y; Yamada, T; Unno, Y; Yunoki, A; Sato, Y; Hino, Y

    2012-09-01

    A simple but versatile data acquisition system for software coincidence experiments is described, in which any time stamping and live time controller are not provided. Signals from β- and γ-channels are fed to separately two fast ADCs (16 bits, 25 MHz clock maximum) via variable delay circuits and pulse-height stretchers, and also to pulse-height discriminators. The discriminating level was set to just above the electronic noise. Two ADCs were controlled with a common clock signal, and triggered simultaneously by the logic OR pulses from both discriminators. Paired digital signals for each sampling were sent to buffer memories connected to main PC with a FIFO (First-In, First-Out) pipe via USB. After data acquisition in list mode, various processing including pulse-height analyses was performed using MS-Excel (version 2007 and later). The usefulness of this system was demonstrated for 4πβ(PS)-4πγ coincidence measurements of (60)Co, (134)Cs and (152)Eu. Possibilities of other extended applications will be touched upon. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A precise calculation of delayed coincidence selection efficiency and accidental coincidence rate

    NASA Astrophysics Data System (ADS)

    Yu, Jing-Yi; Wang, Zhe; Chen, Shao-Min

    2015-05-01

    A precise background evaluation model is proposed to address the complex data structure of the delayed coincidence method, which is widely used in reactor electron-antineutrino oscillation experiments. In this model, effects from the muon veto, uncorrelated random background, and background are all studied analytically, simplifying the estimation of the systematic uncertainties of signal efficiency and accidental background rate. The results of the calculations are validated numerically with a number of simulation studies and also applied and validated in the recent Daya Bay hydrogen-capture based oscillation measurement. Supported by Ministry of Science and Technology of China (2013CB834302), National Natural Science Foundation of China (11235006, 11475093), Tsinghua University Initiative Scientific Research Program (2012Z02161), and Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education.

  7. Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds.

    PubMed

    Ashida, Go; Kretzberg, Jutta; Tollin, Daniel J

    2016-06-01

    Many sensory neurons encode temporal information by detecting coincident arrivals of synaptic inputs. In the mammalian auditory brainstem, binaural neurons of the medial superior olive (MSO) are known to act as coincidence detectors, whereas in the lateral superior olive (LSO) roles of coincidence detection have remained unclear. LSO neurons receive excitatory and inhibitory inputs driven by ipsilateral and contralateral acoustic stimuli, respectively, and vary their output spike rates according to interaural level differences. In addition, LSO neurons are also sensitive to binaural phase differences of low-frequency tones and envelopes of amplitude-modulated (AM) sounds. Previous physiological recordings in vivo found considerable variations in monaural AM-tuning across neurons. To investigate the underlying mechanisms of the observed temporal tuning properties of LSO and their sources of variability, we used a simple coincidence counting model and examined how specific parameters of coincidence detection affect monaural and binaural AM coding. Spike rates and phase-locking of evoked excitatory and spontaneous inhibitory inputs had only minor effects on LSO output to monaural AM inputs. In contrast, the coincidence threshold of the model neuron affected both the overall spike rates and the half-peak positions of the AM-tuning curve, whereas the width of the coincidence window merely influenced the output spike rates. The duration of the refractory period affected only the low-frequency portion of the monaural AM-tuning curve. Unlike monaural AM coding, temporal factors, such as the coincidence window and the effective duration of inhibition, played a major role in determining the trough positions of simulated binaural phase-response curves. In addition, empirically-observed level-dependence of binaural phase-coding was reproduced in the framework of our minimalistic coincidence counting model. These modeling results suggest that coincidence detection of excitatory

  8. Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds

    PubMed Central

    Ashida, Go; Kretzberg, Jutta; Tollin, Daniel J.

    2016-01-01

    Many sensory neurons encode temporal information by detecting coincident arrivals of synaptic inputs. In the mammalian auditory brainstem, binaural neurons of the medial superior olive (MSO) are known to act as coincidence detectors, whereas in the lateral superior olive (LSO) roles of coincidence detection have remained unclear. LSO neurons receive excitatory and inhibitory inputs driven by ipsilateral and contralateral acoustic stimuli, respectively, and vary their output spike rates according to interaural level differences. In addition, LSO neurons are also sensitive to binaural phase differences of low-frequency tones and envelopes of amplitude-modulated (AM) sounds. Previous physiological recordings in vivo found considerable variations in monaural AM-tuning across neurons. To investigate the underlying mechanisms of the observed temporal tuning properties of LSO and their sources of variability, we used a simple coincidence counting model and examined how specific parameters of coincidence detection affect monaural and binaural AM coding. Spike rates and phase-locking of evoked excitatory and spontaneous inhibitory inputs had only minor effects on LSO output to monaural AM inputs. In contrast, the coincidence threshold of the model neuron affected both the overall spike rates and the half-peak positions of the AM-tuning curve, whereas the width of the coincidence window merely influenced the output spike rates. The duration of the refractory period affected only the low-frequency portion of the monaural AM-tuning curve. Unlike monaural AM coding, temporal factors, such as the coincidence window and the effective duration of inhibition, played a major role in determining the trough positions of simulated binaural phase-response curves. In addition, empirically-observed level-dependence of binaural phase-coding was reproduced in the framework of our minimalistic coincidence counting model. These modeling results suggest that coincidence detection of excitatory

  9. CIRCUITS FOR CURRENT MEASUREMENTS

    DOEpatents

    Cox, R.J.

    1958-11-01

    Circuits are presented for measurement of a logarithmic scale of current flowing in a high impedance. In one form of the invention the disclosed circuit is in combination with an ionization chamber to measure lonization current. The particular circuit arrangement lncludes a vacuum tube having at least one grid, an ionization chamber connected in series with a high voltage source and the grid of the vacuum tube, and a d-c amplifier feedback circuit. As the ionization chamber current passes between the grid and cathode of the tube, the feedback circuit acts to stabilize the anode current, and the feedback voltage is a measure of the logaritbm of the ionization current.

  10. Mitochondrial ion circuits.

    PubMed

    Nicholls, David G

    2010-01-01

    Proton circuits across the inner mitochondrial membrane link the primary energy generators, namely the complexes of the electron transport chain, to multiple energy utilizing processes, including the ATP synthase, inherent proton leak pathways, metabolite transport and linked circuits of sodium and calcium. These mitochondrial circuits can be monitored in both isolated preparations and intact cells and, for the primary proton circuit techniques, exist to follow both the proton current and proton electrochemical potential components of the circuit in parallel experiments, providing a quantitative means of assessing mitochondrial function and, equally importantly, dysfunction.

  11. Parallelizing quantum circuit synthesis

    NASA Astrophysics Data System (ADS)

    Di Matteo, Olivia; Mosca, Michele

    2016-03-01

    Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools that can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits. Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can be realized physically as a result of having more efficient circuits. We present a method for quantum circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in which once a starting point is chosen, its path is completely determined. We apply our method to construct a parallel framework for circuit synthesis, and implement one such version performing optimal T-count synthesis over the Clifford+T gate set. We use our software to present examples where parallelization offers a significant speedup on the runtime, as well as directly confirm that the 4-qubit 1-bit full adder has optimal T-count 7 and T-depth 3.

  12. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, Wallace J.

    1999-01-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  13. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  14. 48-channel coincidence counting system for multiphoton experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Li, Wei; Hu, Yi; Yang, Tao; Jin, Ge; Jiang, Xiao

    2016-11-01

    In this paper, we demonstrate a coincidence counting system with 48 input channels which is aimed to count all coincidence events, up to 531 441 kinds, in a multiphoton experiment. Using the dynamic delay adjusting inside the Field Programmable Gate Array, the alignment of photon signals of 48 channels is achieved. After the alignment, clock phase shifting is used to sample signal pulses. Logic constraints are used to stabilize the pulse width. The coincidence counting data stored in a 1G bit external random access memory will be sent to the computer to analyze the amount of 2-, 3-, 4-, 5-, and 6-fold coincidence events. This system is designed for multiphoton entanglement experiments with multiple degrees of freedom of photons.

  15. Glycinergic inhibition tunes coincidence detection in the auditory brainstem.

    PubMed

    Myoga, Michael H; Lehnert, Simon; Leibold, Christian; Felmy, Felix; Grothe, Benedikt

    2014-05-07

    Neurons in the medial superior olive (MSO) detect microsecond differences in the arrival time of sounds between the ears (interaural time differences or ITDs), a crucial binaural cue for sound localization. Synaptic inhibition has been implicated in tuning ITD sensitivity, but the cellular mechanisms underlying its influence on coincidence detection are debated. Here we determine the impact of inhibition on coincidence detection in adult Mongolian gerbil MSO brain slices by testing precise temporal integration of measured synaptic responses using conductance-clamp. We find that inhibition dynamically shifts the peak timing of excitation, depending on its relative arrival time, which in turn modulates the timing of best coincidence detection. Inhibitory control of coincidence detection timing is consistent with the diversity of ITD functions observed in vivo and is robust under physiologically relevant conditions. Our results provide strong evidence that temporal interactions between excitation and inhibition on microsecond timescales are critical for binaural processing.

  16. Glycinergic inhibition tunes coincidence detection in the auditory brainstem

    PubMed Central

    Myoga, Michael H.; Lehnert, Simon; Leibold, Christian; Felmy, Felix; Grothe, Benedikt

    2014-01-01

    Neurons in the medial superior olive (MSO) detect microsecond differences in the arrival time of sounds between the ears (interaural time differences or ITDs), a crucial binaural cue for sound localization. Synaptic inhibition has been implicated in tuning ITD sensitivity, but the cellular mechanisms underlying its influence on coincidence detection are debated. Here we determine the impact of inhibition on coincidence detection in adult Mongolian gerbil MSO brain slices by testing precise temporal integration of measured synaptic responses using conductance-clamp. We find that inhibition dynamically shifts the peak timing of excitation, depending on its relative arrival time, which in turn modulates the timing of best coincidence detection. Inhibitory control of coincidence detection timing is consistent with the diversity of ITD functions observed in vivo and is robust under physiologically relevant conditions. Our results provide strong evidence that temporal interactions between excitation and inhibition on microsecond timescales are critical for binaural processing. PMID:24804642

  17. On the structure of the set of coincidence points

    NASA Astrophysics Data System (ADS)

    Arutyunov, A. V.; Gel'man, B. D.

    2015-03-01

    We consider the set of coincidence points for two maps between metric spaces. Cardinality, metric and topological properties of the coincidence set are studied. We obtain conditions which guarantee that this set (a) consists of at least two points; (b) consists of at least n points; (c) contains a countable subset; (d) is uncountable. The results are applied to study the structure of the double point set and the fixed point set for multivalued contractions. Bibliography: 12 titles.

  18. Dielectric Circuit Board Bonding.

    DTIC Science & Technology

    circuit boards to form subassemblies and the bonding of subassemblies together. The finished circuit may include a bonded-in ground plate of copper...The patent application describes a method and apparatus for bonding of dielectric circuit boards for microwave use, the bonding together of several...wire cloth or the like and may include through- plate holes. The technique includes the build-up of thin films to provide strength, toughness and

  19. Remote reset circuit

    DOEpatents

    Gritzo, R.E.

    1985-09-12

    A remote reset circuit acts as a stand-along monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients. 4 figs.

  20. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  1. Remote reset circuit

    DOEpatents

    Gritzo, Russell E.

    1987-01-01

    A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.

  2. Automatic circuit interrupter

    NASA Technical Reports Server (NTRS)

    Dwinell, W. S.

    1979-01-01

    In technique, voice circuits connecting crew's cabin to launch station through umbilical connector disconnect automatically unused, or deadened portion of circuits immediately after vehicle is launched, eliminating possibility that unused wiring interferes with voice communications inside vehicle or need for manual cutoff switch and its associated wiring. Technique is applied to other types of electrical actuation circuits, also launch of mapped vehicles, such as balloons, submarines, test sleds, and test chambers-all requiring assistance of ground crew.

  3. Neutron coincidence imaging for active and passive neutron assays

    SciTech Connect

    Estep, R. J.; Brunson, G. S.; Melton, S. G.

    2001-01-01

    Neutron multiplicity assay algorithms for {sup 240}Pu assume a point source of fission neutrons that are detected in a single detector channel. The {sup 240}Pu in real waste, however, is more likely to be distributed throughout the container in some random way. For different reasons, this leads to significant errors when using either multiplicity or simpler coincidence analyses. Reduction of these errors can be achieved using tomographic imaging. In this talk we report on our results from using neutron singles and coincidence data between tagged detector pairs to provide enhanced tomographic imaging capabilities to a crate nondestructive assay system. Only simulated passive coincidence data is examined here, although the higher signal rates from active coincidence counting hold more promise for waste management. The active coincidence approach has significantly better sensitivity than the passive and is not significantly perturbed by (alpha,n) contributions. Our study was based primarily on simulated neutron pulse trains derived from the Los Alamos SIM3D software, which were subjected to analysis using the Los Alamos CTEN-FIT and TGS-FIT software. We found significantly improved imaging capability using the coincidence and singles rate data than could be obtained using the singles rate alone.

  4. Printed circuit board industry.

    PubMed

    LaDou, Joseph

    2006-05-01

    The printed circuit board is the platform upon which microelectronic components such as semiconductor chips and capacitors are mounted. It provides the electrical interconnections between components and is found in virtually all electronics products. Once considered low technology, the printed circuit board is evolving into a high-technology product. Printed circuit board manufacturing is highly complicated, requiring large equipment investments and over 50 process steps. Many of the high-speed, miniaturized printed circuit boards are now manufactured in cleanrooms with the same health and safety problems posed by other microelectronics manufacturing. Asia produces three-fourths of the world's printed circuit boards. In Asian countries, glycol ethers are the major solvents used in the printed circuit board industry. Large quantities of hazardous chemicals such as formaldehyde, dimethylformamide, and lead are used by the printed circuit board industry. For decades, chemically intensive and often sloppy manufacturing processes exposed tens of thousands of workers to a large number of chemicals that are now known to be reproductive toxicants and carcinogens. The printed circuit board industry has exposed workers to high doses of toxic metals, solvents, acids, and photolithographic chemicals. Only recently has there been any serious effort to diminish the quantity of lead distributed worldwide by the printed circuit board industry. Billions of electronics products have been discarded in every region of the world. This paper summarizes recent regulatory and enforcement efforts.

  5. Fast Overcurrent Tripping Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Davies, Bryan L.; Osborn, Stephen H.

    1993-01-01

    Fast overcurrent tripping circuit designed for incorporation into power metal oxide/semiconductor field-effect transistor (MOSFET) switching circuit. Serves as fast electronic circuit breaker by sensing voltage across MOSFET's during conduction and switching MOSFET's off within 1 microsecond after voltage exceeds reference value corresponding to tripping current. Acts more quickly than Hall-effect current sensor and, in comparison with shunt current-measuring circuits, smaller and consumes less power. Also ignores initial transient overcurrents during first 5 microseconds of switching cycle.

  6. Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei

    PubMed Central

    Pugh, Jason R.; Raman, Indira M.

    2009-01-01

    Many cerebellar neurons fire spontaneously, generating 10–100 action potentials per second even without synaptic input. This high basal activity correlates with information-coding mechanisms that differ from those of cells that are quiescent until excited synaptically. For example, in the deep cerebellar nuclei, Hebbian patterns of coincident synaptic excitation and postsynaptic firing fail to induce long-term increases in the strength of excitatory inputs. Instead, excitatory synaptic currents are potentiated by combinations of inhibition and excitation that resemble the activity of Purkinje and mossy fiber afferents that is predicted to occur during cerebellar associative learning tasks. Such results indicate that circuits with intrinsically active neurons have rules for information transfer and storage that distinguish them from other brain regions. PMID:19178955

  7. a Reflection (electron, 2ELECTRON) Coincidence Experiment for Solid Surfaces.

    NASA Astrophysics Data System (ADS)

    Zhu, Hong

    A state-of-the-art reflection (e,2e) coincidence experiment for solid surfaces has been designed, constructed, and implemented. Single crystal silicon reconstructed surfaces were studied to establish the feasibility of applying the coincidence spectroscopy technique to solid surfaces. The ultra high vacuum system necessary for clean surface studies has achieved a base pressure of 3 times 10^{-11} Torr. A narrow angle electron gun with a LaB_6 offset-cathode was designed to meet the specifications of the experiment. In order to improve the time resolution of the apparatus, so as to enhance the true-to-accidental coincidence ratio, a compensation method utilizing lens -coupled spectrometers was developed for the electron energy analyzers used in the experiment. The components of the apparatus were characterized, and the surface conditions of the sample were monitored by the spectrometer systems used in the (e,2e) experiment: energy loss spectra, silicon Auger peaks, and a limited angular range of the electron diffraction pattern from silicon have been measured. Computer control of voltage supplies to the gun and the spectrometer systems, and automatic data acquisition have been achieved for total automation of the experiment. For the first time true coincidences have been searched for on solid surfaces, using the configuration for the determination of electron momentum distributions. In the experiment, surface contamination has been found and verified. Although the observation of true coincidences was hindered due to the contamination, the accidental coincidence count rates were measured. This measurement has led to an estimate of the lower limit of the triple differential cross section for the (e,2e) reaction, which is needed to observe true coincidences. The result suggests that the experiment is feasible only if the contamination problem is overcome.

  8. Liquid detection circuit

    DOEpatents

    Regan, Thomas O.

    1987-01-01

    Herein is a circuit which is capable of detecting the presence of liquids, especially cryogenic liquids, and whose sensor will not overheat in a vacuum. The circuit parameters, however, can be adjusted to work with any liquid over a wide range of temperatures.

  9. Completing a Simple Circuit.

    ERIC Educational Resources Information Center

    Slater, Timothy F.; Adams, Jeffrey P.; Brown, Thomas R.

    2000-01-01

    Students have problems successfully arranging an electric circuit to make the bulb produce light. Investigates the percentage of students able to complete a circuit with a given apparatus, and the effects of prior experience on student success. Recommends hands-on activities at the elementary and secondary school levels. (Contains 14 references.)…

  10. Understanding Simple Circuits

    ERIC Educational Resources Information Center

    Mant, Jenny; Wilson, Helen

    2007-01-01

    Many envisage electricity as the "power" to "do things." They know that electricity needs "circuits" and that something is "flowing" in the circuits, but they are not sure what or why. Words such as "current" and "voltage" are part of electricity but their meaning, and the difference between them, is not always clear. In this article, the authors…

  11. A Virtual Circuits Lab

    ERIC Educational Resources Information Center

    Vick, Matthew E.

    2010-01-01

    The University of Colorado's Physics Education Technology (PhET) website offers free, high-quality simulations of many physics experiments that can be used in the classroom. The Circuit Construction Kit, for example, allows students to safely and constructively play with circuit components while learning the mathematics behind many circuit…

  12. Electroshock protection circuit

    NASA Technical Reports Server (NTRS)

    Heskett, H.; Meincer, J.; Inglis, A. L.

    1973-01-01

    Circuit was developed to prevent accidental shock through electrodes used to test subjects as part of Skylab program. This circuit is placed between electrical apparatus and electrode that is attached to patient's body. Thus, patient is effectively protected from dangerous electrical shock that might be caused by failure in electrical apparatus.

  13. Understanding Simple Circuits

    ERIC Educational Resources Information Center

    Mant, Jenny; Wilson, Helen

    2007-01-01

    Many envisage electricity as the "power" to "do things." They know that electricity needs "circuits" and that something is "flowing" in the circuits, but they are not sure what or why. Words such as "current" and "voltage" are part of electricity but their meaning, and the difference between them, is not always clear. In this article, the authors…

  14. A Virtual Circuits Lab

    ERIC Educational Resources Information Center

    Vick, Matthew E.

    2010-01-01

    The University of Colorado's Physics Education Technology (PhET) website offers free, high-quality simulations of many physics experiments that can be used in the classroom. The Circuit Construction Kit, for example, allows students to safely and constructively play with circuit components while learning the mathematics behind many circuit…

  15. Genetic circuit design automation.

    PubMed

    Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A

    2016-04-01

    Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization. Copyright © 2016, American Association for the Advancement of Science.

  16. Computer circuit card puller

    NASA Technical Reports Server (NTRS)

    Sawyer, R. V.; Szuwalski, B. (Inventor)

    1981-01-01

    The invention generally relates to hand tools, and more particularly to an improved device for facilitating removal of printed circuit cards from a card rack characterized by longitudinal side rails arranged in a mutually spaced parallelism and a plurality of printed circuit cards extended between the rails of the rack.

  17. Integrated Optical Circuits

    DTIC Science & Technology

    1974-06-30

    with discrete EAP detectors, the electroabsorption effect is particularly promising for integrated waveguide photodetectors and modulators. High...IR-75-103 lloJM. ± Semiannual Technical Summary Integrated Optical Circuits 30 June 1974 Prepared for the Advanced Research Projects Agency und...needed. MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY INTEGRATED OPTICAL CIRCUITS SEMIANNUAL TECHNICAL SUMMARY REPORT TO THE

  18. Catheter transducer and circuit

    NASA Technical Reports Server (NTRS)

    Harrison, D. R.; Kerwin, W. J.

    1971-01-01

    Simple integrated circuit located at transducer, enables use of single coaxial cable for both input and output connections. Circuit is sensitive to changes in RC time constant, has much improved sensitivity characteristics, and is unaffected by changes in cable capacitance effects.

  19. Completing a Simple Circuit.

    ERIC Educational Resources Information Center

    Slater, Timothy F.; Adams, Jeffrey P.; Brown, Thomas R.

    2000-01-01

    Students have problems successfully arranging an electric circuit to make the bulb produce light. Investigates the percentage of students able to complete a circuit with a given apparatus, and the effects of prior experience on student success. Recommends hands-on activities at the elementary and secondary school levels. (Contains 14 references.)…

  20. Power-Switching Circuit

    NASA Technical Reports Server (NTRS)

    Praver, Gerald A.; Theisinger, Peter C.; Genofsky, John

    1987-01-01

    Functions of circuit breakers, meters, and switches combined. Circuit that includes power field-effect transistors (PFET's) provides on/off switching, soft starting, current monitoring, current tripping, and protection against overcurrent for 30-Vdc power supply at normal load currents up to 2 A. Has no moving parts.

  1. Electrically Tuneable EBG Integrated Circuits

    DTIC Science & Technology

    2013-12-01

    fabrication processes leveraging a technique previously developed for Printed Circuit Board (PCB). 15. SUBJECT TERMS Metamaterials, Radio...an integrated circuit (IC) fabrication processes leveraging a technique previously developed for Printed Circuit Board (PCB). Early design work...induces the EBG and as such is not tuneable [1] if implemented as integrated circuits (IC) or printed circuit boards (PCB). Previous work by this

  2. Thermocouple-Signal-Conditioning Circuit

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1991-01-01

    Thermocouple-signal-conditioning circuit acting in conjunction with thermocouple, exhibits electrical behavior of voltage in series with resistance. Combination part of input bridge circuit of controller. Circuit configured for either of two specific applications by selection of alternative resistances and supply voltages. Includes alarm circuit detecting open circuit in thermocouple and provides off-scale output to signal malfunctions.

  3. Multiple-Coincidence Active Neutron Interrogation of Fissionable Materials

    SciTech Connect

    Tinsley, J.R., Hurley, J.P., Trainham, R., Keegan, R.P.

    2008-11-14

    In an extension of the Associated Particle Imaging technique that is used for the detection and imaging of hidden explosives, the present measurements use a beam of tagged 14.1 MeV neutrons in coincidence with two or more gammas to probe for the presence of fissionable materials. We have measured neutron-gamma-gamma coincidences with targets of depleted uranium, tungsten, lead, iron, and carbon and will present results that show the multiple-coincidence counting rate for the depleted uranium is substantially higher than any of the non-fissionable materials. In addition, the presence of coincidences involving delayed particle spectra provides a signature for fissionable materials that is distinct from that for non-fissionable ones. Information from the tagged neutron involved in the coincidence event is used to compute the position of the fissionable material in all three dimensions. The result is an imaging probe for fissionable materials that is compact and portable, and produces relatively low levels of background radiation. Simultaneous measurements on packages of interest for both explosives and fissionable materials are now feasible.

  4. Development of coincidence-anticipation timing in a catching task.

    PubMed

    Kim, Robyn; Nauhaus, Genevieve; Glazek, Kuba; Young, Douglas; Lin, Sherry

    2013-08-01

    This study examined the effects of age, target location, and stimulus speed on coincidence-anticipation timing in a catching task. Males aged 11 to 18 years made simulated catching movements toward a light stimulus that rapidly approached the head or chest at various speeds. Coincidence-anticipation timing accuracy, movement onset times, and movement times did not differ by age. However, 17- to 18-year-olds exhibited significantly faster movement speeds than 14- to 16-year-olds. Target location (head or chest) did not affect coincidence-anticipation timing accuracy or movement speed. However, movements toward the head were initiated earlier and took longer than movements to the chest. Finally, stimulus speed had statistically significant effects on all measures: faster stimuli were associated with longer delays in coincidence-anticipation timing responses, earlier movement onset times, shorter movement times, and faster movement speeds. These results underscore the adaptability of coincidence-anticipation timing abilities for responding to stimuli under varying temporal and spatial constraints.

  5. Preliminary study for the development of a tweezers-type coincidence detector for tumor detection

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Higashi, Tatsuya; Matsumoto, Keiichi; Senda, Michio

    2005-08-01

    We have conducted a preliminary study for development of a tweezer-type coincidence detector for tumor detection in procedures such as FDG-guided surgery. The detector consists of a pair of LSO scintillators, optical fibers, a pair of photo-multiplier tubes (PMTs), and a coincidence circuit. Because the LSO scintillators are located on the tips of tweezers, a target organ such as a lymph node or the colon can be positioned between them. The size of a single LSO was 3.7 mm×3.7 mm×10 mm, and the scintillation photons are transferred to the PMTs via 2-mm-diameter, 1-m long optical fibers. The results show that the light loss due to the fiber was significant but there was sufficient light to observe the photo-peak of the 511-keV gamma photons. Sensitivity response function perpendicular to the detector has a full-width at half-maximum (FWHM) of 2.5 mm, while that parallel to the detector has a FWHM of 5.5 mm. Background counts due to the natural radioisotope in 176Lu can be observed when the distance between these two scintillators is small. Results also show that the absolute sensitivity was 0.057% at the center of the detector when the two LSOs were 10 mm apart and that the optical fiber was insensitive to bending up to a radius of 10 cm. From these results, we conclude that the proposed tweezers-type coincidence detector could be some interest for tumor detection using FDG, such as that in radio-guided surgery.

  6. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, David M.

    1996-01-01

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

  7. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, D.M.

    1996-11-05

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.

  8. Implications on the cosmic coincidence by a dynamical extrinsic curvature

    NASA Astrophysics Data System (ADS)

    Capistrano, Abraão J. S.; Cabral, Luis A.

    2016-12-01

    In this work, we apply the smooth deformation concept in order to obtain a modification of Friedmann’s equations. It is shown that the cosmic coincidence can be at least alleviated using the dynamical properties of the extrinsic curvature. We investigate the transition from nucleosynthesis to the coincidence era obtaining a very small variation of the ratio r=\\tfrac{{ρ }{{m}}}{{ρ }{{ext}}} that compares the matter energy density to extrinsic energy density, compatible with the known behavior of the deceleration parameter. We also show that the calculated ‘equivalence’ redshift matches the transition redshift from a deceleration to accelerated phase and the coincidence ceases to be. The dynamics on r is also studied based on Hubble parameter observations as the latest Baryons Acoustic Oscillations/Cosmic Microwave Background Radiation (BAO/CMBR) + SNIa.

  9. Approximate circuits for increased reliability

    DOEpatents

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  10. Approximate circuits for increased reliability

    SciTech Connect

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  11. Instrument for determining coincidence and elapse time between independent sources of random sequential events

    NASA Technical Reports Server (NTRS)

    Clemmons, J. I., Jr. (Inventor)

    1983-01-01

    An instrument that receives pulses from a primary external source and one or more secondary external sources and determines when there is coincidence between the primary and one of the secondary sources is described. The instrument generates a finite time window (coincidence aperture) during which coincidence is defined to have occurred. The time intervals between coincidence apertures in which coincidences occur are measured.

  12. Polymorphic Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    2004-01-01

    Polymorphic electronics is a nascent technological discipline that involves, among other things, designing the same circuit to perform different analog and/or digital functions under different conditions. For example, a circuit can be designed to function as an OR gate or an AND gate, depending on the temperature (see figure). Polymorphic electronics can also be considered a subset of polytronics, which is a broader technological discipline in which optical and possibly other information- processing systems could also be designed to perform multiple functions. Polytronics is an outgrowth of evolvable hardware (EHW). The basic concepts and some specific implementations of EHW were described in a number of previous NASA Tech Briefs articles. To recapitulate: The essence of EHW is to design, construct, and test a sequence of populations of circuits that function as incrementally better solutions of a given design problem through the selective, repetitive connection and/or disconnection of capacitors, transistors, amplifiers, inverters, and/or other circuit building blocks. The evolution is guided by a search-and-optimization algorithm (in particular, a genetic algorithm) that operates in the space of possible circuits to find a circuit that exhibits an acceptably close approximation of the desired functionality. The evolved circuits can be tested by computational simulation (in which case the evolution is said to be extrinsic), tested in real hardware (in which case the evolution is said to be intrinsic), or tested in random sequences of computational simulation and real hardware (in which case the evolution is said to be mixtrinsic).

