Sample records for cointegrated vector autoregressive

  1. Conventional and advanced time series estimation: application to the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database, 1993-2006.

    PubMed

    Moran, John L; Solomon, Patricia J

    2011-02-01

    Time series analysis has seen limited application in the biomedical Literature. The utility of conventional and advanced time series estimators was explored for intensive care unit (ICU) outcome series. Monthly mean time series, 1993-2006, for hospital mortality, severity-of-illness score (APACHE III), ventilation fraction and patient type (medical and surgical), were generated from the Australia and New Zealand Intensive Care Society adult patient database. Analyses encompassed geographical seasonal mortality patterns, series structural time changes, mortality series volatility using autoregressive moving average and Generalized Autoregressive Conditional Heteroscedasticity models in which predicted variances are updated adaptively, and bivariate and multivariate (vector error correction models) cointegrating relationships between series. The mortality series exhibited marked seasonality, declining mortality trend and substantial autocorrelation beyond 24 lags. Mortality increased in winter months (July-August); the medical series featured annual cycling, whereas the surgical demonstrated long and short (3-4 months) cycling. Series structural breaks were apparent in January 1995 and December 2002. The covariance stationary first-differenced mortality series was consistent with a seasonal autoregressive moving average process; the observed conditional-variance volatility (1993-1995) and residual Autoregressive Conditional Heteroscedasticity effects entailed a Generalized Autoregressive Conditional Heteroscedasticity model, preferred by information criterion and mean model forecast performance. Bivariate cointegration, indicating long-term equilibrium relationships, was established between mortality and severity-of-illness scores at the database level and for categories of ICUs. Multivariate cointegration was demonstrated for {log APACHE III score, log ICU length of stay, ICU mortality and ventilation fraction}. A system approach to understanding series time-dependence may be established using conventional and advanced econometric time series estimators. © 2010 Blackwell Publishing Ltd.

  2. Education and Economic Growth in Pakistan: A Cointegration and Causality Analysis

    ERIC Educational Resources Information Center

    Afzal, Muhammad; Rehman, Hafeez Ur; Farooq, Muhammad Shahid; Sarwar, Kafeel

    2011-01-01

    This study explored the cointegration and causality between education and economic growth in Pakistan by using time series data on real gross domestic product (RGDP), labour force, physical capital and education from 1970-1971 to 2008-2009 were used. Autoregressive Distributed Lag (ARDL) Model of Cointegration and the Augmented Granger Causality…

  3. On the relationship between health, education and economic growth: Time series evidence from Malaysia

    NASA Astrophysics Data System (ADS)

    Khan, Habib Nawaz; Razali, Radzuan B.; Shafei, Afza Bt.

    2016-11-01

    The objectives of this paper is two-fold: First, to empirically investigate the effects of an enlarged number of healthy and well-educated people on economic growth in Malaysia within the Endogeneous Growth Model framework. Second, to examine the causal links between education, health and economic growth using annual time series data from 1981 to 2014 for Malaysia. Data series were checked for the time series properties by using ADF and KPSS tests. Long run co-integration relationship was investigated with the help of vector autoregressive (VAR) method. For short and long run dynamic relationship investigation vector error correction model (VECM) was applied. Causality analysis was performed through Engle-Granger technique. The study results showed long run co-integration relation and positively significant effects of education and health on economic growth in Malaysia. The reported results also confirmed a feedback hypothesis between the variables in the case of Malaysia. The study results have policy relevance of the importance of human capital (health and education) to the growth process of the Malaysia. Thus, it is suggested that policy makers focus on education and health sectors for sustainable economic growth in Malaysia.

  4. Relationships among Energy Price Shocks, Stock Market, and the Macroeconomy: Evidence from China

    PubMed Central

    Cong, Rong-Gang; Shen, Shaochuan

    2013-01-01

    This paper investigates the interactive relationships among China energy price shocks, stock market, and the macroeconomy using multivariate vector autoregression. The results indicate that there is a long cointegration among them. A 1% rise in the energy price index can depress the stock market index by 0.54% and the industrial value-adding growth by 0.037%. Energy price shocks also cause inflation and have a 5-month lag effect on stock market, which may result in the stock market “underreacting.” The energy price can explain stock market fluctuations better than the interest rate over a longer time period. Consequently, investors should pay greater attention to the long-term effect of energy on the stock market. PMID:23690737

  5. Renewable energy consumption and economic growth in nine OECD countries: bounds test approach and causality analysis.

    PubMed

    Hung-Pin, Lin

    2014-01-01

    The purpose of this paper is to investigate the short-run and long-run causality between renewable energy (RE) consumption and economic growth (EG) in nine OECD countries from the period between 1982 and 2011. To examine the linkage, this paper uses the autoregressive distributed lag (ARDL) bounds testing approach of cointegration test and vector error-correction models to test the causal relationship between variables. The co-integration and causal relationships are found in five countries-United States of America (USA), Japan, Germany, Italy, and United Kingdom (UK). The overall results indicate that (1) a short-run unidirectional causality runs from EG to RE in Italy and UK; (2) long-run unidirectional causalities run from RE to EG for Germany, Italy, and UK; (3) a long-run unidirectional causality runs from EG to RE in USA, and Japan; (4) both long-run and strong unidirectional causalities run from RE to EG for Germany and UK; and (5) Finally, both long-run and strong unidirectional causalities run from EG to RE in only USA. Further evidence reveals that policies for renewable energy conservation may have no impact on economic growth in France, Denmark, Portugal, and Spain.

  6. Renewable Energy Consumption and Economic Growth in Nine OECD Countries: Bounds Test Approach and Causality Analysis

    PubMed Central

    Hung-Pin, Lin

    2014-01-01

    The purpose of this paper is to investigate the short-run and long-run causality between renewable energy (RE) consumption and economic growth (EG) in nine OECD countries from the period between 1982 and 2011. To examine the linkage, this paper uses the autoregressive distributed lag (ARDL) bounds testing approach of cointegration test and vector error-correction models to test the causal relationship between variables. The co-integration and causal relationships are found in five countries—United States of America (USA), Japan, Germany, Italy, and United Kingdom (UK). The overall results indicate that (1) a short-run unidirectional causality runs from EG to RE in Italy and UK; (2) long-run unidirectional causalities run from RE to EG for Germany, Italy, and UK; (3) a long-run unidirectional causality runs from EG to RE in USA, and Japan; (4) both long-run and strong unidirectional causalities run from RE to EG for Germany and UK; and (5) Finally, both long-run and strong unidirectional causalities run from EG to RE in only USA. Further evidence reveals that policies for renewable energy conservation may have no impact on economic growth in France, Denmark, Portugal, and Spain. PMID:24558343

  7. Economic growth and CO2 emissions: an investigation with smooth transition autoregressive distributed lag models for the 1800-2014 period in the USA.

    PubMed

    Bildirici, Melike; Ersin, Özgür Ömer

    2018-01-01

    The study aims to combine the autoregressive distributed lag (ARDL) cointegration framework with smooth transition autoregressive (STAR)-type nonlinear econometric models for causal inference. Further, the proposed STAR distributed lag (STARDL) models offer new insights in terms of modeling nonlinearity in the long- and short-run relations between analyzed variables. The STARDL method allows modeling and testing nonlinearity in the short-run and long-run parameters or both in the short- and long-run relations. To this aim, the relation between CO 2 emissions and economic growth rates in the USA is investigated for the 1800-2014 period, which is one of the largest data sets available. The proposed hybrid models are the logistic, exponential, and second-order logistic smooth transition autoregressive distributed lag (LSTARDL, ESTARDL, and LSTAR2DL) models combine the STAR framework with nonlinear ARDL-type cointegration to augment the linear ARDL approach with smooth transitional nonlinearity. The proposed models provide a new approach to the relevant econometrics and environmental economics literature. Our results indicated the presence of asymmetric long-run and short-run relations between the analyzed variables that are from the GDP towards CO 2 emissions. By the use of newly proposed STARDL models, the results are in favor of important differences in terms of the response of CO 2 emissions in regimes 1 and 2 for the estimated LSTAR2DL and LSTARDL models.

  8. Estimating long-run equilibrium real exchange rates: short-lived shocks with long-lived impacts on Pakistan.

    PubMed

    Zardad, Asma; Mohsin, Asma; Zaman, Khalid

    2013-12-01

    The purpose of this study is to investigate the factors that affect real exchange rate volatility for Pakistan through the co-integration and error correction model over a 30-year time period, i.e. between 1980 and 2010. The study employed the autoregressive conditional heteroskedasticity (ARCH), generalized autoregressive conditional heteroskedasticity (GARCH) and Vector Error Correction model (VECM) to estimate the changes in the volatility of real exchange rate series, while an error correction model was used to determine the short-run dynamics of the system. The study is limited to a few variables i.e., productivity differential (i.e., real GDP per capita relative to main trading partner); terms of trade; trade openness and government expenditures in order to manage robust data. The result indicates that real effective exchange rate (REER) has been volatile around its equilibrium level; while, the speed of adjustment is relatively slow. VECM results confirm long run convergence of real exchange rate towards its equilibrium level. Results from ARCH and GARCH estimation shows that real shocks volatility persists, so that shocks die out rather slowly, and lasting misalignment seems to have occurred.

  9. Does Expanding Higher Education Reduce Income Inequality in Emerging Economy? Evidence from Pakistan

    ERIC Educational Resources Information Center

    Qazi, Wasim; Raza, Syed Ali; Jawaid, Syed Tehseen; Karim, Mohd Zaini Abd

    2018-01-01

    This study investigates the impact of development in the higher education sector, on the Income Inequality in Pakistan, by using the annual time series data from 1973 to 2012. The autoregressive distributed lag bound testing co-integration approach confirms the existence of long-run relationship between higher education and income inequality.…

  10. A regime-switching cointegration approach for removing environmental and operational variations in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shi, Haichen; Worden, Keith; Cross, Elizabeth J.

    2018-03-01

    Cointegration is now extensively used to model the long term common trends among economic variables in the field of econometrics. Recently, cointegration has been successfully implemented in the context of structural health monitoring (SHM), where it has been used to remove the confounding influences of environmental and operational variations (EOVs) that can often mask the signature of structural damage. However, restrained by its linear nature, the conventional cointegration approach has limited power in modelling systems where measurands are nonlinearly related; this occurs, for example, in the benchmark study of the Z24 Bridge, where nonlinear relationships between natural frequencies were induced during a period of very cold temperatures. To allow the removal of EOVs from SHM data with nonlinear relationships like this, this paper extends the well-established cointegration method to a nonlinear context, which is to allow a breakpoint in the cointegrating vector. In a novel approach, the augmented Dickey-Fuller (ADF) statistic is used to find which position is most appropriate for inserting a breakpoint, the Johansen procedure is then utilised for the estimation of cointegrating vectors. The proposed approach is examined with a simulated case and real SHM data from the Z24 Bridge, demonstrating that the EOVs can be neatly eliminated.

  11. Cigarette taxes and respiratory cancers: new evidence from panel co-integration analysis.

    PubMed

    Liu, Echu; Yu, Wei-Choun; Hsieh, Hsin-Ling

    2011-01-01

    Using a set of state-level longitudinal data from 1954 through 2005, this study investigates the "long-run equilibrium" relationship between cigarette excise taxes and the mortality rates of respiratory cancers in the United States. Statistical tests show that both cigarette excise taxes in real terms and mortality rates from respiratory cancers contain unit roots and are co-integrated. Estimates of co-integrating vectors indicated that a 10 percent increase in real cigarette excise tax rate leads to a 2.5 percent reduction in respiratory cancer mortality rate, implying a decline of 3,922 deaths per year, on a national level in the long run. These effects are statistically significant at the one percent level. Moreover, estimates of co-integrating vectors show that higher cigarette excise tax rates lead to lower mortality rates in most states; however, this relationship does not hold for Alaska, Florida, Hawaii, and Texas.

  12. Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models

    ERIC Educational Resources Information Center

    Price, Larry R.

    2012-01-01

    The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…

  13. Are international securitized property markets converging or diverging?

    NASA Astrophysics Data System (ADS)

    Hui, Eddie C. M.; Chen, Jia; Chan, Ka Kwan Kevin

    2016-03-01

    This study establishes a new framework which combines the recursive model with the Fractionally Integrated Vector Error Correction Model (FIVECM) to investigate the cointegration relationship among 9 securitized real estate indices, which are divided into three groups: Asian, European and North American groups. Our new combined framework has the advantage of reflecting the changes in cointegration dynamics over a period of time instead of a single result for the whole period. The results show that the three groups of markets follow a similar cointegration trend: the cointegration relationship gradually increases before the global financial crisis, reaches a peak during the crisis, and dies down gradually after the crisis. However, cointegration among Asian and European countries occurs at a much later time than cointegration among North American countries does, showing that North America is the source of cointegration, while Asia and Europe are the recipients. This study has important implications to investors and related authorities that investors can adjust their portfolio according to the test results to reduce their risk, while related authorities can take appropriate measures to stabilize the economy and mitigate the effects of financial crises.

  14. The role of energy in economic growth.

    PubMed

    Stern, David I

    2011-02-01

    This paper reviews the mainstream, resource economics, and ecological economics models of growth. A possible synthesis of energy-based and mainstream models is presented. This shows that when energy is scarce it imposes a strong constraint on the growth of the economy; however, when energy is abundant, its effect on economic growth is much reduced. The industrial revolution released the constraints on economic growth by the development of new methods of using coal and the discovery of new fossil fuel resources. Time-series analysis shows that energy and GDP cointegrate, and energy use Granger causes GDP when capital and other production inputs are included in the vector autoregression model. However, various mechanisms can weaken the links between energy and growth. Energy used per unit of economic output has declined in developed and some developing countries, owing to both technological change and a shift from poorer quality fuels, such as coal, to the use of higher quality fuels, especially electricity. Substitution of other inputs for energy and sectoral shifts in economic activity play smaller roles. © 2011 New York Academy of Sciences.

  15. Longitudinal relationship between economic development and occupational accidents in China.

    PubMed

    Song, Li; He, Xueqiu; Li, Chengwu

    2011-01-01

    The relativity between economic development and occupational accidents is a debated topic. Compared with the development courses of both economic development and occupational accidents in China during 1953-2008, this paper used statistic methods such as Granger causality test, cointegration test and impulse response function based on the vector autoregression model to investigate the relativity between economic development and occupational accidents in China from 1953 to 2008. Owing to fluctuation and growth scale characteristics of economic development, two dimensions including economic cycle and economic scale were divided. Results showed that there was no relationship between occupational accidents and economic scale during 1953-1978. Fatality rate per 10(5) workers was a conductive variable to gross domestic product per capita during 1979-2008. And economic cycle was an indicator to occupational accidents during 1979-2008. Variation of economic speed had important influence on occupational accidents in short term. Thus it is necessary to adjust Chinese occupational safety policy according to tempo variation of economic growth. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  16. Globalisation and its effect on pollution in Malaysia: the role of Trans-Pacific Partnership (TPP) agreement.

    PubMed

    Solarin, Sakiru Adebola; Al-Mulali, Usama; Sahu, Pritish Kumar

    2017-10-01

    The main objective of this study is to investigate the influence of the globalisation (Trans-Pacific Partnership (TPP) agreement in particular) on air pollution in Malaysia. To achieve this goal, the Autoregressive Distributed Lag (ARDL) model, Johansen cointegration test and fully modified ordinary least square (FMOLS) methods are utilised. CO 2 emission is used as an indicator of pollution while GDP per capita and urbanisation serve as its other determinants. In addition, this study uses Malaysia's total trade with 10 TPP members as an indicator of globalisation and analyse its effect on CO 2 emission in Malaysia. The outcome of this research shows that the variables are cointegrated. Additionally, GDP per capita, urbanisation and trade between Malaysia and its 10 TPP partners have a positive impact on CO 2 emissions in general. Based on the outcome of this research, important policy implications are provided for the investigated country.

  17. Cointegration of output, capital, labor, and energy

    NASA Astrophysics Data System (ADS)

    Stresing, R.; Lindenberger, D.; Kã¼mmel, R.

    2008-11-01

    Cointegration analysis is applied to the linear combinations of the time series of (the logarithms of) output, capital, labor, and energy for Germany, Japan, and the USA since 1960. The computed cointegration vectors represent the output elasticities of the aggregate energy-dependent Cobb-Douglas function. The output elasticities give the economic weights of the production factors capital, labor, and energy. We find that they are for labor much smaller and for energy much larger than the cost shares of these factors. In standard economic theory output elasticities equal cost shares. Our heterodox findings support results obtained with LINEX production functions.

  18. Essays on price dynamics, discovery, and dynamic threshold effects among energy spot markets in North America

    NASA Astrophysics Data System (ADS)

    Park, Haesun

    2005-12-01

    Given the role electricity and natural gas sectors play in the North American economy, an understanding of how markets for these commodities interact is important. This dissertation independently characterizes the price dynamics of major electricity and natural gas spot markets in North America by combining directed acyclic graphs with time series analyses. Furthermore, the dissertation explores a generalization of price difference bands associated with the law of one price. Interdependencies among 11 major electricity spot markets are examined in Chapter II using a vector autoregression model. Results suggest that the relationships between the markets vary by time. Western markets are separated from the eastern markets and the Electricity Reliability Council of Texas. At longer time horizons these separations disappear. Palo Verde is the important spot market in the west for price discovery. Southwest Power Pool is the dominant market in Eastern Interconnected System for price discovery. Interdependencies among eight major natural gas spot markets are investigated using a vector error correction model and the Greedy Equivalence Search Algorithm in Chapter III. Findings suggest that the eight price series are tied together through six long-run cointegration relationships, supporting the argument that the natural gas market has developed into a single integrated market in North America since deregulation. Results indicate that price discovery tends to occur in the excess consuming regions and move to the excess producing regions. Across North America, the U.S. Midwest region, represented by the Chicago spot market, is the most important for price discovery. The Ellisburg-Leidy Hub in Pennsylvania and Malin Hub in Oregon are important for eastern and western markets. In Chapter IV, a threshold vector error correction model is applied to the natural gas markets to examine nonlinearities in adjustments to the law of one price. Results show that there are nonlinear adjustments to the law of one price in seven pair-wise markets. Four alternative cases for the law of one price are presented as a theoretical background. A methodology is developed for finding a threshold cointegration model that accounts for seasonality in the threshold levels. Results indicate that dynamic threshold effects vary depending on geographical location and whether the markets are excess producing or excess consuming markets.

  19. Testing competing forms of the Milankovitch hypothesis: A multivariate approach

    NASA Astrophysics Data System (ADS)

    Kaufmann, Robert K.; Juselius, Katarina

    2016-02-01

    We test competing forms of the Milankovitch hypothesis by estimating the coefficients and diagnostic statistics for a cointegrated vector autoregressive model that includes 10 climate variables and four exogenous variables for solar insolation. The estimates are consistent with the physical mechanisms postulated to drive glacial cycles. They show that the climate variables are driven partly by solar insolation, determining the timing and magnitude of glaciations and terminations, and partly by internal feedback dynamics, pushing the climate variables away from equilibrium. We argue that the latter is consistent with a weak form of the Milankovitch hypothesis and that it should be restated as follows: internal climate dynamics impose perturbations on glacial cycles that are driven by solar insolation. Our results show that these perturbations are likely caused by slow adjustment between land ice volume and solar insolation. The estimated adjustment dynamics show that solar insolation affects an array of climate variables other than ice volume, each at a unique rate. This implies that previous efforts to test the strong form of the Milankovitch hypothesis by examining the relationship between solar insolation and a single climate variable are likely to suffer from omitted variable bias.

  20. Vector Autoregression, Structural Equation Modeling, and Their Synthesis in Neuroimaging Data Analysis

    PubMed Central

    Chen, Gang; Glen, Daniel R.; Saad, Ziad S.; Hamilton, J. Paul; Thomason, Moriah E.; Gotlib, Ian H.; Cox, Robert W.

    2011-01-01

    Vector autoregression (VAR) and structural equation modeling (SEM) are two popular brain-network modeling tools. VAR, which is a data-driven approach, assumes that connected regions exert time-lagged influences on one another. In contrast, the hypothesis-driven SEM is used to validate an existing connectivity model where connected regions have contemporaneous interactions among them. We present the two models in detail and discuss their applicability to FMRI data, and interpretational limits. We also propose a unified approach that models both lagged and contemporaneous effects. The unifying model, structural vector autoregression (SVAR), may improve statistical and explanatory power, and avoids some prevalent pitfalls that can occur when VAR and SEM are utilized separately. PMID:21975109

  1. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation.

    PubMed

    Anand, Ajith; Bass, Steven H; Wu, Emily; Wang, Ning; McBride, Kevin E; Annaluru, Narayana; Miller, Michael; Hua, Mo; Jones, Todd J

    2018-05-01

    A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.

  2. Essays on Commodity Prices and Macroeconomic Performance of Developing and Resources Rich Economies: Evidence from Kazakhstan

    NASA Astrophysics Data System (ADS)

    Bilgin, Ferhat I.

    My dissertation consists of three essays in empirical macroeconomics. The objective of this research is to use rigorous time-series econometric analysis to investigate the impact of commodity prices on macroeconomic performance of a small, developing and resource-rich country, which is in the process of transition from a purely command and control economy to a market oriented one. Essay 1 studies the relationship between Kazakhstan's GDP, total government expenditure, real effective exchange rate and the world oil price. Specifically, I use the cointegrated vector autoregression (CVAR) and error correction modeling (ECM) approach to identify the long and short-run relations that may exist among these macroeconomic variables. I found a long-run relationship for Kazakhstan's GDP, which depends on government spending and the oil price positively, and on the real effective exchange rate negatively. In the short run, the growth rate of GDP depends on the growth rates of the oil price, investment and the magnitude of the deviation from the long-run equilibrium. Essay 2 studies the inflation process in Kazakhstan based on the analysis of price formation in the following sectors: monetary, external, labor and goods and services. The modeling is conducted from two different perspectives: the first is the monetary model of inflation framework and the second is the mark-up modeling framework. Encompassing test results show that the mark-up model performs better than the monetary model in explaining inflation in Kazakhstan. According to the mark-up inflation model, in the long run, the price level is positively related to unit labor costs, import prices and government administered prices as well the world oil prices. In the short run, the inflation is positively influenced by the previous quarter's inflation, the contemporaneous changes in the government administered prices, oil prices and by the changes of contemporaneous and lagged unit labor costs, and negatively affected by the previous quarter's mark-up. Essay 3 empirically examines the determinants of the trade balance for a small oil exporting country within the context of Kazakhstan. The dominant theory by Harberger-Lauren-Metzler (HML) predicts that positive terms of trade shocks will improve the trade balance in the short run, but will fade away in the long run. I estimate cointegrated vector autoregression (CVAR) and vector error correction model (VECM) to study the long-run and short-run impacts on the trade balance. The results suggest that, in the long run, an increase in the terms of trade has a positive effect on the trade balance, an increase in GDP and appreciation of the real effective exchange rate have negative effect on the trade balance. In the short run, the terms of trade has a direct positive impact on the trade balance, real income and real exchange rate. On the other hand, appreciation of the currency has a negative impact on the trade balance. The error correction term, which represents the deviation from the long- run equilibrium between the trade balance, real income, terms of trade and real exchange rate, has a negative effect on the growth rate of the trade balance. These results provide further evidence to the idea that, in the long run, the HML effect not only depends on the duration of the shock, but also depends on the structure of the economy.

  3. Palm oil price forecasting model: An autoregressive distributed lag (ARDL) approach

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Fahmi Abdul; Shabri, Ani

    2017-05-01

    Palm oil price fluctuated without any clear trend or cyclical pattern in the last few decades. The instability of food commodities price causes it to change rapidly over time. This paper attempts to develop Autoregressive Distributed Lag (ARDL) model in modeling and forecasting the price of palm oil. In order to use ARDL as a forecasting model, this paper modifies the data structure where we only consider lagged explanatory variables to explain the variation in palm oil price. We then compare the performance of this ARDL model with a benchmark model namely ARIMA in term of their comparative forecasting accuracy. This paper also utilize ARDL bound testing approach to co-integration in examining the short run and long run relationship between palm oil price and its determinant; production, stock, and price of soybean as the substitute of palm oil and price of crude oil. The comparative forecasting accuracy suggests that ARDL model has a better forecasting accuracy compared to ARIMA.

  4. Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Yousaf; Mittnik, Stefan

    2018-01-01

    In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.

  5. Equivalent Dynamic Models.

    PubMed

    Molenaar, Peter C M

    2017-01-01

    Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.

  6. Business cycles and fertility dynamics in the United States: a vector autoregressive model.

    PubMed

    Mocan, N H

    1990-01-01

    "Using vector-autoregressions...this paper shows that fertility moves countercyclically over the business cycle....[It] shows that the United States fertility is not governed by a deterministic trend as was assumed by previous studies. Rather, fertility evolves around a stochastic trend. It is shown that a bivariate analysis between fertility and unemployment yields a procyclical picture of fertility. However, when one considers the effects on fertility of early marriages and the divorce behavior as well as economic activity, fertility moves countercyclically." excerpt

  7. On the Feed-back Mechanism of Chinese Stock Markets

    NASA Astrophysics Data System (ADS)

    Lu, Shu Quan; Ito, Takao; Zhang, Jianbo

    Feed-back models in the stock markets research imply an adjustment process toward investors' expectation for current information and past experiences. Error-correction and cointegration are often used to evaluate the long-run relation. The Efficient Capital Market Hypothesis, which had ignored the effect of the accumulation of information, cannot explain some anomalies such as bubbles and partial predictability in the stock markets. In order to investigate the feed-back mechanism and to determine an effective model, we use daily data of the stock index of two Chinese stock markets with the expectational model, which is one kind of geometric lag models. Tests and estimations of error-correction show that long-run equilibrium seems to be seldom achieved in Chinese stock markets. Our result clearly shows the common coefficient of expectations and fourth-order autoregressive disturbance exist in the two Chinese stock markets. Furthermore, we find the same coefficient of expectations has an autoregressive effect on disturbances in the two Chinese stock markets. Therefore the presence of such feed-back is also supported in Chinese stock markets.

  8. Carbon dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971-2013.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-07-01

    In this study, the relationship between carbon dioxide emissions, GDP, energy use, and population growth in Ghana was investigated from 1971 to 2013 by comparing the vector error correction model (VECM) and the autoregressive distributed lag (ARDL). Prior to testing for Granger causality based on VECM, the study tested for unit roots, Johansen's multivariate co-integration and performed a variance decomposition analysis using Cholesky's technique. Evidence from the variance decomposition shows that 21 % of future shocks in carbon dioxide emissions are due to fluctuations in energy use, 8 % of future shocks are due to fluctuations in GDP, and 6 % of future shocks are due to fluctuations in population. There was evidence of bidirectional causality running from energy use to GDP and a unidirectional causality running from carbon dioxide emissions to energy use, carbon dioxide emissions to GDP, carbon dioxide emissions to population, and population to energy use. Evidence from the long-run elasticities shows that a 1 % increase in population in Ghana will increase carbon dioxide emissions by 1.72 %. There was evidence of short-run equilibrium relationship running from energy use to carbon dioxide emissions and GDP to carbon dioxide emissions. As a policy implication, the addition of renewable energy and clean energy technologies into Ghana's energy mix can help mitigate climate change and its impact in the future.

  9. Do foreign exchange and equity markets co-move in Latin American region? Detrended cross-correlation approach

    NASA Astrophysics Data System (ADS)

    Bashir, Usman; Yu, Yugang; Hussain, Muntazir; Zebende, Gilney F.

    2016-11-01

    This paper investigates the dynamics of the relationship between foreign exchange markets and stock markets through time varying co-movements. In this sense, we analyzed the time series monthly of Latin American countries for the period from 1991 to 2015. Furthermore, we apply Granger causality to verify the direction of causality between foreign exchange and stock market and detrended cross-correlation approach (ρDCCA) for any co-movements at different time scales. Our empirical results suggest a positive cross correlation between exchange rate and stock price for all Latin American countries. The findings reveal two clear patterns of correlation. First, Brazil and Argentina have positive correlation in both short and long time frames. Second, the remaining countries are negatively correlated in shorter time scale, gradually moving to positive. This paper contributes to the field in three ways. First, we verified the co-movements of exchange rate and stock prices that were rarely discussed in previous empirical studies. Second, ρDCCA coefficient is a robust and powerful methodology to measure the cross correlation when dealing with non stationarity of time series. Third, most of the studies employed one or two time scales using co-integration and vector autoregressive approaches. Not much is known about the co-movements at varying time scales between foreign exchange and stock markets. ρDCCA coefficient facilitates the understanding of its explanatory depth.

  10. The Disparate Labor Market Impacts of Monetary Policy

    ERIC Educational Resources Information Center

    Carpenter, Seth B.; Rodgers, William M., III

    2004-01-01

    Employing two widely used approaches to identify the effects of monetary policy, this paper explores the differential impact of policy on the labor market outcomes of teenagers, minorities, out-of-school youth, and less-skilled individuals. Evidence from recursive vector autoregressions and autoregressive distributed lag models that use…

  11. Numerical limitations in application of vector autoregressive modeling and Granger causality to analysis of EEG time series

    NASA Astrophysics Data System (ADS)

    Kammerdiner, Alla; Xanthopoulos, Petros; Pardalos, Panos M.

    2007-11-01

    In this chapter a potential problem with application of the Granger-causality based on the simple vector autoregressive (VAR) modeling to EEG data is investigated. Although some initial studies tested whether the data support the stationarity assumption of VAR, the stability of the estimated model is rarely (if ever) been verified. In fact, in cases when the stability condition is violated the process may exhibit a random walk like behavior or even be explosive. The problem is illustrated by an example.

  12. Projecting county pulpwood production with historical production and macro-economic variables

    Treesearch

    Consuelo Brandeis; Dayton M. Lambert

    2014-01-01

    We explored forecasting of county roundwood pulpwood produc-tion with county-vector autoregressive (CVAR) and spatial panelvector autoregressive (SPVAR) methods. The analysis used timberproducts output data for the state of Florida, together with a set ofmacro-economic variables. Overall, we found the SPVAR specifica-tion produced forecasts with lower error rates...

  13. Causality and cointegration analysis between macroeconomic variables and the Bovespa.

    PubMed

    da Silva, Fabiano Mello; Coronel, Daniel Arruda; Vieira, Kelmara Mendes

    2014-01-01

    The aim of this study is to analyze the causality relationship among a set of macroeconomic variables, represented by the exchange rate, interest rate, inflation (CPI), industrial production index as a proxy for gross domestic product in relation to the index of the São Paulo Stock Exchange (Bovespa). The period of analysis corresponded to the months from January 1995 to December 2010, making a total of 192 observations for each variable. Johansen tests, through the statistics of the trace and of the maximum eigenvalue, indicated the existence of at least one cointegration vector. In the analysis of Granger (1988) causality tests via error correction, it was found that a short-term causality existed between the CPI and the Bovespa. Regarding the Granger (1988) long-term causality, the results indicated a long-term behaviour among the macroeconomic variables with the BOVESPA. The results of the long-term normalized vector for the Bovespa variable showed that most signals of the cointegration equation parameters are in accordance with what is suggested by the economic theory. In other words, there was a positive behaviour of the GDP and a negative behaviour of the inflation and of the exchange rate (expected to be a positive relationship) in relation to the Bovespa, with the exception of the Selic rate, which was not significant with that index. The variance of the Bovespa was explained by itself in over 90% at the twelfth month, followed by the country risk, with less than 5%.

  14. Causality and Cointegration Analysis between Macroeconomic Variables and the Bovespa

    PubMed Central

    da Silva, Fabiano Mello; Coronel, Daniel Arruda; Vieira, Kelmara Mendes

    2014-01-01

    The aim of this study is to analyze the causality relationship among a set of macroeconomic variables, represented by the exchange rate, interest rate, inflation (CPI), industrial production index as a proxy for gross domestic product in relation to the index of the São Paulo Stock Exchange (Bovespa). The period of analysis corresponded to the months from January 1995 to December 2010, making a total of 192 observations for each variable. Johansen tests, through the statistics of the trace and of the maximum eigenvalue, indicated the existence of at least one cointegration vector. In the analysis of Granger (1988) causality tests via error correction, it was found that a short-term causality existed between the CPI and the Bovespa. Regarding the Granger (1988) long-term causality, the results indicated a long-term behaviour among the macroeconomic variables with the BOVESPA. The results of the long-term normalized vector for the Bovespa variable showed that most signals of the cointegration equation parameters are in accordance with what is suggested by the economic theory. In other words, there was a positive behaviour of the GDP and a negative behaviour of the inflation and of the exchange rate (expected to be a positive relationship) in relation to the Bovespa, with the exception of the Selic rate, which was not significant with that index. The variance of the Bovespa was explained by itself in over 90% at the twelth month, followed by the country risk, with less than 5%. PMID:24587019

  15. iVAR: a program for imputing missing data in multivariate time series using vector autoregressive models.

    PubMed

    Liu, Siwei; Molenaar, Peter C M

    2014-12-01

    This article introduces iVAR, an R program for imputing missing data in multivariate time series on the basis of vector autoregressive (VAR) models. We conducted a simulation study to compare iVAR with three methods for handling missing data: listwise deletion, imputation with sample means and variances, and multiple imputation ignoring time dependency. The results showed that iVAR produces better estimates for the cross-lagged coefficients than do the other three methods. We demonstrate the use of iVAR with an empirical example of time series electrodermal activity data and discuss the advantages and limitations of the program.

  16. Oil prices, fiscal policy, and economic growth in oil-exporting countries

    NASA Astrophysics Data System (ADS)

    El-Anshasy, Amany A.

    This dissertation argues that in oil-exporting countries fiscal policy could play an important role in transmitting the oil shocks to the economy and that the indirect effects of the changes in oil prices via the fiscal channel could be quite significant. The study comprises three distinct, yet related, essays. In the first essay, I try to study the fiscal policy response to the changes in oil prices and to their growing volatility. In a dynamic general equilibrium framework, a fiscal policy reaction function is derived and is empirically tested for a panel of 15 oil-exporters covering the period 1970--2000. After the link between oil price shocks and fiscal policy is established, the second essay tries to investigate the impact of the highly volatile oil prices on economic growth for the same sample, controlling for the fiscal channel. In both essays the study employs recent dynamic panel-data estimation techniques: System GMM. This approach has the potential advantages of minimizing the bias resulting from estimating dynamic panel models, exploiting the time series properties of the data, controlling for the unobserved country-specific effects, and correcting for any simultaneity bias. In the third essay, I focus on the case of Venezuela for the period 1950--2001. The recent developments in the cointegrating vector autoregression, CVAR technique is applied to provide a suitable framework for analyzing the short-run dynamics and the long-run relationships among oil prices, government revenues, government consumption, investment, and output.

  17. Circular Conditional Autoregressive Modeling of Vector Fields.

    PubMed

    Modlin, Danny; Fuentes, Montse; Reich, Brian

    2012-02-01

    As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.

  18. Circular Conditional Autoregressive Modeling of Vector Fields*

    PubMed Central

    Modlin, Danny; Fuentes, Montse; Reich, Brian

    2013-01-01

    As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452

  19. Estimating short-run and long-run interaction mechanisms in interictal state.

    PubMed

    Ozkaya, Ata; Korürek, Mehmet

    2010-04-01

    We address the issue of analyzing electroencephalogram (EEG) from seizure patients in order to test, model and determine the statistical properties that distinguish between EEG states (interictal, pre-ictal, ictal) by introducing a new class of time series analysis methods. In the present study: firstly, we employ statistical methods to determine the non-stationary behavior of focal interictal epileptiform series within very short time intervals; secondly, for such intervals that are deemed non-stationary we suggest the concept of Autoregressive Integrated Moving Average (ARIMA) process modelling, well known in time series analysis. We finally address the queries of causal relationships between epileptic states and between brain areas during epileptiform activity. We estimate the interaction between different EEG series (channels) in short time intervals by performing Granger-causality analysis and also estimate such interaction in long time intervals by employing Cointegration analysis, both analysis methods are well-known in econometrics. Here we find: first, that the causal relationship between neuronal assemblies can be identified according to the duration and the direction of their possible mutual influences; second, that although the estimated bidirectional causality in short time intervals yields that the neuronal ensembles positively affect each other, in long time intervals neither of them is affected (increasing amplitudes) from this relationship. Moreover, Cointegration analysis of the EEG series enables us to identify whether there is a causal link from the interictal state to ictal state.

  20. Decomposing the trade-environment nexus for Malaysia: what do the technique, scale, composition, and comparative advantage effect indicate?

    PubMed

    Ling, Chong Hui; Ahmed, Khalid; Binti Muhamad, Rusnah; Shahbaz, Muhammad

    2015-12-01

    This paper investigates the impact of trade openness on CO2 emissions using time series data over the period of 1970QI-2011QIV for Malaysia. We disintegrate the trade effect into scale, technique, composition, and comparative advantage effects to check the environmental consequence of trade at four different transition points. To achieve the purpose, we have employed augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests in order to examine the stationary properties of the variables. Later, the long-run association among the variables is examined by applying autoregressive distributed lag (ARDL) bounds testing approach to cointegration. Our results confirm the presence of cointegration. Further, we find that scale effect has positive and technique effect has negative impact on CO2 emissions after threshold income level and form inverted U-shaped relationship-hence validates the environmental Kuznets curve hypothesis. Energy consumption adds in CO2 emissions. Trade openness and composite effect improve environmental quality by lowering CO2 emissions. The comparative advantage effect increases CO2 emissions and impairs environmental quality. The results provide the innovative approach to see the impact of trade openness in four sub-dimensions of trade liberalization. Hence, this study attributes more comprehensive policy tool for trade economists to better design environmentally sustainable trade rules and agreements.

  1. Economic hardship and suicide mortality in Finland, 1875-2010.

    PubMed

    Korhonen, Marko; Puhakka, Mikko; Viren, Matti

    2016-03-01

    We investigate the determinants of suicide in Finland using annual data for consumption and suicides from 1860 to 2010. Instead of using some ad hoc measures of cyclical movements of the economy, we build our analysis on a more solid economic theory. A key feature is the habit persistence in preferences, which provides a way to measure individual well-being and predict suicide. We estimate time series of habit levels and develop an indicator (the hardship index) to describe the economic hardship of consumers. The higher the level of the index, the worse off consumers are. As a rational response to such a bad situation, some consumers might commit suicide. We employ the autoregressive distributed lags cointegration method and find that our index works well in explaining the long-term behavior of people committing suicide in Finland.

  2. Income-environment relationship in Sub-Saharan African countries: Further evidence with trade openness.

    PubMed

    Zerbo, Eléazar

    2017-07-01

    This paper examines the dynamic relationship between energy consumption, income growth, carbon emissions and trade openness in fourteen Sub-Saharan African (SSA) countries. The autoregressive distributed lag (ARDL) approach to cointegration and the Toda-Yamamoto causality test were used to investigate the long-run and short-run properties, respectively. The long-run estimations give evidence against the environmental Kuznets curve (EKC) hypothesis in SSA countries. In contrast, the results highlight the significant and monotonically contribution of income growth and energy consumption in explaining carbon emissions in the long-run and short-run in several countries. Furthermore, the results show that trade openness enhances economic growth and is not linked to causing carbon emissions in these countries. Hence, a trade incentive policy may be implemented without harmful effect on the quality of the environment.

  3. Two dynamic regimes in the human gut microbiome

    PubMed Central

    Smillie, Chris S.; Alm, Eric J.

    2017-01-01

    The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)—a multivariate method developed for econometrics—to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes. PMID:28222117

  4. Two dynamic regimes in the human gut microbiome.

    PubMed

    Gibbons, Sean M; Kearney, Sean M; Smillie, Chris S; Alm, Eric J

    2017-02-01

    The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)-a multivariate method developed for econometrics-to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes.

  5. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fengbin, E-mail: fblu@amss.ac.cn

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relationsmore » evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.« less

  6. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets.

    PubMed

    Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze

    2017-01-01

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Application of multivariate autoregressive spectrum estimation to ULF waves

    NASA Technical Reports Server (NTRS)

    Ioannidis, G. A.

    1975-01-01

    The estimation of the power spectrum of a time series by fitting a finite autoregressive model to the data has recently found widespread application in the physical sciences. The extension of this method to the analysis of vector time series is presented here through its application to ULF waves observed in the magnetosphere by the ATS 6 synchronous satellite. Autoregressive spectral estimates of the power and cross-power spectra of these waves are computed with computer programs developed by the author and are compared with the corresponding Blackman-Tukey spectral estimates. The resulting spectral density matrices are then analyzed to determine the direction of propagation and polarization of the observed waves.

  8. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  9. A historical analysis of natural gas demand

    NASA Astrophysics Data System (ADS)

    Dalbec, Nathan Richard

    This thesis analyzes demand in the US energy market for natural gas, oil, and coal over the period of 1918-2013 and examines their price relationship over the period of 2007-2013. Diagnostic tests for time series were used; Augmented Dickey-Fuller, Kwiatkowski-Phillips-Schmidt-Shin, Johansen cointegration, Granger Causality and weak exogeneity tests. Directed acyclic graphs were used as a complimentary test for endogeneity. Due to the varied results in determining endogeneity, a seemingly unrelated regression model was used which assumes all right hand side variables in the three demand equations were exogenous. A number of factors were significant in determining demand for natural gas including its own price, lagged demand, a number of structural break dummies, and trend, while oil indicate some substitutability with natural gas. An error correction model was used to examine the price relationships. Natural gas price was found not to have a significant cointegrating vector.

  10. Effects of export concentration on CO2 emissions in developed countries: an empirical analysis.

    PubMed

    Apergis, Nicholas; Can, Muhlis; Gozgor, Giray; Lau, Chi Keung Marco

    2018-03-08

    This paper provides the evidence on the short- and the long-run effects of the export product concentration on the level of CO 2 emissions in 19 developed (high-income) economies, spanning the period 1962-2010. To this end, the paper makes use of the nonlinear panel unit root and cointegration tests with multiple endogenous structural breaks. It also considers the mean group estimations, the autoregressive distributed lag model, and the panel quantile regression estimations. The findings illustrate that the environmental Kuznets curve (EKC) hypothesis is valid in the panel dataset of 19 developed economies. In addition, it documents that a higher level of the product concentration of exports leads to lower CO 2 emissions. The results from the panel quantile regressions also indicate that the effect of the export product concentration upon the per capita CO 2 emissions is relatively high at the higher quantiles.

  11. The dynamic relationship between health expenditure and economic growth: is the health-led growth hypothesis valid for Turkey?

    PubMed

    Atilgan, Emre; Kilic, Dilek; Ertugrul, Hasan Murat

    2017-06-01

    The well-known health-led growth hypothesis claims a positive correlation between health expenditure and economic growth. The aim of this paper is to empirically investigate the health-led growth hypothesis for the Turkish economy. The bound test approach, autoregressive-distributed lag approach (ARDL) and Kalman filter modeling are employed for the 1975-2013 period to examine the co-integration relationship between economic growth and health expenditure. The ARDL model is employed in order to investigate the long-term and short-term static relationship between health expenditure and economic growth. The results show that a 1 % increase in per-capita health expenditure will lead to a 0.434 % increase in per-capita gross domestic product. These findings are also supported by the Kalman filter model's results. Our findings show that the health-led growth hypothesis is supported for Turkey.

  12. Causal relationship between CO₂ emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia.

    PubMed

    Farhani, Sahbi; Ozturk, Ilhan

    2015-10-01

    The aim of this paper is to examine the causal relationship between CO2 emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia over the period of 1971-2012. The long-run relationship is investigated by the auto-regressive distributed lag (ARDL) bounds testing approach to cointegration and error correction method (ECM). The results of the analysis reveal a positive sign for the coefficient of financial development, suggesting that the financial development in Tunisia has taken place at the expense of environmental pollution. The Tunisian case also shows a positive monotonic relationship between real GDP and CO2 emissions. This means that the results do not support the validity of environmental Kuznets curve (EKC) hypothesis. In addition, the paper explores causal relationship between the variables by using Granger causality models and it concludes that financial development plays a vital role in the Tunisian economy.

  13. Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm.

    PubMed

    Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam

    2014-07-01

    This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Multifractal detrended cross-correlations between crude oil market and Chinese ten sector stock markets

    NASA Astrophysics Data System (ADS)

    Yang, Liansheng; Zhu, Yingming; Wang, Yudong; Wang, Yiqi

    2016-11-01

    Based on the daily price data of spot prices of West Texas Intermediate (WTI) crude oil and ten CSI300 sector indices in China, we apply multifractal detrended cross-correlation analysis (MF-DCCA) method to investigate the cross-correlations between crude oil and Chinese sector stock markets. We find that the strength of multifractality between WTI crude oil and energy sector stock market is the highest, followed by the strength of multifractality between WTI crude oil and financial sector market, which reflects a close connection between energy and financial market. Then we do vector autoregression (VAR) analysis to capture the interdependencies among the multiple time series. By comparing the strength of multifractality for original data and residual errors of VAR model, we get a conclusion that vector auto-regression (VAR) model could not be used to describe the dynamics of the cross-correlations between WTI crude oil and the ten sector stock markets.

  15. Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace.

    PubMed

    Ullah, Arif; Khan, Dilawar; Khan, Imran; Zheng, Shaofeng

    2018-05-01

    The increasing trend of atmospheric carbon dioxide (CO 2 ) is the main cause of harmful anthropogenic greenhouse gas emissions, which may result in environmental pollution, global warming, and climate change. These issues are expected to adversely affect the agricultural ecosystem and well-being of the society. In order to minimize food insecurity and prevent hunger, a timely adaptation is desirable to reduce potential losses and to seek alternatives for promoting a global knowledge system for agricultural sustainability. This paper examines the causal relationship between agricultural ecosystem and CO 2 emissions as an environmental pollution indicator in Pakistan from the period 1972 to 2014 by employing Johansen cointegration, autoregressive distributed lag (ARDL) model, and Granger causality approach. The Johansen cointegration results show that there is a significant long-run relationship between the agricultural ecosystem and the CO 2 emissions. The long-run relationship shows that a 1% increase in biomass burned crop residues, emissions of CO 2 equivalent of nitrous oxide (N 2 O) from synthetic fertilizers, stock of livestock, agricultural machinery, cereal production, and other crop productions will increase CO 2 emissions by 1.29, 0.05, 0.45, 0.05, 0.03, and 0.65%, respectively. Further, our finding detects that there is a bidirectional causality of CO 2 emissions with rice area paddy harvested, cereal production, and other crop productions. The impulse response function analysis displays that biomass-burned crop residues, stock of livestock, agriculture machinery, cereal production, and other crop productions are significantly contributing to CO 2 emissions in Pakistan.

  16. Kumaraswamy autoregressive moving average models for double bounded environmental data

    NASA Astrophysics Data System (ADS)

    Bayer, Fábio Mariano; Bayer, Débora Missio; Pumi, Guilherme

    2017-12-01

    In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval (a,b) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.

  17. Development of novel types of plastid transformation vectors and evaluation of factors controlling expression.

    PubMed

    Herz, Stefan; Füssl, Monika; Steiger, Sandra; Koop, Hans-Ulrich

    2005-12-01

    Two new vector types for plastid transformation were developed and uidA reporter gene expression was compared to standard transformation vectors. The first vector type does not contain any plastid promoter, instead it relies on extension of existing plastid operons and was therefore named "operon-extension" vector. When a strongly expressed plastid operon like psbA was extended by the reporter gene with this vector type, the expression level was superior to that of a standard vector under control of the 16S rRNA promoter. Different insertion sites, promoters and 5'-UTRs were analysed for their effect on reporter gene expression with standard and operon-extension vectors. The 5'-UTR of phage 7 gene 10 in combination with a modified N-terminus was found to yield the highest expression levels. Expression levels were also strongly dependent on external factors like plant or leaf age or light intensity. In the second vector type, named "split" plastid transformation vector, modules of the expression cassette were distributed on two separate vectors. Upon co-transformation of plastids with these vectors, the complete expression cassette became inserted into the plastome. This result can be explained by successive co-integration of the split vectors and final loop-out recombination of the duplicated sequences. The split vector concept was validated with different vector pairs.

  18. [Public spending on health and population health in Algeria: an econometric analysis].

    PubMed

    Messaili, Moussa; Kaïd Tlilane, Nouara

    2017-07-10

    Objective: The objective of this study was to estimate the impact of public spending on health, among other determinants of health, on the health of the population in Algeria, using life expectancy (men and women) and infant mortality rates as indicators of health status. Methods: We conducted a longitudinal study over the period from 1974 to 2010 using the ARDL (Autoregressive Distributed Lags) approach to co-integration to estimate the short-term and long-term relationship. Results: Public spending on health has a positive, but not statistically significant impact, in the long and short term, on life expectancy (men and women). However, public spending significantly reduces the infant mortality rate. The long-term impact of the number of hospital beds is significant for the life expectancy of men, but not for women and infant mortality, but is significant for all indicators in the short-term relationship. The most important variables in improving the health of the population are real GDP per capita and fertility rate.

  19. Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Barrett, Adam B.; Seth, Anil K.

    2009-12-01

    Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. Developed originally in the field of econometrics, it has since found application in a broader arena, particularly in neuroscience. More recently transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes, has gained traction in a similarly wide field. While it has been recognized that the two concepts must be related, the exact relationship has until now not been formally described. Here we show that for Gaussian variables, Granger causality and transfer entropy are entirely equivalent, thus bridging autoregressive and information-theoretic approaches to data-driven causal inference.

  20. Structural Equation Modeling of Multivariate Time Series

    ERIC Educational Resources Information Center

    du Toit, Stephen H. C.; Browne, Michael W.

    2007-01-01

    The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…

  1. Towards homoscedastic nonlinear cointegration for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zolna, Konrad; Dao, Phong B.; Staszewski, Wieslaw J.; Barszcz, Tomasz

    2016-06-01

    The paper presents the homoscedastic nonlinear cointegration. The method leads to stable variances in nonlinear cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity (or homoscedasticity) in the cointegration residuals obtained from the nonlinear cointegration analysis. Three different time series - i.e. one with a nonlinear quadratic deterministic trend, simulated vibration data and experimental wind turbine data - are used to illustrate the application of the proposed method. The proposed approach can be used for effective removal of nonlinear trends from various types of data and for reliable structural damage detection based on data that are corrupted by environmental and/or operational nonlinear trends.

  2. Forecasting Daily Patient Outflow From a Ward Having No Real-Time Clinical Data

    PubMed Central

    Tran, Truyen; Luo, Wei; Phung, Dinh; Venkatesh, Svetha

    2016-01-01

    Background: Modeling patient flow is crucial in understanding resource demand and prioritization. We study patient outflow from an open ward in an Australian hospital, where currently bed allocation is carried out by a manager relying on past experiences and looking at demand. Automatic methods that provide a reasonable estimate of total next-day discharges can aid in efficient bed management. The challenges in building such methods lie in dealing with large amounts of discharge noise introduced by the nonlinear nature of hospital procedures, and the nonavailability of real-time clinical information in wards. Objective Our study investigates different models to forecast the total number of next-day discharges from an open ward having no real-time clinical data. Methods We compared 5 popular regression algorithms to model total next-day discharges: (1) autoregressive integrated moving average (ARIMA), (2) the autoregressive moving average with exogenous variables (ARMAX), (3) k-nearest neighbor regression, (4) random forest regression, and (5) support vector regression. Although the autoregressive integrated moving average model relied on past 3-month discharges, nearest neighbor forecasting used median of similar discharges in the past in estimating next-day discharge. In addition, the ARMAX model used the day of the week and number of patients currently in ward as exogenous variables. For the random forest and support vector regression models, we designed a predictor set of 20 patient features and 88 ward-level features. Results Our data consisted of 12,141 patient visits over 1826 days. Forecasting quality was measured using mean forecast error, mean absolute error, symmetric mean absolute percentage error, and root mean square error. When compared with a moving average prediction model, all 5 models demonstrated superior performance with the random forests achieving 22.7% improvement in mean absolute error, for all days in the year 2014. Conclusions In the absence of clinical information, our study recommends using patient-level and ward-level data in predicting next-day discharges. Random forest and support vector regression models are able to use all available features from such data, resulting in superior performance over traditional autoregressive methods. An intelligent estimate of available beds in wards plays a crucial role in relieving access block in emergency departments. PMID:27444059

  3. Integration of narrow-host-range vectors from Escherichia coli into the genomes of amino acid-producing corynebacteria after intergeneric conjugation.

    PubMed

    Mateos, L M; Schäfer, A; Kalinowski, J; Martin, J F; Pühler, A

    1996-10-01

    Conjugative transfer of mobilizable derivatives of the Escherichia coli narrow-host-range plasmids pBR322, pBR325, pACYC177, and pACYC184 from E. coli to species of the gram-positive genera Corynebacterium and Brevibacterium resulted in the integration of the plasmids into the genomes of the recipient bacteria. Transconjugants appeared at low frequencies and reproducibly with a delay of 2 to 3 days compared with matings with replicative vectors. Southern analysis of corynebacterial transconjugants and nucleotide sequences from insertion sites revealed that integration occurs at different locations and that different parts of the vector are involved in the process. Integration is not dependent on indigenous insertion sequence elements but results from recombination between very short homologous DNA segments (8 to 12 bp) present in the vector and in the host DNA. In the majority of the cases (90%), integration led to cointegrate formation, and in some cases, deletions or rearrangements occurred during the recombination event. Insertions were found to be quite stable even in the absence of selective pressure.

  4. Integration of narrow-host-range vectors from Escherichia coli into the genomes of amino acid-producing corynebacteria after intergeneric conjugation.

    PubMed Central

    Mateos, L M; Schäfer, A; Kalinowski, J; Martin, J F; Pühler, A

    1996-01-01

    Conjugative transfer of mobilizable derivatives of the Escherichia coli narrow-host-range plasmids pBR322, pBR325, pACYC177, and pACYC184 from E. coli to species of the gram-positive genera Corynebacterium and Brevibacterium resulted in the integration of the plasmids into the genomes of the recipient bacteria. Transconjugants appeared at low frequencies and reproducibly with a delay of 2 to 3 days compared with matings with replicative vectors. Southern analysis of corynebacterial transconjugants and nucleotide sequences from insertion sites revealed that integration occurs at different locations and that different parts of the vector are involved in the process. Integration is not dependent on indigenous insertion sequence elements but results from recombination between very short homologous DNA segments (8 to 12 bp) present in the vector and in the host DNA. In the majority of the cases (90%), integration led to cointegrate formation, and in some cases, deletions or rearrangements occurred during the recombination event. Insertions were found to be quite stable even in the absence of selective pressure. PMID:8824624

  5. The Response of US College Enrollment to Unexpected Changes in Macroeconomic Activity

    ERIC Educational Resources Information Center

    Ewing, Kris M.; Beckert, Kim A.; Ewing, Bradley T.

    2010-01-01

    This paper estimates the extent and magnitude of US college and university enrollment responses to unanticipated changes in macroeconomic activity. In particular, we consider the relationship between enrollment, economic growth, and inflation. A time series analysis known as a vector autoregression is estimated and impulse response functions are…

  6. Vector autoregressive model approach for forecasting outflow cash in Central Java

    NASA Astrophysics Data System (ADS)

    hoyyi, Abdul; Tarno; Maruddani, Di Asih I.; Rahmawati, Rita

    2018-05-01

    Multivariate time series model is more applied in economic and business problems as well as in other fields. Applications in economic problems one of them is the forecasting of outflow cash. This problem can be viewed globally in the sense that there is no spatial effect between regions, so the model used is the Vector Autoregressive (VAR) model. The data used in this research is data on the money supply in Bank Indonesia Semarang, Solo, Purwokerto and Tegal. The model used in this research is VAR (1), VAR (2) and VAR (3) models. Ordinary Least Square (OLS) is used to estimate parameters. The best model selection criteria use the smallest Akaike Information Criterion (AIC). The result of data analysis shows that the AIC value of VAR (1) model is equal to 42.72292, VAR (2) equals 42.69119 and VAR (3) equals 42.87662. The difference in AIC values is not significant. Based on the smallest AIC value criteria, the best model is the VAR (2) model. This model has satisfied the white noise assumption.

  7. Renewable energy, carbon emissions, and economic growth in 24 Asian countries: evidence from panel cointegration analysis.

