Using cold air for reducing needle-injection pain.
Al-Qarqaz, Firas; Al-Aboosi, Mustafa; Al-shiyab, Diala; Al Dabbagh, Ziad
2012-07-01
Pain is associated with skin injections. Reducing injection-associated pain is important especially when multiple injections are needed in difficult areas, such as the palms. We present a new safe application for cold air used in laser therapy. The main objectives of this study are to see whether cold air can reduce needle-injection pain and to evaluate the safety of this new application. Patients undergoing skin injection (n=40) were included. Assessment of pain level using visual analog scale (VAS) was done using cold air and again without cold air in the same patient. Comparison of pain scores was performed. Thirty-three patients had lower VAS scores using cold air. Five patients had worse VAS scores, and two patients did not have any change in their pain score. In the group of patients where injections were made to the palms (n=5), there was even more reduction in VAS scores. There were no significant immediate or delayed side effects. Cold air seems to be useful in reducing needle-injection pain in the majority of patients, especially in the palms. This procedure is safe, apart from immediate tolerable discomfort when used around the nose. © 2012 The International Society of Dermatology.
Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D
2015-01-01
Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presentsmore » two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.« less
Heat pipes for low-humidity applications
NASA Technical Reports Server (NTRS)
Khattar, Mukesh K.
1989-01-01
A novel application of an air-to-air heat pipe heat exchanger (HPHX) in a cooling and dehumidification process of an air-conditioning system is described which provides significant energy savings in applications requiring reheat of cold supply air to maintain low humidity. The efficiency of the system has been demonstrated in an application requiring a humidity of 40 percent. The use of the HPHX and fine tuning of the air-conditioning system and controls has resulted in significant energy savings. The technology can be advantageously used in many low-humidity applications commonly encountered in high-tech and aerospace facilities.
Heat pipes for terrestrial applications in dehumidification systems
NASA Technical Reports Server (NTRS)
Khattar, Mukesh K.
1988-01-01
A novel application of heat pipes which greatly enhances dehumidification performance of air-conditioning systems is presented. When an air-to-air heat pipe heat exchanger is placed between the warm return air and cold supply air streams of an air conditioner, heat is efficiently transferred from the return air to the supply air. As the warm return air precools during this process, it moves closer to its dew-point temperature. Therefore, the cooling system works less to remove moisture. This paper discusses the concept, its benefits, the challenges of incorporating heat pipes in an air-conditioning system, and the preliminary results from a field demonstration of an industrial application.
Thermal imaging for cold air flow visualisation and analysis
NASA Astrophysics Data System (ADS)
Grudzielanek, M.; Pflitsch, A.; Cermak, J.
2012-04-01
In this work we present first applications of a thermal imaging system for animated visualization and analysis of cold air flow in field studies. The development of mobile thermal imaging systems advanced very fast in the last decades. The surface temperature of objects, which is detected with long-wave infrared radiation, affords conclusions in different problems of research. Modern thermal imaging systems allow infrared picture-sequences and a following data analysis; the systems are not exclusive imaging methods like in the past. Thus, the monitoring and analysing of dynamic processes became possible. We measured the cold air flow on a sloping grassland area with standard methods (sonic anemometers and temperature loggers) plus a thermal imaging system measuring in the range from 7.5 to 14µm. To analyse the cold air with the thermal measurements, we collected the surface infrared temperatures at a projection screen, which was located in cold air flow direction, opposite the infrared (IR) camera. The intention of using a thermal imaging system for our work was: 1. to get a general idea of practicability in our problem, 2. to assess the value of the extensive and more detailed data sets and 3. to optimise visualisation. The results were very promising. Through the possibility of generating time-lapse movies of the image sequences in time scaling, processes of cold air flow, like flow waves, turbulence and general flow speed, can be directly identified. Vertical temperature gradients and near-ground inversions can be visualised very well. Time-lapse movies will be presented. The extensive data collection permits a higher spatial resolution of the data than standard methods, so that cold air flow attributes can be explored in much more detail. Time series are extracted from the IR data series, analysed statistically, and compared to data obtained using traditional systems. Finally, we assess the usefulness of the additional measurement of cold air flow with thermal imaging systems.
Serra-Guillen, C; Hueso, L; Nagore, E; Vila, M; Llombart, B; Requena Caballero, C; Botella-Estrada, R; Sanmartin, O; Alfaro-Rubio, A; Guillen, C
2009-08-01
Photodynamic therapy (PDT) is an effective treatment for actinic keratoses, Bowen's disease and basal cell carcinoma. The main drawback of PDT is pain during application. To compare the efficacy of supratrochlear and supraorbital nerve block with cold air analgesia to control the pain experienced during PDT. A controlled open clinical trial was conducted in 34 patients having multiple actinic keratoses in the frontal region treated with PDT. On one side of the frontal region the supratrochlear and supraorbital nerves were blocked, while on the other side cold air was used as the method of analgesia. Pain was recorded on a visual analogue scale after treatment. Thirty-one of 34 patients reported less pain in the zone treated with nerve block. This difference was statistically significant. Nerve block is superior to cold air and is an easy, safe, effective means of controlling the pain associated with PDT.
Wroe, Stephen; Parr, William C H; Ledogar, Justin A; Bourke, Jason; Evans, Samuel P; Fiorenza, Luca; Benazzi, Stefano; Hublin, Jean-Jacques; Stringer, Chris; Kullmer, Ottmar; Curry, Michael; Rae, Todd C; Yokley, Todd R
2018-04-11
Three adaptive hypotheses have been forwarded to explain the distinctive Neanderthal face: (i) an improved ability to accommodate high anterior bite forces, (ii) more effective conditioning of cold and/or dry air and, (iii) adaptation to facilitate greater ventilatory demands. We test these hypotheses using three-dimensional models of Neanderthals, modern humans, and a close outgroup ( Homo heidelbergensis ), applying finite-element analysis (FEA) and computational fluid dynamics (CFD). This is the most comprehensive application of either approach applied to date and the first to include both. FEA reveals few differences between H. heidelbergensis , modern humans, and Neanderthals in their capacities to sustain high anterior tooth loadings. CFD shows that the nasal cavities of Neanderthals and especially modern humans condition air more efficiently than does that of H. heidelbergensis , suggesting that both evolved to better withstand cold and/or dry climates than less derived Homo We further find that Neanderthals could move considerably more air through the nasal pathway than could H. heidelbergensis or modern humans, consistent with the propositions that, relative to our outgroup Homo , Neanderthal facial morphology evolved to reflect improved capacities to better condition cold, dry air, and, to move greater air volumes in response to higher energetic requirements. © 2018 The Author(s).
Muller, Matthew D.; Gao, Zhaohui; Drew, Rachel C.; Herr, Michael D.; Leuenberger, Urs A.
2011-01-01
The effects of cold air inhalation and isometric exercise on coronary blood flow are currently unknown, despite the fact that both cold air and acute exertion trigger angina in clinical populations. In this study, we used transthoracic Doppler echocardiography to measure coronary blood flow velocity (CBV; left anterior descending coronary artery) and myocardial function during cold air inhalation and handgrip exercise. Ten young healthy subjects underwent the following protocols: 5 min of inhaling cold air (cold air protocol), 5 min of inhaling thermoneutral air (sham protocol), 2 min of isometric handgrip at 30% of maximal voluntary contraction (grip protocol), and 5 min of isometric handgrip at 30% maximal voluntary contraction while breathing cold air (cold + grip protocol). Heart rate, blood pressure, inspired air temperature, CBV, myocardial function (tissue Doppler imaging), O2 saturation, and pulmonary function were measured. The rate-pressure product (RPP) was used as an index of myocardial O2 demand, whereas CBV was used as an index of myocardial O2 supply. Compared with the sham protocol, the cold air protocol caused a significantly higher RPP, but there was a significant reduction in CBV. The cold + grip protocol caused a significantly greater increase in RPP compared with the grip protocol (P = 0.045), but the increase in CBV was significantly less (P = 0.039). However, myocardial function was not impaired during the cold + grip protocol relative to the grip protocol alone. Collectively, these data indicate that there is a supply-demand mismatch in the coronary vascular bed when cold ambient air is breathed during acute exertion but myocardial function is preserved, suggesting an adequate redistribution of blood flow. PMID:21940852
Cold atmospheric pressure air plasma jet for medical applications
NASA Astrophysics Data System (ADS)
Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.
2008-06-01
By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.
Electronic Equipment Cold Plates
1976-04-01
using fans or blowers to force the air through the cooling device». ^J^lJ^^i 5!°^ it ia ’«"^"o^ve. nonto«ic. nonfla—able, *nd possesses good ...Techniques GENERAL THERMAL CONTROL SYSTEMS AND THEIR REgUIREMENTS FLON DISTRIBUTION IN MANIFOLDS THE COLD PLATE IA ,! 1 3 S 12 15 33 32 32... IA .1 132 132 132 155 169 179 183 r (1) Air-Cooled Cold Plate No. (2) Air-Cooled Cold Plate No. (3) Air-cooled Cold Plate No. (4) Air-Cooled
NASA Astrophysics Data System (ADS)
Hori, M. E.; Inoue, J.
2011-12-01
Frequent occurrence of cold air outbreak is a dominant feature of the East Asian winter monsoon. A contributing factor for the this cold air outbreak is the role of stationary Rossby waves over the Eurasian continent which intensifies the surface Siberian High and the accompanying cold air outflow. Reduced sea ice and increase in turbulence heat flux is hypothesized as a source of such stationary waves (Honda et al. 2009). In particular, the winter of 2009/2010 saw a strong correlation of high pressure anomaly over the Barents/Kara sea and the following cold air buildup over the Eurasian continent and its advection towards East Asia (Hori et al. 2011). The lag correlation of surface temperature over Japan and the 850hPa geopotential height shows a cyclonic anomaly appearing over the Barents/Kara sea which creates a cold air advection over the Eurasian continent. The pressure anomaly subsequently shifted westward to mature into a blocking high which created a wave- train pattern downstream advecting the cold air buildup eastward toward East Asia and Japan (Fig1). We further examine this mechanism for other years including the 2005/2006, 2010/2011 winter and other winters with extreme cold air outbreaks. Overall, the existence of an anticyclonic anomaly over the Barents/Kara sea correlated well with the seasonal dominance of cold air over the Eurasian continent thereby creating a contrast of a warm Arctic and cold Eurasian continent.In the intraseasonal timescale, the existence of this anticyclone corresponds to a persisting atmospheric blocking in the high latitudes. In the presentation, we address the underlying chain of events leading up to a strong cold air outbreak over East Asia from an atmosphere - sea ice - land surafce interaction point of view for paritular cold winter years.
Electro thermal analysis of rotary type micro thermal actuator
NASA Astrophysics Data System (ADS)
Anwar, M. Arefin; Packirisamy, Muthukumaran; Ahmed, A. K. Waiz
2005-09-01
In micro domain, thermal actuators are favored because it provides higher force and deflection than others. This paper presents a new type of micro thermal actuator that provides rotary motion of the circular disc shaped cold arm, which can be used in various optical applications, such as, switching, attenuation, diffraction, etc. The device has been fabricated in MUMPS technology. In this new design, the hot arms are arranged with the cold disc in such a way that thermal expansion of the hot arms due to Joule heating, will make the cold disc to rotate and the rotation is unidirectional on loading. The dominant heat transfer modes in the operating temperature zone are through the anchor and the air between the structure and the substrate because of the very low gap provided by MUMPS. A mathematical model was used for predicting steady state temperature profile along the actuator length and rotational behavior of the cold disc under different applied voltages. A 3-D coupled field finite element analysis (FEM) for the device is also presented. A FEM analysis was done by defining an air volume around the structure and substrate below the structure. Results obtained from the mathematical model, was compared with that of the finite element analysis. The presented results confirm the applicability of this novel rotary type thermal actuator for many optical MEMS applications.
It's Too Hot! It's Too Cold!--Understanding How Heat Works
ERIC Educational Resources Information Center
Roman, Harry T.
2012-01-01
Engineers often measure temperature for a wide variety of applications and assessments. This article describes how STEM educators can use thermometers or temperature sensors to help students understand how heat disperses through fluids, both air and water. It also provides hands-on learning about air and water heating systems. (Contains 4 figures.)
Cold air systems: Sleeping giant
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacCracken, C.D.
1994-04-01
This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that providedmore » inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.« less
Evaporative cooling enhanced cold storage system
Carr, Peter
1991-01-01
The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.
Evaporative cooling enhanced cold storage system
Carr, P.
1991-10-15
The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.
Alterations in resting oxygen consumption in women exposed to 10 days of cold air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, D.W.; Thomas, J.R.
1991-03-11
Repeated exposure to cold air reduces the metabolic response to cold air exposure in man. The purpose of this investigation was to measure the change in resting metabolic rate (RMR) with exposure to 22C air and 4C air during a 12 day period. Four women sat in 22C air for 45 min followed by 45 min in 4C air each day for ten days. The authors measured RMR during a 45 min period in 22C air followed by 45 min in 4C air on four days. All subjects began their morning exposures on a Monday within 2 days of themore » onset of menses completing the study on a Friday, 12 days later. Subjects dressed in a T-shirt, shorts and cotton socks. During 45 min of exposure to warm air, RMR remained steady at 10% of VO{sub 2peak} on Day 1 and 10% on Day 5. RMR during exposure to warm air significantly increased to 13% of VO{sub 2peak} on Day 8 and remained elevated at 13% on Day 12. During exposure to cold air RMR peaked at 31% of CO{sub 2peak} by the 5th min on Day 1. Peak RMR on Day 5 was significantly lower. Pea RMR in the cold remained lower on Days 8 and 12. During cold exposure RMR peaked and then declined to steady-state during min 15 to 45. Steady-state RMR during cold exposure was significantly lower on Day 5, Day 7 and Day 12 when compared to the 23% of VO{sub 2peak} on Day 1. The authors found that RMR in cold air is significantly attenuated by Day 5 and remains lower through Day 12. RMR during warm air exposure is elevated 3% by Day 8 after five (5) days of repeated cold exposure followed by two (2) days without exposure to cold air, and RMR remains elevated on Day 12.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Dacheng; Department of Aeronautics, Fujian Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005; Zhao Di
2011-04-18
This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilizationmore » process.« less
49 CFR 232.107 - Air source requirements and cold weather operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Air source requirements and cold weather... source requirements and cold weather operations. (a) Monitoring plans for yard air sources. (1) A... to the equipment and territory of that railroad to cover safe train operations during cold weather...
Zhang, Xiakun; Zhang, Shuyu; Wang, Chunling; Wang, Baojian; Guo, Pinwen
2014-01-01
The effects of cold air on cardiovascular and cerebrovascular diseases were investigated in an experimental study examining blood pressure and biochemical indicators. Zhangye, a city in Gansu Province, China, was selected as the experimental site. Health screening and blood tests were conducted, and finally, 30 cardiovascular disease patients and 40 healthy subjects were recruited. The experiment was performed during a cold event during 27–28 April 2013. Blood pressure, catecholamine, angiotensin II (ANG-II), cardiac troponin I (cTnI), muscle myoglobin (Mb) and endothefin-1 (ET-1) levels of the subjects were evaluated 1 day before, during the 2nd day of the cold exposure and 1 day after the cold air exposure. Our results suggest that cold air exposure increases blood pressure in cardiovascular disease patients and healthy subjects via the sympathetic nervous system (SNS) that is activated first and which augments ANG-II levels accelerating the release of the norepinephrine and stimulates the renin-angiotensin system (RAS). The combined effect of these factors leads to a rise in blood pressure. In addition, cold air exposure can cause significant metabolism and secretion of Mb, cTnI and ET-1 in subjects; taking the patient group as an example, ET-1 was 202.7 ng/L during the cold air exposure, increased 58 ng/L compared with before the cold air exposure, Mb and cTnI levels remained relatively high (2,219.5 ng/L and 613.2 ng/L, increased 642.1 ng/L and 306.5 ng/L compared with before the cold air exposure, respectively) 1-day after the cold exposure. This showed that cold air can cause damage to patients’ heart cells, and the damage cannot be rapidly repaired. Some of the responses related to the biochemical markers indicated that cold exposure increased cardiovascular strain and possible myocardial injury. PMID:24583830
Zhang, Xiakun; Zhang, Shuyu; Wang, Chunling; Wang, Baojian; Guo, Pinwen
2014-02-27
The effects of cold air on cardiovascular and cerebrovascular diseases were investigated in an experimental study examining blood pressure and biochemical indicators. Zhangye, a city in Gansu Province, China, was selected as the experimental site. Health screening and blood tests were conducted, and finally, 30 cardiovascular disease patients and 40 healthy subjects were recruited. The experiment was performed during a cold event during 27-28 April 2013. Blood pressure, catecholamine, angiotensin II (ANG-II), cardiac troponin I (cTnI), muscle myoglobin (Mb) and endothefin-1 (ET-1) levels of the subjects were evaluated 1 day before, during the 2nd day of the cold exposure and 1 day after the cold air exposure. Our results suggest that cold air exposure increases blood pressure in cardiovascular disease patients and healthy subjects via the sympathetic nervous system (SNS) that is activated first and which augments ANG-II levels accelerating the release of the norepinephrine and stimulates the renin-angiotensin system (RAS). The combined effect of these factors leads to a rise in blood pressure. In addition, cold air exposure can cause significant metabolism and secretion of Mb, cTnI and ET-1 in subjects; taking the patient group as an example, ET-1 was 202.7 ng/L during the cold air exposure, increased 58 ng/L compared with before the cold air exposure, Mb and cTnI levels remained relatively high (2,219.5 ng/L and 613.2 ng/L, increased 642.1 ng/L and 306.5 ng/L compared with before the cold air exposure, respectively) 1-day after the cold exposure. This showed that cold air can cause damage to patients' heart cells, and the damage cannot be rapidly repaired. Some of the responses related to the biochemical markers indicated that cold exposure increased cardiovascular strain and possible myocardial injury.