  13. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  14. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  15. On the structure of the set of coincidence points

    SciTech Connect

    Arutyunov, A V; Gel'man, B D

    2015-03-31

    We consider the set of coincidence points for two maps between metric spaces. Cardinality, metric and topological properties of the coincidence set are studied. We obtain conditions which guarantee that this set (a) consists of at least two points; (b) consists of at least n points; (c) contains a countable subset; (d) is uncountable. The results are applied to study the structure of the double point set and the fixed point set for multivalued contractions. Bibliography: 12 titles.

  16. Non-coincident multi-wavelength emission absorption spectroscopy

    SciTech Connect

    Baumann, L.E.

    1995-02-01

    An analysis is presented of the effect of noncoincident sampling on the measurement of atomic number density and temperature by multiwavelength emission absorption. The assumption is made that the two signals, emission and transmitted lamp, are time resolved but not coincident. The analysis demonstrates the validity of averages of such measurements despite fluctuations in temperature and optical depth. At potassium-seeded MHD conditions, the fluctuations introduce additional uncertainty into measurements of potassium atom number density and temperature but do not significantly bias the average results. Experimental measurements in the CFFF aerodynamic duct with coincident and noncoincident sampling support the analysis.

  17. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOEpatents

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  18. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  19. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  20. Circuit theory for noise in incoherent normal-superconducting structures

    NASA Astrophysics Data System (ADS)

    Virtanen, P.; Heikkilä, T. T.

    2006-04-01

    We consider the current fluctuations in a mesoscopic circuit consisting of nodes connected by arbitrary connectors, in a setup with multiple normal or superconducting terminals. In the limit of the weak superconducting proximity effect, simplified equations for the second-order cross-correlators can be derived from the general counting-field theory, and the result coincides with the semi-classical principle of minimal correlations. We discuss the derivation of this result in a multi-node case.

  1. Cocaine Promotes Coincidence Detection and Lowers Induction Threshold during Hebbian Associative Synaptic Potentiation in Prefrontal Cortex.

    PubMed

    Ruan, Hongyu; Yao, Wei-Dong

    2017-01-25

    Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca(2+) channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction. It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to

  2. Ultrasonic nondestructive testing of composite materials using disturbed coincidence conditions

    NASA Astrophysics Data System (ADS)

    Bause, F.; Olfert, S.; Schröder, A.; Rautenberg, J.; Henning, B.; Moritzer, E.

    2012-05-01

    In this contribution we present a new method detecting changes in the composite material's acoustic behavior by analyzing disturbed coincidence conditions on plate-like test samples. The coincidence condition for an undamaged GFRP test sample has been experimentally identified using Schlieren measurements. Disturbances of this condition follow from a disturbed acoustic behavior of the test sample which is an indicator for local damages in the region inspected. An experimental probe has been realized consisting of two piezoceramic elements adhered to the nonparallel sides of an isosceles trapezoidal body made of silicone. The base angles of the trapezoidal body have been chosen such that the incident wave meets pre-measured condition of coincidence. The receiving element receives the geometric reflection of the acoustic wave scattered at the test sample's surface which corresponds to the non-coupled part of the incident wave as send by the sending element. Analyzing the transfer function or impulse response of the electro-acoustic system (transmitter, scattering at test sample, receiver), it is possible to detect local disturbances with respect to Cramer's coincidence rule. Thus, it is possible to realize a very simple probe for local ultrasonic nondestructive testing of composite materials (as well as non-composite material) which can be integrated in a small practical device and is good for small size inspection areas.

  3. Study of inner-shell vacancy cascades by coincidence techniques

    SciTech Connect

    LeBrun, T.; Arp, U.; MacDonald, M.; Southworth, S.H.

    1995-08-01

    An inner-shell vacancy in an atom decays by an intricate combination of Auger and fluorescence processes. The interrelation between these processes is not well understood because traditional studies of core-excited atoms focus on only one of the many particles that participate in the relaxation - largely ignoring the other components and the correlations between them. To understand these correlations we developed a coincidence technique that uses coincident detection of X-rays and electrons to select decay pathways that involve emission of both an X-ray photon and electrons. In the first application of this technique, the Ar 1s photoelectron spectrum was recorded selectively in coincidence with X-ray fluorescence to eliminate the asymmetric broadening and shifting of the energy distribution which results due to post-collision interaction with K-Auger electrons. This allowed the direct observation of the interaction between the photoelectron and the decay of core holes created after the initial photoionization event. We have also applied this technique to the much more complex problem of understanding Auger-electron spectra produced by vacancy cascades following inner-shell excitation. For example, we previously recorded non-coincident electron spectra of L{sub 2,3}MM Auger transitions following K-shell excitation of argon. Interpretation of these spectra is difficult because they are complicated and consist of many overlapping or unresolved Auger transitions between different ionic states.

  4. Fission measurements with PPAC detectors using a coincidence technique

    SciTech Connect

    Paradela, C.; Duran, I.; Tarrio, D.; Audouin, L.; Tassan-Got, L.; Stephan, C.

    2011-07-01

    A fission detection setup based on Parallel Plate Avalanche Counters (PPAC) has been constructed and used at the CERN n-TOF facility. The setup takes advantage of the coincidence detection of both fission fragments to discriminate the background reactions produced by high energy neutrons and it allows obtaining neutron-induced fission cross section up to 1 GeV. (authors)

  5. The Galileo/Mars Observer/Ulysses Coincidence Experiment

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1997-01-01

    From March 21 to April 11, 1993 the Galileo, Mars Observer and Ulysses spacecraft were tracked in a coincidence experiment, searching for low-frequency (millihertz) gravitational radiation. In the spacecraft Doppler technique, the earth and a distant spacecraft act as separated test masses.

  6. Coincidence doppler broadening study in electron-irradiated polyurethane

    NASA Astrophysics Data System (ADS)

    Yang, D. J.; Zhang, J. D.; Leung, J. K. C.; Beling, C. D.; Liu, L. B.

    2007-06-01

    Coincidence doppler broadening measurements on electron-irradiated polyurethanes were performed in the presence of air. It is shown that, after a certain electron irradiation, the momentum density distributions of annihilation electrons have obvious changes for the high crosslinking polyurethane, but no significant changes have been observed for the low crosslinking polyurethane. The results were performed to analyse by irradiation crosslinking and degradation principles.

  7. Uranium Neutron Coincidence Collar Model Utilizing 3He

    SciTech Connect

    Siciliano, Edward R.; Rogers, Jeremy L.; Schweppe, John E.; Lintereur, Azaree T.; Kouzes, Richard T.

    2012-07-30

    The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube based alternative system in a configuration typically used for 3He-based coincidence counter applications. The specific application selected for boron-lined tube replacement in this project was one of the Uranium Neutron Coincidence Collar (UNCL) designs. This report, providing results for model development of a UNCL, is a deliverable under Task 2 of the project. The current UNCL instruments utilize 3He tubes. As the first step in developing and optimizing a boron-lined proportional counter based version of the UNCL, models of eight different 3He-based UNCL detectors currently in use were developed and evaluated. A comparison was made between the simulated results and measured efficiencies for those systems with values reported in the literature. The reported experimental measurements for efficiencies and die-away times agree to within 10%.

  8. Latching overcurrent circuit breaker

    NASA Technical Reports Server (NTRS)

    Moore, M. L.

    1970-01-01

    Circuit breaker consists of a preset current amplitude sensor, and a lamp-photo-resistor combination in a feedback arrangement which energizes a power switching relay. The ac input power is removed from the load at predetermined current amplitudes.

  9. High temperature circuit breaker

    NASA Technical Reports Server (NTRS)

    Edwards, R. N.; Travis, E. F.

    1970-01-01

    Alternating current circuit breaker is suitable for reliable long-term service at 1000 deg F in the vacuum conditions of outer space. Construction materials are resistant to nuclear radiation and vacuum welding. Service test conditions and results are given.

  10. Generator circuit breaker retrofit

    SciTech Connect

    Dayton, L.P.

    1995-12-31

    This paper will discuss the economic considerations, the development from concept to installation, benefits realized and the operational history of the generator circuit breaker retrofit project at Wanapum and Priest Rapids Dams, Grant County Public Utility District, Washington.

  11. Cell types, circuits, computation.

    PubMed

    Azeredo da Silveira, Rava; Roska, Botond

    2011-10-01

    How does the connectivity of a neuronal circuit, together with the individual properties of the cell types that take part in it, result in a given computation? We examine this question in the context of retinal circuits. We suggest that the retina can be viewed as a parallel assemblage of many small computational devices, highly stereotypical and task-specific circuits afferent to a given ganglion cell type, and we discuss some rules that govern computation in these devices. Multi-device processing in retina poses conceptual problems when it is contrasted with cortical processing. We lay out open questions both on processing in retinal circuits and on implications for cortical processing of retinal inputs.

  12. Integrated Optical Circuits

    DTIC Science & Technology

    1974-12-31

    are suit- able for use with Si-doped GaAs-AlGaAs integrated lasers and with integrated electroabsorption detectors and modulators. Integrated ...characterized. These structures are quite attractive for use as sources in GaAs-based monolithic integrated opti- cal circuits. Threshold current...optical waveguide is an important element in the fabrication of a monolithic integrated optical circuit. One such structure, which utilizes the "twin

  13. Printed Circuit Board Inspection.

    DTIC Science & Technology

    1981-11-25

    8217, but copper is etched off a smoothly plated board to form the ’printed circuit.’ The etching, as the name implies, leaves a three- 6 Figure 3-2...e.g., dust on the light- plate used to transfer the board design from the artwork negative). The information output must be verifiable -. if only to...Carnegie-Mellon University 00 PRINTED CIRCUIT BOARD INSPECTION W ~Robert Thibadeau -= The Robotics Institute Carnegie-Mellon University Pittsburgh

  14. Power supply conditioning circuit

    NASA Technical Reports Server (NTRS)

    Primas, Lori E. (Inventor); Loveland, Rohan C. (Inventor)

    1988-01-01

    A conditioning circuit is provided with a constant current diode in series with a zener diode, the former having a high dynamic impedance and the latter a low dynamic impedance. The constant current diode can receive an input voltage with PARD. In conjunction with the zener diode fixed to a ground, a voltage divider is provided which can give an output voltage whose PARD was significantly reduced. The conditioning circuit is effective down to dc.

  15. Quantum circuits for cryptanalysis

    NASA Astrophysics Data System (ADS)

    Amento, Brittanney Jaclyn

    Finite fields of the form F2 m play an important role in coding theory and cryptography. We show that the choice of how to represent the elements of these fields can have a significant impact on the resource requirements for quantum arithmetic. In particular, we show how the Gaussian normal basis representations and "ghost-bit basis" representations can be used to implement inverters with a quantum circuit of depth O(mlog(m)). To the best of our knowledge, this is the first construction with subquadratic depth reported in the literature. Our quantum circuit for the computation of multiplicative inverses is based on the Itoh-Tsujii algorithm which exploits the property that, in a normal basis representation, squaring corresponds to a permutation of the coefficients. We give resource estimates for the resulting quantum circuit for inversion over binary fields F2 m based on an elementary gate set that is useful for fault-tolerant implementation. Elliptic curves over finite fields F2 m play a prominent role in modern cryptography. Published quantum algorithms dealing with such curves build on a short Weierstrass form in combination with affine or projective coordinates. In this thesis we show that changing the curve representation allows a substantial reduction in the number of T-gates needed to implement the curve arithmetic. As a tool, we present a quantum circuit for computing multiplicative inverses in F2m in depth O(m log m) using a polynomial basis representation, which may be of independent interest. Finally, we change our focus from the design of circuits which aim at attacking computational assumptions on asymmetric cryptographic algorithms to the design of a circuit attacking a symmetric cryptographic algorithm. We consider a block cipher, SERPENT, and our design of a quantum circuit implementing this cipher to be used for a key attack using Grover's algorithm as in [18]. This quantum circuit is essential for understanding the complexity of Grover's algorithm.

  16. Overriding Faulty Circuit Breakers

    NASA Technical Reports Server (NTRS)

    Robbins, Richard L.; Pierson, Thomas E.

    1987-01-01

    Retainer keeps power on in emergency. Simple mechanical device attaches to failed aircraft-type push/pull circuit breaker to restore electrical power temporarily until breaker replaced. Device holds push/pull button in closed position; unnecessary for crewmember to hold button in position by continual finger pressure. Sleeve and plug hold button in, overriding mechanical failure in circuit breaker. Windows in sleeve show button position.

  17. Overriding Faulty Circuit Breakers

    NASA Technical Reports Server (NTRS)

    Robbins, Richard L.; Pierson, Thomas E.

    1987-01-01

    Retainer keeps power on in emergency. Simple mechanical device attaches to failed aircraft-type push/pull circuit breaker to restore electrical power temporarily until breaker replaced. Device holds push/pull button in closed position; unnecessary for crewmember to hold button in position by continual finger pressure. Sleeve and plug hold button in, overriding mechanical failure in circuit breaker. Windows in sleeve show button position.

  18. Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction

    ERIC Educational Resources Information Center

    Reisslein, Jana; Johnson, Amy M.; Reisslein, Martin

    2015-01-01

    Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study…

  19. Heterogeneous photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Fang, Alexander W.; Fish, Gregory; Hall, Eric

    2012-01-01

    Photonic Integrated Circuits (PICs) have been dichotomized into circuits with high passive content (silica and silicon PLCs) and high active content (InP tunable lasers and transceivers) due to the trade-off in material characteristics used within these two classes. This has led to restrictions in the adoption of PICs to systems in which only one of the two classes of circuits are required to be made on a singular chip. Much work has been done to create convergence in these two classes by either engineering the materials to achieve the functionality of both device types on a single platform, or in epitaxial growth techniques to transfer one material to the next, but have yet to demonstrate performance equal to that of components fabricated in their native substrates. Advances in waferbonding techniques have led to a new class of heterogeneously integrated photonic circuits that allow for the concurrent use of active and passive materials within a photonic circuit, realizing components on a transferred substrate that have equivalent performance as their native substrate. In this talk, we review and compare advances made in heterogeneous integration along with demonstrations of components and circuits enabled by this technology.

  20. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  1. Circuit simulation: some humbling thoughts

    SciTech Connect

    Wendt, Manfred; /Fermilab

    2006-01-01

    A short, very personal note on circuit simulation is presented. It does neither include theoretical background on circuit simulation, nor offers an overview of available software, but just gives some general remarks for a discussion on circuit simulator needs in context to the design and development of accelerator beam instrumentation circuits and systems.

  2. Vibration Damping Circuit Card Assembly

    NASA Technical Reports Server (NTRS)

    Hunt, Ronald Allen (Inventor)

    2016-01-01

    A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.

  3. Exchange circuits for FASTBUS slaves

    SciTech Connect

    Bratskii, A.A.; Matseev, M.Y.; Rybakov, V.G.

    1985-09-01

    This paper describes general-purpose circuits for FASTBUS interfacing of the functional part of a slave device. The circuits contain buffered receivers and transmitters, addressrecognition and data-transfer logic, and the required control/status registers. The described circuits are implemented with series-K500 integrated circuits.

  4. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  5. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  6. Low latency asynchronous interface circuits

    DOEpatents

    Sadowski, Greg

    2017-06-20

    In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state of the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.

  7. Theoretical and experimental investigations of coincidences in Poisson distributed pulse trains and spectral distortion caused by pulse pileup

    NASA Astrophysics Data System (ADS)

    Bristow, Quentin

    1990-03-01

    The occurrence rates of pulse strings, or sequences of pulses with interarrival times less than the resolving time of the pulse-height analysis system used to acquire spectra, are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern analog to digital converters, were used to generate pileup spectra due to coincidences between two pulses (first order pileup) and three pulses (second order pileup) for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum. The use of a flat spectrum showed the first order pileup distorted the spectrum to a linear ramp with a pileup tail. A correction algorithm was successfully applied to correct entire spectra (simulated and real) for first and second order pileups.

  8. Gap junctions: their importance for the dynamics of neural circuits.

    PubMed

    Rela, Lorena; Szczupak, Lidia

    2004-12-01

    Electrical coupling through gap junctions constitutes a mode of signal transmission between neurons (electrical synaptic transmission). Originally discovered in invertebrates and in lower vertebrates, electrical synapses have recently been reported in immature and adult mammalian nervous systems. This has renewed the interest in understanding the role of electrical synapses in neural circuit function and signal processing. The present review focuses on the role of gap junctions in shaping the dynamics of neural networks by forming electrical synapses between neurons. Electrical synapses have been shown to be important elements in coincidence detection mechanisms and they can produce complex input-output functions when arranged in combination with chemical synapses. We postulate that these synapses may also be important in redefining neuronal compartments, associating anatomically distinct cellular structures into functional units. The original view of electrical synapses as static connecting elements in neural circuits has been revised and a considerable amount of evidence suggests that electrical synapses substantially affect the dynamics of neural circuits.

  9. Microfluidic serial dilution circuit.

    PubMed

    Paegel, Brian M; Grover, William H; Skelley, Alison M; Mathies, Richard A; Joyce, Gerald F

    2006-11-01

    In vitro evolution of RNA molecules requires a method for executing many consecutive serial dilutions. To solve this problem, a microfluidic circuit has been fabricated in a three-layer glass-PDMS-glass device. The 400-nL serial dilution circuit contains five integrated membrane valves: three two-way valves arranged in a loop to drive cyclic mixing of the diluent and carryover, and two bus valves to control fluidic access to the circuit through input and output channels. By varying the valve placement in the circuit, carryover fractions from 0.04 to 0.2 were obtained. Each dilution process, which is composed of a diluent flush cycle followed by a mixing cycle, is carried out with no pipeting, and a sample volume of 400 nL is sufficient for conducting an arbitrary number of serial dilutions. Mixing is precisely controlled by changing the cyclic pumping rate, with a minimum mixing time of 22 s. This microfluidic circuit is generally applicable for integrating automated serial dilution and sample preparation in almost any microfluidic architecture.

  10. Search for gamma ray bursts with coincident balloon flights

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Schmidt, W. K. H.; Teegarden, B. J.

    1976-01-01

    A search was conducted for cosmic gamma ray bursts of small size and of sufficient frequency of occurrence to be detected during a one day observation program. Two similar detectors, successfully balloon-borne from launch sites in South Dakota and Texas, achieved about 20 hours of simultaneous operation at several millibars atmospheric depth, with continuous separation of over 1,500 km. Fluctuations of the counting rates of less than 150 keV photons with temporal structures from microseconds to several minutes were compared in order to detect coincident or associated responses from the two instruments. No coincident gamma-ray burst events were detected. The resulting integral size spectrum of small bursts, from this and from all other searches, remains a spectrum of upper limits, consistent with an extrapolation of the size spectrum of the largest known bursts, fitting a power low of index -1.5.

  11. Using CHIMERA detector at LNS for gamma-particle coincidences

    NASA Astrophysics Data System (ADS)

    Cardella, G.; Acosta, L.; Auditore, L.; Chatterjiee, M. B.; Castoldi, A.; De Filippo, E.; Dell'Aquila, D.; De Luca, S.; Gnoffo, B.; Guazzoni, C.; Francalanza, L.; Lanzalone, G.; Lombardo, I.; Martorana, N.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.

    2016-05-01

    We have recently evaluated the quality of γ-ray angular distributions that can be extracted in particle-gamma coincidence measurements using the CHIMERA detector at LNS. γ-rays have been detected using the CsI(Tl) detectors of the spherical part of the CHIMERA array. Very clean γ-rays angular distributions were extracted in reactions induced by different stable beams impinging on 12C thin targets. The results evidenced an effect of projectile spin flip on the γ-rays angular distributions. γ-particle coincidence measurements were also performed in reactions induced by neutron rich exotic beams produced through in-flight fragmentation at LNS. In recent experiments also the Farcos array was used to improve energy and angular resolution measurements of the detected charged particles. Results obtained with both stable and radioactive beams are reported.

  12. A new opportunity: coincident spectroscopy in neutron-deficient actinides

    NASA Astrophysics Data System (ADS)

    Gothe, Oliver; Gates, J. M.; Gregorich, K. E.; Baartman, B.; Fallon, P.; Esker, N. E.; Kwarsick, J.; Machiavelli, A. O.; Mudder, P. R.; Olive, D. T.; Pang, G.; Rissanen, J.; Nitsche, H.

    2014-09-01

    Due to high γ-ray background rates heavy element production facilities are usually not sensitive to the electron capture decay of neutron deficient actinides. We have developed new capabilities at the Berkeley Gas Filled Separator (BGS) that allow us to study these isotopes. The highly selective and efficient separation of compound nucleus evaporation residue products using the BGS couple with a rapid delivery to a low-background detector facility, opens up many new possibilities for nuclear decay and structure studies in the neutron deficient actinides. The decay of these actinides produces vacancies in the K-shell resulting in x-rays uniquely identifying the Z of the decay products. We present the first results of this new methodology in studying the nuclear structure of fermium-254 by observing the gamma rays in coincidence with fermium x-rays. Coincident gamma-decay spectroscopy gives us a new tool to study the nuclear structure of previously inaccessible systems.

  13. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Yu, Xiaoqi; Yang, Tao

    2005-12-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown.

  14. System for monitoring non-coincident, nonstationary process signals

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.

    2005-01-04

    An improved system for monitoring non-coincident, non-stationary, process signals. The mean, variance, and length of a reference signal is defined by an automated system, followed by the identification of the leading and falling edges of a monitored signal and the length of the monitored signal. The monitored signal is compared to the reference signal, and the monitored signal is resampled in accordance with the reference signal. The reference signal is then correlated with the resampled monitored signal such that the reference signal and the resampled monitored signal are coincident in time with each other. The resampled monitored signal is then compared to the reference signal to determine whether the resampled monitored signal is within a set of predesignated operating conditions.

  15. Spatial coincidence modulates interaction between visual and somatosensory evoked potentials.

    PubMed

    Schürmann, Martin; Kolev, Vasil; Menzel, Kristina; Yordanova, Juliana

    2002-05-07

    The time course of interaction between concurrently applied visual and somatosensory stimulation with respect to evoked potentials (EPs) was studied. Visual stimuli, either in the left or right hemifield, and electric stimuli to the left wrist were delivered either alone or simultaneously. Visual and somatosensory EPs were summed and compared to bimodal EPs (BiEP, response to actual combination of both modalities). Temporal coincidence of stimuli lead to sub-additive or over-additive amplitudes in BiEPs in several time windows between 75 and 275 ms. Additional effects of spatial coincidence (left wrist with left hemifield) were found between 75 and 300 ms and beyond 450 ms. These interaction effects hint at a temporo-spatial pattern of multiple brain areas participating in the process of multimodal integration.

  16. Momentum spectrometer for electron-electron coincidence studies on superconductors

    SciTech Connect

    Wallauer, Robert; Voss, Stefan; Bauer, Tobias; Schneider, Deborah; Titze, Jasmin; Ulrich, Birte; Kreidi, Katharina; Neumann, Nadine; Havermeier, Tilo; Schoeffler, Markus; Jahnke, Till; Czasch, Achim; Schmidt, Lothar; Schmidt-Boecking, Horst; Doerner, Reinhard; Kanigel, Amit; Campuzano, Juan Carlos; Jeschke, Harald; Valenti, Roser [Institut fuer Theoretische Physik, Universitaet Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt and others

    2012-10-15

    We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 {pi} solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.

  17. Momentum spectrometer for electron-electron coincidence studies on superconductors

    NASA Astrophysics Data System (ADS)

    Wallauer, Robert; Voss, Stefan; Foucar, Lutz; Bauer, Tobias; Schneider, Deborah; Titze, Jasmin; Ulrich, Birte; Kreidi, Katharina; Neumann, Nadine; Havermeier, Tilo; Schöffler, Markus; Jahnke, Till; Czasch, Achim; Schmidt, Lothar; Kanigel, Amit; Campuzano, Juan Carlos; Jeschke, Harald; Valenti, Roser; Müller, Andreas; Berner, Götz; Sing, Michael; Claessen, Ralph; Schmidt-Böcking, Horst; Dörner, Reinhard

    2012-10-01

    We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 π solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.

  18. Momentum spectrometer for electron-electron coincidence studies on superconductors.

    PubMed

    Wallauer, Robert; Voss, Stefan; Foucar, Lutz; Bauer, Tobias; Schneider, Deborah; Titze, Jasmin; Ulrich, Birte; Kreidi, Katharina; Neumann, Nadine; Havermeier, Tilo; Schöffler, Markus; Jahnke, Till; Czasch, Achim; Schmidt, Lothar; Kanigel, Amit; Campuzano, Juan Carlos; Jeschke, Harald; Valenti, Roser; Müller, Andreas; Berner, Götz; Sing, Michael; Claessen, Ralph; Schmidt-Böcking, Horst; Dörner, Reinhard

    2012-10-01

    We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 π solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.

  19. Characteristic evaluation of a Lithium-6 loaded neutron coincidence spectrometer.

    PubMed

    Hayashi, M; Kaku, D; Watanabe, Y; Sagara, K

    2007-01-01

    Characteristics of a (6)Li-loaded neutron coincidence spectrometer were investigated from both measurements and Monte Carlo simulations. The spectrometer consists of three (6)Li-glass scintillators embedded in a liquid organic scintillator BC-501A, which can detect selectively neutrons that deposit the total energy in the BC-501A using a coincidence signal generated from the capture event of thermalised neutrons in the (6)Li-glass scintillators. The relative efficiency and the energy response were measured using 4.7, 7.2 and 9.0 MeV monoenergetic neutrons. The measured ones were compared with the Monte Carlo calculations performed by combining the neutron transport code PHITS and the scintillator response calculation code SCINFUL. The experimental light output spectra were in good agreement with the calculated ones in shape. The energy dependence of the detection efficiency was reproduced by the calculation. The response matrices for 1-10 MeV neutrons were finally obtained.

  20. Quality of Coincidence Detection and Itd Tuning: a Theoretical Framework

    NASA Astrophysics Data System (ADS)

    Kempter, Richard; Gerstner, Wulfram; Wagner, Hermann; van Hemmed, J. Leo

    Coincidence detector neurons increase their firing rate significantly if the input changes from random to coherent. Similarly, neurons in the avian nucleus laminaris vary their firing rate as a function of the interaural time difference (ITD). In both cases, neurons transform temporally coded input into a rate-coded output. To characterize the quality of this transformation we define a new measure, which explicitly takes noisy spike output of neurons into account. As an application, we investigate the coincidence detection properties of an integrate-and-fire (I&F) neuron in dependence on internal parameters and input statistics. We show that there is an optimal threshold and, furthermore, that there is a broad range of near-optimal threshold values. The theoretical results are applied to ITD-tuning of neurons in the laminar nucleus of the barn owl.

  1. Coincidence probabilities for spacecraft gravitational wave experiments - Massive coalescing binaries

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo; Armstrong, J. W.

    1991-01-01

    Massive coalescing binary systems are candidate sources of gravitational radiation in the millihertz frequency band accessible to spacecraft Doppler tracking experiments. This paper discusses signal processing and detection probability for waves from coalescing binaries in the regime where the signal frequency increases linearly with time, i.e., 'chirp' signals. Using known noise statistics, thresholds with given false alarm probabilities are established for one- and two-spacecraft experiments. Given the threshold, the detection probability is calculated as a function of gravitational wave amplitude for both one- and two-spacecraft experiments, assuming random polarization states and under various assumptions about wave directions. This allows quantitative statements about the detection efficiency of these experiments and the utility of coincidence experiments. In particular, coincidence probabilities for two-spacecraft experiments are insensitive to the angle between the directions to the two spacecraft, indicating that near-optical experiments can be done without constraints on spacecraft trajectories.

  2. Anti-anthropic solutions to the cosmic coincidence problem

    SciTech Connect

    Fedrow, Joseph M.; Griest, Kim E-mail: kgriest@ucsd.edu

    2014-01-01

    A cosmological constant fits all current dark energy data, but requires two extreme fine tunings, both of which are currently explained by anthropic arguments. Here we discuss anti-anthropic solutions to one of these problems: the cosmic coincidence problem- that today the dark energy density is nearly equal to the matter density. We replace the ensemble of Universes used in the anthropic solution with an ensemble of tracking scalar fields that do not require fine-tuning. This not only does away with the coincidence problem, but also allows for a Universe that has a very different future than the one currently predicted by a cosmological constant. These models also allow for transient periods of significant scalar field energy (SSFE) over the history of the Universe that can give very different observational signatures as compared with a cosmological constant, and so can be confirmed or disproved in current and upcoming experiments.

  3. Dead time correction in coincidence counting of photon pairs

    NASA Astrophysics Data System (ADS)

    Kang, M. S.; Lee, D.-H.; Lee, J.; Lee, J. Y.; Choi, S.-K.; Park, H. S.

    2008-08-01

    We describe two methods for evaluating the dead time of a time-to-amplitude converter (TAC). The dead time is obtained by measuring either the corresponding time interval in an oscilloscope trace or the relation between the single count rate and the coincidence count rate. Values for the TAC dead time are obtained in the range from 3.4 µs to 14.3 µs for the two methods with respective standard uncertainties of 2.9 × 10-8 s and 3.3 × 10-9 s. The TAC dead time is applied to the calibration of coincidence-counting measurements of optical transmission and photon-heralding efficiency.

  4. Neutron depth profiling by large angle coincidence spectroscopy

    SciTech Connect

    Vacik, J.; Cervena, J.; Hnatowicz, V.; Havranek, V.; Fink, D.

    1995-12-31

    Extremely low concentrations of several technologically important elements (mainly lithium and boron) have been studied by a modified neutron depth profiling technique. Large angle coincidence spectroscopy using neutrons to probe solids with a thickness not exceeding several micrometers has proved to be a powerful analytical method with an excellent detection sensitivity. Depth profiles in the ppb atomic range are accessible for any solid material. A depth resolution of about 20 nanometers can be achieved.