    PubMed

    Lu, Wen-Cheng

    2017-11-01

    This article aims to investigate the relationship among renewable energy consumption, carbon dioxide (CO 2 ) emissions, and GDP using panel data for 24 Asian countries between 1990 and 2012. Panel cross-sectional dependence tests and unit root test, which considers cross-sectional dependence across countries, are used to ensure that the empirical results are correct. Using the panel cointegration model, the vector error correction model, and the Granger causality test, this paper finds that a long-run equilibrium exists among renewable energy consumption, carbon emission, and GDP. CO 2 emissions have a positive effect on renewable energy consumption in the Philippines, Pakistan, China, Iraq, Yemen, and Saudi Arabia. A 1% increase in GDP will increase renewable energy by 0.64%. Renewable energy is significantly determined by GDP in India, Sri Lanka, the Philippines, Thailand, Turkey, Malaysia, Jordan, United Arab Emirates, Saudi Arabia, and Mongolia. A unidirectional causality runs from GDP to CO 2 emissions, and two bidirectional causal relationships were found between CO 2 emissions and renewable energy consumption and between renewable energy consumption and GDP. The findings can assist governments in curbing pollution from air pollutants, execute energy conservation policy, and reduce unnecessary wastage of energy.

  8. [Cointegration test and variance decomposition for the relationship between economy and environment based on material flow analysis in Tangshan City Hebei China].

    PubMed

    2015-12-01

    The material flow account of Tangshan City was established by material flow analysis (MFA) method to analyze the periodical characteristics of material input and output in the operation of economy-environment system, and the impact of material input and output intensities on economic development. Using econometric model, the long-term interaction mechanism and relationship among the indexes of gross domestic product (GDP) , direct material input (DMI), domestic processed output (DPO) were investigated after unit root hypothesis test, Johansen cointegration test, vector error correction model, impulse response function and variance decomposition. The results showed that during 1992-2011, DMI and DPO both increased, and the growth rate of DMI was higher than that of DPO. The input intensity of DMI increased, while the intensity of DPO fell in volatility. Long-term stable cointegration relationship existed between GDP, DMI and DPO. Their interaction relationship showed a trend from fluctuation to gradual ste adiness. DMI and DPO had strong, positive impacts on economic development in short-term, but the economy-environment system gradually weakened these effects by short-term dynamically adjusting indicators inside and outside of the system. Ultimately, the system showed a long-term equilibrium relationship. The effect of economic scale on economy was gradually increasing. After decomposing the contribution of each index to GDP, it was found that DMI's contribution grew, GDP's contribution declined, DPO's contribution changed little. On the whole, the economic development of Tangshan City has followed the traditional production path of resource-based city, mostly depending on the material input which caused high energy consumption and serous environmental pollution.

  9. Dynamic RSA: Examining parasympathetic regulatory dynamics via vector-autoregressive modeling of time-varying RSA and heart period.

    PubMed

    Fisher, Aaron J; Reeves, Jonathan W; Chi, Cyrus

    2016-07-01

    Expanding on recently published methods, the current study presents an approach to estimating the dynamic, regulatory effect of the parasympathetic nervous system on heart period on a moment-to-moment basis. We estimated second-to-second variation in respiratory sinus arrhythmia (RSA) in order to estimate the contemporaneous and time-lagged relationships among RSA, interbeat interval (IBI), and respiration rate via vector autoregression. Moreover, we modeled these relationships at lags of 1 s to 10 s, in order to evaluate the optimal latency for estimating dynamic RSA effects. The IBI (t) on RSA (t-n) regression parameter was extracted from individual models as an operationalization of the regulatory effect of RSA on IBI-referred to as dynamic RSA (dRSA). Dynamic RSA positively correlated with standard averages of heart rate and negatively correlated with standard averages of RSA. We propose that dRSA reflects the active downregulation of heart period by the parasympathetic nervous system and thus represents a novel metric that provides incremental validity in the measurement of autonomic cardiac control-specifically, a method by which parasympathetic regulatory effects can be measured in process. © 2016 Society for Psychophysiological Research.

  10. Sensor network based solar forecasting using a local vector autoregressive ridge framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, J.; Yoo, S.; Heiser, J.

    2016-04-04

    The significant improvements and falling costs of photovoltaic (PV) technology make solar energy a promising resource, yet the cloud induced variability of surface solar irradiance inhibits its effective use in grid-tied PV generation. Short-term irradiance forecasting, especially on the minute scale, is critically important for grid system stability and auxiliary power source management. Compared to the trending sky imaging devices, irradiance sensors are inexpensive and easy to deploy but related forecasting methods have not been well researched. The prominent challenge of applying classic time series models on a network of irradiance sensors is to address their varying spatio-temporal correlations duemore » to local changes in cloud conditions. We propose a local vector autoregressive framework with ridge regularization to forecast irradiance without explicitly determining the wind field or cloud movement. By using local training data, our learned forecast model is adaptive to local cloud conditions and by using regularization, we overcome the risk of overfitting from the limited training data. Our systematic experimental results showed an average of 19.7% RMSE and 20.2% MAE improvement over the benchmark Persistent Model for 1-5 minute forecasts on a comprehensive 25-day dataset.« less

  11. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.

    PubMed

    Komasi, Mehdi; Sharghi, Soroush

    2016-01-01

    Because of the importance of water resources management, the need for accurate modeling of the rainfall-runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall-runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall-runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process.

  12. The relationship between carbon dioxide and agriculture in Ghana: a comparison of VECM and ARDL model.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-06-01

    In this paper, the relationship between carbon dioxide and agriculture in Ghana was investigated by comparing a Vector Error Correction Model (VECM) and Autoregressive Distributed Lag (ARDL) Model. Ten study variables spanning from 1961 to 2012 were employed from the Food Agricultural Organization. Results from the study show that carbon dioxide emissions affect the percentage annual change of agricultural area, coarse grain production, cocoa bean production, fruit production, vegetable production, and the total livestock per hectare of the agricultural area. The vector error correction model and the autoregressive distributed lag model show evidence of a causal relationship between carbon dioxide emissions and agriculture; however, the relationship decreases periodically which may die over-time. All the endogenous variables except total primary vegetable production lead to carbon dioxide emissions, which may be due to poor agricultural practices to meet the growing food demand in Ghana. The autoregressive distributed lag bounds test shows evidence of a long-run equilibrium relationship between the percentage annual change of agricultural area, cocoa bean production, total livestock per hectare of agricultural area, total pulses production, total primary vegetable production, and carbon dioxide emissions. It is important to end hunger and ensure people have access to safe and nutritious food, especially the poor, orphans, pregnant women, and children under-5 years in order to reduce maternal and infant mortalities. Nevertheless, it is also important that the Government of Ghana institutes agricultural policies that focus on promoting a sustainable agriculture using environmental friendly agricultural practices. The study recommends an integration of climate change measures into Ghana's national strategies, policies and planning in order to strengthen the country's effort to achieving a sustainable environment.

  13. Three essays on price dynamics and causations among energy markets and macroeconomic information

    NASA Astrophysics Data System (ADS)

    Hong, Sung Wook

    This dissertation examines three important issues in energy markets: price dynamics, information flow, and structural change. We discuss each issue in detail, building empirical time series models, analyzing the results, and interpreting the findings. First, we examine the contemporaneous interdependencies and information flows among crude oil, natural gas, and electricity prices in the United States (US) through the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) model, Directed Acyclic Graph (DAG) for contemporaneous causal structures and Bernanke factorization for price dynamic processes. Test results show that the DAG from residuals of out-of-sample-forecast is consistent with the DAG from residuals of within-sample-fit. The result supports innovation accounting analysis based on DAGs using residuals of out-of-sample-forecast. Second, we look at the effects of the federal fund rate and/or WTI crude oil price shock on US macroeconomic and financial indicators by using a Factor Augmented Vector Autoregression (FAVAR) model and a graphical model without any deductive assumption. The results show that, in contemporaneous time, the federal fund rate shock is exogenous as the identifying assumption in the Vector Autoregression (VAR) framework of the monetary shock transmission mechanism, whereas the WTI crude oil price return is not exogenous. Third, we examine price dynamics and contemporaneous causality among the price returns of WTI crude oil, gasoline, corn, and the S&P 500. We look for structural break points and then build an econometric model to find the consistent sub-periods having stable parameters in a given VAR framework and to explain recent movements and interdependency among returns. We found strong evidence of two structural breaks and contemporaneous causal relationships among the residuals, but also significant differences between contemporaneous causal structures for each sub-period.

  14. Spatial Models for Prediction and Early Warning of Aedes aegypti Proliferation from Data on Climate Change and Variability in Cuba.

    PubMed

    Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R

    2015-04-01

    Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.

  15. Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration

    NASA Astrophysics Data System (ADS)

    Laconte, Jean; Flandre, D.; Raskin, Jean-Pierre

    Co-integration of sensors with their associated electronics on a single silicon chip may provide many significant benefits regarding performance, reliability, miniaturization and process simplicity without significantly increasing the total cost. Micromachined Thin-Film Sensors for SOI-CMOS Co-integration covers the challenges and interests and demonstrates the successful co-integration of gas flow sensors on dielectric membrane, with their associated electronics, in CMOS-SOI technology. We firstly investigate the extraction of residual stress in thin layers and in their stacking and the release, in post-processing, of a 1 μm-thick robust and flat dielectric multilayered membrane using Tetramethyl Ammonium Hydroxide (TMAH) silicon micromachining solution.

  16. Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models

    NASA Astrophysics Data System (ADS)

    Dettmer, Jan; Molnar, Sheri; Steininger, Gavin; Dosso, Stan E.; Cassidy, John F.

    2012-02-01

    This paper applies a general trans-dimensional Bayesian inference methodology and hierarchical autoregressive data-error models to the inversion of microtremor array dispersion data for shear wave velocity (vs) structure. This approach accounts for the limited knowledge of the optimal earth model parametrization (e.g. the number of layers in the vs profile) and of the data-error statistics in the resulting vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the indexing parameter) are considered in the results. The earth model is parametrized in terms of a partition model with interfaces given over a depth-range of interest. In this work, the number of interfaces (layers) in the partition model represents the trans-dimensional model indexing. In addition, serial data-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate data-error statistics, and have no requirement for computing the inverse or determinant of a data-error covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the state space that spans multiple subspaces of different dimensionalities. The order of the autoregressive process required to fit the data is determined here by posterior residual-sample examination and statistical tests. Inference for earth model parameters is carried out on the trans-dimensional posterior probability distribution by considering ensembles of parameter vectors. In particular, vs uncertainty estimates are obtained by marginalizing the trans-dimensional posterior distribution in terms of vs-profile marginal distributions. The methodology is applied to microtremor array dispersion data collected at two sites with significantly different geology in British Columbia, Canada. At both sites, results show excellent agreement with estimates from invasive measurements.

  17. The dynamic relationship between Bursa Malaysia composite index and macroeconomic variables

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Tahir; Rose, Farid Zamani Che; Rahman, Rosmanjawati Abd.

    2017-08-01

    This study investigates and analyzes the long run and short run relationships between Bursa Malaysia Composite index (KLCI) and nine macroeconomic variables in a VAR/VECM framework. After regression analysis seven out the nine macroeconomic variables are chosen for further analysis. The use of Johansen-Juselius Cointegration and Vector Error Correction Model (VECM) technique indicate that there are long run relationships between the seven macroeconomic variables and KLCI. Meanwhile, Granger causality test shows that bidirectional relationship between KLCI and oil price. Furthermore, after 12 months the shock on KLCI are explained by innovations of the seven macroeconomic variables. This indicate the close relationship between macroeconomic variables and KLCI.

  18. Corrected goodness-of-fit test in covariance structure analysis.

    PubMed

    Hayakawa, Kazuhiko

    2018-05-17

    Many previous studies report simulation evidence that the goodness-of-fit test in covariance structure analysis or structural equation modeling suffers from the overrejection problem when the number of manifest variables is large compared with the sample size. In this study, we demonstrate that one of the tests considered in Browne (1974) can address this long-standing problem. We also propose a simple modification of Satorra and Bentler's mean and variance adjusted test for non-normal data. A Monte Carlo simulation is carried out to investigate the performance of the corrected tests in the context of a confirmatory factor model, a panel autoregressive model, and a cross-lagged panel (panel vector autoregressive) model. The simulation results reveal that the corrected tests overcome the overrejection problem and outperform existing tests in most cases. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Comparison of six methods for the detection of causality in a bivariate time series

    NASA Astrophysics Data System (ADS)

    Krakovská, Anna; Jakubík, Jozef; Chvosteková, Martina; Coufal, David; Jajcay, Nikola; Paluš, Milan

    2018-04-01

    In this comparative study, six causality detection methods were compared, namely, the Granger vector autoregressive test, the extended Granger test, the kernel version of the Granger test, the conditional mutual information (transfer entropy), the evaluation of cross mappings between state spaces, and an assessment of predictability improvement due to the use of mixed predictions. Seven test data sets were analyzed: linear coupling of autoregressive models, a unidirectional connection of two Hénon systems, a unidirectional connection of chaotic systems of Rössler and Lorenz type and of two different Rössler systems, an example of bidirectionally connected two-species systems, a fishery model as an example of two correlated observables without a causal relationship, and an example of mediated causality. We tested not only 20 000 points long clean time series but also noisy and short variants of the data. The standard and the extended Granger tests worked only for the autoregressive models. The remaining methods were more successful with the more complex test examples, although they differed considerably in their capability to reveal the presence and the direction of coupling and to distinguish causality from mere correlation.

  20. Questioning the sustainable palm oil demand: case study from French-Indonesia supply chain

    NASA Astrophysics Data System (ADS)

    Chalil, D.; Barus, R.

    2018-02-01

    Sustainable palm oil has been widely debated. Consuming countries insist certified sustainable produces palm oil, but in fact the absorption of the certified palm oil is still less than 60%. This raise questions about the sustainable palm oil demand. In this study, such a condition will be analysed in French-Indonesia supply chain case. Using monthly and quarterly data from 2010 to 2016 with Autoregressive Distributed Lag (ARDL) approach and Error Correction Model, demand influencing factors and price integration in each market of the supply chain is estimated. Two scenarios namely re-export and direct export models are considered in the Error Correction Model. The results show that France Gross Domestic Product, prices of France palm oil import from Indonesia, Malaysia, and Germany, and price of France groundnut import significantly influence the France palm oil import volume from Indonesia. Prices in each market along palm oil re-export France-Indonesia supply chain are co-integrated and converge towards long-run equilibrium, but not in the direct export supply chain. This leads to a conclusion that France market preferences in specific and EU market preferences in general need to be considered by Indonesian palm oil decision makers.

  1. An 'instant gene bank' method for gene cloning by mutant complementation.

    PubMed

    Gems, D; Aleksenko, A; Belenky, L; Robertson, S; Ramsden, M; Vinetski, Y; Clutterbuck, A J

    1994-02-01

    We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication ('helper plasmid'). Transformant colonies appear as the result of the joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this "instant gene bank" technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.

  2. Multivariate co-integration analysis of the Kaya factors in Ghana.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-05-01

    The fundamental goal of the Government of Ghana's development agenda as enshrined in the Growth and Poverty Reduction Strategy to grow the economy to a middle income status of US$1000 per capita by the end of 2015 could be met by increasing the labour force, increasing energy supplies and expanding the energy infrastructure in order to achieve the sustainable development targets. In this study, a multivariate co-integration analysis of the Kaya factors namely carbon dioxide, total primary energy consumption, population and GDP was investigated in Ghana using vector error correction model with data spanning from 1980 to 2012. Our research results show an existence of long-run causality running from population, GDP and total primary energy consumption to carbon dioxide emissions. However, there is evidence of short-run causality running from population to carbon dioxide emissions. There was a bi-directional causality running from carbon dioxide emissions to energy consumption and vice versa. In other words, decreasing the primary energy consumption in Ghana will directly reduce carbon dioxide emissions. In addition, a bi-directional causality running from GDP to energy consumption and vice versa exists in the multivariate model. It is plausible that access to energy has a relationship with increasing economic growth and productivity in Ghana.

  3. Approaches to nonlinear cointegration with a view towards applications in SHM

    NASA Astrophysics Data System (ADS)

    Cross, E. J.; Worden, K.

    2011-07-01

    One of the major problems confronting the application of Structural Health Monitoring (SHM) to real structures is that of divorcing the effect of environmental changes from those imposed by damage. A recent development in this area is the import of the technique of cointegration from the field of econometrics. While cointegration is a mature technology within economics, its development has been largely concerned with linear time-series analysis and this places a severe constraint on its application - particularly in the new context of SHM where damage can often make a given structure nonlinear. The objective of the current paper is to introduce two possible approaches to nonlinear cointegration: the first is an optimisation-based method; the second is a variation of the established Johansen procedure based on the use of an augmented basis. Finally, the ideas of nonlinear cointegration will be explored through application to real SHM data from the benchmark project on the Z24 Highway Bridge.

  4. Cointegration analysis and influence rank—A network approach to global stock markets

    NASA Astrophysics Data System (ADS)

    Yang, Chunxia; Chen, Yanhua; Niu, Lei; Li, Qian

    2014-04-01

    In this paper, cointegration relationships among 26 global stock market indices over the periods of sub-prime and European debt crisis and their influence rank are investigated by constructing and analyzing directed and weighted cointegration networks. The obtained results are shown as follows: the crises have changed cointegration relationships among stock market indices, their cointegration relationship increased after the Lehman Brothers collapse, while the degree of cointegration gradually decreased from the sub-prime to European debt crisis. The influence of US, Japan and China market indices are entirely distinguished over different periods. Before European debt crisis US stock market is a ‘global factor’ which leads the developed and emerging markets, while the influence of US stock market decreased evidently during the European debt crisis. Before sub-prime crisis, there is no significant evidence to show that other stock markets co-move with China stock market, while it becomes more integrated with other markets during the sub-prime and European debt crisis. Among developed and emerging stock markets, the developed stock markets lead the world stock markets before European debt crisis, while due to the shock of sub-prime and European debt crisis, their influences decreased and emerging stock markets replaced them to lead global stock markets.

  5. Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model.

    PubMed

    Bringmann, Laura F; Ferrer, Emilio; Hamaker, Ellen L; Borsboom, Denny; Tuerlinckx, Francis

    2018-01-01

    Emotion dynamics are likely to arise in an interpersonal context. Standard methods to study emotions in interpersonal interaction are limited because stationarity is assumed. This means that the dynamics, for example, time-lagged relations, are invariant across time periods. However, this is generally an unrealistic assumption. Whether caused by an external (e.g., divorce) or an internal (e.g., rumination) event, emotion dynamics are prone to change. The semi-parametric time-varying vector-autoregressive (TV-VAR) model is based on well-studied generalized additive models, implemented in the software R. The TV-VAR can explicitly model changes in temporal dependency without pre-existing knowledge about the nature of change. A simulation study is presented, showing that the TV-VAR model is superior to the standard time-invariant VAR model when the dynamics change over time. The TV-VAR model is applied to empirical data on daily feelings of positive affect (PA) from a single couple. Our analyses indicate reliable changes in the male's emotion dynamics over time, but not in the female's-which were not predicted by her own affect or that of her partner. This application illustrates the usefulness of using a TV-VAR model to detect changes in the dynamics in a system.

  6. Hybrid Support Vector Regression and Autoregressive Integrated Moving Average Models Improved by Particle Swarm Optimization for Property Crime Rates Forecasting with Economic Indicators

    PubMed Central

    Alwee, Razana; Hj Shamsuddin, Siti Mariyam; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models. PMID:23766729

  7. Dealing with Multiple Solutions in Structural Vector Autoregressive Models.

    PubMed

    Beltz, Adriene M; Molenaar, Peter C M

    2016-01-01

    Structural vector autoregressive models (VARs) hold great potential for psychological science, particularly for time series data analysis. They capture the magnitude, direction of influence, and temporal (lagged and contemporaneous) nature of relations among variables. Unified structural equation modeling (uSEM) is an optimal structural VAR instantiation, according to large-scale simulation studies, and it is implemented within an SEM framework. However, little is known about the uniqueness of uSEM results. Thus, the goal of this study was to investigate whether multiple solutions result from uSEM analysis and, if so, to demonstrate ways to select an optimal solution. This was accomplished with two simulated data sets, an empirical data set concerning children's dyadic play, and modifications to the group iterative multiple model estimation (GIMME) program, which implements uSEMs with group- and individual-level relations in a data-driven manner. Results revealed multiple solutions when there were large contemporaneous relations among variables. Results also verified several ways to select the correct solution when the complete solution set was generated, such as the use of cross-validation, maximum standardized residuals, and information criteria. This work has immediate and direct implications for the analysis of time series data and for the inferences drawn from those data concerning human behavior.

  8. Two Different Points of View through Artificial Intelligence and Vector Autoregressive Models for Ex Post and Ex Ante Forecasting

    PubMed Central

    Aydin, Alev Dilek; Caliskan Cavdar, Seyma

    2015-01-01

    The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method. PMID:26550010

  9. Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators.

    PubMed

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.

  10. Two Different Points of View through Artificial Intelligence and Vector Autoregressive Models for Ex Post and Ex Ante Forecasting.

    PubMed

    Aydin, Alev Dilek; Caliskan Cavdar, Seyma

    2015-01-01

    The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method.

  11. At the Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective Measurements from the COGITO Study.

    PubMed

    Hamaker, E L; Asparouhov, T; Brose, A; Schmiedek, F; Muthén, B

    2018-04-06

    With the growing popularity of intensive longitudinal research, the modeling techniques and software options for such data are also expanding rapidly. Here we use dynamic multilevel modeling, as it is incorporated in the new dynamic structural equation modeling (DSEM) toolbox in Mplus, to analyze the affective data from the COGITO study. These data consist of two samples of over 100 individuals each who were measured for about 100 days. We use composite scores of positive and negative affect and apply a multilevel vector autoregressive model to allow for individual differences in means, autoregressions, and cross-lagged effects. Then we extend the model to include random residual variances and covariance, and finally we investigate whether prior depression affects later depression scores through the random effects of the daily diary measures. We end with discussing several urgent-but mostly unresolved-issues in the area of dynamic multilevel modeling.

  12. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models.

    PubMed

    Lawhern, Vernon; Hairston, W David; McDowell, Kaleb; Westerfield, Marissa; Robbins, Kay

    2012-07-15

    We examine the problem of accurate detection and classification of artifacts in continuous EEG recordings. Manual identification of artifacts, by means of an expert or panel of experts, can be tedious, time-consuming and infeasible for large datasets. We use autoregressive (AR) models for feature extraction and characterization of EEG signals containing several kinds of subject-generated artifacts. AR model parameters are scale-invariant features that can be used to develop models of artifacts across a population. We use a support vector machine (SVM) classifier to discriminate among artifact conditions using the AR model parameters as features. Results indicate reliable classification among several different artifact conditions across subjects (approximately 94%). These results suggest that AR modeling can be a useful tool for discriminating among artifact signals both within and across individuals. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    PubMed

    Zhai, Shiyan; Song, Genxin; Qin, Yaochen; Ye, Xinyue; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  14. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach

    PubMed Central

    Qin, Yaochen; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention. PMID:28950027

  15. A nonlinear cointegration approach with applications to structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shi, H.; Worden, K.; Cross, E. J.

    2016-09-01

    One major obstacle to the implementation of structural health monitoring (SHM) is the effect of operational and environmental variabilities, which may corrupt the signal of structural degradation. Recently, an approach inspired from the community of econometrics, called cointegration, has been employed to eliminate the adverse influence from operational and environmental changes and still maintain sensitivity to structural damage. However, the linear nature of cointegration may limit its application when confronting nonlinear relations between system responses. This paper proposes a nonlinear cointegration method based on Gaussian process regression (GPR); the method is constructed under the Engle-Granger framework, and tests for unit root processes are conducted both before and after the GPR is applied. The proposed approach is examined with real engineering data from the monitoring of the Z24 Bridge.

  16. Understanding the Role of Deterrence in Counterterrorism Security

    DTIC Science & Technology

    2009-11-01

    30, No. 5, pp. 429–443. Enders, W., Sandler, T. (1993). “The Effectiveness of Anti-Terrorism Policies: Vector Autoregression Intervention Analysis ...occasional paper series . RAND occasional papers may include an informed perspective on a timely policy issue, a discussion of new research...United States safe? Are better means available for evaluating what may work or not and why? This series is designed to focus on a small set of

  17. General dependencies and causality analysis of road traffic fatalities in OECD countries.

    PubMed

    Yaseen, Muhammad Rizwan; Ali, Qamar; Khan, Muhammad Tariq Iqbal

    2018-05-07

    The road traffic accidents were responsible for material and human loss which was equal to 2.8 to 5% of gross national product (GNP). However, literature does not explore the elasticity coefficients and nexus of road traffic fatalities with foreign direct investment, health expenditures, trade openness, mobile subscriptions, the number of researchers in R&D department, and environmental particulate matter. This study filled this research gap by exploring the nexus between road traffic fatalities, foreign direct investment, health expenditures, trade openness, mobile subscriptions, the number of researchers, and environmental particulate matter in Organization for Economic Cooperation and Development (OECD) countries by using panel data from 1995 to 2015. The panel Autoregressive Distributed Lag (ARDL) bound test was used for the detection of cointegration between the variables after checking the stationarity in selected variables with different panel unit root tests. Panel vector error correction model explored the causality of road traffic fatalities, foreign direct investment, PM2.5 in the environment, and trade openness in the long run. Road traffic fatalities showed short run bi-directional causality with foreign direct investment and health expenditures. The short run bi-directional causality was also observed between trade and foreign direct investment and cellular mobile subscriptions and foreign direct investment. The panel fully modified ordinary least square (FMOLS) and panel dynamic ordinary least square (DOLS) showed the 0.947% reduction in road fatalities for 1% increase in the health expenditures in OECD countries. The significant reduction in road fatalities was also observed due to 1% increase in trade openness and researchers in R&D, which implies the importance of trade and research for road safety. It is required to invest in the health sector for the safety of precious human lives like the hospitals with latest medical equipment and improvement in the emergency services in the country. The research and development activities should be enhanced especially for the health and transportation sectors. The trade of environment-friendly technology should be promoted for the protection of environment.

  18. FBST for Cointegration Problems

    NASA Astrophysics Data System (ADS)

    Diniz, M.; Pereira, C. A. B.; Stern, J. M.

    2008-11-01

    In order to estimate causal relations, the time series econometrics has to be aware of spurious correlation, a problem first mentioned by Yule [21]. To solve the problem, one can work with differenced series or use multivariate models like VAR or VEC models. In this case, the analysed series are going to present a long run relation i.e. a cointegration relation. Even though the Bayesian literature about inference on VAR/VEC models is quite advanced, Bauwens et al. [2] highlight that "the topic of selecting the cointegrating rank has not yet given very useful and convincing results." This paper presents the Full Bayesian Significance Test applied to cointegration rank selection tests in multivariate (VAR/VEC) time series models and shows how to implement it using available in the literature and simulated data sets. A standard non-informative prior is assumed.

  19. Dynamic relationship between CO2 emissions, energy consumption and economic growth in three North African countries

    NASA Astrophysics Data System (ADS)

    Kais, Saidi; Ben Mbarek, Mounir

    2017-10-01

    This paper investigated the causal relationship between energy consumption (EC), carbon dioxide (CO2) emissions and economic growth for three selected North African countries. It uses a panel co-integration analysis to determine this econometric relationship using data during 1980-2012. Recently developed tests for panel unit root and co-integration tests are applied. In order to test the Granger causality, a panel Vector Error Correction Model is used. The conservation hypothesis is found; the short run panel results show that there is a unidirectional relationship from economic growth to EC. In addition, there is a unidirectional causality running from economic growth to CO2 emissions. A unidirectional relationship from EC to CO2 emissions is detected. Findings shown that there is a big interdependence between EC and economic growth in the long run, which indicates the level of economic activity and EC mutually influence each other in that a high level of economic growth leads to a high level of EC and vice versa. Similarly, a unidirectional causal relationship from EC to CO2 emissions is detected. This study opens up new insights for policy-makers to design comprehensive economic, energy and environmental policy to keep the economic green and a sustainable environment, implying that these three variables could play an important role in the adjustment process as the system changes from the long run equilibrium.

  20. A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter Concentration Forecasting: A Case Study of Kunming and Yuxi, China.

    PubMed

    Li, Weide; Kong, Demeng; Wu, Jinran

    2017-01-01

    Air pollution in China is becoming more serious especially for the particular matter (PM) because of rapid economic growth and fast expansion of urbanization. To solve the growing environment problems, daily PM2.5 and PM10 concentration data form January 1, 2015, to August 23, 2016, in Kunming and Yuxi (two important cities in Yunnan Province, China) are used to present a new hybrid model CI-FPA-SVM to forecast air PM2.5 and PM10 concentration in this paper. The proposed model involves two parts. Firstly, due to its deficiency to assess the possible correlation between different variables, the cointegration theory is introduced to get the input-output relationship and then obtain the nonlinear dynamical system with support vector machine (SVM), in which the parameters c and g are optimized by flower pollination algorithm (FPA). Six benchmark models, including FPA-SVM, CI-SVM, CI-GA-SVM, CI-PSO-SVM, CI-FPA-NN, and multiple linear regression model, are considered to verify the superiority of the proposed hybrid model. The empirical study results demonstrate that the proposed model CI-FPA-SVM is remarkably superior to all considered benchmark models for its high prediction accuracy, and the application of the model for forecasting can give effective monitoring and management of further air quality.

  1. A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter Concentration Forecasting: A Case Study of Kunming and Yuxi, China

    PubMed Central

    Wu, Jinran

    2017-01-01

    Air pollution in China is becoming more serious especially for the particular matter (PM) because of rapid economic growth and fast expansion of urbanization. To solve the growing environment problems, daily PM2.5 and PM10 concentration data form January 1, 2015, to August 23, 2016, in Kunming and Yuxi (two important cities in Yunnan Province, China) are used to present a new hybrid model CI-FPA-SVM to forecast air PM2.5 and PM10 concentration in this paper. The proposed model involves two parts. Firstly, due to its deficiency to assess the possible correlation between different variables, the cointegration theory is introduced to get the input-output relationship and then obtain the nonlinear dynamical system with support vector machine (SVM), in which the parameters c and g are optimized by flower pollination algorithm (FPA). Six benchmark models, including FPA-SVM, CI-SVM, CI-GA-SVM, CI-PSO-SVM, CI-FPA-NN, and multiple linear regression model, are considered to verify the superiority of the proposed hybrid model. The empirical study results demonstrate that the proposed model CI-FPA-SVM is remarkably superior to all considered benchmark models for its high prediction accuracy, and the application of the model for forecasting can give effective monitoring and management of further air quality. PMID:28932237

  2. A two-model hydrologic ensemble prediction of hydrograph: case study from the upper Nysa Klodzka river basin (SW Poland)

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Mizinski, Bartlomiej

    2016-04-01

    The HydroProg system has been elaborated in frame of the research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland and is steadily producing multimodel ensemble predictions of hydrograph in real time. Although there are six ensemble members available at present, the longest record of predictions and their statistics is available for two data-based models (uni- and multivariate autoregressive models). Thus, we consider 3-hour predictions of water levels, with lead times ranging from 15 to 180 minutes, computed every 15 minutes since August 2013 for the Nysa Klodzka basin (SW Poland) using the two approaches and their two-model ensemble. Since the launch of the HydroProg system there have been 12 high flow episodes, and the objective of this work is to present the performance of the two-model ensemble in the process of forecasting these events. For a sake of brevity, we limit our investigation to a single gauge located at the Nysa Klodzka river in the town of Klodzko, which is centrally located in the studied basin. We identified certain regular scenarios of how the models perform in predicting the high flows in Klodzko. At the initial phase of the high flow, well before the rising limb of hydrograph, the two-model ensemble is found to provide the most skilful prognoses of water levels. However, while forecasting the rising limb of hydrograph, either the two-model solution or the vector autoregressive model offers the best predictive performance. In addition, it is hypothesized that along with the development of the rising limb phase, the vector autoregression becomes the most skilful approach amongst the scrutinized ones. Our simple two-model exercise confirms that multimodel hydrologic ensemble predictions cannot be treated as universal solutions suitable for forecasting the entire high flow event, but their superior performance may hold only for certain phases of a high flow.

  3. Three essays in energy consumption: Time series analyses

    NASA Astrophysics Data System (ADS)

    Ahn, Hee Bai

    1997-10-01

    Firstly, this dissertation investigates that which demand specification is an appropriate model for long-run energy demand between the conventional demand specification and the limited demand specification. In order to determine the components of a stable long-run demand for different sectors of the energy industry, I perform cointegration tests by using the Johansen test procedure. First, I test the conventional demand specification including prices and income as components. Second, I test a limited demand specification only income as a component. The reason for performing these tests is that we can determine that which demand specification is a good long-run predictor of energy consumption between the two demand specifications by using the cointegration tests. Secondly, for the purpose of planning and forecasting energy demand in case of cointegrated system, long-run elasticities are of particular interest. To retrieve the optimal level of energy demand in case of price shock, we need long-run elasticities rather than short-run elasticities. The energy demand study provides valuable information to the energy policy makers who are concerned about the long-run impact of taxes and tariffs. A long-run price elasticity is a primary barometer of the substitution effect between energy and non-energy inputs and long-run income elasticity is an important factor since we can measure the energy demand growing slowly or fast than in the past depending on the magnitude of long-run elasticity. The one other problem in estimating the total energy demand is that there exists an aggregation bias stemming from the process of summation in four different energy types for the total aggregation prices and total aggregation energy consumption. In order to measure the aggregation bias between the Btu aggregation method and the Divisia Index method, i.e., which methodology has less aggregation bias in the long-run, I compare the two estimation results with calculated results estimated on a disaggregated basis. Thus, we can confirm whether or not the theoretically superior methodology has less aggregation bias in empirical estimation. Thirdly, I investigate the causal relationships between energy use and GDP. In order to detect causal relationships both in the long-run and in the short-run, the VECM (Vector Error Correction Model) can be used if there exists cointegration relationships among the variables. I detect the causal effects between energy use and GDP by estimating the VECM based on the multivariate production function including the labor and capital variables.

  4. A graphical vector autoregressive modelling approach to the analysis of electronic diary data

    PubMed Central

    2010-01-01

    Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR) models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical) VAR models. Results The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED). The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours. Conclusion The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research. PMID:20359333

  5. Multispectral code excited linear prediction coding and its application in magnetic resonance images.

    PubMed

    Hu, J H; Wang, Y; Cahill, P T

    1997-01-01

    This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.

  6. A vector auto-regressive model for onshore and offshore wind synthesis incorporating meteorological model information

    NASA Astrophysics Data System (ADS)

    Hill, D.; Bell, K. R. W.; McMillan, D.; Infield, D.

    2014-05-01

    The growth of wind power production in the electricity portfolio is striving to meet ambitious targets set, for example by the EU, to reduce greenhouse gas emissions by 20% by 2020. Huge investments are now being made in new offshore wind farms around UK coastal waters that will have a major impact on the GB electrical supply. Representations of the UK wind field in syntheses which capture the inherent structure and correlations between different locations including offshore sites are required. Here, Vector Auto-Regressive (VAR) models are presented and extended in a novel way to incorporate offshore time series from a pan-European meteorological model called COSMO, with onshore wind speeds from the MIDAS dataset provided by the British Atmospheric Data Centre. Forecasting ability onshore is shown to be improved with the inclusion of the offshore sites with improvements of up to 25% in RMS error at 6 h ahead. In addition, the VAR model is used to synthesise time series of wind at each offshore site, which are then used to estimate wind farm capacity factors at the sites in question. These are then compared with estimates of capacity factors derived from the work of Hawkins et al. (2011). A good degree of agreement is established indicating that this synthesis tool should be useful in power system impact studies.

  7. Stochastic Parametrization for the Impact of Neglected Variability Patterns

    NASA Astrophysics Data System (ADS)

    Kaiser, Olga; Hien, Steffen; Achatz, Ulrich; Horenko, Illia

    2017-04-01

    An efficient description of the gravity wave variability and the related spontaneous emission processes requires an empirical stochastic closure for the impact of neglected variability patterns (subgridscales or SGS). In particular, we focus on the analysis of the IGW emission within a tangent linear model which requires a stochastic SGS parameterization for taking the self interaction of the ageostrophic flow components into account. For this purpose, we identify the best SGS model in terms of exactness and simplicity by deploying a wide range of different data-driven model classes, including standard stationary regression models, autoregression and artificial neuronal networks models - as well as the family of nonstationary models like FEM-BV-VARX model class (Finite Element based vector autoregressive time series analysis with bounded variation of the model parameters). The models are used to investigate the main characteristics of the underlying dynamics and to explore the significant spatial and temporal neighbourhood dependencies. The best SGS model in terms of exactness and simplicity is obtained for the nonstationary FEM-BV-VARX setting, determining only direct spatial and temporal neighbourhood as significant - and allowing to drastically reduce the number of informations that are required for the optimal SGS. Additionally, the models are characterized by sets of vector- and matrix-valued parameters that must be inferred from big data sets provided by simulations - making it a task that can not be solved without deploying high-performance computing facilities (HPC).

  8. Cointegration as a data normalization tool for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2012-04-01

    The structural health monitoring literature has shown an abundance of features sensitive to various types of damage in laboratory tests. However, robust feature extraction in the presence of varying operational and environmental conditions has proven to be one of the largest obstacles in the development of practical structural health monitoring systems. Cointegration, a technique adapted from the field of econometrics, has recently been introduced to the SHM field as one solution to the data normalization problem. Response measurements and feature histories often show long-run nonstationarity due to fluctuating temperature, load conditions, or other factors that leads to the occurrence of false positives. Cointegration theory allows nonstationary trends common to two or more time series to be modeled and subsequently removed. Thus, the residual retains sensitivity to damage with dependence on operational and environmental variability removed. This study further explores the use of cointegration as a data normalization tool for structural health monitoring applications.

  9. Modelling cointegration and Granger causality network to detect long-term equilibrium and diffusion paths in the financial system.

    PubMed

    Gao, Xiangyun; Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng

    2018-03-01

    Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion.

  10. Modelling cointegration and Granger causality network to detect long-term equilibrium and diffusion paths in the financial system

    PubMed Central

    Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng

    2018-01-01

    Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion. PMID:29657804

  11. Dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria.

    PubMed

    Ali, Hamisu Sadi; Law, Siong Hook; Zannah, Talha Ibrahim

    2016-06-01

    The objective of this paper is to examine the dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria based on autoregressive distributed lags (ARDL) approach for the period of 1971-2011. The result shows that variables were cointegrated as null hypothesis was rejected at 1 % level of significance. The coefficients of long-run result reveal that urbanization does not have any significant impact on CO 2 emissions in Nigeria, economic growth, and energy consumption has a positive and significant impact on CO 2 emissions. However, trade openness has negative and significant impact on CO 2 emissions. Consumption of energy is among the main determinant of CO 2 emissions which is directly linked to the level of income. Despite the high level of urbanization in the country, consumption of energy still remains low due to lower income of the majority populace and this might be among the reasons why urbanization does not influence emissions of CO 2 in the country. Initiating more open economy policies will be welcoming in the Nigerian economy as the openness leads to the reduction of pollutants from the environment particularly CO 2 emissions which is the major gases that deteriorate physical environment.

  12. The dynamic correlation between policy uncertainty and stock market returns in China

    NASA Astrophysics Data System (ADS)

    Yang, Miao; Jiang, Zhi-Qiang

    2016-11-01

    The dynamic correlation is examined between government's policy uncertainty and Chinese stock market returns in the period from January 1995 to December 2014. We find that the stock market is significantly correlated to policy uncertainty based on the results of the Vector Auto Regression (VAR) and Structural Vector Auto Regression (SVAR) models. In contrast, the results of the Dynamic Conditional Correlation Generalized Multivariate Autoregressive Conditional Heteroscedasticity (DCC-MGARCH) model surprisingly show a low dynamic correlation coefficient between policy uncertainty and market returns, suggesting that the fluctuations of each variable are greatly influenced by their values in the preceding period. Our analysis highlights the understanding of the dynamical relationship between stock market and fiscal and monetary policy.

  13. Comparison between goal programming and cointegration approaches in enhanced index tracking

    NASA Astrophysics Data System (ADS)

    Lam, Weng Siew; Jamaan, Saiful Hafizah Hj.

    2013-04-01

    Index tracking is a popular form of passive fund management in stock market. Passive management is a buy-and-hold strategy that aims to achieve rate of return similar to the market return. Index tracking problem is a problem of reproducing the performance of a stock market index, without purchasing all of the stocks that make up the index. This can be done by establishing an optimal portfolio that minimizes risk or tracking error. An improved index tracking (enhanced index tracking) is a dual-objective optimization problem, a trade-off between maximizing the mean return and minimizing the tracking error. Enhanced index tracking aims to generate excess return over the return achieved by the index. The objective of this study is to compare the portfolio compositions and performances by using two different approaches in enhanced index tracking problem, which are goal programming and cointegration. The result of this study shows that the optimal portfolios for both approaches are able to outperform the Malaysia market index which is Kuala Lumpur Composite Index. Both approaches give different optimal portfolio compositions. Besides, the cointegration approach outperforms the goal programming approach because the cointegration approach gives higher mean return and lower risk or tracking error. Therefore, the cointegration approach is more appropriate for the investors in Malaysia.

  14. Intra- and Interseasonal Autoregressive Prediction of Dengue Outbreaks Using Local Weather and Regional Climate for a Tropical Environment in Colombia

    PubMed Central

    Eastin, Matthew D.; Delmelle, Eric; Casas, Irene; Wexler, Joshua; Self, Cameron

    2014-01-01

    Dengue fever transmission results from complex interactions between the virus, human hosts, and mosquito vectors—all of which are influenced by environmental factors. Predictive models of dengue incidence rate, based on local weather and regional climate parameters, could benefit disease mitigation efforts. Time series of epidemiological and meteorological data for the urban environment of Cali, Colombia are analyzed from January of 2000 to December of 2011. Significant dengue outbreaks generally occur during warm-dry periods with extreme daily temperatures confined between 18°C and 32°C—the optimal range for mosquito survival and viral transmission. Two environment-based, multivariate, autoregressive forecast models are developed that allow dengue outbreaks to be anticipated from 2 weeks to 6 months in advance. These models have the potential to enhance existing dengue early warning systems, ultimately supporting public health decisions on the timing and scale of vector control efforts. PMID:24957546

  15. Comparing lagged linear correlation, lagged regression, Granger causality, and vector autoregression for uncovering associations in EHR data.

    PubMed

    Levine, Matthew E; Albers, David J; Hripcsak, George

    2016-01-01

    Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.

  16. Output-only modal parameter estimator of linear time-varying structural systems based on vector TAR model and least squares support vector machine

    NASA Astrophysics Data System (ADS)

    Zhou, Si-Da; Ma, Yuan-Chen; Liu, Li; Kang, Jie; Ma, Zhi-Sai; Yu, Lei

    2018-01-01

    Identification of time-varying modal parameters contributes to the structural health monitoring, fault detection, vibration control, etc. of the operational time-varying structural systems. However, it is a challenging task because there is not more information for the identification of the time-varying systems than that of the time-invariant systems. This paper presents a vector time-dependent autoregressive model and least squares support vector machine based modal parameter estimator for linear time-varying structural systems in case of output-only measurements. To reduce the computational cost, a Wendland's compactly supported radial basis function is used to achieve the sparsity of the Gram matrix. A Gamma-test-based non-parametric approach of selecting the regularization factor is adapted for the proposed estimator to replace the time-consuming n-fold cross validation. A series of numerical examples have illustrated the advantages of the proposed modal parameter estimator on the suppression of the overestimate and the short data. A laboratory experiment has further validated the proposed estimator.

  17. A comparison between MS-VECM and MS-VECMX on economic time series data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Wai; Ismail, Mohd Tahir; Sek, Siok-Kun

    2014-07-01

    Multivariate Markov switching models able to provide useful information on the study of structural change data since the regime switching model can analyze the time varying data and capture the mean and variance in the series of dependence structure. This paper will investigates the oil price and gold price effects on Malaysia, Singapore, Thailand and Indonesia stock market returns. Two forms of Multivariate Markov switching models are used namely the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model (MSMH-VECM) and the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model with exogenous variable (MSMH-VECMX). The reason for using these two models are to capture the transition probabilities of the data since real financial time series data always exhibit nonlinear properties such as regime switching, cointegrating relations, jumps or breaks passing the time. A comparison between these two models indicates that MSMH-VECM model able to fit the time series data better than the MSMH-VECMX model. In addition, it was found that oil price and gold price affected the stock market changes in the four selected countries.

  18. Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events.

    PubMed Central

    Kavanagh, T A; Thanh, N D; Lao, N T; McGrath, N; Peter, S O; Horváth, E M; Dix, P J; Medgyesy, P

    1999-01-01

    Efficient plastid transformation has been achieved in Nicotiana tabacum using cloned plastid DNA of Solanum nigrum carrying mutations conferring spectinomycin and streptomycin resistance. The use of the incompletely homologous (homeologous) Solanum plastid DNA as donor resulted in a Nicotiana plastid transformation frequency comparable with that of other experiments where completely homologous plastid DNA was introduced. Physical mapping and nucleotide sequence analysis of the targeted plastid DNA region in the transformants demonstrated efficient site-specific integration of the 7.8-kb Solanum plastid DNA and the exclusion of the vector DNA. The integration of the cloned Solanum plastid DNA into the Nicotiana plastid genome involved multiple recombination events as revealed by the presence of discontinuous tracts of Solanum-specific sequences that were interspersed between Nicotiana-specific markers. Marked position effects resulted in very frequent cointegration of the nonselected peripheral donor markers located adjacent to the vector DNA. Data presented here on the efficiency and features of homeologous plastid DNA recombination are consistent with the existence of an active RecA-mediated, but a diminished mismatch, recombination/repair system in higher-plant plastids. PMID:10388829

  19. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.

    PubMed

    Xiloyannis, Michele; Gavriel, Constantinos; Thomik, Andreas A C; Faisal, A Aldo

    2017-10-01

    Matching the dexterity, versatility, and robustness of the human hand is still an unachieved goal in bionics, robotics, and neural engineering. A major limitation for hand prosthetics lies in the challenges of reliably decoding user intention from muscle signals when controlling complex robotic hands. Most of the commercially available prosthetic hands use muscle-related signals to decode a finite number of predefined motions and some offer proportional control of open/close movements of the whole hand. Here, in contrast, we aim to offer users flexible control of individual joints of their artificial hand. We propose a novel framework for decoding neural information that enables a user to independently control 11 joints of the hand in a continuous manner-much like we control our natural hands. Toward this end, we instructed six able-bodied subjects to perform everyday object manipulation tasks combining both dynamic, free movements (e.g., grasping) and isometric force tasks (e.g., squeezing). We recorded the electromyographic and mechanomyographic activities of five extrinsic muscles of the hand in the forearm, while simultaneously monitoring 11 joints of hand and fingers using a sensorized data glove that tracked the joints of the hand. Instead of learning just a direct mapping from current muscle activity to intended hand movement, we formulated a novel autoregressive approach that combines the context of previous hand movements with instantaneous muscle activity to predict future hand movements. Specifically, we evaluated a linear vector autoregressive moving average model with exogenous inputs and a novel Gaussian process ( ) autoregressive framework to learn the continuous mapping from hand joint dynamics and muscle activity to decode intended hand movement. Our approach achieves high levels of performance (RMSE of 8°/s and ). Crucially, we use a small set of sensors that allows us to control a larger set of independently actuated degrees of freedom of a hand. This novel undersensored control is enabled through the combination of nonlinear autoregressive continuous mapping between muscle activity and joint angles. The system evaluates the muscle signals in the context of previous natural hand movements. This enables us to resolve ambiguities in situations, where muscle signals alone cannot determine the correct action as we evaluate the muscle signals in their context of natural hand movements. autoregression is a particularly powerful approach which makes not only a prediction based on the context but also represents the associated uncertainty of its predictions, thus enabling the novel notion of risk-based control in neuroprosthetics. Our results suggest that autoregressive approaches with exogenous inputs lend themselves for natural, intuitive, and continuous control in neurotechnology, with the particular focus on prosthetic restoration of natural limb function, where high dexterity is required for complex movements.

  20. Comparison of vector autoregressive (VAR) and vector error correction models (VECM) for index of ASEAN stock price

    NASA Astrophysics Data System (ADS)

    Suharsono, Agus; Aziza, Auliya; Pramesti, Wara

    2017-12-01

    Capital markets can be an indicator of the development of a country's economy. The presence of capital markets also encourages investors to trade; therefore investors need information and knowledge of which shares are better. One way of making decisions for short-term investments is the need for modeling to forecast stock prices in the period to come. Issue of stock market-stock integration ASEAN is very important. The problem is that ASEAN does not have much time to implement one market in the economy, so it would be very interesting if there is evidence whether the capital market in the ASEAN region, especially the countries of Indonesia, Malaysia, Philippines, Singapore and Thailand deserve to be integrated or still segmented. Furthermore, it should also be known and proven What kind of integration is happening: what A capital market affects only the market Other capital, or a capital market only Influenced by other capital markets, or a Capital market as well as affecting as well Influenced by other capital markets in one ASEAN region. In this study, it will compare forecasting of Indonesian share price (IHSG) with neighboring countries (ASEAN) including developed and developing countries such as Malaysia (KLSE), Singapore (SGE), Thailand (SETI), Philippines (PSE) to find out which stock country the most superior and influential. These countries are the founders of ASEAN and share price index owners who have close relations with Indonesia in terms of trade, especially exports and imports. Stock price modeling in this research is using multivariate time series analysis that is VAR (Vector Autoregressive) and VECM (Vector Error Correction Modeling). VAR and VECM models not only predict more than one variable but also can see the interrelations between variables with each other. If the assumption of white noise is not met in the VAR modeling, then the cause can be assumed that there is an outlier. With this modeling will be able to know the pattern of relationship or linkage of share prices of each country in ASEAN. The best modeling comparison result of the ASEAN stock price index is VAR.

  1. Cointegration and why it works for SHM

    NASA Astrophysics Data System (ADS)

    Cross, Elizabeth J.; Worden, Keith

    2012-08-01

    One of the most fundamental problems in Structural Health Monitoring (SHM) is that of projecting out operational and environmental variations from measured feature data. The reason for this is that algorithms used for SHM to detect changes in structural condition should not raise alarms if the structure of interest changes because of benign operational or environmental variations. This is sometimes called the data normalisation problem. Many solutions to this problem have been proposed over the years, but a new approach that uses cointegration, a concept from the field of econometrics, appears to provide a very promising solution. The theory of cointegration is mathematically complex and its use is based on the holding of a number of assumptions on the time series to which it is applied. An interesting observation that has emerged from its applications to SHM data is that the approach works very well even though the aforementioned assumptions do not hold in general. The objective of the current paper is to discuss how the cointegration assumptions break down individually in the context of SHM and to explain why this does not invalidate the application of the algorithm.

  2. A dynamic analysis of S&P 500, FTSE 100 and EURO STOXX 50 indices under different exchange rates.

    PubMed

    Chen, Yanhua; Mantegna, Rosario N; Pantelous, Athanasios A; Zuev, Konstantin M

    2018-01-01

    In this study, we assess the dynamic evolution of short-term correlation, long-term cointegration and Error Correction Model (hereafter referred to as ECM)-based long-term Granger causality between each pair of US, UK, and Eurozone stock markets from 1980 to 2015 using the rolling-window technique. A comparative analysis of pairwise dynamic integration and causality of stock markets, measured in common and domestic currency terms, is conducted to evaluate comprehensively how exchange rate fluctuations affect the time-varying integration among the S&P 500, FTSE 100 and EURO STOXX 50 indices. The results obtained show that the dynamic correlation, cointegration and ECM-based long-run Granger causality vary significantly over the whole sample period. The degree of dynamic correlation and cointegration between pairs of stock markets rises in periods of high volatility and uncertainty, especially under the influence of economic, financial and political shocks. Meanwhile, we observe the weaker and decreasing correlation and cointegration among the three developed stock markets during the recovery periods. Interestingly, the most persistent and significant cointegration among the three developed stock markets exists during the 2007-09 global financial crisis. Finally, the exchange rate fluctuations, also influence the dynamic integration and causality between all pairs of stock indices, with that influence increasing under the local currency terms. Our results suggest that the potential for diversifying risk by investing in the US, UK and Eurozone stock markets is limited during the periods of economic, financial and political shocks.

  3. Vector autoregressive models: A Gini approach

    NASA Astrophysics Data System (ADS)

    Mussard, Stéphane; Ndiaye, Oumar Hamady

    2018-02-01

    In this paper, it is proven that the usual VAR models may be performed in the Gini sense, that is, on a ℓ1 metric space. The Gini regression is robust to outliers. As a consequence, when data are contaminated by extreme values, we show that semi-parametric VAR-Gini regressions may be used to obtain robust estimators. The inference about the estimators is made with the ℓ1 norm. Also, impulse response functions and Gini decompositions for prevision errors are introduced. Finally, Granger's causality tests are properly derived based on U-statistics.

  4. Higher Education and Unemployment: A Cointegration and Causality Analysis of the Case of Turkey

    ERIC Educational Resources Information Center

    Erdem, Ekrem; Tugcu, Can Tansel

    2012-01-01

    This article analyses the short and the long-term relations between higher education and unemployment in Turkey for the period 1960-2007. It chooses the recently developed ARDL cointegration and Granger causality of Dolado and Lutkepohl (1996) methods. While the proxy of unemployment is total unemployment rate, higher education graduates were…

  5. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel

    2016-01-01

    Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.

  6. Dynamics relationship between stock prices and economic variables in Malaysia

    NASA Astrophysics Data System (ADS)

    Chun, Ooi Po; Arsad, Zainudin; Huen, Tan Bee

    2014-07-01

    Knowledge on linkages between stock prices and macroeconomic variables are essential in the formulation of effective monetary policy. This study investigates the relationship between stock prices in Malaysia (KLCI) with four selected macroeconomic variables, namely industrial production index (IPI), quasi money supply (MS2), real exchange rate (REXR) and 3-month Treasury bill (TRB). The variables used in this study are monthly data from 1996 to 2012. Vector error correction (VEC) model and Kalman filter (KF) technique are utilized to assess the impact of macroeconomic variables on the stock prices. The results from the cointegration test revealed that the stock prices and macroeconomic variables are cointegrated. Different from the constant estimate from the static VEC model, the KF estimates noticeably exhibit time-varying attributes over the entire sample period. The varying estimates of the impact coefficients should be better reflect the changing economic environment. Surprisingly, IPI is negatively related to the KLCI with the estimates of the impact slowly increase and become positive in recent years. TRB is found to be generally negatively related to the KLCI with the impact fluctuating along the constant estimate of the VEC model. The KF estimates for REXR and MS2 show a mixture of positive and negative impact on the KLCI. The coefficients of error correction term (ECT) are negative in majority of the sample period, signifying the stock prices responded to stabilize any short term deviation in the economic system. The findings from the KF model indicate that any implication that is based on the usual static model may lead to authorities implementing less appropriate policies.

  7. A dynamic analysis of S&P 500, FTSE 100 and EURO STOXX 50 indices under different exchange rates

    PubMed Central

    Chen, Yanhua; Mantegna, Rosario N.; Zuev, Konstantin M.

    2018-01-01

    In this study, we assess the dynamic evolution of short-term correlation, long-term cointegration and Error Correction Model (hereafter referred to as ECM)-based long-term Granger causality between each pair of US, UK, and Eurozone stock markets from 1980 to 2015 using the rolling-window technique. A comparative analysis of pairwise dynamic integration and causality of stock markets, measured in common and domestic currency terms, is conducted to evaluate comprehensively how exchange rate fluctuations affect the time-varying integration among the S&P 500, FTSE 100 and EURO STOXX 50 indices. The results obtained show that the dynamic correlation, cointegration and ECM-based long-run Granger causality vary significantly over the whole sample period. The degree of dynamic correlation and cointegration between pairs of stock markets rises in periods of high volatility and uncertainty, especially under the influence of economic, financial and political shocks. Meanwhile, we observe the weaker and decreasing correlation and cointegration among the three developed stock markets during the recovery periods. Interestingly, the most persistent and significant cointegration among the three developed stock markets exists during the 2007–09 global financial crisis. Finally, the exchange rate fluctuations, also influence the dynamic integration and causality between all pairs of stock indices, with that influence increasing under the local currency terms. Our results suggest that the potential for diversifying risk by investing in the US, UK and Eurozone stock markets is limited during the periods of economic, financial and political shocks. PMID:29529092

  8. The impact of media campaigns on smoking cessation activity: a structural vector autoregression analysis.

    PubMed

    Langley, Tessa E; McNeill, Ann; Lewis, Sarah; Szatkowski, Lisa; Quinn, Casey

    2012-11-01

    To evaluate the effect of tobacco control media campaigns and pharmaceutical company-funded advertising for nicotine replacement therapy (NRT) on smoking cessation activity. Multiple time series analysis using structural vector autoregression, January 2002-May 2010. England and Wales. Tobacco control campaign data from the Central Office of Information; commercial NRT campaign data; data on calls to the National Health Service (NHS) stop smoking helpline from the Department of Health; point-of-sale data on over-the-counter (OTC) sales of NRT; and prescribing data from The Health Improvement Network (THIN), a database of UK primary care records. Monthly calls to the NHS stop smoking helpline and monthly rates of OTC sales and prescribing of NRT. A 1% increase in tobacco control television ratings (TVRs), a standard measure of advertising exposure, was associated with a statistically significant 0.085% increase in calls in the same month (P = 0.007), and no statistically significant effect in subsequent months. Tobacco control TVRs were not associated with OTC NRT sales or prescribed NRT. NRT advertising TVRs had a significant effect on NRT sales which became non-significant in the seasonally adjusted model, and no significant effect on prescribing or calls. Tobacco control campaigns appear to be more effective at triggering quitting behaviour than pharmaceutical company NRT campaigns. Any effect of such campaigns on quitting behaviour seems to be restricted to the month of the campaign, suggesting that such campaigns need to be sustained over time. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  9. A Unified Estimation Framework for State-Related Changes in Effective Brain Connectivity.