Pankaj, S K; Wan, Zifan; Colonna, William; Keener, Kevin M
2017-07-01
High voltage atmospheric cold plasma (HVACP) is a novel, non-thermal technology which has shown potential for degradation of various toxic components in wastewater. In this study, HVACP was used to examine the degradation kinetics of methyl red, crystal violet and fast green FCF dyes. HVACP discharge was found to be a source of reactive nitrogen and oxygen species. High voltage application completely degraded all dyes tested in less than 5 min treatment time. Plasma from modified gas (∼65% O 2 ) further reduced the treatment time by 50% vs. plasma from dry air. First order and Weibull models were fitted to the degradation data. The Weibull model was found better in explaining the degradation kinetics of all the treated dyes.
NASA Astrophysics Data System (ADS)
Bird, B. M.; Devitt, D.
2012-12-01
Cold air drainage flows are a naturally occurring physical process of mountain systems. Plant communities that exist in cold air drainage basins respond to these localized cold air trends, and have been shown to be decoupled from larger global climate weather systems. The assumption that air temperature decreases with altitude is violated within these systems and climate model results based on this assumption would ultimately be inaccurate. In arid regions, high radiation loads lead to significant long wave radiation being emitted from the ground later in the day. As incoming radiation ceases, the surface very quickly loses energy through radiative processes, leading to surface inversions and enhanced cold air drainage opportunities. This study is being conducted in the Mojave desert on Sheep Mountain located between sites 3 and 4 of the NSF EPSCoR network. Monitoring of cold air drainage was initiated in September of 2011within a narrow ravine located between the 2164 and 2350 meter elevation. We have installed 25 towers (5 towers per location situated at the central low point in a ravine and at equal distances up the sides of the ravine on both the N and S facing slopes) to assess air temperatures from 0.1 meters to a height of 3 meters at 25m intervals. Our goal is to better understand the connection between cold air movement and plant physiological response. The species monitored in this study include: Pinus ponderosa (common name: Ponderosa Pine), Pinus pinyon (Pinyon Pine), Juniperus osteosperma (Utah juniper), Cercocarpus intricatus (Mountain Mahogany) and Symphoricarpos (snowberry). Hourly air temperature measurements within the wash are being captured from 100 ibuttons placed within PVC solar radiation shields. We are also developing a modeling approach to assess the three dimensional movement of cold air over time by incorporating wind vectors captured from 5 2D sonic anemometers. Wind velocities will be paired with air temperatures to better understand the thermal dynamics of cold air drainage. Granier probes were installed in the five test species to monitor transpirational flow relative to cold air movement. Mid day soil - plant - water measurements are also being taken on a monthly basis during the growing season at all locations. Measurements include: leaf xylem water potential, stomata conductance, chlorophyll index readings, canopy minus ambient temperatures and surface soil moisture contents. To date the monitoring system has revealed cold air drainage occurring during periods of every month. We will report the physiological response of the five plant species, with emphasis on assessing the linkages with cold air movement.
Influence of cooling face masks on nasal air conditioning and nasal geometry.
Lindemann, J; Hoffmann, T; Koehl, A; Walz, E M; Sommer, F
2017-06-01
Nasal geometries and temperature of the nasal mucosa are the primary factors affecting nasal air conditioning. Data on intranasal air conditioning after provoking the trigeminal nerve with a cold stimulus simulating the effects of an arctic condition is still missing. The objective was to investigate the influence of skin cooling face masks on nasal air conditioning, mucosal temperature and nasal geometry. Standardized in vivo measurements of intranasal air temperature, humidity and mucosal temperature were performed in 55 healthy subjects at defined detection sites before and after wearing a cooling face mask. Measurements of skin temperature, rhinomanometry and acoustic rhinometry were accomplished. After wearing the face mask the facial skin temperature was significantly reduced. Intranasal air temperature did not change. Absolute humidity and mucosal temperature increased significantly. The acoustic rhinometric results showed a significant increase of the volumes and the cross-sectional areas. There was no change in nasal airflow. Nasal mucosal temperature, humidity of inhaled air, and volume of the anterior nose increased after application of a cold face mask. The response is mediated by the trigeminal nerve. Increased mucosal temperatures as well as changes in nasal geometries seem to guarantee sufficient steady intranasal nasal air conditioning.
NASA Astrophysics Data System (ADS)
Dong, Xiaoyu; Liu, Tingting; Xiong, Yuqin
2017-02-01
Air cold plasma has been used as a novel method for enhancing microbial fermentation. The aim of this work was to explore the effect of plasma on membrane permeability and the formation of ATP and NADH in Saccharomyces cerevisiae, so as to provide valuable information for large-scale application of plasma in the fermentation industry. Suspensions of S. cerevisiae cells were exposed to air cold plasma for 0, 1, 2, 3, 4 and 5 min, and then subjected to various analyses prior to fermentation (0 h) and at the 9 and 21 h stages of fermentation. Compared with non-exposed cells, cells exposed to plasma for 1 min exhibited a marked increase in cytoplasmic free Ca2+ concentration as a result of the significant increase in membrane potential prior to fermentation. At the same time, the ATP level in the cell suspension decreased by about 40%, resulting in a reduction of about 60% in NADH prior to culturing. However, the levels of ATP and NADH in the culture at the 9 and 21 h fermentation stages were different from the level at 0 h. Taken together, the results indicated that exposure of S. cerevisiae to air cold plasma could increase its cytoplasmic free Ca2+ concentration by improving the cell membrane potential, consequently leading to changes in ATP and NADH levels. Supported by National Natural Science Foundation of China (Nos. 21246012, 21306015 and 21476032).
Korhonen, I; Hassi, J; Leppäluoto, J
2001-11-01
We exposed six healthy men to 1-h cold air (10 degrees C) daily for 11 days and measured adrenal and thyroid hormones and TSH in serum before and after the cold air exposure on days 0, 5 and 10. We observed that on days 0, 5 and 10 the resting levels and the levels after the cold exposure in serum adrenaline, thyroid hormones and TSH did not significantly change, whereas the serum noradrenaline levels showed a significant 2.2-2.5-fold increase in response to the cold air exposures. The increases were similar indicating that the subjects did not show signs of habituation in their noradrenaline responses. Therefore the 1-h cold air exposure is not sufficiently intensive to reduce the cold-induced sympathetic response.
Cold air analgesia as pain reduction during photodynamic therapy of actinic keratoses.
Stangeland, K Z; Kroon, S
2012-07-01
Photodynamic therapy (PDT) is an effective treatment for actinic keratoses and non-melanoma skin cancer. The main side effect of PDT is pain during the illumination. To assess the effect of cold air as pain relief during MAL-PDT for field cancerization on different body areas. A prospective, open, intra-individual right-left comparison study was performed in 43 patients with MAL-PDT as field cancerization. One area received cold air analgesia while the other did not. Pain was evaluated by numeric rating scale (NRS) during the illumination. The patients' received a questionnaire and recorded pain and postinflammatory symptoms on a visual analogue scale (VAS). We found a statistical significant difference in overall pain score at 3 and 9 minutes. The area receiving cold air during illumination had a mean NRS of 5.1 while the opposite side, not receiving cold air, had NRS of 6.1. At 9 minutes the side receiving cold air had mean NRS of 5.0, and the side without had 5.7. The pain difference on the chest was the most pronounced with a NRS of 5.2 without air and 3.5 with cold air. There was a significant difference in erythema immediately after, 1 h and 24 h after illumination. Small, open, not blinded study. The difference in pain was small. Cold air is an effective method for moderate pain relief. It is an easy, noninvasive method that can be used on all body parts. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.
1985-02-01
Deck - Cold Deck Reset Reheat Coil Reset Steam Boiler Optimization [lot Water Outside Air Reset Chiller Optimization Chiller Water Temperature Reset...with programming techniques for each type of installed DDC in order to effect changes in operating setpoints and application programs. *Communication...can be changed without recailbration of instrumentation devices. Changes to the application software, operating setpoints and parameters require the
Measuring Device for Air Speed in Macroporous Media and Its Application Inside Apple Storage Bins.
Geyer, Martin; Praeger, Ulrike; Truppel, Ingo; Scaar, Holger; Neuwald, Daniel A; Jedermann, Reiner; Gottschalk, Klaus
2018-02-13
In cold storage facilities of fruit and vegetables, airflow is necessary for heat removal. The design of storage facilities influences the air speed in the surrounding of the product. Therefore, knowledge about airflow next to the product is important to plan the layout of cold stores adapted to the requirements of the products. A new sensing device (ASL, Air speed logger) is developed for omnidirectional measurement of air speed between fruit or vegetables inside storage bins or in bulk. It consists of four interconnected plastic spheres with 80 mm diameter each, adapted to the size of apple fruit. In the free space between the spheres, silicon diodes are fixed for the airflow measurement based on a calorimetric principle. Battery and data logger are mounted inside the spheres. The device is calibrated in a wind tunnel in a measuring range of 0-1.3 m/s. Air speed measurements in fruit bulks on laboratory scale and in an industrial fruit store show air speeds in gaps between fruit with high stability at different airflow levels. Several devices can be placed between stored products for determination of the air speed distribution inside bulks or bin stacks in a storage room.
Temperature inversions and cold-air pools study in Picos de Europa surroundings
NASA Astrophysics Data System (ADS)
Iglesias González, Miguel; Yagüe, Carlos; Maqueda, Gregorio
2017-04-01
Using surface temperature data from dataloggers located at the bottom of four different high-altitude (2000 m MSL) glaciokarstic depressions in Picos de Europa (Cantabrian Cordillera, Spain) from January 2012 to September 2016, we have analyzed the evolution of more than 200 different cold-air pools events according to different geomorphologic parameters. The ski-view determinates the cold-air pool occurrence and the temperature range, and the depression's depth is a very important factor in the permanent cold-air pools (PCAP) formation. Depending on the structure of the thermal curve, we classified all cold-air pools in each depression by using a conceptual model with eight different modes. With wind and relative humidity data, supplied by a weather station situated near the depressions, and NCAR-NCEP reanalysis data, we have characterized them at mesoscale and synoptic scale. If the ski-view is small enough, we can have undisturbed cold-air pools even though disturbed wind conditions. Snow-covered and non-snow-covered events were measured during the campaign, which allow us to recognize its influence on the temperature inversions. We also identified and analyze several permanent cold-air pools events where December minimum temperature record of -30,6°C in the Iberian Peninsula was measured. We also make a deep analyze of the Iberian Peninsula historical minimal temperature record of -32,7°C, which was measured on February 2016. Finally we use and test a simplified three-layer radiative model to describe and verify the influence of different geomorphologic factors in the cooling process of all the cold-air pools.
NASA Astrophysics Data System (ADS)
Chen, Huizhong; Wu, Dui; Yu, Jianzhen
2016-04-01
Using the data on aerosol observed hourly by Marga ADI 2080 and Grimm 180, we compared the characteristics of aerosol during rainy weather and cold air-dust weather in Guangzhou in late March 2012. The mass concentration of aerosol appeared distinct between the two weather processes. During rainy weather, the mass concentration of PM and total water-soluble components decreased obviously. During cold air-dust weather, the cleaning effect of cold air occurred much more suddenly and about a half day earlier than the dust effect. As a result, the mass concentration of PM and total water-soluble components first dropped dramatically to a below-normal level and then rose gradually to an above-normal level. The ratio of PM2.5/PM10 and PM1/PM10 decreased, suggesting that dust-storm weather mainly brought in coarse particles. The proportion of Ca2+ in the total water-soluble components significantly increased to as high as 50 % because of the effect of dust weather. We further analysed the ionic equilibrium during rainy and cold air-dust weather, and compared it with that during hazy weather during the same period. The aerosol during rainy weather was slightly acidic, whereas that during hazy weather and cold air-dust weather was obviously alkaline, with that during cold air-dust weather being significantly more alkaline. Most of the anions, including SO4 2- and NO3 -, were neutralised by NH4 + during rainy and hazy weather, and by Ca2+ during cold air-dust weather.
Preliminary investigation of thermal behaviour of PCM based latent heat thermal energy storage
NASA Astrophysics Data System (ADS)
Pop, Octavian G.; Fechete Tutunaru, Lucian; Bode, Florin; Balan, Mugur C.
2018-02-01
Solid-liquid phase change is used to accumulate and release cold in latent heat thermal energy storage (LHTES) in order to reduce energy consumption of air cooling system in buildings. The storing capacity of the LHTES depends greatly on the exterior air temperatures during the summer nights. One approach in intensifying heat transfer is by increasing the air's velocity. A LHTES was designed to be integrated in the air cooling system of a building located in Bucharest, during the month of July. This study presents a numerical investigation concerning the impact of air inlet temperatures and air velocity on the formation of solid PCM, on the cold storing capacity and energy consumption of the LHTES. The peak amount of accumulated cold is reached at different air velocities depending on air inlet temperature. For inlet temperatures of 14°C and 15°C, an increase of air velocity above 50% will not lead to higher amounts of cold being stored. For Bucharest during the hottest night of the year, a 100 % increase in air velocity will result in 5.02% more cold being stored, at an increase in electrical energy consumption of 25.30%, when compared to the reference values.
Airflow analyses using thermal imaging in Arizona's Meteor Crater as part of METCRAX II
NASA Astrophysics Data System (ADS)
Grudzielanek, A. Martina; Vogt, Roland; Cermak, Jan; Maric, Mateja; Feigenwinter, Iris; Whiteman, C. David; Lehner, Manuela; Hoch, Sebastian W.; Krauß, Matthias G.; Bernhofer, Christian; Pitacco, Andrea
2016-04-01
In October 2013 the second Meteor Crater Experiment (METCRAX II) took place at the Barringer Meteorite Crater (aka Meteor Crater) in north central Arizona, USA. Downslope-windstorm-type flows (DWF), the main research objective of METCRAX II, were measured by a comprehensive set of meteorological sensors deployed in and around the crater. During two weeks of METCRAX II five infrared (IR) time lapse cameras (VarioCAM® hr research & VarioCAM® High Definition, InfraTec) were installed at various locations on the crater rim to record high-resolution images of the surface temperatures within the crater from different viewpoints. Changes of surface temperature are indicative of air temperature changes induced by flow dynamics inside the crater, including the DWF. By correlating thermal IR surface temperature data with meteorological sensor data during intensive observational periods the applicability of the IR method of representing flow dynamics can be assessed. We present evaluation results and draw conclusions relative to the application of this method for observing air flow dynamics in the crater. In addition we show the potential of the IR method for METCRAX II in 1) visualizing airflow processes to improve understanding of these flows, and 2) analyzing cold-air flows and cold-air pooling.
NASA Technical Reports Server (NTRS)
Grossman, Robert L.
1988-01-01
Studies on an intense cold air outbreak that took place after a cold air cyclogenesis on January 27, 1986 are reviewed. Particular attention is given to data obtained during a multiaircraft research mission carried out on January 28, 1986 as part of the Genesis of Atlantic Lows Experiment. It was found that condensation heating of the subcloud layer air was comparable to heating by turbulent flux divergence.
Sample storage-induced changes in the quantity and quality of soil labile organic carbon
Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.
2015-01-01
Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC. PMID:26617054
Local atmospheric decoupling in complex topography alters climate change impacts
Christopher Daly; David R. Conklin; Michael H. Unsworth
2009-01-01
Cold air drainage and pooling occur in many mountain valleys, especially at night and during winter. Local climate regimes associated with frequent cold air pooling have substantial impacts on species phenology, distribution, and diversity. However, little is known about how the degree and frequency of cold air drainage and pooling will respond to a changing climate....
NASA Astrophysics Data System (ADS)
Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang
2014-01-01
Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.
Numerical modeling of cold room's hinged door opening and closing processes
NASA Astrophysics Data System (ADS)
Carneiro, R.; Gaspar, P. D.; Silva, P. D.; Domingues, L. C.
2016-06-01
The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.