  5. Beta-gated gamma coincidence counting with a phoswich detector

    SciTech Connect

    Kaye, J.H.; Warner, R.A.

    1981-01-01

    A special type of phoswich detector system has been evaluated for measurement of radionuclides which decay with emission of time coincident beta and gamma radiation. Background reductions of more than two orders of magnitude have been obtained for the energy region from 500 to 950 keV. Both NE 102 plastic scintillators and anthracene were evaluated. Advantages and disadvantages of the method are discussed.

  6. Coincidence of cerebrovascular accident and silent myocardial infarction.

    PubMed

    Badui, E; Estañol, B; Garcia-Rubi, D

    1982-11-01

    Although it is well known that a myocardial and a cerebral infarction may be coincident, the nature of this association is not clear. The problem is further complicated because the myocardial infarction may be silent. This is a report of 3 patients with cerebral infarct in whom a silent recent myocardial infarction was found. All patients with cerebrovascular disease should be screened for a possible myocardial lesion.

  7. Glyphosate applications on arable fields considerably coincide with migrating amphibians.

    PubMed

    Berger, Gert; Graef, Frieder; Pfeffer, Holger

    2013-01-01

    Glyphosate usage is increasing worldwide and the application schemes of this herbicide are currently changing. Amphibians migrating through arable fields may be harmed by Glyphosate applied to field crops. We investigated the population-based temporal coincidence of four amphibian species with Glyphosate from 2006 to 2008. Depending on a) age- and species-specific main migration periods, b) crop species, c) Glyphosate application mode for crops, and d) the presumed DT50 value (12 days or 47 days) of Glyphosate, we calculated up to 100% coincidence with Glyphosate. The amphibians regularly co-occur with pre-sowing/pre-emerging Glyphosate applications to maize in spring and with stubble management prior to crop sowing in late summer and autumn. Siccation treatment in summer coincides only with early pond-leaving juveniles. We suggest in-depth investigations of both acute and long-term effects of Glyphosate applications on amphibian populations not only focussed on exposure during aquatic periods but also terrestrial life stages.

  8. Volcanism, impact and mass extinctions: incredible or credible coincidences?

    NASA Astrophysics Data System (ADS)

    White, Rosalind V.; Saunders, Andrew D.

    2005-02-01

    Massive continental volcanism and/or bolide impacts are considered by many authors to have caused three major mass extinction events during the last 300 million years: the end-Permian, end-Cretaceous and end-Triassic extinctions. However, re-evaluation of the frequency of bolide impacts and plume-related flood basalt provinces indicates that both types of event occur much more frequently than mass extinctions, and so, in isolation, may not be responsible for the largest extinctions. Furthermore, the kill mechanisms associated with either flood basalts or impacts do not appear to be sufficiently powerful to cause worldwide collapse of ecosystems leading to the largest mass extinctions. Contemporaneous flood basalts and bolide impact may be prerequisites for the largest mass extinctions. We present a statistical analysis of the probability of coincidence between volcanism and impact, and show that three random coincidences of these events in the last 300 m.y. are likely. No causal relationship between impact and volcanism is necessary. The lesser mass extinctions, on the other hand, may not require juxtaposition of two such catastrophic events; such coincidences occurring on more than three occasions during the last 300 m.y. become increasingly unlikely.

  9. Particle-Gamma Coincidence Studies of Uranium Nuclei

    NASA Astrophysics Data System (ADS)

    Hughes, R. O.; Ross, T. J.; Beausang, C. W.; Burke, J. T.; Scielzo, N. D.; Basunia, M. S.; Campbell, C. M.; Casperson, R. J.; Crawford, H. L.; Munson, J.; Phair, L.; Ressler, J. J.; Stars-Liberace Collaboration

    2011-10-01

    The STARS/LIBERACE array at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is proving to be an extremely versatile device for probing nuclear structure via (charged) particle- γ coincidence spectroscopy. The technique enables the properties of low- and medium-spin states up to and beyond the neutron separation energy to be probed and give rare insights into the high-level density nuclear continuum well above the pair gap. Recently, 234U, 235U, 236U and 237U were studied via (p,d) and (p,t) reactions on 236U and 238U targets. The exit channel and excitation energy of the residual nucleus are selected by measuring the outgoing charged particle using the STARS silicon telescope array, while coincident gamma rays are detected with the LIBERACE clover array. The subsequent particle spectra show the ensemble of states that were directly populated by the reaction while γ-ray coincidences reveal the decay path from a given level. Results from our recent experiment will be presented. This work was supported by DoE Grant Numbers: DE-FG52-06 NA26206 and DE-FG02-05 ER41379.

  10. Continuum studies in Gd nuclei by particle- γ coincidences

    NASA Astrophysics Data System (ADS)

    Ross, T. J.; Hughes, R. O.; Beausang, C. W.; Allmond, J. M.; Burke, J. T.; Phair, L. W.; Scielzo, N.; Angell, C. T.; Basunia, M. S.; Bleuel, D. L.; Casperson, R. J.; Fallon, P.; Hatarik, R.; Munson, J.; Paschalis, S.; Petri, M.; Ressler, J. J.

    2011-04-01

    An experiment was carried out at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory to study Gd isotopes in the vicinity of the N=90 transitional region. A 25 MeV proton beam was incident on 158 / 155 / 154Gd targets and used to populate states in 152-158Gd by (p,p'), (p,d) and (p,t) reactions. The exit channel is selected by gating on charged particles using the STARS Si-Telescope array, which also gives the excitation energy of the residual nucleus. Coincident γ information is obtained using the LIBERACE Clover array. Particle- γ coincidences provide a powerful tool for probing the residual nucleus [1]. For example, particles in coincidence with a specific γ ray produce a spectrum representing all levels populated in the nucleus that subsequently decay into the state from which the γ ray originates. Results will be presented that give an insight into the population distribution of the high level density region above the pair gap in the even-even Gd nuclei via light ion reactions.

  11. Coincident switch closing reduces error in motor-driven timer

    NASA Technical Reports Server (NTRS)

    Rich, S.

    1964-01-01

    To cut the lag-lead in motor-driven timing devices, the timing circuit has been extended to include a second switch. This is actuated in time with the first but driven directly at a speed x times faster than the first.

  12. ELECTRONIC MULTIPLIER CIRCUIT

    DOEpatents

    Thomas, R.E.

    1959-08-25

    An electronic multiplier circuit is described in which an output voltage having an amplitude proportional to the product or quotient of the input signals is accomplished in a novel manner which facilitates simplicity of circuit construction and a high degree of accuracy in accomplishing the multiplying and dividing function. The circuit broadly comprises a multiplier tube in which the plate current is proportional to the voltage applied to a first control grid multiplied by the difference between voltage applied to a second control grid and the voltage applied to the first control grid. Means are provided to apply a first signal to be multiplied to the first control grid together with means for applying the sum of the first signal to be multiplied and a second signal to be multiplied to the second control grid whereby the plate current of the multiplier tube is proportional to the product of the first and second signals to be multiplied.

  13. Logsum Using Garbled Circuits

    PubMed Central

    Portêlo, José; Raj, Bhiksha; Trancoso, Isabel

    2015-01-01

    Secure multiparty computation allows for a set of users to evaluate a particular function over their inputs without revealing the information they possess to each other. Theoretically, this can be achieved using fully homomorphic encryption systems, but so far they remain in the realm of computational impracticability. An alternative is to consider secure function evaluation using homomorphic public-key cryptosystems or Garbled Circuits, the latter being a popular trend in recent times due to important breakthroughs. We propose a technique for computing the logsum operation using Garbled Circuits. This technique relies on replacing the logsum operation with an equivalent piecewise linear approximation, taking advantage of recent advances in efficient methods for both designing and implementing Garbled Circuits. We elaborate on how all the required blocks should be assembled in order to obtain small errors regarding the original logsum operation and very fast execution times. PMID:25811740

  14. ELECTRONIC TRIGGER CIRCUIT

    DOEpatents

    Russell, J.A.G.

    1958-01-01

    An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

  15. ELECTRONIC PHASE CONTROL CIRCUIT

    DOEpatents

    Salisbury, J.D.; Klein, W.W.; Hansen, C.F.

    1959-04-21

    An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.

  16. Targeting Neural Circuits.

    PubMed

    Rajasethupathy, Priyamvada; Ferenczi, Emily; Deisseroth, Karl

    2016-04-21

    Optogenetic methodology enables direct targeting of specific neural circuit elements for inhibition or excitation while spanning timescales from the acute (milliseconds) to the chronic (many days or more). Although the impact of this temporal versatility and cellular specificity has been greater for basic science than clinical research, it is natural to ask whether the dynamic patterns of neural circuit activity discovered to be causal in adaptive or maladaptive behaviors could become targets for treatment of neuropsychiatric diseases. Here, we consider the landscape of ideas related to therapeutic targeting of circuit dynamics. Specifically, we highlight optical, ultrasonic, and magnetic concepts for the targeted control of neural activity, preclinical/clinical discovery opportunities, and recently reported optogenetically guided clinical outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Chaotic memristive circuit: equivalent circuit realization and dynamical analysis

    NASA Astrophysics Data System (ADS)

    Bao, Bo-Cheng; Xu, Jian-Ping; Zhou, Guo-Hua; Ma, Zheng-Hua; Zou, Ling

    2011-12-01

    In this paper, a practical equivalent circuit of an active flux-controlled memristor characterized by smooth piecewise-quadratic nonlinearity is designed and an experimental chaotic memristive circuit is implemented. The chaotic memristive circuit has an equilibrium set and its stability is dependent on the initial state of the memristor. The initial state-dependent and the circuit parameter-dependent dynamics of the chaotic memristive circuit are investigated via phase portraits, bifurcation diagrams and Lyapunov exponents. Both experimental and simulation results validate the proposed equivalent circuit realization of the active flux-controlled memristor.

  18. Small circuits for cryptography.

    SciTech Connect

    Torgerson, Mark Dolan; Draelos, Timothy John; Schroeppel, Richard Crabtree; Miller, Russell D.; Anderson, William Erik

    2005-10-01

    This report examines a number of hardware circuit design issues associated with implementing certain functions in FPGA and ASIC technologies. Here we show circuit designs for AES and SHA-1 that have an extremely small hardware footprint, yet show reasonably good performance characteristics as compared to the state of the art designs found in the literature. Our AES performance numbers are fueled by an optimized composite field S-box design for the Stratix chipset. Our SHA-1 designs use register packing and feedback functionalities of the Stratix LE, which reduce the logic element usage by as much as 72% as compared to other SHA-1 designs.

  19. Micromachined Silicon Waveguide Circuits

    NASA Technical Reports Server (NTRS)

    McGrath, W. R.

    1995-01-01

    Rectangular waveguides are commonly used as circuit elements in remote-sensing heterodyne receivers at millimeter wavelengths. The advantages of waveguides are low loss and mechanical tunability. However, conventional machining techniques for waveguide components operating above a few hundred GHz are complicated and costly. Waveguides micromachined from silicon however would have several important advantages including low-cost; small size for very high frequency (submillimeter wave) operation; high dimensional accuracy (important for high-Q circuits); atomically smooth walls, thereby reducing rf losses; and the ability to integrate active and passive devices directly in the waveguide on thin membranes, thereby solving the traditional problem of mounting thin substrates.

  20. Electrical Circuit Tester

    DOEpatents

    Love, Frank

    2006-04-18

    An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.

  1. The isolated circuit diathermy.

    PubMed Central

    Mitchell, J. P.

    1979-01-01

    When using the conventional diathermy generator in surgery failure to apply the plate electrode can always present a serious risk of a thermoelectrical burn at any point where the patient makes contact with an earthed object on the operating table. The recent introduction of the earth-free (isolated circuit) diathermy should, under most conditions, provide complete protection against such risks. However, there are still certain circumstances under which even the isolated circuit may give rise to a thermoelectrical burn. Two such hypothetical examples are described; the sequences of events for these are fairly frequent occurrence. PMID:475272

  2. Inrush Current Control Circuit

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    2002-01-01

    An inrush current control circuit having an input terminal connected to a DC power supply and an output terminal connected to a load capacitor limits the inrush current that charges up the load capacitor during power up of a system. When the DC power supply applies a DC voltage to the input terminal, the inrush current control circuit produces a voltage ramp at the load capacitor instead of an abrupt DC voltage. The voltage ramp results in a constant low level current to charge up the load capacitor, greatly reducing the current drain on the DC power supply.

  3. 4 Hz oscillations synchronize prefrontal-amygdala circuits during fear behaviour

    PubMed Central

    Karalis, Nikolaos; Dejean, Cyril; Chaudun, Fabrice; Khoder, Suzana; Rozeske, Robert R.; Wurtz, Hélène; Bagur, Sophie; Benchenane, Karim; Sirota, Anton; Courtin, Julien; Herry, Cyril

    2016-01-01

    Fear expression relies on the coordinated activity of prefrontal and amygdala circuits, yet the mechanisms allowing long-range network synchronization during fear remain unknown. Using a combination of extracellular recordings, pharmacological, and optogenetic manipulations we report that freezing, a behavioural expression of fear, temporally coincides with the development of sustained, internally generated 4 Hz oscillations within prefrontal-amygdala circuits. 4 Hz oscillations predict freezing onset and offset and synchronize prefrontal-amygdala circuits. Optogenetic induction of prefrontal 4 Hz oscillations coordinates prefrontal-amygdala activity and elicits fear behaviour. These results unravel a novel sustained oscillatory mechanism mediating prefrontal-amygdala coupling during fear behaviour. PMID:26878674

  4. Analog storage integrated circuit

    DOEpatents

    Walker, J. T.; Larsen, R. S.; Shapiro, S. L.

    1989-01-01

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

  5. Analog storage integrated circuit

    DOEpatents

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  6. "Printed-circuit" rectenna

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1977-01-01

    Rectifying antenna is less bulky structure for absorbing transmitted microwave power and converting it into electrical current. Printed-circuit approach, using microstrip technology and circularly polarized antenna, makes polarization orientation unimportant and allows much smaller arrays for given performance. Innovation is particularly useful with proposed electric vehicles powered by beam microwaves.

  7. Electrifying Inquiry: Electrical Circuits

    ERIC Educational Resources Information Center

    Godbey, Susan; Barnett, Jessica; Webster, Lois

    2005-01-01

    An activity involving parallel electrical circuits was modified to incorporate an open inquiry approach. Both the original and revised versions of the activity were tested in the middle school classroom. We present a comparison of the two versions of the activity in terms of facilitating learning and engaging students' interests.

  8. Integrated circuit reliability testing

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Sayah, Hoshyar R. (Inventor)

    1990-01-01

    A technique is described for use in determining the reliability of microscopic conductors deposited on an uneven surface of an integrated circuit device. A wafer containing integrated circuit chips is formed with a test area having regions of different heights. At the time the conductors are formed on the chip areas of the wafer, an elongated serpentine assay conductor is deposited on the test area so the assay conductor extends over multiple steps between regions of different heights. Also, a first test conductor is deposited in the test area upon a uniform region of first height, and a second test conductor is deposited in the test area upon a uniform region of second height. The occurrence of high resistances at the steps between regions of different height is indicated by deriving the measured length of the serpentine conductor using the resistance measured between the ends of the serpentine conductor, and comparing that to the design length of the serpentine conductor. The percentage by which the measured length exceeds the design length, at which the integrated circuit will be discarded, depends on the required reliability of the integrated circuit.

  9. Integrated circuit reliability testing

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Sayah, Hoshyar R. (Inventor)

    1988-01-01

    A technique is described for use in determining the reliability of microscopic conductors deposited on an uneven surface of an integrated circuit device. A wafer containing integrated circuit chips is formed with a test area having regions of different heights. At the time the conductors are formed on the chip areas of the wafer, an elongated serpentine assay conductor is deposited on the test area so the assay conductor extends over multiple steps between regions of different heights. Also, a first test conductor is deposited in the test area upon a uniform region of first height, and a second test conductor is deposited in the test area upon a uniform region of second height. The occurrence of high resistances at the steps between regions of different height is indicated by deriving the measured length of the serpentine conductor using the resistance measured between the ends of the serpentine conductor, and comparing that to the design length of the serpentine conductor. The percentage by which the measured length exceeds the design length, at which the integrated circuit will be discarded, depends on the required reliability of the integrated circuit.

  10. Bioluminescent bioreporter integrated circuit

    DOEpatents

    Simpson, Michael L.; Sayler, Gary S.; Paulus, Michael J.

    2000-01-01

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  11. A Magnetic Circuit Demonstration.

    ERIC Educational Resources Information Center

    Vanderkooy, John; Lowe, June

    1995-01-01

    Presents a demonstration designed to illustrate Faraday's, Ampere's, and Lenz's laws and to reinforce the concepts through the analysis of a two-loop magnetic circuit. Can be made dramatic and challenging for sophisticated students but is suitable for an introductory course in electricity and magnetism. (JRH)

  12. Circuit breaker lockout device

    DOEpatents

    Kozlowski, Lawrence J.; Shirey, Lawrence A.

    1992-01-01

    An improved lockout assembly for locking a circuit breaker in a selected off or on position is provided. The lockout assembly includes a lock block and a lock pin. The lock block has a hollow interior which fits over the free end of a switch handle of the circuit breaker. The lock block includes at least one hole that is placed in registration with a hole in the free end of the switch handle. A lock tab on the lock block serves to align and register the respective holes on the lock block and switch handle. A lock pin is inserted through the registered holes and serves to connect the lock block to the switch handle. Once the lock block and the switch handle are connected, the position of the switch handle is prevented from being changed by the lock tab bumping up against a stationary housing portion of the circuit breaker. When the lock pin installed, an apertured-end portion of the lock pin is in registration with another hole on the lock block. Then a special scissors conforming to O.S.H.A. regulations can be installed, with one or more padlocks, on the lockout assembly to prevent removal of the lock pin from the lockout assembly, thereby preventing removal of the lockout assembly from the circuit breaker.

  13. Circuit breaker lockout device

    DOEpatents

    Kozlowski, L.J.; Shirey, L.A.

    1992-11-24

    An improved lockout assembly for locking a circuit breaker in a selected off or on position is provided. The lockout assembly includes a lock block and a lock pin. The lock block has a hollow interior which fits over the free end of a switch handle of the circuit breaker. The lock block includes at least one hole that is placed in registration with a hole in the free end of the switch handle. A lock tab on the lock block serves to align and register the respective holes on the lock block and switch handle. A lock pin is inserted through the registered holes and serves to connect the lock block to the switch handle. Once the lock block and the switch handle are connected, the position of the switch handle is prevented from being changed by the lock tab bumping up against a stationary housing portion of the circuit breaker. When the lock pin installed, an apertured-end portion of the lock pin is in registration with another hole on the lock block. Then a special scissors conforming to O.S.H.A. regulations can be installed, with one or more padlocks, on the lockout assembly to prevent removal of the lock pin from the lockout assembly, thereby preventing removal of the lockout assembly from the circuit breaker. 2 figs.

  14. Wein bridge oscillator circuit

    NASA Technical Reports Server (NTRS)

    Lipoma, P. C.

    1971-01-01

    Circuit with minimum number of components provides stable outputs of 2 to 8 volts at frequencies of .001 to 100 kHz. Oscillator exhibits low power consumption, portability, simplicity, and drive capability, it has application as loudspeaker tester and audible alarm, as well as in laboratory and test generators.

  15. Field circuit breaker tester

    NASA Astrophysics Data System (ADS)

    Fulcomer, P. M.

    1982-05-01

    Test equipment developed at National Bureau of Standards (NBS) for the Consumer Product Safety Commission (CPSC) to evaluate the performance of single-pole circuit breakers in residential installations is described along with instructions for its use. The procedures are intended to be carried out by a test crew of at least two persons.

  16. Automatic sweep circuit

    DOEpatents

    Keefe, Donald J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found.

  17. A Magnetic Circuit Demonstration.

    ERIC Educational Resources Information Center

    Vanderkooy, John; Lowe, June

    1995-01-01

    Presents a demonstration designed to illustrate Faraday's, Ampere's, and Lenz's laws and to reinforce the concepts through the analysis of a two-loop magnetic circuit. Can be made dramatic and challenging for sophisticated students but is suitable for an introductory course in electricity and magnetism. (JRH)

  18. A coherent RC circuit

    NASA Astrophysics Data System (ADS)

    Gabelli, J.; Fève, G.; Berroir, J.-M.; Plaçais, B.

    2012-12-01

    We review the first experiment on dynamic transport in a phase-coherent quantum conductor. In our discussion, we highlight the use of time-dependent transport as a means of gaining insight into charge relaxation on a mesoscopic scale. For this purpose, we studied the ac conductance of a model quantum conductor, i.e. the quantum RC circuit. Prior to our experimental work, Büttiker et al (1993 Phys. Lett. A 180 364-9) first worked on dynamic mesoscopic transport in the 1990s. They predicted that the mesoscopic RC circuit can be described by a quantum capacitance related to the density of states in the capacitor and a constant charge-relaxation resistance equal to half of the resistance quantum h/2e2, when a single mode is transmitted between the capacitance and a reservoir. By applying a microwave excitation to a gate located on top of a coherent submicronic quantum dot that is coupled to a reservoir, we validate this theoretical prediction on the ac conductance of the quantum RC circuit. Our study demonstrates that the ac conductance is directly related to the dwell time of electrons in the capacitor. Thereby, we observed a counterintuitive behavior of a quantum origin: as the transmission of the single conducting mode decreases, the resistance of the quantum RC circuit remains constant while the capacitance oscillates.

  19. A Step Circuit Program.

    ERIC Educational Resources Information Center

    Herman, Susan

    1995-01-01

    Aerobics instructors can use step aerobics to motivate students. One creative method is to add the step to the circuit workout. By incorporating the step, aerobic instructors can accommodate various fitness levels. The article explains necessary equipment and procedures, describing sample stations for cardiorespiratory fitness, muscular strength,…

  20. An atomtronic dumbell circuit

    NASA Astrophysics Data System (ADS)

    Li, Aijun; Murray, N.; Lanier, C.; Wang, Y.-H.; Clark, C. W.; Edwards, M.

    2014-05-01

    We report on simulations of the behavior of a Bose-Einstein condensate formed in the left well of a ``dumbell'' circuit potential. This quasi-2d potential takes the form of the combination of strong harmonic vertical confinement along with a horizontal-plane potential having dumbell shape. The dumbell consists of two circular wells connected by a channel. We assume that the condensate is initially formed in one of the wells and then is released and allowed to flow down the channel into the other well and possibly back again. We first simulated the behavior of the BEC in this potential using a variational mean-field version of the 3D Gross-Pitaevskii equation (GPE) at zero temperature for dumbell potentials having a range of different channel lengths and widths. We used these results to indentify equivalent ``atomtronic'' circuits such as an RCL circuit with DC battery. We also investigated the effects of finite temperature on the behavior of the condensate in the dumbell potential using the Zaremba-Nikuni-Griffin (ZNG) theory. These results were used to identify the effects of a thermal cloud on the atomtronic circuit operation. Supported in part by NSF grant #1068761 and ARO Atomtronics MURI.

  1. The Global Circuit.

    ERIC Educational Resources Information Center

    Lansford, Henry

    1983-01-01

    Discusses the nature of and research related to a theory explaining the earth's electric budget. The theory suggests a global electric circuit completed by a positive current flowing up into thunderstorm clouds, from clouds to ionosphere, distributed around the globe, and down to earth through the lower atmosphere in fair-weather regions. (JN)

  2. Circuit breaker lockout device

    SciTech Connect

    Kozlowski, L.J.; Shirey, L.A.

    1992-11-24

    An improved lockout assembly for locking a circuit breaker in a selected off or on position is provided. The lockout assembly includes a lock block and a lock pin. The lock block has a hollow interior which fits over the free end of a switch handle of the circuit breaker. The lock block includes at least one hole that is placed in registration with a hole in the free end of the switch handle. A lock tab on the lock block serves to align and register the respective holes on the lock block and switch handle. A lock pin is inserted through the registered holes and serves to connect the lock block to the switch handle. Once the lock block and the switch handle are connected, the position of the switch handle is prevented from being changed by the lock tab bumping up against a stationary housing portion of the circuit breaker. When the lock pin installed, an apertured-end portion of the lock pin is in registration with another hole on the lock block. Then a special scissors conforming to O.S.H.A. regulations can be installed, with one or more padlocks, on the lockout assembly to prevent removal of the lock pin from the lockout assembly, thereby preventing removal of the lockout assembly from the circuit breaker. 2 figs.

  3. Circuit breaker lockout device

    SciTech Connect

    Kozlowski, L.J.; Shirey, L.A.

    1991-12-31

    An improved lockout assembly for locking a circuit breaker in a selected off or on position is provided. The lockout assembly includes a lock block and a lock pin. The lock block has a hollow interior which fits over the free end of a switch handle of the circuit breaker. The lock block includes at least one hole that is placed in registration with a hole in the free end of the switch handle. A lock tab on the lock block serves to align and register the respective holes on the lock block and switch handle. A lock pin is inserted through the registered holes and serves to connect the lock block to the switch handle. Once the lock block and the switch handle are connected, the position of the switch handle is prevented from being changed by the lock tab bumping up against a stationary housing portion of the circuit breaker. When the lock pin is installed, an apertured-end portion of the lock pin is in registration with another hole on the lock block. Then a special scissors conforming to O.S.H.A. regulations can be installed, with one or more padlocks, on the lockout assembly to prevent removal of the lock pin from the lockout assembly, thereby preventing removal of the lockout assembly from the circuit breaker.

  4. A Step Circuit Program.

    ERIC Educational Resources Information Center

    Herman, Susan

    1995-01-01

    Aerobics instructors can use step aerobics to motivate students. One creative method is to add the step to the circuit workout. By incorporating the step, aerobic instructors can accommodate various fitness levels. The article explains necessary equipment and procedures, describing sample stations for cardiorespiratory fitness, muscular strength,…

  5. An integrated circuit switch

    NASA Technical Reports Server (NTRS)

    Bonin, E. L.

    1969-01-01

    Multi-chip integrated circuit switch consists of a GaAs photon-emitting diode in close proximity with S1 phototransistor. A high current gain is obtained when the transistor has a high forward common-emitter current gain.

  6. The Global Circuit.

    ERIC Educational Resources Information Center

    Lansford, Henry

    1983-01-01

    Discusses the nature of and research related to a theory explaining the earth's electric budget. The theory suggests a global electric circuit completed by a positive current flowing up into thunderstorm clouds, from clouds to ionosphere, distributed around the globe, and down to earth through the lower atmosphere in fair-weather regions. (JN)

  7. Electrifying Inquiry: Electrical Circuits

    ERIC Educational Resources Information Center

    Godbey, Susan; Barnett, Jessica; Webster, Lois

    2005-01-01

    An activity involving parallel electrical circuits was modified to incorporate an open inquiry approach. Both the original and revised versions of the activity were tested in the middle school classroom. We present a comparison of the two versions of the activity in terms of facilitating learning and engaging students' interests.

  8. The ZEPLIN-III anti-coincidence veto detector

    NASA Astrophysics Data System (ADS)

    Akimov, D. Yu.; Araújo, H. M.; Barnes, E. J.; Belov, V. A.; Burenkov, A. A.; Chepel, V.; Currie, A.; Edwards, B.; Francis, V.; Ghag, C.; Hollingsworth, A.; Horn, M.; Kalmus, G. E.; Kobyakin, A. S.; Kovalenko, A. G.; Lebedenko, V. N.; Lindote, A.; Lopes, M. I.; Lüscher, R.; Lyons, K.; Majewski, P.; Murphy, A. St. J.; Neves, F.; Paling, S. M.; Pinto da Cunha, J.; Preece, R.; Quenby, J. J.; Reichhart, L.; Scovell, P. R.; Solovov, V. N.; Smith, N. J. T.; Smith, P. F.; Stekhanov, V. N.; Sumner, T. J.; Taylor, R.; Thorne, C.; Walker, R. J.

    2010-10-01

    The design, optimisation and construction of an anti-coincidence veto detector to complement the ZEPLIN-III direct dark matter search instrument is described. One tonne of plastic scintillator is arranged into 52 bars individually read out by photomultipliers and coupled to a gadolinium-loaded passive polypropylene shield. Particular attention has been paid to radiological content. The overall aim has been to achieve a veto detector of low threshold and high efficiency without the creation of additional background in ZEPLIN-III, all at a reasonable cost. Extensive experimental measurements of the components have been made, including radioactivity levels and performance characteristics. These have been used to inform a complete end-to-end Monte Carlo simulation that has then been used to calculate the expected performance of the new instrument, both operating alone and as an anti-coincidence detector for ZEPLIN-III. The veto device will be capable of rejecting over 65% of coincident nuclear recoil events from neutron background in the energy range of interest in ZEPLIN-III. This will reduce the background in ZEPLIN-III from ≃0.4 to ≃0.14 events per year in the WIMP acceptance region, a significant factor in the event of a non-zero observation. Furthermore, in addition to providing valuable diagnostic capabilities, the veto is capable of tagging over 15% for γ-ray rejection, all whilst contributing no significant additional background. In conjunction with the replacement of the internal ZEPLIN-III photomultiplier array, the new veto is expected to improve significantly the sensitivity of the ZEPLIN-III instrument to dark matter, allowing spin-independent WIMP-nucleon cross sections below 10 -8 pb to be probed.