    PubMed

    Samdin, S Balqis; Ting, Chee-Ming; Ombao, Hernando; Salleh, Sh-Hussain

    2017-04-01

    This paper addresses the critical problem of estimating time-evolving effective brain connectivity. Current approaches based on sliding window analysis or time-varying coefficient models do not simultaneously capture both slow and abrupt changes in causal interactions between different brain regions. To overcome these limitations, we develop a unified framework based on a switching vector autoregressive (SVAR) model. Here, the dynamic connectivity regimes are uniquely characterized by distinct vector autoregressive (VAR) processes and allowed to switch between quasi-stationary brain states. The state evolution and the associated directed dependencies are defined by a Markov process and the SVAR parameters. We develop a three-stage estimation algorithm for the SVAR model: 1) feature extraction using time-varying VAR (TV-VAR) coefficients, 2) preliminary regime identification via clustering of the TV-VAR coefficients, 3) refined regime segmentation by Kalman smoothing and parameter estimation via expectation-maximization algorithm under a state-space formulation, using initial estimates from the previous two stages. The proposed framework is adaptive to state-related changes and gives reliable estimates of effective connectivity. Simulation results show that our method provides accurate regime change-point detection and connectivity estimates. In real applications to brain signals, the approach was able to capture directed connectivity state changes in functional magnetic resonance imaging data linked with changes in stimulus conditions, and in epileptic electroencephalograms, differentiating ictal from nonictal periods. The proposed framework accurately identifies state-dependent changes in brain network and provides estimates of connectivity strength and directionality. The proposed approach is useful in neuroscience studies that investigate the dynamics of underlying brain states.

  10. Is the U.S. shale gas boom having an effect on the European gas market?

    NASA Astrophysics Data System (ADS)

    Yao, Isaac

    This thesis focuses on the impact of the American shale gas boom on the European natural gas market. The study presents different tests in order to analyze the dynamics of natural gas prices in the U.S., U.K. and German natural gas market. The question of cointegration between these different markets are analyzed using several tests. More specifically, the ADF tests for the presence of a unit root. The error correction model test and the Johansen cointegration procedure are applied in order to accept or reject the hypothesis of an integrated market. The results suggest no evidence of cointegration between these markets. There currently is no evidence of an impact of the U.S. shale gas boom on the European market.

  11. Stochastic-Constraints Method in Nonstationary Hot-Clutter Cancellation Part I: Fundamentals and Supervised Training Applications

    DTIC Science & Technology

    2003-04-01

    any of the P interfering sources, and Hkt i (1) (P)] T is defined below. The P-variate vector = t kt , • t J consists of complex waveforms radiated by...line. More precisely, the (i, j ) t element of the matrix Hke is a complex 4-4 coefficient which is practically constant over the kth PRI, and is a...multivariate auto-regressive (AR) model of order n: Ykt + Z Bj Yk- j , t = tkt (25) j =l In the above equation, Bj are the M-variate matrices which are the

  12. Kernel canonical-correlation Granger causality for multiple time series

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu

    2011-04-01

    Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.

  13. [Exploration of influencing factors of price of herbal based on VAR model].

    PubMed

    Wang, Nuo; Liu, Shu-Zhen; Yang, Guang

    2014-10-01

    Based on vector auto-regression (VAR) model, this paper takes advantage of Granger causality test, variance decomposition and impulse response analysis techniques to carry out a comprehensive study of the factors influencing the price of Chinese herbal, including herbal cultivation costs, acreage, natural disasters, the residents' needs and inflation. The study found that there is Granger causality relationship between inflation and herbal prices, cultivation costs and herbal prices. And in the total variance analysis of Chinese herbal and medicine price index, the largest contribution to it is from its own fluctuations, followed by the cultivation costs and inflation.

  14. Cointegration and Nonstationarity in the Context of Multiresolution Analysis

    NASA Astrophysics Data System (ADS)

    Worden, K.; Cross, E. J.; Kyprianou, A.

    2011-07-01

    Cointegration has established itself as a powerful means of projecting out long-term trends from time-series data in the context of econometrics. Recent work by the current authors has further established that cointegration can be applied profitably in the context of structural health monitoring (SHM), where it is desirable to project out the effects of environmental and operational variations from data in order that they do not generate false positives in diagnostic tests. The concept of cointegration is partly built on a clear understanding of the ideas of stationarity and nonstationarity for time-series. Nonstationarity in this context is 'traditionally' established through the use of statistical tests, e.g. the hypothesis test based on the augmented Dickey-Fuller statistic. However, it is important to understand the distinction in this case between 'trend' stationarity and stationarity of the AR models typically fitted as part of the analysis process. The current paper will discuss this distinction in the context of SHM data and will extend the discussion by the introduction of multi-resolution (discrete wavelet) analysis as a means of characterising the time-scales on which nonstationarity manifests itself. The discussion will be based on synthetic data and also on experimental data for the guided-wave SHM of a composite plate.

  15. Affordability of alcohol as a key driver of alcohol demand in New Zealand: a co-integration analysis.

    PubMed

    Wall, Martin; Casswell, Sally

    2013-01-01

    To investigate whether affordability of alcohol is an important determinant of alcohol consumption along with price. This will inform effective tax policy to influence consumption. Co-integration analysis was used to analyse relationship between real price, affordability and consumption. Changes in retail availability of wine in 1990 and beer in 1999 were also included in the models. The econometric approach taken allows identification of short- and long-term responses. Separate analyses were performed for wine, beer, spirits and ready-to-drinks (spirits based pre-mixed drinks). New Zealand 1988-2011. Quarterly data on price and alcohol available for consumption for wine, beer, spirits and ready-to-drinks. Price data were analysed as: real price (own price of alcohol relative to the price of other goods) and affordability (average earnings relative to own price). There was strong evidence for co-integration between wine and beer consumption and affordability. There was weaker evidence for co-integration between consumption and real price. The affordability of alcohol is more important than real price in determining consumption of alcohol. This suggests that affordability needs to be considered by policy makers when determining tax and pricing policies to reduce alcohol-related harm. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  16. Portuguese agriculture and the evolution of greenhouse gas emissions-can vegetables control livestock emissions?

    PubMed

    Mourao, Paulo Reis; Domingues Martinho, Vítor

    2017-07-01

    One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO 2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO 2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.

  17. The relationship between pollutant emissions, renewable energy, nuclear energy and GDP: empirical evidence from 18 developed and developing countries

    NASA Astrophysics Data System (ADS)

    Ben Mbarek, Mounir; Saidi, Kais; Amamri, Mounira

    2018-07-01

    This document investigates the causal relationship between nuclear energy (NE), pollutant emissions (CO2 emissions), gross domestic product (GDP) and renewable energy (RE) using dynamic panel data models for a global panel consisting of 18 countries (developed and developing) covering the 1990-2013 period. Our results indicate that there is a co-integration between variables. The unit root test suggests that all the variables are stationary in first differences. The paper further examines the link using the Granger causality analysis of vector error correction model, which indicates a unidirectional relationship running from GDP per capita to pollutant emissions for the developed and developing countries. However, there is a unidirectional causality from GDP per capita to RE in the short and long run. This finding confirms the conservation hypothesis. Similarly, there is no causality between NE and GDP per capita.

  18. A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs

    PubMed Central

    Siegle, Greg

    2009-01-01

    Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more traditional VAR analysis. PMID:19236927

  19. Is First-Order Vector Autoregressive Model Optimal for fMRI Data?

    PubMed

    Ting, Chee-Ming; Seghouane, Abd-Krim; Khalid, Muhammad Usman; Salleh, Sh-Hussain

    2015-09-01

    We consider the problem of selecting the optimal orders of vector autoregressive (VAR) models for fMRI data. Many previous studies used model order of one and ignored that it may vary considerably across data sets depending on different data dimensions, subjects, tasks, and experimental designs. In addition, the classical information criteria (IC) used (e.g., the Akaike IC (AIC)) are biased and inappropriate for the high-dimensional fMRI data typically with a small sample size. We examine the mixed results on the optimal VAR orders for fMRI, especially the validity of the order-one hypothesis, by a comprehensive evaluation using different model selection criteria over three typical data types--a resting state, an event-related design, and a block design data set--with varying time series dimensions obtained from distinct functional brain networks. We use a more balanced criterion, Kullback's IC (KIC) based on Kullback's symmetric divergence combining two directed divergences. We also consider the bias-corrected versions (AICc and KICc) to improve VAR model selection in small samples. Simulation results show better small-sample selection performance of the proposed criteria over the classical ones. Both bias-corrected ICs provide more accurate and consistent model order choices than their biased counterparts, which suffer from overfitting, with KICc performing the best. Results on real data show that orders greater than one were selected by all criteria across all data sets for the small to moderate dimensions, particularly from small, specific networks such as the resting-state default mode network and the task-related motor networks, whereas low orders close to one but not necessarily one were chosen for the large dimensions of full-brain networks.

  20. Detection of tripping gait patterns in the elderly using autoregressive features and support vector machines.

    PubMed

    Lai, Daniel T H; Begg, Rezaul K; Taylor, Simon; Palaniswami, Marimuthu

    2008-01-01

    Elderly tripping falls cost billions annually in medical funds and result in high mortality rates often perpetrated by pulmonary embolism (internal bleeding) and infected fractures that do not heal well. In this paper, we propose an intelligent gait detection system (AR-SVM) for screening elderly individuals at risk of suffering tripping falls. The motivation of this system is to provide early detection of elderly gait reminiscent of tripping characteristics so that preventive measures could be administered. Our system is composed of two stages, a predictor model estimated by an autoregressive (AR) process and a support vector machine (SVM) classifier. The system input is a digital signal constructed from consecutive measurements of minimum toe clearance (MTC) representative of steady-state walking. The AR-SVM system was tested on 23 individuals (13 healthy and 10 having suffered at least one tripping fall in the past year) who each completed a minimum of 10 min of walking on a treadmill at a self-selected pace. In the first stage, a fourth order AR model required at least 64 MTC values to correctly detect all fallers and non-fallers. Detection was further improved to less than 1 min of walking when the model coefficients were used as input features to the SVM classifier. The system achieved a detection accuracy of 95.65% with the leave one out method using only 16 MTC samples, but was reduced to 69.57% when eight MTC samples were used. These results demonstrate a fast and efficient system requiring a small number of strides and only MTC measurements for accurate detection of tripping gait characteristics.

  1. Fuzzy neural network technique for system state forecasting.

    PubMed

    Li, Dezhi; Wang, Wilson; Ismail, Fathy

    2013-10-01

    In many system state forecasting applications, the prediction is performed based on multiple datasets, each corresponding to a distinct system condition. The traditional methods dealing with multiple datasets (e.g., vector autoregressive moving average models and neural networks) have some shortcomings, such as limited modeling capability and opaque reasoning operations. To tackle these problems, a novel fuzzy neural network (FNN) is proposed in this paper to effectively extract information from multiple datasets, so as to improve forecasting accuracy. The proposed predictor consists of both autoregressive (AR) nodes modeling and nonlinear nodes modeling; AR models/nodes are used to capture the linear correlation of the datasets, and the nonlinear correlation of the datasets are modeled with nonlinear neuron nodes. A novel particle swarm technique [i.e., Laplace particle swarm (LPS) method] is proposed to facilitate parameters estimation of the predictor and improve modeling accuracy. The effectiveness of the developed FNN predictor and the associated LPS method is verified by a series of tests related to Mackey-Glass data forecast, exchange rate data prediction, and gear system prognosis. Test results show that the developed FNN predictor and the LPS method can capture the dynamics of multiple datasets effectively and track system characteristics accurately.

  2. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting.

    PubMed

    Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.

  3. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting

    PubMed Central

    Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627

  4. Non-linear models for the detection of impaired cerebral blood flow autoregulation.

    PubMed

    Chacón, Max; Jara, José Luis; Miranda, Rodrigo; Katsogridakis, Emmanuel; Panerai, Ronney B

    2018-01-01

    The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.

  5. Non-linear models for the detection of impaired cerebral blood flow autoregulation

    PubMed Central

    Miranda, Rodrigo; Katsogridakis, Emmanuel

    2018-01-01

    The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model’s derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired. PMID:29381724

  6. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    NASA Astrophysics Data System (ADS)

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  7. Predictability of Malaria Transmission Intensity in the Mpumalanga Province, South Africa, Using Land Surface Climatology and Autoregressive Analysis

    NASA Technical Reports Server (NTRS)

    Grass, David; Jasinski, Michael F.; Govere, John

    2003-01-01

    There has been increasing effort in recent years to employ satellite remotely sensed data to identify and map vector habitat and malaria transmission risk in data sparse environments. In the current investigation, available satellite and other land surface climatology data products are employed in short-term forecasting of infection rates in the Mpumalanga Province of South Africa, using a multivariate autoregressive approach. The climatology variables include precipitation, air temperature and other land surface states computed by the Off-line Land-Surface Global Assimilation System (OLGA) including soil moisture and surface evaporation. Satellite data products include the Normalized Difference Vegetation Index (NDVI) and other forcing data used in the Goddard Earth Observing System (GEOS-1) model. Predictions are compared to long- term monthly records of clinical and microscopic diagnoses. The approach addresses the high degree of short-term autocorrelation in the disease and weather time series. The resulting model is able to predict 11 of the 13 months that were classified as high risk during the validation period, indicating the utility of applying antecedent climatic variables to the prediction of malaria incidence for the Mpumalanga Province.

  8. Is rapid growth in Internet usage environmentally sustainable for Australia? An empirical investigation.

    PubMed

    Salahuddin, Mohammad; Alam, Khorshed; Ozturk, Ilhan

    2016-03-01

    This study estimates the short- and long-run effects of Internet usage and economic growth on carbon dioxide (CO2) emissions using annual time series macro data for Australia for the period 1985-2012. Autoregressive distributive lag (ARDL) bounds and Gregory-Hansen structural break cointegration tests are applied. ARDL estimates indicate no significant long-run relationship between Internet usage and CO2 emissions, which implies that the rapid growth in Internet usage is still not an environmental threat for Australia. The study further indicates that higher level of economic growth is associated with lower level of CO2 emissions; however, Internet usage and economic growth have no significant short-run relationship with CO2 emissions. Financial development has both short-run and long-run significant positive association with CO2 emissions. The findings offer support in favor of energy efficiency gains and a reduction in energy intensity in Australia. However, impulse response and variance decomposition analysis suggest that Internet usage, economic growth and financial development will continue to impact CO2 emissions in the future, and as such, this study recommends that in addition to the existing measures to combat CO2 emissions, Australia needs to exploit the potential of the Internet not only to reduce its own carbon footprint but also to utilize information and communication technology (ICT)-enabled emissions abatement potential to reduce emissions in various other sectors across the economy, such as, power, renewable energy especially in solar and wind energy, agriculture, transport and service.

  9. Long term economic relationships from cointegration maps

    NASA Astrophysics Data System (ADS)

    Vicente, Renato; Pereira, Carlos de B.; Leite, Vitor B. P.; Caticha, Nestor

    2007-07-01

    We employ the Bayesian framework to define a cointegration measure aimed to represent long term relationships between time series. For visualization of these relationships we introduce a dissimilarity matrix and a map based on the sorting points into neighborhoods (SPIN) technique, which has been previously used to analyze large data sets from DNA arrays. We exemplify the technique in three data sets: US interest rates (USIR), monthly inflation rates and gross domestic product (GDP) growth rates.

  10. Carbon financial markets: A time-frequency analysis of CO2 prices

    NASA Astrophysics Data System (ADS)

    Sousa, Rita; Aguiar-Conraria, Luís; Soares, Maria Joana

    2014-11-01

    We characterize the interrelation of CO2 prices with energy prices (electricity, gas and coal), and with economic activity. Previous studies have relied on time-domain techniques, such as Vector Auto-Regressions. In this study, we use multivariate wavelet analysis, which operates in the time-frequency domain. Wavelet analysis provides convenient tools to distinguish relations at particular frequencies and at particular time horizons. Our empirical approach has the potential to identify relations getting stronger and then disappearing over specific time intervals and frequencies. We are able to examine the coherency of these variables and lead-lag relations at different frequencies for the time periods in focus.

  11. Characteristics of the transmission of autoregressive sub-patterns in financial time series

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong

    2014-09-01

    There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors.

  12. Characteristics of the transmission of autoregressive sub-patterns in financial time series

    PubMed Central

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong

    2014-01-01

    There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors. PMID:25189200

  13. Co-integration of nano-scale vertical- and horizontal-channel metal-oxide-semiconductor field-effect transistors for low power CMOS technology.

    PubMed

    Sun, Min-Chul; Kim, Garam; Kim, Sang Wan; Kim, Hyun Woo; Kim, Hyungjin; Lee, Jong-Ho; Shin, Hyungcheol; Park, Byung-Gook

    2012-07-01

    In order to extend the conventional low power Si CMOS technology beyond the 20-nm node without SOI substrates, we propose a novel co-integration scheme to build horizontal- and vertical-channel MOSFETs together and verify the idea using TCAD simulations. From the fabrication viewpoint, it is highlighted that this scheme provides additional vertical devices with good scalability by adding a few steps to the conventional CMOS process flow for fin formation. In addition, the benefits of the co-integrated vertical devices are investigated using a TCAD device simulation. From this study, it is confirmed that the vertical device shows improved off-current control and a larger drive current when the body dimension is less than 20 nm, due to the electric field coupling effect at the double-gated channel. Finally, the benefits from the circuit design viewpoint, such as the larger midpoint gain and beta and lower power consumption, are confirmed by the mixed-mode circuit simulation study.

  14. Wavelet transform approach for fitting financial time series data

    NASA Astrophysics Data System (ADS)

    Ahmed, Amel Abdoullah; Ismail, Mohd Tahir

    2015-10-01

    This study investigates a newly developed technique; a combined wavelet filtering and VEC model, to study the dynamic relationship among financial time series. Wavelet filter has been used to annihilate noise data in daily data set of NASDAQ stock market of US, and three stock markets of Middle East and North Africa (MENA) region, namely, Egypt, Jordan, and Istanbul. The data covered is from 6/29/2001 to 5/5/2009. After that, the returns of generated series by wavelet filter and original series are analyzed by cointegration test and VEC model. The results show that the cointegration test affirms the existence of cointegration between the studied series, and there is a long-term relationship between the US, stock markets and MENA stock markets. A comparison between the proposed model and traditional model demonstrates that, the proposed model (DWT with VEC model) outperforms traditional model (VEC model) to fit the financial stock markets series well, and shows real information about these relationships among the stock markets.

  15. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    NASA Astrophysics Data System (ADS)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  16. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung Y; Kim, Tae-Seong

    2010-09-01

    Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.

  17. Non performing loans (NPLs) in a crisis economy: Long-run equilibrium analysis with a real time VEC model for Greece (2001-2015)

    NASA Astrophysics Data System (ADS)

    Konstantakis, Konstantinos N.; Michaelides, Panayotis G.; Vouldis, Angelos T.

    2016-06-01

    As a result of domestic and international factors, the Greek economy faced a severe crisis which is directly comparable only to the Great Recession. In this context, a prominent victim of this situation was the country's banking system. This paper attempts to shed light on the determining factors of non-performing loans in the Greek banking sector. The analysis presents empirical evidence from the Greek economy, using aggregate data on a quarterly basis, in the time period 2001-2015, fully capturing the recent recession. In this work, we use a relevant econometric framework based on a real time Vector Autoregressive (VAR)-Vector Error Correction (VEC) model, which captures the dynamic interdependencies among the variables used. Consistent with international evidence, the empirical findings show that both macroeconomic and financial factors have a significant impact on non-performing loans in the country. Meanwhile, the deteriorating credit quality feeds back into the economy leading to a self-reinforcing negative loop.

  18. The dynamic relationship between structural change and CO2 emissions in Malaysia: a cointegrating approach.

    PubMed

    Ali, Wajahat; Abdullah, Azrai; Azam, Muhammad

    2017-05-01

    The current study investigates the dynamic relationship between structural changes, real GDP per capita, energy consumption, trade openness, population density, and carbon dioxide (CO 2 ) emissions within the EKC framework over a period 1971-2013. The study used the autoregressive distributed lagged (ARDL) approach to investigate the long-run relationship between the selected variables. The study also employed the dynamic ordinary least squared (DOLS) technique to obtain the robust long-run estimates. Moreover, the causal relationship between the variables is explored using the VECM Granger causality test. Empirical results reveal a negative relationship between structural change and CO 2 emissions in the long run. The results indicate a positive relationship between energy consumption, trade openness, and CO 2 emissions. The study applied the turning point formula of Itkonen (2012) rather than the conventional formula of the turning point. The empirical estimates of the study do not support the presence of the EKC relationship between income and CO 2 emissions. The Granger causality test indicates the presence of long-run bidirectional causality between energy consumption, structural change, and CO 2 emissions in the long run. Economic growth, openness to trade, and population density unidirectionally cause CO 2 emissions. These results suggest that the government should focus more on information-based services rather than energy-intensive manufacturing activities. The feedback relationship between energy consumption and CO 2 emissions suggests that there is an ominous need to refurbish the energy-related policy reforms to ensure the installations of some energy-efficient modern technologies.

  19. Effects of Air Pollution on Public and Private Health Expenditures in Iran: A Time Series Study (1972-2014)

    PubMed Central

    Mousavi, Abdoreza; Khodabakhshzadeh, Saeed

    2018-01-01

    Objectives Environmental pollution is a negative consequence of the development process, and many countries are grappling with this phenomenon. As a developing country, Iran is not exempt from this rule, and Iran pays huge expenditures for the consequences of pollution. The aim of this study was to analyze the long- and short-run impact of air pollution, along with other health indicators, on private and public health expenditures. Methods This study was an applied and developmental study. Autoregressive distributed lag estimating models were used for the period of 1972 to 2014. In order to determine the co-integration between health expenditures and the infant mortality rate, fertility rate, per capita income, and pollution, we used the Wald test in Microfit version 4.1. We then used Eviews version 8 to evaluate the stationarity of the variables and to estimate the long- and short-run relationships. Results Long-run air pollution had a positive and significant effect on health expenditures, so that a 1.00% increase in the index of carbon dioxide led to an increase of 3.32% and 1.16% in public and private health expenditures, respectively. Air pollution also had a greater impact on health expenditures in the long term than in the short term. Conclusions The findings of this study indicate that among the factors affecting health expenditures, environmental quality and contaminants played the most important role. Therefore, in order to reduce the financial burden of health expenditures in Iran, it is essential to reduce air pollution by enacting and implementing laws that protect the environment. PMID:29886709

  20. Effects of Air Pollution on Public and Private Health Expenditures in Iran: A Time Series Study (1972-2014).

    PubMed

    Raeissi, Pouran; Harati-Khalilabad, Touraj; Rezapour, Aziz; Hashemi, Seyed Yaser; Mousavi, Abdoreza; Khodabakhshzadeh, Saeed

    2018-05-01

    Environmental pollution is a negative consequence of the development process, and many countries are grappling with this phenomenon. As a developing country, Iran is not exempt from this rule, and Iran pays huge expenditures for the consequences of pollution. The aim of this study was to analyze the long- and short-run impact of air pollution, along with other health indicators, on private and public health expenditures. This study was an applied and developmental study. Autoregressive distributed lag estimating models were used for the period of 1972 to 2014. In order to determine the co-integration between health expenditures and the infant mortality rate, fertility rate, per capita income, and pollution, we used the Wald test in Microfit version 4.1. We then used Eviews version 8 to evaluate the stationarity of the variables and to estimate the long- and short-run relationships. Long-run air pollution had a positive and significant effect on health expenditures, so that a 1.00% increase in the index of carbon dioxide led to an increase of 3.32% and 1.16% in public and private health expenditures, respectively. Air pollution also had a greater impact on health expenditures in the long term than in the short term. The findings of this study indicate that among the factors affecting health expenditures, environmental quality and contaminants played the most important role. Therefore, in order to reduce the financial burden of health expenditures in Iran, it is essential to reduce air pollution by enacting and implementing laws that protect the environment.

  1. Plasmid-mediated resistance to protein biosynthesis inhibitors in staphylococci.

    PubMed

    Schwarz, Stefan; Fessler, Andrea T; Hauschild, Tomasz; Kehrenberg, Corinna; Kadlec, Kristina

    2011-12-01

    Protein biosynthesis inhibitors (PBIs) represent powerful antimicrobial agents for the control of bacterial infections. In staphylococci, numerous resistance genes are known to be involved in resistance to PBIs, most of which mediate resistance to a specific class/subclass of PBIs, though a few genes do confer a multidrug resistance phenotype-up to five classes/subclasses of PBIs. Plasmids play a key role in the dissemination of PBI resistance among staphylococci, as they primarily carry plasmid-borne PBI resistance genes; however, plasmids also can be vectors for transposon-borne PBI resistance genes. Small plasmids that carry single PBI resistance genes are widespread among staphylococci of human and animal origin. Various mechanisms exist by which they can recombine, form cointegrates, or integrate into chromosomal DNA or larger plasmids. We provide an overview of the current knowledge of plasmid-mediated PBI resistance in staphylococci, with particular reference to the currently known PBI resistance genes, their association with mobile genetic elements, and the recombination/integration processes that control their mobility. © 2011 New York Academy of Sciences.

  2. Economic development, mobility and traffic accidents in Algeria.

    PubMed

    Bougueroua, M; Carnis, L

    2016-07-01

    The aim of this contribution is to estimate the impact of road economic conditions and mobility on traffic accidents for the case of Algeria. Using the cointegration approach and vector error correction model (VECM), we will examine simultaneously short term and long-term impacts between the number of traffic accidents, fuel consumption and gross domestic product (GDP) per capital, over the period 1970-2013. The main results of the estimation show that the number of traffic accidents in Algeria is positively influenced by the GDP per capita in the short and long term. It implies that a higher economic development worsens the road safety situation. However, the new traffic rules adopted in 2009 have an impact on the forecast trend of traffic accidents, meaning efficient public policy could improve the situation. This result calls for a strong political commitment with effective countermeasures for avoiding the further deterioration of road safety record in Algeria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Analyzing Long-run Relationship between Energy Consumption and Economic Growth in the Kingdom of Bahrain

    NASA Astrophysics Data System (ADS)

    Naser, Hanan

    2017-11-01

    Since the relation between energy consumption and economic growth is important to design effective energy policies that will promote economic growth, this study investigates the short run dynamics and causality among energy consumption, co2 emissions, oil prices and economic growth in Kingdom of Bahrain. To do so, annual data that covers the period from 1960 till 2015. Empirical work tests for unit root, co-integration relationship using Johansen (1988) approach and then estimate both long and short run dynamics using the vector error correction model (VECM). Results indicate that there is a long-run relationship between the suggested variables. Since economic growth has a predictive power to estimate the energy demand of Kingdom of Bahrain, it is recommended that the government of Bahrain and policy designers shed the light on energy efficiency strategies and carbon emissions reduction policy in the long run without impeding economic growth in order to move towards sustainability.

  4. Characterization of new plasmids from methylotrophic bacteria.

    PubMed

    Brenner, V; Holubová, I; Benada, O; Hubácek, J

    1991-07-01

    Several tens of methanol-utilizing bacterial strains isolated from soil were screened for the presence of plasmids. From the obligate methylotroph Methylomonas sp. strain R103a plasmid pIH36 (36 kb) was isolated and its restriction map was constructed. In pink-pigmented facultative methylotrophs (PPFM), belonging to the genus Methylobacterium four plasmids were detected: plasmids pIB200 (200 kb) and pIB14 (14 kb) in the strain R15d and plasmids pWU14 (14 kb) and pWU7 (7.8 kb) in the strain M17. Because of the small size and the presence of several unique REN sites (HindIII, EcoRI, NcoI), plasmid pWU7 was chosen for the construction of a vector for cloning in methylotrophs. Cointegrates pKWU7A and pKWU7B were formed between pWU7 and the E. coli plasmid pK19 Kmr, which were checked for conjugative transfer from E. coli into the methylotrophic host.

  5. R-factor cointegrate formation in Salmonella typhimurium bacteriophage type 201 strains.

    PubMed Central

    Helmuth, R; Stephan, R; Bulling, E; van Leeuwen, W J; van Embden, J D; Guinée, P A; Portnoy, D; Falkow, S

    1981-01-01

    The genetic and molecular properties of the plasmids in Salmonella typhimurium phase type 201 isolated are described. Such strains are resistant to streptomycin, tetracycline, chloramphenicol, ampicillin, kanamycin, and several other antimicrobial drugs, and are highly pathogenic for calves. These strains have been encountered with increasing frequency since 1972 in West Germany and The Netherlands. We show that isolates of this phage type constitute a very homogeneous group with regard to their extrachromosomal elements. These bacteria carry three small plasmids: pRQ3, a 4.2-megadalton (Md) colicinogenic plasmid; pRQ4, 3.4-Md plasmid that interferes with the propagation of phages; and pRQ5, a 3.2-Md cryptic plasmid. Tetracycline resistance resides on a conjugative 120-MD plasmid pRQ1, belonging to the incompatibility class H2. Other antibiotic resistance determinants are encoded by a nonconjugative 108-Md plasmid pRQ2. Transfer of multiple-antibiotic resistance to appropriate recipient strains was associated with the appearance of a 230-Md plasmid, pRQ6. It appears that pRQ6 is a stable cointegrate of pRQ1 and pRQ2. This cointegrate plasmid was transferable with the same efficiency as pRQ1. Other conjugative plasmids could mobilize pRQ2, but stable cointegrates were not detected in the transconjugants. Phase type 201 strains carry a prophage, and we show that phage pattern 201 reflects the interference with propagation of typing phages effected by this prophage and plasmid pRQ4 in strains of phage type 201. Images PMID:7012128

  6. Testing for the validity of purchasing power parity theory both in the long-run and the short-run for ASEAN-5

    NASA Astrophysics Data System (ADS)

    Choji, Niri Martha; Sek, Siok Kun

    2017-11-01

    The purchasing power parity theory says that the trade rates among two nations ought to be equivalent to the proportion of the total price levels between the two nations. For more than a decade, there has been substantial interest in testing for the validity of the Purchasing Power Parity (PPP) empirically. This paper performs a series of tests to see if PPP is valid for ASEAN-5 nations for the period of 2000-2016 using monthly data. For this purpose, we conducted four different tests of stationarity, two cointegration tests (Pedroni and Westerlund), and also the VAR model. The stationarity (unit root) tests reveal that the variables are not stationary at levels however stationary at first difference. Cointegration test results did not reject the H0 of no cointegration implying the absence long-run association among the variables and results of the VAR model did not reveal a strong short-run relationship. Based on the data, we, therefore, conclude that PPP is not valid in long-and short-run for ASEAN-5 during 2000-2016.

  7. Cointegration analysis for rice production in the states of Perlis and Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Shitan, Mahendran; Ng, Yung Lerd; Karmokar, Provash Kumar

    2015-02-01

    Rice is ranked the third most important crop in Malaysia after rubber and palm oil in terms of production. Unlike the industrial crops, although its contribution to Malaysia's economy is minimal, it plays a pivotal role in the country's food security as rice is consumed by almost everyone in Malaysia. Rice production is influenced by factors such as geographical location, temperature, rainfall, soil fertility, farming practices, etc. and hence the productivity of rice may differ in different state. In this study, our particular interest is to investigate the interrelationship between the rice production of Perlis and Johor. Data collected from Department of Agriculture, Government of Malaysia are tested for unit roots by Augmented Dickey-Fuller (ADF) unit root test while Engle-Granger (EG) procedure is used in the cointegration analysis. Our study shows that cointegrating relationship exists among the rice production in both states. The speed of adjustment coefficient of the error correction model (ECM) of Perlis is 0.611 indicating that approximately 61.1% of any deviation from the long-run path is corrected within a year by the production of rice in Johor.

  8. Selecting Single Model in Combination Forecasting Based on Cointegration Test and Encompassing Test

    PubMed Central

    Jiang, Chuanjin; Zhang, Jing; Song, Fugen

    2014-01-01

    Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability. PMID:24892061

  9. Selecting single model in combination forecasting based on cointegration test and encompassing test.

    PubMed

    Jiang, Chuanjin; Zhang, Jing; Song, Fugen

    2014-01-01

    Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability.

  10. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.).

    PubMed

    Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel

    2004-06-01

    A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars.

  11. Exploring the transformation and upgrading of China's economy using electricity consumption data: A VAR-VEC based model

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Zhou, Kaile; Yang, Shanlin; Shao, Zhen

    2017-05-01

    Since the reforming and opening up in 1978, China has experienced a miraculous development. To investigate the transformation and upgrading of China's economy, this study focuses on the relationship between economic growth and electricity consumption of the secondary and tertiary industry in China. This paper captures the dynamic interdependencies among the related variables using a theoretical framework based on a Vector Autoregressive (VAR)-Vector Error Correction (VEC) model. Using the macroeconomic and electricity consumption data, the results show that, for secondary industry, there is only a unidirectional Granger causality from electricity consumption to Gross Domestic Product (GDP) from 1980 to 2000. However, for the tertiary industry, it only occurs that GDP Granger causes electricity consumption from 2001 to 2014. All these conclusions are verified by the impulse response function and variance decomposition. This study has a great significance to reveal the relationship between industrial electricity consumption and the pattern of economic development. Meanwhile, it further suggests that, since China joined the World Trade Organization (WTO) in 2001, the trend of the economic transformation and upgrading has gradually appeared.

  12. Riemannian multi-manifold modeling and clustering in brain networks

    NASA Astrophysics Data System (ADS)

    Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.

    2017-08-01

    This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.

  13. Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks.

    PubMed

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman

    2013-01-01

    Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.

  14. Dedollarization in Turkey after decades of dollarization: A myth or reality?

    NASA Astrophysics Data System (ADS)

    Metin-Özcan, Kıvılcım; Us, Vuslat

    2007-11-01

    The paper analyzes dollarization in the Turkish economy given the evidence on dedollarization signals. On conducting a Vector Autoregression (VAR) model, the empirical evidence suggests that dollarization has mostly been shaped by macroeconomic imbalances as measured by exchange rate depreciation volatility, inflation volatility and expectations. Furthermore, the generalized impulse response function (IRF) analysis, in addition to the analysis of variance decomposition (VDC) gives support to the notion that dollarization seems to sustain its persistent nature, thus hysteresis still prevails. Hence, unfavorable macroeconomic conditions apparently contribute to dollarization while dollarization itself contains inertia. Furthermore, dedollarization that presumably started after 2001 has lost headway after May 2006. Thus, it seems too early to conclude that dollarization changed its route to dedollarization.

  15. Short-term forecasting of electric loads using nonlinear autoregressive artificial neural networks with exogenous vector inputs

    DOE PAGES

    Buitrago, Jaime; Asfour, Shihab

    2017-01-01

    Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable input (NARX). The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input.more » Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. Finally, the New England electrical load data are used to train and validate the forecast prediction.« less

  16. Short-term forecasting of electric loads using nonlinear autoregressive artificial neural networks with exogenous vector inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buitrago, Jaime; Asfour, Shihab

    Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable input (NARX). The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input.more » Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. Finally, the New England electrical load data are used to train and validate the forecast prediction.« less

  17. The relationship between energy consumption and economic growth in Malaysia: ARDL bound test approach

    NASA Astrophysics Data System (ADS)

    Razali, Radzuan; Khan, Habib; Shafie, Afza; Hassan, Abdul Rahman

    2016-11-01

    The objective of this paper is to examine the short-run and long-run dynamic causal relationship between energy consumption and income per capita both in bivariate and multivariate framework over the period 1971-2014 in the case of Malaysia [1]. The study applies ARDL Bound test procedure for the long run co-integration and Granger causality test for investigation of causal link between the variables. The ARDL bound test confirms the existence of long run co-integration relationship between the variables. The causality test show a feed-back hypothesis between income per capita and energy consumption over the period in the case of Malaysia.

  18. Health Care Expenditure and GDP in Oil Exporting Countries: Evidence From OPEC Data, 1995-2012.

    PubMed

    Fazaeli, Ali Akbar; Ghaderi, Hossein; Salehi, Masoud; Fazaeli, Ali Reza

    2015-06-11

    There is a large body of literature examining income in relation to health expenditures. The share of expenditures in health sector from GDP in developed countries is often larger than in non-developed countries, suggesting that as the level of economic growth increases, health spending increase, too. This paper estimates long-run relationships between health expenditures and GDP based on panel data of a sample of 12 countries of the Organization of the Petroleum Exporting Countries (OPEC), using data for the period 1995-2012. We use panel data unit root tests, cointegration analysis and ECM model to find long-run and short-run relation. This study examines whether health is a luxury or a necessity for OPEC countries within a unit root and cointegration framework. Panel data analysis indicates that health expenditures and GDP are co-integrated and have Engle and Granger causality. In addition, in oil countries that have oil export income, the share of government expenditures in the health sector is often greater than in private health expenditures similar developed countries. The findings verify that health care is not a luxury good and income has a robust relationship to health expenditures in OPEC countries.

  19. The opportune time to invest in residential properties - Engle-Granger cointegration test and Granger causality test approach

    NASA Astrophysics Data System (ADS)

    Chee-Yin, Yip; Hock-Eam, Lim

    2014-12-01

    This paper examines using housing supply as proxy to house prices, the causal relationship on house prices among 8 states in Malaysia by applying the Engle-Granger cointegration test and Granger causality test approach. The target states are Perak, Selangor, Penang, Federal Territory of Kuala Lumpur (WPKL or Kuala Lumpur), Kedah, Negeri Sembilan, Sabah and Sarawak. The primary aim of this study is to estimate how long (in months) house prices in Perak lag behind that of Selangor, Penang and WPKL. We classify the 8 states into two categories - developed and developing states. We use Engle-Granger cointegration test and Granger causality test to examine the long run and short run equilibrium relationship among the two categories.. It is found that the causal relationship is bidirectional in Perak and Sabah, Perak and Selangor while it is unidirectional for Perak and Sarawak, Perak and Penang, Perak and WPKL. The speed of deviation adjustment is about 273%, suggesting that the pricing dynamic of Perak has a 32- month or 2 3/4- year lag behind that of WPKL, Selangor and Penang. Such information will be useful to investors, house buyers and speculators.

  20. Incorporating measurement error in n = 1 psychological autoregressive modeling.

    PubMed

    Schuurman, Noémi K; Houtveen, Jan H; Hamaker, Ellen L

    2015-01-01

    Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30-50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters.

  1. Determining factors affecting tourism demand for Malaysia using ARDL modeling: A case of Europe countries

    NASA Astrophysics Data System (ADS)

    Borhan, Nurbaizura; Arsad, Zainudin

    2016-10-01

    Tourism industry is the second largest foreign exchange earner after manufacturing in Malaysia. With regards to the importance of tourism industry in Malaysia, any factors that influence tourism demand should be considered cautiously by the government and tourism authorities in order to attract more international tourists in the near future. The purpose of this study is to investigate the dynamic long-run and short-run relationship between the number of international tourist arrivals from six European countries and four selected economic variables. The economic variables used in this study are exchange rate, gross domestic product, relative price and substitute relative price. This study also examines the impact of the European Sovereign crisis on the number of arrivals from the selected European countries to Malaysia. The data covers the period from quarter 1 (Q1) of 1999 to quarter 3 (Q3) of 2014 and employs the autoregressive distributed lag (ARDL) bounds testing approach proposed by Pesaran et al. (2001). The results of unit root test show a mixture of integrated at level and order one, I(0) and I(1). The results show that there exist long-run cointegration between the number of international tourist arrivals and exchange rate, level of income, tourism price and substitute tourism price for all countries. Generally, the results show that level of income is in line with the economic theory and Thailand is a competing destination for the tourism industry in Malaysia. Surprisingly, relative price is found to have positive impact on the number of arrivals to Malaysia and this suggests that an increase in the price level in Malaysia is unexpectedly increase the number of international tourist arrivals to Malaysia. Therefore the Malaysian government and tourism authorities should continue the efforts to withstand the growth of the tourism industry.

  2. Get Over It! A Multilevel Threshold Autoregressive Model for State-Dependent Affect Regulation.

    PubMed

    De Haan-Rietdijk, Silvia; Gottman, John M; Bergeman, Cindy S; Hamaker, Ellen L

    2016-03-01

    Intensive longitudinal data provide rich information, which is best captured when specialized models are used in the analysis. One of these models is the multilevel autoregressive model, which psychologists have applied successfully to study affect regulation as well as alcohol use. A limitation of this model is that the autoregressive parameter is treated as a fixed, trait-like property of a person. We argue that the autoregressive parameter may be state-dependent, for example, if the strength of affect regulation depends on the intensity of affect experienced. To allow such intra-individual variation, we propose a multilevel threshold autoregressive model. Using simulations, we show that this model can be used to detect state-dependent regulation with adequate power and Type I error. The potential of the new modeling approach is illustrated with two empirical applications that extend the basic model to address additional substantive research questions.

  3. Robust Semi-Active Ride Control under Stochastic Excitation

    DTIC Science & Technology

    2014-01-01

    broad classes of time-series models which are of practical importance; the Auto-Regressive (AR) models, the Integrated (I) models, and the Moving...Average (MA) models [12]. Combinations of these models result in autoregressive moving average (ARMA) and autoregressive integrated moving average...Down Up 4) Down Down These four cases can be written in compact form as: (20) Where is the Heaviside

  4. Random Process Simulation for stochastic fatigue analysis. Ph.D. Thesis - Rice Univ., Houston, Tex.

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.

    1988-01-01

    A simulation technique is described which directly synthesizes the extrema of a random process and is more efficient than the Gaussian simulation method. Such a technique is particularly useful in stochastic fatigue analysis because the required stress range moment E(R sup m), is a function only of the extrema of the random stress process. The family of autoregressive moving average (ARMA) models is reviewed and an autoregressive model is presented for modeling the extrema of any random process which has a unimodal power spectral density (psd). The proposed autoregressive technique is found to produce rainflow stress range moments which compare favorably with those computed by the Gaussian technique and to average 11.7 times faster than the Gaussian technique. The autoregressive technique is also adapted for processes having bimodal psd's. The adaptation involves using two autoregressive processes to simulate the extrema due to each mode and the superposition of these two extrema sequences. The proposed autoregressive superposition technique is 9 to 13 times faster than the Gaussian technique and produces comparable values for E(R sup m) for bimodal psd's having the frequency of one mode at least 2.5 times that of the other mode.

  5. Incorporating measurement error in n = 1 psychological autoregressive modeling

    PubMed Central

    Schuurman, Noémi K.; Houtveen, Jan H.; Hamaker, Ellen L.

    2015-01-01

    Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30–50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters. PMID:26283988

  6. Cutaneous Leishmaniasis and Sand Fly Fluctuations Are Associated with El Niño in Panamá

    PubMed Central

    Chaves, Luis Fernando; Calzada, José E.; Valderrama, Anayansí; Saldaña, Azael

    2014-01-01

    Background Cutaneous Leishmaniasis (CL) is a neglected tropical vector-borne disease. Sand fly vectors (SF) and Leishmania spp parasites are sensitive to changes in weather conditions, rendering disease transmission susceptible to changes in local and global scale climatic patterns. Nevertheless, it is unclear how SF abundance is impacted by El Niño Southern Oscillation (ENSO) and how these changes might relate to changes in CL transmission. Methodology and Findings We studied association patterns between monthly time series, from January 2000 to December 2010, of: CL cases, rainfall and temperature from Panamá, and an ENSO index. We employed autoregressive models and cross wavelet coherence, to quantify the seasonal and interannual impact of local climate and ENSO on CL dynamics. We employed Poisson Rate Generalized Linear Mixed Models to study SF abundance patterns across ENSO phases, seasons and eco-epidemiological settings, employing records from 640 night-trap sampling collections spanning 2000–2011. We found that ENSO, rainfall and temperature were associated with CL cycles at interannual scales, while seasonal patterns were mainly associated with rainfall and temperature. Sand fly (SF) vector abundance, on average, decreased during the hot and cold ENSO phases, when compared with the normal ENSO phase, yet variability in vector abundance was largest during the cold ENSO phase. Our results showed a three month lagged association between SF vector abundance and CL cases. Conclusion Association patterns of CL with ENSO and local climatic factors in Panamá indicate that interannual CL cycles might be driven by ENSO, while the CL seasonality was mainly associated with temperature and rainfall variability. CL cases and SF abundance were associated in a fashion suggesting that sudden extraordinary changes in vector abundance might increase the potential for CL epidemic outbreaks, given that CL epidemics occur during the cold ENSO phase, a time when SF abundance shows its highest fluctuations. PMID:25275503

  7. Coal consumption and economic growth in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, H.Y.

    2000-03-01

    The purpose of this paper is to examine the causality issue between coal consumption and economic growth for Taiwan. The co-integration and Granger's causality test are applied to investigate the relationship between the two economic series. Results of the co-integration and Granger's causality test based on 1954--1997 Taiwan data show a unidirectional causality from economic growth to coal consumption with no feedback effects. Their major finding supports the neutrality hypothesis of coal consumption with respect to economic growth. Further, the finding has practical policy implications for decision makers in the area of macroeconomic planning, as coal conservation is a feasiblemore » policy with no damaging repercussions on economic growth.« less

  8. Forecasting electric vehicles sales with univariate and multivariate time series models: The case of China.

    PubMed

    Zhang, Yong; Zhong, Miner; Geng, Nana; Jiang, Yunjian

    2017-01-01

    The market demand for electric vehicles (EVs) has increased in recent years. Suitable models are necessary to understand and forecast EV sales. This study presents a singular spectrum analysis (SSA) as a univariate time-series model and vector autoregressive model (VAR) as a multivariate model. Empirical results suggest that SSA satisfactorily indicates the evolving trend and provides reasonable results. The VAR model, which comprised exogenous parameters related to the market on a monthly basis, can significantly improve the prediction accuracy. The EV sales in China, which are categorized into battery and plug-in EVs, are predicted in both short term (up to December 2017) and long term (up to 2020), as statistical proofs of the growth of the Chinese EV industry.

  9. Forecasting electric vehicles sales with univariate and multivariate time series models: The case of China

    PubMed Central

    Zhang, Yong; Zhong, Miner; Geng, Nana; Jiang, Yunjian

    2017-01-01

    The market demand for electric vehicles (EVs) has increased in recent years. Suitable models are necessary to understand and forecast EV sales. This study presents a singular spectrum analysis (SSA) as a univariate time-series model and vector autoregressive model (VAR) as a multivariate model. Empirical results suggest that SSA satisfactorily indicates the evolving trend and provides reasonable results. The VAR model, which comprised exogenous parameters related to the market on a monthly basis, can significantly improve the prediction accuracy. The EV sales in China, which are categorized into battery and plug-in EVs, are predicted in both short term (up to December 2017) and long term (up to 2020), as statistical proofs of the growth of the Chinese EV industry. PMID:28459872

  10. Novel SHM method to locate damages in substructures based on VARX models

    NASA Astrophysics Data System (ADS)

    Ugalde, U.; Anduaga, J.; Martínez, F.; Iturrospe, A.

    2015-07-01

    A novel damage localization method is proposed, which is based on a substructuring approach and makes use of Vector Auto-Regressive with eXogenous input (VARX) models. The substructuring approach aims to divide the monitored structure into several multi-DOF isolated substructures. Later, each individual substructure is modelled as a VARX model, and the health of each substructure is determined analyzing the variation of the VARX model. The method allows to detect whether the isolated substructure is damaged, and besides allows to locate and quantify the damage within the substructure. It is not necessary to have a theoretical model of the structure and only the measured displacement data is required to estimate the isolated substructure's VARX model. The proposed method is validated by simulations of a two-dimensional lattice structure.

  11. Primed for death: Law enforcement-citizen homicides, social media, and retaliatory violence.

    PubMed

    Bejan, Vladimir; Hickman, Matthew; Parkin, William S; Pozo, Veronica F

    2018-01-01

    We examine whether retaliatory violence exists between law enforcement and citizens while controlling for any social media contagion effect related to prior fatal encounters. Analyzed using a trivariate dynamic structural vector-autoregressive model, daily time-series data over a 21-month period captured the frequencies of police killed in the line of duty, police deadly use of force incidents, and social media coverage. The results support a significant retaliatory violence effect against minorities by police, yet there is no evidence of retaliatory violence against law enforcement officers by minorities. Also, social media coverage of the Black Lives Matter movement increases the risk of fatal victimization to both law enforcement officers and minorities. Possible explanations for these results are based in rational choice and terror management theories.

  12. Causal Relationships among Technology Acquisition, Absorptive Capacity, and Innovation Performance: Evidence from the Pharmaceutical Industry.

    PubMed

    Jeon, Jieun; Hong, Suckchul; Ohm, Jay; Yang, Taeyong

    2015-01-01

    This paper discusses the importance of absorptive capacity in improving a firm's innovation performance. Specifically, we examine firm interaction with the knowledge and capabilities of outside organizations and the effect on the firm's bottom line. We use the impulse-response function of the vector auto-regressive model to gain insight into this relationship by estimating the time required for the effect of each activity level to reach outputs, the spillover effects. We apply this methodology to pharmaceutical firms, which we classify into two sub-groups--large firms and medium and small firms--based on sales. Our results show that the impact of an activity on any other activity is delayed by three years for large firms and by one to two years for small and medium firms.

  13. Primed for death: Law enforcement-citizen homicides, social media, and retaliatory violence

    PubMed Central

    Bejan, Vladimir; Hickman, Matthew; Pozo, Veronica F.

    2018-01-01

    We examine whether retaliatory violence exists between law enforcement and citizens while controlling for any social media contagion effect related to prior fatal encounters. Analyzed using a trivariate dynamic structural vector-autoregressive model, daily time-series data over a 21-month period captured the frequencies of police killed in the line of duty, police deadly use of force incidents, and social media coverage. The results support a significant retaliatory violence effect against minorities by police, yet there is no evidence of retaliatory violence against law enforcement officers by minorities. Also, social media coverage of the Black Lives Matter movement increases the risk of fatal victimization to both law enforcement officers and minorities. Possible explanations for these results are based in rational choice and terror management theories. PMID:29320548

  14. The Empirical Relationship between Mining Industry Development and Environmental Pollution in China.

    PubMed

    Li, Gerui; Lei, Yalin; Ge, Jianping; Wu, Sanmang

    2017-03-02

    This study uses a vector autoregression (VAR) model to analyze changes in pollutants among different mining industries and related policy in China from 2001 to 2014. The results show that: (1) because the pertinence of standards for mining waste water and waste gas emissions are not strong and because the maximum permissible discharge pollutant concentrations in these standards are too high, ammonia nitrogen and industrial sulfur dioxide discharges increased in most mining industries; (2) chemical oxygen demand was taken as an indicator of sewage treatment in environmental protection plans; hence, the chemical oxygen demand discharge decreased in all mining industries; (3) tax reduction policies, which are only implemented in coal mining and washing and extraction of petroleum and natural gas, decreased the industrial solid waste discharge in these two mining industries.

  15. The emission abatement policy paradox in Australia: evidence from energy-emission nexus.

    PubMed

    Ahmed, Khalid; Ozturk, Ilhan

    2016-09-01

    This paper attempts to investigate the emissions embodied in Australia's economic growth and disaggregate primary energy sources used for electricity production. Using time series data over the period of 1990-2012, the ARDL bounds test approach to cointegration technique is applied to test the long-run association among the underlying variables. The regression results validate the long-run equilibrium relationship among all vectors and confirm that CO2 emissions, economic growth, and disaggregate primary energy consumption impact each other in the long-run path. Afterwards, the long- and short-run analyses are conducted using error correction model. The results show that economic growth, coal, oil, gas, and hydro energy sources have positive and statistically significant impact on CO2 emissions both in long and short run, with an exception of renewables which has negative impact only in the long run. The results conclude that Australia faces wide gap between emission abatement policies and targets. The country still relies on emission intensive fossil fuels (i.e., coal and oil) to meet the indigenous electricity demand.

  16. Estimating the Relationship between Economic Growth and Health Expenditures in ECO Countries Using Panel Cointegration Approach.

    PubMed

    Hatam, Nahid; Tourani, Sogand; Homaie Rad, Enayatollah; Bastani, Peivand

    2016-02-01

    Increasing knowledge of people about health leads to raising the share of health expenditures in government budget continuously; although governors do not like this rise because of budget limitations. This study aimed to find the association between health expenditures and economic growth in ECO countries. We added health capital in Solow model and used the panel cointegration approach to show the importance of health expenditures in economic growth. For estimating the model, first we used Pesaran cross-sectional dependency test, after that we used Pesaran CADF unit root test, and then we used Westerlund panel cointegration test to show if there is a long-term association between variables or not. After that, we used chaw test, Breusch-Pagan test and Hausman test to find the form of the model. Finally, we used OLS estimator for panel data. Findings showed that there is a positive, strong association between health expenditures and economic growth in ECO countries. If governments increase investing in health, the total production of the country will be increased, so health expenditures are considered as an investing good. The effects of health expenditures in developing countries must be higher than those in developed countries. Such studies can help policy makers to make long-term decisions.

  17. Revisiting the emissions-energy-trade nexus: evidence from the newly industrializing countries.

    PubMed

    Ahmed, Khalid; Shahbaz, Muhammad; Kyophilavong, Phouphet

    2016-04-01

    This paper applies Pedroni's panel cointegration approach to explore the causal relationship between trade openness, carbon dioxide emissions, energy consumption, and economic growth for the panel of newly industrialized economies (i.e., Brazil, India, China, and South Africa) over the period of 1970-2013. Our panel cointegration estimation results found majority of the variables cointegrated and confirm the long-run association among the variables. The Granger causality test indicates bidirectional causality between carbon dioxide emissions and energy consumption. A unidirectional causality is found running from trade openness to carbon dioxide emission and energy consumption and economic growth to carbon dioxide emissions. The results of causality analysis suggest that the trade liberalization in newly industrialized economies induces higher energy consumption and carbon dioxide emissions. Furthermore, the causality results are checked using an innovative accounting approach which includes forecast-error variance decomposition test and impulse response function. The long-run coefficients are estimated using fully modified ordinary least square (FMOLS) method, and results conclude that the trade openness and economic growth reduce carbon dioxide emissions in the long run. The results of FMOLS test sound the existence of environmental Kuznets curve hypothesis. It means that trade liberalization induces carbon dioxide emission with increased national output, but it offsets that impact in the long run with reduced level of carbon dioxide emissions.

  18. Health Care Expenditure and GDP in Oil Exporting Countries: Evidence from OPEC Data, 1995-2012

    PubMed Central

    Fazaeli, Ali Akbar; Ghaderi, Hossein; Salehi, Masoud; Fazaeli, Ali Reza

    2016-01-01

    Background: There is a large body of literature examining income in relation to health expenditures. The share of expenditures in health sector from GDP in developed countries is often larger than in non-developed countries, suggesting that as the level of economic growth increases, health spending increase, too. Objectives: This paper estimates long-run relationships between health expenditures and GDP based on panel data of a sample of 12 countries of the Organization of the Petroleum Exporting Countries (OPEC), using data for the period 1995-2012. Patients & Methods: We use panel data unit root tests, cointegration analysis and ECM model to find long-run and short-run relation. This study examines whether health is a luxury or a necessity for OPEC countries within a unit root and cointegration framework. Results: Panel data analysis indicates that health expenditures and GDP are co-integrated and have Engle and Granger causality. In addition, in oil countries that have oil export income, the share of government expenditures in the health sector is often greater than in private health expenditures similar developed countries. Conclusions: The findings verify that health care is not a luxury good and income has a robust relationship to health expenditures in OPEC countries. PMID:26383195

  19. The effect of case management and vector-control interventions on space-time patterns of malaria incidence in Uganda.