NASA Astrophysics Data System (ADS)
Irimia, Anamaria; Ioanid, Ghiocel Emil; Zaharescu, Traian; Coroabă, Adina; Doroftei, Florica; Safrany, Agnes; Vasile, Cornelia
2017-01-01
The efficiency of the activation of the cellulose/chitin mix substrate by cold plasma or γ-radiation exposure in order to modify it with bioactive compounds was studied. The eugenol or vegetable oils such as grape seed oil and rosehip seed oil have been grafted onto activated substrate. The examination of modified cellulose/chitin mix substrate by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy confirms that the structural and morphological changes took place in both cases. The grafting degrees of the surface layer estimated from XPS data varied from 31.1% to 58.7% for air cold plasma activation and from 9.7% to 22.8% for γ-irradiation treatment. They depend both on bioactive compound used and procedure of substrate activation. Higher grafting degree are obtain by using vegetable oils than in the case of modification with eugenol and the air cold plasma activation seems to be much efficient than γ-irradiation. By grafting the polymeric substrate with bioactive compounds, antimicrobial and antioxidant properties have been conferred. Such materials can be considered promising for food packaging applications and medical textiles and also the applied procedures are environmental friendly ones.
Study of Cycling Air-Cooling System with a Cold Accumulator for Micro Gas-Turbine Installations
NASA Astrophysics Data System (ADS)
Ochkov, V. F.; Stepanova, T. A.; Katenev, G. M.; Tumanovskii, V. A.; Borisova, P. N.
2018-05-01
Using the cycling air-cooling systems of the CTIC type (Combustion Turbine Inlet Cooling) with a cold accumulator in a micro gas-turbine installation (micro-GTI) to preserve its capacity under the seasonal temperature rise of outside air is described. Water ice is used as the body-storage in the accumulators, and ice water (water at 0.5-1.0°C) is used as the body that cools air. The ice water circulates between the accumulator and the air-water heat exchanger. The cold accumulator model with renewable ice resources is considered. The model contains the heat-exchanging tube lattice-evaporator covered with ice. The lattice is cross-flowed with water. The criterion heat exchange equation that describes the process in the cold accumulator under consideration is presented. The calculations of duration of its active operation were performed. The dependence of cold accumulator service life on water circulation rate was evaluated. The adequacy of the design model was confirmed experimentally in the mock-up of the cold accumulator with a refrigerating machine periodically creating a 200 kg ice reserve in the reservoir-storage. The design model makes it possible to determine the weight of ice reserve of the discharged cold accumulator for cooling the cycle air in the operation of a C-30 type micro- GTI produced by the Capstone Company or micro-GTIs of other capacities. Recommendations for increasing the working capacity of cold accumulators of CTIC-systems of a micro-GTI were made.
Cold Atmospheric Plasma: methods of production and application in dentistry and oncology
2013-01-01
Cold Atmospheric Plasma is an ionized gas that has recently been extensively studied by researchers as a possible therapy in dentistry and oncology. Several different gases can be used to produce Cold Atmospheric Plasma such as Helium, Argon, Nitrogen, Heliox, and air. There are many methods of production by which cold atmospheric plasma is created. Each unique method can be used in different biomedical areas. In dentistry, researchers have mostly investigated the antimicrobial effects produced by plasma as a means to remove dental biofilms and eradicate oral pathogens. It has been shown that reactive oxidative species, charged particles, and UV photons play the main role. Cold Atmospheric Plasma has also found a minor, but important role in tooth whitening and composite restoration. Furthermore, it has been demonstrated that Cold Atmospheric Plasma induces apoptosis, necrosis, cell detachment, and senescence by disrupting the S phase of cell replication in tumor cells. This unique finding opens up its potential therapy in oncology. PMID:24083477
NASA Astrophysics Data System (ADS)
Crosman, E.; Horel, J.; Blaylock, B. K.; Foster, C.
2014-12-01
High wintertime ozone concentrations in rural areas associated with oil and gas development and high particulate concentrations in urban areas have become topics of increasing concern in the Western United States, as both primary and secondary pollutants become trapped within stable wintertime boundary layers. While persistent cold air pools that enable such poor wintertime air quality are typically associated with high pressure aloft and light winds, the complex physical processes that contribute to the formation, maintenance, and decay of persistent wintertime temperature inversions are only partially understood. In addition, obtaining sufficiently accurate numerical weather forecasts and meteorological simulations of cold air pools for input into chemical models remains a challenge. This study examines the meteorological processes associated with several wintertime pollution episodes in Utah's Uintah and Salt Lake Basins using numerical Weather Research and Forecasting model simulations and observations collected from the Persistent Cold Air Pool and Uintah Basin Ozone Studies. The temperature, vertical structure, and winds within these cold air pools was found to vary as a function of snow cover, snow albedo, land use, cloud cover, large-scale synoptic flow, and episode duration. We evaluate the sensitivity of key atmospheric features such as stability, planetary boundary layer depth, local wind flow patterns and transport mechanisms to variations in surface forcing, clouds, and synoptic flow. Finally, noted deficiencies in the meteorological models of cold air pools and modifications to the model snow and microphysics treatment that have resulted in improved cold pool simulations will be presented.
Measuring Device for Air Speed in Macroporous Media and Its Application Inside Apple Storage Bins
Geyer, Martin; Praeger, Ulrike; Scaar, Holger; Neuwald, Daniel A.; Gottschalk, Klaus
2018-01-01
In cold storage facilities of fruit and vegetables, airflow is necessary for heat removal. The design of storage facilities influences the air speed in the surrounding of the product. Therefore, knowledge about airflow next to the product is important to plan the layout of cold stores adapted to the requirements of the products. A new sensing device (ASL, Air speed logger) is developed for omnidirectional measurement of air speed between fruit or vegetables inside storage bins or in bulk. It consists of four interconnected plastic spheres with 80 mm diameter each, adapted to the size of apple fruit. In the free space between the spheres, silicon diodes are fixed for the airflow measurement based on a calorimetric principle. Battery and data logger are mounted inside the spheres. The device is calibrated in a wind tunnel in a measuring range of 0–1.3 m/s. Air speed measurements in fruit bulks on laboratory scale and in an industrial fruit store show air speeds in gaps between fruit with high stability at different airflow levels. Several devices can be placed between stored products for determination of the air speed distribution inside bulks or bin stacks in a storage room. PMID:29438339
Applications and Lessons Learned using Data from the Atmospheric Infrared Sounder
NASA Astrophysics Data System (ADS)
Ray, S. E.; Fetzer, E. J.; Olsen, E. T.; Lambrigtsen, B.; Pagano, T. S.; Teixeira, J.; Licata, S. J.; Hall, J. R.
2016-12-01
Applications and Lessons Learned using Data from the Atmospheric Infrared SounderSharon Ray, Jet Propulsion Laboratory, California Institute of Technology The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With a 12-year data record and daily, global observations in near real-time, AIRS can play a role in applications that fall under many of the NASA Applied Sciences focus areas. AIRS' involvement in applications is two years in, so what have we learned and what are the pitfalls? AIRS has made gains in drought applications with products under consideration for inclusion in the U.S. Drought Monitor national map, as also with volcano rapid response with an internal alert system and automated products to help characterize plume extent. Efforts are underway with cold air aloft for aviation, influenza outbreak prediction, and vector borne disease. But challenges have occurred both in validation and in crossing the "valley of death" between products and decision makers. AIRS now has improved maps of standard products to be distributed in near real-time via NASA LANCE and by the Goddard DAAC as part of the Obama's administration Big Earth Data Initiative. In addition internal tools have been developed to support development and distribution of our application products. This talk will communicate the status of the AIRS applications effort along with lessons learned, and provide examples of new product imagery designed to best communicate AIRS data.
Breath-hold times in air compared to breath-hold times during cold water immersions.
Taber, Michael J; MacKinnon, Scott N; Power, Jonathan; Walker, Robert
2015-02-01
Given the effects of cold water immersion on breath-hold (BH) capabilities, a practical training exercise was developed for military/paramilitary personnel completing a helicopter underwater egress training (HUET) program. The exercise was designed to provide firsth and experience of the effects of cold water exposure on BH time. After completing the required HUET, 47 subjects completed two BH testing sessions as well as a short questionnaire. The first BH was completed while standing on the pool deck. The second BH was completed while fully immersed (face down) in 2-3°C water. There were 40 of the volunteers who also breathed from an emergency breathing system (EBS) while in the cold water. Results demonstrated that BH capabilities in cold water were significantly lower than those in ambient air. A significant correlation was also found between BH in air and the difference in cold water vs. air BH capabilities, which suggests that subjects who can hold their breath the longest in air experienced the greatest decrease in BH when immersed. Results indicate that 92% of the subjects reported that the practical cold water immersion exercise had a high value. Finally, 58% of those who used the EBS reported that it was harder to breathe in cold water than while in the training pool (approximately 22°C). The BH times for this group were similar to those reported in previous cold water immersion studies. Based on the questionnaire results, it is possible, when carefully applied, to include a practical cold water immersion exercise into existing HUET programs.
NASA Astrophysics Data System (ADS)
Young, Joseph Swyler
This thesis investigates the utility of lidar ceilometers, a type of aerosol lidar, in improving the understanding of meteorology and air quality in persistent wintertime stable boundary layers, or cold-air pools, that form in urbanized valley and basin topography. This thesis reviews the scientific literature to survey the present knowledge of persistent cold-air pools, the operating principles of lidar ceilometers, and their demonstrated utility in meteorological investigations. Lidar ceilometer data from the Persistent Cold-Air Pool Study (PCAPS) are then used with meteorological and air quality data from other in situ and remote sensing equipment to investigate cold-air pools that formed in Utah's Salt Lake Valley during the winter of 2010-2011. The lidar ceilometer is shown to accurately measure aerosol layer depth and aerosol loading, when compared to visual observations. A linear relationship is found between low-level lidar backscatter and surface particulate measurements. Convective boundary layer lidar analysis techniques applied to cold-air pool ceilometer profiles can detect useful layer characteristics. Fine-scale waves are observed and analyzed within the aerosol layer, with emphasis on Kelvin-Helmholz waves. Ceilometer aerosol backscatter profiles are analyzed to quantify and describe mixing processes in persistent cold-air pools. Overlays of other remote and in-situ observations are combined with ceilometer particle backscatter to describe specific events during PCAPS. This analysis describes the relationship between the aerosol layer and the valley inversion as well as interactions with large-scale meteorology. The ceilometer observations of hydrometers are used to quantify cloudiness and precipitation during the project, observing that 50% of hours when a PCAP was present had clouds or precipitation below 5 km above ground level (AGL). Then, combining an objective technique for determining hourly aerosol layer depths and correcting this subjectively during periods with low clouds or precipitation, a time series of aerosol depths was obtained. The mean depth of the surface-based aerosol layer during PCAP events was 1861 m MSL with a standard deviation of 135 m. The aerosol layer depth, given the approximate 1300 m altitude of the valley floor, is thus about 550 m, about 46% of the basin depth. The aerosol layer is present during much of the winter and is removed only during strong or prolonged precipitation periods or when surface winds are strong. Nocturnal fogs that formed near the end of high-stability PCAP episodes had a limited effect on aerosol layer depth. Aerosol layer depth was relatively invariant during the winter and during the persistent cold-air pools, while PM10 concentrations at the valley floor varied with bulk atmospheric stability associated primarily with passage of large-scale high- and low-pressure weather systems. PM10 concentrations also increased with cold-air pool duration. Mean aerosol loading in the surface-based aerosol layer, as determined from ceilometer backscatter coefficients, showed weaker variations than those of surface PM10 concentrations, suggesting that ineffective vertical mixing and aerosol layering are present in the cold-air pools. This is supported by higher time-resolution backscatter data, and it distinguishes the persistent cold-air pools from well-mixed convective boundary layers where ground-based air pollution concentrations are closely related to time-dependent convective boundary layer/aerosol depths. These results are discussed along with recommendations for future explorations of the ceilometer and cold-air pool topics.
NASA Astrophysics Data System (ADS)
Maki, Syou; Tanaka, Keito; Morimoto, Shotaro
2017-02-01
We examined, by three-dimensional numerical computations, the magnetothermal convection of air (a paramagnetic substance) enclosed in a cylindrical vessel with a Rayleigh-Benard model under the application of an axisymmetric magnetic force at the center of a solenoidal superconducting magnet. Axisymmetric steady convective flows were induced when the magnitude of the radial component of the magnetic force (fmR) was 1.0 and 5.0 times that of the gravitational force at the vessel sidewall; e.g., the hot air was concentrated at the vessel center and the cold air was driven to the vicinity of the vessel sidewall. This flow pattern was similar to the case of water (a diamagnetic substance), although the axisymmetric arrangements of hot and cold water were the reverse of the present convection of air. When fmR was 0.5 times that of the gravitational force, the axisymmetric flows appeared only in the vicinity of the vessel sidewall. Unsteady convective rolls simultaneously occurred in the vessel center, and they repeatedly combined and separated from each other. When fmR was 0.1 times that of the gravitational force, there were barely any axisymmetric flows in the close vicinity of the vessel sidewall, while the initial convective flows remained in most other parts of the vessel. Thus, we varied the magnitude of fmR and clarified the transitional processes of isothermal and velocity distributions of magnetothermal convection. We discuss those convective flows with the magnitude and direction of fmR.
Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.
Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica
2015-01-01
Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.
Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms
Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica
2015-01-01
Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee’s physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems. PMID:25961447
Proceedings of the 2009 Antenna Applications Symposium, Volume 2
2009-12-12
blowers and a heat pipe cold plate. Aspen systems is developing a high efficiency refrigeration based cooling system for cooling dish antenna systems...11.8 301.8 353.0 166.6 308 power amplifier, typically the major heat contributor. Increasing efficiency decreases heat required to be dissipated. This...The size of each array ballooned to a nominal 40 inches on a side and 11-13 inches high. The height was required by the air-air heat exchangers (the
Development and Application of the High Bandwidth Powered Resonance Tube
2005-11-09
arises in practical situations. In laser cutting, it is a common practice to remove the molten mass of metal with the help of high speed jet of air...cleaner and straighter laser cuts[Masuda and Nakamura, 19921. Thin glass sheets are prone to cracks when tempered by a cold air jet with impingement...Alvi, F. S., Shish, C., Elavarasan, R., Garg, G., and Krothapalli, A., 2003. Control of supersonic impinging jet flows using supersonic microjets
Advanced Gas Turbine (AGT) powertrain system development for automotive applications
NASA Technical Reports Server (NTRS)
1982-01-01
Topics covered include the AGT 101 engine test; compressor design modification; cold air turbine testing; Mod 1 alloy turbine rotor fabrication; combustion aspects; regenerator development; and thermal screening tests for ceramic materials. The foil gas bearings, rotor dynamics, and AGT controls and accessories are also considered.
Isaak, Daniel J.; Young, Michael K; Luce, Charles H; Hostetler, Steven W.; Wengerd, Seth J.; Peterson, Erin E.; Ver Hoef, Jay; Groce, Matthew C.; Horan, Dona L.; Nagel, David E.
2016-01-01
The imminent demise of montane species is a recurrent theme in the climate change literature, particularly for aquatic species that are constrained to networks and elevational rather than latitudinal retreat as temperatures increase. Predictions of widespread species losses, however, have yet to be fulfilled despite decades of climate change, suggesting that trends are much weaker than anticipated and may be too subtle for detection given the widespread use of sparse water temperature datasets or imprecise surrogates like elevation and air temperature. Through application of large water-temperature databases evaluated for sensitivity to historical air-temperature variability and computationally interpolated to provide high-resolution thermal habitat information for a 222,000-km network, we estimate a less dire thermal plight for cold-water species within mountains of the northwestern United States. Stream warming rates and climate velocities were both relatively low for 1968–2011 (average warming rate = 0.101 °C/decade; median velocity = 1.07 km/decade) when air temperatures warmed at 0.21 °C/decade. Many cold-water vertebrate species occurred in a subset of the network characterized by low climate velocities, and three native species of conservation concern occurred in extremely cold, slow velocity environments (0.33–0.48 km/decade). Examination of aggressive warming scenarios indicated that although network climate velocities could increase, they remain low in headwaters because of strong local temperature gradients associated with topographic controls. Better information about changing hydrology and disturbance regimes is needed to complement these results, but rather than being climatic cul-de-sacs, many mountain streams appear poised to be redoubts for cold-water biodiversity this century.
Isaak, Daniel J.; Young, Michael K.; Luce, Charles H.; Hostetler, Steven W.; Wenger, Seth J.; Peterson, Erin E.; Ver Hoef, Jay M.; Groce, Matthew C.; Horan, Dona L.; Nagel, David E.