  9. Data acquisition and analysis software for gamma coincidence spectrometry

    PubMed Central

    Shetty, Martin; Şahin, Dağıstan

    2016-01-01

    Coincidence counting in neutron activation analysis has well-known advantages, most importantly improvement of detection limits. One obstacle to the wider use of this technique is the complexity of the data acquisition and reduction systems that it requires. The usual approaches to multi-detector data acquisition incur significant dead-time, involve redundant work in repeatedly developing limited tools and risk potential errors in low-level code. The paper describes progress made in developing a software framework to address these shortcomings. PMID:27325905

  10. Enhanced Photofission-based, Coincidence/Multiplicity Inspection Measurements

    SciTech Connect

    J.L. Jones; D.R. Norman; K.J. Haskell; M.T. Swinhoe; S.J. Tobin; W.H. Geist; R.B. Rothrock; C.R. Freeman

    2010-07-01

    An enhanced active interrogation system has been developed that integrates a transportable Idaho National Laboratory (INL) photonuclear inspection system, using a pulsed bremsstrahlung source and a reconfigurable neutron detection system, with a Los Alamos National Laboratory (LANL) list-mode data acquisition system. A series of active interrogation experiments have shown enhanced nuclear material detection and identification utilizing pulsed photofission-induced, neutron coincidence/multiplicity counting between pulses of an up-to-10-MeV electron accelerator. This paper describes the integrated inspection system and presents some key shielded and unshielded nuclear material inspection results. The enhanced inspection methodology has applicability to homeland security and possible nuclear weapon dismantlement treaties.

  11. Coincidence corrected efficiency calibration of Compton-suppressed HPGe detectors

    SciTech Connect

    Aucott, Timothy; Brand, Alexander; DiPrete, David

    2015-04-20

    The authors present a reliable method to calibrate the full-energy efficiency and the coincidence correction factors using a commonly-available mixed source gamma standard. This is accomplished by measuring the peak areas from both summing and non-summing decay schemes and simultaneously fitting both the full-energy efficiency, as well as the total efficiency, as functions of energy. By using known decay schemes, these functions can then be used to provide correction factors for other nuclides not included in the calibration standard.

  12. Coincident systemic lupus erythematosus and psoriasis vulgaris: a case report.

    PubMed

    Wang, Y; Da, G; Yu, Y; Han, J; Li, H

    2015-12-01

    Psoriasis vulgaris is an autoimmune chronic inflammatory skin disease, but its association with other typical autoimmune disease such as systemic lupus erythematosus has only occasionally been reported. We presented a 25-year-old female who developed systemic lupus erythematosus associated with psoriasis vulgaris. Her conditions were in good control after she got administration of prednisolone (5 mg/day) and Tripterygium Wilfordii Hook (20 mg/day). It is necessary to integrate past history and physical examination to diagnose coincident SLE and psoriasis, and combined treatment with prednisolone and Tripterygium Wilfordii Hook proves effective.

  13. Coincidence problem in YM field dark energy model

    NASA Astrophysics Data System (ADS)

    Zhao, Wen; Zhang, Yang

    2006-09-01

    The coincidence problem is studied in the effective Yang Mills condensate dark energy model. As the effective YM Lagrangian is completely determined by quantum field theory, there is no adjustable parameter in this model except the energy scale, and the cosmic evolution only depends on the initial conditions. For generic initial conditions with the YM condensate subdominant to the radiation and matter, the model always has a tracking solution, the Universe transits from matter-dominated into the dark energy dominated stage only recently z˜0.3, and evolve to the present state with Ω˜0.73 and Ω˜0.27.

  14. Correlated multiphoton holes: absence of multiphoton coincidence events.

    PubMed

    Afek, I; Ambar, O; Silberberg, Y

    2010-08-27

    We generate bipartite states of light which exhibit an absence of multiphoton coincidence events between two modes amid a constant background flux. These "correlated photon holes" are produced by mixing a coherent state and relatively weak spontaneous parametric down-conversion by using a balanced beam splitter. Correlated holes with arbitrarily high photon numbers may be obtained by adjusting the relative phase and amplitude of the inputs. We measure states of up to five photons and verify their nonclassicality. The scheme provides a route for observation of high-photon-number nonclassical correlations without requiring intense quantum resources.

  15. Enhanced PET resolution by combining pinhole collimation and coincidence detection

    NASA Astrophysics Data System (ADS)

    DiFilippo, Frank P.

    2015-10-01

    Spatial resolution of clinical PET scanners is limited by detector design and photon non-colinearity. Although dedicated small animal PET scanners using specialized high-resolution detectors have been developed, enhancing the spatial resolution of clinical PET scanners is of interest as a more available alternative. Multi-pinhole 511 keV SPECT is capable of high spatial resolution but requires heavily shielded collimators to avoid significant background counts. A practical approach with clinical PET detectors is to combine multi-pinhole collimation with coincidence detection. In this new hybrid modality, there are three locations associated with each event, namely those of the two detected photons and the pinhole aperture. These three locations over-determine the line of response and provide redundant information that is superior to coincidence detection or pinhole collimation alone. Multi-pinhole collimation provides high resolution and avoids non-colinearity error but is subject to collimator penetration and artifacts from overlapping projections. However the coincidence information, though at lower resolution, is valuable for determining whether the photon passed near a pinhole within the cone acceptance angle and for identifying through which pinhole the photon passed. This information allows most photons penetrating through the collimator to be rejected and avoids overlapping projections. With much improved event rejection, a collimator with minimal shielding may be used, and a lightweight add-on collimator for high resolution imaging is feasible for use with a clinical PET scanner. Monte Carlo simulations were performed of a 18F hot rods phantom and a 54-pinhole unfocused whole-body mouse collimator with a clinical PET scanner. Based on coincidence information and pinhole geometry, events were accepted or rejected, and pinhole-specific crystal-map projections were generated. Tomographic images then were reconstructed using a conventional pinhole SPECT

  16. Slow earthquakes coincident with episodic tremors and slow slip events.

    PubMed

    Ito, Yoshihiro; Obara, Kazushige; Shiomi, Katsuhiko; Sekine, Shutaro; Hirose, Hitoshi

    2007-01-26

    We report on the very-low-frequency earthquakes occurring in the transition zone of the subducting plate interface along the Nankai subduction zone in southwest Japan. Seismic waves generated by very-low-frequency earthquakes with seismic moment magnitudes of 3.1 to 3.5 predominantly show a long period of about 20 seconds. The seismicity of very-low-frequency earthquakes accompanies and migrates with the activity of deep low-frequency tremors and slow slip events. The coincidence of these three phenomena improves the detection and characterization of slow earthquakes, which are thought to increase the stress on updip megathrust earthquake rupture zones.

  17. Resistor Combinations for Parallel Circuits.

    ERIC Educational Resources Information Center

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  18. Logic circuit exhibits optimum performance

    NASA Technical Reports Server (NTRS)

    Husson, C.

    1965-01-01

    Performance of circuits are compared to determine the optimum circuit configuration for implementation into microelectronic functions. Comparison is made in terms of power drain, propagation time, and component variations with temperature and load.

  19. Resistor Combinations for Parallel Circuits.

    ERIC Educational Resources Information Center

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  20. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  1. Positive fractional linear electrical circuits

    NASA Astrophysics Data System (ADS)

    Kaczorek, Tadeusz

    2013-10-01

    The positive fractional linear systems and electrical circuits are addressed. New classes of fractional asymptotically stable and unstable electrical circuits are introduced. The Caputo and Riemann-Liouville definitions of fractional derivatives are used to analysis of the positive electrical circuits composed of resistors, capacitors, coils and voltage (current) sources. The positive fractional electrical and specially unstable different types electrical circuits are analyzed. Some open problems are formulated.

  2. Methods of fabricating applique circuits

    DOEpatents

    Dimos, Duane B.; Garino, Terry J.

    1999-09-14

    Applique circuits suitable for advanced packaging applications are introduced. These structures are particularly suited for the simple integration of large amounts (many nanoFarads) of capacitance into conventional integrated circuit and multichip packaging technology. In operation, applique circuits are bonded to the integrated circuit or other appropriate structure at the point where the capacitance is required, thereby minimizing the effects of parasitic coupling. An immediate application is to problems of noise reduction and control in modern high-frequency circuitry.

  3. Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl.

    PubMed

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E

    2013-01-01

    A wide variety of neurons encode temporal information via phase-locked spikes. In the avian auditory brainstem, neurons in the cochlear nucleus magnocellularis (NM) send phase-locked synaptic inputs to coincidence detector neurons in the nucleus laminaris (NL) that mediate sound localization. Previous modeling studies suggested that converging phase-locked synaptic inputs may give rise to a periodic oscillation in the membrane potential of their target neuron. Recent physiological recordings in vivo revealed that owl NL neurons changed their spike rates almost linearly with the amplitude of this oscillatory potential. The oscillatory potential was termed the sound analog potential, because of its resemblance to the waveform of the stimulus tone. The amplitude of the sound analog potential recorded in NL varied systematically with the interaural time difference (ITD), which is one of the most important cues for sound localization. In order to investigate the mechanisms underlying ITD computation in the NM-NL circuit, we provide detailed theoretical descriptions of how phase-locked inputs form oscillating membrane potentials. We derive analytical expressions that relate presynaptic, synaptic, and postsynaptic factors to the signal and noise components of the oscillation in both the synaptic conductance and the membrane potential. Numerical simulations demonstrate the validity of the theoretical formulations for the entire frequency ranges tested (1-8 kHz) and potential effects of higher harmonics on NL neurons with low best frequencies (<2 kHz).

  4. Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl

    PubMed Central

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E.

    2013-01-01

    A wide variety of neurons encode temporal information via phase-locked spikes. In the avian auditory brainstem, neurons in the cochlear nucleus magnocellularis (NM) send phase-locked synaptic inputs to coincidence detector neurons in the nucleus laminaris (NL) that mediate sound localization. Previous modeling studies suggested that converging phase-locked synaptic inputs may give rise to a periodic oscillation in the membrane potential of their target neuron. Recent physiological recordings in vivo revealed that owl NL neurons changed their spike rates almost linearly with the amplitude of this oscillatory potential. The oscillatory potential was termed the sound analog potential, because of its resemblance to the waveform of the stimulus tone. The amplitude of the sound analog potential recorded in NL varied systematically with the interaural time difference (ITD), which is one of the most important cues for sound localization. In order to investigate the mechanisms underlying ITD computation in the NM-NL circuit, we provide detailed theoretical descriptions of how phase-locked inputs form oscillating membrane potentials. We derive analytical expressions that relate presynaptic, synaptic, and postsynaptic factors to the signal and noise components of the oscillation in both the synaptic conductance and the membrane potential. Numerical simulations demonstrate the validity of the theoretical formulations for the entire frequency ranges tested (1–8 kHz) and potential effects of higher harmonics on NL neurons with low best frequencies (<2 kHz). PMID:24265616

  5. Cross-correlation in the auditory coincidence detectors of owls.

    PubMed

    Fischer, Brian J; Christianson, G Björn; Peña, José Luis

    2008-08-06

    Interaural time difference (ITD) plays a central role in many auditory functions, most importantly in sound localization. The classic model for how ITD is computed was put forth by Jeffress (1948). One of the predictions of the Jeffress model is that the neurons that compute ITD should behave as cross-correlators. Whereas cross-correlation-like properties of the ITD-computing neurons have been reported, attempts to show that the shape of the ITD response function is determined by the spectral tuning of the neuron, a core prediction of cross-correlation, have been unsuccessful. Using reverse correlation analysis, we demonstrate in the barn owl that the relationship between the spectral tuning and the ITD response of the ITD-computing neurons is that predicted by cross-correlation. Moreover, we show that a model of coincidence detector responses derived from responses to binaurally uncorrelated noise is consistent with binaural interaction based on cross-correlation. These results are thus consistent with one of the key tenets of the Jeffress model. Our work sets forth both the methodology to answer whether cross-correlation describes coincidence detector responses and a demonstration that in the barn owl, the result is that expected by theory.

  6. Cross-Correlation in the Auditory Coincidence Detectors of Owls

    PubMed Central

    Fischer, Brian J.; Christianson, G.Björn; Peña, José Luis

    2009-01-01

    Interaural time difference (ITD) plays a central role in many auditory functions, most importantly in sound localization. The classic model for how ITD is computed was put forth by Jeffress (1948). One of the predictions of the Jeffress model is that the neurons that compute ITD should behave as cross-correlators. Whereas cross-correlation-like properties of the ITD-computing neurons have been reported, attempts to show that the shape of the ITD response function is determined by the spectral tuning of the neuron, a core prediction of cross-correlation, have been unsuccessful. Using reverse correlation analysis, we demonstrate in the barn owl that the relationship between the spectral tuning and the ITD response of the ITD-computing neurons is that predicted by cross-correlation. Moreover, we show that a model of coincidence detector responses derived from responses to binaurally uncorrelated noise is consistent with binaural interaction based on cross-correlation. These results are thus consistent with one of the key tenets of the Jeffress model. Our work sets forth both the methodology to answer whether cross-correlation describes coincidence detector responses and a demonstration that in the barn owl, the result is that expected by theory. PMID:18685035

  7. Interacting quintessence, the coincidence problem, and cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Huey, Greg; Wandelt, Benjamin D.

    2006-07-01

    Faced by recent evidence for a flat universe dominated by dark energy, cosmologists grapple with deep cosmic enigmas such as the cosmological constant problem, extreme fine-tuning and the cosmic coincidence problem. The extent to which we observe the dimming of distant supernovae suggests that the cosmic acceleration is as least as severe as in cosmological constant models. Extrapolating this to our cosmic future implies terrifying visions of either a cold and empty universe or an explosive demise in a “Big Rip.” We construct a class of dynamical scalar field models of dark energy and dark matter. Within this class we can explain why supernovae imply a cosmic equation of state w≲-1, address fine-tuning issues, protect the universe from premature acceleration and predict a constant fraction of dark energy to dark matter in the future (thus solving the coincidence problem), satisfy the dominant energy condition, and ensure that gravitationally bound objects remain so forever (avoid a Big Rip). This is achieved with a string theory inspired Lagrangian containing standard kinetic terms, exponential potentials and couplings, and parameters of order unity.

  8. Coincidence-anticipation timing requirements are different in racket sports.

    PubMed

    Akpinar, Selçuk; Devrilmez, Erhan; Kirazci, Sadettin

    2012-10-01

    The aim of this study was to compare the coincidence-anticipation timing accuracy of athletes of different racket sports with various stimulus velocity requirements. Ninety players (15 girls, 15 boys for each sport) from tennis (M age = 12.4 yr., SD = 1.4), badminton (M age = 12.5 yr., SD = 1.4), and table tennis (M age = 12.4 yr., SD = 1.2) participated in this study. Three different stimulus velocities, low, moderate, and high, were used to simulate the velocity requirements of these racket sports. Tennis players had higher accuracy when they performed under the low stimulus velocity compared to badminton and table tennis players. Badminton players performed better under the moderate speed comparing to tennis and table tennis players. Table tennis players had better performance than tennis and badminton players under the high stimulus velocity. Therefore, visual and motor systems of players from different racket sports may adapt to a stimulus velocity in coincidence-anticipation timing, which is specific to each type of racket sports.

  9. X-ray spectroscopy to determine line coincidences

    NASA Astrophysics Data System (ADS)

    Burkhalter, P. G.; Charatis, G.; Rockett, P.

    1983-01-01

    X-ray spectroscopy in the 12-15 A region of L-shell lines from selected transition elements was performed in a joint Naval Research Laboratory - KMS Fusion, Inc. experiment. The accurate wavelengths determined in this work will be utilized in selecting potential pumping candidates in future X-ray lasing schemes. Specifically, high-resolution X-ray spectra were collected under controlled geometric and target conditions using both red and green light laser excitation in the KMS Chroma laser. Three groups of X-ray spectra were collected with highly-dispersive X-ray crystals at wavelengths centered at 12.543, 13.781 and 14.458 A corresponding to He- and H-like lines from fluorine. Two specially-designed flat crystal spectrographs employing film shutters were used with pairs of beryl and TAP crystals. The spectra from potential lasant and pump candidates could be recorded on the same spectrogram to aid in identifying X-ray line coincidences. In cases where wavelengths were measured in both the red and green laser work, agreement within 1-3 mA was obtained for the L-series X-ray lines. Within this accuracy range, five L series X-ray lines, mostly 2p-3d transitions from the metals Cr, Mn, and Ni, had wavelength values coincident to K-series lines in fluorine.

  10. Alpha Coincidence Detection for the Assay of Actinides

    SciTech Connect

    Warren, Glen A.; Dion, Michael P.; Miller, Brian W.; Tatishvili, Gocha

    2013-11-15

    Abstract – Interferences in both decay counting and mass counting techniques limit their application for some environmental monitoring applications. For example, 238U interferes with 238Pu in mass spectrometry measurements, while in conventional alpha spectroscopy measurements it is nearly impossible to separate 238Pu from 241Am and 239Pu from 240Pu. These interferences are typically resolved by using chemical separation and/or different measurement techniques for different isotopes. We are investigating radiation detector concepts to simultaneously assay these four isotopes with minimal sample preparation by exploiting radiation signatures measured in coincidence with the typical alpha decays of these isotopes. Particles in coincidence with the alpha decay include conversion electrons, gamma rays, x-rays, and Auger electrons. Each decay has a unique energy distribution enabling the separation of the isotopes. We are exploring two basic detector concepts to achieve these goals: a silicon-based design and a gas-detector design. The silicon system provides the potential for higher energy resolution at the cost of lower efficiency compared to a gas detector. In this paper, we will describe our evaluation of the different detector concepts, which will include detection efficiency, ability to resolve the isotopes, sample preparation and equipment requirements.

  11. Improved β-γ Coincidence Detector For Radioxenon Detection

    SciTech Connect

    Cooper, Matthew W; Carman, April J; Hayes, James C; Heimbigner, Tom R; Hubbard, Charles W; Litke, Kevin E; McIntyre, Justin I; Morris, Scott J; Ripplinger, Michael D; Suarez, Reynold

    2005-08-31

    The Automated Radio-xenon Analyzer/Sampler (ARSA), built by Pacific Northwest National Laboratory (PNNL), can collect and detect several radioxenon isotopes. ARSA is very sensitive to 133Xe, 131mXe, 133mXe and 135Xe due to the compact high efficiency coincidence detector it uses. For this reason it is an excellent treaty monitoring and environmental sampling device. Although the system is shown to be both robust and reliable, based on several field tests, it is also complex due to a detailed photomultiplier tube gain matching regime. This complexity is a problem from a maintenance and quality assurance/quality control (QA/QC) standpoint. To reduce these issues a simplified coincident detector has been developed. A comparison of three different well detectors has been completed. In addition, a new plastic scintillator gas cell was constructed. The new simplified detector system has been demonstrated to equal or better performance compared with the original ARSA design in spectral resolution and efficiency and significantly easier to setup and calibrate.

  12. Performance of a coincidence based blood activity monitor

    SciTech Connect

    Moses, W.W.

    1989-12-01

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per {mu}Ci/ml, and has a paralyzing dead time of 1.2 {mu}s, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for {sup 18}F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs.

  13. CSF biomarkers cutoffs: the importance of coincident neuropathological diseases

    PubMed Central

    Toledo, Jon B.; Brettschneider, Johannes; Grossman, Murray; Arnold, Steven E.; Hu, William T.; Xie, Sharon X.; Lee, Virginia M.-Y.; Shaw, Leslie M.

    2012-01-01

    The effects of applying clinical versus neuropathological diagnosis and the inclusion of cases with coincident neuropathological diagnoses have not been assessed specifically when studying cerebrospinal fluid (CSF) biomarker classification cutoffs for patients with neurodegenerative diseases that cause dementia. Thus, 142 neuropathologically diagnosed neurodegenerative dementia patients [71 Alzheimer’s disease (AD), 29 frontotemporal lobar degeneration (FTLD), 3 amyotrophic lateral sclerosis, 7 dementia with Lewy bodies, 32 of which cases also had coincident diagnoses] were studied. 96 % had enzyme-linked immunosorbant assay (ELISA) CSF data and 77 % had Luminex CSF data, with 43 and 46 controls for comparison, respectively. Aβ42, total, and phosphorylated tau181 were measured. Clinical and neuropathological diagnoses showed an 81.4 % overall agreement. Both assays showed high sensitivity and specificity to classify AD subjects against FTLD subjects and controls, and moderate sensitivity and specificity for classifying FTLD subjects against controls. However, among the cases with neuropathological diagnoses of AD plus another pathology (26.8 % of the sample), 69.4 % (ELISA) and 96.4 % (Luminex) were classified as AD according to their biomarker profiles. Use of clinical diagnosis instead of neuropathological diagnosis led to a 14–17 % underestimation of the biomarker accuracy. These results show that while CSF Aβ and tau assays are useful for diagnosis of AD and neurodegenerative diseases even at MCI stages, CSF diagnostic analyte panels that establish a positive diagnosis of Lewy body disease and FTLD are also needed, and must be established based on neuropathological rather than clinical diagnoses. PMID:22526019

  14. Instrumentation for coincidence imaging with multihead scintillation cameras.

    PubMed

    Patton, J A

    2000-10-01

    Positron emission tomography (PET) has been used as a tool by investigators for many years to study metabolic processes in the body primarily with the radiopharmaceutical 18-fluordeoxyglucose. However, use of this technology has not been widespread because of the high expense of the equipment and its limitation to the imaging of positron emitters only. Recent improvements in scintillation camera technology have now made it possible to produce hybrid multihead cameras that can function in a coincidence mode for the detection of the annihilation radiation from positron emitters and in the normal mode for routine single-photon imaging. Although still limited in sensitivity, these camera systems continue to be improved and the recent addition of iterative reconstruction algorithms and attenuation correction capability have resulted in significant improvements in image quality. The integration of a low resolution computed tomography (CT) scanner with a dualhead camera by 1 manufacturer now makes it possible to perform attenuation correction and image fusion of anatomy and function into 1 image to improve the anatomic localization of abnormalities detected with coincidence imaging. Investigators continue to work on improved electronics and new types of detectors to further improve the sensitivity of these systems. These developments coupled with continued improvements in PET technology have resulted in the availability of a broad spectrum of systems for the investigator to consider when purchasing a system with positron imaging capability.

  15. First principle active neutron coincidence counting measurements of uranium oxide

    NASA Astrophysics Data System (ADS)

    Goddard, Braden; Charlton, William; Peerani, Paolo

    2014-03-01

    Uranium is present in most nuclear fuel cycle facilities ranging from uranium mines, enrichment plants, fuel fabrication facilities, nuclear reactors, and reprocessing plants. The isotopic, chemical, and geometric composition of uranium can vary significantly between these facilities, depending on the application and type of facility. Examples of this variation are: enrichments varying from depleted (~0.2 wt% 235U) to high enriched (>20 wt% 235U); compositions consisting of U3O8, UO2, UF6, metallic, and ceramic forms; geometries ranging from plates, cans, and rods; and masses which can range from a 500 kg fuel assembly down to a few grams fuel pellet. Since 235U is a fissile material, it is routinely safeguarded in these facilities. Current techniques for quantifying the 235U mass in a sample include neutron coincidence counting. One of the main disadvantages of this technique is that it requires a known standard of representative geometry and composition for calibration, which opens up a pathway for potential erroneous declarations by the State and reduces the effectiveness of safeguards. In order to address this weakness, the authors have developed a neutron coincidence counting technique which uses the first principle point-model developed by Boehnel instead of the "known standard" method. This technique was primarily tested through simulations of 1000 g U3O8 samples using the Monte Carlo N-Particle eXtended (MCNPX) code. The results of these simulations showed good agreement between the simulated and exact 235U sample masses.

  16. Investigating Coincidence Techniques in Biomedical Applications of Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Gramer, R.; Tandel, S. K.; Reinhardt, C. J.

    2004-05-01

    While neutron activation analysis has been widely used in biomedical applications for some time, the use of non-radioactive tracer techniques, to monitor, for example, organ blood flow, is more recent. In these studies, pre-clinical animal models are injected with micro-spheres labeled with stable isotopes of elements that have a high neutron absorption cross-section. Subsequently, samples of blood and/or tissue from different locations in the body are subjected to neutron activation analysis to measure the propagation of the labeled micro-spheres through the body. Following irradiation, the counting (with high-resolution Ge detectors) is typically delayed by a few days to dissipate short-lived activity in the samples and improve signal-to-noise for the peaks of interest in the activation spectrum. The aim of the present study was to investigate whether coincidence techniques (for isotopes which decay via two-photon cascades) could improve signal-to-noise and turn-around times. The samples were irradiated at the 1 MW research reactor at the UMass Lowell Radiation Laboratory. The analysis of the multi-parameter coincidence data recorded in event-mode will be presented and compared with the standard method of recording singles spectra.

  17. TYPE III EXCITABILITY, SLOPE SENSITIVITY AND COINCIDENCE DETECTION

    PubMed Central

    Meng, Xiangying; Huguet, Gemma; Rinzel, John

    2013-01-01

    Some neurons in the nervous system do not show repetitive firing for steady currents. For time-varying inputs, they fire once if the input rise is fast enough. This property of phasic firing is known as Type III excitability. Type III excitability has been observed in neurons in the auditory brainstem (MSO), which show strong phase-locking and accurate coincidence detection. In this paper, we consider a Hodgkin-Huxley type model (RM03) that is widely-used for phasic MSO neurons and we compare it with a modification of it, showing tonic behavior. We provide insight into the temporal processing of these neuron models by means of developing and analyzing two reduced models that reproduce qualitatively the properties of the exemplar ones. The geometric and mathematical analysis of the reduced models allows us to detect and quantify relevant features for the temporal computation such as nearness to threshold and a temporal integration window. Our results underscore the importance of Type III excitability for precise coincidence detection. PMID:23667306

  18. Statistical circuit design for yield improvement in CMOS circuits

    NASA Technical Reports Server (NTRS)

    Kamath, H. J.; Purviance, J. E.; Whitaker, S. R.

    1990-01-01

    This paper addresses the statistical design of CMOS integrated circuits for improved parametric yield. The work uses the Monte Carlo technique of circuit simulation to obtain an unbiased estimation of the yield. A simple graphical analysis tool, the yield factor histogram, is presented. The yield factor histograms are generated by a new computer program called SPICENTER. Using the yield factor histograms, the most sensitive circuit parameters are noted, and their nominal values are changed to improve the yield. Two basic CMOS example circuits, one analog and one digital, are chosen and their designs are 'centered' to illustrate the use of the yield factor histograms for statistical circuit design.

  19. Statistical circuit design for yield improvement in CMOS circuits

    NASA Technical Reports Server (NTRS)

    Kamath, H. J.; Purviance, J. E.; Whitaker, S. R.

    1990-01-01

    This paper addresses the statistical design of CMOS integrated circuits for improved parametric yield. The work uses the Monte Carlo technique of circuit simulation to obtain an unbiased estimation of the yield. A simple graphical analysis tool, the yield factor histogram, is presented. The yield factor histograms are generated by a new computer program called SPICENTER. Using the yield factor histograms, the most sensitive circuit parameters are noted, and their nominal values are changed to improve the yield. Two basic CMOS example circuits, one analog and one digital, are chosen and their designs are 'centered' to illustrate the use of the yield factor histograms for statistical circuit design.

  20. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  1. Selective Manipulation of Neural Circuits.

    PubMed

    Park, Hong Geun; Carmel, Jason B

    2016-04-01

    Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.

  2. Ladder-Type Circuits Revisited

    ERIC Educational Resources Information Center

    Yoon, Sung Hyun

    2007-01-01

    Ladder-type circuits where a given unit is repeated infinitely many times are dealt with in many textbooks on electromagnetism as examples of filter circuits. Determining the impedance of such circuits seems to be regarded as simple, which may be due to the fact that the invariance of the infinite system under the operation of adding one more unit…

  3. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, T.E.

    1994-07-26

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET. 2 figs.

  4. Ladder-Type Circuits Revisited

    ERIC Educational Resources Information Center

    Yoon, Sung Hyun

    2007-01-01

    Ladder-type circuits where a given unit is repeated infinitely many times are dealt with in many textbooks on electromagnetism as examples of filter circuits. Determining the impedance of such circuits seems to be regarded as simple, which may be due to the fact that the invariance of the infinite system under the operation of adding one more unit…

  5. GAS PHOTOTUBE CIRCUIT

    DOEpatents

    Richardson, J.H.

    1958-03-01

    This patent pertains to electronic circuits for measuring the intensity of light and is especially concerned with measurement between preset light thresholds. Such a circuit has application in connection with devices for reading-out information stored on punch cards or tapes where the cards and tapes are translucent. By the novel arrangement of this invention thc sensitivity of a gas phototube is maintained at a low value when the light intensity is below a first threshold level. If the light level rises above the first threshold level, the tube is rendered highly sensitive and an output signal will vary in proportion to the light intensity change. When the light level decreases below a second threshold level, the gas phototube is automatically rendered highly insensitive. Each of these threshold points is adjustable.

  6. Power supply conditioning circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R.

    1987-01-01

    A power supply conditioning circuit that can reduce Periodic and Random Deviations (PARD) on the output voltages of dc power supplies to -150 dBV from dc to several KHz with no measurable periodic deviations is described. The PARD for a typical commercial low noise power supply is -74 dBV for frequencies above 20 Hz and is often much worse at frequencies below 20 Hz. The power supply conditioning circuit described here relies on the large differences in the dynamic impedances of a constant current diode and a zener diode to establish a dc voltage with low PARD. Power supplies with low PARD are especially important in circuitry involving ultrastable frequencies for the Deep Space Network.

  7. PHASE DIFFERENTIAL INDICATING CIRCUIT

    DOEpatents

    Kirsten, F.A.