    PubMed

    Ssempiira, Julius; Kissa, John; Nambuusi, Betty; Kyozira, Carol; Rutazaana, Damian; Mukooyo, Eddie; Opigo, Jimmy; Makumbi, Fredrick; Kasasa, Simon; Vounatsou, Penelope

    2018-04-12

    Electronic reporting of routine health facility data in Uganda began with the adoption of the District Health Information Software System version 2 (DHIS2) in 2011. This has improved health facility reporting and overall data quality. In this study, the effects of case management with artemisinin-based combination therapy (ACT) and vector control interventions on space-time patterns of disease incidence were determined using DHIS2 data reported during 2013-2016. Bayesian spatio-temporal negative binomial models were fitted on district-aggregated monthly malaria cases, reported by two age groups, defined by a cut-off age of 5 years. The effects of interventions were adjusted for socio-economic and climatic factors. Spatial and temporal correlations were taken into account by assuming a conditional autoregressive and a first-order autoregressive AR(1) process on district and monthly specific random effects, respectively. Fourier trigonometric functions were incorporated in the models to take into account seasonal fluctuations in malaria transmission. The temporal variation in incidence was similar in both age groups and depicted a steady decline up to February 2014, followed by an increase from March 2015 onwards. The trends were characterized by a strong bi-annual seasonal pattern with two peaks during May-July and September-December. Average monthly incidence in children < 5 years declined from 74.7 cases (95% CI 72.4-77.1) in 2013 to 49.4 (95% CI 42.9-55.8) per 1000 in 2015 and followed by an increase in 2016 of up to 51.3 (95% CI 42.9-55.8). In individuals ≥ 5 years, a decline in incidence from 2013 to 2015 was followed by an increase in 2016. A 100% increase in insecticide-treated nets (ITN) coverage was associated with a decline in incidence by 44% (95% BCI 28-59%). Similarly, a 100% increase in ACT coverage reduces incidence by 28% (95% BCI 11-45%) and 25% (95% BCI 20-28%) in children < 5 years and individuals ≥ 5 years, respectively. The ITN effect was not statistically important in older individuals. The space-time patterns of malaria incidence in children < 5 are similar to those of parasitaemia risk predicted from the malaria indicator survey of 2014-15. The decline in malaria incidence highlights the effectiveness of vector-control interventions and case management with ACT in Uganda. This calls for optimizing and sustaining interventions to achieve universal coverage and curb reverses in malaria decline.

  20. To center or not to center? Investigating inertia with a multilevel autoregressive model.

    PubMed

    Hamaker, Ellen L; Grasman, Raoul P P P

    2014-01-01

    Whether level 1 predictors should be centered per cluster has received considerable attention in the multilevel literature. While most agree that there is no one preferred approach, it has also been argued that cluster mean centering is desirable when the within-cluster slope and the between-cluster slope are expected to deviate, and the main interest is in the within-cluster slope. However, we show in a series of simulations that if one has a multilevel autoregressive model in which the level 1 predictor is the lagged outcome variable (i.e., the outcome variable at the previous occasion), cluster mean centering will in general lead to a downward bias in the parameter estimate of the within-cluster slope (i.e., the autoregressive relationship). This is particularly relevant if the main question is whether there is on average an autoregressive effect. Nonetheless, we show that if the main interest is in estimating the effect of a level 2 predictor on the autoregressive parameter (i.e., a cross-level interaction), cluster mean centering should be preferred over other forms of centering. Hence, researchers should be clear on what is considered the main goal of their study, and base their choice of centering method on this when using a multilevel autoregressive model.

  1. To center or not to center? Investigating inertia with a multilevel autoregressive model

    PubMed Central

    Hamaker, Ellen L.; Grasman, Raoul P. P. P.

    2015-01-01

    Whether level 1 predictors should be centered per cluster has received considerable attention in the multilevel literature. While most agree that there is no one preferred approach, it has also been argued that cluster mean centering is desirable when the within-cluster slope and the between-cluster slope are expected to deviate, and the main interest is in the within-cluster slope. However, we show in a series of simulations that if one has a multilevel autoregressive model in which the level 1 predictor is the lagged outcome variable (i.e., the outcome variable at the previous occasion), cluster mean centering will in general lead to a downward bias in the parameter estimate of the within-cluster slope (i.e., the autoregressive relationship). This is particularly relevant if the main question is whether there is on average an autoregressive effect. Nonetheless, we show that if the main interest is in estimating the effect of a level 2 predictor on the autoregressive parameter (i.e., a cross-level interaction), cluster mean centering should be preferred over other forms of centering. Hence, researchers should be clear on what is considered the main goal of their study, and base their choice of centering method on this when using a multilevel autoregressive model. PMID:25688215

  2. A Novel Signal Modeling Approach for Classification of Seizure and Seizure-Free EEG Signals.

    PubMed

    Gupta, Anubha; Singh, Pushpendra; Karlekar, Mandar

    2018-05-01

    This paper presents a signal modeling-based new methodology of automatic seizure detection in EEG signals. The proposed method consists of three stages. First, a multirate filterbank structure is proposed that is constructed using the basis vectors of discrete cosine transform. The proposed filterbank decomposes EEG signals into its respective brain rhythms: delta, theta, alpha, beta, and gamma. Second, these brain rhythms are statistically modeled with the class of self-similar Gaussian random processes, namely, fractional Brownian motion and fractional Gaussian noises. The statistics of these processes are modeled using a single parameter called the Hurst exponent. In the last stage, the value of Hurst exponent and autoregressive moving average parameters are used as features to design a binary support vector machine classifier to classify pre-ictal, inter-ictal (epileptic with seizure free interval), and ictal (seizure) EEG segments. The performance of the classifier is assessed via extensive analysis on two widely used data set and is observed to provide good accuracy on both the data set. Thus, this paper proposes a novel signal model for EEG data that best captures the attributes of these signals and hence, allows to boost the classification accuracy of seizure and seizure-free epochs.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santini, Danilo J.; Poyer, David A.

    Vector error correction (VEC) was used to test the importance of a theoretical causal chain from transportation fuel cost to vehicle sales to macroeconomic activity. Real transportation fuel cost was broken into two cost components: real gasoline price (rpgas) and real personal consumption of gasoline and other goods (gas). Real personal consumption expenditure on vehicles (RMVE) represented vehicle sales. Real gross domestic product (rGDP) was used as the measure of macroeconomic activity. The VEC estimates used quarterly data from the third quarter of 1952 to the first quarter of 2014. Controlling for the financial causes of the recent Great Recession,more » real homeowners’ equity (equity) and real credit market instruments liability (real consumer debt, rcmdebt) were included. Results supported the primary hypothesis of the research, but also introduced evidence that another financial path through equity is important, and that use of the existing fleet of vehicles (not just sales of vehicles) is an important transport-related contributor to macroeconomic activity. Consumer debt reduction is estimated to be a powerful short-run force reducing vehicle sales. Findings are interpreted in the context of the recent Greene, Lee, and Hopson (2012) (hereafter GLH) estimation of the magnitude of three distinct macroeconomic damage effects that result from dependence on imported oil, the price of which is manipulated by the Organization of Petroleum Exporting Countries (OPEC). The three negative macroeconomic impacts are due to (1) dislocation (positive oil price shock), (2) high oil price levels, and (3) a high value of the quantity of oil imports times an oil price delta (cartel price less competitive price). The third of these is the wealth effect. The VEC model addresses the first two, but the software output from the model (impulse response plots) does not isolate them. Nearly all prior statistical tests in the literature have used vector autoregression (VAR) and autoregressive distributed lag models that considered effects of oil price changes, but did not account for effects of oil price levels. Gasoline prices were rarely examined. The tests conducted in this report evaluate gasoline instead of oil.« less

  4. How are you feeling?: A personalized methodology for predicting mental states from temporally observable physical and behavioral information.

    PubMed

    Tuarob, Suppawong; Tucker, Conrad S; Kumara, Soundar; Giles, C Lee; Pincus, Aaron L; Conroy, David E; Ram, Nilam

    2017-04-01

    It is believed that anomalous mental states such as stress and anxiety not only cause suffering for the individuals, but also lead to tragedies in some extreme cases. The ability to predict the mental state of an individual at both current and future time periods could prove critical to healthcare practitioners. Currently, the practical way to predict an individual's mental state is through mental examinations that involve psychological experts performing the evaluations. However, such methods can be time and resource consuming, mitigating their broad applicability to a wide population. Furthermore, some individuals may also be unaware of their mental states or may feel uncomfortable to express themselves during the evaluations. Hence, their anomalous mental states could remain undetected for a prolonged period of time. The objective of this work is to demonstrate the ability of using advanced machine learning based approaches to generate mathematical models that predict current and future mental states of an individual. The problem of mental state prediction is transformed into the time series forecasting problem, where an individual is represented as a multivariate time series stream of monitored physical and behavioral attributes. A personalized mathematical model is then automatically generated to capture the dependencies among these attributes, which is used for prediction of mental states for each individual. In particular, we first illustrate the drawbacks of traditional multivariate time series forecasting methodologies such as vector autoregression. Then, we show that such issues could be mitigated by using machine learning regression techniques which are modified for capturing temporal dependencies in time series data. A case study using the data from 150 human participants illustrates that the proposed machine learning based forecasting methods are more suitable for high-dimensional psychological data than the traditional vector autoregressive model in terms of both magnitude of error and directional accuracy. These results not only present a successful usage of machine learning techniques in psychological studies, but also serve as a building block for multiple medical applications that could rely on an automated system to gauge individuals' mental states. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A conditional Granger causality model approach for group analysis in functional MRI

    PubMed Central

    Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J.; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M.; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun

    2011-01-01

    Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed for identifying effective connectivity in the human brain with functional MR imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pairwise GCM has commonly been applied based on single voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of an fMRI data with GCM. To compare the effectiveness of our approach with traditional pairwise GCM models, we applied a well-established conditional GCM to pre-selected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis (ICA) of an fMRI dataset in the temporal domain. Datasets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM detected brain activation regions in the emotion related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state dataset, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network (DMN) that can be characterized as both afferent and efferent influences on the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive (MVAR) model can achieve greater accuracy in detecting network connectivity than the widely used pairwise GCM, and this group analysis methodology can be quite useful to extend the information obtainable in fMRI. PMID:21232892

  6. Transfer Entropy as a Log-Likelihood Ratio

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Bossomaier, Terry

    2012-09-01

    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.

  7. Transfer entropy as a log-likelihood ratio.

    PubMed

    Barnett, Lionel; Bossomaier, Terry

    2012-09-28

    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.

  8. Real Time Data Management for Estimating Probabilities of Incidents and Near Misses

    NASA Astrophysics Data System (ADS)

    Stanitsas, P. D.; Stephanedes, Y. J.

    2011-08-01

    Advances in real-time data collection, data storage and computational systems have led to development of algorithms for transport administrators and engineers that improve traffic safety and reduce cost of road operations. Despite these advances, problems in effectively integrating real-time data acquisition, processing, modelling and road-use strategies at complex intersections and motorways remain. These are related to increasing system performance in identification, analysis, detection and prediction of traffic state in real time. This research develops dynamic models to estimate the probability of road incidents, such as crashes and conflicts, and incident-prone conditions based on real-time data. The models support integration of anticipatory information and fee-based road use strategies in traveller information and management. Development includes macroscopic/microscopic probabilistic models, neural networks, and vector autoregressions tested via machine vision at EU and US sites.

  9. The Impact of United States Monetary Policy in the Crude Oil futures market

    NASA Astrophysics Data System (ADS)

    Padilla-Padilla, Fernando M.

    This research examines the empirical impact the United States monetary policy, through the federal fund interest rate, has on the volatility in the crude oil price in the futures market. Prior research has shown how macroeconomic events and variables have impacted different financial markets within short and long--term movements. After testing and decomposing the variables, the two stationary time series were analyzed using a Vector Autoregressive Model (VAR). The empirical evidence shows, with statistical significance, a direct relationship when explaining crude oil prices as function of fed fund rates (t-1) and an indirect relationship when explained as a function of fed fund rates (t-2). These results partially address the literature review lacunas within the topic of the existing implication monetary policy has within the crude oil futures market.

  10. Retrieving Tract Variables From Acoustics: A Comparison of Different Machine Learning Strategies.

    PubMed

    Mitra, Vikramjit; Nam, Hosung; Espy-Wilson, Carol Y; Saltzman, Elliot; Goldstein, Louis

    2010-09-13

    Many different studies have claimed that articulatory information can be used to improve the performance of automatic speech recognition systems. Unfortunately, such articulatory information is not readily available in typical speaker-listener situations. Consequently, such information has to be estimated from the acoustic signal in a process which is usually termed "speech-inversion." This study aims to propose and compare various machine learning strategies for speech inversion: Trajectory mixture density networks (TMDNs), feedforward artificial neural networks (FF-ANN), support vector regression (SVR), autoregressive artificial neural network (AR-ANN), and distal supervised learning (DSL). Further, using a database generated by the Haskins Laboratories speech production model, we test the claim that information regarding constrictions produced by the distinct organs of the vocal tract (vocal tract variables) is superior to flesh-point information (articulatory pellet trajectories) for the inversion process.

  11. International Trade, Pollution Accumulation and Sustainable Growth: A VAR Estimation from the Pearl River Delta Region

    NASA Astrophysics Data System (ADS)

    Zuo, Hui; Tian, Lu

    2018-03-01

    In order to investigate international trade influence in the regional environment. This paper constructs a vector auto-regression (VAR) model and estimates the equations with the environment and trade data of the Pearl River Delta Region. The major mechanisms to the lag are discussed and the fit simulation of the environmental change by the international impulse is given. The result shows that impulse of pollution-intensive export deteriorates the environment continuously and impulse of such import improves it. These effects on the environment are insignificantly correlated with contemporary regional income but significantly correlative to early-stage trade feature. To a typical trade-dependent economy, both export and import have hysteresis influence in the regional environment. The lagged impulse will change environmental development in the turning point, maximal pollution level and convergence.

  12. Comparison of ANN and SVM for classification of eye movements in EOG signals

    NASA Astrophysics Data System (ADS)

    Qi, Lim Jia; Alias, Norma

    2018-03-01

    Nowadays, electrooculogram is regarded as one of the most important biomedical signal in measuring and analyzing eye movement patterns. Thus, it is helpful in designing EOG-based Human Computer Interface (HCI). In this research, electrooculography (EOG) data was obtained from five volunteers. The (EOG) data was then preprocessed before feature extraction methods were employed to further reduce the dimensionality of data. Three feature extraction approaches were put forward, namely statistical parameters, autoregressive (AR) coefficients using Burg method, and power spectral density (PSD) using Yule-Walker method. These features would then become input to both artificial neural network (ANN) and support vector machine (SVM). The performance of the combination of different feature extraction methods and classifiers was presented and analyzed. It was found that statistical parameters + SVM achieved the highest classification accuracy of 69.75%.

  13. Analysis of the Westland Data Set

    NASA Technical Reports Server (NTRS)

    Wen, Fang; Willett, Peter; Deb, Somnath

    2001-01-01

    The "Westland" set of empirical accelerometer helicopter data with seeded and labeled faults is analyzed with the aim of condition monitoring. The autoregressive (AR) coefficients from a simple linear model encapsulate a great deal of information in a relatively few measurements; and it has also been found that augmentation of these by harmonic and other parameters call improve classification significantly. Several techniques have been explored, among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms, is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian data reduction algorithm (BDRA), which imposes a Dirichlet prior oil training data and is thus able to quantify probability of error in all exact manner, such that features may be discarded or coarsened appropriately.

  14. Causal Relationships among Technology Acquisition, Absorptive Capacity, and Innovation Performance: Evidence from the Pharmaceutical Industry

    PubMed Central

    Jeon, Jieun; Hong, Suckchul; Ohm, Jay; Yang, Taeyong

    2015-01-01

    This paper discusses the importance of absorptive capacity in improving a firm’s innovation performance. Specifically, we examine firm interaction with the knowledge and capabilities of outside organizations and the effect on the firm’s bottom line. We use the impulse-response function of the vector auto-regressive model to gain insight into this relationship by estimating the time required for the effect of each activity level to reach outputs, the spillover effects. We apply this methodology to pharmaceutical firms, which we classify into two sub-groups – large firms and medium and small firms – based on sales. Our results show that the impact of an activity on any other activity is delayed by three years for large firms and by one to two years for small and medium firms. PMID:26181440

  15. The Empirical Relationship between Mining Industry Development and Environmental Pollution in China

    PubMed Central

    Li, Gerui; Lei, Yalin; Ge, Jianping; Wu, Sanmang

    2017-01-01

    This study uses a vector autoregression (VAR) model to analyze changes in pollutants among different mining industries and related policy in China from 2001 to 2014. The results show that: (1) because the pertinence of standards for mining waste water and waste gas emissions are not strong and because the maximum permissible discharge pollutant concentrations in these standards are too high, ammonia nitrogen and industrial sulfur dioxide discharges increased in most mining industries; (2) chemical oxygen demand was taken as an indicator of sewage treatment in environmental protection plans; hence, the chemical oxygen demand discharge decreased in all mining industries; (3) tax reduction policies, which are only implemented in coal mining and washing and extraction of petroleum and natural gas, decreased the industrial solid waste discharge in these two mining industries. PMID:28257126

  16. Thermal signature identification system (TheSIS): a spread spectrum temperature cycling method

    NASA Astrophysics Data System (ADS)

    Merritt, Scott

    2015-03-01

    NASA GSFC's Thermal Signature Identification System (TheSIS) 1) measures the high order dynamic responses of optoelectronic components to direct sequence spread-spectrum temperature cycling, 2) estimates the parameters of multiple autoregressive moving average (ARMA) or other models the of the responses, 3) and selects the most appropriate model using the Akaike Information Criterion (AIC). Using the AIC-tested model and parameter vectors from TheSIS, one can 1) select high-performing components on a multivariate basis, i.e., with multivariate Figures of Merit (FOMs), 2) detect subtle reversible shifts in performance, and 3) investigate irreversible changes in component or subsystem performance, e.g. aging. We show examples of the TheSIS methodology for passive and active components and systems, e.g. fiber Bragg gratings (FBGs) and DFB lasers with coupled temperature control loops, respectively.

  17. Cointegration and causal linkages in fertilizer markets across different regimes

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2017-04-01

    Cointegration and causal linkages among five different fertilizer markets are investigated during low and high market regimes. The database includes prices of rock phosphate (RP), triple super phosphate (TSP), diammonium phosphate (DAP), urea, and potassium chloride (PC). It is found that fertilizer markets are closely linked to each other during low and high regimes; and, particularly during high regime (after 2007 international financial crisis). In addition, there is no evidence of bidirectional linear relationship between markets during low and high regime time periods. Furthermore, all significant linkages are only unidirectional. Moreover, some causality effects have emerged during high regime. Finally, the effect of an impulse during high regime time period persists longer and is stronger than the effect of an impulse during low regime time period (before 2007 international financial crisis).

  18. Time-series panel analysis (TSPA): multivariate modeling of temporal associations in psychotherapy process.

    PubMed

    Ramseyer, Fabian; Kupper, Zeno; Caspar, Franz; Znoj, Hansjörg; Tschacher, Wolfgang

    2014-10-01

    Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. Essays in energy economics: The electricity industry

    NASA Astrophysics Data System (ADS)

    Martinez-Chombo, Eduardo

    Electricity demand analysis using cointegration and error-correction models with time varying parameters: The Mexican case. In this essay we show how some flexibility can be allowed in modeling the parameters of the electricity demand function by employing the time varying coefficient (TVC) cointegrating model developed by Park and Hahn (1999). With the income elasticity of electricity demand modeled as a TVC, we perform tests to examine the adequacy of the proposed model against the cointegrating regression with fixed coefficients, as well as against the spuriousness of the regression with TVC. The results reject the specification of the model with fixed coefficients and favor the proposed model. We also show how some flexibility is gained in the specification of the error correction model based on the proposed TVC cointegrating model, by including more lags of the error correction term as predetermined variables. Finally, we present the results of some out-of-sample forecast comparison among competing models. Electricity demand and supply in Mexico. In this essay we present a simplified model of the Mexican electricity transmission network. We use the model to approximate the marginal cost of supplying electricity to consumers in different locations and at different times of the year. We examine how costs and system operations will be affected by proposed investments in generation and transmission capacity given a forecast of growth in regional electricity demands. Decomposing electricity prices with jumps. In this essay we propose a model that decomposes electricity prices into two independent stochastic processes: one that represents the "normal" pattern of electricity prices and the other that captures temporary shocks, or "jumps", with non-lasting effects in the market. Each contains specific mean reverting parameters to estimate. In order to identify such components we specify a state-space model with regime switching. Using Kim's (1994) filtering algorithm we estimate the parameters of the model, the transition probabilities and the unobservable components for the mean adjusted series of New South Wales' electricity prices. Finally, bootstrap simulations were performed to estimate the expected contribution of each of the components in the overall electricity prices.

  20. Adaptive spline autoregression threshold method in forecasting Mitsubishi car sales volume at PT Srikandi Diamond Motors

    NASA Astrophysics Data System (ADS)

    Susanti, D.; Hartini, E.; Permana, A.

    2017-01-01

    Sale and purchase of the growing competition between companies in Indonesian, make every company should have a proper planning in order to win the competition with other companies. One of the things that can be done to design the plan is to make car sales forecast for the next few periods, it’s required that the amount of inventory of cars that will be sold in proportion to the number of cars needed. While to get the correct forecasting, on of the methods that can be used is the method of Adaptive Spline Threshold Autoregression (ASTAR). Therefore, this time the discussion will focus on the use of Adaptive Spline Threshold Autoregression (ASTAR) method in forecasting the volume of car sales in PT.Srikandi Diamond Motors using time series data.In the discussion of this research, forecasting using the method of forecasting value Adaptive Spline Threshold Autoregression (ASTAR) produce approximately correct.

  1. Nonlinear joint dynamics between prices of crude oil and refined products

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Ma, Guofeng; Liu, Guangsheng

    2015-02-01

    In this paper, we investigate the relationships between crude oil and refined product prices. We find that nonlinear correlations are stronger in the long-term than in the short-term. Crude oil and product prices are cointegrated and financial crisis in 2007-2008 caused a structural break of the cointegrating relationship. Moreover, different from the findings in most studies, we reveal that the relationships are almost symmetric based on a threshold error correction model. The so-called 'asymmetric relationships' are caused by some outliers and financial crisis. Most of the time, crude oil prices play the major role in the adjustment process of the long-term equilibrium. However, refined product prices dominated crude oil prices during the period of financial crisis. Important policy and risk management implications can be learned from the empirical findings.

  2. The influence of renewable and non-renewable energy consumption and real income on CO2 emissions in the USA: evidence from structural break tests.

    PubMed

    Dogan, Eyup; Ozturk, Ilhan

    2017-04-01

    The objective of this study is to explore the influence of the real income (GDP), renewable energy consumption and non-renewable energy consumption on carbon dioxide (CO 2 ) emissions for the United States of America (USA) in the environmental Kuznets curve (EKC) model for the period 1980-2014. The Zivot-Andrews unit root test with a structural break and the Clemente-Montanes-Reyes unit root test with a structural break report that the analyzed variables become stationary at first-differences. The Gregory-Hansen cointegration test with a structural break and the bounds testing for cointegration in the presence of a structural break show CO 2 emissions, the real income, the quadratic real income, renewable and non-renewable energy consumption are cointegrated. The long-run estimates obtained from the ARDL model indicate that increases in renewable energy consumption mitigate environmental degradation whereas increases in non-renewable energy consumption contribute to CO 2 emissions. In addition, the EKC hypothesis is not valid for the USA. Since we use time-series econometric approaches that account for structural break in the data, findings of this study are robust, reliable and accurate. The US government is advised to put more weights on renewable sources in energy mix, to support and encourage the use and adoption of renewable energy and clean technologies, and to increase the public awareness of renewable energy for lower levels of emissions.

  3. Linear and non-linear impact of Internet usage and financial deepening on electricity consumption for Turkey: empirical evidence from asymmetric causality.

    PubMed

    Faisal, Faisal; Tursoy, Turgut; Berk, Niyazi

    2018-04-01

    This study investigates the relationship between Internet usage, financial development, economic growth, capital and electricity consumption using quarterly data from 1993Q1 to 2014Q4. The integration order of the series is analysed using the structural break unit root test. The ARDL bounds test for cointegration in addition to the Bayer-Hanck (2013) combined cointegration test is applied to analyse the existence of cointegration among the variables. The study found strong evidence of a long-run relationship between the variables. The long-run results under the ARDL framework confirm the existence of an inverted U-shaped relationship between financial development and electricity consumption, not only in the long-run, but also in the short-run. The study also confirms the existence of a U-shaped relationship between Internet usage and electricity consumption; however, the effect is insignificant. Additionally, the influence of trade, capital and economic growth is examined in both the long run and short run (ARDL-ECM). Finally, the results of asymmetric causality suggest a positive shock in electricity consumption that has a positive causal impact on Internet usage. The authors recommend that the Turkish Government should direct financial institutions to moderate the investment in the ICT sector by advancing credits at lower cost for purchasing energy-efficient technologies. In doing so, the Turkish Government can increase productivity in order to achieve sustainable growth, while simultaneously reducing emissions to improve environmental quality.

  4. Granger Causality Testing with Intensive Longitudinal Data.

    PubMed

    Molenaar, Peter C M

    2018-06-01

    The availability of intensive longitudinal data obtained by means of ambulatory assessment opens up new prospects for prevention research in that it allows the derivation of subject-specific dynamic networks of interacting variables by means of vector autoregressive (VAR) modeling. The dynamic networks thus obtained can be subjected to Granger causality testing in order to identify causal relations among the observed time-dependent variables. VARs have two equivalent representations: standard and structural. Results obtained with Granger causality testing depend upon which representation is chosen, yet no criteria exist on which this important choice can be based. A new equivalent representation is introduced called hybrid VARs with which the best representation can be chosen in a data-driven way. Partial directed coherence, a frequency-domain statistic for Granger causality testing, is shown to perform optimally when based on hybrid VARs. An application to real data is provided.

  5. Classification of EEG signals using a genetic-based machine learning classifier.

    PubMed

    Skinner, B T; Nguyen, H T; Liu, D K

    2007-01-01

    This paper investigates the efficacy of the genetic-based learning classifier system XCS, for the classification of noisy, artefact-inclusive human electroencephalogram (EEG) signals represented using large condition strings (108bits). EEG signals from three participants were recorded while they performed four mental tasks designed to elicit hemispheric responses. Autoregressive (AR) models and Fast Fourier Transform (FFT) methods were used to form feature vectors with which mental tasks can be discriminated. XCS achieved a maximum classification accuracy of 99.3% and a best average of 88.9%. The relative classification performance of XCS was then compared against four non-evolutionary classifier systems originating from different learning techniques. The experimental results will be used as part of our larger research effort investigating the feasibility of using EEG signals as an interface to allow paralysed persons to control a powered wheelchair or other devices.

  6. Tourism demand in the Algarve region: Evolution and forecast using SVARMA models

    NASA Astrophysics Data System (ADS)

    Lopes, Isabel Cristina; Soares, Filomena; Silva, Eliana Costa e.

    2017-06-01

    Tourism is one of the Portuguese economy's key sectors, and its relative weight has grown over recent years. The Algarve region is particularly focused on attracting foreign tourists and has built over the years a large offer of diversified hotel units. In this paper we present multivariate time series approach to forecast the number of overnight stays in hotel units (hotels, guesthouses or hostels, and tourist apartments) in Algarve. We adjust a seasonal vector autoregressive and moving averages model (SVARMA) to monthly data between 2006 and 2016. The forecast values were compared with the actual values of the overnight stays in Algarve in 2016 and led to a MAPE of 15.1% and RMSE= 53847.28. The MAPE for the Hotel series was merely 4.56%. These forecast values can be used by a hotel manager to predict their occupancy and to determine the best pricing policy.

  7. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.

    PubMed

    Faradji, Farhad; Ward, Rabab K; Birch, Gary E

    2009-06-15

    The feasibility of having a self-paced brain-computer interface (BCI) based on mental tasks is investigated. The EEG signals of four subjects performing five mental tasks each are used in the design of a 2-state self-paced BCI. The output of the BCI should only be activated when the subject performs a specific mental task and should remain inactive otherwise. For each subject and each task, the feature coefficient and the classifier that yield the best performance are selected, using the autoregressive coefficients as the features. The classifier with a zero false positive rate and the highest true positive rate is selected as the best classifier. The classifiers tested include: linear discriminant analysis, quadratic discriminant analysis, Mahalanobis discriminant analysis, support vector machine, and radial basis function neural network. The results show that: (1) some classifiers obtained the desired zero false positive rate; (2) the linear discriminant analysis classifier does not yield acceptable performance; (3) the quadratic discriminant analysis classifier outperforms the Mahalanobis discriminant analysis classifier and performs almost as well as the radial basis function neural network; and (4) the support vector machine classifier has the highest true positive rates but unfortunately has nonzero false positive rates in most cases.

  8. Beyond long memory in heart rate variability: An approach based on fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Leite, Argentina; Paula Rocha, Ana; Eduarda Silva, Maria

    2013-06-01

    Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. The ARFIMA-GARCH approach is applied to fifteen long term HRV series available at Physionet, leading to the discrimination among normal individuals, heart failure patients, and patients with atrial fibrillation.

  9. Forecasting coconut production in the Philippines with ARIMA model

    NASA Astrophysics Data System (ADS)

    Lim, Cristina Teresa

    2015-02-01

    The study aimed to depict the situation of the coconut industry in the Philippines for the future years applying Autoregressive Integrated Moving Average (ARIMA) method. Data on coconut production, one of the major industrial crops of the country, for the period of 1990 to 2012 were analyzed using time-series methods. Autocorrelation (ACF) and partial autocorrelation functions (PACF) were calculated for the data. Appropriate Box-Jenkins autoregressive moving average model was fitted. Validity of the model was tested using standard statistical techniques. The forecasting power of autoregressive moving average (ARMA) model was used to forecast coconut production for the eight leading years.

  10. How to compare cross-lagged associations in a multilevel autoregressive model.

    PubMed

    Schuurman, Noémi K; Ferrer, Emilio; de Boer-Sonnenschein, Mieke; Hamaker, Ellen L

    2016-06-01

    By modeling variables over time it is possible to investigate the Granger-causal cross-lagged associations between variables. By comparing the standardized cross-lagged coefficients, the relative strength of these associations can be evaluated in order to determine important driving forces in the dynamic system. The aim of this study was twofold: first, to illustrate the added value of a multilevel multivariate autoregressive modeling approach for investigating these associations over more traditional techniques; and second, to discuss how the coefficients of the multilevel autoregressive model should be standardized for comparing the strength of the cross-lagged associations. The hierarchical structure of multilevel multivariate autoregressive models complicates standardization, because subject-based statistics or group-based statistics can be used to standardize the coefficients, and each method may result in different conclusions. We argue that in order to make a meaningful comparison of the strength of the cross-lagged associations, the coefficients should be standardized within persons. We further illustrate the bivariate multilevel autoregressive model and the standardization of the coefficients, and we show that disregarding individual differences in dynamics can prove misleading, by means of an empirical example on experienced competence and exhaustion in persons diagnosed with burnout. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Essays on the behavior of the oil market and OPEC

    NASA Astrophysics Data System (ADS)

    Algudhea, Salim

    This dissertation consists of three essays. The first essay is mainly concerned with investigating the risk-responsive behavior of OPEC members. Economic theory suggests that producers respond to the risk of volatile price by lowering production level. In the case of OPEC, the risk of the volatility in the price of crude oil does not seem to be a key determinant in the production decision-making process. Engineering constraints, data frequency, and political consideration may be the main causes of such a result. In the second essay, we tested the presence of the asymmetric adjustment in the cheating behavior as a result of crude oil price shocks. We utilize a set of cointegration and error correction methods that do not assume a linear adjustment to test whether cheaters within OPEC respond more to positive or negative crude oil price shocks. We conclude that cheaters respond more to negative shocks than positive shocks in oil price. The inelastic nature of demand for oil seems to play a crucial role in such asymmetric behavior. When there is a negative price shock, OPEC producers compensate for the loss in revenue by overproducing (i.e. cheat). Yet, if there is a positive shock in the price of crude oil, OPEC producers have less incentive to overproduce because of the inelastic demand for oil. The third essay is concerned with testing for the asymmetric adjustment in gasoline prices in the U.S. We consider a Momentum Threshold Autoregressive (MTAR) process to test for the asymmetric adjustment in all of the possible stages that a gallon of gasoline goes through in order to find the source of asymmetry. Then, we examine the dynamics of gasoline prices using asymmetric error correction models based on the MTAR specifications. We find the asymmetric adjustment present in all stages. The asymmetry in the retail stage seems to be the result of insufficient demand faced by retailers.

  12. Is health care a luxury or a necessity or both? Evidence from Turkey.

    PubMed

    Yavuz, Nilgun Cil; Yilanci, Veli; Ozturk, Zehra Ayca

    2013-02-01

    This study investigates the effect of per capita income on per capita health expenditures in Turkey over the period 1975-2007 by using ARDL bounds test approach to the cointegration considering both demand and supply side variables. Since we reject the null hypothesis that there is no cointegration among the series, we estimate long run and short run elasticities. The results show that while income has no effect on health expenditures in the long run, it is a necessity good in the short run that is a 1% increase in per capita income creates an 0.75% increase in per capita health expenditures. On the other hand, by examining the coefficient of demand and supply side variables, we found that average length of stay and number of physicians has negative effect, percentage of older people has positive effect and infant mortality rate has no effect on health expenditures in both short and long runs.

  13. A non-stationary panel data investigation of the unemployment-crime relationship.

    PubMed

    Blomquist, Johan; Westerlund, Joakim

    2014-03-01

    Many empirical studies of the economics of crime focus solely on the determinants thereof, and do not consider the dynamic and cross-sectional properties of their data. As a response to this, the current paper offers an in-depth analysis of this issue using data covering 21 Swedish counties from 1975 to 2010. The results suggest that the crimes considered are non-stationary, and that this cannot be attributed to county-specific disparities alone, but that there are also a small number of common stochastic trends to which groups of counties tend to revert. In an attempt to explain these common stochastic trends, we look for a long-run cointegrated relationship between unemployment and crime. Overall, the results do not support cointegration, and suggest that previous findings of a significant unemployment-crime relationship might be spurious. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Optimization of autoregressive, exogenous inputs-based typhoon inundation forecasting models using a multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ouyang, Huei-Tau

    2017-07-01

    Three types of model for forecasting inundation levels during typhoons were optimized: the linear autoregressive model with exogenous inputs (LARX), the nonlinear autoregressive model with exogenous inputs with wavelet function (NLARX-W) and the nonlinear autoregressive model with exogenous inputs with sigmoid function (NLARX-S). The forecast performance was evaluated by three indices: coefficient of efficiency, error in peak water level and relative time shift. Historical typhoon data were used to establish water-level forecasting models that satisfy all three objectives. A multi-objective genetic algorithm was employed to search for the Pareto-optimal model set that satisfies all three objectives and select the ideal models for the three indices. Findings showed that the optimized nonlinear models (NLARX-W and NLARX-S) outperformed the linear model (LARX). Among the nonlinear models, the optimized NLARX-W model achieved a more balanced performance on the three indices than the NLARX-S models and is recommended for inundation forecasting during typhoons.

  15. Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: case study of a sewage treatment plant, Malaysia.

    PubMed

    Ansari, Mozafar; Othman, Faridah; Abunama, Taher; El-Shafie, Ahmed

    2018-04-01

    The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R 2 ) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.

  16. Assessment of the interactions between economic growth and industrial wastewater discharges using co-integration analysis: a case study for China's Hunan Province.

    PubMed

    Xiao, Qiang; Gao, Yang; Hu, Dan; Tan, Hong; Wang, Tianxiang

    2011-07-01

    We have investigated the interactions between economic growth and industrial wastewater discharge from 1978 to 2007 in China's Hunan Province using co-integration theory and an error-correction model. Two main economic growth indicators and four representative industrial wastewater pollutants were selected to demonstrate the interaction mechanism. We found a long-term equilibrium relationship between economic growth and the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan Province. The error-correction mechanism prevented the variable expansion for long-term relationship at quantity and scale, and the size of the error-correction parameters reflected short-term adjustments that deviate from the long-term equilibrium. When economic growth changes within a short term, the discharge of pollutants will constrain growth because the values of the parameters in the short-term equation are smaller than those in the long-term co-integrated regression equation, indicating that a remarkable long-term influence of economic growth on the discharge of industrial wastewater pollutants and that increasing pollutant discharge constrained economic growth. Economic growth is the main driving factor that affects the discharge of industrial wastewater pollutants in Hunan Province. On the other hand, the discharge constrains economic growth by producing external pressure on growth, although this feedback mechanism has a lag effect. Economic growth plays an important role in explaining the predicted decomposition of the variance in the discharge of industrial wastewater pollutants, but this discharge contributes less to predictions of the variations in economic growth.

  17. Assessment of the Interactions between Economic Growth and Industrial Wastewater Discharges Using Co-integration Analysis: A Case Study for China’s Hunan Province

    PubMed Central

    Xiao, Qiang; Gao, Yang; Hu, Dan; Tan, Hong; Wang, Tianxiang

    2011-01-01

    We have investigated the interactions between economic growth and industrial wastewater discharge from 1978 to 2007 in China’s Hunan Province using co-integration theory and an error-correction model. Two main economic growth indicators and four representative industrial wastewater pollutants were selected to demonstrate the interaction mechanism. We found a long-term equilibrium relationship between economic growth and the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan Province. The error-correction mechanism prevented the variable expansion for long-term relationship at quantity and scale, and the size of the error-correction parameters reflected short-term adjustments that deviate from the long-term equilibrium. When economic growth changes within a short term, the discharge of pollutants will constrain growth because the values of the parameters in the short-term equation are smaller than those in the long-term co-integrated regression equation, indicating that a remarkable long-term influence of economic growth on the discharge of industrial wastewater pollutants and that increasing pollutant discharge constrained economic growth. Economic growth is the main driving factor that affects the discharge of industrial wastewater pollutants in Hunan Province. On the other hand, the discharge constrains economic growth by producing external pressure on growth, although this feedback mechanism has a lag effect. Economic growth plays an important role in explaining the predicted decomposition of the variance in the discharge of industrial wastewater pollutants, but this discharge contributes less to predictions of the variations in economic growth. PMID:21845167

  18. Spatial Dynamics and Determinants of County-Level Education Expenditure in China

    ERIC Educational Resources Information Center

    Gu, Jiafeng

    2012-01-01

    In this paper, a multivariate spatial autoregressive model of local public education expenditure determination with autoregressive disturbance is developed and estimated. The existence of spatial interdependence is tested using Moran's I statistic and Lagrange multiplier test statistics for both the spatial error and spatial lag models. The full…

  19. Spatial Autocorrelation And Autoregressive Models In Ecology

    Treesearch

    Jeremy W. Lichstein; Theodore R. Simons; Susan A. Shriner; Kathleen E. Franzreb

    2003-01-01

    Abstract. Recognition and analysis of spatial autocorrelation has defined a new paradigm in ecology. Attention to spatial pattern can lead to insights that would have been otherwise overlooked, while ignoring space may lead to false conclusions about ecological relationships. We used Gaussian spatial autoregressive models, fit with widely available...

  20. Mathematical model with autoregressive process for electrocardiogram signals

    NASA Astrophysics Data System (ADS)

    Evaristo, Ronaldo M.; Batista, Antonio M.; Viana, Ricardo L.; Iarosz, Kelly C.; Szezech, José D., Jr.; Godoy, Moacir F. de

    2018-04-01

    The cardiovascular system is composed of the heart, blood and blood vessels. Regarding the heart, cardiac conditions are determined by the electrocardiogram, that is a noninvasive medical procedure. In this work, we propose autoregressive process in a mathematical model based on coupled differential equations in order to obtain the tachograms and the electrocardiogram signals of young adults with normal heartbeats. Our results are compared with experimental tachogram by means of Poincaré plot and dentrended fluctuation analysis. We verify that the results from the model with autoregressive process show good agreement with experimental measures from tachogram generated by electrical activity of the heartbeat. With the tachogram we build the electrocardiogram by means of coupled differential equations.

  1. Volatility in GARCH Models of Business Tendency Index

    NASA Astrophysics Data System (ADS)

    Wahyuni, Dwi A. S.; Wage, Sutarman; Hartono, Ateng

    2018-01-01

    This paper aims to obtain a model of business tendency index by considering volatility factor. Volatility factor detected by ARCH (Autoregressive Conditional Heteroscedasticity). The ARCH checking was performed using the Lagrange multiplier test. The modeling is Generalized Autoregressive Conditional Heteroscedasticity (GARCH) are able to overcome volatility problems by incorporating past residual elements and residual variants.

  2. Functional MRI and Multivariate Autoregressive Models

    PubMed Central

    Rogers, Baxter P.; Katwal, Santosh B.; Morgan, Victoria L.; Asplund, Christopher L.; Gore, John C.

    2010-01-01

    Connectivity refers to the relationships that exist between different regions of the brain. In the context of functional magnetic resonance imaging (fMRI), it implies a quantifiable relationship between hemodynamic signals from different regions. One aspect of this relationship is the existence of small timing differences in the signals in different regions. Delays of 100 ms or less may be measured with fMRI, and these may reflect important aspects of the manner in which brain circuits respond as well as the overall functional organization of the brain. The multivariate autoregressive time series model has features to recommend it for measuring these delays, and is straightforward to apply to hemodynamic data. In this review, we describe the current usage of the multivariate autoregressive model for fMRI, discuss the issues that arise when it is applied to hemodynamic time series, and consider several extensions. Connectivity measures like Granger causality that are based on the autoregressive model do not always reflect true neuronal connectivity; however, we conclude that careful experimental design could make this methodology quite useful in extending the information obtainable using fMRI. PMID:20444566

  3. Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico.

    PubMed

    Johansson, Michael A; Reich, Nicholas G; Hota, Aditi; Brownstein, John S; Santillana, Mauricio

    2016-09-26

    Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model.

  4. Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico

    PubMed Central

    Johansson, Michael A.; Reich, Nicholas G.; Hota, Aditi; Brownstein, John S.; Santillana, Mauricio

    2016-01-01

    Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model. PMID:27665707

  5. Kepler AutoRegressive Planet Search: Motivation & Methodology

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian

    2015-08-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. We also illustrate the efficient coding in R.

  6. Existing agricultural ecosystem in China leads to environmental pollution: an econometric approach.

    PubMed

    Hongdou, Lei; Shiping, Li; Hao, Li

    2018-06-17

    Sustainable agriculture ensures food security and prevents starvation. However, the need to meet the increasing food demands of the growing population has led to poor and unsustainable agricultural practices, which promote environmental degradation. Given the contributions of agricultural ecosystems to environmental pollution, we investigated the impact of the agricultural ecosystem on environmental pollution in China using time series data from 1960 to 2014. We employed several methods for econometric analysis including the unit root test, Johansen test of cointegration, Granger causality test, and vector error correction model. Evidence based on the long-run elasticity indicates that a 1% increase in the emissions of carbon dioxide (CO 2 ) equivalent to nitrous oxide from synthetic fertilizers will increase the emissions of CO 2 by 1.52% in the long run. Similarly, a 1% increase in the area of harvested rice paddy, cereal production, biomass of burned crop residues, and agricultural GDP will increase the carbon dioxide emissions by 0.85, 0.63, 0.37, and 0.22%, respectively. The estimated results indicate that there are long-term equilibrium relationships among the selected variables considered for the agricultural ecosystem and carbon dioxide emissions. In particular, we identified bidirectional causal associations between CO 2 emissions, biomass of burned crop residues, and cereal production. Graphical abstract ᅟ.

  7. Co-integrating plasmonics with Si3N4 photonics towards a generic CMOS compatible PIC platform for high-sensitivity multi-channel biosensors: the H2020 PlasmoFab approach (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tsiokos, Dimitris M.; Dabos, George; Ketzaki, Dimitra; Weeber, Jean-Claude; Markey, Laurent; Dereux, Alain; Giesecke, Anna Lena; Porschatis, Caroline; Chmielak, Bartos; Wahlbrink, Thorsten; Rochracher, Karl; Pleros, Nikos

    2017-05-01

    Silicon photonics meet most fabrication requirements of standard CMOS process lines encompassing the photonics-electronics consolidation vision. Despite this remarkable progress, further miniaturization of PICs for common integration with electronics and for increasing PIC functional density is bounded by the inherent diffraction limit of light imposed by optical waveguides. Instead, Surface Plasmon Polariton (SPP) waveguides can guide light at sub-wavelength scales at the metal surface providing unique light-matter interaction properties, exploiting at the same time their metallic nature to naturally integrate with electronics in high-performance ASPICs. In this article, we demonstrate the main goals of the recently introduced H2020 project PlasmoFab towards addressing the ever increasing needs for low energy, small size and high performance mass manufactured PICs by developing a revolutionary yet CMOS-compatible fabrication platform for seamless co-integration of plasmonics with photonic and supporting electronic. We demonstrate recent advances on the hosting SiN photonic hosting platform reporting on low-loss passive SiN waveguide and Grating Coupler circuits for both the TM and TE polarization states. We also present experimental results of plasmonic gold thin-film and hybrid slot waveguide configurations that can allow for high-sensitivity sensing, providing also the ongoing activities towards replacing gold with Cu, Al or TiN metal in order to yield the same functionality over a CMOS metallic structure. Finally, the first experimental results on the co-integrated SiN+plasmonic platform are demonstrated, concluding to an initial theoretical performance analysis of the CMOS plasmo-photonic biosensor that has the potential to allow for sensitivities beyond 150000nm/RIU.

  8. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures

    PubMed Central

    Knierim, Ellen; Hirata, Hiromi; Wolf, Nicole I.; Morales-Gonzalez, Susanne; Schottmann, Gudrun; Tanaka, Yu; Rudnik-Schöneborn, Sabine; Orgeur, Mickael; Zerres, Klaus; Vogt, Stefanie; van Riesen, Anne; Gill, Esther; Seifert, Franziska; Zwirner, Angelika; Kirschner, Janbernd; Goebel, Hans Hilmar; Hübner, Christoph; Stricker, Sigmar; Meierhofer, David; Stenzel, Werner; Schuelke, Markus

    2016-01-01

    Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system. PMID:26924529

  9. Does health promote economic growth? Portuguese case study: from dictatorship to full democracy.

    PubMed

    Morgado, Sónia Maria Aniceto

    2014-07-01

    This paper revisits the debate on health and economic growth (Deaton in J Econ Lit 51:113-158, 2003) focusing on the Portuguese case by testing the relationship between growth and health. We test Portuguese insights, using time series data from 1960 to 2005, taking into account different variables (life expectancy, labour, capital, infant mortality) and considering the years that included major events on the political scene, such as the dictatorship and a closed economy (1960-1974), a revolution (1974) and full democracy and an open economy (1975-2005), factors that influence major economic, cultural, social and politic indicators. Therefore the analysis is carried out adopting Lucas' (J Monet Econ 22(1):3-42, 1988) endogenous growth model that considers human capital as one factor of production, it adopts a VAR (vector autoregressive) model to test the causality between growth and health. Estimates based on the VAR seem to confirm that economic growth influences the health process, but health does not promote growth, during the period under study.

  10. Diffusion of Lexical Change in Social Media

    PubMed Central

    Eisenstein, Jacob; O'Connor, Brendan; Smith, Noah A.; Xing, Eric P.

    2014-01-01

    Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity – especially with regard to race – plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified “netspeak” dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English. PMID:25409166

  11. Vibration-based damage detection in a concrete beam under temperature variations using AR models and state-space approaches

    NASA Astrophysics Data System (ADS)

    Clément, A.; Laurens, S.

    2011-07-01

    The Structural Health Monitoring of civil structures subjected to ambient vibrations is very challenging. Indeed, the variations of environmental conditions and the difficulty to characterize the excitation make the damage detection a hard task. Auto-regressive (AR) models coefficients are often used as damage sensitive feature. The presented work proposes a comparison of the AR approach with a state-space feature formed by the Jacobian matrix of the dynamical process. Since the detection of damage can be formulated as a novelty detection problem, Mahalanobis distance is applied to track new points from an undamaged reference collection of feature vectors. Data from a concrete beam subjected to temperature variations and damaged by several static loading are analyzed. It is observed that the damage sensitive features are effectively sensitive to temperature variations. However, the use of the Mahalanobis distance makes possible the detection of cracking with both of them. Early damage (before cracking) is only revealed by the AR coefficients with a good sensibility.

  12. Coupling detrended fluctuation analysis of Asian stock markets

    NASA Astrophysics Data System (ADS)

    Wang, Qizhen; Zhu, Yingming; Yang, Liansheng; Mul, Remco A. H.

    2017-04-01

    This paper uses the coupling detrended fluctuation analysis (CDFA) method to investigate the multifractal characteristics of four Asian stock markets using three stock indices: stock price returns, trading volumes and the composite index. The results show that coupled correlations exist among the four stock markets and the coupled correlations have multifractal characteristics. We then use the chi square (χ2) test to identify the sources of multifractality. For the different stock indices, the contributions of a single series to multifractality are different. In other words, the contributions of each country to coupled correlations are different. The comparative analysis shows that the research on the combine effect of stock price returns and trading volumes may be more comprehensive than on an individual index. By comparing the strength of multifractality for original data with the residual errors of the vector autoregression (VAR) model, we find that the VAR model could not be used to describe the dynamics of the coupled correlations among four financial time series.

  13. Artificial bee colony algorithm for single-trial electroencephalogram analysis.

    PubMed

    Hsu, Wei-Yen; Hu, Ya-Ping

    2015-04-01

    In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  14. Shape classification of malignant lymphomas and leukemia by morphological watersheds and ARMA modeling

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet; Song, Yinglei; Ma, Limin; Zhou, Min

    2003-05-01

    A new algorithm that can be used to automatically recognize and classify malignant lymphomas and lukemia is proposed in this paper. The algorithm utilizes the morphological watershed to extract boundaries of cells from their grey-level images. It generates a sequence of Euclidean distances by selecting pixels in clockwise direction on the boundary of the cell and calculating the Euclidean distances of the selected pixels from the centroid of the cell. A feature vector associated with each cell is then obtained by applying the auto-regressive moving-average (ARMA) model to the generated sequence of Euclidean distances. The clustering measure J3=trace{inverse(Sw-1)Sm} involving the within (Sw) and mixed (Sm) class-scattering matrices is computed for both cell classes to provide an insight into the extent to which different cell classes in the training data are separated. Our test results suggest that the algorithm is highly accurate for the development of an interactive, computer-assisted diagnosis (CAD) tool.

  15. Applications and Comparisons of Four Time Series Models in Epidemiological Surveillance Data

    PubMed Central

    Young, Alistair A.; Li, Xiaosong

    2014-01-01

    Public health surveillance systems provide valuable data for reliable predication of future epidemic events. This paper describes a study that used nine types of infectious disease data collected through a national public health surveillance system in mainland China to evaluate and compare the performances of four time series methods, namely, two decomposition methods (regression and exponential smoothing), autoregressive integrated moving average (ARIMA) and support vector machine (SVM). The data obtained from 2005 to 2011 and in 2012 were used as modeling and forecasting samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE). The accuracy of the statistical models in forecasting future epidemic disease proved their effectiveness in epidemiological surveillance. Although the comparisons found that no single method is completely superior to the others, the present study indeed highlighted that the SVMs outperforms the ARIMA model and decomposition methods in most cases. PMID:24505382

  16. State space model approach for forecasting the use of electrical energy (a case study on: PT. PLN (Persero) district of Kroya)

    NASA Astrophysics Data System (ADS)

    Kurniati, Devi; Hoyyi, Abdul; Widiharih, Tatik

    2018-05-01

    Time series data is a series of data taken or measured based on observations at the same time interval. Time series data analysis is used to perform data analysis considering the effect of time. The purpose of time series analysis is to know the characteristics and patterns of a data and predict a data value in some future period based on data in the past. One of the forecasting methods used for time series data is the state space model. This study discusses the modeling and forecasting of electric energy consumption using the state space model for univariate data. The modeling stage is began with optimal Autoregressive (AR) order selection, determination of state vector through canonical correlation analysis, estimation of parameter, and forecasting. The result of this research shows that modeling of electric energy consumption using state space model of order 4 with Mean Absolute Percentage Error (MAPE) value 3.655%, so the model is very good forecasting category.

  17. Software sensors for biomass concentration in a SSC process using artificial neural networks and support vector machine.

    PubMed

    Acuña, Gonzalo; Ramirez, Cristian; Curilem, Millaray

    2014-01-01

    The lack of sensors for some relevant state variables in fermentation processes can be coped by developing appropriate software sensors. In this work, NARX-ANN, NARMAX-ANN, NARX-SVM and NARMAX-SVM models are compared when acting as software sensors of biomass concentration for a solid substrate cultivation (SSC) process. Results show that NARMAX-SVM outperforms the other models with an SMAPE index under 9 for a 20 % amplitude noise. In addition, NARMAX models perform better than NARX models under the same noise conditions because of their better predictive capabilities as they include prediction errors as inputs. In the case of perturbation of initial conditions of the autoregressive variable, NARX models exhibited better convergence capabilities. This work also confirms that a difficult to measure variable, like biomass concentration, can be estimated on-line from easy to measure variables like CO₂ and O₂ using an adequate software sensor based on computational intelligence techniques.

  18. Nonstationary time series analysis of surface water microbial pathogen population dynamics using cointegration methods

    EPA Science Inventory

    Background/Question/Methods Bacterial pathogens in surface water present disease risks to aquatic communities and for human recreational activities. Sources of these pathogens include runoff from urban, suburban, and agricultural point and non-point sources, but hazardous micr...

  19. Testing for purchasing power parity in the long-run for ASEAN-5

    NASA Astrophysics Data System (ADS)

    Choji, Niri Martha; Sek, Siok Kun

    2017-04-01

    For more than a decade, there has been a substantial interest in testing for the validity of the purchasing power parity (PPP) hypothesis empirically. This paper performs a test on revealing a long-run relative Purchasing Power Parity for a group of ASEAN-5 countries for the period of 1996-2016 using monthly data. For this purpose, we used the Pedroni co-integration method to test for the long-run hypothesis of purchasing power parity. We first tested for the stationarity of the variables and found that the variables are non-stationary at levels but stationary at first difference. Results of the Pedroni test rejected the null hypothesis of no co-integration meaning that we have enough evidence to support PPP in the long-run for the ASEAN-5 countries over the period of 1996-2016. In other words, the rejection of null hypothesis implies a long-run relation between nominal exchange rates and relative prices.

  20. Confidence and self-attribution bias in an artificial stock market.

    PubMed

    Bertella, Mario A; Pires, Felipe R; Rego, Henio H A; Silva, Jonathas N; Vodenska, Irena; Stanley, H Eugene

    2017-01-01

    Using an agent-based model we examine the dynamics of stock price fluctuations and their rates of return in an artificial financial market composed of fundamentalist and chartist agents with and without confidence. We find that chartist agents who are confident generate higher price and rate of return volatilities than those who are not. We also find that kurtosis and skewness are lower in our simulation study of agents who are not confident. We show that the stock price and confidence index-both generated by our model-are cointegrated and that stock price affects confidence index but confidence index does not affect stock price. We next compare the results of our model with the S&P 500 index and its respective stock market confidence index using cointegration and Granger tests. As in our model, we find that stock prices drive their respective confidence indices, but that the opposite relationship, i.e., the assumption that confidence indices drive stock prices, is not significant.

  1. Confidence and self-attribution bias in an artificial stock market

    PubMed Central

    Bertella, Mario A.; Pires, Felipe R.; Rego, Henio H. A.; Vodenska, Irena; Stanley, H. Eugene

    2017-01-01

    Using an agent-based model we examine the dynamics of stock price fluctuations and their rates of return in an artificial financial market composed of fundamentalist and chartist agents with and without confidence. We find that chartist agents who are confident generate higher price and rate of return volatilities than those who are not. We also find that kurtosis and skewness are lower in our simulation study of agents who are not confident. We show that the stock price and confidence index—both generated by our model—are cointegrated and that stock price affects confidence index but confidence index does not affect stock price. We next compare the results of our model with the S&P 500 index and its respective stock market confidence index using cointegration and Granger tests. As in our model, we find that stock prices drive their respective confidence indices, but that the opposite relationship, i.e., the assumption that confidence indices drive stock prices, is not significant. PMID:28231255

  2. Urbanization, regime type and durability, and environmental degradation in Ghana.

    PubMed

    Adams, Samuel; Adom, Philip Kofi; Klobodu, Edem Kwame Mensah

    2016-12-01

    This study examines the effect of urbanization, income, trade openness, and institutional quality (i.e., regime type and durability) on environmental degradation in Ghana over the period 1965-2011. Using the bounds test approach to cointegration and the Fully Modified Phillip-Hansen (FMPH) technique, the findings show that urbanization, income, trade openness, and institutional quality have long-run cointegration with environmental degradation. Further, the results show that income, trade openness, and institutional quality are negatively associated with environmental degradation. This suggests that income, trade openness, and institutional quality enhance environmental performance. Urbanization, however, is positively related to environmental degradation. Additionally, long-run estimates conditioned on institutional quality reveal that the extent to which trade openness and urbanization enhance environmental performance is largely due to the presence of quality institutions (or democratic institutions). Finally, controlling for structural breaks, we find that trade openness, urbanization, and regime type (i.e., democracy) improve environmental performance significantly after the 1970s except for income.