2016-01-01
The imminent demise of montane species is a recurrent theme in the climate change literature, particularly for aquatic species that are constrained to networks and elevational rather than latitudinal retreat as temperatures increase. Predictions of widespread species losses, however, have yet to be fulfilled despite decades of climate change, suggesting that trends are much weaker than anticipated and may be too subtle for detection given the widespread use of sparse water temperature datasets or imprecise surrogates like elevation and air temperature. Through application of large water-temperature databases evaluated for sensitivity to historical air-temperature variability and computationally interpolated to provide high-resolution thermal habitat information for a 222,000-km network, we estimate a less dire thermal plight for cold-water species within mountains of the northwestern United States. Stream warming rates and climate velocities were both relatively low for 1968–2011 (average warming rate = 0.101 °C/decade; median velocity = 1.07 km/decade) when air temperatures warmed at 0.21 °C/decade. Many cold-water vertebrate species occurred in a subset of the network characterized by low climate velocities, and three native species of conservation concern occurred in extremely cold, slow velocity environments (0.33–0.48 km/decade). Examination of aggressive warming scenarios indicated that although network climate velocities could increase, they remain low in headwaters because of strong local temperature gradients associated with topographic controls. Better information about changing hydrology and disturbance regimes is needed to complement these results, but rather than being climatic cul-de-sacs, many mountain streams appear poised to be redoubts for cold-water biodiversity this century. PMID:27044091
Interactions between gravity waves and cold air outflows in a stably stratified uniform flow
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.
1993-01-01
Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.
Refrigeration oils for low GWP refrigerants in various applications
NASA Astrophysics Data System (ADS)
Saito, R.; Sundaresan, S. G.
2017-08-01
The practical use of the refrigeration systems is considered as a methods to suppress global warming. The replacement of a refrigerant with a new one that has lower global warming potential (GWP) has been underway for several years. For the application fields of refrigerators, domestic air conditioners, automotive air conditioners and hot water dispensers, the investigation has almost finished. It is still underway for the application fields of commercial air conditioners and chillers, refrigeration facilities for cold storage, etc. And now, the refrigeration system is being applied in various ways to decrease global warming above the generation of electric power with organic Rankine cycle, the binary electric generation with ground source heat pump, and so on. In these situations, various refrigerants are developed and several kinds of suitable refrigeration oils are selected. This paper presents the consideration of suitable refrigeration oil for the various low GWP refrigerants.
Winter sports athletes: long-term effects of cold air exposure.
Sue-Chu, Malcolm
2012-05-01
Athletes such as skaters and skiers inhale large volumes of cold air during exercise and shift from nasal to mouth breathing. Endurance athletes, like cross-country skiers, perform at 80% or more of their maximal oxygen consumption and have minute ventilations in excess of 100 l/min. Cold air is always dry, and endurance exercise results in loss of water and heat from the lower respiratory tract. In addition, athletes can be exposed to indoor and outdoor pollutants during the competitive season and during all-year training. Hyperpnoea with cold dry air represents a significant environmental stress to the airways. Winter athletes have a high prevalence of respiratory symptoms and airway hyper-responsiveness to methacholine and hyperpnoea. The acute effects of exercise in cold air are neutrophil influx as demonstrated in lavage fluid and airway epithelial damage as demonstrated by bronchoscopy. Upregulation of pro-inflammatory cytokines has been observed in horses. Chronic endurance training damages the epithelium of the small airways in mice. Airway inflammation has been observed on bronchoscopy of cross-country skiers and in dogs after a 1100-mile endurance race in Alaska. Neutrophilic and lymphocytic inflammation with remodelling is present in bronchial biopsies from skiers. Repeated peripheral airway hyperpnoea with dry air causes inflammation and remodelling in dogs. As it is currently unknown if these airway changes are reversible upon cessation of exposure, preventive measures to diminish exposure of the lower airways to cold air should be instituted by all winter sports athletes.
NASA Astrophysics Data System (ADS)
Deng, Dong; Cheng, Jiang-ping; Zhang, Sheng-chang; Ge, Fang-gen
2017-08-01
As a clean fuel, LNG has been used in heavy vehicles widely in China. Before reaching the engine for combustion, LNG store in a high vacuum multi-layer thermal insulation tank and need to be evaporated from its cryogenic state to natural gas. During the evaporation, the available cold energy of LNG has been calculated. The concept has been proposed that the separated type heat pipe technology is employed to utilize the available cold energy for automotive air-conditioning. The experiment has been conducted to validate the proposal. It is found that it is feasible to use the separated type heat pipe to convey the cold energy from LNG to automotive air-conditioning. And the cooling capacity of the automotive air-conditioning increase with the LNG consumption and air flow rate increasing.
Heated air humidification versus cold air nebulization in newly tracheostomized patients.
Birk, Richard; Händel, Alexander; Wenzel, Angela; Kramer, Benedikt; Aderhold, Christoph; Hörmann, Karl; Stuck, Boris A; Sommer, J Ulrich
2017-12-01
After tracheostomy, the airway lacks an essential mechanism for warming and humidifying the inspired air with the consequent functional impairment and discomfort. The purpose of this study was to compare airway hydration with cold-air nebulization versus heated high-flow humidification on medical interventions and tracheal ciliary beat frequency (CBF). Newly tracheostomized patients (n = 20) were treated either with cold-air nebulization or heated humidification. The number of required tracheal suctioning procedures to clean the trachea and tracheal CBF were assessed. The number of required suctions per day was significantly lower in the heated humidification group with medians 3 versus 5 times per day. Mean CBF was significantly higher in the heated humidification group (6.36 ± 1.49 Hz) compared to the cold-air nebulization group (3.99 ± 1.39 Hz). The data suggest that heated humidification enhanced mucociliary transport leading to a reduced number of required suctioning procedures in the trachea, which may improve postoperative patient care. © 2017 The Authors Head & Neck Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph
2016-04-01
Urban climate can benefit from cold-air drainage as it may help alleviate the urban heat island. In contrast, stable cold-air pools can damage plants especially in rural areas. In this study, we examined the dynamics of cold-air drainage and pooling in a peri-urban setting over a period of 47 days along a 170 m long slope with an inclination of 1.3° located in the Ecological Botany Gardens of the University of Bayreuth. Air and soil temperatures were measured using distributed temperature sensing of an 2-dimensional fiber-optic array at six heights (-2 cm to 100 cm) along the slope sampling every 1 min and every 1 m. Ancillary measurements of winds, turbulence intensity and momentum exchange were collected using two ultrasonic anemometers installed at 0.1 m and 17 m height at the center of the transect. We hypothesized that cold-air drainage, here defined as a gravity-driven density flow near the bottom originating from local radiative cooling of the surface, is decoupled from non-local flows and can thus be predicted from the local topography. The nocturnal data were stratified by classes of longwave radiation balance, wind speed, and wind direction at 0.1 m agl. The four most abundant classes were tested further for decoupling of wind velocities and directions between 17 and 0.1 m. We further computed the vertical and horizontal temperature perturbations of the fiber-optic array as evaluated for these cases, as well as subject the temperature data to a multiresolution decomposition to investigate the spatial two-point correlation coefficient along the transect. Finally, the cold pool intensity was calculated. The results revealed none of the four most abundant classes followed classical textbook knowledge of locally produced cold-air drainage. Instead, we found that the near-surface flow was strongly forced by two possibly competing non-local flow modes. The first mode caused weak (< 0.4 ms-1) near-surface winds directed perpendicular to the local slope and showed strong vertical decoupling of wind velocities and directions. The vertical and horizontal perturbation of the temperature as well as the cold-pool intensity was high and the two-point correlation coefficient decorrelated fast with increasing distance. In contrast, for the second mode the wind was aligned with the local slope and the wind velocities and directions agreed vertically. However, momentum exchange was much enhanced leading to intense shear-generated mixing and almost vanishing temperature perturbations, higher spatial coherence indicated by slower spatial decorrelations, and a cold-pool intensity of close to zero. In conclusion, the first mode was interpreted as a relatively weak non-local valley-scale cold-air drainage modulating the close to stationary cold-air pool filling the shallow depression the Botanical Gardens are located in. Here, the deeper cold-air drainage causes only weak local movements at the surface as both layers are largely decoupled. The second mode is possibly caused by a recirculation of a stronger valley-scale flow with sufficient synoptic forcing. Our findings challenge the common practice to predict cold-air dynamics solely based on micro-topographic analysis.
Effects of cold front passage on turbulent fluxes over a large inland water
NASA Astrophysics Data System (ADS)
Zhang, Q.; Liu, H.
2011-12-01
Turbulent fluxes of sensible and latent heat over a large inland water in southern USA were measured using the eddy covariance method through the year of 2008. In addition, net radiation, air temperatures and relative humidity, and water temperature in different depths were also measured. The specific objective of this study is to examine effects of a cold front passage on the surface energy fluxes. For the typical cold front event selected from April 11 to 14, air temperature decreased by 16°C, while surface temperature only dropped 6°C. Atmospheric vapor pressure decreased by 1.6 kPa, while that in the water-air interface dropped 0.7 kPa. The behavior difference in the water-air interface was caused by the passage of cold, dry air masses immediately behind the cold front. During the cold front event, sensible heat and latent heat flux increased by 171 W m-2 and 284 W m-2, respectively. Linear aggression analysis showed that the sensible heat flux was proportional to the product of wind speed and the temperature gradient of water-air interface, with a correlation coefficient of 0.95. Latent heat flux was proportional to the product of wind speed and vapor pressure difference between the water surface and overlaying atmosphere, with a correlation coefficient of 0.81. Also, the correlations between both fluxes and the wind speed were weak. This result indicated that the strong wind associated with the cold front event contributed to the turbulent mixing, which indirectly enhanced surface energy exchange between the water surface and the atmosphere. The relationship between the water heat storage energy and turbulent fluxes was also examined.
Adaptation to exercise in the cold.
Shephard, R J
1985-01-01
The winter athlete has several potential tactics for sustaining body temperature in the face of severe cold. An increase in the intensity of physical activity may be counter-productive because of increased respiratory heat loss, increased air or water movement over the body surface, and a pumping of air or water beneath the clothing. Shivering can generate heat at a rate of 10 to 15 kJ/min, but it impairs skilled performance, while the resultant glycogen usage hastens the onset of fatigue and mental confusion. Non-shivering thermogenesis could arise in either brown adipose tissue or white fat. Brown adipose tissue generates heat by the action of free fatty acids in uncoupling mitochondrial electron transport, and by noradrenaline-induced membrane depolarisation and sodium pumping. The existence of brown adipose tissue in human adults is controversial, and although there are theoretical mechanisms of heat production in white fat, their contribution to the maintenance of body temperature is small. Acclimatisation to cold develops over the course of about 10 days, and in humans the primary change is an insulative, hypothermic type of response; this reflects the intermittent nature of most occupational and athletic exposures to cold. Nevertheless, with more sustained exposure to cold air or water, humans can apparently develop the humoral type of acclimatisation described in small mammals, with an increased output of noradrenaline and/or thyroxine. The associated mobilisation of free fatty acids suggests the possibility of using winter sport as a pleasant method of treating obesity. In men, a combination of moderate exercise and facial cooling induces a substantial fat loss over a 1- to 2-week period, with an associated ketonuria, proteinuria, and increase of body mass. Possible factors contributing to this fat loss include: (a) a small energy deficit; (b) the energy cost of synthesising new lean tissue; (c) energy loss through the storage and excretion of ketone bodies; (d) catecholamine-induced 'futile' metabolic cycles with increased resting metabolism; and (e) a specific reaction to cold dehydration. Current limitations for the clinical application of such treatment include uncertainty regarding optimal environmental conditions, concern over possible pathological reactions to cold, and suggestions of a less satisfactory fat mobilisation in female patients. Possible interactions between physical fitness and metabolic reactions to cold remain controversial.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Gang, Liu; Meihui, Qu; Guolin, Feng; Qucheng, Chu; Jing, Cao; Jie, Yang; Ling, Cao; Yao, Feng
2018-03-01
This paper introduces three quantitative indicators to conduct research for characterizing Northeast China cold vortex persistence activity: cold vortex persistence, generalized "cold vortex," and cold vortex precipitation. As discussed in the first part of paper, a hindcast is performed by multiple regressions using Northeast China precipitation from 2012 to 2014 combination with the previous winter 144 air-sea system factors. The results show that the mentioned three cold vortex index series can reflect the spatial and temporal distributions of observational precipitation in 2012-2014 and obtain results. The cold vortex factors are then added to the Forecast System on Dynamical and Analogy Skills (FODAS) to carry out dynamic statistical hindcast of precipitation in Northeast China from 2003 to 2012. Based on the characteristics and significance of each index, precipitation hindcast is carried out for Northeast China in May, June, July, August, May-June, and July-August. It turns out that the Northeast Cold Vortex Index Series, as defined in this paper, can make positive corrections to the FODAS forecast system, and most of the index correction results are higher than the system's own correction value. This study provides quantitative index products and supplies a solid technical foundation and support for monthly precipitation forecast in Northeast China.
L-Menthol attenuates the magnitude of cold-induced vasodilation on the extremities of young females.
Kim, Siyeon; Lee, Joo-Young
2018-05-09
Menthol chemically triggers cold-sensitive receptors in the skin without conductive skin cooling. We investigated the effects of menthol-induced activation of cutaneous cold receptors on the cold-induced vasodilation (CIVD) of the finger. We hypothesized that the menthol application would attenuate typical CIVD responses. 1.5% L-menthol was fully applied over the left hand and forearm, and then, the middle finger of the left hand was immersed into 4 °C water for 30 min. A trial consisted of 10-min rest followed by 30-min immersion and 20-min recovery in 28 °C air temperature with 20% relative humidity. Another trial without the menthol application was carried out as a control. Seventeen females (24.2 ± 2.6 years in age, 160.5 ± 5.1 cm in height, and 51.2 ± 5.7 kg in body weight) participated in the two trials. The results showed that the maximum and average temperatures of the finger during the water immersion were lower in the menthol application when compared to control (P < 0.05), whereas no significant differences appeared in the onset time of CIVD, the frequency of CIVD, and minimum finger temperature. These results imply that stronger stimulation of cold receptors without additional conductive skin cooling did not attenuate the triggering of CIVD responses but intensified vasoconstriction after the first occurrence of CIVD. It is suggested that substantial and conductive heat loss through the skin along with activation of cold receptors may be required to retain rewarming at a certain level.
All Charged Up!--Experimenting with Static Electricity
ERIC Educational Resources Information Center
Roman, Harry T.
2011-01-01
Build-up of static electricity happens readily when the air is cold and dry and is a common part of life. There are lots of ways to make students aware of static electricity--and many things one can teach them about its applications in today's industry. In this article, the author describes examples and experiments that will bring static…
NASA Astrophysics Data System (ADS)
Soloviev, A.; Dean, C.
2017-12-01
The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the thermocline. On the way down, the jet partially mixes with the surrounding water reducing the temperature of the upper ocean. The OHC thus can either reduce or increase, depending on the wave-inertia pump parameters. Based on the model results, we discuss feasibility of the implementation of the artificial upwelling system for hurricane intensity mitigation.
Bolger, C; Tufvesson, E; Anderson, S D; Devereux, G; Ayres, J G; Bjermer, L; Sue-Chu, M; Kippelen, P
2011-10-01
Injury to the airway epithelium has been proposed as a key susceptibility factor for exercise-induced bronchoconstriction (EIB). Our goals were to establish whether airway epithelial cell injury occurs during EIB in athletes and whether inhalation of warm humid air inhibits this injury. Twenty-one young male athletes (10 with a history of EIB) performed two 8-min exercise tests near maximal aerobic capacity in cold dry (4°C, 37% relative humidity) and warm humid (25°C, 94% relative humidity) air on separate days. Postexercise changes in urinary CC16 were used as a biomarker of airway epithelial cell perturbation and injury. Bronchoconstriction occurred in eight athletes in the cold dry environment and was completely blocked by inhalation of warm humid air [maximal fall in forced expiratory volume in 1 s = 18.1 ± 2.1% (SD) in cold dry air and 1.7 ± 0.8% in warm humid air, P < 0.01]. Exercise caused an increase in urinary excretion of CC16 in all subjects (P < 0.001), but this rise in CC16 was blunted following inhalation of warm humid air [median CC16 increase pre- to postchallenge = 1.91 and 0.35 ng/μmol in cold dry and warm humid air, respectively, in athletes with EIB (P = 0.017) and 1.68 and 0.48 ng/μmol in cold dry and warm humid air, respectively, in athletes without EIB (P = 0.002)]. The results indicate that exercise hyperpnea transiently disrupts the airway epithelium of all athletes (not only in those with EIB) and that inhalation of warm moist air limits airway epithelial cell perturbation and injury.
Structure and Evolution of an Undular Bore on the High Plains and Its Effects on Migrating Birds.