    1962-01-01

    An electronic circuit for totalizing the net phase difference between two alternating current signals is designed which responds to both increasing and decreasing phase changes. A phase comparator provldes an output pulse for each 360 deg of phase difference occurring, there being a negative pulse for phase shtft in one direction and a positive pulse for a phase shift in the opposite direction. A counting circuit utilizing glow discharge tubes receives the negative and positive pulses at a single input terminal and provides a running net total, pulses of one polarity dded and pulses of the opposite polarity being subtracted. The glow discharge tubes may be decaded to increase the total count capacity. (AEC)

  8. Quantum-circuit refrigerator

    NASA Astrophysics Data System (ADS)

    Tan, Kuan Yen; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Masuda, Shumpei; Möttönen, Mikko

    2017-05-01

    Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.

  9. Neuromorphic Silicon Neuron Circuits

    PubMed Central

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  10. Preconditioner Circuit Analysis

    DTIC Science & Technology

    2011-09-01

    ground plane and both operational amplifier terminals. The parasitic capacitances are labeled Cp1 and Cp2 in Figure 19. Figure 19. Circuit for...3.69 MHz 3.98pF 55720 5107 OV                                  (17) Cp2 = 1 pF R1 = 5107 Ω R3...circuit. The capacitor would be placed in parallel with RF to cancel the effect of Cp2 and then feedback factor will look purely resistive. Another

  11. Theoretical and Experimental Investigations of Coincidences in Poisson Distributed Pulse Trains and Spectral Distortion Caused by Pulse Pileup.

    NASA Astrophysics Data System (ADS)

    Bristow, Quentin

    1990-01-01

    Part one of this two-part study is concerned with the multiple coincidences in pulse trains from X-ray and gamma radiation detectors which are the cause of pulse pileup. A sequence of pulses with inter-arrival times less than tau, the resolving time of the pulse-height analysis system used to acquire spectra, is called a multiple pulse string. Such strings can be classified on the basis of the number of pulses they contain, or the number of resolving times they cover. The occurrence rates of such strings are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a NaI(Tl) scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Part two of the study is concerned with a theoretical analysis of pulse pileup and the development of a discrete correction algorithm, based on the use of a function to simulate the coincidence spectrum produced by partial sums of pulses. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern ADC's, were used to generate pileup spectra due to coincidences between two pulses, (1st order pileup) and three pulses (2nd order pileup), for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum which can be regarded as an impulse response for a particular pulse shape. The use of a flat spectrum (identical count rates in all channels) in the simulations, and in a parallel theoretical analysis, showed the 1st order pileup distorted the spectrum to a linear ramp with a pileup tail. The correction algorithm was successfully applied to correct entire spectra for 1st and

  12. Integrated Circuit Immunity

    NASA Technical Reports Server (NTRS)

    Sketoe, J. G.; Clark, Anthony

    2000-01-01

    This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.

  13. Monolithic Optoelectronic Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Walters, Wayne; Gustafsen, Jerry; Bendett, Mark

    1990-01-01

    Monolithic optoelectronic integrated circuit (OEIC) receives single digitally modulated input light signal via optical fiber and converts it into 16-channel electrical output signal. Potentially useful in any system in which digital data must be transmitted serially at high rates, then decoded into and used in parallel format at destination. Applications include transmission and decoding of control signals to phase shifters in phased-array antennas and also communication of data between computers and peripheral equipment in local-area networks.

  14. Cartography of serotonergic circuits.

    PubMed

    Sparta, Dennis R; Stuber, Garret D

    2014-08-06

    Serotonin is an essential neuromodulator, but the precise circuit connectivity that regulates serotonergic neurons has not been well defined. Using rabies virus tracing strategies Weissbourd et al. (2014) and Pollak Dorocic et al. (2014) in this issue of Neuron and Ogawa et al. (2014) in Cell Reports provide a comprehensive map of the inputs to serotonergic neurons, highlighting the complexity and diversity of potential upstream cellular regulators. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. PARTICLE BEAM TRACKING CIRCUIT

    DOEpatents

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  16. Monolithic Optoelectronic Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Walters, Wayne; Gustafsen, Jerry; Bendett, Mark

    1990-01-01

    Monolithic optoelectronic integrated circuit (OEIC) receives single digitally modulated input light signal via optical fiber and converts it into 16-channel electrical output signal. Potentially useful in any system in which digital data must be transmitted serially at high rates, then decoded into and used in parallel format at destination. Applications include transmission and decoding of control signals to phase shifters in phased-array antennas and also communication of data between computers and peripheral equipment in local-area networks.

  17. Digital integrated circuits

    NASA Astrophysics Data System (ADS)

    Polasek, P.; Halamik, J.

    1984-05-01

    The term semicustom designed integrated circuits denotes integrated circuits of an all purpose character in which the production of chips is completed by using one to three custom design stencil type exposure masks. This involves in most cases interconnecting masks that are used to devise the circuit function desired by the customer. Silicon plates with an all purpose gate matrix are produced up to the interconnection level and can be kept at this phase in storage, after which a customer's specific demands can be met very expediently. All purpose logic fields containing 200 logic gates on a chip and an all purpose chip to be expanded to 1,000 logic gates are discussed. The technology facilitates the devising of fast gates with a delay of approximately 5 ns and power dissipation of 1 mW. In assembly it will be possible to make use of the entire assortment of the currently used casings with 16, 18, 20, 24, 28 and 40 outlets. In addition to the development of the mentioned technology, a general methodology for design of the mentioned gate fields is currently under way.

  18. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  19. Optical Circuit Switched Protocol

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    2000-01-01

    The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.

  20. Inkjet deposited circuit components

    NASA Astrophysics Data System (ADS)

    Bidoki, S. M.; Nouri, J.; Heidari, A. A.

    2010-05-01

    All-printed electronics as a means of achieving ultra-low-cost electronic circuits has attracted great interest in recent years. Inkjet printing is one of the most promising techniques by which the circuit components can be ultimately drawn (i.e. printed) onto the substrate in one step. Here, the inkjet printing technique was used to chemically deposit silver nanoparticles (10-200 nm) simply by ejection of silver nitrate and reducing solutions onto different substrates such as paper, PET plastic film and textile fabrics. The silver patterns were tested for their functionality to work as circuit components like conductor, resistor, capacitor and inductor. Different levels of conductivity were achieved simply by changing the printing sequence, inks ratio and concentration. The highest level of conductivity achieved by an office thermal inkjet printer (300 dpi) was 5.54 × 105 S m-1 on paper. Inkjet deposited capacitors could exhibit a capacitance of more than 1.5 nF (parallel plate 45 × 45 mm2) and induction coils displayed an inductance of around 400 µH (planar coil 10 cm in diameter). Comparison of electronic performance of inkjet deposited components to the performance of conventionally etched items makes the technique highly promising for fabricating different printed electronic devices.

  1. Interface Circuit For Printer Port

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Yadlowsky, Ann B.

    1991-01-01

    Electronic circuit, called printer-port interface circuit (PPI) developed to overcome certain disadvantages of previous methods for connecting IBM PC or PC-compatible computer to other equipment. Has both reading and writing modes of operation. Very simple, requiring only six integrated circuits. Provides for moderately fast rates of transfer of data and uses existing unmodified circuit card in IBM PC. When used with appropriate software, circuit converts printer port on IBM PC, XT, AT, or compatible personal computer to general purpose, 8-bit-data, 16-bit address bus that connects to multitude of devices.

  2. Coating Circuit Boards With Silicone

    NASA Technical Reports Server (NTRS)

    Gaudiano, S.

    1986-01-01

    Techniques appropriate to boards containing CMOS circuits detailed. Document presents procedure for applying thin conformal coating to such electronic assemblies as printed-circuit boards and wire-wrapped boards. Coating is from 1 to 7 mils (25 to 178 micrometers) thick and composed of room-temperature-vulcanizing (RTV) silicone. Specifies materials, equipment, spraying method, and quality requirements. Takes into account special needs of circuits made with complementary metal-oxide/semiconductor (CMOS) devices on circuit boards. Special attention given to preventing damage by electrostatic discharge, to which CMOS circuits especially sensitive.

  3. Power system with an integrated lubrication circuit

    SciTech Connect

    Hoff, Brian D.; Akasam, Sivaprasad; Algrain, Marcelo C.; Johnson, Kris W.; Lane, William H.

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  4. 2012 DA14 and Chelyabinsk: Same Day Coincidence?

    NASA Astrophysics Data System (ADS)

    Chapman, Clark R.

    2013-10-01

    A long anticipated near-miss by near-Earth asteroid (NEA) 2012 DA14 on 15 February 2013 was upstaged 16 hours earlier by the impact and atmospheric explosion of a ~20 m NEA over Chelyabinsk, Russia. DA14 was earlier estimated to be 45 m across and passage at a distance under geosynchronous satellites was considered to be a record close approach by an object of that size, a once-in-40-years event. Actual Earth impact by a 20 m NEA had been estimated to be a once-in-200-years event. A simplistic calculation gives a probability of these happening on the same day of 1-in-a-billion. Within hours of the Chelyabinsk impact, it was recognized and widely reported that the two asteroids were in very different orbits and could not, at least in any readily understandable way, be physically related to each other (e.g. fragments of the same precursor body). Also, some early reports suggested that the two asteroids had very different compositions, further undermining the possibility they were pieces of the same body. (It seems unlikely, though certainly conceivable, that the two NEAs could have different compositions yet have some kind of causal connection resulting in the same-day events.) Nevertheless, incredibly tiny probabilities beg for an explanation. Here, with the benefit of hindsight, I re-examine issues that affect the probabilities, such as size, albedo, probable composition, and numbers of NEAs of these sizes. I also consider difficult issues of framing the apparent coincidence, which dominate other uncertainties. Updated information about the physical nature of the two asteroids somewhat modifies the original estimates of probabilities. Moreover, more proper ways of framing elements of the coincidence considerably reduce the improbability of the same-day events, but not nearly to the level (e.g. 1-in-1000 or perhaps 1-in-10,000) where we could rationalize dismissing the events as “just a coincidence.” The events of 15 February 2013 deserve more sophisticated

  5. IXO-XMS LVSID Anti-Coincidence Detector

    NASA Technical Reports Server (NTRS)

    Porter, Scott F.; Kilbourne, Caroline

    2010-01-01

    This document describes a high-TRL backup implementation of the anti-coincidence detector for the IXO/XMS instrument. The backup detector, hereafter referred to as the low-voltage silicon ionization detector (LVSID), has been successfully flown on Astro-E2 (Suzaku)/XRS and is currently being implemented, without significant changes, on the Astro-H/SXS instrument. The LVSID anti-coincidence detector on Astro-E2/XRS operated successfully for almost 2 years, and was not affected by the loss of liquid helium in that instrument. The LVSID continues to operate after almost 5 years on-orbit (LEO, 550 km) but with slightly increased noise following the expected depletion of solid Neon after 22 months. The noise of the device is increased after the loss of sNe due to thermally induced bias and readout noise. No radiation damage, or off-nominal affects have been observed with the LVSID on-orbit during the Astro-E2/XRS program. A detector die from the same fabrication run will be used on the Astro-H/SXS mission. The LVSID technology and cryogenic JFET readout system is thus TRL 9. The technology is described in detail in section 2. The IXO/XMS "backup-up" anti-coincidence detector is a small array of LVSID detectors that are almost identical to those employed for Astro -E2/XRS as described in this document. The readout system is identical and, infact would use the same design as the Astro -E2/XRS JFET amplifier module (19 channels) essentially without changes except for its mechanical mount. The changes required for the IXO/XMS LVSID array are limited to the mounting of the LVSID detectors, and the mechanical mounting of the JFET amplifier sub-assembly. There is no technical development needed for the IXO/XMS implementation and the technology is ready for detailed design-work leading to PDR. The TRL level is thus at least 6, and possibly higher. Characteristics of an IXO/XMS LVSID anti-co detector are given in Table 1 and described in detail in section 3.

  6. Integrated coherent matter wave circuits

    DOE PAGES

    Ryu, C.; Boshier, M. G.

    2015-09-21

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less

  7. Geometric origin of coincidences and hierarchies in the landscape

    SciTech Connect

    Bousso, Raphael; Leichenauer, Stefan; Rosenhaus, Vladimir; Freivogel, Ben

    2011-10-15

    We show that the geometry of cutoffs on eternal inflation strongly constrains predictions for the time scales of vacuum domination, curvature domination, and observation. We consider three measure proposals: the causal patch, the fat geodesic, and the apparent horizon cutoff, which is introduced here for the first time. We impose neither anthropic requirements nor restrictions on landscape vacua. For vacua with positive cosmological constant, all three measures predict the double coincidence that most observers live at the onset of vacuum domination and just before the onset of curvature domination. The hierarchy between the Planck scale and the cosmological constant is related to the number of vacua in the landscape. These results require only mild assumptions about the distribution of vacua (somewhat stronger assumptions are required by the fat geodesic measure). At this level of generality, none of the three measures are successful for vacua with negative cosmological constant. Their applicability in this regime is ruled out unless much stronger anthropic requirements are imposed.

  8. Coincident-site lattice matching during van der Waals epitaxy

    PubMed Central

    Boschker, Jos E.; Galves, Lauren A.; Flissikowski, Timur; Lopes, Joao Marcelo J.; Riechert, Henning; Calarco, Raffaella

    2015-01-01

    Van der Waals (vdW) epitaxy is an attractive method for the fabrication of vdW heterostructures. Here Sb2Te3 films grown on three different kind of graphene substrates (monolayer epitaxial graphene, quasi freestanding bilayer graphene and the SiC (6√3 × 6√3)R30° buffer layer) are used to study the vdW epitaxy between two 2-dimensionally (2D) bonded materials. It is shown that the Sb2Te3 /graphene interface is stable and that coincidence lattices are formed between the epilayers and substrate that depend on the size of the surface unit cell. This demonstrates that there is a significant, although relatively weak, interfacial interaction between the two materials. Lattice matching is thus relevant for vdW epitaxy with two 2D bonded materials and a fundamental design parameter for vdW heterostructures. PMID:26658715

  9. Coincidence-Summing Corrections for Close Geometry Measurements

    SciTech Connect

    Gueray, R. Taygun

    2008-11-11

    For a given stellar temperature, nuclear reactions take place in the energy range of the Gamow window with the relatively low energies of the astrophysical interest for charged particle induced reactions. In order to measure the nuclear reaction cross sections with the activation method at projectile energies as low as possible, a gamma counting system that consists of Ge detectors and the irradiated target in close geometry is required. The presence of cascade transitions requires coincidence summing corrections that can not be ignored because of the very large solid angle. In this study, the determination of the summing correction factor and photopeak efficiency for a gamma spectrometer, as an example, composed of two Ge clover detectors in close geometry is briefly described.

  10. Serendipity in Cancer Drug Discovery: Rational or Coincidence?

    PubMed

    Prasad, Sahdeo; Gupta, Subash C; Aggarwal, Bharat B

    2016-06-01

    Novel drug development leading to final approval by the US FDA can cost as much as two billion dollars. Why the cost of novel drug discovery is so expensive is unclear, but high failure rates at the preclinical and clinical stages are major reasons. Although therapies targeting a given cell signaling pathway or a protein have become prominent in drug discovery, such treatments have done little in preventing or treating any disease alone because most chronic diseases have been found to be multigenic. A review of the discovery of numerous drugs currently being used for various diseases including cancer, diabetes, cardiovascular, pulmonary, and autoimmune diseases indicates that serendipity has played a major role in the discovery. In this review we provide evidence that rational drug discovery and targeted therapies have minimal roles in drug discovery, and that serendipity and coincidence have played and continue to play major roles. The primary focus in this review is on cancer-related drug discovery.

  11. Coincidence landscapes for three-channel linear optical networks

    NASA Astrophysics Data System (ADS)

    de Guise, Hubert; Tan, Si-Hui; Poulin, Isaac P.; Sanders, Barry C.

    2014-06-01

    We use permutation-group methods plus SU(3) group-theoretic methods to determine the action of a three-channel passive optical interferometer on controllably delayed single-photon pulse inputs to each channel. Permutation-group techniques allow us to relate directly expressions for rates and, in particular, investigate symmetries in the coincidence landscape. These techniques extend the traditional Hong-Ou-Mandel effect analysis for two-channel interferometry to valleys and plateaus in three-channel interferometry. Our group-theoretic approach is intuitively appealing because the calculus of Wigner D functions partially accounts for permutational symmetries and directly reveals the connections among D functions, partial distinguishability, and immanants.

  12. Coincident vortices in Antarctic wind fields and sea ice motion

    NASA Astrophysics Data System (ADS)

    Wassermann, S.; Schmitt, C.; Kottmeier, C.; Simmonds, I.

    2006-08-01

    This study introduces a method to examine the coincidence of rotational ice drift and winds caused by the forcing of ice motion by Antarctic cyclones. Vortices are automatically detected using the algorithm of Murray and Simmonds (1991) from both ECMWF surface pressures and SSM/I sea ice motions. For compatibility with this algorithm sea ice motion vectors are transformed to a scalar stream function. During a seven-day test period positions of pressure minima and stream function maxima (SFM) of ice drift are within 300 km in 96% of the cases. Lowest pressure minima are related to highest stream function maxima. The results promise the method to provide a complementary tool of detecting and localizing low-pressure systems over sea ice, adding to numerical pressure analyses.

  13. Pattern Recognition in Gamma-Gamma Coincidence Data sets

    NASA Astrophysics Data System (ADS)

    Manatt, D. R.; Barnes, F. L.; Becker, J. A.; Candy, J. V.; Henry, E. A.; Brinkman, M. J.

    1991-10-01

    Considerable amounts of tedious labor are required to manually scan high-resolution 1D slices of two dimensional γ-γ coincident matrices for relevant and exciting structures. This is particularly true when the interesting structures are of weak intensity. We are working on automated search methods for the detection of rotational band structures in the full 2D space using pattern recognition techniques. For nominal sized data sets (1024×1024), however, these techniques only become computationally feasible through the use of Fourier Transform methods. Furthermore the presentation of data matrices as images rather than series of 1D spectra has been shown to be useful. In this paper we will present the data manipulation techniques we have developed.

  14. Coincidence of GIST and pancreatic endocrine neoplasm in neurofibromatosis.

    PubMed

    Dominguez-Comesaña, Elias; Tome-Espiñeiro, Catherine; Ulla-Rocha, Jose L; Lorenzo-Lorenzo, Isabel; Lede-Fernandez, Angel; Portela-Serra, Jose L

    2011-09-01

    Carcinoids of the ampulla of Vater are infrequent tumors of which a quarter of cases have been detected in patients with type I neurofibromatosis. This hereditary disease is also associated with gastrointestinal stromal tumors (GIST). However, the coincidence of these three entities together have only been formerly detected in five cases. A 53 year-old female patient, diagnosed with type I neurofibromatosis, with a malignant carcinoid of ampulla of Vater and multiple gastrointestinal stromal tumors in the duodenum and jejunum, was treated with total pancreatectomy and the excision of her intestinal tumors. Five-years on, a follow-up showed the patient to be well, and free from tumor recurrence. The coexistence of an ampullary carcinoid tumor, GIST and neurofibramatosis is very rare. Radical curative surgical resection is a good treatment option, but the optimal management of this is not yet well established.

  15. Gamma Efficiency Simulations towards Coincidence Measurements for Fusion Cross Sections

    NASA Astrophysics Data System (ADS)

    Heine, M.; Courtin, S.; Fruet, G.; Jenkins, D. G.; Montanari, D.; Morris, L.; Regan, P. H.; Rudigier, M.; Symochko, D.

    2016-10-01

    With the experimental station STELLA (STELlar LAboratory) we will measure fusion cross sections of astrophysical relevance making use of the coincident detection of charged particles and gamma rays for background reduction. For the measurement of gamma rays from the de-excitation of fusion products a compact array of 36 UK FATIMA LaBr3 detectors is designed based on efficiency studies with Geant4. The photo peak efficiency in the region of interest compares to other gamma detection systems used in this field. The features of the internal decay of 138La is used in a background study to obtain an online calibration of the gamma detectors. Background data are fit to the Monte Carlo model of the self activity assuming crude exponential behavior of external background. Accuracy in the region of interest is of the order of some keV in this first study.

  16. Observations of ionospheric magnetospheric coupling - DE and Chatanika coincidences

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Brace, L. H.; Waite, J. H.; Chappell, C. R.; Chandler, M. O.; Doupnik, J. R.; Richards, P. G.; Heelis, R.; Shawhan, S. D.

    1986-01-01

    Observations from several experiments on board the Dynamics Explorer 1 and 2 (DE 1 and 2) spacecraft and ground-based radar measurements from the Chatanika radar are combined in order to examine the details of ionospheric/magnetospheric coupling in the local evening sector. DE 1 and DE 2 were in coplanar polar orbits that provided measurements almost simultaneously in time and magnetically coincident with the Chatanika radar from L = 3 to L = 17. The coupling processes are inferred from the density, temperature, composition, and angular distributions of the low-energy plasma observed from the E region of the ionosphere to magnetospheric altitudes of 2.5 earth radii. Plasma characteristics of the plasmasphere, main trough, auroral zone, and polar cap can be studied in this data set. The observations imply that as L increases, the dominant coupling mechanism between the ionosphere and magnetosphere in the measured energy range changes from equilibrium diffusion to perpendicular acceleration and finally to parallel acceleration.

  17. Testable solution of the cosmological constant and coincidence problems

    SciTech Connect

    Shaw, Douglas J.; Barrow, John D.

    2011-02-15

    We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, {Lambda}, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of {Lambda}{approx_equal}(9.3 Gyrs){sup -2}[{approx_equal}10{sup -120} in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvature of {Omega}{sub k0}=-0.0056({zeta}{sub b}/0.5), where {zeta}{sub b}{approx}1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given {Lambda}. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t{sub {Lambda}={Lambda}}{sup -1/2} and the age of the Universe, t{sub U}, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different {Lambda} values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.

  18. Circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Bishop, Lev Samuel

    Circuit Quantum Electrodynamics (cQED), the study of the interaction between superconducting circuits behaving as artificial atoms and 1-dimensional transmission-line resonators, has shown much promise for quantum information processing tasks. For the purposes of quantum computing it is usual to approximate the artificial atoms as 2-level qubits, and much effort has been expended on attempts to isolate these qubits from the environment and to invent ever more sophisticated control and measurement schemes. Rather than focussing on these technological aspects of the field, this thesis investigates the opportunities for using these carefully engineered systems for answering questions of fundamental physics. The low dissipation and small mode volume of the circuits allows easy access to the strong-coupling regime of quantum optics, where one can investigate the interaction of light and matter at the level of single atoms and photons. A signature of strong coupling is the splitting of the cavity transmission peak into a pair of resolvable peaks when a single resonant atom is placed inside the cavity---an effect known as vacuum Rabi splitting. The cQED architecture is ideally suited for going beyond this linear response effect. This thesis shows that increasing the drive power results in two unique nonlinear features in the transmitted heterodyne signal: the supersplitting of each vacuum Rabi peak into a doublet, and the appearance of additional peaks with the characteristic n spacing of the Jaynes-Cummings ladder. These constitute direct evidence for the coupling between the quantized microwave field and the anharmonic spectrum of a superconducting qubit acting as an artificial atom. This thesis also addresses the idea of Bell tests, which are experiments that aim to disprove certain types of classical theories, presenting a proposed method for preparing maximally entangled 3-qubit states via a 'preparation by measurement' scheme using an optimized filter on the time

  19. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  20. Temperature-Controlling Circuit

    NASA Technical Reports Server (NTRS)

    Temple, Gerald

    1987-01-01

    Simple circuit switches current to electrical heater on and off to maintain temperature of room at 25 plus or minus 0.5 degree C. Lightweight, compact, reliable, insensitive to electrical noise, and uses single 5-Vdc power supply. Handles ac loads of 10 A. Designed to operate outside temperature controlled environment over range of -55 to +85 degree C. Thermistor provides input signal for simple temperature controller. Output of controller applied to solid-state relay, which in turn switches current to resistance heater.

  1. Integrated circuit cell library

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor)

    2005-01-01

    According to the invention, an ASIC cell library for use in creation of custom integrated circuits is disclosed. The ASIC cell library includes some first cells and some second cells. Each of the second cells includes two or more kernel cells. The ASIC cell library is at least 5% comprised of second cells. In various embodiments, the ASIC cell library could be 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more comprised of second cells.

  2. Dynamic pulse difference circuit

    DOEpatents

    Erickson, Gerald L.

    1978-01-01

    A digital electronic circuit of especial use for subtracting background activity pulses in gamma spectrometry comprises an up-down counter connected to count up with signal-channel pulses and to count down with background-channel pulses. A detector responsive to the count position of the up-down counter provides a signal when the up-down counter has completed one scaling sequence cycle of counts in the up direction. In an alternate embodiment, a detector responsive to the count position of the up-down counter provides a signal upon overflow of the counter.

  3. Small Depth Quantum Circuits

    DTIC Science & Technology

    2007-01-01

    circuit families and quantum Turing machines”. Theoretical Computer Science, 1-2(276):147–181, 2002. [20] S. Parker and M . B . Plenio . “Efficient...unclassified b . ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 polynomial-size...xn, b 〉 = |x1, ..., xn, b ⊕ f(x1, . . . , xn)〉 This is just an easy form of simulating any classical function in a reversible manner. If f(x1

  4. Digital Optical Circuit Technology

    NASA Technical Reports Server (NTRS)

    Dove, B. L. (Editor)

    1985-01-01

    The Proceedings for the 48th Meeting of the AGARD Avionics Panel contain the 18 papers presented a Technical Evaluation Report, and discussions that followed the presentations of papers. Seven papers were presented in the session devoted to optical bistability. Optical logic was addressed by three papers. The session on sources, modulators and demodulators presented three papers. Five papers were given in the final session on all optical systems. The purpose of this Specialists' Meeting was to present the research and development status of digital optical circuit technology and to examine its relevance in the broad context of digital processing, communication, radar, avionics and flight control systems implementation.

  5. Distributed circuit switching starnet

    SciTech Connect

    Chuan-lin Wu; Woei Lin; Min-chang Lin

    1982-01-01

    Starnet is a communication subnet which can cost-effectively connect hundreds or thousands of processors for distributed processing. It uses distributed control and circuit switching. Starnet's communication medium includes two major components: a multistage interconnection network and a set of interface units. The interconnection network uses a destination routing scheme with no central control. The interface unit provides handshaking between the computer/data node and the interconnection network under the control of a microprocessor. Detailed design of the communication medium is described. A model for comparing cost-effectiveness among starnet, crossbar and multiple buses is included. 7 references.

  6. Itch Mechanisms and Circuits

    PubMed Central

    Han, Liang; Dong, Xinzhong

    2014-01-01

    The itch-scratch reflex serves as a protective mechanism in everyday life. However, chronic persistent itching can be devastating. Despite the clinical importance of the itch sensation, its mechanism remains elusive. In the past decade, substantial progress has been made to uncover the mystery of itching. Here, we review the molecules, cells, and circuits known to mediate the itch sensation, which, coupled with advances in understanding the pathophysiology of chronic itching conditions, will hopefully contribute to the development of new anti-itch therapies. PMID:24819620

  7. Seeing Circuits Assemble

    PubMed Central

    Lichtman, Jeff W.; Smith, Stephen J.

    2009-01-01

    Developmental neurobiology has been greatly invigorated by a recent string of breakthroughs in molecular biology and optical physics that permit direct in vivo observation of neural circuit assembly. The imaging done thus far suggests that as brains are built, a significant amount of unbuilding is also occurring. We offer the view that this tumult is the result of the intersecting behaviors of the many single-celled creatures (i.e., neurons, glia, and progenitors) that inhabit brains. New tools will certainly be needed if we wish to monitor the myriad cooperative and competitive interactions at play in the cellular society that builds brains. PMID:18995818

  8. Temperature-Controlling Circuit

    NASA Technical Reports Server (NTRS)

    Temple, Gerald

    1987-01-01

    Simple circuit switches current to electrical heater on and off to maintain temperature of room at 25 plus or minus 0.5 degree C. Lightweight, compact, reliable, insensitive to electrical noise, and uses single 5-Vdc power supply. Handles ac loads of 10 A. Designed to operate outside temperature controlled environment over range of -55 to +85 degree C. Thermistor provides input signal for simple temperature controller. Output of controller applied to solid-state relay, which in turn switches current to resistance heater.

  9. Base drive circuit

    DOEpatents

    Lange, Arnold C.

    1995-01-01

    An improved base drive circuit (10) having a level shifter (24) for providing bistable input signals to a pair of non-linear delays (30, 32). The non-linear delays (30, 32) provide gate control to a corresponding pair of field effect transistors (100, 106) through a corresponding pair of buffer components (88, 94). The non-linear delays (30, 32) provide delayed turn-on for each of the field effect transistors (100, 106) while an associated pair of transistors (72, 80) shunt the non-linear delays (30, 32) during turn-off of the associated field effect transistor (100, 106).

  10. Photonic Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  11. Base drive circuit

    DOEpatents

    Lange, A.C.

    1995-04-04

    An improved base drive circuit having a level shifter for providing bistable input signals to a pair of non-linear delays. The non-linear delays provide gate control to a corresponding pair of field effect transistors through a corresponding pair of buffer components. The non-linear delays provide delayed turn-on for each of the field effect transistors while an associated pair of transistors shunt the non-linear delays during turn-off of the associated field effect transistor. 2 figures.