  3. The relationship between health and GDP in OECD countries in the very long run.

    PubMed

    Swift, Robyn

    2011-03-01

    This paper uses Johansen multivariate cointegration analysis to examine the relationship between health and GDP for 13 OECD countries over the last two centuries, for periods ranging from 1820-2001 to 1921-2001. A similar, long run, cointegrating relationship between life expectancy and both total GDP and GDP per capita was found for all the countries estimated. The relationships have a significant influence on both total GDP and GPD per capita in most of the countries estimated, with 1% increase in life expectancy resulting in an average 6% increase in total GDP in the long run, and 5% increase in GDP per capita. Total GDP and GDP per capita also have a significant influence on life expectancy for most countries. There is no evidence of changes in the relationships for any country over the periods estimated, indicating that shifts in the major causes of illness and death over time do not appear to have influenced the link between health and economic growth. Copyright © 2010 John Wiley & Sons, Ltd.

  4. The Performance of Multilevel Growth Curve Models under an Autoregressive Moving Average Process

    ERIC Educational Resources Information Center

    Murphy, Daniel L.; Pituch, Keenan A.

    2009-01-01

    The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…

  5. Testing the Causal Links between School Climate, School Violence, and School Academic Performance: A Cross-Lagged Panel Autoregressive Model

    ERIC Educational Resources Information Center

    Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.

    2016-01-01

    The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…

  6. Time to burn: Modeling wildland arson as an autoregressive crime function

    Treesearch

    Jeffrey P. Prestemon; David T. Butry

    2005-01-01

    Six Poisson autoregressive models of order p [PAR(p)] of daily wildland arson ignition counts are estimated for five locations in Florida (1994-2001). In addition, a fixed effects time-series Poisson model of annual arson counts is estimated for all Florida counties (1995-2001). PAR(p) model estimates reveal highly significant arson ignition autocorrelation, lasting up...

  7. Theoretical results on fractionally integrated exponential generalized autoregressive conditional heteroskedastic processes

    NASA Astrophysics Data System (ADS)

    Lopes, Sílvia R. C.; Prass, Taiane S.

    2014-05-01

    Here we present a theoretical study on the main properties of Fractionally Integrated Exponential Generalized Autoregressive Conditional Heteroskedastic (FIEGARCH) processes. We analyze the conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We prove that, if { is a FIEGARCH(p,d,q) process then, under mild conditions, { is an ARFIMA(q,d,0) with correlated innovations, that is, an autoregressive fractionally integrated moving average process. The convergence order for the polynomial coefficients that describes the volatility is presented and results related to the spectral representation and to the covariance structure of both processes { and { are discussed. Expressions for the kurtosis and the asymmetry measures for any stationary FIEGARCH(p,d,q) process are also derived. The h-step ahead forecast for the processes {, { and { are given with their respective mean square error of forecast. The work also presents a Monte Carlo simulation study showing how to generate, estimate and forecast based on six different FIEGARCH models. The forecasting performance of six models belonging to the class of autoregressive conditional heteroskedastic models (namely, ARCH-type models) and radial basis models is compared through an empirical application to Brazilian stock market exchange index.

  8. Medium- and Long-term Prediction of LOD Change with the Leap-step Autoregressive Model

    NASA Astrophysics Data System (ADS)

    Liu, Q. B.; Wang, Q. J.; Lei, M. F.

    2015-09-01

    It is known that the accuracies of medium- and long-term prediction of changes of length of day (LOD) based on the combined least-square and autoregressive (LS+AR) decrease gradually. The leap-step autoregressive (LSAR) model is more accurate and stable in medium- and long-term prediction, therefore it is used to forecast the LOD changes in this work. Then the LOD series from EOP 08 C04 provided by IERS (International Earth Rotation and Reference Systems Service) is used to compare the effectiveness of the LSAR and traditional AR methods. The predicted series resulted from the two models show that the prediction accuracy with the LSAR model is better than that from AR model in medium- and long-term prediction.

  9. Trans-dimensional joint inversion of seabed scattering and reflection data.

    PubMed

    Steininger, Gavin; Dettmer, Jan; Dosso, Stan E; Holland, Charles W

    2013-03-01

    This paper examines joint inversion of acoustic scattering and reflection data to resolve seabed interface roughness parameters (spectral strength, exponent, and cutoff) and geoacoustic profiles. Trans-dimensional (trans-D) Bayesian sampling is applied with both the number of sediment layers and the order (zeroth or first) of auto-regressive parameters in the error model treated as unknowns. A prior distribution that allows fluid sediment layers over an elastic basement in a trans-D inversion is derived and implemented. Three cases are considered: Scattering-only inversion, joint scattering and reflection inversion, and joint inversion with the trans-D auto-regressive error model. Including reflection data improves the resolution of scattering and geoacoustic parameters. The trans-D auto-regressive model further improves scattering resolution and correctly differentiates between strongly and weakly correlated residual errors.

  10. Vector Autoregressive Models and Granger Causality in Time Series Analysis in Nursing Research: Dynamic Changes Among Vital Signs Prior to Cardiorespiratory Instability Events as an Example.

    PubMed

    Bose, Eliezer; Hravnak, Marilyn; Sereika, Susan M

    Patients undergoing continuous vital sign monitoring (heart rate [HR], respiratory rate [RR], pulse oximetry [SpO2]) in real time display interrelated vital sign changes during situations of physiological stress. Patterns in this physiological cross-talk could portend impending cardiorespiratory instability (CRI). Vector autoregressive (VAR) modeling with Granger causality tests is one of the most flexible ways to elucidate underlying causal mechanisms in time series data. The purpose of this article is to illustrate the development of patient-specific VAR models using vital sign time series data in a sample of acutely ill, monitored, step-down unit patients and determine their Granger causal dynamics prior to onset of an incident CRI. CRI was defined as vital signs beyond stipulated normality thresholds (HR = 40-140/minute, RR = 8-36/minute, SpO2 < 85%) and persisting for 3 minutes within a 5-minute moving window (60% of the duration of the window). A 6-hour time segment prior to onset of first CRI was chosen for time series modeling in 20 patients using a six-step procedure: (a) the uniform time series for each vital sign was assessed for stationarity, (b) appropriate lag was determined using a lag-length selection criteria, (c) the VAR model was constructed, (d) residual autocorrelation was assessed with the Lagrange Multiplier test, (e) stability of the VAR system was checked, and (f) Granger causality was evaluated in the final stable model. The primary cause of incident CRI was low SpO2 (60% of cases), followed by out-of-range RR (30%) and HR (10%). Granger causality testing revealed that change in RR caused change in HR (21%; i.e., RR changed before HR changed) more often than change in HR causing change in RR (15%). Similarly, changes in RR caused changes in SpO2 (15%) more often than changes in SpO2 caused changes in RR (9%). For HR and SpO2, changes in HR causing changes in SpO2 and changes in SpO2 causing changes in HR occurred with equal frequency (18%). Within this sample of acutely ill patients who experienced a CRI event, VAR modeling indicated that RR changes tend to occur before changes in HR and SpO2. These findings suggest that contextual assessment of RR changes as the earliest sign of CRI is warranted. Use of VAR modeling may be helpful in other nursing research applications based on time series data.

  11. Texture classification using autoregressive filtering

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.; Lee, M.

    1984-01-01

    A general theory of image texture models is proposed and its applicability to the problem of scene segmentation using texture classification is discussed. An algorithm, based on half-plane autoregressive filtering, which optimally utilizes second order statistics to discriminate between texture classes represented by arbitrary wide sense stationary random fields is described. Empirical results of applying this algorithm to natural and sysnthesized scenes are presented and future research is outlined.

  12. Fractal and chaotic laws on seismic dissipated energy in an energy system of engineering structures

    NASA Astrophysics Data System (ADS)

    Cui, Yu-Hong; Nie, Yong-An; Yan, Zong-Da; Wu, Guo-You

    1998-09-01

    Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.

  13. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    NASA Astrophysics Data System (ADS)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  14. Hedonic price models with omitted variables and measurement errors: a constrained autoregression-structural equation modeling approach with application to urban Indonesia

    NASA Astrophysics Data System (ADS)

    Suparman, Yusep; Folmer, Henk; Oud, Johan H. L.

    2014-01-01

    Omitted variables and measurement errors in explanatory variables frequently occur in hedonic price models. Ignoring these problems leads to biased estimators. In this paper, we develop a constrained autoregression-structural equation model (ASEM) to handle both types of problems. Standard panel data models to handle omitted variables bias are based on the assumption that the omitted variables are time-invariant. ASEM allows handling of both time-varying and time-invariant omitted variables by constrained autoregression. In the case of measurement error, standard approaches require additional external information which is usually difficult to obtain. ASEM exploits the fact that panel data are repeatedly measured which allows decomposing the variance of a variable into the true variance and the variance due to measurement error. We apply ASEM to estimate a hedonic housing model for urban Indonesia. To get insight into the consequences of measurement error and omitted variables, we compare the ASEM estimates with the outcomes of (1) a standard SEM, which does not account for omitted variables, (2) a constrained autoregression model, which does not account for measurement error, and (3) a fixed effects hedonic model, which ignores measurement error and time-varying omitted variables. The differences between the ASEM estimates and the outcomes of the three alternative approaches are substantial.

  15. The Emotion Recognition System Based on Autoregressive Model and Sequential Forward Feature Selection of Electroencephalogram Signals

    PubMed Central

    Hatamikia, Sepideh; Maghooli, Keivan; Nasrabadi, Ali Motie

    2014-01-01

    Electroencephalogram (EEG) is one of the useful biological signals to distinguish different brain diseases and mental states. In recent years, detecting different emotional states from biological signals has been merged more attention by researchers and several feature extraction methods and classifiers are suggested to recognize emotions from EEG signals. In this research, we introduce an emotion recognition system using autoregressive (AR) model, sequential forward feature selection (SFS) and K-nearest neighbor (KNN) classifier using EEG signals during emotional audio-visual inductions. The main purpose of this paper is to investigate the performance of AR features in the classification of emotional states. To achieve this goal, a distinguished AR method (Burg's method) based on Levinson-Durbin's recursive algorithm is used and AR coefficients are extracted as feature vectors. In the next step, two different feature selection methods based on SFS algorithm and Davies–Bouldin index are used in order to decrease the complexity of computing and redundancy of features; then, three different classifiers include KNN, quadratic discriminant analysis and linear discriminant analysis are used to discriminate two and three different classes of valence and arousal levels. The proposed method is evaluated with EEG signals of available database for emotion analysis using physiological signals, which are recorded from 32 participants during 40 1 min audio visual inductions. According to the results, AR features are efficient to recognize emotional states from EEG signals, and KNN performs better than two other classifiers in discriminating of both two and three valence/arousal classes. The results also show that SFS method improves accuracies by almost 10-15% as compared to Davies–Bouldin based feature selection. The best accuracies are %72.33 and %74.20 for two classes of valence and arousal and %61.10 and %65.16 for three classes, respectively. PMID:25298928

  16. A Causality Analysis of the Link between Higher Education and Economic Development.

    ERIC Educational Resources Information Center

    De Meulemeester, Jean-Luc; Rochat, Denis

    1995-01-01

    Summarizes a study exploring the relationship between higher education and economic development, using cointegration and Granger-causality tests. Results show a significant causality from higher education efforts in Sweden, United Kingdom, Japan, and France. However, a similar causality link has not been found for Italy or Australia. (68…

  17. Revisiting the Principle of Relative Constancy: Consumer Mass Media Expenditures in Belgium.

    ERIC Educational Resources Information Center

    Dupagne, Michel; Green, R. Jeffery

    1996-01-01

    Proposes two new econometric models for testing the principle of relative constancy (PRC). Reports on regression and cointegration analyses conducted with Belgian mass media expenditure data from 1953-91. Suggests that alternative mass media expenditure models should be developed because PRC lacks of economic foundation and sound empirical…

  18. The co-integration analysis of relationship between urban infrastructure and urbanization - A case of Shanghai

    NASA Astrophysics Data System (ADS)

    Wang, Qianlu

    2017-10-01

    Urban infrastructure and urbanization influence each other, and quantitative analysis of the relationship between them will play a significant role in promoting the social development. The paper based on the data of infrastructure and the proportion of urban population in Shanghai from 1988 to 2013, use the econometric analysis of co-integration test, error correction model and Granger causality test method, and empirically analyze the relationship between Shanghai's infrastructure and urbanization. The results show that: 1) Shanghai Urban infrastructure has a positive effect for the development of urbanization and narrowing the population gap; 2) when the short-term fluctuations deviate from long-term equilibrium, the system will pull the non-equilibrium state back to equilibrium with an adjust intensity 0.342670. And hospital infrastructure is not only an important variable for urban development in short-term, but also a leading infrastructure in the process of urbanization in Shanghai; 3) there has Granger causality between road infrastructure and urbanization; and there is no Granger causality between water infrastructure and urbanization, hospital and school infrastructures of social infrastructure have unidirectional Granger causality with urbanization.

  19. Time Series Analysis for Spatial Node Selection in Environment Monitoring Sensor Networks

    PubMed Central

    Bhandari, Siddhartha; Jurdak, Raja; Kusy, Branislav

    2017-01-01

    Wireless sensor networks are widely used in environmental monitoring. The number of sensor nodes to be deployed will vary depending on the desired spatio-temporal resolution. Selecting an optimal number, position and sampling rate for an array of sensor nodes in environmental monitoring is a challenging question. Most of the current solutions are either theoretical or simulation-based where the problems are tackled using random field theory, computational geometry or computer simulations, limiting their specificity to a given sensor deployment. Using an empirical dataset from a mine rehabilitation monitoring sensor network, this work proposes a data-driven approach where co-integrated time series analysis is used to select the number of sensors from a short-term deployment of a larger set of potential node positions. Analyses conducted on temperature time series show 75% of sensors are co-integrated. Using only 25% of the original nodes can generate a complete dataset within a 0.5 °C average error bound. Our data-driven approach to sensor position selection is applicable for spatiotemporal monitoring of spatially correlated environmental parameters to minimize deployment cost without compromising data resolution. PMID:29271880

  20. Temperature rise, sea level rise and increased radiative forcing - an application of cointegration methods

    NASA Astrophysics Data System (ADS)

    Schmith, Torben; Thejll, Peter; Johansen, Søren

    2016-04-01

    We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.

  1. On the international stability of health care expenditure functions: are government and private functions similar?

    PubMed

    Clemente, Jesús; Marcuello, Carmen; Montañés, Antonio; Pueyo, Fernando

    2004-05-01

    This paper studies the stability of health care expenditure functions in a sample of OECD countries. We adopt the cointegration approach and the results show that there is a long-term relationship between total health care expenditure (HCE) and gross domestic product (GDP). However, the existence of cointegration is only shown when we admit the presence of some changes in the elasticities of the model. Our results also provide evidence against the existence of a unique relationship between health and GDP for the sample. Thus, we can conclude that the differences in health systems may cause differences in the aggregate functions. Additionally, we examine aggregate health functions for government (GHCE) and private expenditures (PHCE), again finding evidence of different patterns of behaviour. Finally, we open a discussion on the character of health as a necessary or luxury good. In this context, we find differences between the government and the private function. In order to illustrate these findings, we propose a theoretical model as an example of the influence of political decisions on income elasticity. Copyright 2003 Elsevier B.V.

  2. Persistence of airline accidents.

    PubMed

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  3. Investigation of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors for logic application

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui

    2014-01-01

    DC performance of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors (DCFETs) grown on a low-cost GaAs substrate is first demonstrated. In the complementary DCFETs, the n-channel device was fabricated on the InxGa1-xP metamorphic linearly graded buffer layer and the p-channel field-effect transistor was stacked on the top of the n-channel device. Particularly, the saturation voltage of the n-channel device is substantially reduced to decrease the VOL and VIH values attributed that two-dimensional electron gas is formed and could be modulated in the n-InGaAs channel. Experimentally, a maximum extrinsic transconductance of 215 (17) mS/mm and a maximum saturation current density of 43 (-27) mA/mm are obtained in the n-channel (p-channel) device. Furthermore, the noise margins NMH and NML are up to 0.842 and 0.330 V at a supply voltage of 1.5 V in the complementary logic inverter application.

  4. Does financial development reduce environmental degradation? Evidence from a panel study of 129 countries.

    PubMed

    Al-Mulali, Usama; Tang, Chor Foon; Ozturk, Ilhan

    2015-10-01

    The purpose of this study is to explore the effect of financial development on CO2 emission in 129 countries classified by the income level. A panel CO2 emission model using urbanisation, GDP growth, trade openness, petroleum consumption and financial development variables that are major determinants of CO2 emission was constructed for the 1980-2011 period. The results revealed that the variables are cointegrated based on the Pedroni cointegration test. The dynamic ordinary least squares (OLS) and the Granger causality test results also show that financial development can improve environmental quality in the short run and long run due to its negative effect on CO2 emission. The rest of the determinants, especially petroleum consumption, are determined to be the major source of environmental damage in most of the income group countries. Based on the results obtained, the investigated countries should provide banking loans to projects and investments that can promote energy savings, energy efficiency and renewable energy to help these countries reduce environmental damage in both the short and long run.

  5. Modified Confidence Intervals for the Mean of an Autoregressive Process.

    DTIC Science & Technology

    1985-08-01

    Validity of the method 45 3.6 Theorem 47 4 Derivation of corrections 48 Introduction 48 The zero order pivot 50 4.1 Algorithm 50 CONTENTS The first...of standard confidence intervals. There are several standard methods of setting confidence intervals in simulations, including the regener- ative... method , batch means, and time series methods . We-will focus-s on improved confidence intervals for the mean of an autoregressive process, and as such our

  6. Autoregressive Methods for Spectral Estimation from Interferograms.

    DTIC Science & Technology

    1986-09-19

    RL83 6?6 AUTOREGRESSIVE METHODS FOR SPECTRAL. ESTIMTION FROM / SPACE ENGINEERING E N RICHARDS ET AL. 19 SEPINEFRGAS.()UA TT NV GNCNE O C: 31SSF...was AUG1085 performed under subcontract to . Center for Space Engineering Utah State University Logan, UT 84322-4140 4 4 Scientific Report No. 17 AFGL...MONITORING ORGANIZATION Center for Space Engineering (iapplicable) Air Force Geophysics Laboratory e. AORESS (City. State and ZIP Code) 7b. AOORESS (City

  7. Detecting P and S-wave of Mt. Rinjani seismic based on a locally stationary autoregressive (LSAR) model

    NASA Astrophysics Data System (ADS)

    Nurhaida, Subanar, Abdurakhman, Abadi, Agus Maman

    2017-08-01

    Seismic data is usually modelled using autoregressive processes. The aim of this paper is to find the arrival times of the seismic waves of Mt. Rinjani in Indonesia. Kitagawa algorithm's is used to detect the seismic P and S-wave. Householder transformation used in the algorithm made it effectively finding the number of change points and parameters of the autoregressive models. The results show that the use of Box-Cox transformation on the variable selection level makes the algorithm works well in detecting the change points. Furthermore, when the basic span of the subinterval is set 200 seconds and the maximum AR order is 20, there are 8 change points which occur at 1601, 2001, 7401, 7601,7801, 8001, 8201 and 9601. Finally, The P and S-wave arrival times are detected at time 1671 and 2045 respectively using a precise detection algorithm.

  8. Granger Test to Determine Causes of Harmful algal Blooms in TaiLake during the Last Decade

    NASA Astrophysics Data System (ADS)

    Guo, W.; Wu, F.

    2016-12-01

    Eutrophication-driven harmful cyanobacteria blooms can threaten stability of lake ecosystems. A key to solving this problem is identifying the main cause of algal blooms so that appropriate remediation can be employed. A test of causality was used to analyze data for Meiling Bay in Tai Lake (Ch: Taihu) from 2000 to 2012. After filtration of data by use of the stationary test and the co-integration test, the Granger causality test and impulse response analysis were used to analyze potential bloom causes from physicochemical parameters to chlorophyll-a concentration. Results of stationary tests showed that logarithms of secchi disk depth (lnSD), suspended solids (lnSS), lnNH4-N/NOx-N and pH were determined to be stationary as a function of time and could not be considered to be causal for changes in biomass of phytoplankton observed during that period. Results of co-integration tests indicated existence of long-run co-integrating relationships among natural logarithms of chlorophyll-a (lnChl-a), water temperature (lnWT), total organic carbon (lnTOC) and ratio of nitrogen to phosphorus (lnN/P). The Granger causality test suggested that once thresholds for nutrients such as nitrogen and phosphorus had been reached, WT could increase the likelihood or severities of cyanobacteria blooms. An unidirectional Granger relationship from N/P to Chl-a was established, the result indicated that because concentrations of TN in Meiliang Bay had reached their thresholds, it no longer limited proliferation of cyanobacteria and TP should be controlled to reduce the likelihood of algae blooms. The impulse response analysis implied that lagging effects of water temperature and N/P ratio could influence the variation of Chla concentration at certain lag periods. The results can advance understanding of mechanisms on formation of harmful cyanobacteria blooms.

  9. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China.

    PubMed

    Wang, Shaojian; Li, Qiuying; Fang, Chuanglin; Zhou, Chunshan

    2016-01-15

    Following several decades of rapid economic growth, China has become the largest energy consumer and the greatest emitter of CO2 in the world. Given the complex development situation faced by contemporary China, Chinese policymakers now confront the dual challenge of reducing energy use while continuing to foster economic growth. This study posits that a better understanding of the relationship between economic growth, energy consumption, and CO2 emissions is necessary, in order for the Chinese government to develop the energy saving and emission reduction strategies for addressing the impacts of climate change. This paper investigates the cointegrating, temporally dynamic, and casual relationships that exist between economic growth, energy consumption, and CO2 emissions in China, using data for the period 1990-2012. The study develops a comprehensive conceptual framework in order to perform this analysis. The results of cointegration tests suggest the existence of long-run cointegrating relationship among the variables, albeit with short dynamic adjustment mechanisms, indicating that the proportion of disequilibrium errors that can be adjusted in the next period will account for only a fraction of the changes. Further, impulse response analysis (which describes the reaction of any variable as a function of time in response to external shocks) found that the impact of a shock in CO2 emissions on economic growth or energy consumption was only marginally significant. Finally, Granger casual relationships were found to exist between economic growth, energy consumption, and CO2 emissions; specifically, a bi-directional causal relationship between economic growth and energy consumption was identified, and a unidirectional causal relationship was found to exist from energy consumption to CO2 emissions. The findings have significant implications for both academics and practitioners, warning of the need to develop and implement long-term energy and economic policies in order to effectively address greenhouse effects in China, thereby setting the nation on a low-carbon growth path. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Low-temperature crack-free Si3N4 nonlinear photonic circuits for CMOS-compatible optoelectronic co-integration

    NASA Astrophysics Data System (ADS)

    Casale, Marco; Kerdiles, Sebastien; Brianceau, Pierre; Hugues, Vincent; El Dirani, Houssein; Sciancalepore, Corrado

    2017-02-01

    In this communication, authors report for the first time on the fabrication and testing of Si3N4 non-linear photonic circuits for CMOS-compatible monolithic co-integration with silicon-based optoelectronics. In particular, a novel process has been developed to fabricate low-loss crack-free Si3N4 750-nm-thick films for Kerr-based nonlinear functions featuring full thermal budget compatibility with existing Silicon photonics and front-end Si optoelectronics. Briefly, differently from previous and state-of-the-art works, our nonlinear nitride-based platform has been realized without resorting to commonly-used high-temperature annealing ( 1200°C) of the film and its silica upper-cladding used to break N-H bonds otherwise causing absorption in the C-band and destroying its nonlinear functionality. Furthermore, no complex and fabrication-intolerant Damascene process - as recently reported earlier this year - aimed at controlling cracks generated in thick tensile-strained Si3N4 films has been used as well. Instead, a tailored Si3N4 multiple-step film deposition in 200-mm LPCVD-based reactor and subsequent low-temperature (400°C) PECVD oxide encapsulation have been used to fabricate the nonlinear micro-resonant circuits aiming at generating optical frequency combs via optical parametric oscillators (OPOs), thus allowing the monolithic co-integration of such nonlinear functions on existing CMOS-compatible optoelectronics, for both active and passive components such as, for instance, silicon modulators and wavelength (de-)multiplexers. Experimental evidence based on wafer-level statistics show nitride-based 112-μm-radius ring resonators using such low-temperature crack-free nitride film exhibiting quality factors exceeding Q >3 x 105, thus paving the way to low-threshold power-efficient Kerr-based comb sources and dissipative temporal solitons in the C-band featuring full thermal processing compatibility with Si photonic integrated circuits (Si-PICs).

  11. Anomalous Fluctuations in Autoregressive Models with Long-Term Memory

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Honjo, Haruo

    2015-10-01

    An autoregressive model with a power-law type memory kernel is studied as a stochastic process that exhibits a self-affine-fractal-like behavior for a small time scale. We find numerically that the root-mean-square displacement Δ(m) for the time interval m increases with a power law as mα with α < 1/2 for small m but saturates at sufficiently large m. The exponent α changes with the power exponent of the memory kernel.

  12. On the Stationarity of Multiple Autoregressive Approximants: Theory and Algorithms

    DTIC Science & Technology

    1976-08-01

    a I (3.4) Hannan and Terrell (1972) consider problems of a similar nature. Efficient estimates A(1),... , A(p) , and i of A(1)... ,A(p) and...34Autoregressive model fitting for control, Ann . Inst. Statist. Math., 23, 163-180. Hannan, E. J. (1970), Multiple Time Series, New York, John Wiley...Hannan, E. J. and Terrell , R. D. (1972), "Time series regression with linear constraints, " International Economic Review, 13, 189-200. Masani, P

  13. Forecasting Instability Indicators in the Horn of Africa

    DTIC Science & Technology

    2008-03-01

    further than 2 (Makridakis, et al, 1983, 359). 2-32 Autoregressive Integrated Moving Average ( ARIMA ) Model . Similar to the ARMA model except for...stationary process. ARIMA models are described as ARIMA (p,d,q), where p is the order of the autoregressive process, d is the degree of the...differential process, and q is the order of the moving average process. The ARMA (1,1) model shown above is equivalent to an ARIMA (1,0,1) model . An ARIMA

  14. Equilibrium Policy Proposals with Abstentions.

    DTIC Science & Technology

    1981-05-01

    David M. Kreps. 262. ’Autoregressive Modelling and Money Income (ajusality Detection." by (heng lisiao. 263. "Measurement IError in a Dynamiic...34Autoregressive Modeling of"Canadian Money and Income Data," by Cheng Ilsjao. 277. "We Can’t Disagree IForever," by John 1). Geanakoplos and Heraklis...34*Optimal & Voluntary Income Distribution," by K. J. Arrow. 289. "’Asymptotic Values mif Mixed Gaime,.," by Abraham Neymnan. 290. "Tinie Series Modelling

  15. Time series models on analysing mortality rates and acute childhood lymphoid leukaemia.

    PubMed

    Kis, Maria

    2005-01-01

    In this paper we demonstrate applying time series models on medical research. The Hungarian mortality rates were analysed by autoregressive integrated moving average models and seasonal time series models examined the data of acute childhood lymphoid leukaemia.The mortality data may be analysed by time series methods such as autoregressive integrated moving average (ARIMA) modelling. This method is demonstrated by two examples: analysis of the mortality rates of ischemic heart diseases and analysis of the mortality rates of cancer of digestive system. Mathematical expressions are given for the results of analysis. The relationships between time series of mortality rates were studied with ARIMA models. Calculations of confidence intervals for autoregressive parameters by tree methods: standard normal distribution as estimation and estimation of the White's theory and the continuous time case estimation. Analysing the confidence intervals of the first order autoregressive parameters we may conclude that the confidence intervals were much smaller than other estimations by applying the continuous time estimation model.We present a new approach to analysing the occurrence of acute childhood lymphoid leukaemia. We decompose time series into components. The periodicity of acute childhood lymphoid leukaemia in Hungary was examined using seasonal decomposition time series method. The cyclic trend of the dates of diagnosis revealed that a higher percent of the peaks fell within the winter months than in the other seasons. This proves the seasonal occurrence of the childhood leukaemia in Hungary.

  16. EEG data reduction by means of autoregressive representation and discriminant analysis procedures.

    PubMed

    Blinowska, K J; Czerwosz, L T; Drabik, W; Franaszczuk, P J; Ekiert, H

    1981-06-01

    A program for automatic evaluation of EEG spectra, providing considerable reduction of data, was devised. Artefacts were eliminated in two steps: first, the longer duration eye movement artefacts were removed by a fast and simple 'moving integral' methods, then occasional spikes were identified by means of a detection function defined in the formalism of the autoregressive (AR) model. The evaluation of power spectra was performed by means of an FFT and autoregressive representation, which made possible the comparison of both methods. The spectra obtained by means of the AR model had much smaller statistical fluctuations and better resolution, enabling us to follow the time changes of the EEG pattern. Another advantage of the autoregressive approach was the parametric description of the signal. This last property appeared to be essential in distinguishing the changes in the EEG pattern. In a drug study the application of the coefficients of the AR model as input parameters in the discriminant analysis, instead of arbitrary chosen frequency bands, brought a significant improvement in distinguishing the effects of the medication. The favourable properties of the AR model are connected with the fact that the above approach fulfils the maximum entropy principle. This means that the method describes in a maximally consistent way the available information and is free from additional assumptions, which is not the case for the FFT estimate.

  17. Prediction of global ionospheric VTEC maps using an adaptive autoregressive model

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Xin, Shaoming; Liu, Xiaolu; Shi, Chuang; Fan, Lei

    2018-02-01

    In this contribution, an adaptive autoregressive model is proposed and developed to predict global ionospheric vertical total electron content maps (VTEC). Specifically, the spherical harmonic (SH) coefficients are predicted based on the autoregressive model, and the order of the autoregressive model is determined adaptively using the F-test method. To test our method, final CODE and IGS global ionospheric map (GIM) products, as well as altimeter TEC data during low and mid-to-high solar activity period collected by JASON, are used to evaluate the precision of our forecasting products. Results indicate that the predicted products derived from the model proposed in this paper have good consistency with the final GIMs in low solar activity, where the annual mean of the root-mean-square value is approximately 1.5 TECU. However, the performance of predicted vertical TEC in periods of mid-to-high solar activity has less accuracy than that during low solar activity periods, especially in the equatorial ionization anomaly region and the Southern Hemisphere. Additionally, in comparison with forecasting products, the final IGS GIMs have the best consistency with altimeter TEC data. Future work is needed to investigate the performance of forecasting products using the proposed method in an operational environment, rather than using the SH coefficients from the final CODE products, to understand the real-time applicability of the method.

  18. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.

    PubMed

    MacNab, Ying C

    2016-08-01

    This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.

  19. A new method for reconstruction of solar irradiance

    NASA Astrophysics Data System (ADS)

    Privalsky, Victor

    2018-07-01

    The purpose of this research is to show how time series should be reconstructed using an example with the data on total solar irradiation (TSI) of the Earth and on sunspot numbers (SSN) since 1749. The traditional approach through regression equation(s) is designed for time-invariant vectors of random variables and is not applicable to time series, which present random functions of time. The autoregressive reconstruction (ARR) method suggested here requires fitting a multivariate stochastic difference equation to the target/proxy time series. The reconstruction is done through the scalar equation for the target time series with the white noise term excluded. The time series approach is shown to provide a better reconstruction of TSI than the correlation/regression method. A reconstruction criterion is introduced which allows one to define in advance the achievable level of success in the reconstruction. The conclusion is that time series, including the total solar irradiance, cannot be reconstructed properly if the data are not treated as sample records of random processes and analyzed in both time and frequency domains.

  20. A Robust State Estimation Framework Considering Measurement Correlations and Imperfect Synchronization

    DOE PAGES

    Zhao, Junbo; Wang, Shaobu; Mili, Lamine; ...

    2018-01-08

    Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less

  1. Modeling the impact of transport energy consumption on CO2 emission in Pakistan: Evidence from ARDL approach.

    PubMed

    Danish; Baloch, Muhammad Awais; Suad, Shah

    2018-04-01

    The objective of this research is to examine the relationship between transport energy consumption, economic growth, and carbon dioxide emission (CO 2 ) from transport sector incorporating foreign direct investment and urbanization. This study is carried out in Pakistan by applying autoregressive distributive lag (ARDL) and vector error correction model (VECM) over 1990-2015. The empirical results indicate a strong significant impact of transport energy consumption on CO 2 emissions from the transportation sector. Furthermore, foreign direct investment also contributes to CO 2 emission. Interestingly, the impact of economic growth and urbanization on transport CO 2 emission is statistically insignificant. Overall, transport energy consumption and foreign direct investment are not environmentally friendly. The new empirical evidence from this study provides a complete picture of the determinants of emissions from the transport sector and these novel findings not only help to advance the existing literature but also can be of special interest to the country's policymakers. So, we urge that government needs to focus on promoting the energy efficient means of transportation to improve environmental quality with less adverse influence on economic growth.

  2. Condition Monitoring for Helicopter Data. Appendix A

    NASA Technical Reports Server (NTRS)

    Wen, Fang; Willett, Peter; Deb, Somnath

    2000-01-01

    In this paper the classical "Westland" set of empirical accelerometer helicopter data is analyzed with the aim of condition monitoring for diagnostic purposes. The goal is to determine features for failure events from these data, via a proprietary signal processing toolbox, and to weigh these according to a variety of classification algorithms. As regards signal processing, it appears that the autoregressive (AR) coefficients from a simple linear model encapsulate a great deal of information in a relatively few measurements; it has also been found that augmentation of these by harmonic and other parameters can improve classification significantly. As regards classification, several techniques have been explored, among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms, is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian data reduction algorithm (BDRA), which imposes a Dirichlet prior on training data and is thus able to quantify probability of error in an exact manner, such that features may be discarded or coarsened appropriately.

  3. A Robust State Estimation Framework Considering Measurement Correlations and Imperfect Synchronization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Junbo; Wang, Shaobu; Mili, Lamine

    Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less

  4. Short-term climate change impacts on Mara basin hydrology

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Roy, T.; Valdés, J. B.; Lyon, B.; Valdés-Pineda, R.; Serrat-Capdevila, A.; Durcik, M.; Gupta, H.

    2017-12-01

    The predictability of climate diminishes significantly at shorter time scales (e.g. decadal). Both natural variability as well as sampling variability of climate can obscure or enhance climate change signals in these shorter scales. Therefore, in order to assess the impacts of climate change on basin hydrology, it is important to design climate projections with exhaustive climate scenarios. In this study, we first create seasonal climate scenarios by combining (1) synthetic precipitation projections generated from a Vector Auto-Regressive (VAR) model using the University of East Anglia Climate Research Unit (UEA-CRU) data with (2) seasonal trends calculated from 31 models in the Coupled Model Intercomparison Project Phase 5 (CMIP). The seasonal climate projections are then disaggregated to daily level using the Agricultural Modern-Era Retrospective Analysis for Research and Applications (AgMERRA) data. The daily climate data are then bias-corrected and used as forcings to the land-surface model, Variable Infiltration Capacity (VIC), to generate different hydrological projections for the Mara River basin in East Africa, which are then evaluated to study the hydrologic changes in the basin in the next three decades (2020-2050).

  5. Sign: large-scale gene network estimation environment for high performance computing.

    PubMed

    Tamada, Yoshinori; Shimamura, Teppei; Yamaguchi, Rui; Imoto, Seiya; Nagasaki, Masao; Miyano, Satoru

    2011-01-01

    Our research group is currently developing software for estimating large-scale gene networks from gene expression data. The software, called SiGN, is specifically designed for the Japanese flagship supercomputer "K computer" which is planned to achieve 10 petaflops in 2012, and other high performance computing environments including Human Genome Center (HGC) supercomputer system. SiGN is a collection of gene network estimation software with three different sub-programs: SiGN-BN, SiGN-SSM and SiGN-L1. In these three programs, five different models are available: static and dynamic nonparametric Bayesian networks, state space models, graphical Gaussian models, and vector autoregressive models. All these models require a huge amount of computational resources for estimating large-scale gene networks and therefore are designed to be able to exploit the speed of 10 petaflops. The software will be available freely for "K computer" and HGC supercomputer system users. The estimated networks can be viewed and analyzed by Cell Illustrator Online and SBiP (Systems Biology integrative Pipeline). The software project web site is available at http://sign.hgc.jp/ .

  6. Non-Gaussian spatiotemporal simulation of multisite daily precipitation: downscaling framework

    NASA Astrophysics Data System (ADS)

    Ben Alaya, M. A.; Ouarda, T. B. M. J.; Chebana, F.

    2018-01-01

    Probabilistic regression approaches for downscaling daily precipitation are very useful. They provide the whole conditional distribution at each forecast step to better represent the temporal variability. The question addressed in this paper is: how to simulate spatiotemporal characteristics of multisite daily precipitation from probabilistic regression models? Recent publications point out the complexity of multisite properties of daily precipitation and highlight the need for using a non-Gaussian flexible tool. This work proposes a reasonable compromise between simplicity and flexibility avoiding model misspecification. A suitable nonparametric bootstrapping (NB) technique is adopted. A downscaling model which merges a vector generalized linear model (VGLM as a probabilistic regression tool) and the proposed bootstrapping technique is introduced to simulate realistic multisite precipitation series. The model is applied to data sets from the southern part of the province of Quebec, Canada. It is shown that the model is capable of reproducing both at-site properties and the spatial structure of daily precipitations. Results indicate the superiority of the proposed NB technique, over a multivariate autoregressive Gaussian framework (i.e. Gaussian copula).

  7. Multiscale analysis of information dynamics for linear multivariate processes.

    PubMed

    Faes, Luca; Montalto, Alessandro; Stramaglia, Sebastiano; Nollo, Giandomenico; Marinazzo, Daniele

    2016-08-01

    In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using statespace (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale information dynamics for simulated unidirectionally and bidirectionally coupled VAR processes, showing that rescaling may lead to insightful patterns of information storage and transfer but also to potentially misleading behaviors.

  8. Predicting groundwater level fluctuations with meteorological effect implications—A comparative study among soft computing techniques

    NASA Astrophysics Data System (ADS)

    Shiri, Jalal; Kisi, Ozgur; Yoon, Heesung; Lee, Kang-Kun; Hossein Nazemi, Amir

    2013-07-01

    The knowledge of groundwater table fluctuations is important in agricultural lands as well as in the studies related to groundwater utilization and management levels. This paper investigates the abilities of Gene Expression Programming (GEP), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Networks (ANN) and Support Vector Machine (SVM) techniques for groundwater level forecasting in following day up to 7-day prediction intervals. Several input combinations comprising water table level, rainfall and evapotranspiration values from Hongcheon Well station (South Korea), covering a period of eight years (2001-2008) were used to develop and test the applied models. The data from the first six years were used for developing (training) the applied models and the last two years data were reserved for testing. A comparison was also made between the forecasts provided by these models and the Auto-Regressive Moving Average (ARMA) technique. Based on the comparisons, it was found that the GEP models could be employed successfully in forecasting water table level fluctuations up to 7 days beyond data records.

  9. Alaska softwood market price arbitrage.

    Treesearch

    James A. Stevens; David J. Brooks

    2003-01-01

    This study formally tests the hypothesis that markets for Alaska lumber and logs are integrated with those of similar products from the U.S. Pacific Northwest and Canada. The prices from these three supply regions are tested in a common demand market (Japan). Cointegration tests are run on paired log and lumber data. Our results support the conclusion that western...

  10. Nanoelectronics and More-than-Moore at IMEC

    NASA Astrophysics Data System (ADS)

    Cartuyvels, Rudi; Biesemans, Serge; Vandervorst, Wilfried; De Boeck, Jo

    2011-11-01

    This paper presents an overview of imec's R&D addressing the challenges of CMOS scaling towards the 10 nm node and its outlook beyond. In addition to the relentless geometrical shrinks, opportunities to further increase nanoelectronic system functionality and performance by co-integration and chip stacking technologies combined with emerging MEMS and optoelectronic technologies will be presented.

  11. Predation and fragmentation portrayed in the statistical structure of prey time series

    PubMed Central

    Hendrichsen, Ditte K; Topping, Chris J; Forchhammer, Mads C

    2009-01-01

    Background Statistical autoregressive analyses of direct and delayed density dependence are widespread in ecological research. The models suggest that changes in ecological factors affecting density dependence, like predation and landscape heterogeneity are directly portrayed in the first and second order autoregressive parameters, and the models are therefore used to decipher complex biological patterns. However, independent tests of model predictions are complicated by the inherent variability of natural populations, where differences in landscape structure, climate or species composition prevent controlled repeated analyses. To circumvent this problem, we applied second-order autoregressive time series analyses to data generated by a realistic agent-based computer model. The model simulated life history decisions of individual field voles under controlled variations in predator pressure and landscape fragmentation. Analyses were made on three levels: comparisons between predated and non-predated populations, between populations exposed to different types of predators and between populations experiencing different degrees of habitat fragmentation. Results The results are unambiguous: Changes in landscape fragmentation and the numerical response of predators are clearly portrayed in the statistical time series structure as predicted by the autoregressive model. Populations without predators displayed significantly stronger negative direct density dependence than did those exposed to predators, where direct density dependence was only moderately negative. The effects of predation versus no predation had an even stronger effect on the delayed density dependence of the simulated prey populations. In non-predated prey populations, the coefficients of delayed density dependence were distinctly positive, whereas they were negative in predated populations. Similarly, increasing the degree of fragmentation of optimal habitat available to the prey was accompanied with a shift in the delayed density dependence, from strongly negative to gradually becoming less negative. Conclusion We conclude that statistical second-order autoregressive time series analyses are capable of deciphering interactions within and across trophic levels and their effect on direct and delayed density dependence. PMID:19419539

  12. Processing on weak electric signals by the autoregressive model

    NASA Astrophysics Data System (ADS)

    Ding, Jinli; Zhao, Jiayin; Wang, Lanzhou; Li, Qiao

    2008-10-01

    A model of the autoregressive model of weak electric signals in two plants was set up for the first time. The result of the AR model to forecast 10 values of the weak electric signals is well. It will construct a standard set of the AR model coefficient of the plant electric signal and the environmental factor, and can be used as the preferences for the intelligent autocontrol system based on the adaptive characteristic of plants to achieve the energy saving on agricultural productions.

  13. Fisher Consistency of AM-Estimates of the Autoregression Parameter Using Hard Rejection Filter Cleaners

    DTIC Science & Technology

    1987-02-04

    U5tr,)! P(U 5-t Since U - F with F RS, we get (3.1). Case b: 0 S 5 k -a Now P([U~t]riM) = P(UZk-a) and P([ Ugt ]rM) = P(US-k-a) S P(US-(k-a)) which again...robustness for autoregressive processes." The Annals of Statistics, 12, 843-863. Mallows, C.L. (1980). "Some theory of nonlinear smoothen." The Annals of

  14. Why did bluetongue spread the way it did? Environmental factors influencing the velocity of bluetongue virus serotype 8 epizootic wave in France.

    PubMed

    Pioz, Maryline; Guis, Hélène; Crespin, Laurent; Gay, Emilie; Calavas, Didier; Durand, Benoît; Abrial, David; Ducrot, Christian

    2012-01-01

    Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007-2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread.

  15. Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects.

    PubMed

    Dong, Ni; Huang, Helai; Zheng, Liang

    2015-09-01

    In zone-level crash prediction, accounting for spatial dependence has become an extensively studied topic. This study proposes Support Vector Machine (SVM) model to address complex, large and multi-dimensional spatial data in crash prediction. Correlation-based Feature Selector (CFS) was applied to evaluate candidate factors possibly related to zonal crash frequency in handling high-dimension spatial data. To demonstrate the proposed approaches and to compare them with the Bayesian spatial model with conditional autoregressive prior (i.e., CAR), a dataset in Hillsborough county of Florida was employed. The results showed that SVM models accounting for spatial proximity outperform the non-spatial model in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-zonal spatial correlations. The best model predictive capability, relatively, is associated with the model considering proximity of the centroid distance by choosing the RBF kernel and setting the 10% of the whole dataset as the testing data, which further exhibits SVM models' capacity for addressing comparatively complex spatial data in regional crash prediction modeling. Moreover, SVM models exhibit the better goodness-of-fit compared with CAR models when utilizing the whole dataset as the samples. A sensitivity analysis of the centroid-distance-based spatial SVM models was conducted to capture the impacts of explanatory variables on the mean predicted probabilities for crash occurrence. While the results conform to the coefficient estimation in the CAR models, which supports the employment of the SVM model as an alternative in regional safety modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Why Did Bluetongue Spread the Way It Did? Environmental Factors Influencing the Velocity of Bluetongue Virus Serotype 8 Epizootic Wave in France

    PubMed Central

    Pioz, Maryline; Guis, Hélène; Crespin, Laurent; Gay, Emilie; Calavas, Didier; Durand, Benoît; Abrial, David; Ducrot, Christian

    2012-01-01

    Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007–2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread. PMID:22916249

  17. Vector Autoregressive (VAR) Models and Granger Causality in Time Series Analysis in Nursing Research: Dynamic Changes Among Vital Signs Prior to Cardiorespiratory Instability Events as an Example

    PubMed Central

    Bose, Eliezer; Hravnak, Marilyn; Sereika, Susan M.

    2016-01-01

    Background Patients undergoing continuous vital sign monitoring (heart rate [HR], respiratory rate [RR], pulse oximetry [SpO2]) in real time display inter-related vital sign changes during situations of physiologic stress. Patterns in this physiological cross-talk could portend impending cardiorespiratory instability (CRI). Vector autoregressive (VAR) modeling with Granger causality tests is one of the most flexible ways to elucidate underlying causal mechanisms in time series data. Purpose The purpose of this article is to illustrate development of patient-specific VAR models using vital sign time series (VSTS) data in a sample of acutely ill, monitored, step-down unit (SDU) patients, and determine their Granger causal dynamics prior to onset of an incident CRI. Approach CRI was defined as vital signs beyond stipulated normality thresholds (HR = 40–140/minute, RR = 8–36/minute, SpO2 < 85%) and persisting for 3 minutes within a 5-minute moving window (60% of the duration of the window). A 6-hour time segment prior to onset of first CRI was chosen for time series modeling in 20 patients using a six-step procedure: (a) the uniform time series for each vital sign was assessed for stationarity; (b) appropriate lag was determined using a lag-length selection criteria; (c) the VAR model was constructed; (d) residual autocorrelation was assessed with the Lagrange Multiplier test; (e) stability of the VAR system was checked; and (f) Granger causality was evaluated in the final stable model. Results The primary cause of incident CRI was low SpO2 (60% of cases), followed by out-of-range RR (30%) and HR (10%). Granger causality testing revealed that change in RR caused change in HR (21%) (i.e., RR changed before HR changed) more often than change in HR causing change in RR (15%). Similarly, changes in RR caused changes in SpO2 (15%) more often than changes in SpO2 caused changes in RR (9%). For HR and SpO2, changes in HR causing changes in SpO2 and changes in SpO2 causing changes in HR occurred with equal frequency (18%). Discussion Within this sample of acutely ill patients who experienced a CRI event, VAR modeling indicated that RR changes tend to occur before changes in HR and SpO2. These findings suggest that contextual assessment of RR changes as the earliest sign of CRI is warranted. Use of VAR modeling may be helpful in other nursing research applications based on time series data. PMID:27977564

  18. Medium- and Long-term Prediction of LOD Change by the Leap-step Autoregressive Model

    NASA Astrophysics Data System (ADS)

    Wang, Qijie

    2015-08-01

    The accuracy of medium- and long-term prediction of length of day (LOD) change base on combined least-square and autoregressive (LS+AR) deteriorates gradually. Leap-step autoregressive (LSAR) model can significantly reduce the edge effect of the observation sequence. Especially, LSAR model greatly improves the resolution of signals’ low-frequency components. Therefore, it can improve the efficiency of prediction. In this work, LSAR is used to forecast the LOD change. The LOD series from EOP 08 C04 provided by IERS is modeled by both the LSAR and AR models. The results of the two models are analyzed and compared. When the prediction length is between 10-30 days, the accuracy improvement is less than 10%. When the prediction length amounts to above 30 day, the accuracy improved obviously, with the maximum being around 19%. The results show that the LSAR model has higher prediction accuracy and stability in medium- and long-term prediction.

  19. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2015-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.

  20. Sleep analysis for wearable devices applying autoregressive parametric models.

    PubMed

    Mendez, M O; Villantieri, O; Bianchi, A; Cerutti, S

    2005-01-01

    We applied time-variant and time-invariant parametric models in both healthy subjects and patients with sleep disorder recordings in order to assess the skills of those approaches to sleep disorders diagnosis in wearable devices. The recordings present the Obstructive Sleep Apnea (OSA) pathology which is characterized by fluctuations in the heart rate, bradycardia in apneonic phase and tachycardia at the recovery of ventilation. Data come from a web database in www.physionet.org. During OSA the spectral indexes obtained by time-variant lattice filters presented oscillations that correspond to the changes brady-tachycardia of the RR intervals and greater values than healthy ones. Multivariate autoregressive models showed an increment in very low frequency component (PVLF) at each apneic event. Also a rise in high frequency component (PHF) occurred over the breathing restore in the spectrum of both quadratic coherence and cross-spectrum in OSA. These autoregressive parametric approaches could help in the diagnosis of Sleep Disorder inside of the wearable devices.

  1. Water balance models in one-month-ahead streamflow forecasting

    USGS Publications Warehouse

    Alley, William M.

    1985-01-01

    Techniques are tested that incorporate information from water balance models in making 1-month-ahead streamflow forecasts in New Jersey. The results are compared to those based on simple autoregressive time series models. The relative performance of the models is dependent on the month of the year in question. The water balance models are most useful for forecasts of April and May flows. For the stations in northern New Jersey, the April and May forecasts were made in order of decreasing reliability using the water-balance-based approaches, using the historical monthly means, and using simple autoregressive models. The water balance models were useful to a lesser extent for forecasts during the fall months. For the rest of the year the improvements in forecasts over those obtained using the simpler autoregressive models were either very small or the simpler models provided better forecasts. When using the water balance models, monthly corrections for bias are found to improve minimum mean-square-error forecasts as well as to improve estimates of the forecast conditional distributions.

  2. [A novel method of multi-channel feature extraction combining multivariate autoregression and multiple-linear principal component analysis].

    PubMed

    Wang, Jinjia; Zhang, Yanna

    2015-02-01

    Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.

  3. Reciprocal Associations between Negative Affect, Binge Eating, and Purging in the Natural Environment in Women with Bulimia Nervosa

    PubMed Central

    Lavender, Jason M.; Utzinger, Linsey M.; Cao, Li; Wonderlich, Stephen A.; Engel, Scott G.; Mitchell, James E.; Crosby, Ross D.

    2016-01-01

    Although negative affect (NA) has been identified as a common trigger for bulimic behaviors, findings regarding NA following such behaviors have been mixed. This study examined reciprocal associations between NA and bulimic behaviors using real-time, naturalistic data. Participants were 133 women with DSM-IV bulimia nervosa (BN) who completed a two-week ecological momentary assessment (EMA) protocol in which they recorded bulimic behaviors and provided multiple daily ratings of NA. A multilevel autoregressive cross-lagged analysis was conducted to examine concurrent, first-order autoregressive, and prospective associations between NA, binge eating, and purging across the day. Results revealed positive concurrent associations between all variables across all time points, as well as numerous autoregressive associations. For prospective associations, higher NA predicted subsequent bulimic symptoms at multiple time points; conversely, binge eating predicted lower NA at multiple time points, and purging predicted higher NA at one time point. Several autoregressive and prospective associations were also found between binge eating and purging. This study used a novel approach to examine NA in relation to bulimic symptoms, contributing to the existing literature by directly examining the magnitude of the associations, examining differences in the associations across the day, and controlling for other associations in testing each effect in the model. These findings may have relevance for understanding the etiology and/or maintenance of bulimic symptoms, as well as potentially informing psychological interventions for BN. PMID:26692122

  4. Multifractality and autoregressive processes of dry spell lengths in Europe: an approach to their complexity and predictability

    NASA Astrophysics Data System (ADS)

    Lana, X.; Burgueño, A.; Serra, C.; Martínez, M. D.

    2017-01-01

    Dry spell lengths, DSL, defined as the number of consecutive days with daily rain amounts below a given threshold, may provide relevant information about drought regimes. Taking advantage of a daily pluviometric database covering a great extension of Europe, a detailed analysis of the multifractality of the dry spell regimes is achieved. At the same time, an autoregressive process is applied with the aim of predicting DSL. A set of parameters, namely Hurst exponent, H, estimated from multifractal spectrum, f( α), critical Hölder exponent, α 0, for which f( α) reaches its maximum value, spectral width, W, and spectral asymmetry, B, permits a first clustering of European rain gauges in terms of the complexity of their DSL series. This set of parameters also allows distinguishing between time series describing fine- or smooth-structure of the DSL regime by using the complexity index, CI. Results of previous monofractal analyses also permits establishing comparisons between smooth-structures, relatively low correlation dimensions, notable predictive instability and anti-persistence of DSL for European areas, sometimes submitted to long droughts. Relationships are also found between the CI and the mean absolute deviation, MAD, and the optimum autoregressive order, OAO, of an ARIMA( p, d,0) autoregressive process applied to the DSL series. The detailed analysis of the discrepancies between empiric and predicted DSL underlines the uncertainty over predictability of long DSL, particularly for the Mediterranean region.

  5. An investigation on the determinants of carbon emissions for OECD countries: empirical evidence from panel models robust to heterogeneity and cross-sectional dependence.

    PubMed

    Dogan, Eyup; Seker, Fahri

    2016-07-01

    This empirical study analyzes the impacts of real income, energy consumption, financial development and trade openness on CO2 emissions for the OECD countries in the Environmental Kuznets Curve (EKC) model by using panel econometric approaches that consider issues of heterogeneity and cross-sectional dependence. Results from the Pesaran CD test, the Pesaran-Yamagata's homogeneity test, the CADF and the CIPS unit root tests, the LM bootstrap cointegration test, the DSUR estimator, and the Emirmahmutoglu-Kose Granger causality test indicate that (i) the panel time-series data are heterogeneous and cross-sectionally dependent; (ii) CO2 emissions, real income, the quadratic income, energy consumption, financial development and openness are integrated of order one; (iii) the analyzed data are cointegrated; (iv) the EKC hypothesis is validated for the OECD countries; (v) increases in openness and financial development mitigate the level of emissions whereas energy consumption contributes to carbon emissions; (vi) a variety of Granger causal relationship is detected among the analyzed variables; and (vii) empirical results and policy recommendations are accurate and efficient since panel econometric models used in this study account for heterogeneity and cross-sectional dependence in their estimation procedures.

  6. A study on the causal effect of urban population growth and international trade on environmental pollution: evidence from China.

    PubMed

    Boamah, Kofi Baah; Du, Jianguo; Boamah, Angela Jacinta; Appiah, Kingsley

    2018-02-01

    This study seeks to contribute to the recent literature by empirically investigating the causal effect of urban population growth and international trade on environmental pollution of China, for the period 1980-2014. The Johansen cointegration confirmed a long-run cointegration association among the utilised variables for the case of China. The direction of causality among the variables was, consequently, investigated using the recent bootstrapped Granger causality test. This bootstrapped Granger causality approach is preferred as it provides robust and accurate critical values for statistical inferences. The findings from the causality analysis revealed the existence of a bi-directional causality between import and urban population. The three most paramount variables that explain the environmental pollution in China, according to the impulse response function, are imports, urbanisation and energy consumption. Our study further established the presence of an N-shaped environmental Kuznets curve relationship between economic growth and environmental pollution of China. Hence, our study recommends that China should adhere to stricter environmental regulations in international trade, as well as enforce policies that promote energy efficiency in the urban residential and commercial sector, in the quest to mitigate environmental pollution issues as the economy advances.