NASA Astrophysics Data System (ADS)
Locatelli, John D.; Stoelinga, Mark T.; Hobbs, Peter V.; Johnson, Jim
1998-06-01
On 18 September 1992 a series of thunderstorms in Nebraska and eastern Colorado, which formed south of a synoptic-scale cold front and north of a Rocky Mountain lee trough, produced a cold outflow gust front that moved southeastward into Kansas, southeastern Colorado, and Oklahoma around sunset. When this cold outflow reached the vicinity of the lee trough, an undular bore developed on a nocturnally produced stable layer and moved through the range of the Dodge City WSR-88D Doppler radar. The radar data revealed that the undular bore, in the leading portion of a region of northwesterly winds about 45 km wide by 4 km high directly abutting the cold outflow, developed five undulations over the course of 3 h. Contrary to laboratory tank experiments, observations indicated that the solitary waves that composed the bore probably did not form from the enveloping of the head of the cold air outflow by the stable layer and the breaking off of the head of the cold air outflow. The synoptic-scale cold front subsequently intruded on the surface layer of air produced by the cold outflow, but there was no evidence for the formation of another bore.Profiler winds, in the region affected by the cold air outflow and the undular bore, contained signals from nocturnally, southward-migrating birds (most likely waterfowl) that took off in nonfavorable southerly winds and remained aloft for several hours longer than usual, thereby staying ahead of the turbulence associated with the undular bore.
... differences in temperature to diagnose damage to the acoustic nerve. This is the nerve that is involved ... This test stimulates your acoustic nerve by delivering cold or warm water or air into your ear canal. When cold water or air enters your ...
Large-eddy simulations of a Salt Lake Valley cold-air pool
NASA Astrophysics Data System (ADS)
Crosman, Erik T.; Horel, John D.
2017-09-01
Persistent cold-air pools are often poorly forecast by mesoscale numerical weather prediction models, in part due to inadequate parameterization of planetary boundary-layer physics in stable atmospheric conditions, and also because of errors in the initialization and treatment of the model surface state. In this study, an improved numerical simulation of the 27-30 January 2011 cold-air pool in Utah's Great Salt Lake Basin is obtained using a large-eddy simulation with more realistic surface state characterization. Compared to a Weather Research and Forecasting model configuration run as a mesoscale model with a planetary boundary-layer scheme where turbulence is highly parameterized, the large-eddy simulation more accurately captured turbulent interactions between the stable boundary-layer and flow aloft. The simulations were also found to be sensitive to variations in the Great Salt Lake temperature and Salt Lake Valley snow cover, illustrating the importance of land surface state in modelling cold-air pools.
`Blame' Hawaii for Extreme Cold Air Outbreaks on the US West Coast?
NASA Astrophysics Data System (ADS)
Grotjahn, R.; Zhang, R.
2017-12-01
Short term extreme cold events punctuate the climate record. Though not always captured by monthly or seasonal means, they can have impacts lasting months. Extreme cold air outbreaks affecting the US West Coast are associated with a specific large scale meteorological pattern (LSMP). The LSMP has large meridional displacements of warm and cold air that create a ridge over and south of western Alaska, then a trough downstream moving with the cold air of the CAO, and finally another ridge over the southeastern US. These three features form in that order over several days leading up to the CAO onset. The warm advection creating the Alaskan ridge displaces cold air which is then advected southward along the North American west coast. Our recent work shows that both advections are driven by a lower level highly unusual high pressure center near the Gulf of Alaska. The cold air advection includes a continental interior portion (which sets up an offshore pressure gradient) and a portion off the west coast (air parcels high enough to be little modified before sinking over the US West Coast). In the mid to upper troposphere there are additional cyclonic centers to the south of the Alaskan ridge. Depending on the region compared, the LSMP has notable pattern correlation (up to 0.7) with the Pacific-North American teleconnection (PNA) negative phase pattern. (Others have shown a link between the PNA negative phase and unusual cold over northwestern North America on longer time scales. Here we find a higher frequency LSMP having centers offset from corresponding centers in the negative phase PNA loading pattern.) Even earlier before onset, we find a connection to a stream function structure straddling the equator that shares properties with slow moving equatorial Rossby waves; this pattern includes a trough near Hawaii that appears linked to the Alaskan ridge building that initiates the CAO. Hence, we arrive at our provocative title. All these features in the geopotential and stream function fields are highly significant from bootstrap statistics. The presentation will emphasize the time evolution of these significant features.
The effect of air temperature and human thermal indices on mortality in Athens, Greece
NASA Astrophysics Data System (ADS)
Nastos, Panagiotis T.; Matzarakis, Andreas
2012-05-01
This paper investigates whether there is any association between the daily mortality for the wider region of Athens, Greece and the thermal conditions, for the 10-year period 1992-2001. The daily mortality datasets were acquired from the Hellenic Statistical Service and the daily meteorological datasets, concerning daily maximum and minimum air temperature, from the Hellinikon/Athens meteorological station, established at the headquarters of the Greek Meteorological Service. Besides, the daily values of the thermal indices Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) were evaluated in order to interpret the grade of physiological stress. The first step was the application of Pearson's χ 2 test to the compiled contingency tables, resulting in that the probability of independence is zero ( p = 0.000); namely, mortality is in close relation to the air temperature and PET/UTCI. Furthermore, the findings extracted by the generalized linear models showed that, statistically significant relationships ( p < 0.01) between air temperature, PET, UTCI and mortality exist on the same day. More concretely, on one hand during the cold period (October-March), a 10°C decrease in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 13%, 15%, 2%, 7% and 6% of the probability having a death, respectively. On the other hand, during the warm period (April-September), a 10°C increase in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 3%, 1%, 10%, 3% and 5% of the probability having a death, respectively. Taking into consideration the time lag effect of the examined parameters on mortality, it was found that significant effects of 3-day lag during the cold period appears against 1-day lag during the warm period. In spite of the general aspect that cold conditions seem to be favourable factors for daily mortality, the air temperature and PET/UTCI exceedances over specific thresholds depending on the distribution reveal that, very hot conditions are risk factors for the daily mortality.
Prevalence of cold sensitivity in patients with hand pathology.
Novak, Christine B; McCabe, Steven J
2015-06-01
The purpose of this study was to evaluate the prevalence of cold sensitivity in patients with hand- and wrist-related diagnoses. We included English-speaking adults who were more than 1 month following hand injury or onset of symptoms. Patients were asked if exposure to cold air or water provoked cold-related symptoms and to rank symptom severity (scale 0-10). Statistical analyses evaluated the relationships between the cold sensitivity and independent variables (age, gender, history of trauma, and time from injury/symptoms). There were 197 patients (mean age 49 ± 16 years): 98 trauma and 99 non-trauma cases. Cold-induced symptoms were reported by 34 %, with 10 % reporting severe symptoms. Exposure to cold air is the most common catalyst; mean severity score was 6.7 ± 2.2. Those with traumatic injuries compared to non-trauma diagnoses reported significantly more cold-induced symptoms (p = .04). Using backward linear regression, the significant predictors of cold symptom severity were trauma (p = .004) and time since onset (p = .003). Including only the trauma patients in the regression model, the significant predictor was time since injury (p = .005). Cold-induced symptoms are reported by more than 30 % of hand-related diagnoses, and exposure to cold air was the most commonly reported trigger. The significant predictors of cold-induced symptoms are traumatic injuries and longer time from injury. This study provides evidence of the common problem of cold sensitivity in patients with hand pathology. Prognostic Level II.
Fronts and frontogenesis as revealed by high time resolution data
NASA Technical Reports Server (NTRS)
Frank, A. E.; Barber, D. A.
1977-01-01
Upper air sounding are used to examine a cold front of average intensity. Vertical cross sections of potential temperature and wind, and horizontal analyses were compared and adjusted for consistency. These analyses were then used to study the evolution of the front, found to consist of a complex system of fronts occurring at all levels of the troposphere. Low level fronts were strongest at the surface and rapidly weakened with height. Fronts in the midddle troposphere were much more intense. The warm air ahead of the fronts was nearly barotropic, while the cold air behind was baroclinic through deep layers. A deep mixed layer was observed to grow in this cold air.
Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.
2014-01-01
We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist. PMID:25188379
Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.
2014-01-01
We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist.
NASA Astrophysics Data System (ADS)
Emelyanov, O. A.; Petrova, N. O.; Smirnova, N. V.; Shemet, M. V.
2017-08-01
We describe a device for obtaining cold plasma in air at atmospheric pressure using a system of positive high-voltage pin electrodes, which is intended for the treatment of skin and soft-tissue injuries in animals. Plasma is generated due to the development of periodic pulsed discharge of nanosecond duration at current pulse amplitudes 10-20 mA, characteristic frequencies 10-20 kHz, and applied voltages within 8-10 kV. The high efficacy of the proposed device and method is confirmed by the good clinical results of treating large domestic animals with traumatic injuries.
Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass
NASA Astrophysics Data System (ADS)
Taniguchi, Miki; Sasauchi, Kenichi; Ahn, Chulju; Ito, Yusuke; Hayashi, Toshiaki; Akamatsu, Fumiteru
In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth load. The following results was found: 1) the air supply into the char bed is more effective than that into the gas phase, 2) we can have the maximum cold gas efficiency of 80% on the following conditions: air supply location: char layer, air temperature: 20°C, air ratio: 0.2. 3) As air temperature is higher, the cold gas efficiency is larger. As for the hearth load, the cold gas efficiency becomes higher and reaches the constant level. It is expected from the results that high temperature in the char layer is effective on the char gasification.
Rupf, Stefan; Idlibi, Ahmad Nour; Marrawi, Fuad Al; Hannig, Matthias; Schubert, Andreas; von Mueller, Lutz; Spitzer, Wolfgang; Holtmann, Henrik; Lehmann, Antje; Rueppell, Andre; Schindler, Axel
2011-01-01
The removal of biofilms from microstructured titanium used for dental implants is a still unresolved challenge. This experimental study investigated disinfection and removal of in situ formed biofilms from microstructured titanium using cold atmospheric plasma in combination with air/water spray. Titanium discs (roughness (Ra): 1.96 µm) were exposed to human oral cavities for 24 and 72 hours (n = 149 each) to produce biofilms. Biofilm thickness was determined using confocal laser scanning microscopy (n = 5 each). Plasma treatment of biofilms was carried out ex vivo using a microwave-driven pulsed plasma source working at temperatures from 39 to 43°C. Following plasma treatment, one group was air/water spray treated before re-treatment by second plasma pulses. Vital microorganisms on the titanium surfaces were identified by contact culture (Rodac agar plates). Biofilm presence and bacterial viability were quantified by fluorescence microscopy. Morphology of titanium surfaces and attached biofilms was visualized by scanning electron microscopy (SEM). Total protein amounts of biofilms were colorimetrically quantified. Untreated and air/water treated biofilms served as controls. Cold plasma treatment of native biofilms with a mean thickness of 19 µm (24 h) to 91 µm (72 h) covering the microstructure of the titanium surface caused inactivation of biofilm bacteria and significant reduction of protein amounts. Total removal of biofilms, however, required additional application of air/water spray, and a second series of plasma treatment. Importantly, the microstructure of the titanium discs was not altered by plasma treatment. The combination of atmospheric plasma and non-abrasive air/water spray is applicable for complete elimination of oral biofilms from microstructured titanium used for dental implants and may enable new routes for the therapy of periimplant disease. PMID:22016784
Thermal Face Protection Delays Finger Cooling and Improves Thermal Comfort during Cold Air Exposure
2011-01-01
code) 2011 Journal Article-Eur Journal of Applied Physiology Thermal face protection delays Fnger cooling and improves thermal comfort during cold air...remains exposed. Facial cooling can decrease finger blood flow, reducing finger temperature (Tf). This study examined whether thermal face protection...limits Wnger cooling and thereby improves thermal comfort and manual dexterity during prolonged cold exposure. Tf was measured in ten volunteers dressed
NASA Astrophysics Data System (ADS)
Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.
2017-12-01
Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results demonstrate that Northeast winters have air mass conditions that have become warmer and drier in recent decades. Additionally, Northern Plains winters have air mass setups that have become warmer and more moist since the mid 1970s.
Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole
NASA Astrophysics Data System (ADS)
Lehner, Manuela; Whiteman, C. David; Dorninger, Manfred
2017-06-01
Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100-200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.
Črna Jama as a cold air trap cave within Postojna Cave, Slovenia
NASA Astrophysics Data System (ADS)
Šebela, Stanka; Turk, Janez
2017-10-01
Črna Jama is the coldest section of cave within the Postojna Cave System. Mean annual air temperatures at the Črna Jama 2 site are 5.6 °C (2015) and 5.7 °C (2016), and at the Črna Jama 3 site 7.1 °C (2015) and 7.2 (2016), whereas the mean external air temperature was 10.3 °C (2015) and 10.0 °C (2016). In Lepe Jame, the passage most heavily visited by tourists, the mean cave-air temperature is 10.7 °C (2014-2017). Črna Jama exhibits winter and summer temperature regimes. During warm periods (Tcave < Tout), it acts as a cold air trap, exchanging no air with the outside atmosphere. Under such conditions the cave-air temperature shows no short-term diurnal temperature oscillations. Cave-air temperature is significantly stable and affected only by elevation of the groundwater table, which is associated with precipitation. During cold periods (Tcave > Tout), ventilation takes place and dense, cold, outside air sinks into Črna Jama because of the favourable cave entrance morphology. Recent Črna Jama air temperature data (2014-2017) indicate a < 0.5 °C higher temperature than that recorded in historical data since 1933. Črna Jama is the most appropriate place within the Postojna Cave System to study long-term climatic changes. There are hardly any tourist visits to the cave, and human impacts on the cave climate are essentially reduced.
Lin, Shao; Lawrence, Wayne R; Lin, Ziqiang; DiRienzo, Stephen; Lipton, Kevin; Dong, Guang-Hui; Leung, Ricky; Lauper, Ursula; Nasca, Philip; Stuart, Neil
2018-10-15
More extreme cold weather and larger weather variations have raised concerns regarding their effects on public health. Although prior studies assessed the effects of cold air temperature on health, especially mortality, limited studies evaluated wind chill temperatures on morbidity, and health effects under the current cold warning threshold. This study identified the thresholds, lag periods, and best indicators of extreme cold on cardiovascular disease (CVD) by comparing effects of wind chill temperatures and cold air temperatures on CVD emergency department (ED) visits in winter and winter transition months. Information was collected on 662,625 CVD ED visits from statewide hospital discharge dataset in New York State. Meteorological factors, including air temperature, wind speed, and barometric pressure were collected from National Oceanic and Atmospheric Administration. A case-crossover approach was used to assess the extreme cold-CVD relationship in winter (December-February) and transition months (November and March) after controlling for PM 2.5 . Conditional logistic regression models were employed to analyze the association between cold weather factors and CVD ED visits. We observed CVD effects occurred when wind chill temperatures were as high as -3.8 °C (25 °F), warmer than current wind chill warning standard (≤-28.8 °C or ≤-20 °F). Wind chill temperature was a more sensitive indicator of CVD ED visits during winter with temperatures ≤ -3.8 °C (25 °F) with delay effect (lag 6); however, air temperature was better during transition months for temperatures ≤ 7.2 °C (45 °F) at earlier lag days (1-3). Among all CVD subtypes, hypertension ED visit had the strongest negative association with both wind chill temperature and air temperature. This study recommends modifying the current cold warning temperature threshold given larger proportions of CVD cases are occurring at considerably higher temperatures than the current criteria. We also recommend issuing cold warnings in winter transitional months. Copyright © 2018 Elsevier B.V. All rights reserved.
Heat Treatment of Cold-Sprayed C355 Al for Repair: Microstructure and Mechanical Properties
NASA Astrophysics Data System (ADS)
Murray, J. W.; Zuccoli, M. V.; Hussain, T.
2018-01-01
Cold gas dynamic spraying of commercially pure aluminum is widely used for dimensional repair in the aerospace sector as it is capable of producing oxide-free deposits of hundreds of micrometer thickness with strong bonding to the substrate, based on adhesive pull-off tests, and often with enhanced hardness compared to the powder prior to spraying. There is significant interest in extending this application to structural, load-bearing repairs. Particularly, in the case of high-strength aluminum alloys, cold spray deposits can exhibit high levels of porosity and microcracks, leading to mechanical properties that are inadequate for most load-bearing applications. Here, heat treatment was investigated as a potential means of improving the properties of cold-sprayed coatings from Al alloy C355. Coatings produced with process conditions of 500 °C and 60 bar were heat-treated at 175, 200, 225, 250 °C for 4 h in air, and the evolution of the microstructure and microhardness was analyzed. Heat treatment at 225 and 250 °C revealed a decreased porosity ( 0.14% and 0.02%, respectively) with the former yielding slightly reduced hardness (105 versus 130 HV0.05 as-sprayed). Compressive residual stress levels were approximately halved at all depths into the coating after heat treatment, and tensile testing showed an improvement in ductility.
"Cold air" and/or "talking" as cough triggers, a sign for the diagnosis of cough variant asthma.