  12. Signal Processing Circuit Development.

    DTIC Science & Technology

    1986-07-01

    Simplified active filter circuit 64 42. Video output amplifier 66 43. 64/128 gated clock circuitry 68 44. Two pole Sallen-Key active filters 7!1 45. Switched...four quadrant multiplier, log compression, multiple pole active video filtering and black level control. In what follows in this report an attempt...chip is shown in Fiqu-e 5. This is the master synch chip which generates all of the control signals necessary for TV monitor presentation of video data

  13. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    SciTech Connect

    Clark, Lawrence T; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  14. Frequency translating phase conjugation circuit for active retrodirective antenna array

    NASA Astrophysics Data System (ADS)

    Chernoff, R.

    1980-11-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  15. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit controller...

  16. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit controller...

  17. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit controller...

  18. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit controller...

  19. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit controller...

  20. Quasi-Linear Circuit

    NASA Technical Reports Server (NTRS)

    Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth

    2013-01-01

    This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output

  1. Jitter compensation circuit

    DOEpatents

    Sullivan, J.S.; Ball, D.G.

    1997-09-09

    The instantaneous V{sub co} signal on a charging capacitor is sampled and the charge voltage on capacitor C{sub o} is captured just prior to its discharge into the first stage of magnetic modulator. The captured signal is applied to an averaging circuit with a long time constant and to the positive input terminal of a differential amplifier. The averaged V{sub co} signal is split between a gain stage (G = 0.975) and a feedback stage that determines the slope of the voltage ramp applied to the high speed comparator. The 97.5% portion of the averaged V{sub co} signal is applied to the negative input of a differential amplifier gain stage (G = 10). The differential amplifier produces an error signal by subtracting 97.5% of the averaged V{sub co} signal from the instantaneous value of sampled V{sub co} signal and multiplying the difference by ten. The resulting error signal is applied to the positive input of a high speed comparator. The error signal is then compared to a voltage ramp that is proportional to the averaged V{sub co} values squared divided by the total volt-second product of the magnetic compression circuit. 11 figs.

  2. Jitter compensation circuit

    DOEpatents

    Sullivan, James S.; Ball, Don G.

    1997-01-01

    The instantaneous V.sub.co signal on a charging capacitor is sampled and the charge voltage on capacitor C.sub.o is captured just prior to its discharge into the first stage of magnetic modulator. The captured signal is applied to an averaging circuit with a long time constant and to the positive input terminal of a differential amplifier. The averaged V.sub. co signal is split between a gain stage (G=0.975) and a feedback stage that determines the slope of the voltage ramp applied to the high speed comparator. The 97.5% portion of the averaged V.sub.co signal is applied to the negative input of a differential amplifier gain stage (G=10). The differential amplifier produces an error signal by subtracting 97.5% of the averaged V.sub.co signal from the instantaneous value of sampled V.sub.co signal and multiplying the difference by ten. The resulting error signal is applied to the positive input of a high speed comparator. The error signal is then compared to a voltage ramp that is proportional to the averaged V.sub.co values squared divided by the total volt-second product of the magnetic compression circuit.

  3. Noise in biological circuits

    SciTech Connect

    Simpson, Michael L.; Allen, Michael S.; Cox, Chris D.; Dar, Roy D.; Karig, David K.; McCollum, James M.; Cooke, John F.

    2009-01-13

    Noise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations. Here we review the fundamentals of the computational, analytical, and experimental approaches to noise biology. We review results that show that the competition between the benefits of low noise and those of low population has resulted in the evolution of genetic system architectures that produce an uneven distribution of stochasticity across the molecular components of cells and, in some cases, use noise to drive biological function. We review the exact and approximate approaches to gene circuit noise analysis and simulation, and reviewmany of the key experimental results obtained using flow cytometry and time-lapse fluorescent microscopy. In addition, we consider the probative value of noise with a discussion of using measured noise properties to elucidate the structure and function of the underlying gene circuit. Lastly, we conclude with a discussion of the frontiers of and significant future challenges for noise biology.

  4. Simple Cell Balance Circuit

    NASA Technical Reports Server (NTRS)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  5. Automated Design of Quantum Circuits

    NASA Technical Reports Server (NTRS)

    Williams, Colin P.; Gray, Alexander G.

    2000-01-01

    In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.

  6. Integrated circuit cooled turbine blade

    DOEpatents

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  7. Large-scale circuit simulation

    NASA Astrophysics Data System (ADS)

    Wei, Y. P.

    1982-12-01

    The simulation of VLSI (Very Large Scale Integration) circuits falls beyond the capabilities of conventional circuit simulators like SPICE. On the other hand, conventional logic simulators can only give the results of logic levels 1 and 0 with the attendent loss of detail in the waveforms. The aim of developing large-scale circuit simulation is to bridge the gap between conventional circuit simulation and logic simulation. This research is to investigate new approaches for fast and relatively accurate time-domain simulation of MOS (Metal Oxide Semiconductors), LSI (Large Scale Integration) and VLSI circuits. New techniques and new algorithms are studied in the following areas: (1) analysis sequencing (2) nonlinear iteration (3) modified Gauss-Seidel method (4) latency criteria and timestep control scheme. The developed methods have been implemented into a simulation program PREMOS which could be used as a design verification tool for MOS circuits.

  8. A bit serial sequential circuit

    NASA Technical Reports Server (NTRS)

    Hu, S.; Whitaker, S.

    1990-01-01

    Normally a sequential circuit with n state variables consists of n unique hardware realizations, one for each state variable. All variables are processed in parallel. This paper introduces a new sequential circuit architecture that allows the state variables to be realized in a serial manner using only one next state logic circuit. The action of processing the state variables in a serial manner has never been addressed before. This paper presents a general design procedure for circuit construction and initialization. Utilizing pass transistors to form the combinational next state forming logic in synchronous sequential machines, a bit serial state machine can be realized with a single NMOS pass transistor network connected to shift registers. The bit serial state machine occupies less area than other realizations which perform parallel operations. Moreover, the logical circuit of the bit serial state machine can be modified by simply changing the circuit input matrix to develop an adaptive state machine.

  9. Electronic control circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A compilation of technical R and D information on circuits and modular subassemblies is presented as a part of a technology utilization program. Fundamental design principles and applications are given. Electronic control circuits discussed include: anti-noise circuit; ground protection device for bioinstrumentation; temperature compensation for operational amplifiers; hybrid gatling capacitor; automatic signal range control; integrated clock-switching control; and precision voltage tolerance detector.

  10. Pharmacokinetics and RC Circuit Concepts

    NASA Astrophysics Data System (ADS)

    Cock, Mieke De; Janssen, Paul

    2013-11-01

    Most introductory physics courses include a chapter on RC circuits in which the differential equations for the charging and discharging of a capacitor are derived. A number of papers in this journal describe lab experiments dealing with the measurement of different parameters in such RC circuits. In this contribution, we report on a lab experiment we developed for students majoring in pharmacy, using RC circuits to simulate a pharmacokinetic process.

  11. Power-Supply-Conditioning Circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R. C.

    1989-01-01

    Fluctuations of voltage suppressed in power supplies for precise radio-frequency circuits. Circuit suppresses both periodic and random deviations of dc supply voltage from desired steady level. Highly-stable feedback voltage regulator, conditioner intended in conjunction with conventional power-supply circuit to provide constant voltage to atomic frequency standard or other precise oscillator. Without conditioners, outputs of most commercial power supplies contain fluctuations causing unacceptably-large phase and amplitude modulation of precise oscillators.

  12. Audio distribution and Monitoring Circuit

    NASA Technical Reports Server (NTRS)

    Kirkland, J. M.

    1983-01-01

    Versatile circuit accepts and distributes TV audio signals. Three-meter audio distribution and monitoring circuit provides flexibility in monitoring, mixing, and distributing audio inputs and outputs at various signal and impedance levels. Program material is simultaneously monitored on three channels, or single-channel version built to monitor transmitted or received signal levels, drive speakers, interface to building communications, and drive long-line circuits.

  13. Source-circuit design overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1983-01-01

    The source circuit is the fundamental electrical building block of a large central-station array; it consists of a series-parallel network of solar cells that develops full system voltage. The array field is generally made up of a large number of parallel source circuits. Source-circuit electrical configuration is driven by a number of design considerations, which must be considered simultaneously. Array fault tolerance and hot spot heating endurance are examined in detail.

  14. The organization of two novel cortical interneuronal circuits

    PubMed Central

    Jiang, Xiaolong; Wang, Guangfu; Lee, Alice J.; Stornetta, Ruth L.; Zhu, J. Julius

    2013-01-01

    Deciphering interneuronal circuitry is central to understanding brain functions yet remains as a challenging task in neurobiology. Using simultaneous quadruple-octuple in vitro and dual in vivo whole-cell recordings, we found two previously unknown interneuronal circuits that link cortical layer 1–3 (L1-3) interneurons and L5 pyramidal neurons in the rat neocortex. L1 single-bouquet cells (SBCs) preferentially form unidirectional inhibitory connections on L2/3 interneurons that inhibit the entire dendritic-somato-axonal axis of ~1% of L5 pyramidal neurons located within the same column. In contrast, L1 elongated neurogliaform cells (ENGCs) frequently form mutual inhibitory and electric connections with L2/3 interneurons, and these L1-3 interneurons inhibit the distal apical dendrite of >60% of L5 pyramidal neurons across multiple columns. Functionally, SBC→L2/3 interneuron→L5 pyramidal neuronal circuits disinhibit and ENGC↔L2/3 interneuron→L5 pyramidal neuronal circuits inhibit the initiation of dendritic complex spikes in L5 pyramidal neurons. As dendritic complex spikes can serve coincidence detection, these cortical interneuronal circuits may be essential for salience selection. PMID:23313910

  15. The organization of two new cortical interneuronal circuits.

    PubMed

    Jiang, Xiaolong; Wang, Guangfu; Lee, Alice J; Stornetta, Ruth L; Zhu, J Julius

    2013-02-01

    Deciphering the interneuronal circuitry is central to understanding brain functions, yet it remains a challenging task in neurobiology. Using simultaneous quadruple-octuple in vitro and dual in vivo whole-cell recordings, we found two previously unknown interneuronal circuits that link cortical layer 1-3 (L1-3) interneurons and L5 pyramidal neurons in the rat neocortex. L1 single-bouquet cells (SBCs) preferentially formed unidirectional inhibitory connections on L2/3 interneurons that inhibited the entire dendritic-somato-axonal axis of ∼1% of L5 pyramidal neurons located in the same column. In contrast, L1 elongated neurogliaform cells (ENGCs) frequently formed mutual inhibitory and electric connections with L2/3 interneurons, and these L1-3 interneurons inhibited the distal apical dendrite of >60% of L5 pyramidal neurons across multiple columns. Functionally, SBC→L2/3 interneuron→L5 pyramidal neuronal circuits disinhibited and ENGC↔L2/3 interneuron→L5 pyramidal neuronal circuits inhibited the initiation of dendritic complex spikes in L5 pyramidal neurons. As dendritic complex spikes can serve coincidence detection, these cortical interneuronal circuits may be essential for salience selection.

  16. Magnetic compression laser driving circuit

    DOEpatents

    Ball, Don G.; Birx, Dan; Cook, Edward G.

    1993-01-01

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  17. Magnetic compression laser driving circuit

    DOEpatents

    Ball, D.G.; Birx, D.; Cook, E.G.

    1993-01-05

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  18. PRECISION TIME-DELAY CIRCUIT

    DOEpatents

    Creveling, R.

    1959-03-17

    A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.

  19. Portable circuit-interruption indicator

    NASA Technical Reports Server (NTRS)

    Bezant, K. R.

    1971-01-01

    Device locates transient power interruptions occurring in electrical equipment. Indicator operates on principle that circuit in normal use retains residual current in the line prior to an interruption.

  20. Four-junction superconducting circuit

    NASA Astrophysics Data System (ADS)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-06-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  1. Four-junction superconducting circuit

    PubMed Central

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  2. Multifunctional pattern-generating circuits.

    PubMed

    Briggman, K L; Kristan, W B

    2008-01-01

    The ability of distinct anatomical circuits to generate multiple behavioral patterns is widespread among vertebrate and invertebrate species. These multifunctional neuronal circuits are the result of multistable neural dynamics and modular organization. The evidence suggests multifunctional circuits can be classified by distinct architectures, yet the activity patterns of individual neurons involved in more than one behavior can vary dramatically. Several mechanisms, including sensory input, the parallel activity of projection neurons, neuromodulation, and biomechanics, are responsible for the switching between patterns. Recent advances in both analytical and experimental tools have aided the study of these complex circuits.

  3. Line identification studies using traditional techniques and wavelength coincidence statistics

    NASA Technical Reports Server (NTRS)

    Cowley, Charles R.; Adelman, Saul J.

    1990-01-01

    Traditional line identification techniques result in the assignment of individual lines to an atomic or ionic species. These methods may be supplemented by wavelength coincidence statistics (WCS). The strength and weakness of these methods are discussed using spectra of a number of normal and peculiar B and A stars that have been studied independently by both methods. The present results support the overall findings of some earlier studies. WCS would be most useful in a first survey, before traditional methods have been applied. WCS can quickly make a global search for all species and in this way may enable identifications of an unexpected spectrum that could easily be omitted entirely from a traditional study. This is illustrated by O I. WCS is a subject to well known weakness of any statistical technique, for example, a predictable number of spurious results are to be expected. The danger of small number statistics are illustrated. WCS is at its best relative to traditional methods in finding a line-rich atomic species that is only weakly present in a complicated stellar spectrum.

  4. Super sub-wavelength patterns in photon coincidence detection.

    PubMed

    Liu, Ruifeng; Zhang, Pei; Zhou, Yu; Gao, Hong; Li, Fuli

    2014-02-17

    High-precision measurements implemented with light are desired in all fields of science. However, light acts as a wave, and the Rayleigh criterion in classical optics yields a diffraction limit that prevents obtaining a resolution smaller than the wavelength. Sub-wavelength interference has potential application in lithography because it beats the classical Rayleigh resolution limit. Here, we carefully study second-order correlation theory to establish the physics behind sub-wavelength interference in photon coincidence detection. A Young's double slit experiment with pseudo-thermal light is performed to test the second-order correlation pattern. The results show that when two point detectors are scanned in different ways, super sub-wavelength interference patterns can be obtained. We then provide a theoretical explanation for this surprising result, and demonstrate that this explanation is also suitable for the results found for entangled light. Furthermore, we discuss the limitations of these types of super sub-wavelength interference patterns in quantum lithography.

  5. Super sub-wavelength patterns in photon coincidence detection

    NASA Astrophysics Data System (ADS)

    Liu, Ruifeng; Zhang, Pei; Zhou, Yu; Gao, Hong; Li, Fuli

    2014-02-01

    High-precision measurements implemented with light are desired in all fields of science. However, light acts as a wave, and the Rayleigh criterion in classical optics yields a diffraction limit that prevents obtaining a resolution smaller than the wavelength. Sub-wavelength interference has potential application in lithography because it beats the classical Rayleigh resolution limit. Here, we carefully study second-order correlation theory to establish the physics behind sub-wavelength interference in photon coincidence detection. A Young's double slit experiment with pseudo-thermal light is performed to test the second-order correlation pattern. The results show that when two point detectors are scanned in different ways, super sub-wavelength interference patterns can be obtained. We then provide a theoretical explanation for this surprising result, and demonstrate that this explanation is also suitable for the results found for entangled light. Furthermore, we discuss the limitations of these types of super sub-wavelength interference patterns in quantum lithography.

  6. Intrinsic coincident full-Stokes polarimeter using stacked organic photovoltaics.

    PubMed

    Yang, Ruonan; Sen, Pratik; O'Connor, B T; Kudenov, M W

    2017-02-20

    An intrinsic coincident full-Stokes polarimeter is demonstrated by using strain-aligned polymer-based organic photovoltaics (OPVs) that can preferentially absorb certain polarized states of incident light. The photovoltaic-based polarimeter is capable of measuring four Stokes parameters by cascading four semitransparent OPVs in series along the same optical axis. This in-line polarimeter concept potentially ensures high temporal and spatial resolution with higher radiometric efficiency as compared to the existing polarimeter architecture. Two wave plates were incorporated into the system to modulate the S3 Stokes parameter so as to reduce the condition number of the measurement matrix and maximize the measured signal-to-noise ratio. Radiometric calibration was carried out to determine the measurement matrix. The polarimeter presented in this paper demonstrated an average RMS error of 0.84% for reconstructed Stokes vectors after normalized to S0. A theoretical analysis of the minimum condition number of the four-cell OPV design showed that for individually optimized OPV cells, a condition number of 2.4 is possible.

  7. Analytical model of coincidence resolving time in TOF-PET.

    PubMed

    Wieczorek, H; Thon, A; Dey, T; Khanin, V; Rodnyi, P

    2016-06-21

    The coincidence resolving time (CRT) of scintillation detectors is the parameter determining noise reduction in time-of-flight PET. We derive an analytical CRT model based on the statistical distribution of photons for two different prototype scintillators. For the first one, characterized by single exponential decay, CRT is proportional to the decay time and inversely proportional to the number of photons, with a square root dependence on the trigger level. For the second scintillator prototype, characterized by exponential rise and decay, CRT is proportional to the square root of the product of rise time and decay time divided by the doubled number of photons, and it is nearly independent of the trigger level. This theory is verified by measurements of scintillation time constants, light yield and CRT on scintillator sticks. Trapping effects are taken into account by defining an effective decay time. We show that in terms of signal-to-noise ratio, CRT is as important as patient dose, imaging time or PET system sensitivity. The noise reduction effect of better timing resolution is verified and visualized by Monte Carlo simulation of a NEMA image quality phantom.

  8. Coincidence ion imaging with a fast frame camera

    SciTech Connect

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen

    2014-12-15

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.

  9. Coincidence and awareness of oral parafunctions in college students.

    PubMed

    Panek, H; Nawrot, P; Mazan, M; Bielicka, B; Sumisławska, M; Pomianowski, R

    2012-03-01

    The aim of the study was to determine the prevalence and awareness of particular types of oral parafunctions in young healthy students and any association with temporomandibular disorders (TMD). The study was performed in a randomly selected group of 303 healthy students (mean age 18.8 years) from the vocational technical school in Wrocław, Poland, who underwent a routine clinical examination and functional analysis of the mouth. On taking the history all subjects were asked about their awareness of various forms of parafunctional activity in their mouth. Almost all subjects revealed various oral parafunctions such as: bruxism, nail and pen biting, chewing gum, and biting the mucosa of lip or cheek. These habits were present singly or as double, triple or even fourfold coincidences in a single person. The most frequent oral parafunctions were habitual gum chewing and bruxism. Subjects were very seldom aware of the last parafunction. TMDs were more prevalent in the presence of bruxism than in other oral parafunctions. The studied students revealed various types of oral parafunctions, however most of them were not aware of clenching and grinding their teeth.

  10. Nonlinear Dynamics of Neuronal Excitability, Oscillations, and Coincidence Detection

    PubMed Central

    RINZEL, JOHN; HUGUET, GEMMA

    2014-01-01

    We review some widely studied models and firing dynamics for neuronal systems, both at the single cell and network level, and dynamical systems techniques to study them. In particular, we focus on two topics in mathematical neuroscience that have attracted the attention of mathematicians for decades: single-cell excitability and bursting. We review the mathematical framework for three types of excitability and onset of repetitive firing behavior in single-neuron models and their relation with Hodgkin’s classification in 1948 of repetitive firing properties. We discuss the mathematical dissection of bursting oscillations using fast/slow analysis and demonstrate the approach using single-cell and mean-field network models. Finally, we illustrate the properties of Type III excitability in which case repetitive firing for constant or slow inputs is absent. Rather, firing is in response only to rapid enough changes in the stimulus. Our case study involves neuronal computations for sound localization for which neurons in the auditory brain stem perform extraordinarily precise coincidence detection with submillisecond temporal resolution. PMID:25392560

  11. A high-efficiency HPGe coincidence system for environmental analysis.

    PubMed

    Britton, R; Davies, A V; Burnett, J L; Jackson, M J

    2015-08-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a network of certified laboratories which must meet certain sensitivity requirements for CTBT relevant radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a high-efficiency, dual-detector gamma spectroscopy system has been developed to improve the sensitivity of measurements for treaty compliance, greatly reducing the time required for each sample. Utilising list-mode acquisition, each sample can be counted once, and processed multiple times to further improve sensitivity. For the 8 key radionuclides considered, Minimum Detectable Activities (MDA's) were improved by up to 37% in standard mode (when compared to a typical CTBT detector system), with the acquisition time required to achieve the CTBT sensitivity requirements reduced from 6 days to only 3. When utilising the system in coincidence mode, the MDA for (60) Co in a high-activity source was improved by a factor of 34 when compared to a standard CTBT detector, and a factor of 17 when compared to the dual-detector system operating in standard mode. These MDA improvements will allow the accurate and timely quantification of radionuclides that decay via both singular and cascade γ emission, greatly enhancing the effectiveness of CTBT laboratories. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  12. Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division.

    PubMed

    Adachi, Yoshihiro; Itoh, Kie; Yamada, Tatsuya; Cerveny, Kara L; Suzuki, Takamichi L; Macdonald, Patrick; Frohman, Michael A; Ramachandran, Rajesh; Iijima, Miho; Sesaki, Hiromi

    2016-09-15

    Mitochondria divide to control their size, distribution, turnover, and function. Dynamin-related protein 1 (Drp1) is a critical mechanochemical GTPase that drives constriction during mitochondrial division. It is generally believed that mitochondrial division is regulated during recruitment of Drp1 to mitochondria and its oligomerization into a division apparatus. Here, we report an unforeseen mechanism that regulates mitochondrial division by coincident interactions of Drp1 with the head group and acyl chains of phospholipids. Drp1 recognizes the head group of phosphatidic acid (PA) and two saturated acyl chains of another phospholipid by penetrating into the hydrophobic core of the membrane. The dual phospholipid interactions restrain Drp1 via inhibition of oligomerization-stimulated GTP hydrolysis that promotes membrane constriction. Moreover, a PA-producing phospholipase, MitoPLD, binds Drp1, creating a PA-rich microenvironment in the vicinity of a division apparatus. Thus, PA controls the activation of Drp1 after the formation of the division apparatus.

  13. The alpha-gamma coincidence spectrometer and its application

    SciTech Connect

    Shengzhong Qiao )

    1991-01-01

    In this paper the author describes the structure and properties of the high-resolution {alpha}-{gamma} coincidence spectrometer and its applications in determining heavy nuclides qualitatively and quantitatively. The energy resolution of the spectrometer is 0.25% (full-width at half-maximum is 13.8 keV for 5.486-MeV alpha particles); the energy shift of the peak is 0.05% in 8 h; non-linearity is < 0.2% for the 4- to 8-MeV energy region. the uncertainty in the quantitative measurement is better than {plus minus}1%. The spectrometer is being applied to some important measurements of specific cases. It can resolve some complex and difficult measurements problems because of its high accuracy, sensitivity, selectivity, and ability to remove interferences. The paper describes results with determination of {sup 242}Pu in plutonium samples; determination of the {sup 241}Am content in the presence of {sup 242}Cm and fission products; determination of the {sup 241}Am in plutonium samples; determination of the {sup 241}Am and {sup 243}Cm in irradiated plutonium solutions; and other applications.

  14. Coincident loss of consciousness and ventricular tachycardia during +GZ stress.

    PubMed

    Whinnery, J E; Laughlin, M H; Uhl, G S

    1980-08-01

    The environment of the advanced fighter aircraft represents a unique combination of stressful factors. Each of the individual stresses is hazardous, with the summation of these factors possibly resulting in an additional risk for sudden in-flight incapacitation. Advanced fighter aircraft are capabble of producing both rapid onset and high sustained +GZ forces which, on occasion, can exceed the tolerance limits of the pilot. The +GZ forces encountered during aerial combat maneuvering are physiologically stressful and have a profound effect on the regulatory mechanisms of the body. The influence of these stresses, including +GZ stress, on the autonomic nervous system is complex. The overall normal regulation of the cardiovascular system depends on a balance between both branches of the autonomic nervous system. An imbalance between sympathetic and parasympathetic tone can result in cardiac dysrhythmias and symptoms not conducive to safe and effective flight. An episode of ventricular tachycardia, coincident with an episode of loss of consciousness, was observed in an apparently healthy aircrewman during +GZ stress on the USAF School of Aerospace Medicine human centrifuge. The implications of autonomic imbalance in the production of similar potentially hazardous dysrhythmias and symptoms in the multistress environment deserve more in-depth investigation.

  15. Performance of Down syndrome subjects during a coincident timing task

    PubMed Central

    2013-01-01

    Background The time synchronization is a very important ability for the acquisition and performance of motor skills that generate the need to adapt the actions of body segments to external events of the environment that are changing their position in space. Down Syndrome (DS) individuals may present some deficits to perform tasks with synchronization demand. We aimed to investigate the performance of individuals with DS in a simple Coincident Timing task. Method 32 individuals were divided into 2 groups: the Down syndrome group (DSG) comprised of 16 individuals with average age of 20 (+/− 5 years old), and a control group (CG) comprised of 16 individuals of the same age. All individuals performed the Simple Timing (ST) task and their performance was measured in milliseconds. The study was conducted in a single phase with the execution of 20 consecutive trials for each participant. Results There was a significant difference in the intergroup analysis for the accuracy adjustment - Absolute Error (Z = 3.656, p = 0.001); and for the performance consistence - Variable Error (Z = 2.939, p = 0.003). Conclusion DS individuals have more difficulty in integrating the motor action to an external stimulus and they also present more inconsistence in performance. Both groups presented the same tendency to delay their motor responses. PMID:23618314

  16. Dubin-Johnson syndrome coinciding with colon cancer and atherosclerosis.

    PubMed

    Sticova, Eva; Elleder, Milan; Hulkova, Helena; Luksan, Ondrej; Sauer, Martin; Wunschova-Moudra, Irena; Novotny, Jan; Jirsa, Milan

    2013-02-14

    Hyperbilirubinemia has been presumed to prevent the process of atherogenesis and cancerogenesis mainly by decreasing oxidative stress. Dubin-Johnson syndrome is a rare, autosomal recessive, inherited disorder characterized by biphasic, predominantly conjugated hyperbilirubinemia with no progression to end-stage liver disease. The molecular basis in Dubin-Johnson syndrome is absence or deficiency of human canalicular multispecific organic anion transporter MRP2/cMOAT caused by homozygous or compound heterozygous mutation(s) in ABCC2 located on chromosome 10q24. Clinical onset of the syndrome is most often seen in the late teens or early adulthood. In this report, we describe a case of previously unrecognized Dubin-Johnson syndrome caused by two novel pathogenic mutations (c.2360_2366delCCCTGTC and c.3258+1G>A), coinciding with cholestatic liver disease in an 82-year-old male patient. The patient, suffering from advanced atherosclerosis with serious involvement of coronary arteries, developed colorectal cancer with nodal metastases. The subsequent findings do not support the protective role of Dubin-Johnson type hyperbilirubinemia.

  17. Analytical model of coincidence resolving time in TOF-PET

    NASA Astrophysics Data System (ADS)

    Wieczorek, H.; Thon, A.; Dey, T.; Khanin, V.; Rodnyi, P.

    2016-06-01

    The coincidence resolving time (CRT) of scintillation detectors is the parameter determining noise reduction in time-of-flight PET. We derive an analytical CRT model based on the statistical distribution of photons for two different prototype scintillators. For the first one, characterized by single exponential decay, CRT is proportional to the decay time and inversely proportional to the number of photons, with a square root dependence on the trigger level. For the second scintillator prototype, characterized by exponential rise and decay, CRT is proportional to the square root of the product of rise time and decay time divided by the doubled number of photons, and it is nearly independent of the trigger level. This theory is verified by measurements of scintillation time constants, light yield and CRT on scintillator sticks. Trapping effects are taken into account by defining an effective decay time. We show that in terms of signal-to-noise ratio, CRT is as important as patient dose, imaging time or PET system sensitivity. The noise reduction effect of better timing resolution is verified and visualized by Monte Carlo simulation of a NEMA image quality phantom.

  18. The Structure of the Cubic Coincident Site Lattice Rotation Group

    SciTech Connect

    Reed, B W; Minich, R W; Rudd, R E; Kumar, M

    2004-01-13

    This work is intended to be a mathematical underpinning for the field of grain boundary engineering and its relatives. The interrelationships within the set of rotations producing coincident site lattices in cubic crystals are examined in detail. Besides combining previously established but widely scattered results into a unified context, the present work details newly developed representations of the group structure in terms of strings of generators (based on quaternionic number theory, and including uniqueness proofs and rules for algebraic manipulation) as well as an easily visualized topological network model. Important results that were previously obscure or not universally understood (e.g. the {Sigma} combination rule governing triple junctions) are clarified in these frameworks. The methods also facilitate several general observations, including the very different natures of twin-limited structures in two and three dimensions, the inadequacy of the {Sigma} combination rule to determine valid quadruple nodes, and a curious link between allowable grain boundary assignments and the four-color map theorem. This kind of understanding is essential to the generation of realistic statistical models of grain boundary networks (particularly in twin-dominated systems) and is especially applicable to the field of grain boundary engineering.

  19. A Circuit to Demonstrate Phase Relationships in "RLC" Circuits

    ERIC Educational Resources Information Center

    Sokol, P. E.; Warren, G.; Zheng, B.; Smith, P.

    2013-01-01

    We have developed a circuit to demonstrate the phase relationships between resistive and reactive elements in series "RLC" circuits. We utilize a differential amplifier to allow the phases of the three elements and the current to be simultaneously displayed on an inexpensive four channel oscilloscope. We have included a novel circuit…

  20. Circuit Theory for Full Counting Statistics in Multiterminal Circuits

    NASA Astrophysics Data System (ADS)

    Nazarov, Yu. V.; Bagrets, D. A.