  7. Long-memory and the sea level-temperature relationship: a fractional cointegration approach.

    PubMed

    Ventosa-Santaulària, Daniel; Heres, David R; Martínez-Hernández, L Catalina

    2014-01-01

    Through thermal expansion of oceans and melting of land-based ice, global warming is very likely contributing to the sea level rise observed during the 20th century. The amount by which further increases in global average temperature could affect sea level is only known with large uncertainties due to the limited capacity of physics-based models to predict sea levels from global surface temperatures. Semi-empirical approaches have been implemented to estimate the statistical relationship between these two variables providing an alternative measure on which to base potentially disrupting impacts on coastal communities and ecosystems. However, only a few of these semi-empirical applications had addressed the spurious inference that is likely to be drawn when one nonstationary process is regressed on another. Furthermore, it has been shown that spurious effects are not eliminated by stationary processes when these possess strong long memory. Our results indicate that both global temperature and sea level indeed present the characteristics of long memory processes. Nevertheless, we find that these variables are fractionally cointegrated when sea-ice extent is incorporated as an instrumental variable for temperature which in our estimations has a statistically significant positive impact on global sea level.

  8. An Analysis on the Unemployment Rate in the Philippines: A Time Series Data Approach

    NASA Astrophysics Data System (ADS)

    Urrutia, J. D.; Tampis, R. L.; E Atienza, JB

    2017-03-01

    This study aims to formulate a mathematical model for forecasting and estimating unemployment rate in the Philippines. Also, factors which can predict the unemployment is to be determined among the considered variables namely Labor Force Rate, Population, Inflation Rate, Gross Domestic Product, and Gross National Income. Granger-causal relationship and integration among the dependent and independent variables are also examined using Pairwise Granger-causality test and Johansen Cointegration Test. The data used were acquired from the Philippine Statistics Authority, National Statistics Office, and Bangko Sentral ng Pilipinas. Following the Box-Jenkins method, the formulated model for forecasting the unemployment rate is SARIMA (6, 1, 5) × (0, 1, 1)4 with a coefficient of determination of 0.79. The actual values are 99 percent identical to the predicted values obtained through the model, and are 72 percent closely relative to the forecasted ones. According to the results of the regression analysis, Labor Force Rate and Population are the significant factors of unemployment rate. Among the independent variables, Population, GDP, and GNI showed to have a granger-causal relationship with unemployment. It is also found that there are at least four cointegrating relations between the dependent and independent variables.

  9. An analysis of macroeconomic fluctuations for a small open oil-based economy: The case of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Abdulkarim, Bander B.

    The increasing fluctuations in the oil prices through the last decades have been transferred to the oil exporting countries. Thus, many oil exporting countries experienced significant changes in the economic activity due to changes in the oil markets. In light of this, oil exporting countries have attempted to implement a policy that would stabilize the fluctuations in the oil markets recognizing the adverse effects of such behavior on oil exporting countries, as well as oil importing countries. Saudi Arabia, as the largest oil-exporting country and a member of OPEC, takes the role of oil-markets stabilizer by behaving as the swing producer. This role has caused the global economic fluctuations to transfer into the domestic economy. In addition, Saudi Arabian government has adopted a fixed exchange rate currency regime. Although it has contributed to domestic price stabilizations, this policy has also exposed the country to global economic disturbances. The purpose of the study is to empirically investigate these aspects for Saudi Arabia. First, the effects of shocks originated in the international markets on the Saudi Arabian economy. Second, how the fixed exchange rate regimes influences the domestic macroeconomic variables. Third, to what extent the oil sector contributes to the non-oil domestic fluctuations. Finally, how the findings from the study can be explained by economic theory. In pursuing this, there are four economic theories that are considered to explain the causes of business cycles. These theories are Classical Theory, Keynesian Theory, Monetarist Theory, and the Real Business Cycles. In addition, a theoretical model is derived that is suitable for an oil-based economy. The model follows the set up of McCallum and Nelson (1999). Then, the empirical models of Structural Vector Autoregression (SVAR) and Error Correction Model (ECM) are implemented with three different specifications: Choleski Decomposition, Block Exogeneity and long-run Cointegration Model. The empirical models then are applied to sets of data from 1980 to 2002 for Saudi Arabia, Kuwait, Venezuela and Norway. The rationale of including other oil-exporting countries is to distinguish whether the shocks are country-specific, regional-specific, or global. Two sets of shocks are considered: international shocks and domestic shocks. Three types of international shocks are chosen: commodity-price (oil price) shock, international financial (interest rate) shock, and international real (output) shock. In addition, five domestic shocks which are non-oil output shock, oil production shock, price level shock, monetary shock, and exchange rate shock. The findings reached in the study demonstrate that the international shocks are responsible for a high proportion of fluctuations in the economic activity in Saudi Arabia. Most importantly, the international financial shocks represented by the US interest rate and oil price shocks are the major sources of fluctuations in the Saudi Arabian economy. Domestically, the economy is mostly affected by the oil production and the non-oil output shocks for Saudi Arabia. These results emphasize that the Saudi Arabia's role in the international oil market and its fixed exchange rate regime have significant implications on the domestic economy. Thus, special considerations should be placed on designing the appropriate policies to lessen the dependency on the oil sector and strengthen the role of private sector to diversify the economic base, and provide an independent sound monetary policy to steer the economy from the fluctuations in the global economy. (Abstract shortened by UMI.)

  10. AR(p) -based detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, J.; Rodriguez, E.

    2018-07-01

    Autoregressive models are commonly used for modeling time-series from nature, economics and finance. This work explored simple autoregressive AR(p) models to remove long-term trends in detrended fluctuation analysis (DFA). Crude oil prices and bitcoin exchange rate were considered, with the former corresponding to a mature market and the latter to an emergent market. Results showed that AR(p) -based DFA performs similar to traditional DFA. However, the former DFA provides information on stability of long-term trends, which is valuable for understanding and quantifying the dynamics of complex time series from financial systems.

  11. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    PubMed

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  12. pHTβ-promoted mobilization of non-conjugative resistance plasmids from Enterococcus faecium to Enterococcus faecalis.

    PubMed

    Di Sante, Laura; Morroni, Gianluca; Brenciani, Andrea; Vignaroli, Carla; Antonelli, Alberto; D'Andrea, Marco Maria; Di Cesare, Andrea; Giovanetti, Eleonora; Varaldo, Pietro E; Rossolini, Gian Maria; Biavasco, Francesca

    2017-09-01

    To analyse the recombination events associated with conjugal mobilization of two multiresistance plasmids, pRUM17i48 and pLAG (formerly named pDO1-like), from Enterococcus faecium 17i48 to Enterococcus faecalis JH2-2. The plasmids from two E. faecalis transconjugants (JH-4T, tetracycline resistant, and JH-8E, erythromycin resistant) and from the E. faecium donor (also carrying a pHTβ-like conjugative plasmid, named pHTβ17i48) were investigated by several methods, including PCR mapping and sequencing, S1-PFGE followed by Southern blotting and hybridization, and WGS. Two locations of repApHTβ were detected in both transconjugants, one on a ∼50 kb plasmid (as in the donor) and the other on plasmids of larger sizes. In JH-4T, WGS disclosed an 88.6 kb plasmid resulting from the recombination of pHTβ17i48 (∼50 kb) and a new plasmid, named pLAG (35.3 kb), carrying the tet(M), tet(L), lsa(E), lnu(B), spw and aadE resistance genes. In JH-8E, a 75 kb plasmid resulting from the recombination of pHTβ17i48 and pRUM17i48 was observed. In both cases, the cointegrates were apparently derived from replicative transposition of an IS1216 present in each of the multiresistance plasmids into pHTβ17i48. The cointegrates could resolve to yield the multiresistance plasmids and a pHTβ17i48 derivative carrying an IS1216 (unlike the pHTβ17i48 of the donor). Our results completed the characterization of the multiresistance plasmids carried by the E. faecium 17i48, confirming the role of pHT plasmids in the mobilization of non-conjugative antibiotic resistance elements among enterococci. Results also revealed that mobilization to E. faecalis was associated with the generation of cointegrate plasmids promoted by IS1216-mediated transposition. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Reciprocal associations between negative affect, binge eating, and purging in the natural environment in women with bulimia nervosa.

    PubMed

    Lavender, Jason M; Utzinger, Linsey M; Cao, Li; Wonderlich, Stephen A; Engel, Scott G; Mitchell, James E; Crosby, Ross D

    2016-04-01

    Although negative affect (NA) has been identified as a common trigger for bulimic behaviors, findings regarding NA following such behaviors have been mixed. This study examined reciprocal associations between NA and bulimic behaviors using real-time, naturalistic data. Participants were 133 women with bulimia nervosa (BN) according to the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders who completed a 2-week ecological momentary assessment protocol in which they recorded bulimic behaviors and provided multiple daily ratings of NA. A multilevel autoregressive cross-lagged analysis was conducted to examine concurrent, first-order autoregressive, and prospective associations between NA, binge eating, and purging across the day. Results revealed positive concurrent associations between all variables across all time points, as well as numerous autoregressive associations. For prospective associations, higher NA predicted subsequent bulimic symptoms at multiple time points; conversely, binge eating predicted lower NA at multiple time points, and purging predicted higher NA at 1 time point. Several autoregressive and prospective associations were also found between binge eating and purging. This study used a novel approach to examine NA in relation to bulimic symptoms, contributing to the existing literature by directly examining the magnitude of the associations, examining differences in the associations across the day, and controlling for other associations in testing each effect in the model. These findings may have relevance for understanding the etiology and/or maintenance of bulimic symptoms, as well as potentially informing psychological interventions for BN. (c) 2016 APA, all rights reserved).

  14. Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network (NARNN) in forecasting incidence cases of HFMD in Shenzhen, China.

    PubMed

    Yu, Lijing; Zhou, Lingling; Tan, Li; Jiang, Hongbo; Wang, Ying; Wei, Sheng; Nie, Shaofa

    2014-01-01

    Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. In this paper, a hybrid model combining seasonal auto-regressive integrated moving average (ARIMA) model and nonlinear auto-regressive neural network (NARNN) is proposed to predict the expected incidence cases from December 2012 to May 2013, using the retrospective observations obtained from China Information System for Disease Control and Prevention from January 2008 to November 2012. The best-fitted hybrid model was combined with seasonal ARIMA [Formula: see text] and NARNN with 15 hidden units and 5 delays. The hybrid model makes the good forecasting performance and estimates the expected incidence cases from December 2012 to May 2013, which are respectively -965.03, -1879.58, 4138.26, 1858.17, 4061.86 and 6163.16 with an obviously increasing trend. The model proposed in this paper can predict the incidence trend of HFMD effectively, which could be helpful to policy makers. The usefulness of expected cases of HFMD perform not only in detecting outbreaks or providing probability statements, but also in providing decision makers with a probable trend of the variability of future observations that contains both historical and recent information.

  15. Methodology for the AutoRegressive Planet Search (ARPS) Project

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric; Caceres, Gabriel; ARPS Collaboration

    2018-01-01

    The detection of periodic signals of transiting exoplanets is often impeded by the presence of aperiodic photometric variations. This variability is intrinsic to the host star in space-based observations (typically arising from magnetic activity) and from observational conditions in ground-based observations. The most common statistical procedures to remove stellar variations are nonparametric, such as wavelet decomposition or Gaussian Processes regression. However, many stars display variability with autoregressive properties, wherein later flux values are correlated with previous ones. Providing the time series is evenly spaced, parametric autoregressive models can prove very effective. Here we present the methodology of the Autoregessive Planet Search (ARPS) project which uses Autoregressive Integrated Moving Average (ARIMA) models to treat a wide variety of stochastic short-memory processes, as well as nonstationarity. Additionally, we introduce a planet-search algorithm to detect periodic transits in the time-series residuals after application of ARIMA models. Our matched-filter algorithm, the Transit Comb Filter (TCF), replaces the traditional box-fitting step. We construct a periodogram based on the TCF to concentrate the signal of these periodic spikes. Various features of the original light curves, the ARIMA fits, the TCF periodograms, and folded light curves at peaks of the TCF periodogram can then be collected to provide constraints for planet detection. These features provide input into a multivariate classifier when a training set is available. The ARPS procedure has been applied NASA's Kepler mission observations of ~200,000 stars (Caceres, Dissertation Talk, this meeting) and will be applied in the future to other datasets.

  16. Optimal HRF and smoothing parameters for fMRI time series within an autoregressive modeling framework.

    PubMed

    Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru

    2010-12-01

    The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.

  17. Spectral Analysis of Ultrasound Radiofrequency Backscatter for the Detection of Intercostal Blood Vessels.

    PubMed

    Klingensmith, Jon D; Haggard, Asher; Fedewa, Russell J; Qiang, Beidi; Cummings, Kenneth; DeGrande, Sean; Vince, D Geoffrey; Elsharkawy, Hesham

    2018-04-19

    Spectral analysis of ultrasound radiofrequency backscatter has the potential to identify intercostal blood vessels during ultrasound-guided placement of paravertebral nerve blocks and intercostal nerve blocks. Autoregressive models were used for spectral estimation, and bandwidth, autoregressive order and region-of-interest size were evaluated. Eight spectral parameters were calculated and used to create random forests. An autoregressive order of 10, bandwidth of 6 dB and region-of-interest size of 1.0 mm resulted in the minimum out-of-bag error. An additional random forest, using these chosen values, was created from 70% of the data and evaluated independently from the remaining 30% of data. The random forest achieved a predictive accuracy of 92% and Youden's index of 0.85. These results suggest that spectral analysis of ultrasound radiofrequency backscatter has the potential to identify intercostal blood vessels. (jokling@siue.edu) © 2018 World Federation for Ultrasound in Medicine and Biology. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  18. On The Value at Risk Using Bayesian Mixture Laplace Autoregressive Approach for Modelling the Islamic Stock Risk Investment

    NASA Astrophysics Data System (ADS)

    Miftahurrohmah, Brina; Iriawan, Nur; Fithriasari, Kartika

    2017-06-01

    Stocks are known as the financial instruments traded in the capital market which have a high level of risk. Their risks are indicated by their uncertainty of their return which have to be accepted by investors in the future. The higher the risk to be faced, the higher the return would be gained. Therefore, the measurements need to be made against the risk. Value at Risk (VaR) as the most popular risk measurement method, is frequently ignore when the pattern of return is not uni-modal Normal. The calculation of the risks using VaR method with the Normal Mixture Autoregressive (MNAR) approach has been considered. This paper proposes VaR method couple with the Mixture Laplace Autoregressive (MLAR) that would be implemented for analysing the first three biggest capitalization Islamic stock return in JII, namely PT. Astra International Tbk (ASII), PT. Telekomunikasi Indonesia Tbk (TLMK), and PT. Unilever Indonesia Tbk (UNVR). Parameter estimation is performed by employing Bayesian Markov Chain Monte Carlo (MCMC) approaches.

  19. (Re)evaluating the Implications of the Autoregressive Latent Trajectory Model Through Likelihood Ratio Tests of Its Initial Conditions.

    PubMed

    Ou, Lu; Chow, Sy-Miin; Ji, Linying; Molenaar, Peter C M

    2017-01-01

    The autoregressive latent trajectory (ALT) model synthesizes the autoregressive model and the latent growth curve model. The ALT model is flexible enough to produce a variety of discrepant model-implied change trajectories. While some researchers consider this a virtue, others have cautioned that this may confound interpretations of the model's parameters. In this article, we show that some-but not all-of these interpretational difficulties may be clarified mathematically and tested explicitly via likelihood ratio tests (LRTs) imposed on the initial conditions of the model. We show analytically the nested relations among three variants of the ALT model and the constraints needed to establish equivalences. A Monte Carlo simulation study indicated that LRTs, particularly when used in combination with information criterion measures, can allow researchers to test targeted hypotheses about the functional forms of the change process under study. We further demonstrate when and how such tests may justifiably be used to facilitate our understanding of the underlying process of change using a subsample (N = 3,995) of longitudinal family income data from the National Longitudinal Survey of Youth.

  20. Kepler AutoRegressive Planet Search (KARPS)

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel

    2018-01-01

    One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The Kepler AutoRegressive Planet Search (KARPS) project implements statistical methodology associated with autoregressive processes (in particular, ARIMA and ARFIMA) to model stellar lightcurves in order to improve exoplanet transit detection. We also develop a novel Transit Comb Filter (TCF) applied to the AR residuals which provides a periodogram analogous to the standard Box-fitting Least Squares (BLS) periodogram. We train a random forest classifier on known Kepler Objects of Interest (KOIs) using select features from different stages of this analysis, and then use ROC curves to define and calibrate the criteria to recover the KOI planet candidates with high fidelity. These statistical methods are detailed in a contributed poster (Feigelson et al., this meeting).These procedures are applied to the full DR25 dataset of NASA’s Kepler mission. Using the classification criteria, a vast majority of known KOIs are recovered and dozens of new KARPS Candidate Planets (KCPs) discovered, including ultra-short period exoplanets. The KCPs will be briefly presented and discussed.

  1. Time series modelling of increased soil temperature anomalies during long period

    NASA Astrophysics Data System (ADS)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  2. Monthly streamflow forecasting with auto-regressive integrated moving average

    NASA Astrophysics Data System (ADS)

    Nasir, Najah; Samsudin, Ruhaidah; Shabri, Ani

    2017-09-01

    Forecasting of streamflow is one of the many ways that can contribute to better decision making for water resource management. The auto-regressive integrated moving average (ARIMA) model was selected in this research for monthly streamflow forecasting with enhancement made by pre-processing the data using singular spectrum analysis (SSA). This study also proposed an extension of the SSA technique to include a step where clustering was performed on the eigenvector pairs before reconstruction of the time series. The monthly streamflow data of Sungai Muda at Jeniang, Sungai Muda at Jambatan Syed Omar and Sungai Ketil at Kuala Pegang was gathered from the Department of Irrigation and Drainage Malaysia. A ratio of 9:1 was used to divide the data into training and testing sets. The ARIMA, SSA-ARIMA and Clustered SSA-ARIMA models were all developed in R software. Results from the proposed model are then compared to a conventional auto-regressive integrated moving average model using the root-mean-square error and mean absolute error values. It was found that the proposed model can outperform the conventional model.

  3. New Approach To Hour-By-Hour Weather Forecast

    NASA Astrophysics Data System (ADS)

    Liao, Q. Q.; Wang, B.

    2017-12-01

    Fine hourly forecast in single station weather forecast is required in many human production and life application situations. Most previous MOS (Model Output Statistics) which used a linear regression model are hard to solve nonlinear natures of the weather prediction and forecast accuracy has not been sufficient at high temporal resolution. This study is to predict the future meteorological elements including temperature, precipitation, relative humidity and wind speed in a local region over a relatively short period of time at hourly level. By means of hour-to-hour NWP (Numeral Weather Prediction)meteorological field from Forcastio (https://darksky.net/dev/docs/forecast) and real-time instrumental observation including 29 stations in Yunnan and 3 stations in Tianjin of China from June to October 2016, predictions are made of the 24-hour hour-by-hour ahead. This study presents an ensemble approach to combine the information of instrumental observation itself and NWP. Use autoregressive-moving-average (ARMA) model to predict future values of the observation time series. Put newest NWP products into the equations derived from the multiple linear regression MOS technique. Handle residual series of MOS outputs with autoregressive (AR) model for the linear property presented in time series. Due to the complexity of non-linear property of atmospheric flow, support vector machine (SVM) is also introduced . Therefore basic data quality control and cross validation makes it able to optimize the model function parameters , and do 24 hours ahead residual reduction with AR/SVM model. Results show that AR model technique is better than corresponding multi-variant MOS regression method especially at the early 4 hours when the predictor is temperature. MOS-AR combined model which is comparable to MOS-SVM model outperform than MOS. Both of their root mean square error and correlation coefficients for 2 m temperature are reduced to 1.6 degree Celsius and 0.91 respectively. The forecast accuracy of 24- hour forecast deviation no more than 2 degree Celsius is 78.75 % for MOS-AR model and 81.23 % for AR model.

  4. Computational problems in autoregressive moving average (ARMA) models

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Goodarzi, S. M.; Oneill, W. D.; Gottlieb, G. L.

    1981-01-01

    The choice of the sampling interval and the selection of the order of the model in time series analysis are considered. Band limited (up to 15 Hz) random torque perturbations are applied to the human ankle joint. The applied torque input, the angular rotation output, and the electromyographic activity using surface electrodes from the extensor and flexor muscles of the ankle joint are recorded. Autoregressive moving average models are developed. A parameter constraining technique is applied to develop more reliable models. The asymptotic behavior of the system must be taken into account during parameter optimization to develop predictive models.

  5. Ecology of West Nile virus across four European countries: empirical modelling of the Culex pipiens abundance dynamics as a function of weather.

    PubMed

    Groen, Thomas A; L'Ambert, Gregory; Bellini, Romeo; Chaskopoulou, Alexandra; Petric, Dusan; Zgomba, Marija; Marrama, Laurence; Bicout, Dominique J

    2017-10-26

    Culex pipiens is the major vector of West Nile virus in Europe, and is causing frequent outbreaks throughout the southern part of the continent. Proper empirical modelling of the population dynamics of this species can help in understanding West Nile virus epidemiology, optimizing vector surveillance and mosquito control efforts. But modelling results may differ from place to place. In this study we look at which type of models and weather variables can be consistently used across different locations. Weekly mosquito trap collections from eight functional units located in France, Greece, Italy and Serbia for several years were combined. Additionally, rainfall, relative humidity and temperature were recorded. Correlations between lagged weather conditions and Cx. pipiens dynamics were analysed. Also seasonal autoregressive integrated moving-average (SARIMA) models were fitted to describe the temporal dynamics of Cx. pipiens and to check whether the weather variables could improve these models. Correlations were strongest between mean temperatures at short time lags, followed by relative humidity, most likely due to collinearity. Precipitation alone had weak correlations and inconsistent patterns across sites. SARIMA models could also make reasonable predictions, especially when longer time series of Cx. pipiens observations are available. Average temperature was a consistently good predictor across sites. When only short time series (~ < 4 years) of observations are available, average temperature can therefore be used to model Cx. pipiens dynamics. When longer time series (~ > 4 years) are available, SARIMAs can provide better statistical descriptions of Cx. pipiens dynamics, without the need for further weather variables. This suggests that density dependence is also an important determinant of Cx. pipiens dynamics.

  6. The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.

    PubMed

    Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny

    2018-04-16

    We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.

  7. Firm performance and the role of environmental management.

    PubMed

    Lundgren, Tommy; Zhou, Wenchao

    2017-12-01

    This paper analyzes the interactions between three dimensions of firm performance - productivity, energy efficiency, and environmental performance - and especially sheds light on the role of environmental management. In this context, environmental management is investments to reduce environmental impact, which may also affect firm competitiveness, in terms of change in productivity, and spur more (or less) efficient use of energy. We apply data envelopment analysis (DEA) technique to calculate the Malmquist firm performance indexes, and a panel vector auto-regression (VAR) methodology is utilized to investigate the dynamic and causal relationship between the three dimensions of firm performance and environmental investment. Main results show that energy efficiency and environmental performance are integrated, and energy efficiency and productivity positively reinforce each other, signifying the cost saving property of more efficient use of energy. Hence, increasing energy efficiency, as advocated in many of today's energy policies, could capture multiple benefits. The results also show that improved environmental performance and environmental investments constrain next period productivity, a result that would be in contrast with the Porter hypothesis and strategic corporate social responsibility; both concepts conveying the notion that pro-environmental management can boost productivity and competitiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Does Specification Matter? Experiments with Simple Multiregional Probabilistic Population Projections

    PubMed Central

    Raymer, James; Abel, Guy J.; Rogers, Andrei

    2012-01-01

    Population projection models that introduce uncertainty are a growing subset of projection models in general. In this paper, we focus on the importance of decisions made with regard to the model specifications adopted. We compare the forecasts and prediction intervals associated with four simple regional population projection models: an overall growth rate model, a component model with net migration, a component model with in-migration and out-migration rates, and a multiregional model with destination-specific out-migration rates. Vector autoregressive models are used to forecast future rates of growth, birth, death, net migration, in-migration and out-migration, and destination-specific out-migration for the North, Midlands and South regions in England. They are also used to forecast different international migration measures. The base data represent a time series of annual data provided by the Office for National Statistics from 1976 to 2008. The results illustrate how both the forecasted subpopulation totals and the corresponding prediction intervals differ for the multiregional model in comparison to other simpler models, as well as for different assumptions about international migration. The paper ends end with a discussion of our results and possible directions for future research. PMID:23236221

  9. Classification of damage in structural systems using time series analysis and supervised and unsupervised pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr; de Lautour, Oliver R.

    2010-04-01

    Developed for studying long, periodic records of various measured quantities, time series analysis methods are inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive (AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3- storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to different damage severities was achieved using Sammon mapping - an efficient nonlinear data compression technique. Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.

  10. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Chuan; Chau, Kwok-Wing; Cheng, Chun-Tian; Qiu, Lin

    2009-08-01

    SummaryDeveloping a hydrological forecasting model based on past records is crucial to effective hydropower reservoir management and scheduling. Traditionally, time series analysis and modeling is used for building mathematical models to generate hydrologic records in hydrology and water resources. Artificial intelligence (AI), as a branch of computer science, is capable of analyzing long-series and large-scale hydrological data. In recent years, it is one of front issues to apply AI technology to the hydrological forecasting modeling. In this paper, autoregressive moving-average (ARMA) models, artificial neural networks (ANNs) approaches, adaptive neural-based fuzzy inference system (ANFIS) techniques, genetic programming (GP) models and support vector machine (SVM) method are examined using the long-term observations of monthly river flow discharges. The four quantitative standard statistical performance evaluation measures, the coefficient of correlation ( R), Nash-Sutcliffe efficiency coefficient ( E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are employed to evaluate the performances of various models developed. Two case study river sites are also provided to illustrate their respective performances. The results indicate that the best performance can be obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and validation phases.

  11. Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality.

    PubMed

    Yang, Guanxue; Wang, Lin; Wang, Xiaofan

    2017-06-07

    Reconstruction of networks underlying complex systems is one of the most crucial problems in many areas of engineering and science. In this paper, rather than identifying parameters of complex systems governed by pre-defined models or taking some polynomial and rational functions as a prior information for subsequent model selection, we put forward a general framework for nonlinear causal network reconstruction from time-series with limited observations. With obtaining multi-source datasets based on the data-fusion strategy, we propose a novel method to handle nonlinearity and directionality of complex networked systems, namely group lasso nonlinear conditional granger causality. Specially, our method can exploit different sets of radial basis functions to approximate the nonlinear interactions between each pair of nodes and integrate sparsity into grouped variables selection. The performance characteristic of our approach is firstly assessed with two types of simulated datasets from nonlinear vector autoregressive model and nonlinear dynamic models, and then verified based on the benchmark datasets from DREAM3 Challenge4. Effects of data size and noise intensity are also discussed. All of the results demonstrate that the proposed method performs better in terms of higher area under precision-recall curve.

  12. A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia.

    PubMed

    Aboagye-Sarfo, Patrick; Mai, Qun; Sanfilippo, Frank M; Preen, David B; Stewart, Louise M; Fatovich, Daniel M

    2015-10-01

    To develop multivariate vector-ARMA (VARMA) forecast models for predicting emergency department (ED) demand in Western Australia (WA) and compare them to the benchmark univariate autoregressive moving average (ARMA) and Winters' models. Seven-year monthly WA state-wide public hospital ED presentation data from 2006/07 to 2012/13 were modelled. Graphical and VARMA modelling methods were used for descriptive analysis and model fitting. The VARMA models were compared to the benchmark univariate ARMA and Winters' models to determine their accuracy to predict ED demand. The best models were evaluated by using error correction methods for accuracy. Descriptive analysis of all the dependent variables showed an increasing pattern of ED use with seasonal trends over time. The VARMA models provided a more precise and accurate forecast with smaller confidence intervals and better measures of accuracy in predicting ED demand in WA than the ARMA and Winters' method. VARMA models are a reliable forecasting method to predict ED demand for strategic planning and resource allocation. While the ARMA models are a closely competing alternative, they under-estimated future ED demand. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Analyzing brain networks with PCA and conditional Granger causality.

    PubMed

    Zhou, Zhenyu; Chen, Yonghong; Ding, Mingzhou; Wright, Paul; Lu, Zuhong; Liu, Yijun

    2009-07-01

    Identifying directional influences in anatomical and functional circuits presents one of the greatest challenges for understanding neural computations in the brain. Granger causality mapping (GCM) derived from vector autoregressive models of data has been employed for this purpose, revealing complex temporal and spatial dynamics underlying cognitive processes. However, the traditional GCM methods are computationally expensive, as signals from thousands of voxels within selected regions of interest (ROIs) are individually processed, and being based on pairwise Granger causality, they lack the ability to distinguish direct from indirect connectivity among brain regions. In this work a new algorithm called PCA based conditional GCM is proposed to overcome these problems. The algorithm implements the following two procedures: (i) dimensionality reduction in ROIs of interest with principle component analysis (PCA), and (ii) estimation of the direct causal influences in local brain networks, using conditional Granger causality. Our results show that the proposed method achieves greater accuracy in detecting network connectivity than the commonly used pairwise Granger causality method. Furthermore, the use of PCA components in conjunction with conditional GCM greatly reduces the computational cost relative to the use of individual voxel time series. Copyright 2009 Wiley-Liss, Inc

  14. Turning points in nonlinear business cycle theories, financial crisis and the 2007-2008 downturn.

    PubMed

    Dore, Mohammed H I; Singh, Ragiv G

    2009-10-01

    This paper reviews three nonlinear dynamical business cycle theories of which only one (The Goodwin model) reflects the stylized facts of observed business cycles and has a plausible turning point mechanism. The paper then examines the US (and now global) financial crisis of 2008 and the accompanying downturn in the US. The paper argues that a skewed income distribution could not sustain effective demand and that over the 2001-2006 expansion demand was maintained through massive amounts of credit, with more than 50 percent of sales in the US being maintained through credit. A vector autoregression model confirms the crucial role played by credit. However legislative changes that dismantled the restrictions placed on the financial sector after the crash of 1929 and the consequent structural changes in the financial sector after 1980 enabled the growth of new debt instruments and credit. But overexpansion of credit when profits and house prices were declining in 2005/06 led to a nonlinear shift due to a new realization of the poor quality of some of this debt, namely mortgage backed securities. Bankruptcies, followed by retrenchment at the banks, then led to the bursting of the credit bubble, with the possibility of a severe recession.

  15. Evidence for the role of the Atlantic multidecadal oscillation and the ocean heat uptake in hiatus prediction

    NASA Astrophysics Data System (ADS)

    Pasini, Antonello; Triacca, Umberto; Attanasio, Alessandro

    2017-08-01

    The recent hiatus in global temperature at the surface has been analysed by several studies, mainly using global climate models. The common accepted picture is that since the late 1990s, the increase in anthropogenic radiative forcings has been counterbalanced by other factors, e.g., a decrease in natural forcings, augmented ocean heat storage and negative phases of ocean-atmosphere-coupled oscillation patterns. Here, simple vector autoregressive models are used for forecasting the temperature hiatus in the period 2001-2014. This gives new insight into the problem of understanding the ocean contribution (in terms of heat uptake and atmosphere-ocean-coupled oscillations) to the appearance of this recent hiatus. In particular, considering data about the ocean heat content until a depth of 700 m and the Atlantic multidecadal oscillation is necessary for correctly forecasting the hiatus, so catching both trend and interannual variability. Our models also show that the ocean heat uptake is substantially driven by the natural component of the total radiative forcing at a decadal time scale, confining the importance of the anthropogenic influences to a longer range warming of the ocean.

  16. Integrated Airframe Design Technology (Les Technologies pour la Conception Integree des Cellules)

    DTIC Science & Technology

    1993-12-01

    encourageant ainsi une plus forte interaction entre les organisations, ce qui laisse prevoir une ing~nierie commune concurrente pour Ia conception des...cellules. La co-localisation de personnels de diff~rentes disciplines sera n~cessaire. mais ceci pourrait se faire sous Ia forme d’une "co...integrated analysis tool Their presentation highlighted the development (e.g., ELFINI) for managing aeroelasticity, of an Aeroelastic Design

  17. Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model

    PubMed Central

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model–panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity. PMID:24353753

  18. Factors affecting regional per-capita carbon emissions in China based on an LMDI factor decomposition model.

    PubMed

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model-panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity.

  19. Role of the RS1 sequence of the cholera vibrio in amplification of the segment of plasmid DNA carrying the gene of resistance to tetracycline and the genes of cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fil'kova, S.L.; Il'ina, T.S.; Gintsburg, A.L.

    1988-11-01

    The hybrid plasmid pCO107, representing cointegrate 14(2)-5(2) of two plasmids, an F-derivative (pOX38) and a PBR322-derivative (pCT105) with an RS1 sequence of the cholera vibrio cloned in its makeup, contains two copes of RS1 at the sites of union of the two plasmids. Using a tetracycline resistance marker (Tc/sup R/) of the plasmid pCT105, clones were isolated which have an elevated level of resistance to tetracycline (an increase of from 4- to 30-fold). Using restriction analysis and the Southern blot method of hybridization it was shown that the increase in the level of resistance of tetracycline is associated with themore » amplification of pCT105 portion of the cointegrate, and that the process of amplification is governed by the presence of direct repeats of the RS1 sequence at its ends. The increase in the number of copies of the pCT105 segment, which contains in its composition the genes of cholera toxin (vct), is accompanied by an increase in toxin production.« less

  20. Kepler AutoRegressive Planet Search

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric

    NASA's Kepler mission is the source of more exoplanets than any other instrument, but the discovery depends on complex statistical analysis procedures embedded in the Kepler pipeline. A particular challenge is mitigating irregular stellar variability without loss of sensitivity to faint periodic planetary transits. This proposal presents a two-stage alternative analysis procedure. First, parametric autoregressive ARFIMA models, commonly used in econometrics, remove most of the stellar variations. Second, a novel matched filter is used to create a periodogram from which transit-like periodicities are identified. This analysis procedure, the Kepler AutoRegressive Planet Search (KARPS), is confirming most of the Kepler Objects of Interest and is expected to identify additional planetary candidates. The proposed research will complete application of the KARPS methodology to the prime Kepler mission light curves of 200,000: stars, and compare the results with Kepler Objects of Interest obtained with the Kepler pipeline. We will then conduct a variety of astronomical studies based on the KARPS results. Important subsamples will be extracted including Habitable Zone planets, hot super-Earths, grazing-transit hot Jupiters, and multi-planet systems. Groundbased spectroscopy of poorly studied candidates will be performed to better characterize the host stars. Studies of stellar variability will then be pursued based on KARPS analysis. The autocorrelation function and nonstationarity measures will be used to identify spotted stars at different stages of autoregressive modeling. Periodic variables with folded light curves inconsistent with planetary transits will be identified; they may be eclipsing or mutually-illuminating binary star systems. Classification of stellar variables with KARPS-derived statistical properties will be attempted. KARPS procedures will then be applied to archived K2 data to identify planetary transits and characterize stellar variability.

  1. Nonrandom variability in respiratory cycle parameters of humans during stage 2 sleep.

    PubMed

    Modarreszadeh, M; Bruce, E N; Gothe, B

    1990-08-01

    We analyzed breath-to-breath inspiratory time (TI), expiratory time (TE), inspiratory volume (VI), and minute ventilation (Vm) from 11 normal subjects during stage 2 sleep. The analysis consisted of 1) fitting first- and second-order autoregressive models (AR1 and AR2) and 2) obtaining the power spectra of the data by fast-Fourier transform. For the AR2 model, the only coefficients that were statistically different from zero were the average alpha 1 (a1) for TI, VI, and Vm (a1 = 0.19, 0.29, and 0.15, respectively). However, the power spectra of all parameters often exhibited peaks at low frequency (less than 0.2 cycles/breath) and/or at high frequency (greater than 0.2 cycles/breath), indicative of periodic oscillations. After accounting for the corrupting effects of added oscillations on the a1 estimates, we conclude that 1) breath-to-breath fluctuations of VI, and to a lesser extent TI and Vm, exhibit a first-order autoregressive structure such that fluctuations of each breath are positively correlated with those of immediately preceding breaths and 2) the correlated components of variability in TE are mostly due to discrete high- and/or low-frequency oscillations with no underlying autoregressive structure. We propose that the autoregressive structure of VI, TI, and Vm during spontaneous breathing in stage 2 sleep may reflect either a central neural mechanism or the effects of noise in respiratory chemical feedback loops; the presence of low-frequency oscillations, seen more often in Vm, suggests possible instability in the chemical feedback loops. Mechanisms of high-frequency periodicities, seen more often in TE, are unknown.

  2. Autoregressive Processes in Homogenization of GNSS Tropospheric Data

    NASA Astrophysics Data System (ADS)

    Klos, A.; Bogusz, J.; Teferle, F. N.; Bock, O.; Pottiaux, E.; Van Malderen, R.

    2016-12-01

    Offsets due to changes in hardware equipment or any other artificial event are all a subject of a task of homogenization of tropospheric data estimated within a processing of Global Navigation Satellite System (GNSS) observables. This task is aimed at identifying exact epochs of offsets and estimate their magnitudes since they may artificially under- or over-estimate trend and its uncertainty delivered from tropospheric data and used in climate studies. In this research, we analysed a common data set of differences of Integrated Water Vapour (IWV) from GPS and ERA-Interim (1995-2010) provided for a homogenization group working within ES1206 COST Action GNSS4SWEC. We analysed daily IWV records of GPS and ERA-Interim in terms of trend, seasonal terms and noise model with Maximum Likelihood Estimation in Hector software. We found that this data has a character of autoregressive process (AR). Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different noise types: white as well as combination of white and autoregressive and also added few strictly defined offsets. This synthetic data set of exactly the same character as IWV from GPS and ERA-Interim was then subjected to a task of manual and automatic/statistical homogenization. We made blind tests and detected possible epochs of offsets manually. We found that simulated offsets were easily detected in series with white noise, no influence of seasonal signal was noticed. The autoregressive series were much more problematic when offsets had to be determined. We found few epochs, for which no offset was simulated. This was mainly due to strong autocorrelation of data, which brings an artificial trend within. Due to regime-like behaviour of AR it is difficult for statistical methods to properly detect epochs of offsets, which was previously reported by climatologists.

  3. The past, present, and future of the U.S. electric power sector: Examining regulatory changes using multivariate time series approaches

    NASA Astrophysics Data System (ADS)

    Binder, Kyle Edwin

    The U.S. energy sector has undergone continuous change in the regulatory, technological, and market environments. These developments show no signs of slowing. Accordingly, it is imperative that energy market regulators and participants develop a strong comprehension of market dynamics and the potential implications of their actions. This dissertation contributes to a better understanding of the past, present, and future of U.S. energy market dynamics and interactions with policy. Advancements in multivariate time series analysis are employed in three related studies of the electric power sector. Overall, results suggest that regulatory changes have had and will continue to have important implications for the electric power sector. The sector, however, has exhibited adaptability to past regulatory changes and is projected to remain resilient in the future. Tests for constancy of the long run parameters in a vector error correction model are applied to determine whether relationships among coal inventories in the electric power sector, input prices, output prices, and opportunity costs have remained constant over the past 38 years. Two periods of instability are found, the first following railroad deregulation in the U.S. and the second corresponding to a number of major regulatory changes in the electric power and natural gas sectors. Relationships among Renewable Energy Credit prices, electricity prices, and natural gas prices are estimated using a vector error correction model. Results suggest that Renewable Energy Credit prices do not completely behave as previously theorized in the literature. Potential reasons for the divergence between theory and empirical evidence are the relative immaturity of current markets and continuous institutional intervention. Potential impacts of future CO2 emissions reductions under the Clean Power Plan on economic and energy sector activity are estimated. Conditional forecasts based on an outlined path for CO2 emissions are developed from a factor-augmented vector autoregressive model for a large dataset. Unconditional and conditional forecasts are compared for U.S. industrial production, real personal income, and estimated factors. Results suggest that economic growth will be slower under the Clean Power Plan than it would otherwise; however, CO2 emissions reductions and economic growth can be achieved simultaneously.

  4. Maximum likelihood estimation for periodic autoregressive moving average models

    USGS Publications Warehouse

    Vecchia, A.V.

    1985-01-01

    A useful class of models for seasonal time series that cannot be filtered or standardized to achieve second-order stationarity is that of periodic autoregressive moving average (PARMA) models, which are extensions of ARMA models that allow periodic (seasonal) parameters. An approximation to the exact likelihood for Gaussian PARMA processes is developed, and a straightforward algorithm for its maximization is presented. The algorithm is tested on several periodic ARMA(1, 1) models through simulation studies and is compared to moment estimation via the seasonal Yule-Walker equations. Applicability of the technique is demonstrated through an analysis of a seasonal stream-flow series from the Rio Caroni River in Venezuela.

  5. TaiWan Ionospheric Model (TWIM) prediction based on time series autoregressive analysis

    NASA Astrophysics Data System (ADS)

    Tsai, L. C.; Macalalad, Ernest P.; Liu, C. H.

    2014-10-01

    As described in a previous paper, a three-dimensional ionospheric electron density (Ne) model has been constructed from vertical Ne profiles retrieved from the FormoSat3/Constellation Observing System for Meteorology, Ionosphere, and Climate GPS radio occultation measurements and worldwide ionosonde foF2 and foE data and named the TaiWan Ionospheric Model (TWIM). The TWIM exhibits vertically fitted α-Chapman-type layers with distinct F2, F1, E, and D layers, and surface spherical harmonic approaches for the fitted layer parameters including peak density, peak density height, and scale height. To improve the TWIM into a real-time model, we have developed a time series autoregressive model to forecast short-term TWIM coefficients. The time series of TWIM coefficients are considered as realizations of stationary stochastic processes within a processing window of 30 days. These autocorrelation coefficients are used to derive the autoregressive parameters and then forecast the TWIM coefficients, based on the least squares method and Lagrange multiplier technique. The forecast root-mean-square relative TWIM coefficient errors are generally <30% for 1 day predictions. The forecast TWIM values of foE and foF2 values are also compared and evaluated using worldwide ionosonde data.

  6. Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes

    NASA Astrophysics Data System (ADS)

    Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme

    2014-01-01

    This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.

  7. Principal dynamic mode analysis of neural mass model for the identification of epileptic states

    NASA Astrophysics Data System (ADS)

    Cao, Yuzhen; Jin, Liu; Su, Fei; Wang, Jiang; Deng, Bin

    2016-11-01

    The detection of epileptic seizures in Electroencephalography (EEG) signals is significant for the diagnosis and treatment of epilepsy. In this paper, in order to obtain characteristics of various epileptiform EEGs that may differentiate different states of epilepsy, the concept of Principal Dynamic Modes (PDMs) was incorporated to an autoregressive model framework. First, the neural mass model was used to simulate the required intracerebral EEG signals of various epileptiform activities. Then, the PDMs estimated from the nonlinear autoregressive Volterra models, as well as the corresponding Associated Nonlinear Functions (ANFs), were used for the modeling of epileptic EEGs. The efficient PDM modeling approach provided physiological interpretation of the system. Results revealed that the ANFs of the 1st and 2nd PDMs for the auto-regressive input exhibited evident differences among different states of epilepsy, where the ANFs of the sustained spikes' activity encountered at seizure onset or during a seizure were the most differentiable from that of the normal state. Therefore, the ANFs may be characteristics for the classification of normal and seizure states in the clinical detection of seizures and thus provide assistance for the diagnosis of epilepsy.

  8. Exploring the Mechanisms of Ecological Land Change Based on the Spatial Autoregressive Model: A Case Study of the Poyang Lake Eco-Economic Zone, China

    PubMed Central

    Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai

    2013-01-01

    Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant positive spatial correlation (p < 0.05). The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model. PMID:24384778

  9. Modeling Polio Data Using the First Order Non-Negative Integer-Valued Autoregressive, INAR(1), Model

    NASA Astrophysics Data System (ADS)

    Vazifedan, Turaj; Shitan, Mahendran

    Time series data may consists of counts, such as the number of road accidents, the number of patients in a certain hospital, the number of customers waiting for service at a certain time and etc. When the value of the observations are large it is usual to use Gaussian Autoregressive Moving Average (ARMA) process to model the time series. However if the observed counts are small, it is not appropriate to use ARMA process to model the observed phenomenon. In such cases we need to model the time series data by using Non-Negative Integer valued Autoregressive (INAR) process. The modeling of counts data is based on the binomial thinning operator. In this paper we illustrate the modeling of counts data using the monthly number of Poliomyelitis data in United States between January 1970 until December 1983. We applied the AR(1), Poisson regression model and INAR(1) model and the suitability of these models were assessed by using the Index of Agreement(I.A.). We found that INAR(1) model is more appropriate in the sense it had a better I.A. and it is natural since the data are counts.

  10. Waterproof stretchable optoelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Kim, Rak-Hwan; Kim, Dae-Hyeong

    Described herein are flexible and stretchable LED arrays and methods utilizing flexible and stretchable LED arrays. Assembly of flexible LED arrays alongside flexible plasmonic crystals is useful for construction of fluid monitors, permitting sensitive detection of fluid refractive index and composition. Co-integration of flexible LED arrays with flexible photodetector arrays is useful for construction of flexible proximity sensors. Application of stretchable LED arrays onto flexible threads as light emitting sutures provides novel means for performing radiation therapy on wounds.

  11. Carbon dioxide emission and economic growth of China-the role of international trade.

    PubMed

    Boamah, Kofi Baah; Du, Jianguo; Bediako, Isaac Asare; Boamah, Angela Jacinta; Abdul-Rasheed, Alhassan Alolo; Owusu, Samuel Mensah

    2017-05-01

    This study investigates the role of international trade in mitigating carbon dioxide emission as a nation economically advances. This study disaggregated the international trade into total exports and total imports. A multivariate model framework was estimated for the time series data for the period of 1970-2014. The quantile regression detected all the essential relationship, which hitherto, the traditional ordinary least squares could not capture. A cointegration relationship was confirmed using the Johansen cointegration model. The findings of the Granger causality revealed the presence of a uni-directional Granger causality running from energy consumption to economic growth; from import to economic growth; from imports to exports; and from urbanisation to economic growth, exports and imports. Our study established the presence of long-run relationships amongst carbon dioxide emission, economic growth, energy consumption, imports, exports and urbanisation. A bootstrap method was further utilised to reassess the evidence of the Granger causality, of which the results affirmed the Granger causality in the long run. This study confirmed a long-run N-shaped relationship between economic growth and carbon emission, under the estimated cubic environmental Kuznet curve framework, from the perspective of China. The recommendation therefore is that China as export leader should transform its trade growth mode by reducing the level of carbon dioxide emission and strengthening its international cooperation as it embraces more environmental protectionisms.

  12. The impact of foreign direct investment on CO2 emissions in Turkey: new evidence from cointegration and bootstrap causality analysis.

    PubMed

    Koçak, Emrah; Şarkgüneşi, Aykut

    2018-01-01

    Pollution haven hypothesis (PHH), which is defined as foreign direct investment inducing a raising impact on the pollution level in the hosting country, is lately a subject of discussion in the field of economics. This study, within the scope of related discussion, aims to look into the potential impact of foreign direct investments on CO 2 emission in Turkey in 1974-2013 period using environmental Kuznets curve (EKC) model. For this purpose, Maki (Econ Model 29(5):2011-2015, 2012) structural break cointegration test, Stock and Watson (Econometrica 61:783-820, 1993) dynamic ordinary least square estimator (DOLS), and Hacker and Hatemi-J (J Econ Stud 39(2):144-160, 2012) bootstrap test for causality method are used. Research results indicate the existence of a long-term balance relationship between FDI, economic growth, energy usage, and CO 2 emission. As per this relationship, in Turkey, (1) the potential impact of FDI on CO 2 emission is positive. This result shows that PHH is valid in Turkey. (2) Moreover, this is not a one-way relationship; the changes in CO 2 emission also affect FDI entries. (3) The results also provide evidence for the existence of the EKC hypothesis in Turkey. Within the frame of related findings, the study concludes several polities and presents various suggestions.

  13. An integrated specification for the nexus of water pollution and economic growth in China: Panel cointegration, long-run causality and environmental Kuznets curve.

    PubMed

    Zhang, Chen; Wang, Yuan; Song, Xiaowei; Kubota, Jumpei; He, Yanmin; Tojo, Junji; Zhu, Xiaodong

    2017-12-31

    This paper concentrates on a Chinese context and makes efforts to develop an integrated process to explicitly elucidate the relationship between economic growth and water pollution discharge-chemical oxygen demand (COD) discharge and ammonia nitrogen (NH 3 -N), using two unbalanced panel data sets covering the period separately from 1990 to 2014, and 2001 to 2014. In our present study, the panel unit root tests, cointegration tests, and Granger causality tests allowing for cross-sectional dependence, nonstationary, and heterogeneity are conducted to examine the causal effects of economic growth on COD/NH 3 -N discharge. Further, we simultaneously apply semi-parametric fixed effects estimation and parametric fixed effects estimation to investigate environmental Kuznets curve relationship for COD/NH 3 -N discharge. Our empirical results show a long-term bidirectional causality between economic growth and COD/NH 3 -N discharge in China. Within the Stochastic Impacts by Regression on Population, Affluence and Technology framework, we find evidence in support of an inverted U-shaped curved link between economic growth and COD/NH 3 -N discharge. To the best of our knowledge, there have not been any efforts made in investigating the nexus of economic growth and water pollution in such an integrated manner. Therefore, this study takes a fresh look on this topic. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Asymptotically stable phase synchronization revealed by autoregressive circle maps

    NASA Astrophysics Data System (ADS)

    Drepper, F. R.

    2000-11-01

    A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.

  15. Large signal-to-noise ratio quantification in MLE for ARARMAX models

    NASA Astrophysics Data System (ADS)

    Zou, Yiqun; Tang, Xiafei

    2014-06-01

    It has been shown that closed-loop linear system identification by indirect method can be generally transferred to open-loop ARARMAX (AutoRegressive AutoRegressive Moving Average with eXogenous input) estimation. For such models, the gradient-related optimisation with large enough signal-to-noise ratio (SNR) can avoid the potential local convergence in maximum likelihood estimation. To ease the application of this condition, the threshold SNR needs to be quantified. In this paper, we build the amplitude coefficient which is an equivalence to the SNR and prove the finiteness of the threshold amplitude coefficient within the stability region. The quantification of threshold is achieved by the minimisation of an elaborately designed multi-variable cost function which unifies all the restrictions on the amplitude coefficient. The corresponding algorithm based on two sets of physically realisable system input-output data details the minimisation and also points out how to use the gradient-related method to estimate ARARMAX parameters when local minimum is present as the SNR is small. Then, the algorithm is tested on a theoretical AutoRegressive Moving Average with eXogenous input model for the derivation of the threshold and a gas turbine engine real system for model identification, respectively. Finally, the graphical validation of threshold on a two-dimensional plot is discussed.

  16. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example].

    PubMed

    Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.

  17. Self-esteem Is Mostly Stable Across Young Adulthood: Evidence from Latent STARTS Models.

    PubMed

    Wagner, Jenny; Lüdtke, Oliver; Trautwein, Ulrich

    2016-08-01

    How stable is self-esteem? This long-standing debate has led to different conclusions across different areas of psychology. Longitudinal data and up-to-date statistical models have recently indicated that self-esteem has stable and autoregressive trait-like components and state-like components. We applied latent STARTS models with the goal of replicating previous findings in a longitudinal sample of young adults (N = 4,532; Mage  = 19.60, SD = 0.85; 55% female). In addition, we applied multigroup models to extend previous findings on different patterns of stability for men versus women and for people with high versus low levels of depressive symptoms. We found evidence for the general pattern of a major proportion of stable and autoregressive trait variance and a smaller yet substantial amount of state variance in self-esteem across 10 years. Furthermore, multigroup models suggested substantial differences in the variance components: Females showed more state variability than males. Individuals with higher levels of depressive symptoms showed more state and less autoregressive trait variance in self-esteem. Results are discussed with respect to the ongoing trait-state debate and possible implications of the group differences that we found in the stability of self-esteem. © 2015 Wiley Periodicals, Inc.

  18. A MISO-ARX-Based Method for Single-Trial Evoked Potential Extraction.

    PubMed

    Yu, Nannan; Wu, Lingling; Zou, Dexuan; Chen, Ying; Lu, Hanbing

    2017-01-01

    In this paper, we propose a novel method for solving the single-trial evoked potential (EP) estimation problem. In this method, the single-trial EP is considered as a complex containing many components, which may originate from different functional brain sites; these components can be distinguished according to their respective latencies and amplitudes and are extracted simultaneously by multiple-input single-output autoregressive modeling with exogenous input (MISO-ARX). The extraction process is performed in three stages: first, we use a reference EP as a template and decompose it into a set of components, which serve as subtemplates for the remaining steps. Then, a dictionary is constructed with these subtemplates, and EPs are preliminarily extracted by sparse coding in order to roughly estimate the latency of each component. Finally, the single-trial measurement is parametrically modeled by MISO-ARX while characterizing spontaneous electroencephalographic activity as an autoregression model driven by white noise and with each component of the EP modeled by autoregressive-moving-average filtering of the subtemplates. Once optimized, all components of the EP can be extracted. Compared with ARX, our method has greater tracking capabilities of specific components of the EP complex as each component is modeled individually in MISO-ARX. We provide exhaustive experimental results to show the effectiveness and feasibility of our method.

  19. Autoregressive modelling of species richness in the Brazilian Cerrado.

    PubMed

    Vieira, C M; Blamires, D; Diniz-Filho, J A F; Bini, L M; Rangel, T F L V B

    2008-05-01

    Spatial autocorrelation is the lack of independence between pairs of observations at given distances within a geographical space, a phenomenon commonly found in ecological data. Taking into account spatial autocorrelation when evaluating problems in geographical ecology, including gradients in species richness, is important to describe both the spatial structure in data and to correct the bias in Type I errors of standard statistical analyses. However, to effectively solve these problems it is necessary to establish the best way to incorporate the spatial structure to be used in the models. In this paper, we applied autoregressive models based on different types of connections and distances between 181 cells covering the Cerrado region of Central Brazil to study the spatial variation in mammal and bird species richness across the biome. Spatial structure was stronger for birds than for mammals, with R(2) values ranging from 0.77 to 0.94 for mammals and from 0.77 to 0.97 for birds, for models based on different definitions of spatial structures. According to the Akaike Information Criterion (AIC), the best autoregressive model was obtained by using the rook connection. In general, these results furnish guidelines for future modelling of species richness patterns in relation to environmental predictors and other variables expressing human occupation in the biome.

  20. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    PubMed

    Biswas, Paritosh K; Islam, Md Zohorul; Debnath, Nitish C; Yamage, Mat

    2014-01-01

    The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA) order at lag 1 month is considered.

  1. Quasi-Likelihood Techniques in a Logistic Regression Equation for Identifying Simulium damnosum s.l. Larval Habitats Intra-cluster Covariates in Togo.

    PubMed

    Jacob, Benjamin G; Novak, Robert J; Toe, Laurent; Sanfo, Moussa S; Afriyie, Abena N; Ibrahim, Mohammed A; Griffith, Daniel A; Unnasch, Thomas R

    2012-01-01

    The standard methods for regression analyses of clustered riverine larval habitat data of Simulium damnosum s.l. a major black-fly vector of Onchoceriasis, postulate models relating observational ecological-sampled parameter estimators to prolific habitats without accounting for residual intra-cluster error correlation effects. Generally, this correlation comes from two sources: (1) the design of the random effects and their assumed covariance from the multiple levels within the regression model; and, (2) the correlation structure of the residuals. Unfortunately, inconspicuous errors in residual intra-cluster correlation estimates can overstate precision in forecasted S.damnosum s.l. riverine larval habitat explanatory attributes regardless how they are treated (e.g., independent, autoregressive, Toeplitz, etc). In this research, the geographical locations for multiple riverine-based S. damnosum s.l. larval ecosystem habitats sampled from 2 pre-established epidemiological sites in Togo were identified and recorded from July 2009 to June 2010. Initially the data was aggregated into proc genmod. An agglomerative hierarchical residual cluster-based analysis was then performed. The sampled clustered study site data was then analyzed for statistical correlations using Monthly Biting Rates (MBR). Euclidean distance measurements and terrain-related geomorphological statistics were then generated in ArcGIS. A digital overlay was then performed also in ArcGIS using the georeferenced ground coordinates of high and low density clusters stratified by Annual Biting Rates (ABR). This data was overlain onto multitemporal sub-meter pixel resolution satellite data (i.e., QuickBird 0.61m wavbands ). Orthogonal spatial filter eigenvectors were then generated in SAS/GIS. Univariate and non-linear regression-based models (i.e., Logistic, Poisson and Negative Binomial) were also employed to determine probability distributions and to identify statistically significant parameter estimators from the sampled data. Thereafter, Durbin-Watson test statistics were used to test the null hypothesis that the regression residuals were not autocorrelated against the alternative that the residuals followed an autoregressive process in AUTOREG. Bayesian uncertainty matrices were also constructed employing normal priors for each of the sampled estimators in PROC MCMC. The residuals revealed both spatially structured and unstructured error effects in the high and low ABR-stratified clusters. The analyses also revealed that the estimators, levels of turbidity and presence of rocks were statistically significant for the high-ABR-stratified clusters, while the estimators distance between habitats and floating vegetation were important for the low-ABR-stratified cluster. Varying and constant coefficient regression models, ABR- stratified GIS-generated clusters, sub-meter resolution satellite imagery, a robust residual intra-cluster diagnostic test, MBR-based histograms, eigendecomposition spatial filter algorithms and Bayesian matrices can enable accurate autoregressive estimation of latent uncertainity affects and other residual error probabilities (i.e., heteroskedasticity) for testing correlations between georeferenced S. damnosum s.l. riverine larval habitat estimators. The asymptotic distribution of the resulting residual adjusted intra-cluster predictor error autocovariate coefficients can thereafter be established while estimates of the asymptotic variance can lead to the construction of approximate confidence intervals for accurately targeting productive S. damnosum s.l habitats based on spatiotemporal field-sampled count data.