Kanemitsu, Yoshihiro; Matsumoto, Hisako; Osman, Nuriamina; Oguma, Tsuyoshi; Nagasaki, Tadao; Izuhara, Yumi; Ito, Isao; Tajiri, Tomoko; Iwata, Toshiyuki; Niimi, Akio; Mishima, Michiaki
2016-11-01
Fractional exhaled nitric oxide (FeNO) is considered an alternative marker of eosinophilic airway inflammation and is sometimes incorporated in the diagnosis of asthma. However, many patients with cough variant asthma (CVA) demonstrate an FeNO in the normal range. Therefore, additional information is needed to confirm the diagnosis of CVA, particularly in patients with low FeNO levels. We aimed to investigate the feasibility of using cough triggers to help diagnose CVA. We studied 163 patients presenting with prolonged/chronic cough alone (including 104 CVA patients) who underwent FeNO measurements and an airway responsiveness test, and answered a questionnaire listing 18 cough triggers. The sensitivity and specificity of FeNO levels and cough triggers for the diagnosis of CVA were determined. CVA patients showed higher FeNO levels than non-CVA patients. When the cut-off value of FeNO levels for the diagnosis of CVA was set at 22ppb, its sensitivity was 57%. CVA patients more frequently responded to "cold air" and "talking" as cough triggers than non-CVA patients. When the analysis was confined to those with a low FeNO (<22ppb) group, the sensitivity and positive predictive values of "cold air" and "talking" for the diagnosis of CVA were 36% and 70% for "cold air", and 44% and 74% for "talking", respectively. Their specificity was 81%. "Cold air" was associated with airway hyperresponsiveness in all patients with an emphasis on those with low FeNO levels. "Cold air" and/or "talking" as cough triggers could be signs for the diagnosis of CVA, particularly when FeNO levels are low. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
Effect of diurnal and seasonal temperature variation on Cussac cave ventilation using co2 assessment
NASA Astrophysics Data System (ADS)
Peyraube, Nicolas; Lastennet, Roland; Villanueva, Jessica Denila; Houillon, Nicolas; Malaurent, Philippe; Denis, Alain
2017-08-01
Cussac cave was investigated to assess the cave air temperature variations and to understand its ventilation regime. This cave is located in an active karst system in the south west part of France. It has a single entrance and is considered as a cold air trap. In this study, air mass exchanges were probed. Measurements of temperature and Pco2 with a 30-min frequency were made in several locations close to the cave entrance. Speed of the air flow was also measured at the door of cave entrance. Results show that cave air Pco2 varies from 0.18 to 3.33 %. This cave appears to be a CO2 source with a net mass of 2319 tons blown in 2009. Carbon-stable isotope of CO2 (13Cco2) ranges from -20.6 ‰ in cold season to -23.8 ‰ in warm season. Cave air is interpreted as a result of a mix between external air and an isotopically depleted air, coming from the rock environment. The isotopic value of the light member varies through time, from -23.9 to -22.5 ‰. Furthermore, this study ascertains that the cave never stops in communicating with the external air. The ventilation regime is identified. (1) In cold season, the cave inhales at night and blows a little at the warmest hours. However, in warm season, (2) cave blows at night, but (3) during the day, a convection loop takes place in the entrance area and prevents the external air from entering the cave, confirming the cold air trap.
Rapid and selective brain cooling method using vortex tube: A feasibility study.
Bakhsheshi, Mohammad Fazel; Keenliside, Lynn; Lee, Ting-Yim
2016-05-01
Vortex tubes are simple mechanical devices to produce cold air from a stream of compressed air without any moving parts. The primary focus of the current study is to investigate the feasibility and efficiency of nasopharyngeal brain cooling method using a vortex tube. Experiments were conducted on 5 juvenile pigs. Nasopharygeal brain cooling was achieved by directing cooled air via a catheter in each nostril into the nasal cavities. A vortex tube was used to generate cold air using various sources of compressed air: (I) hospital medical air outlet (n = 1); (II) medical air cylinders (n = 3); and (III) scuba (diving) cylinders (n = 1). By using compressed air from a hospital medical air outlet at fixed inlet pressure of 50 PSI, maximum brain-rectal temperature gradient of -2°C was reached about 45-60 minutes by setting the flow rate of 25 L/min and temperature of -7°C at the cold air outlet. Similarly, by using medical air cylinders at fill-pressure of 2265 PSI and down regulate the inlet pressure to the vortex tube to 50 PSI, brain temperature could be reduced more rapidly by blowing -22°C ± 2°C air at a flow rate of 50 L/min; brain-body temperature gradient of -8°C was obtained about 30 minutes. Furthermore, we examined scuba cylinders as a portable source of compressed gas supply to the vortex tube. Likewise, by setting up the vortex tube to have an inlet pressure of 25 PSI and 50 L/min and -3°C at the cold air outlet, brain temperature decreased 4.5°C within 10-20 min. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra
2017-11-01
Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed ˜ 2 mm h^{-1}, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but near the cold pool edge; these are not consistent with observations, but do improve with smaller horizontal grid spacings.
NASA Astrophysics Data System (ADS)
Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra
Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed 2 mm h-1, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but near the cold pool edge; these are not consistent with observations, but do improve with smaller horizontal grid spacings.
Impact of cold climates on vehicle emissions: the cold start air toxics pulse : final report.
DOT National Transportation Integrated Search
2016-09-21
This project measured cold start emissions from four vehicles in winter using fast response instrumentation to accurately measure the : time variation of the cold start emission pulse. Seventeen successful tests were conducted over a temperature rang...
NASA Astrophysics Data System (ADS)
Sulca, Juan C.
In this Master's dissertation, atmospheric circulation patterns associated with extreme hydrometeorological events in the Mantaro Basin, Peruvian Central Andes, and their teleconnections during the austral summer (December-January-February-March) are addressed. Extreme rainfall events in the Mantaro basin are related to variations of the large-scale circulation as indicated by the changing strength of the Bolivian High-Nordeste Low (BH-NL) system. Dry (wet) spells are associated with a weakening (strengthening) of the BH-NL system and reduced (enhanced) influx of moist air from the lowlands to the east due to strengthened westerly (easterly) wind anomalies at mid- and upper-tropospheric levels. At the same time extreme rainfall events of the opposite sign occur over northeastern Brazil (NEB) due to enhanced (inhibited) convective activity in conjunction with a strengthened (weakened) Nordeste Low. Cold episodes in the Mantaro Basin are grouped in three types: weak, strong and extraordinary cold episodes. Weak and strong cold episodes in the MB are mainly associated with a weakening of the BH-NL system due to tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the potential for development of convective cloud cover. The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below the 10-percentile. Extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. Therefore, weak and strong cold episodes in the MB appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection, while the latter plays an important role for extraordinary cold episodes only.
Pulsed-Power Research and Development in the USSR
1978-05-01
point action of extreme electric and magnetic fields o Heat and mass transfer in energy converters with complex nonlinear parameters o Transfer of...Study of cold plasma instabilities and turbulence o Development of plasmatrons to heat hydrogen, nitrogen, air, methane, argon, helium, alkali...approaches to metalworking through the use of electromagnetic force and in research on induction heating . In connection with such applications, Shneyerson
Dilute Oxygen Combustion Phase IV Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, M.F.
2003-04-30
Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the costmore » of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations are critical. DOC technology will continue to have a highly competitive role in retrofit applications requiring increases in furnace productivity.« less
Cold Spots in the Martian Polar Regions: Evidence of Carbon Dioxide Depletion?
NASA Technical Reports Server (NTRS)
Weiss, Benjamin P.; Ingersoll, Andrew P.
2000-01-01
Regions of very low, rapidly varying brightness temperatures have been observed near the martian winter poles by several spacecraft. One possibility is that the CO2 condensation temperature is lowered by depletion of CO2 in the air at the surface. We estimate the rate at which this low-molecular-weight air would disperse into the high-molecular-weight air above and show that it is generally faster than the rate of supply. This dispersal could be prevented if there is a strong temperature inversion (warm air above colder air) near the surface. Without an inversion, the entire atmospheric column could become depleted. However, depleted columns take a long time to form, and they are inconsistent with the rapid fluctuations in the cold spot locations and temperatures. Because low-altitude temperature inversions cannot be ruled out by existing observations, CO2 depletion is still a viable explanation for the martian cold spots.
An improved method for chromosome counting in maize.
Kato, A
1997-09-01
An improved method for counting chromosomes in maize (Zea mays L.) is presented. Application of cold treatment (5C, 24 hr), heat treatment (42 C, 5 min) and a second cold treatment (5C, 24 hr) to root tips before fixation increased the number of condensed and dispersed countable metaphase chromosome figures. Fixed root tips were prepared by the enzymatic maceration-air drying method and preparations were stained with acetic orcein. Under favorable conditions, one preparation with 50-100 countable chromosome figures could be obtained in diploid maize using this method. Conditions affecting the dispersion of the chromosomes are described. This technique is especially useful for determining the somatic chromosome number in triploid and tetraploid maize lines.
Aerogel Insulation Systems for Space Launch Applications
NASA Technical Reports Server (NTRS)
Fesmire, James E.
2005-01-01
New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.
Tiralongo, Evelin; Wee, Shirley S.; Lea, Rodney A.
2016-01-01
Intercontinental air travel can be stressful, especially for respiratory health. Elderberries have been used traditionally, and in some observational and clinical studies, as supportive agents against the common cold and influenza. This randomized, double-blind placebo-controlled clinical trial of 312 economy class passengers travelling from Australia to an overseas destination aimed to investigate if a standardised membrane filtered elderberry (Sambucus nigra L.) extract has beneficial effects on physical, especially respiratory, and mental health. Cold episodes, cold duration and symptoms were noted in a daily diary and assessed using the Jackson score. Participants also completed three surveys containing questions regarding upper respiratory symptoms (WURSS-21) and quality of life (SF-12) at baseline, just before travel and at 4-days after travel. Most cold episodes occurred in the placebo group (17 vs. 12), however the difference was not significant (p = 0.4). Placebo group participants had a significantly longer duration of cold episode days (117 vs. 57, p = 0.02) and the average symptom score over these days was also significantly higher (583 vs. 247, p = 0.05). These data suggest a significant reduction of cold duration and severity in air travelers. More research is warranted to confirm this effect and to evaluate elderberry’s physical and mental health benefits. PMID:27023596
Seifert, John G; Frost, Jeremy; St Cyr, John A
2017-01-01
Breathing cold air can lead to bronchoconstriction and peripheral vasoconstriction, both of which could impact muscular performance by affecting metabolic demands during exercise. Successful solutions dealing with these physiological changes during exercise in the cold has been lacking; therefore, we investigated the influence of a heat and moisture exchange mask during exercise in the cold. There were three trial arms within this study: wearing the heat and moisture exchange mask during the rest periods in the cold, no-mask application during the rest periods in the cold, and a trial at room temperature (22°C). Eight subjects cycled in four 35 kJ sprint sessions with each session separated by 20 min rest period. Workload was 4% of body mass. Mean sprint times were faster with heat and moisture exchange mask and room temperature trial than cold, no-mask trial (133.8 ± 8.6, 134.9 ± 8.8, and 138.0 ± 8.4 s (p = 0.001)). Systolic blood pressure and mean arterial pressure were greater during the cold trial with no mask (15% and 13%, respectively), and heart rate was 10 bpm less during the third rest or recovery period during cold, no mask compared to the heat and moisture exchange mask and room temperature trials. Subjects demonstrated significant decreases in vital capacity and peak expiratory flow rate during the cold with no mask applied during the rest periods. These negative responses to cold exposure were alleviated by the use of a heat and moisture exchange mask worn during the rest intervals by minimizing cold-induced temperature stress on the respiratory system with subsequent maintenance of cardiovascular function.
Chashchin, V P; Siurin, S A; Gudkov, A B; Popova, O N; Voronin, A Iu
2014-01-01
The article presents the results of a study on assessment of occupational exposure to air pollutants and related health effects in3792 outdoor workers engaged in operations performed in the vicinity of non-ferrous metallurgical facilities in Far North. Findings are that during cold season repeated climate and weather conditions are associated with higher level of chemical hazards and dust in surface air. At the air temperature below -17 degrees C, maximal single concentrations of major pollutants can exceed MAC up to 10 times. With that, transitory disablement morbidity parameters and occupational accidents frequency increase significantly. The workers with long exposure to cooling meteorological factors and air pollution demonstrate significantly increased prevalence of respiratory and circulatory diseases, despite relatively low levels of sculpture dioxide and dust in the air, not exceeding the occupational exposure limits. It has been concluded that severe cold is to be considered asa factor increasing occupational risk at air polluted outdoor worksites dueto more intense air pollution, higher traumatism risk and lower efficiency of filter antidust masks respiratory PPE and due to modification of the toxic effects.
Lee, Minhee
2002-04-01
Oxygen concentration fields in a water body were visualized by the fluorescence oxygen visualization (FOV) method. Pyrenebutyric acid (PBA) was used as a fluorescent indicator of oxygen, and an intensive charge coupled-device (ICCD) camera as an image detector. Sequential images (over 2000 images) of the oxygen concentration field around the surface water of the tank (1 x 1 x 0.75 m3) were produced during the 3 h experiment. From image processing, the accurate pathway of oxygen-rich, cold water at the water surface was also visualized. The amount of oxygen transferred through the air-water interface during the experiment was measured and the oxygen transfer coefficient (K(L)) was determined as 0.22 m/d, which was much higher than that is expected in molecular diffusion. Results suggest that vertical penetration of cold water was the main pathway of oxygen in the water body in the tank. The average velocity of cold water penetrating downward in water body was also measured from consecutive images and the value was 0.3-0.6 mm/s. The FOV method used in this research should have wide application in experimental fluid mechanics and can also provide a phenomenological description of oxygen transfer under physically realizable natural conditions in lakes and reservoirs.
Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma.
Maisch, Tim; Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L
2012-06-01
Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm(2)). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log(10) to 5 log(10) reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided.
Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma
Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G.; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L.
2012-01-01
Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm2). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log10 to 5 log10 reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided. PMID:22467505
Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications
NASA Astrophysics Data System (ADS)
Macheret, Sergey
2005-05-01
The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the "reverse energy bypass" scheme. MHD power generation on board reentry vehicles is also discussed.
Quantitative assessment of relative roles of drivers of acute respiratory diseases
Goswami, Prashant; Baruah, Jurismita
2014-01-01
Several thousands of people, including children, suffer from acute respiratory disease (ARD) every year worldwide. Pro-active planning and mitigation for these diseases require identification of the major drivers in a location-specific manner. While the importance of air pollutants in ARD has been extensively studied and emphasized, the role of weather variables has been less explored. With Delhi with its large population and pollution as a test case, we examine the relative roles of air pollution and weather (cold days) in ARD. It is shown that both the number of cold days and air pollution play important roles in ARD load; however, the number of cold days emerges as the major driver. These conclusions are consistent with analyses for several other states in India. The robust association between ARD load and cold days provides basis for estimating and predicting ARD load through dynamical model, as well as impact of climate change. PMID:25322687
Cold air drainage flows subsidize montane valley ecosystem productivity
Kimberly A. Novick; Andrew C. Oishi; Chelcy Ford Miniat
2016-01-01
In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate...
Fast and optimized methodology to generate road traffic emission inventories and their uncertainties
NASA Astrophysics Data System (ADS)
Blond, N.; Ho, B. Q.; Clappier, A.
2012-04-01
Road traffic emissions are one of the main sources of air pollution in the cities. They are also the main sources of uncertainties in the air quality numerical models used to forecast and define abatement strategies. Until now, the available models for generating road traffic emission always required a big effort, money and time. This inhibits decisions to preserve air quality, especially in developing countries where road traffic emissions are changing very fast. In this research, we developed a new model designed to fast produce road traffic emission inventories. This model, called EMISENS, combines the well-known top-down and bottom-up approaches to force them to be coherent. A Monte Carlo methodology is included for computing emission uncertainties and the uncertainty rate due to each input parameters. This paper presents the EMISENS model and a demonstration of its capabilities through an application over Strasbourg region (Alsace), France. Same input data as collected for Circul'air model (using bottom-up approach) which has been applied for many years to forecast and study air pollution by the Alsatian air quality agency, ASPA, are used to evaluate the impact of several simplifications that a user could operate . These experiments give the possibility to review older methodologies and evaluate EMISENS results when few input data are available to produce emission inventories, as in developing countries and assumptions need to be done. We show that same average fraction of mileage driven with a cold engine can be used for all the cells of the study domain and one emission factor could replace both cold and hot emission factors.