    2002-05-01

    We propose a theory that treats the current, noise, and, generally, the full current statistics of electron transfer in a mesoscopic system in a unified, simple, and efficient way. The theory appears to be a circuit theory of 2×2 matrices associated with Keldysh Green functions. We illustrate the theory by considering the big fluctuations of currents in various three-terminal circuits.

  1. A Circuit to Demonstrate Phase Relationships in "RLC" Circuits

    ERIC Educational Resources Information Center

    Sokol, P. E.; Warren, G.; Zheng, B.; Smith, P.

    2013-01-01

    We have developed a circuit to demonstrate the phase relationships between resistive and reactive elements in series "RLC" circuits. We utilize a differential amplifier to allow the phases of the three elements and the current to be simultaneously displayed on an inexpensive four channel oscilloscope. We have included a novel circuit…

  2. Cosmic ray neutron background reduction using localized coincidence veto neutron counting

    DOEpatents

    Menlove, Howard O.; Bourret, Steven C.; Krick, Merlyn S.

    2002-01-01

    This invention relates to both the apparatus and method for increasing the sensitivity of measuring the amount of radioactive material in waste by reducing the interference caused by cosmic ray generated neutrons. The apparatus includes: (a) a plurality of neutron detectors, each of the detectors including means for generating a pulse in response to the detection of a neutron; and (b) means, coupled to each of the neutrons detectors, for counting only some of the pulses from each of the detectors, whether cosmic ray or fission generated. The means for counting includes a means that, after counting one of the pulses, vetos the counting of additional pulses for a prescribed period of time. The prescribed period of time is between 50 and 200 .mu.s. In the preferred embodiment the prescribed period of time is 128 .mu.s. The veto means can be an electronic circuit which includes a leading edge pulse generator which passes a pulse but blocks any subsequent pulse for a period of between 50 and 200 .mu.s. Alternately, the veto means is a software program which includes means for tagging each of the pulses from each of the detectors for both time and position, means for counting one of the pulses from a particular position, and means for rejecting those of the pulses which originate from the particular position and in a time interval on the order of the neutron die-away time in polyethylene or other shield material. The neutron detectors are grouped in pods, preferably at least 10. The apparatus also includes means for vetoing the counting of coincidence pulses from all of the detectors included in each of the pods which are adjacent to the pod which includes the detector which produced the pulse which was counted.

  3. Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl

    PubMed Central

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E.

    2013-01-01

    Interaural time difference (ITD), or the difference in timing of a sound wave arriving at the two ears, is a fundamental cue for sound localization. A wide variety of animals have specialized neural circuits dedicated to the computation of ITDs. In the avian auditory brainstem, ITDs are encoded as the spike rates in the coincidence detector neurons of the nucleus laminaris (NL). NL neurons compare the binaural phase-locked inputs from the axons of ipsi- and contralateral nucleus magnocellularis (NM) neurons. Intracellular recordings from the barn owl's NL in vivo showed that tonal stimuli induce oscillations in the membrane potential. Since this oscillatory potential resembled the stimulus sound waveform, it was named the sound analog potential (Funabiki et al., 2011). Previous modeling studies suggested that a convergence of phase-locked spikes from NM leads to an oscillatory membrane potential in NL, but how presynaptic, synaptic, and postsynaptic factors affect the formation of the sound analog potential remains to be investigated. In the accompanying paper, we derive analytical relations between these parameters and the signal and noise components of the oscillation. In this paper, we focus on the effects of the number of presynaptic NM fibers, the mean firing rate of these fibers, their average degree of phase-locking, and the synaptic time scale. Theoretical analyses and numerical simulations show that, provided the total synaptic input is kept constant, changes in the number and spike rate of NM fibers alter the ITD-independent noise whereas the degree of phase-locking is linearly converted to the ITD-dependent signal component of the sound analog potential. The synaptic time constant affects the signal more prominently than the noise, making faster synaptic input more suitable for effective ITD computation. PMID:24265615

  4. ELECTRONIC PULSE SCALING CIRCUITS

    DOEpatents

    Cooke-Yarborough, E.H.

    1958-11-18

    Electronic pulse scaling circults of the klnd comprlsing a serles of bi- stable elements connected ln sequence, usually in the form of a rlng so as to be cycllcally repetitive at the highest scallng factor, are described. The scaling circuit comprises a ring system of bi-stable elements each arranged on turn-off to cause, a succeeding element of the ring to be turned-on, and one being arranged on turn-off to cause a further element of the ring to be turned-on. In addition, separate means are provided for applying a turn-off pulse to all the elements simultaneously, and for resetting the elements to a starting condition at the end of each cycle.

  5. Modeling cortical circuits.

    SciTech Connect

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  6. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, C.

    1987-12-07

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.

  7. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, Christen

    1990-01-01

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

  8. ELECTRONIC INTEGRATING CIRCUIT

    DOEpatents

    Englemann, R.H.

    1963-08-20

    An electronic integrating circuit using a transistor with a capacitor connected between the emitter and collector through which the capacitor discharges at a rate proportional to the input current at the base is described. Means are provided for biasing the base with an operating bias and for applying a voltage pulse to the capacitor for charging to an initial voltage. A current dividing diode is connected between the base and emitter of the transistor, and signal input terminal means are coupled to the juncture of the capacitor and emitter and to the base of the transistor. At the end of the integration period, the residual voltage on said capacitor is less by an amount proportional to the integral of the input signal. Either continuous or intermittent periods of integration are provided. (AEC)

  9. Circuit breaker cases

    NASA Technical Reports Server (NTRS)

    Holmes, R. L.

    1971-01-01

    A flammable plastic part was duplicated dimensionally using a nonflammable material in place of the flammable plastic. The material used was L-3203-6 with a 16-hour post-cure at 400 F. Initial efforts were made to determine shrinkage tolerances required to produce a mold which would produce a finished, workable part. The final twenty-five circuit breaker cases were shipped and the metal inserts when installed, produced a workable breaker. Initial submissions of cases were rejected as lacking sufficient rigidity though they met all other requirements. The plastic cases weighed 16.5 grams, whereas the Refset cases weighed 17 grams, not meeting the less-weight requirement. The data on shrinkage determinations, and mold and part dimensions are shown. The method of manufacture is also reported.

  10. Digital circuits using universal logic gates

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor); Cameron, Eric G. (Inventor); Donohoe, Gregory W. (Inventor); Gambles, Jody W. (Inventor)

    2004-01-01

    According to the invention, a digital circuit design embodied in at least one of a structural netlist, a behavioral netlist, a hardware description language netlist, a full-custom ASIC, a semi-custom ASIC, an IP core, an integrated circuit, a hybrid of chips, one or more masks, a FPGA, and a circuit card assembly is disclosed. The digital circuit design includes first and second sub-circuits. The first sub-circuits comprise a first percentage of the digital circuit design and the second sub-circuits comprise a second percentage of the digital circuit design. Each of the second sub-circuits is substantially comprised of one or more kernel circuits. The kernel circuits are comprised of selection circuits. The second percentage is at least 5%. In various embodiments, the second percentage could be at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%.

  11. Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric

    2016-07-01

    The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  12. Near coincidence site lattice misorientations in monoclinic zirconia

    SciTech Connect

    Gertsman, V.Y. |; Zhilyaev, A.P. |; Szpunar, J.

    1996-12-01

    Zirconium dioxide, ZrO{sub 2}, exists in three crystalline phases: monoclinic, tetragonal, and cubic. Calculations of the coincidence site lattice (CSL) misorientations for the last two lattices and for hexagonal ones using the methods developed represent little difficulty. However, no procedure for the determination of the CSL misorientations in the monoclinic system has been reported so far. Monoclinic zirconia has the crystallographic space group P2{sub 1}/c and the following parameters of the unit cell (e.g., 5, 6): a = 5.1490 {angstrom}, b = 5.2133 {angstrom}, c = 5.3161 {angstrom}, and {beta} = 99.228{degree}. Before discussing possible CSL misorientations in zirconia, consider a simple example based on geometric considerations. In any monoclinic crystal (with any lattice parameters) the two symmetrical boundaries along the (001) and (100) planes must have highly ordered atomic structure. The misorientation of the first boundary is descried as a rotation of either 180{degree} around the [100] direction or 180{degree} around the normal to the (001) plane. The misorientation of the second boundary is 180{degree} [001] or 180{degree} around the normal to the (100) plane. It can be shown that three-dimensional CSLs will exist in both cases if (c/a)cos{beta} is a rational number. This example justifies the following approximation of the unit cell in the monoclinic zirconia: a = b = c and cos{beta} = {minus}1/6 (i.e., {beta} = 99.594{degree}). Consider the following prismatic cell in the monoclinic crystal structure: ([1 0 1], [{bar 1} 0 1], [0 1 0]). With the above approximation, this cell is orthogonal with the ratios of the squares of the edge lengths expressed as 5:7:3. Therefore, one can apply the algorithm for calculations of the CSL misorientations in orthorhombic lattices with rational ratios of squares of the lattice periods, which is based on the general vector-quaternion method of misorientation representation.

  13. Measurement of the coincidence response of very thin BGO crystals

    SciTech Connect

    Murthy, K.; Thompson, C.J. . Montreal Neurological Inst.); Weinberg, I.N. Johns Hopkins Univ., Baltimore, MD . Dept. of Radiology); Mako, F.M. )

    1994-08-01

    More then half the 511 keV photons in BGO crystals undergo Compton scattering at least once prior to photo-electric interaction within the detector. In a PET scanner, this can result in mis-positioning of annihilation events. As crystal dimensions are made smaller, the fraction of mispositioned events increases. The authors have studied the coincidence aperture function (CAF) of 25 mm [times] 10 mm BGO crystals with thicknesses varying from 1 mm to 3 mm in steps of 0.5 mm. By sandwiching the active crystal between two other BGO crystals not in contact with the photomultiplier, the authors have studied the effect of Compton scatter upon CAF. By allowing the annihilation photons to be incident along the 25 mm axis and the 10 mm axis, the authors have studied the effect of detector depth upon the CAF, with and without Compton Scatter. The CAF increases linearly with crystal width, ranging from 1.3 mm for the 1 mm wide crystal to 2.15 for 3 mm crystal. The lines joining the FWHM of the CAFs as a function of crystal width appear to converge indicating that no further improvement in resolution can be achieved by reducing crystal width. The CAFs for 10 mm and 25 mm long crystals without Compton scatter is essentially the same. The presence of neighboring crystals results in an increase in the CAF which is greater for long crystals compared with short ones of the same width. Using 1 mm wide and 10 mm long crystals sandwiched between two uncoupled BGO crystals, the authors have achieved spatial resolution of 1.64 mm FWHM for a PMT separation of 34 cm. Recent experiments with PMT separation of 11.5 cm have yielded 1.23 mm FWHM CAF in the same setup.

  14. The optimum choice of gate width for neutron coincidence counting

    NASA Astrophysics Data System (ADS)

    Croft, S.; Henzlova, D.; Favalli, A.; Hauck, D. K.; Santi, P. A.

    2014-11-01

    In the measurement field of international nuclear safeguards, passive neutron coincidence counting is used to quantify the spontaneous fission rate of certain special nuclear materials. The shift register autocorrelation analysis method is the most commonly used approach. However, the Feynman-Y technique, which is more commonly applied in reactor noise analysis, provides an alternative means to extract the correlation information from a pulse train. In this work we consider how to select the optimum gate width for each of these two time-correlation analysis techniques. The optimum is considered to be that which gives the lowest fractional precision on the net doublets rate. Our theoretical approach is approximate but is instructional in terms of revealing the key functional dependence. We show that in both cases the same performance figure of merit applies so that common design criteria apply to the neutron detector head. Our prediction is that near optimal results, suitable for most practical applications, can be obtained from both techniques using a common gate width setting. The estimated precision is also comparable in the two cases. The theoretical expressions are tested experimentally using 252Cf spontaneous fission sources measured in two thermal well counters representative of the type in common use by international inspectorates. Fast accidental sampling was the favored method of acquiring the Feynman-Y data. Our experimental study confirmed the basic functional dependences predicted although experimental results when available are preferred. With an appropriate gate setting Feynman-Y analysis provides an alternative to shift register analysis for safeguards applications which is opening up new avenues of data collection and data reduction to explore.

  15. Pharmacokinetics and "RC" Circuit Concepts

    ERIC Educational Resources Information Center

    De Cock, Mieke; Janssen, Paul

    2013-01-01

    Most introductory physics courses include a chapter on "RC" circuits in which the differential equations for the charging and discharging of a capacitor are derived. A number of papers in this journal describe lab experiments dealing with the measurement of different parameters in such "RC" circuits. In this contribution, we…

  16. Dive In to Aquatic Circuits.

    ERIC Educational Resources Information Center

    Goldfarb, Joseph M.

    1995-01-01

    The article presents a method for swimming teachers and coaches to stave off workout boredom in their students by using a circuit in the pool. After explaining how to set up a training circuit, the article describes sample stations and notes important safety precautions. (SM)

  17. Cell short circuit, preshort signature

    NASA Technical Reports Server (NTRS)

    Lurie, C.

    1980-01-01

    Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.

  18. Sequential Polarity-Reversing Circuit

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  19. Demonstrations with an "LCR" Circuit

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2011-01-01

    The "LCR" circuit is an important topic in the course of electricity and magnetism. Papers in this field consider mainly the forced oscillations and resonance. Our aim is to show how to demonstrate the free and self-excited oscillations in an "LCR" circuit. (Contains 4 figures.)

  20. Pharmacokinetics and "RC" Circuit Concepts

    ERIC Educational Resources Information Center

    De Cock, Mieke; Janssen, Paul

    2013-01-01

    Most introductory physics courses include a chapter on "RC" circuits in which the differential equations for the charging and discharging of a capacitor are derived. A number of papers in this journal describe lab experiments dealing with the measurement of different parameters in such "RC" circuits. In this contribution, we…

  1. Sequential Polarity-Reversing Circuit

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  2. Trigger Circuit for Marx Generators

    DTIC Science & Technology

    2001-02-08

    A trigger circuit is provided for a trigger system for a Marx generator column. The column includes a plurality of metal electrode pairs wherein the...electrode (trigatron) spark gap switch forming the first spark gap of the Marx generator column. The triggering circuit includes a trigger

  3. Demonstrations with an "LCR" Circuit

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2011-01-01

    The "LCR" circuit is an important topic in the course of electricity and magnetism. Papers in this field consider mainly the forced oscillations and resonance. Our aim is to show how to demonstrate the free and self-excited oscillations in an "LCR" circuit. (Contains 4 figures.)

  4. Silicon Carbide Integrated Circuit Chip

    NASA Image and Video Library

    2015-02-17

    A multilevel interconnect silicon carbide integrated circuit chip with co-fired ceramic package and circuit board recently developed at the NASA GRC Smart Sensors and Electronics Systems Branch for high temperature applications. High temperature silicon carbide electronics and compatible packaging technologies are elements of instrumentation for aerospace engine control and long term inner-solar planet explorations.

  5. Time domain analog circuit simulation

    NASA Astrophysics Data System (ADS)

    Fijnvandraat, J. G.; Houben, S. H. M. J.; Ter Maten, E. J. W.; Peters, J. M. F.

    2006-01-01

    Recent developments of new methods for simulating electric circuits are described. Emphasis is put on methods that fit existing datastructures for backward differentiation formulae methods. These methods can be modified to apply to hierarchically organized datastructures, which allows for efficient simulation of large designs of circuits in the electronics industry.

  6. An Electronics Course Emphasizing Circuit Design

    ERIC Educational Resources Information Center

    Bergeson, Haven E.

    1975-01-01

    Describes a one-quarter introductory electronics course in which the students use a variety of inexpensive integrated circuits to design and construct a large number of useful circuits. Presents the subject matter of the course in three parts: linear circuits, digital circuits, and more complex circuits. (GS)

  7. 49 CFR 236.728 - Circuit, trap.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Circuit, trap. 236.728 Section 236.728... Circuit, trap. A term applied to a circuit used where it is desirable to provide a track circuit but where it is impracticable to maintain a track circuit. ...

  8. 49 CFR 236.728 - Circuit, trap.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Circuit, trap. 236.728 Section 236.728... Circuit, trap. A term applied to a circuit used where it is desirable to provide a track circuit but where it is impracticable to maintain a track circuit. ...

  9. 49 CFR 236.728 - Circuit, trap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Circuit, trap. 236.728 Section 236.728... Circuit, trap. A term applied to a circuit used where it is desirable to provide a track circuit but where it is impracticable to maintain a track circuit. ...

  10. 49 CFR 236.728 - Circuit, trap.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit, trap. 236.728 Section 236.728... Circuit, trap. A term applied to a circuit used where it is desirable to provide a track circuit but where it is impracticable to maintain a track circuit. ...

  11. 49 CFR 236.728 - Circuit, trap.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, trap. 236.728 Section 236.728... Circuit, trap. A term applied to a circuit used where it is desirable to provide a track circuit but where it is impracticable to maintain a track circuit. ...

  12. An Electronics Course Emphasizing Circuit Design

    ERIC Educational Resources Information Center

    Bergeson, Haven E.

    1975-01-01

    Describes a one-quarter introductory electronics course in which the students use a variety of inexpensive integrated circuits to design and construct a large number of useful circuits. Presents the subject matter of the course in three parts: linear circuits, digital circuits, and more complex circuits. (GS)

  13. Solid state remote circuit selector switch

    NASA Technical Reports Server (NTRS)

    Peterson, V. S.

    1970-01-01

    Remote switching circuit utilizes voltage logic to switch on desired circuit. Circuit controls rotating multi-range pressure transducers in jet engine testing and can be used in coded remote circuit activator where sequence of switching has to occur in defined length of time to prevent false or undesired circuit activation.

  14. Digital coincidence counting (DCC) and its use in the corrections for out-of-channel gamma events in 4pi beta-gamma coincidence counting.

    PubMed

    Keightle, J D; Watt, G C

    2002-01-01

    The digital coincidence counting system developed by NPL and ANSTO is briefly described along with its benefits in the data collection and processing for the 4pi beta-gamma coincidence counting technique of radionuclide standardization. One of these benefits is the automatic detection of and correction for out-of-channel coincidences in the Computer Discrimination method. Where the criteria for the use of the Cox-Isham/Smith correction formulae for dead times and resolving times are not met, a generalized approximation based on the work of Campion is suggested.

  15. Demultiplexer circuit for neural stimulation

    DOEpatents

    Wessendorf, Kurt O; Okandan, Murat; Pearson, Sean

    2012-10-09

    A demultiplexer circuit is disclosed which can be used with a conventional neural stimulator to extend the number of electrodes which can be activated. The demultiplexer circuit, which is formed on a semiconductor substrate containing a power supply that provides all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. This addressing information is used to program one or more 1:2.sup.N demultiplexers in the demultiplexer circuit which then route neural stimulation signals from the neural stimulator to an electrode array which is connected to the outputs of the 1:2.sup.N demultiplexer. The demultiplexer circuit allows the number of individual electrodes in the electrode array to be increased by a factor of 2.sup.N with N generally being in a range of 2-4.

  16. Genetic Dissection of Neural Circuits

    PubMed Central

    Luo, Liqun; Callaway, Edward M.; Svoboda, Karel

    2009-01-01

    Understanding the principles of information processing in neural circuits requires systematic characterization of the participating cell types and their connections, and the ability to measure and perturb their activity. Genetic approaches promise to bring experimental access to complex neural systems, including genetic stalwarts such as the fly and mouse, but also to nongenetic systems such as primates. Together with anatomical and physiological methods, cell-type-specific expression of protein markers and sensors and transducers will be critical to construct circuit diagrams and to measure the activity of genetically defined neurons. Inactivation and activation of genetically defined cell types will establish causal relationships between activity in specific groups of neurons, circuit function, and animal behavior. Genetic analysis thus promises to reveal the logic of the neural circuits in complex brains that guide behaviors. Here we review progress in the genetic analysis of neural circuits and discuss directions for future research and development. PMID:18341986

  17. Photodiode circuits for retinal prostheses.

    PubMed

    Loudin, J D; Cogan, S F; Mathieson, K; Sher, A; Palanker, D V

    2011-10-01

    Photodiode circuits show promise for the development of high-resolution retinal prostheses. While several of these systems have been constructed and some even implanted in humans, existing descriptions of the complex optoelectronic interaction between light, photodiode, and the electrode/electrolyte load are limited. This study examines this interaction in depth with theoretical calculations and experimental measurements. Actively biased photoconductive and passive photovoltaic circuits are investigated, with the photovoltaic circuits consisting of one or more diodes connected in series, and the photoconductive circuits consisting of a single diode in series with a pulsed bias voltage. Circuit behavior and charge injection levels were markedly different for platinum and sputtered iridium-oxide film (SIROF) electrodes. Photovoltaic circuits were able to deliver 0.038 mC/cm(2) (0.75 nC/phase) per photodiode with 50- μm platinum electrodes, and 0.54-mC/cm(2) (11 nC/phase) per photodiode with 50-μ m SIROF electrodes driven with 0.5-ms pulses of light at 25 Hz. The same pulses applied to photoconductive circuits with the same electrodes were able to deliver charge injections as high as 0.38 and 7.6 mC/cm(2) (7.5 and 150 nC/phase), respectively. We demonstrate photovoltaic stimulation of rabbit retina in-vitro, with 0.5-ms pulses of 905-nm light using peak irradiance of 1 mW/mm(2). Based on the experimental data, we derive electrochemical and optical safety limits for pixel density and charge injection in various circuits. While photoconductive circuits offer smaller pixels, photovoltaic systems do not require an external bias voltage. Both classes of circuits show promise for the development of high-resolution optoelectronic retinal prostheses.

  18. Gate drive latching circuit for an auxiliary resonant commutation circuit

    NASA Technical Reports Server (NTRS)

    Delgado, Eladio Clemente (Inventor); Kheraluwala, Mustansir Hussainy (Inventor)

    1999-01-01

    A gate drive latching circuit for an auxiliary resonant commutation circuit for a power switching inverter includes a current monitor circuit providing a current signal to a pair of analog comparators to implement latching of one of a pair of auxiliary switching devices which are used to provide commutation current for commutating switching inverters in the circuit. Each of the pair of comparators feeds a latching circuit which responds to an active one of the comparators for latching the associated gate drive circuit for one of the pair of auxiliary commutating switches. An initial firing signal is applied to each of the commutating switches to gate each into conduction and the resulting current is monitored to determine current direction and therefore the one of the switches which is carrying current. The comparator provides a latching signal to the one of the auxiliary power switches which is actually conducting current and latches that particular power switch into an on state for the duration of current through the device. The latching circuit is so designed that the only time one of the auxiliary switching devices can be latched on is during the duration of an initial firing command signal.

  19. Elemental PGNAA analysis using gamma-gamma coincidence counting with the library least-squares approach

    NASA Astrophysics Data System (ADS)

    Metwally, Walid A.; Gardner, Robin P.; Mayo, Charles W.

    2004-01-01

    An accurate method for determining elemental analysis using gamma-gamma coincidence counting is presented. To demonstrate the feasibility of this method for PGNAA, a system of three radioisotopes (Na-24, Co-60 and Cs-134) that emit coincident gamma rays was used. Two HPGe detectors were connected to a system that allowed both singles and coincidences to be collected simultaneously. A known mixture of the three radioisotopes was used and data was deliberately collected at relatively high counting rates to determine the effect of pulse pile-up distortion. The results obtained, with the library least-squares analysis, of both the normal and coincidence counting are presented and compared to the known amounts. The coincidence results are shown to give much better accuracy. It appears that in addition to the expected advantage of reduced background, the coincidence approach is considerably more resistant to pulse pile-up distortion.

  20. Characterization of Alpha Contamination in Lanthanum Trichloride Scintillators Using Coincidence Measurements

    SciTech Connect

    Milbrath, Brian D.; Runkle, Robert C.; Hossbach, Todd W.; Kaye, William R.; Lepel, Elwood A.; McDonald, Benjamin S.; Smith, Leon E.

    2005-08-01

    The commercial availability of LaCl3:Ce scintillators has been much anticipated due to their significantly lower resolution relative to NaI(Tl). Our investigation of these scintillators in regards to the effect of their improved resolution for coincidence gamma-ray measurement applications revealed that the scintillators had a large, internal alpha contamination affecting the gamma-ray energy range from 1700-3000 keV. One passive method of identifying contaminants relies on exploiting coincident signatures. Aided by a coincidence lookup library developed at PNNL, we determined that the parent contaminant is Ac-227 via an alpha-gamma coincidence measurement. In this paper, we characterize the level of contamination and describe our coincidence measurement technique. The Ac-227 concentration was approximately 0.13 ppt. We demonstrate that this coincidence technique measures minimum detectable activities much lower than singles gamma-ray spectroscopy. We also discuss gamma- and beta-contamination in these scintillators.

  1. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  2. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting capacity...

  3. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting capacity...

  4. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting capacity...

  5. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting capacity...

  6. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    SciTech Connect

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of /sup 235/U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the /sup 235/U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described.

  7. Piezo-optomechanical circuits

    NASA Astrophysics Data System (ADS)

    Coimbatore Balram, Krishna; Davanco, Marcelo; Ilic, B. Robert; Srinivasan, Kartik

    Coherent links between the optical, radio frequency (RF), and mechanical domains are critical for applications ranging from quantum state transfer between the RF and optical domains to signal processing in the acoustic domain for microwave photonics. We develop such a piezo optomechanical circuit platform in GaAs, in which localized and interacting 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. GaAs allows us to exploit the photoelastic effect to engineer cavities with strong optomechanical coupling (g0/2 π ~ 1.1 MHz) and the piezoelectric effect to couple RF fields to mechanical motion through surface acoustic waves, which are routed on-chip using phononic crystal waveguides. This platform enables optical readout of electrically-injected mechanical states with an average coherent intracavity phonon number as small as ~0.05 and the ability to drive mechanical motion with equal facility through either the optical or electrical channel. This is used to demonstrate a novel acoustic wave interference effect in which optically-driven motion is completely cancelled by electrically-driven motion, and vice versa. As an application of this, we present time-domain measurements of optically-controlled acoustic pulse propagation. Secondary Affiliation is Maryland Nanocenter, University of Maryland, College Park, MD.

  8. Nanofluidic Transistor Circuits

    NASA Astrophysics Data System (ADS)

    Chang, Hsueh-Chia; Cheng, Li-Jing; Yan, Yu; Slouka, Zdenek; Senapati, Satyajyoti

    2012-02-01

    Non-equilibrium ion/fluid transport physics across on-chip membranes/nanopores is used to construct rectifying, hysteretic, oscillatory, excitatory and inhibitory nanofluidic elements. Analogs to linear resistors, capacitors, inductors and constant-phase elements were reported earlier (Chang and Yossifon, BMF 2009). Nonlinear rectifier is designed by introducing intra-membrane conductivity gradient and by asymmetric external depletion with a reverse rectification (Yossifon and Chang, PRL, PRE, Europhys Lett 2009-2011). Gating phenomenon is introduced by functionalizing polyelectrolytes whose conformation is field/pH sensitive (Wang, Chang and Zhu, Macromolecules 2010). Surface ion depletion can drive Rubinstein's microvortex instability (Chang, Yossifon and Demekhin, Annual Rev of Fluid Mech, 2012) or Onsager-Wien's water dissociation phenomenon, leading to two distinct overlimiting I-V features. Bipolar membranes exhibit an S-hysteresis due to water dissociation (Cheng and Chang, BMF 2011). Coupling the hysteretic diode with some linear elements result in autonomous ion current oscillations, which undergo classical transitions to chaos. Our integrated nanofluidic circuits are used for molecular sensing, protein separation/concentration, electrospray etc.

  9. PHOTOSENSITIVE RELAY CONTROL CIRCUIT

    DOEpatents

    Martin, C.F.

    1958-01-14

    adapted for the measurement of the time required for an oscillating member to pass through a preselected number of oscillations, after being damped to a certain maximum amplitude of oscillation. A mirror is attached to the moving member and directs light successively to a photocell which is part of a trigger unit and to first and second photocells which are part of a starter unit, as the member swings to its maximum amplitude. The starter and trigger units comprise thyratrons and relays so interconnected that the trigger circuit, although generating a counter pulse, does not register a count in the counter when the light traverses both photocells of the starter unit. When the amplitude of oscillation of the member decreases to where the second photocell is not transversed, the triggei pulse is received by the counter. The counter taen operates to register the desired number of oscillations and initiates and terminates a timer for measuring the time irterval for the preselected number of oscillations.

  10. Global optimization of digital circuits

    NASA Astrophysics Data System (ADS)

    Flandera, Richard

    1991-12-01

    This thesis was divided into two tasks. The first task involved developing a parser which could translate a behavioral specification in Very High-Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) into the format used by an existing digital circuit optimization tool, Boolean Reasoning In Scheme (BORIS). Since this tool is written in Scheme, a dialect of Lisp, the parser was also written in Scheme. The parser was implemented is Artez's modification of Earley's Algorithm. Additionally, a VHDL tokenizer was implemented in Scheme and a portion of the VHDL grammar was converted into the format which the parser uses. The second task was the incorporation of intermediate functions into BORIS. The existing BORIS contains a recursive optimization system that optimizes digital circuits by using circuit outputs as inputs into other circuits. Intermediate functions provide a greater selection of functions to be used as circuits inputs. Using both intermediate functions and output functions, the costs of the circuits in the test set were reduced by 43 percent. This is a 10 percent reduction when compared to the existing recursive optimization system. Incorporating intermediate functions into BORIS required the development of an intermediate-function generator and a set of control methods to keep the computation time from increasing exponentially.