  2. Simulation And Forecasting of Daily Pm10 Concentrations Using Autoregressive Models In Kagithane Creek Valley, Istanbul

    NASA Astrophysics Data System (ADS)

    Ağaç, Kübra; Koçak, Kasım; Deniz, Ali

    2015-04-01

    A time series approach using autoregressive model (AR), moving average model (MA) and seasonal autoregressive integrated moving average model (SARIMA) were used in this study to simulate and forecast daily PM10 concentrations in Kagithane Creek Valley, Istanbul. Hourly PM10 concentrations have been measured in Kagithane Creek Valley between 2010 and 2014 periods. Bosphorus divides the city in two parts as European and Asian parts. The historical part of the city takes place in Golden Horn. Our study area Kagithane Creek Valley is connected with this historical part. The study area is highly polluted because of its topographical structure and industrial activities. Also population density is extremely high in this site. The dispersion conditions are highly poor in this creek valley so it is necessary to calculate PM10 levels for air quality and human health. For given period there were some missing PM10 concentration values so to make an accurate calculations and to obtain exact results gap filling method was applied by Singular Spectrum Analysis (SSA). SSA is a new and efficient method for gap filling and it is an state-of-art modeling. SSA-MTM Toolkit was used for our study. SSA is considered as a noise reduction algorithm because it decomposes an original time series to trend (if exists), oscillatory and noise components by way of a singular value decomposition. The basic SSA algorithm has stages of decomposition and reconstruction. For given period daily and monthly PM10 concentrations were calculated and episodic periods are determined. Long term and short term PM10 concentrations were analyzed according to European Union (EU) standards. For simulation and forecasting of high level PM10 concentrations, meteorological data (wind speed, pressure and temperature) were used to see the relationship between daily PM10 concentrations. Fast Fourier Transformation (FFT) was also applied to the data to see the periodicity and according to these periods models were built in MATLAB an Eviews programmes. Because of the seasonality of PM10 data SARIMA model was also used. The order of autoregression model was determined according to AIC and BIC criteria. The model performances were evaluated from Fractional Bias, Normalized Mean Square Error (NMSE) and Mean Absolute Percentage Error (MAPE). As expected, the results were encouraging. Keywords: PM10, Autoregression, Forecast Acknowledgement The authors would like to acknowledge the financial support by the Scientific and Technological Research Council of Turkey (TUBITAK, project no:112Y319).

  3. Secular Stellar Dynamics near a Massive Black Hole

    NASA Astrophysics Data System (ADS)

    Madigan, Ann-Marie; Hopman, Clovis; Levin, Yuri

    2011-09-01

    The angular momentum evolution of stars close to massive black holes (MBHs) is driven by secular torques. In contrast to two-body relaxation, where interactions between stars are incoherent, the resulting resonant relaxation (RR) process is characterized by coherence times of hundreds of orbital periods. In this paper, we show that all the statistical properties of RR can be reproduced in an autoregressive moving average (ARMA) model. We use the ARMA model, calibrated with extensive N-body simulations, to analyze the long-term evolution of stellar systems around MBHs with Monte Carlo simulations. We show that for a single-mass system in steady state, a depression is carved out near an MBH as a result of tidal disruptions. Using Galactic center parameters, the extent of the depression is about 0.1 pc, of similar order to but less than the size of the observed "hole" in the distribution of bright late-type stars. We also find that the velocity vectors of stars around an MBH are locally not isotropic. In a second application, we evolve the highly eccentric orbits that result from the tidal disruption of binary stars, which are considered to be plausible precursors of the "S-stars" in the Galactic center. We find that RR predicts more highly eccentric (e > 0.9) S-star orbits than have been observed to date.

  4. Revealing Real-Time Emotional Responses: a Personalized Assessment based on Heartbeat Dynamics

    NASA Astrophysics Data System (ADS)

    Valenza, Gaetano; Citi, Luca; Lanatá, Antonio; Scilingo, Enzo Pasquale; Barbieri, Riccardo

    2014-05-01

    Emotion recognition through computational modeling and analysis of physiological signals has been widely investigated in the last decade. Most of the proposed emotion recognition systems require relatively long-time series of multivariate records and do not provide accurate real-time characterizations using short-time series. To overcome these limitations, we propose a novel personalized probabilistic framework able to characterize the emotional state of a subject through the analysis of heartbeat dynamics exclusively. The study includes thirty subjects presented with a set of standardized images gathered from the international affective picture system, alternating levels of arousal and valence. Due to the intrinsic nonlinearity and nonstationarity of the RR interval series, a specific point-process model was devised for instantaneous identification considering autoregressive nonlinearities up to the third-order according to the Wiener-Volterra representation, thus tracking very fast stimulus-response changes. Features from the instantaneous spectrum and bispectrum, as well as the dominant Lyapunov exponent, were extracted and considered as input features to a support vector machine for classification. Results, estimating emotions each 10 seconds, achieve an overall accuracy in recognizing four emotional states based on the circumplex model of affect of 79.29%, with 79.15% on the valence axis, and 83.55% on the arousal axis.

  5. Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics.

    PubMed

    Valenza, Gaetano; Citi, Luca; Lanatá, Antonio; Scilingo, Enzo Pasquale; Barbieri, Riccardo

    2014-05-21

    Emotion recognition through computational modeling and analysis of physiological signals has been widely investigated in the last decade. Most of the proposed emotion recognition systems require relatively long-time series of multivariate records and do not provide accurate real-time characterizations using short-time series. To overcome these limitations, we propose a novel personalized probabilistic framework able to characterize the emotional state of a subject through the analysis of heartbeat dynamics exclusively. The study includes thirty subjects presented with a set of standardized images gathered from the international affective picture system, alternating levels of arousal and valence. Due to the intrinsic nonlinearity and nonstationarity of the RR interval series, a specific point-process model was devised for instantaneous identification considering autoregressive nonlinearities up to the third-order according to the Wiener-Volterra representation, thus tracking very fast stimulus-response changes. Features from the instantaneous spectrum and bispectrum, as well as the dominant Lyapunov exponent, were extracted and considered as input features to a support vector machine for classification. Results, estimating emotions each 10 seconds, achieve an overall accuracy in recognizing four emotional states based on the circumplex model of affect of 79.29%, with 79.15% on the valence axis, and 83.55% on the arousal axis.

  6. Analysis of Factors Influencing PM2.5 in Beijing: A Microcosmic and Dynamic Perspective for Sustainable Development

    NASA Astrophysics Data System (ADS)

    Wang, Yani; Wang, Jun; Tao, Guiping

    2017-12-01

    Haze pollution has become a hot issue concerned with the process of modernization and one serious problem requiring urgent solution, especially in Beijing. PM2.5 is the main reason causing haze and its harm. Although there has been research centering on factors affecting PM2.5, little attention has been devoted to the microcosmic and dynamic effects on it. Vector auto-regression (VAR) mode is applied in this study to explore the interaction between PM2.5, PM10, SO2, CO and NO2. Results of Granger causality tests tell that there exists causal relationship between PM10, SO2, CO, NO2 and PM2.5. Impulse response functions (IRFs) show that the response of PM2.5 to a shock in CO is positive and large in the short period, while the reaction of PM2.5 to a shock in SO2 increases over time. Meanwhile, variance decomposition indicate that PM2.5 is more closely related to CO in the short term while SO2’ influence accounts for a higher proportion in the long run. The findings provide a novel perspective to analyze the factors influencing PM2.5 dynamically and contribute to a better understanding of haze and its relationship with sustainable development.

  7. Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI

    NASA Astrophysics Data System (ADS)

    Seregni, M.; Paganelli, C.; Lee, D.; Greer, P. B.; Baroni, G.; Keall, P. J.; Riboldi, M.

    2016-01-01

    In-room cine-MRI guidance can provide non-invasive target localization during radiotherapy treatment. However, in order to cope with finite imaging frequency and system latencies between target localization and dose delivery, tumour motion prediction is required. This work proposes a framework for motion prediction dedicated to cine-MRI guidance, aiming at quantifying the geometric uncertainties introduced by this process for both tumour tracking and beam gating. The tumour position, identified through scale invariant features detected in cine-MRI slices, is estimated at high-frequency (25 Hz) using three independent predictors, one for each anatomical coordinate. Linear extrapolation, auto-regressive and support vector machine algorithms are compared against systems that use no prediction or surrogate-based motion estimation. Geometric uncertainties are reported as a function of image acquisition period and system latency. Average results show that the tracking error RMS can be decreased down to a [0.2; 1.2] mm range, for acquisition periods between 250 and 750 ms and system latencies between 50 and 300 ms. Except for the linear extrapolator, tracking and gating prediction errors were, on average, lower than those measured for surrogate-based motion estimation. This finding suggests that cine-MRI guidance, combined with appropriate prediction algorithms, could relevantly decrease geometric uncertainties in motion compensated treatments.

  8. Age Differences in Day-To-Day Speed-Accuracy Tradeoffs: Results from the COGITO Study.

    PubMed

    Ghisletta, Paolo; Joly-Burra, Emilie; Aichele, Stephen; Lindenberger, Ulman; Schmiedek, Florian

    2018-04-23

    We examined adult age differences in day-to-day adjustments in speed-accuracy tradeoffs (SAT) on a figural comparison task. Data came from the COGITO study, with over 100 younger and 100 older adults, assessed for over 100 days. Participants were given explicit feedback about their completion time and accuracy each day after task completion. We applied a multivariate vector auto-regressive model of order 1 to the daily mean reaction time (RT) and daily accuracy scores together, within each age group. We expected that participants adjusted their SAT if the two cross-regressive parameters from RT (or accuracy) on day t-1 of accuracy (or RT) on day t were sizable and negative. We found that: (a) the temporal dependencies of both accuracy and RT were quite strong in both age groups; (b) younger adults showed an effect of their accuracy on day t-1 on their RT on day t, a pattern that was in accordance with adjustments of their SAT; (c) older adults did not appear to adjust their SAT; (d) these effects were partly associated with reliable individual differences within each age group. We discuss possible explanations for older adults' reluctance to recalibrate speed and accuracy on a day-to-day basis.

  9. The relationship between CO2 emission, energy consumption and economic growth in Malaysia: a three-way linkage approach.

    PubMed

    Sulaiman, Chindo; Abdul-Rahim, A S

    2017-11-01

    This study examines the three-way linkage relationships between CO 2 emission, energy consumption and economic growth in Malaysia, covering the 1975-2015 period. An autoregressive distributed lag approach was employed to achieve the objective of the study and gauged by dynamic ordinary least squares. Additionally, vector error correction model, variance decompositions and impulse response functions were employed to further examine the relationship between the interest variables. The findings show that economic growth is neither influenced by energy consumption nor by CO 2 emission. Energy consumption is revealed to be an increasing function of CO 2 emission. Whereas, CO 2 emission positively and significantly depends on energy consumption and economic growth. This implies that CO 2 emission increases with an increase in both energy consumption and economic growth. Conclusively, the main drivers of CO 2 emission in Malaysia are proven to be energy consumption and economic growth. Therefore, renewable energy sources ought to be considered by policy makers to curb emission from the current non-renewable sources. Wind and biomass can be explored as they are viable sources. Energy efficiency and savings should equally be emphasised and encouraged by policy makers. Lastly, growth-related policies that target emission reduction are also recommended.

  10. Multiscale Granger causality

    NASA Astrophysics Data System (ADS)

    Faes, Luca; Nollo, Giandomenico; Stramaglia, Sebastiano; Marinazzo, Daniele

    2017-10-01

    In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared to pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years.

  11. Correntropy-based partial directed coherence for testing multivariate Granger causality in nonlinear processes

    NASA Astrophysics Data System (ADS)

    Kannan, Rohit; Tangirala, Arun K.

    2014-06-01

    Identification of directional influences in multivariate systems is of prime importance in several applications of engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences. A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence (PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based technique is simple and effective, but being a linear directionality measure has limited applicability. On the other hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes. The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and important theoretical results are established. A permutation scheme combined with the sequential Bonferroni procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case studies that the proposed methodology effectively detects Granger causality in nonlinear processes.

  12. TIME-DOMAIN METHODS FOR DIFFUSIVE TRANSPORT IN SOFT MATTER

    PubMed Central

    Fricks, John; Yao, Lingxing; Elston, Timothy C.; Gregory Forest, And M.

    2015-01-01

    Passive microrheology [12] utilizes measurements of noisy, entropic fluctuations (i.e., diffusive properties) of micron-scale spheres in soft matter to infer bulk frequency-dependent loss and storage moduli. Here, we are concerned exclusively with diffusion of Brownian particles in viscoelastic media, for which the Mason-Weitz theoretical-experimental protocol is ideal, and the more challenging inference of bulk viscoelastic moduli is decoupled. The diffusive theory begins with a generalized Langevin equation (GLE) with a memory drag law specified by a kernel [7, 16, 22, 23]. We start with a discrete formulation of the GLE as an autoregressive stochastic process governing microbead paths measured by particle tracking. For the inverse problem (recovery of the memory kernel from experimental data) we apply time series analysis (maximum likelihood estimators via the Kalman filter) directly to bead position data, an alternative to formulas based on mean-squared displacement statistics in frequency space. For direct modeling, we present statistically exact GLE algorithms for individual particle paths as well as statistical correlations for displacement and velocity. Our time-domain methods rest upon a generalization of well-known results for a single-mode exponential kernel [1, 7, 22, 23] to an arbitrary M-mode exponential series, for which the GLE is transformed to a vector Ornstein-Uhlenbeck process. PMID:26412904

  13. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy.

    PubMed

    Garcia, David; Tessone, Claudio J; Mavrodiev, Pavlin; Perony, Nicolas

    2014-10-06

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy

    PubMed Central

    Garcia, David; Tessone, Claudio J.; Mavrodiev, Pavlin; Perony, Nicolas

    2014-01-01

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. PMID:25100315

  15. A statistical-textural-features based approach for classification of solid drugs using surface microscopic images.

    PubMed

    Tahir, Fahima; Fahiem, Muhammad Abuzar

    2014-01-01

    The quality of pharmaceutical products plays an important role in pharmaceutical industry as well as in our lives. Usage of defective tablets can be harmful for patients. In this research we proposed a nondestructive method to identify defective and nondefective tablets using their surface morphology. Three different environmental factors temperature, humidity and moisture are analyzed to evaluate the performance of the proposed method. Multiple textural features are extracted from the surface of the defective and nondefective tablets. These textural features are gray level cooccurrence matrix, run length matrix, histogram, autoregressive model and HAAR wavelet. Total textural features extracted from images are 281. We performed an analysis on all those 281, top 15, and top 2 features. Top 15 features are extracted using three different feature reduction techniques: chi-square, gain ratio and relief-F. In this research we have used three different classifiers: support vector machine, K-nearest neighbors and naïve Bayes to calculate the accuracies against proposed method using two experiments, that is, leave-one-out cross-validation technique and train test models. We tested each classifier against all selected features and then performed the comparison of their results. The experimental work resulted in that in most of the cases SVM performed better than the other two classifiers.

  16. Estimating time-varying conditional correlations between stock and foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Tastan, Hüseyin

    2006-02-01

    This study explores the dynamic interaction between stock market returns and changes in nominal exchange rates. Many financial variables are known to exhibit fat tails and autoregressive variance structure. It is well-known that unconditional covariance and correlation coefficients also vary significantly over time and multivariate generalized autoregressive model (MGARCH) is able to capture the time-varying variance-covariance matrix for stock market returns and changes in exchange rates. The model is applied to daily Euro-Dollar exchange rates and two stock market indexes from the US economy: Dow-Jones Industrial Average Index and S&P500 Index. The news impact surfaces are also drawn based on the model estimates to see the effects of idiosyncratic shocks in respective markets.

  17. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Nikhar; Tom, Nathan M

    2017-06-03

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  18. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Nikhar; Tom, Nathan

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  19. Level shift two-components autoregressive conditional heteroscedasticity modelling for WTI crude oil market

    NASA Astrophysics Data System (ADS)

    Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow

    2017-04-01

    This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.

  20. Asymmetric impact of rainfall on India's food grain production: evidence from quantile autoregressive distributed lag model

    NASA Astrophysics Data System (ADS)

    Pal, Debdatta; Mitra, Subrata Kumar

    2018-01-01

    This study used a quantile autoregressive distributed lag (QARDL) model to capture asymmetric impact of rainfall on food production in India. It was found that the coefficient corresponding to the rainfall in the QARDL increased till the 75th quantile and started decreasing thereafter, though it remained in the positive territory. Another interesting finding is that at the 90th quantile and above the coefficients of rainfall though remained positive was not statistically significant and therefore, the benefit of high rainfall on crop production was not conclusive. However, the impact of other determinants, such as fertilizer and pesticide consumption, is quite uniform over the whole range of the distribution of food grain production.

  1. On-line algorithms for forecasting hourly loads of an electric utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemuri, S.; Huang, W.L.; Nelson, D.J.

    A method that lends itself to on-line forecasting of hourly electric loads is presented, and the results of its use are compared to models developed using the Box-Jenkins method. The method consits of processing the historical hourly loads with a sequential least-squares estimator to identify a finite-order autoregressive model which, in turn, is used to obtain a parsimonious autoregressive-moving average model. The method presented has several advantages in comparison with the Box-Jenkins method including much-less human intervention, improved model identification, and better results. The method is also more robust in that greater confidence can be placed in the accuracy ofmore » models based upon the various measures available at the identification stage.« less

  2. Determinants of Healthcare Expenditure in Economic Cooperation Organization (ECO) Countries: Evidence from Panel Cointegration Tests.

    PubMed

    Samadi, Alihussein; Homaie Rad, Enayatollah

    2013-06-01

    Over the last decade there has been an increase in healthcare expenditures while at the same time the inequity in distribution of resources has grown. These two issues have urged the researchers to review the determinants of healthcare expenditures. In this study, we surveyed the determinants of health expenditures in Economic Cooperation Organization (ECO) countries. We used Panel data econometrics methods for the purpose of this research. For long term analysis, we used Pesaran cross sectional dependency test followed by panel unit root tests to show first whether the variables were stationary or not. Upon confirmation of no stationary variables, we used Westerlund panel cointegration test in order to show whether long term relationships exist between the variables. At the end, we estimated the model with Continuous-Updated Fully Modified (CUP-FM) estimator. For short term analysis also, we used Fixed Effects (FE) estimator to estimate the model. A long term relationship was found between the health expenditures per capita and GDP per capita, the proportion of population below 15 and above 65 years old, number of physicians, and urbanisation. Besides, all the variables had short term relationships with health expenditures, except for the proportion of population above 65 years old. The coefficient of GDP was below 1 in the model. Therefore, health is counted as a necessary good in ECO countries and governments must pay due attention to the equal distribution of health services in all regions of the country.

  3. How relevant is environmental quality to per capita health expenditures? Empirical evidence from panel of developing countries.

    PubMed

    Yahaya, Adamu; Nor, Norashidah Mohamed; Habibullah, Muzafar Shah; Ghani, Judhiana Abd; Noor, Zaleha Mohd

    2016-01-01

    Developing countries have witnessed economic growth as their GDP keeps increasing steadily over the years. The growth led to higher energy consumption which eventually leads to increase in air pollutions that pose a danger to human health. People's healthcare demand, in turn, increase due to the changes in the socioeconomic life and improvement in the health technology. This study is an attempt to investigate the impact of environmental quality on per capital health expenditure in 125 developing countries within a panel cointegration framework from 1995 to 2012. We found out that a long-run relationship exists between per capita health expenditure and all explanatory variables as they were panel cointegrated. The explanatory variables were found to be statistically significant in explaining the per capita health expenditure. The result further revealed that CO2 has the highest explanatory power on the per capita health expenditure. The impact of the explanatory power of the variables is greater in the long-run compared to the short-run. Based on this result, we conclude that environmental quality is a powerful determinant of health expenditure in developing countries. Therefore, developing countries should as a matter of health care policy give provision of healthy air a priority via effective policy implementation on environmental management and control measures to lessen the pressure on health care expenditure. Moreover more environmental proxies with alternative methods should be considered in the future research.

  4. Determinants of Healthcare Expenditure in Economic Cooperation Organization (ECO) Countries: Evidence from Panel Cointegration Tests

    PubMed Central

    Samadi, Alihussein; Homaie Rad, Enayatollah

    2013-01-01

    Background: Over the last decade there has been an increase in healthcare expenditures while at the same time the inequity in distribution of resources has grown. These two issues have urged the researchers to review the determinants of healthcare expenditures. In this study, we surveyed the determinants of health expenditures in Economic Cooperation Organization (ECO) countries. Methods: We used Panel data econometrics methods for the purpose of this research. For long term analysis, we used Pesaran cross sectional dependency test followed by panel unit root tests to show first whether the variables were stationary or not. Upon confirmation of no stationary variables, we used Westerlund panel cointegration test in order to show whether long term relationships exist between the variables. At the end, we estimated the model with Continuous-Updated Fully Modified (CUP-FM) estimator. For short term analysis also, we used Fixed Effects (FE) estimator to estimate the model. Results: A long term relationship was found between the health expenditures per capita and GDP per capita, the proportion of population below 15 and above 65 years old, number of physicians, and urbanisation. Besides, all the variables had short term relationships with health expenditures, except for the proportion of population above 65 years old. Conclusion: The coefficient of GDP was below 1 in the model. Therefore, health is counted as a necessary good in ECO countries and governments must pay due attention to the equal distribution of health services in all regions of the country. PMID:24596838

  5. An empirical analysis of cigarette demand in Argentina

    PubMed Central

    Martinez, Eugenio; Mejia, Raul; Pérez-Stable, Eliseo J

    2014-01-01

    Objective To estimate the long-term and short-term effects on cigarette demand in Argentina based on changes in cigarette price and income per person >14 years old. Method Public data from the Ministry of Economics and Production were analysed based on monthly time series data between 1994 and 2010. The econometric analysis used cigarette consumption per person >14 years of age as the dependent variable and the real income per person >14 years old and the real average price of cigarettes as independent variables. Empirical analyses were done to verify the order of integration of the variables, to test for cointegration to capture the long-term effects and to capture the short-term dynamics of the variables. Results The demand for cigarettes in Argentina was affected by changes in real income and the real average price of cigarettes. The long-term income elasticity was equal to 0.43, while the own-price elasticity was equal to −0.31, indicating a 10% increase in the growth of real income led to an increase in cigarette consumption of 4.3% and a 10% increase in the price produced a fall of 3.1% in cigarette consumption. The vector error correction model estimated that the short-term income elasticity was 0.25 and the short-term own-price elasticity of cigarette demand was −0.15. A simulation exercise showed that increasing the price of cigarettes by 110% would maximise revenues and result in a potentially large decrease in total cigarette consumption. Conclusion Econometric analyses of cigarette consumption and their relationship with cigarette price and income can provide valuable information for developing cigarette price policy. PMID:23760657

  6. An empirical analysis of cigarette demand in Argentina.

    PubMed

    Martinez, Eugenio; Mejia, Raul; Pérez-Stable, Eliseo J

    2015-01-01

    To estimate the long-term and short-term effects on cigarette demand in Argentina based on changes in cigarette price and income per person >14 years old. Public data from the Ministry of Economics and Production were analysed based on monthly time series data between 1994 and 2010. The econometric analysis used cigarette consumption per person >14 years of age as the dependent variable and the real income per person >14 years old and the real average price of cigarettes as independent variables. Empirical analyses were done to verify the order of integration of the variables, to test for cointegration to capture the long-term effects and to capture the short-term dynamics of the variables. The demand for cigarettes in Argentina was affected by changes in real income and the real average price of cigarettes. The long-term income elasticity was equal to 0.43, while the own-price elasticity was equal to -0.31, indicating a 10% increase in the growth of real income led to an increase in cigarette consumption of 4.3% and a 10% increase in the price produced a fall of 3.1% in cigarette consumption. The vector error correction model estimated that the short-term income elasticity was 0.25 and the short-term own-price elasticity of cigarette demand was -0.15. A simulation exercise showed that increasing the price of cigarettes by 110% would maximise revenues and result in a potentially large decrease in total cigarette consumption. Econometric analyses of cigarette consumption and their relationship with cigarette price and income can provide valuable information for developing cigarette price policy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Scaling vectors of attoJoule per bit modulators

    NASA Astrophysics Data System (ADS)

    Sorger, Volker J.; Amin, Rubab; Khurgin, Jacob B.; Ma, Zhizhen; Dalir, Hamed; Khan, Sikandar

    2018-01-01

    Electro-optic modulation performs the conversion between the electrical and optical domain with applications in data communication for optical interconnects, but also for novel optical computing algorithms such as providing nonlinearity at the output stage of optical perceptrons in neuromorphic analog optical computing. While resembling an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-spot around tens of GHz, ultrafast modulation may only be required in long-distance communication, not for short on-chip links. Hence, the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to date. Here, we show scaling vectors towards atto-Joule per bit efficient modulators on-chip as well as some experimental demonstrations of novel plasmonic modulators with sub-fJ/bit efficiencies. Our parametric study of placing different actively modulated materials into plasmonic versus photonic optical modes shows that 2D materials overcompensate their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid graphene-based electro-absorption modulator on silicon. The device shows a sub-1 V steep switching enabled by near-ideal electrostatics delivering a high 0.05 dB V-1 μm-1 performance requiring only 110 aJ/bit. Improving on this demonstration, we discuss a plasmonic slot-based graphene modulator design, where the polarization of the plasmonic mode aligns with graphene’s in-plane dimension; where a push-pull dual-gating scheme enables 2 dB V-1 μm-1 efficient modulation allowing the device to be just 770 nm short for 3 dB small signal modulation. Lastly, comparing the switching energy of transistors to modulators shows that modulators based on emerging materials and plasmonic-silicon hybrid integration perform on-par relative to their electronic counter parts. This in turn allows for a device-enabled two orders-of-magnitude improvement of electrical-optical co-integrated network-on-chips over electronic-only architectures. The latter opens technological opportunities in cognitive computing, dynamic data-driven applications systems, and optical analog computer engines including neuromorphic photonic computing.

  8. Robust Prediction for Stationary Processes. 2D Enriched Version.

    DTIC Science & Technology

    1987-11-24

    the absence of data outliers. Important performance characteristics studied include the breakdown point and the influence function . Included are numerical results, for some autoregressive nominal processes.

  9. Modeling the control of the central nervous system over the cardiovascular system using support vector machines.

    PubMed

    Díaz, José; Acosta, Jesús; González, Rafael; Cota, Juan; Sifuentes, Ernesto; Nebot, Àngela

    2018-02-01

    The control of the central nervous system (CNS) over the cardiovascular system (CS) has been modeled using different techniques, such as fuzzy inductive reasoning, genetic fuzzy systems, neural networks, and nonlinear autoregressive techniques; the results obtained so far have been significant, but not solid enough to describe the control response of the CNS over the CS. In this research, support vector machines (SVMs) are used to predict the response of a branch of the CNS, specifically, the one that controls an important part of the cardiovascular system. To do this, five models are developed to emulate the output response of five controllers for the same input signal, the carotid sinus blood pressure (CSBP). These controllers regulate parameters such as heart rate, myocardial contractility, peripheral and coronary resistance, and venous tone. The models are trained using a known set of input-output response in each controller; also, there is a set of six input-output signals for testing each proposed model. The input signals are processed using an all-pass filter, and the accuracy performance of the control models is evaluated using the percentage value of the normalized mean square error (MSE). Experimental results reveal that SVM models achieve a better estimation of the dynamical behavior of the CNS control compared to others modeling systems. The main results obtained show that the best case is for the peripheral resistance controller, with a MSE of 1.20e-4%, while the worst case is for the heart rate controller, with a MSE of 1.80e-3%. These novel models show a great reliability in fitting the output response of the CNS which can be used as an input to the hemodynamic system models in order to predict the behavior of the heart and blood vessels in response to blood pressure variations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore.

    PubMed

    Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S Y; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R

    2016-09-01

    With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore's dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369-1375; http://dx.doi.org/10.1289/ehp.1509981.

  11. Autoregressive models for estimating phylogenetic and environmental effects: accounting for within-species variations.

    PubMed

    Cornillon, P A; Pontier, D; Rochet, M J

    2000-02-21

    Comparative methods are used to investigate the attributes of present species or higher taxa. Difficulties arise from the phylogenetic heritage: taxa are not independent and neglecting phylogenetic inertia can lead to inaccurate results. Within-species variations in life-history traits are also not negligible, but most comparative methods are not designed to take them into account. Taxa are generally described by a single value for each trait. We have developed a new model which permits the incorporation of both the phylogenetic relationships among populations and within-species variations. This is an extension of classical autoregressive models. This family of models was used to study the effect of fishing on six demographic traits measured on 77 populations of teleost fishes. Copyright 2000 Academic Press.

  12. A Novel Modeling Method for Aircraft Engine Using Nonlinear Autoregressive Exogenous (NARX) Models Based on Wavelet Neural Networks

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Shu, Wenjun; Cao, Can

    2018-05-01

    A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.

  13. Getting It Right Matters: Climate Spectra and Their Estimation

    NASA Astrophysics Data System (ADS)

    Privalsky, Victor; Yushkov, Vladislav

    2018-06-01

    In many recent publications, climate spectra estimated with different methods from observed, GCM-simulated, and reconstructed time series contain many peaks at time scales from a few years to many decades and even centuries. However, respective spectral estimates obtained with the autoregressive (AR) and multitapering (MTM) methods showed that spectra of climate time series are smooth and contain no evidence of periodic or quasi-periodic behavior. Four order selection criteria for the autoregressive models were studied and proven sufficiently reliable for 25 time series of climate observations at individual locations or spatially averaged at local-to-global scales. As time series of climate observations are short, an alternative reliable nonparametric approach is Thomson's MTM. These results agree with both the earlier climate spectral analyses and the Markovian stochastic model of climate.

  14. Performance of the Prognocean Plus system during the El Niño 2015/2016: predictions of sea level anomalies as tools for forecasting El Niño

    NASA Astrophysics Data System (ADS)

    Świerczyńska-Chlaściak, Małgorzata; Niedzielski, Tomasz; Miziński, Bartłomiej

    2017-04-01

    The aim of this paper is to present the performance of the Prognocean Plus system, which produces long-term predictions of sea level anomalies, during the El Niño 2015/2016. The main objective of work is to identify such ocean areas in which long-term forecasts of sea level anomalies during El Niño 2015/2016 reveal a considerable accuracy. At present, the system produces prognoses using four data-based models and their combinations: polynomial-harmonic model, autoregressive model, threshold autoregressive model and multivariate autoregressive model. The system offers weekly forecasts, with lead time up to 12 weeks. Several statistics that describe the efficiency of the available prediction models in four seasons used for estimating Oceanic Niño index (ONI) are calculated. The accuracies/skills of the predicting models were computed in the specific locations in the equatorial Pacific, namely the geometrically-determined central points of all Niño regions. For the said locations, we focused on the forecasts which targeted at the local maximum of sea level, driven by the El Niño 2015/2016. As a result, a series of the "spaghetti" graphs (for each point, season and model) as well as plots presenting the prognostic performance of every model - for all lead times, seasons and locations - were created. It is found that the Prognocean Plus system has a potential to become a new solution which may enhance the diagnostic discussions on the El Niño development. The forecasts produced by the threshold autoregressive model, for lead times of 5-6 weeks and 9 weeks, within the Niño1+2 region for the November-to-January (NDJ) season anticipated the culmination of the El Niño 2015/2016. The longest forecasts (8-12 weeks) were found to be the most accurate in the phase of transition from El Niño to normal conditions (the multivariate autoregressive model, central point of Niño1+2 region, the December-to-February season). The study was conducted to verify the ability and usefulness of sea level anomaly forecasts in predicting phenomena that are controlled by the ocean-atmosphere processes, such as El Niño Southern Oscillation or North Atlantic Oscillation. The results may support further investigations into long-term forecasting of the quantitative indices of these oscillations, solely based on prognoses of sea level change. In particular, comparing the accuracies of prognoses of the North Atlantic Oscillation index remains one of the tasks of the research project no. 2016/21/N/ST10/03231, financed by the National Science Center of Poland.

  15. Introducing Hurst exponent in pair trading

    NASA Astrophysics Data System (ADS)

    Ramos-Requena, J. P.; Trinidad-Segovia, J. E.; Sánchez-Granero, M. A.

    2017-12-01

    In this paper we introduce a new methodology for pair trading. This new method is based on the calculation of the Hurst exponent of a pair. Our approach is inspired by the classical concepts of co-integration and mean reversion but joined under a unique strategy. We will show how Hurst approach presents better results than classical Distance Method and Correlation strategies in different scenarios. Results obtained prove that this new methodology is consistent and suitable by reducing the drawdown of trading over the classical ones getting as a result a better performance.

  16. Understanding price discovery in interconnected markets: Generalized Langevin process approach and simulation

    NASA Astrophysics Data System (ADS)

    Schenck, Natalya A.; Horvath, Philip A.; Sinha, Amit K.

    2018-02-01

    While the literature on price discovery process and information flow between dominant and satellite market is exhaustive, most studies have applied an approach that can be traced back to Hasbrouck (1995) or Gonzalo and Granger (1995). In this paper, however, we propose a Generalized Langevin process with asymmetric double-well potential function, with co-integrated time series and interconnected diffusion processes to model the information flow and price discovery process in two, a dominant and a satellite, interconnected markets. A simulated illustration of the model is also provided.

  17. Kepler AutoRegressive Planet Search

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel Antonio; Feigelson, Eric

    2016-01-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; AR-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. The analysis procedures of the project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. Our findings to date on real-data tests of the KARPS methodology will be discussed including confirmation of some Kepler Team `candidate' planets. We also present cases of new possible planetary signals.

  18. Study on homogenization of synthetic GNSS-retrieved IWV time series and its impact on trend estimates with autoregressive noise

    NASA Astrophysics Data System (ADS)

    Klos, Anna; Pottiaux, Eric; Van Malderen, Roeland; Bock, Olivier; Bogusz, Janusz

    2017-04-01

    A synthetic benchmark dataset of Integrated Water Vapour (IWV) was created within the activity of "Data homogenisation" of sub-working group WG3 of COST ES1206 Action. The benchmark dataset was created basing on the analysis of IWV differences retrieved by Global Positioning System (GPS) International GNSS Service (IGS) stations using European Centre for Medium-Range Weather Forecats (ECMWF) reanalysis data (ERA-Interim). Having analysed a set of 120 series of IWV differences (ERAI-GPS) derived for IGS stations, we delivered parameters of a number of gaps and breaks for every certain station. Moreover, we estimated values of trends, significant seasonalities and character of residuals when deterministic model was removed. We tested five different noise models and found that a combination of white and autoregressive processes of first order describes the stochastic part with a good accuracy. Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different types of noise: white as well as combination of white and autoregressive processes. We also added few strictly defined offsets, creating three variants of synthetic dataset: easy, less-complicated and fully-complicated. The 'Easy' dataset included seasonal signals (annual, semi-annual, 3 and 4 months if present for a particular station), offsets and white noise. The 'Less-complicated' dataset included above-mentioned, as well as the combination of white and first order autoregressive processes (AR(1)+WH). The 'Fully-complicated' dataset included, beyond above, a trend and gaps. In this research, we show the impact of manual homogenisation on the estimates of trend and its error. We also cross-compare the results for three above-mentioned datasets, as the synthetized noise type might have a significant influence on manual homogenisation. Therefore, it might mostly affect the values of trend and their uncertainties when inappropriately handled. In a future, the synthetic dataset we present is going to be used as a benchmark to test various statistical tools in terms of homogenisation task.

  19. Explanation of power law behavior of autoregressive conditional duration processes based on the random multiplicative process

    NASA Astrophysics Data System (ADS)

    Sato, Aki-Hiro

    2004-04-01

    Autoregressive conditional duration (ACD) processes, which have the potential to be applied to power law distributions of complex systems found in natural science, life science, and social science, are analyzed both numerically and theoretically. An ACD(1) process exhibits the singular second order moment, which suggests that its probability density function (PDF) has a power law tail. It is verified that the PDF of the ACD(1) has a power law tail with an arbitrary exponent depending on a model parameter. On the basis of theory of the random multiplicative process a relation between the model parameter and the power law exponent is theoretically derived. It is confirmed that the relation is valid from numerical simulations. An application of the ACD(1) to intervals between two successive transactions in a foreign currency market is shown.

  20. Autoregressive-model-based missing value estimation for DNA microarray time series data.

    PubMed

    Choong, Miew Keen; Charbit, Maurice; Yan, Hong

    2009-01-01

    Missing value estimation is important in DNA microarray data analysis. A number of algorithms have been developed to solve this problem, but they have several limitations. Most existing algorithms are not able to deal with the situation where a particular time point (column) of the data is missing entirely. In this paper, we present an autoregressive-model-based missing value estimation method (ARLSimpute) that takes into account the dynamic property of microarray temporal data and the local similarity structures in the data. ARLSimpute is especially effective for the situation where a particular time point contains many missing values or where the entire time point is missing. Experiment results suggest that our proposed algorithm is an accurate missing value estimator in comparison with other imputation methods on simulated as well as real microarray time series datasets.

  1. [Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model].

    PubMed

    Ke-Wei, Wang; Yu, Wu; Jin-Ping, Li; Yu-Yu, Jiang

    2016-07-12

    To explore the effect of the autoregressive integrated moving average model-nonlinear auto-regressive neural network (ARIMA-NARNN) model on predicting schistosomiasis infection rates of population. The ARIMA model, NARNN model and ARIMA-NARNN model were established based on monthly schistosomiasis infection rates from January 2005 to February 2015 in Jiangsu Province, China. The fitting and prediction performances of the three models were compared. Compared to the ARIMA model and NARNN model, the mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the ARIMA-NARNN model were the least with the values of 0.011 1, 0.090 0 and 0.282 4, respectively. The ARIMA-NARNN model could effectively fit and predict schistosomiasis infection rates of population, which might have a great application value for the prevention and control of schistosomiasis.

  2. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    NASA Astrophysics Data System (ADS)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.

  3. Explanation of power law behavior of autoregressive conditional duration processes based on the random multiplicative process.

    PubMed

    Sato, Aki-Hiro

    2004-04-01

    Autoregressive conditional duration (ACD) processes, which have the potential to be applied to power law distributions of complex systems found in natural science, life science, and social science, are analyzed both numerically and theoretically. An ACD(1) process exhibits the singular second order moment, which suggests that its probability density function (PDF) has a power law tail. It is verified that the PDF of the ACD(1) has a power law tail with an arbitrary exponent depending on a model parameter. On the basis of theory of the random multiplicative process a relation between the model parameter and the power law exponent is theoretically derived. It is confirmed that the relation is valid from numerical simulations. An application of the ACD(1) to intervals between two successive transactions in a foreign currency market is shown.

  4. Neonatal heart rate prediction.

    PubMed

    Abdel-Rahman, Yumna; Jeremic, Aleksander; Tan, Kenneth

    2009-01-01

    Technological advances have caused a decrease in the number of infant deaths. Pre-term infants now have a substantially increased chance of survival. One of the mechanisms that is vital to saving the lives of these infants is continuous monitoring and early diagnosis. With continuous monitoring huge amounts of data are collected with so much information embedded in them. By using statistical analysis this information can be extracted and used to aid diagnosis and to understand development. In this study we have a large dataset containing over 180 pre-term infants whose heart rates were recorded over the length of their stay in the Neonatal Intensive Care Unit (NICU). We test two types of models, empirical bayesian and autoregressive moving average. We then attempt to predict future values. The autoregressive moving average model showed better results but required more computation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavanaugh, J.E.; McQuarrie, A.D.; Shumway, R.H.

    Conventional methods for discriminating between earthquakes and explosions at regional distances have concentrated on extracting specific features such as amplitude and spectral ratios from the waveforms of the P and S phases. We consider here an optimum nonparametric classification procedure derived from the classical approach to discriminating between two Gaussian processes with unequal spectra. Two robust variations based on the minimum discrimination information statistic and Renyi's entropy are also considered. We compare the optimum classification procedure with various amplitude and spectral ratio discriminants and show that its performance is superior when applied to a small population of 8 land-based earthquakesmore » and 8 mining explosions recorded in Scandinavia. Several parametric characterizations of the notion of complexity based on modeling earthquakes and explosions as autoregressive or modulated autoregressive processes are also proposed and their performance compared with the nonparametric and feature extraction approaches.« less

  6. Development of a Robust Identifier for NPPs Transients Combining ARIMA Model and EBP Algorithm

    NASA Astrophysics Data System (ADS)

    Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.

    2014-08-01

    This study introduces a novel identification method for recognition of nuclear power plants (NPPs) transients by combining the autoregressive integrated moving-average (ARIMA) model and the neural network with error backpropagation (EBP) learning algorithm. The proposed method consists of three steps. First, an EBP based identifier is adopted to distinguish the plant normal states from the faulty ones. In the second step, ARIMA models use integrated (I) process to convert non-stationary data of the selected variables into stationary ones. Subsequently, ARIMA processes, including autoregressive (AR), moving-average (MA), or autoregressive moving-average (ARMA) are used to forecast time series of the selected plant variables. In the third step, for identification the type of transients, the forecasted time series are fed to the modular identifier which has been developed using the latest advances of EBP learning algorithm. Bushehr nuclear power plant (BNPP) transients are probed to analyze the ability of the proposed identifier. Recognition of transient is based on similarity of its statistical properties to the reference one, rather than the values of input patterns. More robustness against noisy data and improvement balance between memorization and generalization are salient advantages of the proposed identifier. Reduction of false identification, sole dependency of identification on the sign of each output signal, selection of the plant variables for transients training independent of each other, and extendibility for identification of more transients without unfavorable effects are other merits of the proposed identifier.

  7. Modeling Bivariate Change in Individual Differences: Prospective Associations Between Personality and Life Satisfaction.

    PubMed

    Hounkpatin, Hilda Osafo; Boyce, Christopher J; Dunn, Graham; Wood, Alex M

    2017-09-18

    A number of structural equation models have been developed to examine change in 1 variable or the longitudinal association between 2 variables. The most common of these are the latent growth model, the autoregressive cross-lagged model, the autoregressive latent trajectory model, and the latent change score model. The authors first overview each of these models through evaluating their different assumptions surrounding the nature of change and how these assumptions may result in different data interpretations. They then, to elucidate these issues in an empirical example, examine the longitudinal association between personality traits and life satisfaction. In a representative Dutch sample (N = 8,320), with participants providing data on both personality and life satisfaction measures every 2 years over an 8-year period, the authors reproduce findings from previous research. However, some of the structural equation models overviewed have not previously been applied to the personality-life satisfaction relation. The extended empirical examination suggests intraindividual changes in life satisfaction predict subsequent intraindividual changes in personality traits. The availability of data sets with 3 or more assessment waves allows the application of more advanced structural equation models such as the autoregressive latent trajectory or the extended latent change score model, which accounts for the complex dynamic nature of change processes and allows stronger inferences on the nature of the association between variables. However, the choice of model should be determined by theories of change processes in the variables being studied. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Influence of weather on the synchrony of gypsy moth (Lepidoptera: Lymantriidae) outbreaks in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D.W.; Liebhold, A.M.

    1995-10-01

    Outbreaks of the gypsy moth, Lymantria dispar (L.), were partially synchronous across New England states (Massachusetts, Maine, New Hampshire, and Vermont) from 1938 to 1992. To explain this synchrony, we investigated the Moran effect, a hypothesis that local population oscillations, which result form similar density-dependent mechanisms operating at time lags, may be synchronized over wide areas by exposure to common weather patterns. We also investigated the theory of climatic release, which ostulates that outbreaks are triggered by climatic factors favorable for population growth. Time series analysis revealed defoliation series in 2 states as 1st-order autoregressive processes and the other 2more » as periodic 2nd-order autoregressive processes. Defoliation residuals series computed using the autoregressive models for each state were cross correlated with series of weather variables recorded in the respective states. The weather variables significantly correlated with defoliation residuals in all 4 states were minimum temperature and precipitation in mid-December in the same gypsy moth generation and minimum temperature in mid- to late July of the previous generation. These weather variables also were correlated strongly among the 4 states. The analyses supported the predictions of the Moran effect and suggest the common weather may synchronize local populations so as to produce pest outbreaks over wide areas. We did not find convincing evidence to support the theory of climatic release. 41 refs., 7 figs., 4 tabs.« less

  9. Modelling malaria incidence by an autoregressive distributed lag model with spatial component.

    PubMed

    Laguna, Francisco; Grillet, María Eugenia; León, José R; Ludeña, Carenne

    2017-08-01

    The influence of climatic variables on the dynamics of human malaria has been widely highlighted. Also, it is known that this mosquito-borne infection varies in space and time. However, when the data is spatially incomplete most popular spatio-temporal methods of analysis cannot be applied directly. In this paper, we develop a two step methodology to model the spatio-temporal dependence of malaria incidence on local rainfall, temperature, and humidity as well as the regional sea surface temperatures (SST) in the northern coast of Venezuela. First, we fit an autoregressive distributed lag model (ARDL) to the weekly data, and then, we adjust a linear separable spacial vectorial autoregressive model (VAR) to the residuals of the ARDL. Finally, the model parameters are tuned using a Markov Chain Monte Carlo (MCMC) procedure derived from the Metropolis-Hastings algorithm. Our results show that the best model to account for the variations of malaria incidence from 2001 to 2008 in 10 endemic Municipalities in North-Eastern Venezuela is a logit model that included the accumulated local precipitation in combination with the local maximum temperature of the preceding month as positive regressors. Additionally, we show that although malaria dynamics is highly heterogeneous in space, a detailed analysis of the estimated spatial parameters in our model yield important insights regarding the joint behavior of the disease incidence across the different counties in our study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A nonlinear autoregressive Volterra model of the Hodgkin-Huxley equations.

    PubMed

    Eikenberry, Steffen E; Marmarelis, Vasilis Z

    2013-02-01

    We propose a new variant of Volterra-type model with a nonlinear auto-regressive (NAR) component that is a suitable framework for describing the process of AP generation by the neuron membrane potential, and we apply it to input-output data generated by the Hodgkin-Huxley (H-H) equations. Volterra models use a functional series expansion to describe the input-output relation for most nonlinear dynamic systems, and are applicable to a wide range of physiologic systems. It is difficult, however, to apply the Volterra methodology to the H-H model because is characterized by distinct subthreshold and suprathreshold dynamics. When threshold is crossed, an autonomous action potential (AP) is generated, the output becomes temporarily decoupled from the input, and the standard Volterra model fails. Therefore, in our framework, whenever membrane potential exceeds some threshold, it is taken as a second input to a dual-input Volterra model. This model correctly predicts membrane voltage deflection both within the subthreshold region and during APs. Moreover, the model naturally generates a post-AP afterpotential and refractory period. It is known that the H-H model converges to a limit cycle in response to a constant current injection. This behavior is correctly predicted by the proposed model, while the standard Volterra model is incapable of generating such limit cycle behavior. The inclusion of cross-kernels, which describe the nonlinear interactions between the exogenous and autoregressive inputs, is found to be absolutely necessary. The proposed model is general, non-parametric, and data-derived.

  11. What's in a Day? A Guide to Decomposing the Variance in Intensive Longitudinal Data

    PubMed Central

    de Haan-Rietdijk, Silvia; Kuppens, Peter; Hamaker, Ellen L.

    2016-01-01

    In recent years there has been a growing interest in the use of intensive longitudinal research designs to study within-person processes. Examples are studies that use experience sampling data and autoregressive modeling to investigate emotion dynamics and between-person differences therein. Such designs often involve multiple measurements per day and multiple days per person, and it is not clear how this nesting of the data should be accounted for: That is, should such data be considered as two-level data (which is common practice at this point), with occasions nested in persons, or as three-level data with beeps nested in days which are nested in persons. We show that a significance test of the day-level variance in an empty three-level model is not reliable when there is autocorrelation. Furthermore, we show that misspecifying the number of levels can lead to spurious or misleading findings, such as inflated variance or autoregression estimates. Throughout the paper we present instructions and R code for the implementation of the proposed models, which includes a novel three-level AR(1) model that estimates moment-to-moment inertia and day-to-day inertia. Based on our simulations we recommend model selection using autoregressive multilevel models in combination with the AIC. We illustrate this method using empirical emotion data from two independent samples, and discuss the implications and the relevance of the existence of a day level for the field. PMID:27378986

  12. Order-Constrained Reference Priors with Implications for Bayesian Isotonic Regression, Analysis of Covariance and Spatial Models

    NASA Astrophysics Data System (ADS)

    Gong, Maozhen

    Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.

  13. What's in a Day? A Guide to Decomposing the Variance in Intensive Longitudinal Data.

    PubMed

    de Haan-Rietdijk, Silvia; Kuppens, Peter; Hamaker, Ellen L

    2016-01-01

    In recent years there has been a growing interest in the use of intensive longitudinal research designs to study within-person processes. Examples are studies that use experience sampling data and autoregressive modeling to investigate emotion dynamics and between-person differences therein. Such designs often involve multiple measurements per day and multiple days per person, and it is not clear how this nesting of the data should be accounted for: That is, should such data be considered as two-level data (which is common practice at this point), with occasions nested in persons, or as three-level data with beeps nested in days which are nested in persons. We show that a significance test of the day-level variance in an empty three-level model is not reliable when there is autocorrelation. Furthermore, we show that misspecifying the number of levels can lead to spurious or misleading findings, such as inflated variance or autoregression estimates. Throughout the paper we present instructions and R code for the implementation of the proposed models, which includes a novel three-level AR(1) model that estimates moment-to-moment inertia and day-to-day inertia. Based on our simulations we recommend model selection using autoregressive multilevel models in combination with the AIC. We illustrate this method using empirical emotion data from two independent samples, and discuss the implications and the relevance of the existence of a day level for the field.

  14. SCoT: a Python toolbox for EEG source connectivity.

    PubMed

    Billinger, Martin; Brunner, Clemens; Müller-Putz, Gernot R

    2014-01-01

    Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs) require single-trial estimation methods. In this paper, we present SCoT-a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with the MVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting. We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1) brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2) offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT.

  15. Decoupling emissions of greenhouse gas, urbanization, energy and income: analysis from the economy of China.

    PubMed

    Wang, Tianqiong; Riti, Joshua Sunday; Shu, Yang

    2018-05-08

    The adoption and ratification of relevant policies, particularly the household enrolment system metamorphosis in China, led to rising urbanization growth. As the leading developing economy, China has experienced a drastic and rapid increase in the rate of urbanization, energy use, economic growth and greenhouse gas (GHG) pollution for the past 30 years. The knowledge of the dynamic interrelationships among these trends has a plethora of implications ranging from demographic, energy, and environmental and sustainable development policies. This study analyzes the role of urbanization in decoupling GHG emissions, energy, and income in China while considering the critical contribution of energy use. As a contribution to the extant body of literature, the present research introduces a new phenomenon called "the environmental urbanization Kuznets curve" (EUKC), which shows that at the early stage of urbanization, the environment degrades however, after a threshold point the technique effects surface and environmental degradation reduces with rise in urbanization. Applying the autoregressive distributed lag model and the vector error correction model, the paper finds the presence of inverted U-shaped curve between urbanization and GHG emission of CO 2 , while the same hypothesis cannot be found between income and GHG emission of CO 2 . Energy use in all the models contributes to GHG emission of CO 2 . In decoupling greenhouse gas emissions, urbanization, energy, and income, articulated and well-implemented energy and urbanization policies should be considered.

  16. Modeling malaria control intervention effect in KwaZulu-Natal, South Africa using intervention time series analysis.

    PubMed

    Ebhuoma, Osadolor; Gebreslasie, Michael; Magubane, Lethumusa

    The change of the malaria control intervention policy in South Africa (SA), re-introduction of dichlorodiphenyltrichloroethane (DDT), may be responsible for the low and sustained malaria transmission in KwaZulu-Natal (KZN). We evaluated the effect of the re-introduction of DDT on malaria in KZN and suggested practical ways the province can strengthen her already existing malaria control and elimination efforts, to achieve zero malaria transmission. We obtained confirmed monthly malaria cases in KZN from the malaria control program of KZN from 1998 to 2014. The seasonal autoregressive integrated moving average (SARIMA) intervention time series analysis (ITSA) was employed to model the effect of the re-introduction of DDT on confirmed monthly malaria cases. The result is an abrupt and permanent decline of monthly malaria cases (w 0 =-1174.781, p-value=0.003) following the implementation of the intervention policy. The sustained low malaria cases observed over a long period suggests that the continued usage of DDT did not result in insecticide resistance as earlier anticipated. It may be due to exophagic malaria vectors, which renders the indoor residual spraying not totally effective. Therefore, the feasibility of reducing malaria transmission to zero in KZN requires other reliable and complementary intervention resources to optimize the existing ones. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Detection of the Sleep Stages Throughout Non-Obtrusive Measures of Inter-Beat Fluctuations and Motion: Night and Day Sleep of Female Shift Workers

    NASA Astrophysics Data System (ADS)

    Mendez, Martin O.; Palacios-Hernandez, Elvia R.; Alba, Alfonso; Kortelainen, Juha M.; Tenhunen, Mirja L.; Bianchi, Anna M.

    Automatic sleep staging based on inter-beat fluctuations and motion signals recorded through a pressure bed sensor during sleep is presented. The analysis of the sleep was based on the three major divisions of the sleep time: Wake, non-rapid eye movement (nREM) and rapid eye movement (REM) sleep stages. Twelve sleep recordings, from six females working alternate shift, with their respective annotations were used in the study. Six recordings were acquired during the night and six during the day after a night shift. A Time-Variant Autoregressive Model was used to extract features from inter-beat fluctuations which later were fed to a Support Vector Machine classifier. Accuracy, Kappa index, and percentage in wake, REM and nREM were used as performance measures. Comparison between the automatic sleep staging detection and the standard clinical annotations, shows mean values of 87% for accuracy 0.58 for kappa index, and mean errors of 5% for sleep stages. The performance measures were similar for night and day sleep recordings. In this sample of recordings, the results suggest that inter-beat fluctuations and motions acquired in non-obtrusive way carried valuable information related to the sleep macrostructure and could be used to support to the experts in extensive evaluation and monitoring of sleep.

  18. Exploratory wavelet analysis of dengue seasonal patterns in Colombia.

    PubMed

    Fernández-Niño, Julián Alfredo; Cárdenas-Cárdenas, Luz Mery; Hernández-Ávila, Juan Eugenio; Palacio-Mejía, Lina Sofía; Castañeda-Orjuela, Carlos Andrés

    2015-12-04

    Dengue has a seasonal behavior associated with climatic changes, vector cycles, circulating serotypes, and population dynamics. The wavelet analysis makes it possible to separate a very long time series into calendar time and periods. This is the first time this technique is used in an exploratory manner to model the behavior of dengue in Colombia.  To explore the annual seasonal dengue patterns in Colombia and in its five most endemic municipalities for the period 2007 to 2012, and for roughly annual cycles between 1978 and 2013 at the national level.  We made an exploratory wavelet analysis using data from all incident cases of dengue per epidemiological week for the period 2007 to 2012, and per year for 1978 to 2013. We used a first-order autoregressive model as the null hypothesis.  The effect of the 2010 epidemic was evident in both the national time series and the series for the five municipalities. Differences in interannual seasonal patterns were observed among municipalities. In addition, we identified roughly annual cycles of 2 to 5 years since 2004 at a national level.  Wavelet analysis is useful to study a long time series containing changing seasonal patterns, as is the case of dengue in Colombia, and to identify differences among regions. These patterns need to be explored at smaller aggregate levels, and their relationships with different predictive variables need to be investigated.