Urban, Aleš; Kyselý, Jan
2014-01-01
We compare the recently developed Universal Thermal Climate Index (UTCI) with other thermal indices in analysing heat- and cold-related effects on cardiovascular (CVD) mortality in two different (urban and rural) regions in the Czech Republic during the 16-year period from 1994–2009. Excess mortality is represented by the number of deaths above expected daily values, the latter being adjusted for long-term changes, annual and weekly cycles, and epidemics of influenza/acute respiratory infections. Air temperature, UTCI, Apparent Temperature (AT) and Physiologically Equivalent Temperature (PET) are applied to identify days with heat and cold stress. We found similar heat effects on CVD mortality for air temperature and the examined thermal indices. Responses of CVD mortality to cold effects as characterised by different indices were much more varied. Particularly important is the finding that air temperature provides a weak cold effect in comparison with the thermal indices in both regions, so its application—still widespread in epidemiological studies—may underestimate the magnitude of cold-related mortality. These findings are important when possible climate change effects on heat- and cold-related mortality are estimated. AT and PET appear to be more universal predictors of heat- and cold- related mortality than UTCI when both urban and rural environments are of concern. UTCI tends to select windy rather than freezing days in winter, though these show little effect on mortality in the urban population. By contrast, significant cold-related mortality in the rural region if UTCI is used shows potential for UTCI to become a useful tool in cold exposure assessments. PMID:24413706
NASA Astrophysics Data System (ADS)
Llasat, M.-C.; Martín, F.; Barrera, A.
2007-04-01
Over the last 25 years the term “cold pool” has come to be used in many spheres as a synonym for floods. This has given rise to a major confusion that has even moved into international scientific and technical circles. In this paper we analyse how the concept of “cold air pool” has evolved from when it was defined at the beginning of the 20th century down to the present day, in which the Spanish term “DANA” (similar to a cut-off low) has been introduced in order to avoid existing confusions. In the course of the paper we take account of cold air pool genesis and their thermal and dynamic characteristics, and we discuss the factors that have led to them being identified (erroneously) with heavy rainfall events. The study takes as its basis a systematic analysis of all the cold air pools recorded in Europe, and particularly in the Iberian Peninsula, over the period 1974-1983, as well as in studies of the floods recorded in eastern Spain since 1950 until nowadays. The discussion done on the basis of this accurate analysis leads to the identification of a cold air pool as a type cut-off low (COL) and justifying the use of this more generic term when a structure like this is present in a heavy rainfall event. For a better illustration of the previous discussion and understanding of the role of COLs in intense rainfall events, we present the episode of September 1971 in Catalonia, in which over 400 mm were recorded. The analysis was carried out with the MM5 initialised with the ERA-40 re-analyses. The results show that the role of COLs in the heavy rainfall episodes recorded in Spain is mainly dynamic, both in terms of the circulation they create at low levels and the potential vorticity anomaly generated. This circulation draws in very warm, moist and potentially unstable air perpendicularly to the coast and the littoral mountain chains. The factor of thermal instability, owing to the presence of cold air at medium and higher levels, shows itself to be more important in zones where this warm moist advection at low levels is not as significant as in the Mediterranean zone.
Solar thermoelectric cooling using closed loop heat exchangers with macro channels
NASA Astrophysics Data System (ADS)
Atta, Raghied M.
2017-07-01
In this paper we describe the design, analysis and experimental study of an advanced coolant air conditioning system which cools or warms airflow using thermoelectric (TE) devices powered by solar cells. Both faces of the TE devices are directly connected to closed-loop highly efficient channels plates with macro scale channels and liquid-to-air heat exchangers. The hot side of the system consists of a pump that moves a coolant through the hot face of the TE modules, a radiator that drives heat away into the air, and a fan that transfer the heat over the radiator by forced convection. The cold side of the system consists also of a pump that moves coolant through the cold face of the TE modules, a radiator that drives cold away into the air, and a fan that blows cold air off the radiator. The system was integrated with solar panels, tested and its thermal performance was assessed. The experimental results verify the possibility of heating or cooling air using TE modules with a relatively high coefficient of performance (COP). The system was able to cool a closed space of 30 m3 by 14 °C below ambient within 90 min. The maximum COP of the whole system was 0.72 when the TE modules were running at 11.2 Å and 12 V. This improvement in the system COP over the air cooled heat sink is due to the improvement of the system heat exchange by means of channels plates.
Open-cell cloud formation over the Bahamas
NASA Technical Reports Server (NTRS)
2002-01-01
What atmospheric scientists refer to as open cell cloud formation is a regular occurrence on the back side of a low-pressure system or cyclone in the mid-latitudes. In the Northern Hemisphere, a low-pressure system will draw in surrounding air and spin it counterclockwise. That means that on the back side of the low-pressure center, cold air will be drawn in from the north, and on the front side, warm air will be drawn up from latitudes closer to the equator. This movement of an air mass is called advection, and when cold air advection occurs over warmer waters, open cell cloud formations often result. This MODIS image shows open cell cloud formation over the Atlantic Ocean off the southeast coast of the United States on February 19, 2002. This particular formation is the result of a low-pressure system sitting out in the North Atlantic Ocean a few hundred miles east of Massachusetts. (The low can be seen as the comma-shaped figure in the GOES-8 Infrared image from February 19, 2002.) Cold air is being drawn down from the north on the western side of the low and the open cell cumulus clouds begin to form as the cold air passes over the warmer Caribbean waters. For another look at the scene, check out the MODIS Direct Broadcast Image from the University of Wisconsin. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
Xu, Rui; Huang, Huaping; Han, Zhong; Li, Minchao; Zhou, Xiangdong
2016-01-01
To investigate the role of miR-21 in airway immunologic dysfunction induced by cold air irritation. Immortalized human airway epithelial cell lines BEAS-2B and 16HBE cells were cultured in air-liquid phases. The differential expressions of endogenous miR-21, miR-164, and miR-155 in the cells induced by cold air exposure for different time were detected by real-time PCR. The reporter plasmid containing wild-type or mutated 3'UTR of TLR-4 were constructed and co-transfected into BEAS-2B cells or 16HBE cells together with miR-21 mimic, miR-21 mimic control, miR-21 inhibitor, or miR-21 inhibitor control. Following the transfection, dual luciferase reporter assay was performed to verify the action of miR-21 on TLR-4. miR-21 mimic, miR-21 mimic control, miR-21 inhibitor, and miR-21 inhibitor control were transfected via lipofectamine 2000 in BEAS-2B or 16HBE cells that were subsequently exposed to a temperature at 37 degrees celsius; or cold irritation (30 degrees celsius;), and the protein levels of TLR-4/MyD88 were detected by Western blotting. Cold irritation caused a time- dependent up-regulation of miR-21 in both BEAS-2B and 16HBE cells (P<0.05) without obviously affecting the expressions of miR-164 and miR-155. Dual luciferase reporter assay demonstrated a direct combination of miR-21 and its target protein TLR-4. The synthesis levels of TLR-4/MyD88 protein were decreased in miR-21 mimic group even at a routine culture temperature (P<0.05), as also seen in cells with cold irritation (P<0.05). Treatment with the miR-21 inhibitor partially attenuated cold irritation-induced down-regulation of TLR-4/MyD88 protein (P<0.05). Cold air irritation-induced airway immunologic dysfunction is probably associated with TLR-4/MyD88 down-regulation by an increased endogenic miR-21.
High Time Resolution Measurements of VOCs from Vehicle Cold Starts: The Air Toxic Cold Start Pulse
NASA Astrophysics Data System (ADS)
Jobson, B. T.; Huangfu, Y.; Vanderschelden, G. S.
2017-12-01
Pollutants emitted during motor vehicle cold starts, especially in winter in some climates, is a significant source of winter time air pollution. While data exist for CO, NO, and total hydrocarbon emissions from federal testing procedures for vehicle emission certification, little is known about the emission rates of individual volatile organic compounds, in particular the air toxics benzene, formaldehyde, and acetaldehyde. Little is known about the VOC speciation and temperature dependence for cold starts. The US EPA vehicle emission model MOVES assumes that cold start emissions have the same speciation profile as running emissions. We examined this assumption by measuring cold start exhaust composition for 4 vehicles fueled with E10 gasoline over a temperature range of -4°C to 10°C in winter of 2015. The extra cold start emissions were determined by comparison with emissions during engine idling. In addition to CO and NOx measurements a proton transfer reaction mass spectrometer was used to measure formaldehyde, acetaldehyde, benzene, toluene, and C2-alkylbenzenes at high time resolution to compare with the cold start emission speciation profiles used in the EPA MOVES2014 model. The results show that after the vehicle was started, CO mixing ratios can reach a few percent of the exhaust and then drop to several ppmv within 2 minutes of idling, while NOx showed different temporal behaviors among the four vehicles. VOCs displayed elevated levels during cold start and the peak mixing ratios can be two orders higher than idling phase levels. Molar emission ratios relative to toluene were used to compare with the emission ratio used in MOVES2014 and we found the formaldehyde-to-toluene emission ratio was about 0.19, which is 5 times higher than the emission ratio used in MOVES2014 and the acetaldehyde-to-toluene emission ratios were 0.86-0.89, which is 8 times higher than the ones in MOVES2014. The C2-alkylbenzene-to-toluene ratio agreed well with moves. Our results suggest that for the air toxics acetaldehyde and formaldehyde, wintertime cold temperature vehicle start emissions are likely significantly underestimated in the MOVES 2014 model.
NASA Astrophysics Data System (ADS)
Inaba, Hideo; Morita, Shin-Ichi
The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.
Pach, Daniel; Knöchel, Bettina; Lüdtke, Rainer; Wruck, Katja; Willich, Stefan N; Witt, Claudia M
To compare the efficacy of applying hot dry air versus dry air at room temperature to the throat of patients with a newly acquired common cold using a symptom severity score. A randomised single-blind controlled trial with a treatment duration of 3 days and a follow-up period of 4 days was conducted at a sauna in Berlin, Germany. Between November 2007 and March 2008 and between September 2008 and April 2009, 157 patients with symptoms of the common cold were randomly assigned to an intervention group (n=80) and a control group (n=77). Participants in the intervention group inhaled hot dry air within a hot sauna, dressed in a winter coat, whereas participants in the control group inhaled dry air at room temperature within a hot sauna, also dressed in a winter coat. Area under the curve (AUC) summarising symptom severity over time (Days 2, 3, 5 and 7), symptom severity scores for individual days, intake of medication for the common cold and general ill feeling. No significant difference between groups was observed for AUC representing symptom severity over time (intervention group mean, 31.2 [SEM, 1.8]; control group mean, 35.1 [SEM, 2.3]; group difference, -3.9 [95% CI, -9.7 to 1.9]; P=0.19). However, significant differences between groups were found for medication use on Day 1 (P=0.01), symptom severity score on Day 2 (P=0.04), and participants' ratings of the effectiveness of the therapy on Day 7 (P=0.03). Inhaling hot air while in a sauna has no significant impact on overall symptom severity of the common cold. ClinicalTrials.gov identifier NCT00552981.
Boundary-layer effects on cold fronts at a coastline
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1986-07-01
The present note discusses one physical mechanism which may contribute to cold air channelling, manifest as a frontal bulge on a surface-analysis chart, in the coastal region of Victoria in southeast Australia. This involves the modification of boundary-layer air in both offshore (prefrontal) and onshore (postfrontal) flow, and the effect on cross-frontal thermal contrast. The problem is discussed in terms of a north-south-oriented cold front behaving as an atmospheric gravity current, propagating along an east-west-oriented coastline, in the presence of a prefrontal offshore stream.
1998-11-01
to develop and build an atomic bomb. The project was under the direction of physicist J. Robert Oppenheimer , a former student at the Los Alamos Ranch...of AAF Facilities (1942- 1943 ) 39 Victory in Sight and the Atomic Age: Consolidation and Disposition of Facilities ( 1943 - 1945 ) 42 Cold War ( 1945 ...Sight and the Atomic Age ( 1943 - 1945 ) 61 Cold War Inception (July 1945 -January 1953) 63 Nuclear Escalation (January 1953-November 1963) 72 Detente
Extremely cold events and sudden air temperature drops during winter season in the Czech Republic
NASA Astrophysics Data System (ADS)
Crhová, Lenka; Valeriánová, Anna; Holtanová, Eva; Müller, Miloslav; Kašpar, Marek; Stříž, Martin
2014-05-01
Today a great attention is turned to analysis of extreme weather events and frequency of their occurrence under changing climate. In most cases, these studies are focused on extremely warm events in summer season. However, extremely low values of air temperature during winter can have serious impacts on many sectors as well (e.g. power engineering, transportation, industry, agriculture, human health). Therefore, in present contribution we focus on extremely and abnormally cold air temperature events in winter season in the Czech Republic. Besides the seasonal extremes of minimum air temperature determined from station data, the standardized data with removed annual cycle are used as well. Distribution of extremely cold events over the season and the temporal evolution of frequency of occurrence during the period 1961-2010 are analyzed. Furthermore, the connection of cold events with extreme sudden temperature drops is studied. The extreme air temperature events and events of extreme sudden temperature drop are assessed using the Weather Extremity Index, which evaluates the extremity (based on return periods) and spatial extent of the meteorological extreme event of interest. The generalized extreme value distribution parameters are used to estimate return periods of daily temperature values. The work has been supported by the grant P209/11/1990 funded by the Czech Science Foundation.
Advanced diesel electronic fuel injection and turbocharging
NASA Astrophysics Data System (ADS)
Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.
1993-12-01
The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.
Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO
NASA Astrophysics Data System (ADS)
Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.
2012-12-01
One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.
Navy Tactical Applications Guide. Volume 2. Environmental Phenomena and Effects
1979-01-01
usually distinguished: the polar-front jet stream, associated with extratropical frontal systems; and the subtropical jet stream, overlying the poleward...patterns have formed in the cold air behind a frontal cloud band which extends from North Africa into Southern Europe . Note that the cellular cloud field...but because of the future potential of such areas for rapid storm " , development. (See Case 3 for the further development of these vorticity centers
Klämpfl, Tobias G; Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E; Schmidt, Hans-Ulrich
2012-08-01
Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log(10) CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D(23)(°)(C) values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma.
Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L.; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E.; Schmidt, Hans-Ulrich
2012-01-01
Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log10 CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D23°C values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068
The lab and the land: overcoming the Arctic in Cold War Alaska.
Farish, Matthew
2013-03-01
The militarization of Alaska during and after World War II created an extraordinary set of new facilities. But it also reshaped the imaginative role of Alaska as a hostile environment, where an antagonistic form of nature could be defeated with the appropriate combination of technology and training. One of the crucial sites for this reformulation was the Arctic Aeromedical Laboratory, based at Ladd Air Force Base in Fairbanks. In the first two decades of the Cold War, its employees conducted numerous experiments on acclimatization and survival. The laboratory is now best known for an infamous set of tests involving the application of radioactive tracers to indigenous Alaskans--experiments publicized by post-Cold War panels established to evaluate the tragic history of atomic-era human subject research. But little else has been written about the laboratory's relationship with the populations and landscapes that it targeted for study. This essay presents the laboratory as critical to Alaska's history and the history of the Cold War sciences. A consideration of the laboratory's various projects also reveals a consistent fascination with race. Alaskan Natives were enrolled in experiments because their bodies were understood to hold clues to the mysteries of northern nature. A scientific solution would aid American military campaigns not only in Alaska, but in cold climates everywhere.
Starfleet Deferred: Project Orion in the 1962 Air Force Space Program
NASA Astrophysics Data System (ADS)
Ziarnick, B.
Project Orion, the Cold War American program (1957-1965) studying nuclear pulse propulsion for space applications, has long interested space enthusiasts for what it was and what it might have been, but it has long been believed that neither the United States government nor the US Air Force took the program very seriously. However, recently declassified US Air Force documents shed more light on the classified history of Project Orion. Far from being ignored by Air Force leadership, through the efforts of the Strategic Air Command, Air Force leaders like General Curtis LeMay were convinced that Project Orion should be funded as a major weapons system. The high water mark of Project Orion was the 1962 Air Force Space Program proposal by the Air Force Chief of Staff to devote almost twenty percent of the Air Force space budget from 1962-1967 to Orion development before the program was cancelled by the civilian Secretary of the Air Force under pressure from the Department of Defense. This paper details the history of Project Orion in the 1962 Air Force Space Program proposal, and concludes with a few lessons learned for use by modern interstellar advocates.
Interaction of Shallow Cold Surges with Topography on Scales of 100-1000 Kilometers.
NASA Astrophysics Data System (ADS)
Toth, James John
1987-09-01
A shallow cold air mass is defined as one not extending to the top of the mountain ridge with which it interacts. The structure of such an airmass is examined using both observational data and a hydrostatic version of the Colorado State University Regional Atmospheric Modeling System. The prime constraint on a shallow cold surge is that the flow must ultimately be parallel to the mountain ridge. It is found that the effects of this constraint are altered significantly by surface sensible heat flux. Cold surges are slowed during the daylight hours, a result consistent with previous observational studies in Colorado east of the Continental Divide. Two case studies are described in detail, and several other events are cited. Since observations alone do not provide a complete description of diversion of the cold air by the mountain range, numerical model simulations provide additional insight into important mechanisms. A case study on 14 June 1985 is described using observational and model data. The model development of a deep boundary layer within the frontal baroclinic zone is consistent with the observations for this and other cases. This development is due to strong surface heating. Turning off the model shortwave radiation is seen to produce a rapid southward acceleration of the surface front, with very shallow cold air behind the front. Model simulations with specified surface temperature differences confirm the importance of upward heat flux from the surface in slowing the southward movement of the cold surge. It is concluded that the slowing is not due simply to the thermal wind developing in response to the heating of higher terrain to the west. Since surface heating is distributed over a deeper layer on the warm side of the temperature discontinuity, there is frontolysis at the surface. But this modification would develop even over flat terrain. Sloping terrain introduces additional effects. Heating at the western, upslope side of the cold surge inhibits the development of pressure gradients favorable to northerly flow. A second contribution comes from westerly winds at ridgetop level. These winds are heated over the higher terrain and flow downslope, further retarding the progression of the cold air at the surface.