  11. Variational integrators for electric circuits

    NASA Astrophysics Data System (ADS)

    Ober-Blöbaum, Sina; Tao, Molei; Cheng, Mulin; Owhadi, Houman; Marsden, Jerrold E.

    2013-06-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator.

  12. Variational integrators for electric circuits

    SciTech Connect

    Ober-Blöbaum, Sina; Tao, Molei; Cheng, Mulin; Owhadi, Houman; Marsden, Jerrold E.

    2013-06-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator.

  13. Integrated circuits, and design and manufacture thereof

    DOEpatents

    Auracher, Stefan; Pribbernow, Claus; Hils, Andreas

    2006-04-18

    A representation of a macro for an integrated circuit layout. The representation may define sub-circuit cells of a module. The module may have a predefined functionality. The sub-circuit cells may include at least one reusable circuit cell. The reusable circuit cell may be configured such that when the predefined functionality of the module is not used, the reusable circuit cell is available for re-use.

  14. Automated QA/QC Check for Beta-Gamma Coincidence Detector

    DTIC Science & Technology

    2007-09-01

    a Β/Γ Coincidence Spectrometer for Automated Radioxenon Analysis. Nuclear Instruments and Methods in Physics Research . Section A , Accelerators , Spectrometers , Detectors and Associated Equipment 521

  15. Coincidence-anticipation timing and reaction time in youth tennis and table tennis players.

    PubMed

    Ak, Emre; Koçak, Settar

    2010-06-01

    The purpose of this study was to compare the coincidence-anticipation timing and reaction times (RT) of 10- to 14-year-old tennis and table tennis players and examine possible sex differences. 107 (51.4%) tennis and 101 (48.6%) table tennis players participated in this study. Players were compared on coincidence-anticipation timing and reaction time. Tennis players performed with less error in the coincidence-anticipation timing task than table tennis players, whereas table tennis players had lower mean reaction time than tennis players. It was also found that male players made fewer errors in the coincidence-anticipation timing task than their female counterparts.

  16. Monte Carlo investigation and optimization of coincidence prompt gamma-ray neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jiaxin; Calderon, Adan; Peeples, Cody R.; Ai, Xianyun; Gardner, Robin P.

    2011-10-01

    Normal Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) suffers from a large inherent noise or background. The coincidence PGNAA approach is being investigated for eliminating almost all of the interfering backgrounds and thereby significantly improving the signal-to-noise ratio (SNR). This can be done since almost all of the prompt gamma rays from elements of interest are emitted in coincidence except hydrogen. However, it has been found previously that while the use of two normal NaI detectors greatly reduces the background, the signal is also greatly reduced so that very little improvement in standard deviation is obtained. With the help of MCNP5, the general-purpose Monte Carlo N-Particle code, and CEARCPG, the specific purpose Monte Carlo code for Coincidence PGNAA, further optimization of the proposed coincidence system is being accomplished. The idea pursued here is the use of a large area plastic scintillation detector as the trigger for coincidence events together with a normal large NaI detector. In this approach the detection solid angle is increased greatly, which directly increases the probability of coincidence detection. The 2D-coincidence spectrum obtained can then be projected to the axis representing the NaI detector to overcome the drawback of low energy resolution and photopeak intensity of the plastic scintillation detector and utilize the overall higher coincidence counting rate. To reach the best coincidence detection, the placement of detectors, sample, and the moderator of the neutron source have been optimized through Monte Carlo simulation.

  17. Framed 4-graphs: Euler tours, Gauss circuits and rotating circuits

    SciTech Connect

    Il'yutko, Denis P

    2011-09-30

    We consider connected finite 4-valent graphs with the structure of opposite edges at each vertex (framed 4-graphs). For any of such graphs there exist Euler tours, in travelling along which at each vertex we turn from an edge to a nonopposite one (rotating circuits); and at the same time, it is not true that for any such graph there exists an Euler tour passing from an edge to the opposite one at each vertex (a Gauss circuit). The main result of the work is an explicit formula connecting the adjacency matrices of the Gauss circuit and an arbitrary Euler tour. This formula immediately gives us a criterion for the existence of a Gauss circuit on a given framed 4-graph. It turns out that the results are also valid for all symmetric matrices (not just for matrices realisable by a chord diagram). Bibliography: 24 titles.

  18. Overpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  19. Counterpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  20. Analog circuits for relaxation networks.

    PubMed

    Card, H

    1993-12-01

    Selected examples are presented of recent advances, primarily from the U.S. and Canada, in analog circuits for relaxation networks. Relaxation networks having feedback connections exhibit potentially greater computational power per neuron than feedforward networks. They are also more poorly understood especially with respect to learning algorithms. Examples are described of analog circuits for (i) supervised learning in deterministic Boltzmann machines, (ii) unsupervised competitive learning and feature maps and (iii) networks with resistive grids for vision and audition tasks. We also discuss recent progress on in-circuit learning and synaptic weight storage mechanisms.

  1. Principles of Genetic Circuit Design

    PubMed Central

    Brophy, Jennifer A.N.; Voigt, Christopher A.

    2014-01-01

    Cells are able to navigate environments, communicate, and build complex patterns by initiating gene expression in response to specific signals. Engineers need to harness this capability to program cells to perform tasks or build chemicals and materials that match the complexity seen in nature. This review describes new tools that aid the construction of genetic circuits. We show how circuit dynamics can be influenced by the choice of regulators and changed with expression “tuning knobs.” We collate the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts. Finally, we discuss the constraints that arise from operating within a living cell. Collectively, better tools, well-characterized parts, and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials. PMID:24781324

  2. Focal plane infrared readout circuit

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2002-01-01

    An infrared imager, such as a spectrometer, includes multiple infrared photodetectors and readout circuits for reading out signals from the photodetectors. Each readout circuit includes a buffered direct injection input circuit including a differential amplifier with active feedback provided through an injection transistor. The differential amplifier includes a pair of input transistors, a pair of cascode transistors and a current mirror load. Photocurrent from a photodetector can be injected onto an integration capacitor in the readout circuit with high injection efficiency at high speed. A high speed, low noise, wide dynamic range linear infrared multiplexer array for reading out infrared detectors with large capacitances can be achieved even when short exposure times are used. The effect of image lag can be reduced.

  3. Midbrain circuits for defensive behaviour.

    PubMed

    Tovote, Philip; Esposito, Maria Soledad; Botta, Paolo; Chaudun, Fabrice; Fadok, Jonathan P; Markovic, Milica; Wolff, Steffen B E; Ramakrishnan, Charu; Fenno, Lief; Deisseroth, Karl; Herry, Cyril; Arber, Silvia; Lüthi, Andreas

    2016-06-09

    Survival in threatening situations depends on the selection and rapid execution of an appropriate active or passive defensive response, yet the underlying brain circuitry is not understood. Here we use circuit-based optogenetic, in vivo and in vitro electrophysiological, and neuroanatomical tracing methods to define midbrain periaqueductal grey circuits for specific defensive behaviours. We identify an inhibitory pathway from the central nucleus of the amygdala to the ventrolateral periaqueductal grey that produces freezing by disinhibition of ventrolateral periaqueductal grey excitatory outputs to pre-motor targets in the magnocellular nucleus of the medulla. In addition, we provide evidence for anatomical and functional interaction of this freezing pathway with long-range and local circuits mediating flight. Our data define the neuronal circuitry underlying the execution of freezing, an evolutionarily conserved defensive behaviour, which is expressed by many species including fish, rodents and primates. In humans, dysregulation of this 'survival circuit' has been implicated in anxiety-related disorders.

  4. Chaos Control for Chua's Circuits

    NASA Astrophysics Data System (ADS)

    Tôrres, L. A. B.; Aguirre, L. A.; Palhares, R. M.; Mendes, E. M. A. M.

    The practical implementation of Chua's circuit control methods is discussed in this chapter. In order to better address this subject, an inductorless Chua's circuit realization is first presented, followed by practical issues related to data analysis, mathematical modelling, and dynamical characterization associated to this electronic chaotic oscillator. As a consequence of the investigation of different control strategies applied to Chua's circuit, a tradeoff among control objective, control energy, and model complexity is devised, which quite naturally leads to a principle that seems to be of general nature: the Information Transmission Via Control (ITVC) for nonlinear oscillators. The main purpose of the present chapter is to serve as an introductory guide to the universe of Chua's circuit control, synchronization, and mathematical modelling.

  5. Student Conceptions of Simple Circuits.

    ERIC Educational Resources Information Center

    Fredette, Norman; Lochhead, John

    1980-01-01

    Investigates some conceptual difficulties which college students have with regard to simple direct current circuits. The clinical interview technique was used with 57 students in a freshman level engineering course. (HM)

  6. Accelerated hybrid-circuit production

    NASA Technical Reports Server (NTRS)

    Berg, J. E.; Dassele, M. A.

    1979-01-01

    Modified die-bonding machine speeds up hybrid-circuit production. Utilizing two pedestals, one for die tray and another for substrate tray, increased production and decreased error-margin are possible.

  7. Separating OR, SUM, and XOR Circuits.

    PubMed

    Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H

    2016-08-01

    Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O(n), but require SUM-circuits of size Ω(n(3/2)/log(2)n).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis.

  8. Towards a Mathematical Theory of Cortical Micro-circuits

    PubMed Central

    George, Dileep; Hawkins, Jeff

    2009-01-01

    The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical computation. In this paper, we describe how Bayesian belief propagation in a spatio-temporal hierarchical model, called Hierarchical Temporal Memory (HTM), can lead to a mathematical model for cortical circuits. An HTM node is abstracted using a coincidence detector and a mixture of Markov chains. Bayesian belief propagation equations for such an HTM node define a set of functional constraints for a neuronal implementation. Anatomical data provide a contrasting set of organizational constraints. The combination of these two constraints suggests a theoretically derived interpretation for many anatomical and physiological features and predicts several others. We describe the pattern recognition capabilities of HTM networks and demonstrate the application of the derived circuits for modeling the subjective contour effect. We also discuss how the theory and the circuit can be extended to explain cortical features that are not explained by the current model and describe testable predictions that can be derived from the model. PMID:19816557

  9. Reverse engineering of integrated circuits

    DOEpatents

    Chisholm, Gregory H.; Eckmann, Steven T.; Lain, Christopher M.; Veroff, Robert L.

    2003-01-01

    Software and a method therein to analyze circuits. The software comprises several tools, each of which perform particular functions in the Reverse Engineering process. The analyst, through a standard interface, directs each tool to the portion of the task to which it is most well suited, rendering previously intractable problems solvable. The tools are generally used iteratively to produce a successively more abstract picture of a circuit, about which incomplete a priori knowledge exists.

  10. Equivalent circuit for birdcage resonators.

    PubMed

    Harpen, M D

    1993-02-01

    We present an equivalent circuit analysis for both low pass and high pass birdcage resonators loaded with lossy samples. In a generalization of the method of Hoult and Lauterbur (J. Magn. Reson. 34, 425 (1979)), we also derive circuit component values by application of the laws of electrodynamics. Measured resonance spectra, quality factors, and feed point impedances in a test resonator are shown to be in agreement with those predicted by the proposed model.

  11. It takes two—coincidence coding within the dual olfactory pathway of the honeybee

    PubMed Central

    Brill, Martin F.; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code). PMID:26283968

  12. Manganese-56 coincidence-counting facility precisely measures neutron-source strength

    NASA Technical Reports Server (NTRS)

    De Volpi, A.; Larsen, R. N.; Porges, K. G. A.

    1969-01-01

    Precise measurement of neutron-source strength is provided by a manganese 56 coincidence-counting facility using the manganese-bath technique. This facility combines nuclear instrumentation with coincidence-counting techniques to handle a wide variety of radioisotope-counting requirements.

  13. The search for coincidences of rare events using LVD and BUST detectors

    NASA Astrophysics Data System (ADS)

    Agafonova, N. Yu.; Ashikhmin, V. V.; Boliev, M. M.; Volchenko, V. V.; Dadykin, V. L.; Dzaparova, I. M.; Dobrynina, E. A.; Enikeev, R. I.; Kochkarov, M. M.; Novoseltsev, Yu. F.; Novoseltseva, R. V.; Mal'gin, A. S.; Petkov, V. B.; Ryazhskaya, O. G.; Shakiryanova, I. R.; Yakushev, V. F.; Yanin, A. F.; LVD Collaboration

    2016-06-01

    The results of the time coincidences of rare events in the LVD and BUST detectors are presented. The rare events could be caused by neutrino interaction in the experimental setup. The distributions of the coincidence number per day for 4-year period are obtained.

  14. Secondary ion coincidence in highly charged ion based secondary ion mass spectroscopy for process characterization

    SciTech Connect

    Hamza, A.V.; Schenkel, T.; Barnes, A.V.; Schneider, D.H.

    1999-01-01

    Coincidence counting in highly charged ion based secondary ion mass spectroscopy has been applied to the characterization of selective tungsten deposition via disilane reduction of tungsten hexafluoride on a patterned SiO{sub 2}/Si wafer. The high secondary ion yield and the secondary ion emission from a small area produced by highly charged ions make the coincidence technique very powerful.

  15. Receiver Gain Modulation Circuit

    NASA Technical Reports Server (NTRS)

    Jones, Hollis; Racette, Paul; Walker, David; Gu, Dazhen

    2011-01-01

    A receiver gain modulation circuit (RGMC) was developed that modulates the power gain of the output of a radiometer receiver with a test signal. As the radiometer receiver switches between calibration noise references, the test signal is mixed with the calibrated noise and thus produces an ensemble set of measurements from which ensemble statistical analysis can be used to extract statistical information about the test signal. The RGMC is an enabling technology of the ensemble detector. As a key component for achieving ensemble detection and analysis, the RGMC has broad aeronautical and space applications. The RGMC can be used to test and develop new calibration algorithms, for example, to detect gain anomalies, and/or correct for slow drifts that affect climate-quality measurements over an accelerated time scale. A generalized approach to analyzing radiometer system designs yields a mathematical treatment of noise reference measurements in calibration algorithms. By treating the measurements from the different noise references as ensemble samples of the receiver state, i.e. receiver gain, a quantitative description of the non-stationary properties of the underlying receiver fluctuations can be derived. Excellent agreement has been obtained between model calculations and radiometric measurements. The mathematical formulation is equivalent to modulating the gain of a stable receiver with an externally generated signal and is the basis for ensemble detection and analysis (EDA). The concept of generating ensemble data sets using an ensemble detector is similar to the ensemble data sets generated as part of ensemble empirical mode decomposition (EEMD) with exception of a key distinguishing factor. EEMD adds noise to the signal under study whereas EDA mixes the signal with calibrated noise. It is mixing with calibrated noise that permits the measurement of temporal-functional variability of uncertainty in the underlying process. The RGMC permits the evaluation of EDA by

  16. Standardisation of 124SB and 152EU using software coincidence counting system.

    PubMed

    Havelka, Miroslav; Sochorová, Jana

    2010-01-01

    Activities of the radionuclides (124)Sb and (152)Eu were determined by the efficiency extrapolation method applied to 4pi(PC)-gamma coincidence counting. The (124)Sb sources were prepared from a solution with the chemical form of 50 microg g(-1) SbCl(3) in 2 M HCl. To inhibit the volatility of antimony chlorides, the sources were slowly dried in a H(2)S atmosphere with relative humidity of 76% for about 48 h. This procedure increased the beta detection efficiency up to 0.98, which simplified the standardisation. In the (152)Eu standardisation, the optimal gamma-ray energy window setting to achieve a linear dependency and the correct slope of the extrapolation curve were derived by means of software coincidence counting system using offline evaluation of data with different coincidence parameter settings. The results obtained by the software coincidence counting system were compared with those obtained by the conventional coincidence method.

  17. 30 CFR 56.6403 - Branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 56.6403 Section 56.6403... Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate the circuits to be used. (b...

  18. 30 CFR 56.6403 - Branch circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Branch circuits. 56.6403 Section 56.6403... Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate the circuits to be used. (b...

  19. 30 CFR 56.6403 - Branch circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Branch circuits. 56.6403 Section 56.6403... Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate the circuits to be used. (b...

  20. 30 CFR 56.6403 - Branch circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Branch circuits. 56.6403 Section 56.6403... Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate the circuits to be used. (b...

  1. 30 CFR 56.6403 - Branch circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Branch circuits. 56.6403 Section 56.6403... Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate the circuits to be used. (b...

  2. Multi-Layer E-Textile Circuits

    NASA Technical Reports Server (NTRS)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  3. Tunable circuit for tunable capacitor devices

    DOEpatents

    Rivkina, Tatiana; Ginley, David S.

    2006-09-19

    A tunable circuit (10) for a capacitively tunable capacitor device (12) is provided. The tunable circuit (10) comprises a tunable circuit element (14) and a non-tunable dielectric element (16) coupled to the tunable circuit element (16). A tunable capacitor device (12) and a method for increasing the figure of merit in a tunable capacitor device (12) are also provided.

  4. Multi-Layer E-Textile Circuits

    NASA Technical Reports Server (NTRS)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  5. Difference-Equation/Flow-Graph Circuit Analysis

    NASA Technical Reports Server (NTRS)

    Mcvey, I. M.

    1988-01-01

    Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.

  6. Improved self arbitrated VLSI asynchronous circuits

    NASA Technical Reports Server (NTRS)

    Winterrowd, P.

    1991-01-01

    This paper introduces an improved method for designing the class of CMOS VLSI asynchronous sequential circuits introduced in the paper by Sterling R. Whitaker and Gary K. Maki, 'Self Arbitrated VLSI Asynchronous Circuits.' Of main interest here is the simple design by inspection rules that arise from these circuits. This paper presents a variation on these circuits which reduces the number of transistors required.

  7. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection...

  8. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection...

  9. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection...

  10. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection...

  11. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection...

  12. Reconfigurable Optical Directed-Logic Circuits

    DTIC Science & Technology

    2015-11-20

    routing-table lookup. 2. Integrated Photonics for Directed-Logic Circuits As a proof-of-concept demonstration we developed a 2×2-arrayed directed...improved electro-optic directed-logic circuit with increased operational speed by using integrated optical switches based on the carrier depletion effect... circuit . In this project, we will develop a new cellular DL architecture based on large-scale integrated silicon photonic circuits . The circuit is

  13. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct...

  14. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train operation...

  15. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct...

  16. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct...

  17. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct...

  18. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train operation...

  19. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct...

  20. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train operation...

  1. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train operation...

  2. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train operation...

  3. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  4. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High... circuit breaker or fuses of the correct type and capacity. ...

  5. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of circuit breakers. 75.601-1 Section 75.601-1 Mineral Resources MINE SAFETY AND HEALTH... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed the...

  6. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of circuit breakers. 75.601-1 Section 75.601-1 Mineral Resources MINE SAFETY AND HEALTH... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed the...

  7. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High... circuit breaker or fuses of the correct type and capacity. ...

  8. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of circuit breakers. 75.601-1 Section 75.601-1 Mineral Resources MINE SAFETY AND HEALTH... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed the...

  9. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of circuit breakers. 75.601-1 Section 75.601-1 Mineral Resources MINE SAFETY AND HEALTH... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed the...

  10. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High... circuit breaker or fuses of the correct type and capacity. ...

  11. Logic circuits from zero forcing.

    PubMed

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  12. Dynamical compensation in physiological circuits.

    PubMed

    Karin, Omer; Swisa, Avital; Glaser, Benjamin; Dor, Yuval; Alon, Uri

    2016-11-08

    Biological systems can maintain constant steady-state output despite variation in biochemical parameters, a property known as exact adaptation. Exact adaptation is achieved using integral feedback, an engineering strategy that ensures that the output of a system robustly tracks its desired value. However, it is unclear how physiological circuits also keep their output dynamics precise-including the amplitude and response time to a changing input. Such robustness is crucial for endocrine and neuronal homeostatic circuits because they need to provide a precise dynamic response in the face of wide variation in the physiological parameters of their target tissues; how such circuits compensate their dynamics for unavoidable natural fluctuations in parameters is unknown. Here, we present a design principle that provides the desired robustness, which we call dynamical compensation (DC). We present a class of circuits that show DC by means of a nonlinear feedback loop in which the regulated variable controls the functional mass of the controlling endocrine or neuronal tissue. This mechanism applies to the control of blood glucose by insulin and explains several experimental observations on insulin resistance. We provide evidence that this mechanism may also explain compensation and organ size control in other physiological circuits. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Normal development of brain circuits.

    PubMed

    Tau, Gregory Z; Peterson, Bradley S

    2010-01-01

    Spanning functions from the simplest reflex arc to complex cognitive processes, neural circuits have diverse functional roles. In the cerebral cortex, functional domains such as visual processing, attention, memory, and cognitive control rely on the development of distinct yet interconnected sets of anatomically distributed cortical and subcortical regions. The developmental organization of these circuits is a remarkably complex process that is influenced by genetic predispositions, environmental events, and neuroplastic responses to experiential demand that modulates connectivity and communication among neurons, within individual brain regions and circuits, and across neural pathways. Recent advances in neuroimaging and computational neurobiology, together with traditional investigational approaches such as histological studies and cellular and molecular biology, have been invaluable in improving our understanding of these developmental processes in humans in both health and illness. To contextualize the developmental origins of a wide array of neuropsychiatric illnesses, this review describes the development and maturation of neural circuits from the first synapse through critical periods of vulnerability and opportunity to the emergent capacity for cognitive and behavioral regulation, and finally the dynamic interplay across levels of circuit organization and developmental epochs.

  14. Digital first order hold circuit

    NASA Technical Reports Server (NTRS)

    Chan, Fred N. (Inventor); Wensley, Gerald J. (Inventor)

    1989-01-01

    There is provided a digitally controlled first order hold circuit and waveform synthesizer for digitally controlling the representation of a function over an approximation interval. In accordance with the operation of the invention, the first order hold circuit and waveform generator receives a digital data input signal which contains initial condition data, up/down data, and slope data for the approximation interval. The initial condition data is loaded into an up/down counter which is incremented using counting data at a rate depending on the value of the slope data and in a direction depending on the value of the up-down data. In order to minimize delays arising from data acquistion, two frequency synthesizer circuits are provided such that one frequency synthesizer provides counting data while the other frequency synthesizer receives slope data. During alternating intervals, the other frequency synthesizer circuit provides counting data while the other circuit receives slope data. In addition, long length data input signals covering a plurality of approximation intervals are provided to reduce the demands on a main system central processing unit.

  15. The plastic scintillator detector calibration circuit for DAMPE

    NASA Astrophysics Data System (ADS)

    Yang, Haibo; Kong, Jie; Zhao, Hongyun; Su, Hong

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is being constructed as a scientific satellite to observe high energy cosmic rays in space. Plastic scintillator detector array (PSD), developed by Institute of Modern Physics, Chinese Academy of Sciences (IMPCAS), is one of the most important parts in the payload of DAMPE which is mainly used for the study of dark matter. As an anti-coincidence detector, and a charged-particle identification detector, the PSD has a total of 360 electronic readout channels, which are distributed at four sides of PSD using four identical front end electronics (FEE). Each FEE reads out 90 charge signals output by the detector. A special calibration circuit is designed in FEE. FPGA is used for on-line control, enabling the calibration circuit to generate the pulse signal with known charge. The generated signal is then sent to the FEE for calibration and self-test. This circuit mainly consists of DAC, operation amplifier, analog switch, capacitance and resistance. By using controllable step pulse, the charge can be coupled to the charge measuring chip using the small capacitance. In order to fulfill the system's objective of large dynamic range, the FEE is required to have good linearity. Thus, the charge-controllable signal is needed to do sweep test on all channels in order to obtain the non-linear parameters for off-line correction. On the other hand, the FEE will run on the satellite for three years. The changes of the operational environment and the aging of devices will lead to parameter variation of the FEE, highlighting the need for regular calibration. The calibration signal generation circuit also has a compact structure and the ability to work normally, with the PSD system's voltage resolution being higher than 0.6%.

  16. Tight bounds for the Pearle-Braunstein-Caves chained inequality without the fair-coincidence assumption

    NASA Astrophysics Data System (ADS)

    Jogenfors, Jonathan; Larsson, Jan-Åke

    2017-08-01

    In any Bell test, loopholes can cause issues in the interpretation of the results, since an apparent violation of the inequality may not correspond to a violation of local realism. An important example is the coincidence-time loophole that arises when detector settings might influence the time when detection will occur. This effect can be observed in many experiments where measurement outcomes are to be compared between remote stations because the interpretation of an ostensible Bell violation strongly depends on the method used to decide coincidence. The coincidence-time loophole has previously been studied for the Clauser-Horne-Shimony-Holt and Clauser-Horne inequalities, but recent experiments have shown the need for a generalization. Here, we study the generalized "chained" inequality by Pearle, Braunstein, and Caves (PBC) with N ≥2 settings per observer. This inequality has applications in, for instance, quantum key distribution where it has been used to reestablish security. In this paper we give the minimum coincidence probability for the PBC inequality for all N ≥2 and show that this bound is tight for a violation free of the fair-coincidence assumption. Thus, if an experiment has a coincidence probability exceeding the critical value derived here, the coincidence-time loophole is eliminated.

  17. A Maximum NEC Criterion for Compton Collimation to Accurately Identify True Coincidences in PET

    PubMed Central

    Chinn, Garry; Levin, Craig S.

    2013-01-01

    In this work, we propose a new method to increase the accuracy of identifying true coincidence events for positron emission tomography (PET). This approach requires 3-D detectors with the ability to position each photon interaction in multi-interaction photon events. When multiple interactions occur in the detector, the incident direction of the photon can be estimated using the Compton scatter kinematics (Compton Collimation). If the difference between the estimated incident direction of the photon relative to a second, coincident photon lies within a certain angular range around colinearity, the line of response between the two photons is identified as a true coincidence and used for image reconstruction. We present an algorithm for choosing the incident photon direction window threshold that maximizes the noise equivalent counts of the PET system. For simulated data, the direction window removed 56%–67% of random coincidences while retaining > 94% of true coincidences from image reconstruction as well as accurately extracted 70% of true coincidences from multiple coincidences. PMID:21317079

  18. A multievent study of the coincidence of heliospheric current sheet and stream interface

    NASA Astrophysics Data System (ADS)

    Huang, Jia; Liu, Yong C.-M.; Qi, Zhaohui; Klecker, Berndt; Marghitu, Octav; Galvin, Antoinette B.; Farrugia, Charles J.; Li, Xiaoyu

    2016-11-01

    Generally, the heliospheric current sheet (HCS) is separated from the stream interface (SI) at about 1 AU. A recent study found an event where the HCS coincides with the SI, and in which the HCS is separated from the true sector boundary (TSB), defined by the switch of suprathermal electron pitch angle distributions. We present a multievent study by using STEREO, ACE, and Wind data during 2007 to 2010 to investigate whether other classes of such coincidence cases exist, as well as their stability. We find coincidence cases related to ideal HCSs, separated TSB and HCS, or heat flux dropouts in the vicinity; therefore, we define them as types I, II, and III. Among the nine coincidence cases, there are seven type I, one type II, and one type III. For each type, a possible schematic origin is presented. We also compared the observations on different spacecraft. Only two out of nine cases are observed by several spacecraft with a large separation, indicating that the coincidence structures are usually unstable. The study also shows that the coincidence cases have a variable connection with pseudostreamers. Interchange reconnection and pseudostreamers could play a role in forming these coincidence cases and lead to different configurations in different situations.

  19. Towards component-based validation of GATE: aspects of the coincidence processor.

    PubMed

    Moraes, Eder R; Poon, Jonathan K; Balakrishnan, Karthikayan; Wang, Wenli; Badawi, Ramsey D

    2015-02-01

    GATE is public domain software widely used for Monte Carlo simulation in emission tomography. Validations of GATE have primarily been performed on a whole-system basis, leaving the possibility that errors in one sub-system may be offset by errors in others. We assess the accuracy of the GATE PET coincidence generation sub-system in isolation, focusing on the options most closely modeling the majority of commercially available scanners. Independent coincidence generators were coded by teams at Toshiba Medical Research Unit (TMRU) and UC Davis. A model similar to the Siemens mCT scanner was created in GATE. Annihilation photons interacting with the detectors were recorded. Coincidences were generated using GATE, TMRU and UC Davis code and results compared to "ground truth" obtained from the history of the photon interactions. GATE was tested twice, once with every qualified single event opening a time window and initiating a coincidence check (the "multiple window method"), and once where a time window is opened and a coincidence check initiated only by the first single event to occur after the end of the prior time window (the "single window method"). True, scattered and random coincidences were compared. Noise equivalent count rates were also computed and compared. The TMRU and UC Davis coincidence generators agree well with ground truth. With GATE, reasonable accuracy can be obtained if the single window method option is chosen and random coincidences are estimated without use of the delayed coincidence option. However in this GATE version, other parameter combinations can result in significant errors. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Testing the cosmic coincidence problem and the nature of dark energy.

    PubMed

    Dalal, N; Abazajian, K; Jenkins, E; Manohar, A V

    2001-10-01

    Dark energy models which alter the relative scaling behavior of dark energy and matter could provide a natural solution to the cosmic coincidence problem-why the densities of dark energy and dark matter are comparable today. A generalized class of dark energy models is introduced which allows noncanonical scaling of the ratio of dark matter and dark energy with the Robertson-Walker scale factor a(t). We show that determining whether there is a coincidence problem, and the extent of cosmic coincidence, can be addressed by several forthcoming experiments.