  19. Evidence of Large Fluctuations of Stock Return and Financial Crises from Turkey: Using Wavelet Coherency and Varma Modeling to Forecast Stock Return

    NASA Astrophysics Data System (ADS)

    Oygur, Tunc; Unal, Gazanfer

    Shocks, jumps, booms and busts are typical large fluctuation markers which appear in crisis. Models and leading indicators vary according to crisis type in spite of the fact that there are a lot of different models and leading indicators in literature to determine structure of crisis. In this paper, we investigate structure of dynamic correlation of stock return, interest rate, exchange rate and trade balance differences in crisis periods in Turkey over the period between October 1990 and March 2015 by applying wavelet coherency methodologies to determine nature of crises. The time period includes the Turkeys currency and banking crises; US sub-prime mortgage crisis and the European sovereign debt crisis occurred in 1994, 2001, 2008 and 2009, respectively. Empirical results showed that stock return, interest rate, exchange rate and trade balance differences are significantly linked during the financial crises in Turkey. The cross wavelet power, the wavelet coherency, the multiple wavelet coherency and the quadruple wavelet coherency methodologies have been used to examine structure of dynamic correlation. Moreover, in consequence of quadruple and multiple wavelet coherence, strongly correlated large scales indicate linear behavior and, hence VARMA (vector autoregressive moving average) gives better fitting and forecasting performance. In addition, increasing the dimensions of the model for strongly correlated scales leads to more accurate results compared to scalar counterparts.

  20. SCoT: a Python toolbox for EEG source connectivity

    PubMed Central

    Billinger, Martin; Brunner, Clemens; Müller-Putz, Gernot R.

    2014-01-01

    Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs) require single-trial estimation methods. In this paper, we present SCoT—a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with the MVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting. We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1) brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2) offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT. PMID:24653694

  1. Efficient and stable transformation of hop (Humulus lupulus L.) var. Eroica by particle bombardment.

    PubMed

    Batista, Dora; Fonseca, Sandra; Serrazina, Susana; Figueiredo, Andreia; Pais, Maria Salomé

    2008-07-01

    To the best of our knowledge, this is the first accurate and reliable protocol for hop (Humulus lupulus L.) genetic transformation using particle bombardment. Based on the highly productive regeneration system previously developed by us for hop var. Eroica, two efficient transformation protocols were established using petioles and green organogenic nodular clusters (GONCs) bombarded with gusA reporter and hpt selectable genes. A total of 36 hygromycin B-resistant (hyg(r)) plants obtained upon continuous selection were successfully transferred to the greenhouse, and a first generation group of transplanted plants was followed after spending a complete vegetative cycle. PCR analysis showed the presence of one of both transgenes in 25 plants, corresponding to an integration frequency of 69.4% and an overall transformation efficiency of 7.5%. Although all final transformants were GUS negative, the integration frequency of gusA gene was higher than that of hpt gene. Petiole-derived transgenic plants showed a higher co-integration rate of 76.9%. Real-time PCR analysis confirmed co-integration in 86% of the plants tested and its stability until the first generation, and identified positive plants amongst those previously assessed as hpt (+) only by conventional PCR. Our results suggest that the integration frequencies presented here, as well as those of others, may have been underestimated, and that PCR results should be taken with precaution not only for false positives, but also for false negatives. The protocols here described could be very useful for future introduction of metabolic or resistance traits in hop cultivars even if slight modifications for other genotypes are needed.

  2. Climate Variability and Yields of Major Staple Food Crops in Northern Ghana

    NASA Astrophysics Data System (ADS)

    Amikuzuno, J.

    2012-12-01

    Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.

  3. Comparison the Effects of Health Indicators on Male and Female Labor Supply, Evidence from Panel Data of Eastern Mediterranean Countries 1995-2010

    PubMed Central

    HOMAIE RAD, Enayatollah; HADIAN, Mohamad; GHOLAMPOOR, Hanie

    2014-01-01

    Abstract Background Skilled labor force is very important in economic growth. Workers become skilled when they are healthy and able to be educated and work. In this study, we estimated the effects of health indicators on labor supply. We used labor force participation rate as the indicator of labor supply. We categorized this indicator into 2 indicators of female and male labor force participation rates and compared the results of each estimate with the other. Methods This study was done in eastern Mediterranean countries between 1995 and 2011. We used a panel cointegration approach for estimating the models. We used Pesaran cross sectional dependency, Pesaran unit root test, and Westerlund panel cointegration for this issue. At the end, after confirmation of having random effect models, we estimated them with random effects. Results Increasing the fertility rate decreased the female labor supply, but increased the male labor supply. However, public health expenditures increased the female labor supply, but decreased the male labor supply because of substitution effects. Similar results were found regarding urbanization. Gross domestic product had a positive relationship with female labor supply, but not with male labor supply. Besides, out of pocket health expenditures had a negative relationship with male labor supply, but no significant relationships with female labor supply. Conclusion The effects of the health variables were more severe in the female labor supply model compared to the male model. Countries must pay attention to women’s health more and more to change the labor supply. PMID:26060746

  4. CO2 emissions, real output, energy consumption, trade, urbanization and financial development: testing the EKC hypothesis for the USA.

    PubMed

    Dogan, Eyup; Turkekul, Berna

    2016-01-01

    This study aims to investigate the relationship between carbon dioxide (CO2) emissions, energy consumption, real output (GDP), the square of real output (GDP(2)), trade openness, urbanization, and financial development in the USA for the period 1960-2010. The bounds testing for cointegration indicates that the analyzed variables are cointegrated. In the long run, energy consumption and urbanization increase environmental degradation while financial development has no effect on it, and trade leads to environmental improvements. In addition, this study does not support the validity of the environmental Kuznets curve (EKC) hypothesis for the USA because real output leads to environmental improvements while GDP(2) increases the levels of gas emissions. The results from the Granger causality test show that there is bidirectional causality between CO2 and GDP, CO2 and energy consumption, CO2 and urbanization, GDP and urbanization, and GDP and trade openness while no causality is determined between CO2 and trade openness, and gas emissions and financial development. In addition, we have enough evidence to support one-way causality running from GDP to energy consumption, from financial development to output, and from urbanization to financial development. In light of the long-run estimates and the Granger causality analysis, the US government should take into account the importance of trade openness, urbanization, and financial development in controlling for the levels of GDP and pollution. Moreover, it should be noted that the development of efficient energy policies likely contributes to lower CO2 emissions without harming real output.

  5. KARMA4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Mohammad; Salloum, Maher; Lee, Jina

    2017-07-10

    KARMA4 is a C++ library for autoregressive moving average (ARMA) modeling and forecasting of time-series data while incorporating both process and observation error. KARMA4 is designed for fitting and forecasting of time-series data for predictive purposes.

  6. Spatial pattern of diarrhea based on regional economic and environment by spatial autoregressive model

    NASA Astrophysics Data System (ADS)

    Bekti, Rokhana Dwi; Nurhadiyanti, Gita; Irwansyah, Edy

    2014-10-01

    The diarrhea case pattern information, especially for toddler, is very important. It is used to show the distribution of diarrhea in every region, relationship among that locations, and regional economic characteristic or environmental behavior. So, this research uses spatial pattern to perform them. This method includes: Moran's I, Spatial Autoregressive Models (SAR), and Local Indicator of Spatial Autocorrelation (LISA). It uses sample from 23 sub districts of Bekasi Regency, West Java, Indonesia. Diarrhea case, regional economic, and environmental behavior of households have a spatial relationship among sub district. SAR shows that the percentage of Regional Gross Domestic Product is significantly effect on diarrhea at α = 10%. Therefore illiteracy and health center facilities are significant at α = 5%. With LISA test, sub districts in southern Bekasi have high dependencies with Cikarang Selatan, Serang Baru, and Setu. This research also builds development application that is based on java and R to support data analysis.

  7. Local Linear Regression for Data with AR Errors.

    PubMed

    Li, Runze; Li, Yan

    2009-07-01

    In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.

  8. Is a matrix exponential specification suitable for the modeling of spatial correlation structures?

    PubMed Central

    Strauß, Magdalena E.; Mezzetti, Maura; Leorato, Samantha

    2018-01-01

    This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms. PMID:29492375

  9. Compression of head-related transfer function using autoregressive-moving-average models and Legendre polynomials.

    PubMed

    Shekarchi, Sayedali; Hallam, John; Christensen-Dalsgaard, Jakob

    2013-11-01

    Head-related transfer functions (HRTFs) are generally large datasets, which can be an important constraint for embedded real-time applications. A method is proposed here to reduce redundancy and compress the datasets. In this method, HRTFs are first compressed by conversion into autoregressive-moving-average (ARMA) filters whose coefficients are calculated using Prony's method. Such filters are specified by a few coefficients which can generate the full head-related impulse responses (HRIRs). Next, Legendre polynomials (LPs) are used to compress the ARMA filter coefficients. LPs are derived on the sphere and form an orthonormal basis set for spherical functions. Higher-order LPs capture increasingly fine spatial details. The number of LPs needed to represent an HRTF, therefore, is indicative of its spatial complexity. The results indicate that compression ratios can exceed 98% while maintaining a spectral error of less than 4 dB in the recovered HRTFs.

  10. Clustering of financial time series

    NASA Astrophysics Data System (ADS)

    D'Urso, Pierpaolo; Cappelli, Carmela; Di Lallo, Dario; Massari, Riccardo

    2013-05-01

    This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.

  11. Mean-variance portfolio optimization by using time series approaches based on logarithmic utility function

    NASA Astrophysics Data System (ADS)

    Soeryana, E.; Fadhlina, N.; Sukono; Rusyaman, E.; Supian, S.

    2017-01-01

    Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on logarithmic utility function. Non constant mean analysed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analysed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyse some Islamic stocks in Indonesia. The expected result is to get the proportion of investment in each Islamic stock analysed.

  12. Mean-Variance portfolio optimization by using non constant mean and volatility based on the negative exponential utility function

    NASA Astrophysics Data System (ADS)

    Soeryana, Endang; Halim, Nurfadhlina Bt Abdul; Sukono, Rusyaman, Endang; Supian, Sudradjat

    2017-03-01

    Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on the Negative Exponential Utility Function. Non constant mean analyzed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analyzed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyze some stocks in Indonesia. The expected result is to get the proportion of investment in each stock analyzed

  13. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan

    PubMed Central

    Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju

    2016-01-01

    This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (−) and one month ago (−)), and average relative humidity (current and 9 months ago (−)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future. PMID:26848675

  14. Directionality volatility in electroencephalogram time series

    NASA Astrophysics Data System (ADS)

    Mansor, Mahayaudin M.; Green, David A.; Metcalfe, Andrew V.

    2016-06-01

    We compare time series of electroencephalograms (EEGs) from healthy volunteers with EEGs from subjects diagnosed with epilepsy. The EEG time series from the healthy group are recorded during awake state with their eyes open and eyes closed, and the records from subjects with epilepsy are taken from three different recording regions of pre-surgical diagnosis: hippocampal, epileptogenic and seizure zone. The comparisons for these 5 categories are in terms of deviations from linear time series models with constant variance Gaussian white noise error inputs. One feature investigated is directionality, and how this can be modelled by either non-linear threshold autoregressive models or non-Gaussian errors. A second feature is volatility, which is modelled by Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) processes. Other features include the proportion of variability accounted for by time series models, and the skewness and the kurtosis of the residuals. The results suggest these comparisons may have diagnostic potential for epilepsy and provide early warning of seizures.

  15. Wavelet regression model in forecasting crude oil price

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  16. Representation of high frequency Space Shuttle data by ARMA algorithms and random response spectra

    NASA Technical Reports Server (NTRS)

    Spanos, P. D.; Mushung, L. J.

    1990-01-01

    High frequency Space Shuttle lift-off data are treated by autoregressive (AR) and autoregressive-moving-average (ARMA) digital algorithms. These algorithms provide useful information on the spectral densities of the data. Further, they yield spectral models which lend themselves to incorporation to the concept of the random response spectrum. This concept yields a reasonably smooth power spectrum for the design of structural and mechanical systems when the available data bank is limited. Due to the non-stationarity of the lift-off event, the pertinent data are split into three slices. Each of the slices is associated with a rather distinguishable phase of the lift-off event, where stationarity can be expected. The presented results are rather preliminary in nature; it is aimed to call attention to the availability of the discussed digital algorithms and to the need to augment the Space Shuttle data bank as more flights are completed.

  17. Marital satisfaction and maternal depressive symptoms among Korean mothers transitioning to parenthood.

    PubMed

    Choi, Eunsil

    2016-06-01

    Although many empirical findings support associations between marital satisfaction and depressive symptoms, gaps remain in our understanding of the magnitude and direction of the associations between marital satisfaction and depressive symptoms as well as the associations in a collectivistic culture. The present study examined autoregressive cross-lagged associations between marital satisfaction and maternal depressive symptoms across a 3-year investigation in a sample of Korean mothers transitioning to parenthood. The sample consisted of 2,078 mothers in the Panel Study of Korean Children. The mothers reported marital satisfaction and maternal depressive symptoms annually for 3 years. The results of an autoregressive cross-lagged model revealed bidirectional associations between marital satisfaction and maternal depressive symptoms. The findings provide evidence of an interactional model of depression in a sample of Korean mothers. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains

    PubMed Central

    Krumin, Michael; Shoham, Shy

    2010-01-01

    Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705

  19. Nonlinear Autoregressive Exogenous modeling of a large anaerobic digester producing biogas from cattle waste.

    PubMed

    Dhussa, Anil K; Sambi, Surinder S; Kumar, Shashi; Kumar, Sandeep; Kumar, Surendra

    2014-10-01

    In waste-to-energy plants, there is every likelihood of variations in the quantity and characteristics of the feed. Although intermediate storage tanks are used, but many times these are of inadequate capacity to dampen the variations. In such situations an anaerobic digester treating waste slurry operates under dynamic conditions. In this work a special type of dynamic Artificial Neural Network model, called Nonlinear Autoregressive Exogenous model, is used to model the dynamics of anaerobic digesters by using about one year data collected on the operating digesters. The developed model consists of two hidden layers each having 10 neurons, and uses 18days delay. There are five neurons in input layer and one neuron in output layer for a day. Model predictions of biogas production rate are close to plant performance within ±8% deviation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures

    NASA Astrophysics Data System (ADS)

    Yao, Ruigen; Pakzad, Shamim N.

    2012-08-01

    Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.

  1. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan.

    PubMed

    Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju

    2016-02-03

    This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (-) and one month ago (-)), and average relative humidity (current and 9 months ago (-)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future.

  2. Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation

    NASA Astrophysics Data System (ADS)

    Uilhoorn, F. E.

    2016-10-01

    In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.

  3. Advanced Silicon Photonic Transceivers - the Case of a Wavelength Division and Polarization Multiplexed Quadrature Phase Shift Keying Receiver for Terabit/s Optical Transmission

    DTIC Science & Technology

    2017-03-10

    formats by the co- integration of a passive 90 degree optical hybrid, highspeed balanced Ge photodetectors and a high-speed two-channel transimpedance...40 Gbaud and can handle advanced modulation formats by the co-integration of a passive 90 degree optical hybrid, high- speed balanced Ge...reached at an OSNR of 12.4 dB. The hard -decision FEC (HD-FEC) threshold (BER of 3.8 × 10-3 for 7% overhead) requires 14 dB OSNR. For 16-QAM this requires

  4. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy.

    PubMed

    Xu, Lizhi; Gutbrod, Sarah R; Ma, Yinji; Petrossians, Artin; Liu, Yuhao; Webb, R Chad; Fan, Jonathan A; Yang, Zijian; Xu, Renxiao; Whalen, John J; Weiland, James D; Huang, Yonggang; Efimov, Igor R; Rogers, John A

    2015-03-11

    Advanced materials and fractal design concepts form the basis of a 3D conformal electronic platform with unique capabilities in cardiac electrotherapies. Fractal geometries, advanced electrode materials, and thin, elastomeric membranes yield a class of device capable of integration with the entire 3D surface of the heart, with unique operational capabilities in low power defibrillation. Co-integrated collections of sensors allow simultaneous monitoring of physiological responses. Animal experiments on Langendorff-perfused rabbit hearts demonstrate the key features of these systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Site-Specific Recombination at XerC/D Sites Mediates the Formation and Resolution of Plasmid Co-integrates Carrying a blaOXA-58- and TnaphA6-Resistance Module in Acinetobacter baumannii

    PubMed Central

    Cameranesi, María M.; Morán-Barrio, Jorgelina; Limansky, Adriana S.; Repizo, Guillermo D.; Viale, Alejandro M.

    2018-01-01

    Members of the genus Acinetobacter possess distinct plasmid types which provide effective platforms for the acquisition, evolution, and dissemination of antimicrobial resistance structures. Many plasmid-borne resistance structures are bordered by short DNA sequences providing potential recognition sites for the host XerC and XerD site-specific tyrosine recombinases (XerC/D-like sites). However, whether these sites are active in recombination and how they assist the mobilization of associated resistance structures is still poorly understood. Here we characterized the plasmids carried by Acinetobacter baumannii Ab242, a multidrug-resistant clinical strain belonging to the ST104 (Oxford scheme) which produces an OXA-58 carbapenem-hydrolyzing class-D β-lactamase (CHDL). Plasmid sequencing and characterization of replication, stability, and adaptive modules revealed the presence in Ab242 of three novel plasmids lacking self-transferability functions which were designated pAb242_9, pAb242_12, and pAb242_25, respectively. Among them, only pAb242_25 was found to carry an adaptive module encompassing an ISAba825-blaOXA-58 arrangement accompanied by a TnaphA6 transposon, the whole structure conferring simultaneous resistance to carbapenems and aminoglycosides. Ab242 plasmids harbor several XerC/D-like sites, with most sites found in pAb242_25 located in the vicinity or within the adaptive module described above. Electrotransformation of susceptible A. nosocomialis cells with Ab242 plasmids followed by imipenem selection indicated that the transforming plasmid form was a co-integrate resulting from the fusion of pAb242_25 and pAb242_12. Further characterization by cloning and sequencing studies indicated that a XerC/D site in pAb242_25 and another in pAb242_12 provided the active sister pair for the inter-molecular site-specific recombination reaction mediating the fusion of these two plasmids. Moreover, the resulting co-integrate was found also to undergo intra-molecular resolution at the new pair of XerC/D sites generated during fusion thus regenerating the original pAb242_25 and pAb242_12 plasmids. These observations provide the first evidence indicating that XerC/D-like sites in A. baumannii plasmids can provide active pairs for site-specific recombination mediating inter-molecular fusions and intra-molecular resolutions. The overall results shed light on the evolutionary dynamics of A. baumannii plasmids and the underlying mechanisms of dissemination of genetic structures responsible for carbapenem and other antibiotics resistance among the Acinetobacter clinical population. PMID:29434581

  6. Comparison between stochastic and machine learning methods for hydrological multi-step ahead forecasting: All forecasts are wrong!

    NASA Astrophysics Data System (ADS)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2017-04-01

    Machine learning (ML) is considered to be a promising approach to hydrological processes forecasting. We conduct a comparison between several stochastic and ML point estimation methods by performing large-scale computational experiments based on simulations. The purpose is to provide generalized results, while the respective comparisons in the literature are usually based on case studies. The stochastic methods used include simple methods, models from the frequently used families of Autoregressive Moving Average (ARMA), Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Exponential Smoothing models. The ML methods used are Random Forests (RF), Support Vector Machines (SVM) and Neural Networks (NN). The comparison refers to the multi-step ahead forecasting properties of the methods. A total of 20 methods are used, among which 9 are the ML methods. 12 simulation experiments are performed, while each of them uses 2 000 simulated time series of 310 observations. The time series are simulated using stochastic processes from the families of ARMA and ARFIMA models. Each time series is split into a fitting (first 300 observations) and a testing set (last 10 observations). The comparative assessment of the methods is based on 18 metrics, that quantify the methods' performance according to several criteria related to the accurate forecasting of the testing set, the capturing of its variation and the correlation between the testing and forecasted values. The most important outcome of this study is that there is not a uniformly better or worse method. However, there are methods that are regularly better or worse than others with respect to specific metrics. It appears that, although a general ranking of the methods is not possible, their classification based on their similar or contrasting performance in the various metrics is possible to some extent. Another important conclusion is that more sophisticated methods do not necessarily provide better forecasts compared to simpler methods. It is pointed out that the ML methods do not differ dramatically from the stochastic methods, while it is interesting that the NN, RF and SVM algorithms used in this study offer potentially very good performance in terms of accuracy. It should be noted that, although this study focuses on hydrological processes, the results are of general scientific interest. Another important point in this study is the use of several methods and metrics. Using fewer methods and fewer metrics would have led to a very different overall picture, particularly if those fewer metrics corresponded to fewer criteria. For this reason, we consider that the proposed methodology is appropriate for the evaluation of forecasting methods.

  7. Generalized seasonal autoregressive integrated moving average models for count data with application to malaria time series with low case numbers.

    PubMed

    Briët, Olivier J T; Amerasinghe, Priyanie H; Vounatsou, Penelope

    2013-01-01

    With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases. Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.

  8. Drought Patterns Forecasting using an Auto-Regressive Logistic Model

    NASA Astrophysics Data System (ADS)

    del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.

    2014-12-01

    Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.

  9. Principal Dynamic Mode Analysis of the Hodgkin–Huxley Equations

    PubMed Central

    Eikenberry, Steffen E.; Marmarelis, Vasilis Z.

    2015-01-01

    We develop an autoregressive model framework based on the concept of Principal Dynamic Modes (PDMs) for the process of action potential (AP) generation in the excitable neuronal membrane described by the Hodgkin–Huxley (H–H) equations. The model's exogenous input is injected current, and whenever the membrane potential output exceeds a specified threshold, it is fed back as a second input. The PDMs are estimated from the previously developed Nonlinear Autoregressive Volterra (NARV) model, and represent an efficient functional basis for Volterra kernel expansion. The PDM-based model admits a modular representation, consisting of the forward and feedback PDM bases as linear filterbanks for the exogenous and autoregressive inputs, respectively, whose outputs are then fed to a static nonlinearity composed of polynomials operating on the PDM outputs and cross-terms of pair-products of PDM outputs. A two-step procedure for model reduction is performed: first, influential subsets of the forward and feedback PDM bases are identified and selected as the reduced PDM bases. Second, the terms of the static nonlinearity are pruned. The first step reduces model complexity from a total of 65 coefficients to 27, while the second further reduces the model coefficients to only eight. It is demonstrated that the performance cost of model reduction in terms of out-of-sample prediction accuracy is minimal. Unlike the full model, the eight coefficient pruned model can be easily visualized to reveal the essential system components, and thus the data-derived PDM model can yield insight into the underlying system structure and function. PMID:25630480

  10. Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers

    PubMed Central

    Briët, Olivier J. T.; Amerasinghe, Priyanie H.; Vounatsou, Penelope

    2013-01-01

    Introduction With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases. Methods Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. Results The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. Conclusions G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low. PMID:23785448

  11. Population Explosions of Tiger Moth Lead to Lepidopterism Mimicking Infectious Fever Outbreaks

    PubMed Central

    Wills, Pallara Janardhanan; Anjana, Mohan; Nitin, Mohan; Varun, Raghuveeran; Sachidanandan, Parayil; Jacob, Tharaniyil Mani; Lilly, Madhavan; Thampan, Raghava Varman; Karthikeya Varma, Koyikkal

    2016-01-01

    Lepidopterism is a disease caused by the urticating scales and toxic fluids of adult moths, butterflies or its caterpillars. The resulting cutaneous eruptions and systemic problems progress to clinical complications sometimes leading to death. High incidence of fever epidemics were associated with massive outbreaks of tiger moth Asota caricae adult populations during monsoon in Kerala, India. A significant number of monsoon related fever characteristic to lepidopterism was erroneously treated as infectious fevers due to lookalike symptoms. To diagnose tiger moth lepidopterism, we conducted immunoblots for tiger moth specific IgE in fever patients’ sera. We selected a cohort of patients (n = 155) with hallmark symptoms of infectious fevers but were tested negative to infectious fevers. In these cases, the total IgE was elevated and was detected positive (78.6%) for tiger moth specific IgE allergens. Chemical characterization of caterpillar and adult moth fluids was performed by HPLC and GC-MS analysis and structural identification of moth scales was performed by SEM analysis. The body fluids and chitinous scales were found to be highly toxic and inflammatory in nature. To replicate the disease in experimental model, wistar rats were exposed to live tiger moths in a dose dependant manner and observed similar clinico-pathological complications reported during the fever epidemics. Further, to link larval abundance and fever epidemics we conducted cointegration test for the period 2009 to 2012 and physical presence of the tiger moths were found to be cointegrated with fever epidemics. In conclusion, our experiments demonstrate that inhalation of aerosols containing tiger moth fluids, scales and hairs cause systemic reactions that can be fatal to human. All these evidences points to the possible involvement of tiger moth disease as a major cause to the massive and fatal fever epidemics observed in Kerala. PMID:27073878

  12. Comparison of the Effects of Public and Private Health Expenditures on the Health Status: A Panel Data Analysis in Eastern Mediterranean Countries

    PubMed Central

    Homaie Rad, Enayatollah; Vahedi, Sajad; Teimourizad, Abedin; Esmaeilzadeh, Firooz; Hadian, Mohamad; Torabi Pour, Amin

    2013-01-01

    Background: Health expenditures are divided in two parts of public and private health expenditures. Public health expenditures contain social security spending, taxing to private and public sectors, and foreign resources like loans and subventions. On the other hand, private health expenditures contain out of pocket expenditures and private insurances. Each of these has different effects on the health status. The present study aims to compare the effects of these expenditures on health in Eastern Mediterranean Region (EMR). Methods: In this study, infant mortality rate was considered as an indicator of health status. We estimated the model using the panel data of EMR countries between 1995 and 2010. First, we used Pesaran CD test followed by Pesaran’s CADF unit root test. After the confirmation of having unit root, we used Westerlund panel cointegration test and found that the model was cointegrated and then after using Hausman and Breusch-Pagan tests, we estimated the model using the random effects. Results: The results showed that the public health expenditures had a strong negative relationship with infant mortality rate. However, a positive relationship was found between the private health expenditures and infant mortality rate (IMR). The relationship for public health expenditures was significant, but for private health expenditures was not. Conclusion: The study findings showed that the public health expenditures in the EMR countries improved health outcome, while the private health expenditures did not have any significant relationship with health status, so often increasing the public health expenditures leads to reduce IMR. But this relationship was not significant because of contradictory effects for poor and wealthy peoples. PMID:24596857

  13. Packaged integrated opto-fluidic solution for harmful fluid analysis

    NASA Astrophysics Data System (ADS)

    Allenet, T.; Bucci, D.; Geoffray, F.; Canto, F.; Couston, L.; Jardinier, E.; Broquin, J.-E.

    2016-02-01

    Advances in nuclear fuel reprocessing have led to a surging need for novel chemical analysis tools. In this paper, we present a packaged lab-on-chip approach with co-integration of optical and micro-fluidic functions on a glass substrate as a solution. A chip was built and packaged to obtain light/fluid interaction in order for the entire device to make spectral measurements using the photo spectroscopy absorption principle. The interaction between the analyte solution and light takes place at the boundary between a waveguide and a fluid micro-channel thanks to the evanescent part of the waveguide's guided mode that propagates into the fluid. The waveguide was obtained via ion exchange on a glass wafer. The input and the output of the waveguides were pigtailed with standard single mode optical fibers. The micro-scale fluid channel was elaborated with a lithography procedure and hydrofluoric acid wet etching resulting in a 150+/-8 μm deep channel. The channel was designed with fluidic accesses, in order for the chip to be compatible with commercial fluidic interfaces/chip mounts. This allows for analyte fluid in external capillaries to be pumped into the device through micro-pipes, hence resulting in a fully packaged chip. In order to produce this co-integrated structure, two substrates were bonded. A study of direct glass wafer-to-wafer molecular bonding was carried-out to improve detector sturdiness and durability and put forward a bonding protocol with a bonding surface energy of γ>2.0 J.m-2. Detector viability was shown by obtaining optical mode measurements and detecting traces of 1.2 M neodymium (Nd) solute in 12+/-1 μL of 0.01 M and pH 2 nitric acid (HNO3) solvent by obtaining an absorption peak specific to neodymium at 795 nm.

  14. Comparison of the effects of public and private health expenditures on the health status: a panel data analysis in eastern mediterranean countries.

    PubMed

    Homaie Rad, Enayatollah; Vahedi, Sajad; Teimourizad, Abedin; Esmaeilzadeh, Firooz; Hadian, Mohamad; Torabi Pour, Amin

    2013-08-01

    Health expenditures are divided in two parts of public and private health expenditures. Public health expenditures contain social security spending, taxing to private and public sectors, and foreign resources like loans and subventions. On the other hand, private health expenditures contain out of pocket expenditures and private insurances. Each of these has different effects on the health status. The present study aims to compare the effects of these expenditures on health in Eastern Mediterranean Region (EMR). In this study, infant mortality rate was considered as an indicator of health status. We estimated the model using the panel data of EMR countries between 1995 and 2010. First, we used Pesaran CD test followed by Pesaran's CADF unit root test. After the confirmation of having unit root, we used Westerlund panel cointegration test and found that the model was cointegrated and then after using Hausman and Breusch-Pagan tests, we estimated the model using the random effects. The results showed that the public health expenditures had a strong negative relationship with infant mortality rate. However, a positive relationship was found between the private health expenditures and infant mortality rate (IMR). The relationship for public health expenditures was significant, but for private health expenditures was not. The study findings showed that the public health expenditures in the EMR countries improved health outcome, while the private health expenditures did not have any significant relationship with health status, so often increasing the public health expenditures leads to reduce IMR. But this relationship was not significant because of contradictory effects for poor and wealthy peoples.

  15. Nuclear hormone receptor coregulator: role in hormone action, metabolism, growth, and development.

    PubMed

    Mahajan, Muktar A; Samuels, Herbert H

    2005-06-01

    Nuclear hormone receptor coregulator (NRC) (also referred to as activating signal cointegrator-2, thyroid hormone receptor-binding protein, peroxisome proliferator activating receptor-interacting protein, and 250-kDa receptor associated protein) belongs to a growing class of nuclear cofactors widely known as coregulators or coactivators that are necessary for transcriptional activation of target genes. The NRC gene is also amplified and overexpressed in breast, colon, and lung cancers. NRC is a 2063-amino acid protein that harbors a potent N-terminal activation domain (AD1) and a second more centrally located activation domain (AD2) that is rich in Glu and Pro. Near AD2 is a receptor-interacting domain containing an LxxLL motif (LxxLL-1), which interacts with a wide variety of ligand-bound nuclear hormone receptors with high affinity. A second LxxLL motif (LxxLL-2) located in the C-terminal region of NRC is more restricted in its nuclear hormone receptor specificity. The intrinsic activation potential of NRC is regulated by a C-terminal serine, threonine, leucine-regulatory domain. The potential role of NRC as a cointegrator is suggested by its ability to enhance transcriptional activation of a wide variety of transcription factors and from its in vivo association with a number of known transcriptional regulators including CBP/p300. Recent studies in mice indicate that deletion of both NRC alleles leads to embryonic lethality resulting from general growth retardation coupled with developmental defects in the heart, liver, brain, and placenta. NRC(-/-) mouse embryo fibroblasts spontaneously undergo apoptosis, indicating the importance of NRC as a prosurvival and antiapoptotic gene. Studies with 129S6 NRC(+/-) mice indicate that NRC is a pleiotropic regulator that is involved in growth, development, reproduction, metabolism, and wound healing.

  16. Characterization of IntA, a Bidirectional Site-Specific Recombinase Required for Conjugative Transfer of the Symbiotic Plasmid of Rhizobium etli CFN42

    PubMed Central

    Hernández-Tamayo, Rogelio; Sohlenkamp, Christian; Puente, José Luis; Brom, Susana

    2013-01-01

    Site-specific recombination occurs at short specific sequences, mediated by the cognate recombinases. IntA is a recombinase from Rhizobium etli CFN42 and belongs to the tyrosine recombinase family. It allows cointegration of plasmid p42a and the symbiotic plasmid via site-specific recombination between attachment regions (attA and attD) located in each replicon. Cointegration is needed for conjugative transfer of the symbiotic plasmid. To characterize this system, two plasmids harboring the corresponding attachment sites and intA were constructed. Introduction of these plasmids into R. etli revealed IntA-dependent recombination events occurring at high frequency. Interestingly, IntA promotes not only integration, but also excision events, albeit at a lower frequency. Thus, R. etli IntA appears to be a bidirectional recombinase. IntA was purified and used to set up electrophoretic mobility shift assays with linear fragments containing attA and attD. IntA-dependent retarded complexes were observed only with fragments containing either attA or attD. Specific retarded complexes, as well as normal in vivo recombination abilities, were seen even in derivatives harboring only a minimal attachment region (comprising the 5-bp central region flanked by 9- to 11-bp inverted repeats). DNase I-footprinting assays with IntA revealed specific protection of these zones. Mutations that disrupt the integrity of the 9- to 11-bp inverted repeats abolish both specific binding and recombination ability, while mutations in the 5-bp central region severely reduce both binding and recombination. These results show that IntA is a bidirectional recombinase that binds to att regions without requiring neighboring sequences as enhancers of recombination. PMID:23935046

  17. The Multigroup Multilevel Categorical Latent Growth Curve Models

    ERIC Educational Resources Information Center

    Hung, Lai-Fa

    2010-01-01

    Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…

  18. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore

    PubMed Central

    Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S.Y.; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R.

    2015-01-01

    Background: With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. Objectives: We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. Methods: We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Results: Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore’s dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Conclusions: Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Citation: Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369–1375; http://dx.doi.org/10.1289/ehp.1509981 PMID:26662617

  19. Essays in the California electricity reserves markets

    NASA Astrophysics Data System (ADS)

    Metaxoglou, Konstantinos

    This dissertation examines inefficiencies in the California electricity reserves markets. In Chapter 1, I use the information released during the investigation of the state's electricity crisis of 2000 and 2001 by the Federal Energy Regulatory Commission to diagnose allocative inefficiencies. Building upon the work of Wolak (2000), I calculate a lower bound for the sellers' price-cost margins using the inverse elasticities of their residual demand curves. The downward bias in my estimates stems from the fact that I don't account for the hierarchical substitutability of the reserve types. The margins averaged at least 20 percent for the two highest quality types of reserves, regulation and spinning, generating millions of dollars in transfers to a handful of sellers. I provide evidence that the deviations from marginal cost pricing were due to the markets' high concentration and a principal-agent relationship that emerged from their design. In Chapter 2, I document systematic differences between the markets' day- and hour-ahead prices. I use a high-dimensional vector moving average model to estimate the premia and conduct correct inferences. To obtain exact maximum likelihood estimates of the model, I employ the EM algorithm that I develop in Chapter 3. I uncover significant day-ahead premia, which I attribute to market design characteristics too. On the demand side, the market design established a principal-agent relationship between the markets' buyers (principal) and their supervisory authority (agent). The agent had very limited incentives to shift reserve purchases to the lower priced hour-ahead markets. On the supply side, the market design raised substantial entry barriers by precluding purely speculative trading and by introducing a complicated code of conduct that induced uncertainty about which actions were subject to regulatory scrutiny. In Chapter 3, I introduce a state-space representation for vector autoregressive moving average models that enables exact maximum likelihood estimation using the EM algorithm. Moreover, my algorithm uses only analytical expressions; it requires the Kalman filter and a fixed-interval smoother in the E step and least squares-type regression in the M step. In contrast, existing maximum likelihood estimation methods require numerical differentiation, both for univariate and multivariate models.

  20. Profiling physicochemical and planktonic features from discretely/continuously sampled surface water.

    PubMed

    Oita, Azusa; Tsuboi, Yuuri; Date, Yasuhiro; Oshima, Takahiro; Sakata, Kenji; Yokoyama, Akiko; Moriya, Shigeharu; Kikuchi, Jun

    2018-04-24

    There is an increasing need for assessing aquatic ecosystems that are globally endangered. Since aquatic ecosystems are complex, integrated consideration of multiple factors utilizing omics technologies can help us better understand aquatic ecosystems. An integrated strategy linking three analytical (machine learning, factor mapping, and forecast-error-variance decomposition) approaches for extracting the features of surface water from datasets comprising ions, metabolites, and microorganisms is proposed herein. The three developed approaches can be employed for diverse datasets of sample sizes and experimentally analyzed factors. The three approaches are applied to explore the features of bay water surrounding Odaiba, Tokyo, Japan, as a case study. Firstly, the machine learning approach separated 681 surface water samples within Japan into three clusters, categorizing Odaiba water into seawater with relatively low inorganic ions, including Mg, Ba, and B. Secondly, the factor mapping approach illustrated Odaiba water samples from the summer as rich in multiple amino acids and some other metabolites and poor in inorganic ions relative to other seasons based on their seasonal dynamics. Finally, forecast-error-variance decomposition using vector autoregressive models indicated that a type of microalgae (Raphidophyceae) grows in close correlation with alanine, succinic acid, and valine on filters and with isobutyric acid and 4-hydroxybenzoic acid in filtrate, Ba, and average wind speed. Our integrated strategy can be used to examine many biological, chemical, and environmental physical factors to analyze surface water. Copyright © 2018. Published by Elsevier B.V.

  1. Fragmentation, integration and macroprudential surveillance of the US financial industry: Insights from network science

    PubMed Central

    Geraci, Marco Valerio; Béreau, Sophie; Gnabo, Jean-Yves

    2018-01-01

    Drawing on recent contributions inferring financial interconnectedness from market data, our paper provides new insights on the evolution of the US financial industry over a long period of time by using several tools coming from network science. Relying on a Time-Varying Parameter Vector AutoRegressive (TVP-VAR) approach on stock market returns to retrieve unobserved directed links among financial institutions, we reconstruct a fully dynamic network in the sense that connections are let to evolve through time. The financial system analysed consists of a large set of 155 financial institutions that are all the banks, broker-dealers, insurance and real estate companies listed in the Standard & Poors’ 500 index over the 1993–2014 period. Looking alternatively at the individual, then sector-, community- and system-wide levels, we show that network sciences’ tools are able to support well-known features of the financial markets such as the dramatic fall of connectivity following Lehman Brothers’ collapse. More importantly, by means of less traditional metrics, such as sectoral interface or measurements based on contagion processes, our results document the co-existence of both fragmentation and integration phases between firms independently from the sectors they belong to, and doing so, question the relevance of existing macroprudential surveillance frameworks which have been mostly developed on a sectoral basis. Overall, our results improve our understanding of the US financial landscape and may have important implications for risk monitoring as well as macroprudential policy design. PMID:29694415

  2. Fragmentation, integration and macroprudential surveillance of the US financial industry: Insights from network science.

    PubMed

    Gandica, Yerali; Geraci, Marco Valerio; Béreau, Sophie; Gnabo, Jean-Yves

    2018-01-01

    Drawing on recent contributions inferring financial interconnectedness from market data, our paper provides new insights on the evolution of the US financial industry over a long period of time by using several tools coming from network science. Relying on a Time-Varying Parameter Vector AutoRegressive (TVP-VAR) approach on stock market returns to retrieve unobserved directed links among financial institutions, we reconstruct a fully dynamic network in the sense that connections are let to evolve through time. The financial system analysed consists of a large set of 155 financial institutions that are all the banks, broker-dealers, insurance and real estate companies listed in the Standard & Poors' 500 index over the 1993-2014 period. Looking alternatively at the individual, then sector-, community- and system-wide levels, we show that network sciences' tools are able to support well-known features of the financial markets such as the dramatic fall of connectivity following Lehman Brothers' collapse. More importantly, by means of less traditional metrics, such as sectoral interface or measurements based on contagion processes, our results document the co-existence of both fragmentation and integration phases between firms independently from the sectors they belong to, and doing so, question the relevance of existing macroprudential surveillance frameworks which have been mostly developed on a sectoral basis. Overall, our results improve our understanding of the US financial landscape and may have important implications for risk monitoring as well as macroprudential policy design.

  3. Identifying the multiscale impacts of crude oil price shocks on the stock market in China at the sector level

    NASA Astrophysics Data System (ADS)

    Huang, Shupei; An, Haizhong; Gao, Xiangyun; Huang, Xuan

    2015-09-01

    The aim of this research is to investigate the multiscale dynamic linkages between crude oil price and the stock market in China at the sector level. First, the Haar à trous wavelet transform is implemented to extract multiscale information from the original time series. Furthermore, we incorporate the vector autoregression model to estimate the dynamic relationship pairing the Brent oil price and each sector stock index at each scale. There is a strong evidence showing that there are bidirectional Granger causality relationships between most of the sector stock indices and the crude oil price in the short, medium and long terms, except for those in the health, utility and consumption sectors. In fact, the impacts of the crude oil price shocks vary for different sectors over different time horizons. More precisely, the energy, information, material and telecommunication sector stock indices respond to crude oil price shocks negatively in the short run and positively in the medium and long runs, terms whereas the finance sector responds positively over all three time horizons. Moreover, the Brent oil price shocks have a stronger influence on the stock indices of sectors other than the health, optional and utility sectors in the medium and long terms than in the short term. The results obtained suggest implication of this paper as that the investment and policymaking decisions made during different time horizons should be based on the information gathered from each corresponding time scale.

  4. Dynamic networks of PTSD symptoms during conflict.

    PubMed

    Greene, Talya; Gelkopf, Marc; Epskamp, Sacha; Fried, Eiko

    2018-02-28

    Conceptualizing posttraumatic stress disorder (PTSD) symptoms as a dynamic system of causal elements could provide valuable insights into the way that PTSD develops and is maintained in traumatized individuals. We present the first study to apply a multilevel network model to produce an exploratory empirical conceptualization of dynamic networks of PTSD symptoms, using data collected during a period of conflict. Intensive longitudinal assessment data were collected during the Israel-Gaza War in July-August 2014. The final sample (n = 96) comprised a general population sample of Israeli adult civilians exposed to rocket fire. Participants completed twice-daily reports of PTSD symptoms via smartphone for 30 days. We used a multilevel vector auto-regression model to produce contemporaneous and temporal networks, and a partial correlation network model to obtain a between-subjects network. Multilevel network analysis found strong positive contemporaneous associations between hypervigilance and startle response, avoidance of thoughts and avoidance of reminders, and between flashbacks and emotional reactivity. The temporal network indicated the central role of startle response as a predictor of future PTSD symptomatology, together with restricted affect, blame, negative emotions, and avoidance of thoughts. There were some notable differences between the temporal and contemporaneous networks, including the presence of a number of negative associations, particularly from blame. The between-person network indicated flashbacks and emotional reactivity to be the most central symptoms. This study suggests various symptoms that could potentially be driving the development of PTSD. We discuss clinical implications such as identifying particular symptoms as targets for interventions.

  5. Recursive regularization for inferring gene networks from time-course gene expression profiles

    PubMed Central

    Shimamura, Teppei; Imoto, Seiya; Yamaguchi, Rui; Fujita, André; Nagasaki, Masao; Miyano, Satoru

    2009-01-01

    Background Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives. Results By incorporating relative importance of the VAR coefficients into the elastic net, we propose a new class of regularization, called recursive elastic net, to increase the capability of the elastic net and estimate gene networks based on the VAR model. The recursive elastic net can reduce the number of false positives gradually by updating the importance. Numerical simulations and comparisons demonstrate that the proposed method succeeds in reducing the number of false positives drastically while keeping the high number of true positives in the network inference and achieves two or more times higher true discovery rate (the proportion of true positives among the selected edges) than the competing methods even when the number of time points is small. We also compared our method with various reverse-engineering algorithms on experimental data of MCF-7 breast cancer cells stimulated with two ErbB ligands, EGF and HRG. Conclusion The recursive elastic net is a powerful tool for inferring gene networks from time-course gene expression profiles. PMID:19386091

  6. Predicting the number of emergency department presentations in Western Australia: a population-based time series analysis.

    PubMed

    Mai, Qun; Aboagye-Sarfo, Patrick; Sanfilippo, Frank M; Preen, David B; Fatovich, Daniel M

    2015-02-01

    To predict the number of ED presentations in Western Australia (WA) in the next 5 years, stratified by place of treatment, age, triage and disposition. We conducted a population-based time series analysis of 7 year monthly WA statewide ED presentation data from the financial years 2006/07 to 2012/13 using univariate autoregressive integrated moving average (ARIMA) and multivariate vector-ARIMA techniques. ED presentations in WA were predicted to increase from 990,342 in 2012/13 to 1,250,991 (95% CI: 982,265-1,519,718) in 2017/18, an increase of 260,649 (or 26.3%). The majority of this increase would occur in metropolitan WA (84.2%). The compound annual growth rate (CAGR) in metropolitan WA in the next 5 years was predicted to be 6.5% compared with 2.0% in the non-metropolitan area. The greatest growth in metropolitan WA would be in ages 65 and over (CAGR, 6.9%), triage categories 2 and 3 (8.3% and 7.7%, respectively) and admitted (9.8%) cohorts. The only predicted decrease was triage category 5 (-5.3%). ED demand in WA will exceed population growth. The highest growth will be in patients with complex care needs. An integrated system-wide strategy is urgently required to ensure access, quality and sustainability of the health system. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  7. Dimension reduction of frequency-based direct Granger causality measures on short time series.

    PubMed

    Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris

    2017-09-01

    The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Temporal dynamics of physical activity and affect in depressed and nondepressed individuals.

    PubMed

    Stavrakakis, Nikolaos; Booij, Sanne H; Roest, Annelieke M; de Jonge, Peter; Oldehinkel, Albertine J; Bos, Elisabeth H

    2015-12-01

    The association between physical activity and affect found in longitudinal observational studies is generally small to moderate. It is unknown how this association generalizes to individuals. The aim of the present study was to investigate interindividual differences in the bidirectional dynamic relationship between physical activity and affect, in depressed and nondepressed individuals, using time-series analysis. A pair-matched sample of 10 depressed and 10 nondepressed participants (mean age = 36.6, SD = 8.9, 30% males) wore accelerometers and completed electronic questionnaires 3 times a day for 30 days. Physical activity was operationalized as the total energy expenditure (EE) per day segment (i.e., 6 hr). The multivariate time series (T = 90) of every individual were analyzed using vector autoregressive modeling (VAR), with the aim to assess direct as well as lagged (i.e., over 1 day) effects of EE on positive and negative affect, and vice versa. Large interindividual differences in the strength, direction and temporal aspects of the relationship between physical activity and positive and negative affect were observed. An exception was the direct (but not the lagged) effect of physical activity on positive affect, which was positive in nearly all individuals. This study showed that the association between physical activity and affect varied considerably across individuals. Thus, while at the group level the effect of physical activity on affect may be small, in some individuals the effect may be clinically relevant. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  9. Temporal relationships of emotional avoidance in a patient with anorexia nervosa--a time series analysis.

    PubMed

    Stroe-Kunold, Esther; Wesche, Daniela; Friederich, Hans-Christoph; Herzog, Wolfgang; Zastrow, Arne; Wild, Beate

    2012-01-01

    Anorexia nervosa (AN) is a serious eating disorder marked by self-induced underweight. In patients with AN, the avoidance of emotions appears to be a central feature that is reinforced during the acute state of the disorder. This single case study investigated the role of emotional avoidance of a 25-year-old patient with AN during her inpatient treatment. Throughout the course of 96 days, the patient answered questions daily about her emotional avoidance, pro-anorectic beliefs, perfectionism, and further variables on an electronic diary. The patient's daily self-assessment of emotional avoidance was described in terms of mean value, range, and variability for the various treatment phases. Temporal relationships between emotional avoidance and further variables were determined using a time series approach (vector autoregressive (VAR) modelling). Diary data reflect that the patient's ability to tolerate unpleasant emotions appeared to undergo a process of change during inpatient treatment. Results of the time series analysis indicate that the more the patient was able to deal with negative emotions on any one day (t-1), the less she would be socially avoidant, cognitively confined to food and eating, as well as feeling less secure with her AN, and less depressive on the following day (t). The findings show that for this patient emotional avoidance plays a central role in the interacting system of various psychosocial variables. Replication of these results in other patients with AN would support the recommendation to focus more on emotional regulation in the treatment of AN.

  10. Environmental filtering and land-use history drive patterns in biomass accumulation in a mediterranean-type landscape.

    PubMed

    Dahlin, Kyla M; Asner, Gregory P; Field, Christopher B

    2012-01-01

    Aboveground biomass (AGB) reflects multiple and often undetermined ecological and land-use processes, yet detailed landscape-level studies of AGB are uncommon due to the difficulty in making consistent measurements at ecologically relevant scales. Working in a protected mediterranean-type landscape (Jasper Ridge Biological Preserve, California, USA), we combined field measurements with remotely sensed data from the Carnegie Airborne Observatory's light detection and ranging (lidar) system to create a detailed AGB map. We then developed a predictive model using a maximum of 56 explanatory variables derived from geologic and historic-ownership maps, a digital elevation model, and geographic coordinates to evaluate possible controls over currently observed AGB patterns. We tested both ordinary least-squares regression (OLS) and autoregressive approaches. OLS explained 44% of the variation in AGB, and simultaneous autoregression with a 100-m neighborhood improved the fit to an r2 = 0.72, while reducing the number of significant predictor variables from 27 variables in the OLS model to 11 variables in the autoregressive model. We also compared the results from these approaches to a more typical field-derived data set; we randomly sampled 5% of the data 1000 times and used the same OLS approach each time. Environmental filters including incident solar radiation, substrate type, and topographic position were significant predictors of AGB in all models. Past ownership was a minor but significant predictor, despite the long history of conservation at the site. The weak predictive power of these environmental variables, and the significant improvement when spatial autocorrelation was incorporated, highlight the importance of land-use history, disturbance regime, and population dynamics as controllers of AGB.

  11. Real-time processing of radar return on a parallel computer

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1992-01-01

    NASA is working with the FAA to demonstrate the feasibility of pulse Doppler radar as a candidate airborne sensor to detect low altitude windshears. The need to provide the pilot with timely information about possible hazards has motivated a demand for real-time processing of a radar return. Investigated here is parallel processing as a means of accommodating the high data rates required. A PC based parallel computer, called the transputer, is used to investigate issues in real time concurrent processing of radar signals. A transputer network is made up of an array of single instruction stream processors that can be networked in a variety of ways. They are easily reconfigured and software development is largely independent of the particular network topology. The performance of the transputer is evaluated in light of the computational requirements. A number of algorithms have been implemented on the transputers in OCCAM, a language specially designed for parallel processing. These include signal processing algorithms such as the Fast Fourier Transform (FFT), pulse-pair, and autoregressive modelling, as well as routing software to support concurrency. The most computationally intensive task is estimating the spectrum. Two approaches have been taken on this problem, the first and most conventional of which is to use the FFT. By using table look-ups for the basis function and other optimizing techniques, an algorithm has been developed that is sufficient for real time. The other approach is to model the signal as an autoregressive process and estimate the spectrum based on the model coefficients. This technique is attractive because it does not suffer from the spectral leakage problem inherent in the FFT. Benchmark tests indicate that autoregressive modeling is feasible in real time.

  12. Spatial and temporal changes in the structure of groundwater nitrate concentration time series (1935 1999) as demonstrated by autoregressive modelling

    NASA Astrophysics Data System (ADS)

    Jones, A. L.; Smart, P. L.

    2005-08-01

    Autoregressive modelling is used to investigate the internal structure of long-term (1935-1999) records of nitrate concentration for five karst springs in the Mendip Hills. There is a significant short term (1-2 months) positive autocorrelation at three of the five springs due to the availability of sufficient nitrate within the soil store to maintain concentrations in winter recharge for several months. The absence of short term (1-2 months) positive autocorrelation in the other two springs is due to the marked contrast in land use between the limestone and swallet parts of the catchment, rapid concentrated recharge from the latter causing short term switching in the dominant water source at the spring and thus fluctuating nitrate concentrations. Significant negative autocorrelation is evident at lags varying from 4 to 7 months through to 14-22 months for individual springs, with positive autocorrelation at 19-20 months at one site. This variable timing is explained by moderation of the exhaustion effect in the soil by groundwater storage, which gives longer residence times in large catchments and those with a dominance of diffuse flow. The lags derived from autoregressive modelling may therefore provide an indication of average groundwater residence times. Significant differences in the structure of the autocorrelation function for successive 10-year periods are evident at Cheddar Spring, and are explained by the effect the ploughing up of grasslands during the Second World War and increased fertiliser usage on available nitrogen in the soil store. This effect is moderated by the influence of summer temperatures on rates of mineralization, and of both summer and winter rainfall on the timing and magnitude of nitrate leaching. The pattern of nitrate leaching also appears to have been perturbed by the 1976 drought.

  13. Forecast of Frost Days Based on Monthly Temperatures

    NASA Astrophysics Data System (ADS)

    Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.

    2009-04-01

    Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.

  14. Revisiting the environmental Kuznets curve hypothesis in a tourism development context.

    PubMed

    de Vita, Glauco; Katircioglu, Salih; Altinay, Levent; Fethi, Sami; Mercan, Mehmet

    2015-11-01

    This study investigates empirically an extended version of the Environmental Kuznets Curve model that controls for tourism development. We find that international tourist arrivals into Turkey alongside income, squared income and energy consumption, cointegrate with CO2 emissions. Tourist arrivals, growth, and energy consumption exert a positive and significant impact on CO2 emissions in the long-run. Our results provide empirical support to EKC hypothesis showing that at exponential levels of growth, CO2 emissions decline. The findings suggest that despite the environmental degradation stemming from tourism development, policies aimed at environmental protection should not be pursued at the expense of tourism-led growth.

  15. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  16. Model Identification of Integrated ARMA Processes

    ERIC Educational Resources Information Center

    Stadnytska, Tetiana; Braun, Simone; Werner, Joachim

    2008-01-01

    This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…

  17. Heterogeneous autoregressive model with structural break using nearest neighbor truncation volatility estimators for DAX.

    PubMed

    Chin, Wen Cheong; Lee, Min Cherng; Yap, Grace Lee Ching

    2016-01-01

    High frequency financial data modelling has become one of the important research areas in the field of financial econometrics. However, the possible structural break in volatile financial time series often trigger inconsistency issue in volatility estimation. In this study, we propose a structural break heavy-tailed heterogeneous autoregressive (HAR) volatility econometric model with the enhancement of jump-robust estimators. The breakpoints in the volatility are captured by dummy variables after the detection by Bai-Perron sequential multi breakpoints procedure. In order to further deal with possible abrupt jump in the volatility, the jump-robust volatility estimators are composed by using the nearest neighbor truncation approach, namely the minimum and median realized volatility. Under the structural break improvements in both the models and volatility estimators, the empirical findings show that the modified HAR model provides the best performing in-sample and out-of-sample forecast evaluations as compared with the standard HAR models. Accurate volatility forecasts have direct influential to the application of risk management and investment portfolio analysis.

  18. On the maximum-entropy/autoregressive modeling of time series

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1984-01-01

    The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.

  19. Impact of global financial crisis on precious metals returns: An application of ARCH and GARCH methods

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Tahir; Abdullah, Nurul Ain; Abdul Karim, Samsul Ariffin

    2013-04-01

    This paper is focusing on seeing the resilient of precious metals returns in facing the global financial crisis and provides a new guide for the investors before making investment decisions on precious metals. Four types of precious metals returns which are the variables selected in this study. The precious metals are gold, silver, bronze and platinum. All the variables are transferred to natural logarithm (ln). Daily data over the period 2 January 1995 to 30 December 2011 is used. Unit root tests that involve Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests have been employed in determining the stationarity of the variables. Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) methods have been applied in measuring the impact of global financial crisis on precious metals returns. The result shows that investing in platinum is less risky compared to the other precious metals because it is not influence by the crisis period.

  20. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation.

    PubMed

    Zhang, Xiangjun; Wu, Xiaolin

    2008-06-01

    The challenge of image interpolation is to preserve spatial details. We propose a soft-decision interpolation technique that estimates missing pixels in groups rather than one at a time. The new technique learns and adapts to varying scene structures using a 2-D piecewise autoregressive model. The model parameters are estimated in a moving window in the input low-resolution image. The pixel structure dictated by the learnt model is enforced by the soft-decision estimation process onto a block of pixels, including both observed and estimated. The result is equivalent to that of a high-order adaptive nonseparable 2-D interpolation filter. This new image interpolation approach preserves spatial coherence of interpolated images better than the existing methods, and it produces the best results so far over a wide range of scenes in both PSNR measure and subjective visual quality. Edges and textures are well preserved, and common interpolation artifacts (blurring, ringing, jaggies, zippering, etc.) are greatly reduced.

Top