Airtightness Results of Roof-Only Air Sealing Strategies on 1-1/2 Story Homes in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojczyk, C.; Murry, T.; Mosiman, G.
In this second study on solutions to ice dams in 1-1/2 story homes, five test homes located in both cold and very cold climates were analyzed for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. The reason for choosing this house type was they are very common in our area and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach for whole housemore » (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR Building America industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled us to compare air tightness data from over 220 homes using similar air seal methods.« less
Airtightness Results of Roof-Only Air Sealing Strategies on 1 ½-Story Homes in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojczyk, C.; Murry, T.; Mosiman, G.
In this second study on solutions to ice dams in 1-1/2 story homes, the NorthernSTAR Building America Partnership team analyzed five test homes located in both cold and very cold climates for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. These homes were chosen for testing as they are common in Minnesota and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach formore » whole house (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled the team to compare air tightness data from over 220 homes using similar air seal methods.« less
Curriculum Evolution at Air Command and Staff College in the Post-Cold War Era
ERIC Educational Resources Information Center
Donovan, William Robert, II.
2010-01-01
This qualitative study used a historical research method to eliminate the gap in the historical knowledge of Air Command and Staff College (ACSC) curriculum evolution in the post-Cold War era. This study is the only known analysis of the forces that influenced the ACSC curriculum and the rationale behind curricular change at ACSC in the post-Cold…
Local hyperthermia benefits natural and experimental common colds.
Tyrrell, D.; Barrow, I.; Arthur, J.
1989-01-01
OBJECTIVE--To determine whether inhaling fully humidified air at 43 degrees C gave more benefit to cold sufferers than inhaling air at 30 degrees C. DESIGN--Randomised double blind trial. Setting--General practice and the common cold research unit. SUBJECTS--87 Unselected patients with typical acute nasal and upper respiratory symptoms (general practice study), and 84 volunteers aged 18-50 without a history of chronic or allergic diseases. INTERVENTIONS--Subjects breathed from apparatus delivering 40 litres of room air heated to 43 degrees C or 30 degrees C and fully humidified (relative humidity 100%) per minute. End point--Reduction in severity of disease. MEASUREMENTS and main results--Patients recorded their symptoms (general practice study) and observers recorded symptoms and signs, weight of nasal secretions, isolation of virus, and antibody responses in volunteers. Patients treated for 20 minutes at 43 degrees C had in the succeeding days roughly half the score for symptoms of those treated at 30 degrees C. Volunteers treated for 30 minutes on three occasions when they were starting a cold showed an 18% [corrected] reduction in symptoms. Treatment of volunteers for 20 minutes at the onset of the cold and for 10 minutes on succeeding days showed no difference between 43 degrees C and 30 degrees C. CONCLUSIONS--Nasal hyperthermia can improve the course of a common cold and also give immediate relief of symptoms. PMID:2500196
Hayter, Kane J.; Schumann, Moritz; Deakin, Glen B.
2016-01-01
This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone. PMID:27069791
Cold-air performance of a tip turbine designed to drive a lift fan. 1: Baseline performance
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.; Hotz, G. M.; Futral, S. M., Jr.
1976-01-01
Full admission baseline performance was obtained for a 0.4 linear scale of the LF460 lift fan turbine over a range of speeds and pressure ratios without leakage air. These cold-air tests covered a range of speeds from 40 to 140 percent of design equivalent speed and a range of scroll inlet to diffuser exit static pressure ratios from 2.0 to 4.2. Results are presented in terms of specific work, torque, mass flow, efficiency, and total pressure drop.
... cause an asthma attack vary from person to person. Common triggers include breathing in cold air, cold/flu viruses, strenuous exercise, chemicals, cigarette smoke, and allergies to dust, animals, pollen, or mold. ...
A computer model for predicting grapevine cold hardiness
USDA-ARS?s Scientific Manuscript database
We developed a robust computer model of grapevine bud cold hardiness that will aid in the anticipation of and response to potential injury from fluctuations in winter temperature and from extreme cold events. The model uses time steps of 1 day along with the measured daily mean air temperature to ca...
How cold pool triggers deep convection?
NASA Astrophysics Data System (ADS)
Yano, Jun-Ichi
2014-05-01
The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed by Moncrieff and Liu (1999). As a whole, in attempting a statistical description of boundary-layer processes, the cold pool is essentially nothing other than an additional contribution to a TKE (turbulent kinetic energy) budget. Significance of trigger of convection by cold pool in context of convection parameterization must also be seen with much caution. Against a common misunderstanding, current convection parameterization is not designed to describe a trigger process of individual convection. In this respect, process studies on cold pool do not contribute to improvements of convection parameterization until a well-defined parameterization formulation for individual convection processes is developed. Even before then a question should also be posed whether such a development is necessary. Under a current mass-flux convection parameterization, a more important process to consider is re-evaporative cooling of detrained cloudy air, which may also be associated with downdraft, possibly further leading to a generation of a cold pool. Yano and Plant (2012) suggest, from a point of view of the convective-energy cycle, what follows would be far less important than the fact the re-evaporation induces a generation of convective kinetic energy (though it may initially be considered TKE). Both well-focused convective process studies as well as convection parameterization formulation would be much needed.
Formation of a katabatic induced cold front at the east Andean slopes
NASA Astrophysics Data System (ADS)
Trachte, K.; Nauss, T.,; Rollenbeck, R.; Bendix, J.
2009-04-01
Within the DFG research unit 816, climate dynamics in a tropical mountain rain forest in the national reserve of the Reserva Biósfera de San Francisco in South Ecuador are investigated. Precipitation measurements in the mountain environment of the Estación Científica de San Francisco (ECSF) with a vertical rain radar profiler have been made over the last seven years. They reveal unexpected constant early morning rainfall events. On the basis of cloud top temperatures from corresponding GOES satellite imageries, a Mesoscale Convective System could be derived. Its formation region is located south-east of the ECSF in the Peruvian Amazon basin. The generation of the MCS is assumed to results from an interaction of both local and mesoscale conditions. Nocturnal drainage air from the Andean slopes and valleys confluences in the Amazon basin due to the concave lined terrain. This cold air converges with the warm-moist air of the Amazon inducing a local cold front. This process yields to deep convection resulting in a MCS. With the numerical model ARPS the hypothesized formation of a cloud cluster due to a katabatic induced cold front is shown in an ideal case study. Therefor an ideal terrain model representing the features of the Andes in the target area has been used. The simplification of the oprography concerns a concave lined slope and a valley draining into the basin. It describes the confluence of the cold drainage air due to the shape of the terrain. Inside the basin the generation of a local cold front is shown, which triggers the formation of a cloud cluster.
Cold air drainage flows subsidize montane valley ecosystem productivity.
Novick, Kimberly A; Oishi, A Christopher; Miniat, Chelcy Ford
2016-12-01
In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long-running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional- and global-scale terrestrial ecosystem models. Analyses driven by chamber-based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud-free (i.e., drought-like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco-physiological processes from macroscale climate change. © 2016 John Wiley & Sons Ltd.
Efficacy of a heat exchanger mask in cold exercise-induced asthma.
Beuther, David A; Martin, Richard J
2006-05-01
To determine the efficacy of a novel mask device in limiting cold air exercise-induced decline in lung function in subjects with a history of exercise-induced asthma (EIA). In spite of appropriate medical therapy, many asthma patients are limited in cold weather activities. In study 1, 13 asthmatic subjects performed two randomized, single-blind treadmill exercise tests while breathing cold air (- 25 to - 15 degrees C) through a placebo or active heat exchanger mask. In study 2, five subjects with EIA performed three treadmill exercise tests while breathing cold air: one test using the heat exchanger mask, one test without the mask but with albuterol pretreatment, and one test with neither the mask nor albuterol pretreatment (unprotected exercise). For all studies, spirometry was performed before and at 5, 15, and 30 min after exercise challenge. For both studies, a total of 15 subjects with a history of asthma symptoms during cold air exercise were recruited. In study 1, the mean decrease (+/- SE) in FEV1 was 19 +/- 4.9% with placebo, and 4.3 +/- 1.6% with the active device (p = 0.0002). The mean decrease in maximum mid-expiratory flow (FEF(25-75)) was 31 +/- 5.7% with placebo and 4.7 +/- 1.7% with the active device (p = 0.0002). In study 2, the mean decrease in FEV1 was 6.3 +/- 3.9%, 11 +/- 3.7%, and 28 +/- 10% for the heat exchanger mask, albuterol pretreatment, and unprotected exercises, respectively (p = 0.4375 for mask vs albuterol, p = 0.0625 for mask vs unprotected exercise). The mean decrease in FEF(25-75) was 10 +/- 4.8%, 23 +/- 6.0%, and 36 +/- 11%, respectively (p = 0.0625 for mask vs albuterol, p = 0.0625 for mask vs unprotected exercise). This heat exchanger mask blocks cold exercise-induced decline in lung function at least as effectively as albuterol pretreatment.
Sun, Yuexia; Wang, Zhigang; Zhang, Yufeng; Sundell, Jan
2011-01-01
Objective To test whether the incidence of common colds among college students in China is associated with ventilation rates and crowdedness in dormitories. Methods In Phase I of the study, a cross-sectional study, 3712 students living in 1569 dorm rooms in 13 buildings responded to a questionnaire about incidence and duration of common colds in the previous 12 months. In Phase II, air temperature, relative humidity and CO2 concentration were measured for 24 hours in 238 dorm rooms in 13 buildings, during both summer and winter. Out-to indoor air flow rates at night were calculated based on measured CO2 concentrations. Results In Phase I, 10% of college students reported an incidence of more than 6 common colds in the previous 12 months, and 15% reported that each infection usually lasted for more than 2 weeks. Students in 6-person dorm rooms were about 2 times as likely to have an incidence of common colds ≥6 times per year and a duration ≥2 weeks, compared to students in 3-person rooms. In Phase II, 90% of the measured dorm rooms had an out-to indoor air flow rate less than the Chinese standard of 8.3 L/s per person during the heating season. There was a dose-response relationship between out-to indoor air flow rate per person in dorm rooms and the proportion of occupants with annual common cold infections ≥6 times. A mean ventilation rate of 5 L/(s•person) in dorm buildings was associated with 5% of self reported common cold ≥6 times, compared to 35% at 1 L/(s•person). Conclusion Crowded dormitories with low out-to indoor airflow rates are associated with more respiratory infections among college students. PMID:22110607
NASA Astrophysics Data System (ADS)
Targino, Admir Créso; Krecl, Patricia; Coraiola, Guilherme Conor
2014-07-01
Air temperature was monitored at 13 sites across the urban perimeter of a Brazilian midsize city in winter 2011. In this study, we show that the urban heat island (UHI) develops only at night and under certain weather conditions, and its intensity depends not only on the site's land cover but also on the meteorological setting. The urban heat island intensity was largest (6.6 °C) under lingering high-pressure conditions, milder (3.0 °C) under cold anticyclones and almost vanished (1.0 °C) during the passage of cold fronts. The cooling rates were calculated to monitor the growth and decay of the UHI over each specific synoptic setting. Over four contiguous days under the effect of a lingering high-pressure event, we observed that the onset of cooling was always at about 2 h before sunset. The reference site attained mean cooling rate of -2.6 °C h-1 at sunset, whilst the maximum urban rate was -1.2 °C h-1. Under a 3-day cold anticyclone episode, cooling also started about 2 h before sunset, and the difference between maximum rural (-2.0 °C h-1) and urban (-1.0 °C h-1) cooling rates diminished. Under cold-front conditions, the cooling rate was homogeneous for all sites and swang about zero throughout the day. The air temperature has a memory effect under lingering high-pressure conditions which intensified the UHI, in addition to the larger heat storage in the urban area. Cold anticyclone conditions promoted the development of the UHI; however, the cold air pool and relatively light winds smoothed out its intensity. Under the influence of cold fronts, the urban fabric had little effect on the city's air temperature field, and the UHI was imperceptible.
Cold, dry air is associated with influenza and pneumonia mortality in Auckland, New Zealand.
Davis, Robert E; Dougherty, Erin; McArthur, Colin; Huang, Qiu Sue; Baker, Michael G
2016-07-01
The relationship between weather and influenza and pneumonia mortality was examined retrospectively using daily data from 1980 to 2009 in Auckland, New Zealand, a humid, subtropical location. Mortality events, defined when mortality exceeded 0·95 standard deviation above the mean, followed periods of anomalously cold air (ta.m. = -4·1, P < 0·01; tp.m. = -4·2, P < 0·01) and/or anomalously dry air (ta.m. = -4·1, P < 0·01; tp.m. = -3·8, P < 0·01) by up to 19 days. These results suggest that respiratory infection is enhanced during unusually cold conditions and during conditions with unusually low humidity, even in a subtropical location where humidity is typically high. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mahdavi, Amirhossein; McDonald, André
2018-02-01
The final quality of cold-sprayed coatings can be significantly influenced by gas-substrate heat exchange, due to the dependence of the deposition efficiency of the particles on the substrate temperature distribution. In this study, the effect of the air temperature and pressure, as process parameters, and surface roughness and thickness, as substrate parameters, on the convective heat transfer coefficient of the impinging air jet was investigated. A low-pressure cold spraying unit was used to generate a compressed air jet that impinged on a flat substrate. A comprehensive mathematical model was developed and coupled with experimental data to estimate the heat transfer coefficient and the surface temperature of the substrate. The effect of the air total temperature and pressure on the heat transfer coefficient was studied. It was found that increasing the total pressure would increase the Nusselt number of the impinging air jet, while total temperature of the air jet had negligible effect on the Nusslet number. It was further found that increasing the roughness of the substrate enhanced the heat exchange between the impinging air jet and the substrate. As a result, higher surface temperatures on the rough substrate were measured. The study of the effect of the substrate thickness on the heat transfer coefficient showed that the Nusselt number that was predicted by the model was independent of the thickness of the substrate. The surface temperature profile, however, decreased in increasing radial distances from the stagnation point of the impinging jet as the thickness of the substrate increased. The results of the current study were aimed to inform on the influence and effect of substrate and process parameters on the gas-substrate heat exchange and the surface temperature of the substrate on the final quality of cold-sprayed coatings.
Effect of Various Parameters on Evolution of 2D Free Jets and their Associated Entrainment Rates
NASA Astrophysics Data System (ADS)
Amin, Mazyar; Dabiri, Dana; Navaz, Homayun
2006-11-01
Refrigerated vertical display cases are extensively used in supermarkets and grocery stores. Cold air is supplied vertically across the open face of the display case from the top, creating a cold air curtain acting as a barrier to separate the cold air within the case from the warm ambient air. Typically, 70-80% of the load on these vertical display cases is due to cooling of infiltrated warm ambient air. Our goal is to understand parameters affecting warm air infiltration into the case so as to minimize the cooling load. Towards this end, steady state behavior of 2D vertical air jets at Reynolds numbers 2,000 to 10,000 with low and high turbulence intensities (0% &10%) at the nozzle exit are experimentally and computationally investigated both within a quiescent ambient and next to an open cavity. Four different velocity profile shapes (top-hat, parabola, skewed parabola and linear) at the jet exit are also studied to determine profile effects on the evolution of and entrainment into the jet. Results will be presented to show the effect of these parameters on the total entrainment into the jet, as well as the variation of entrainment across the jet at different downstream locations. The results of this work can help better understand how to design air curtains as a buffer to minimize infiltration into open refrigerated vertical display cases.
Kapferer, Ines; Pflug, Claudia; Kisielewsky, Irene; Giesinger, Johannes; Beier, Ulrike S; Dumfahrt, Herbert
2013-01-01
The aim of this study was to evaluate the clinical efficacy of an in-office desensitizing paste containing 8% arginine and calcium carbonate relative to calcium carbonate alone in the reduction of dentin hypersensitivity in a randomized, double-blind, split-mouth clinical trial. Sixty teeth (30 subjects) with an air blast hypersensitivity score of 2 or 3 (Schiff Cold Air Sensitivity Scale) were randomly assigned to one of two treatment groups: (1) test paste containing 8% arginine and calcium carbonate (elmex sensitive professional desensitizing paste) and (2) control paste: paris white (calcium carbonate). Tactile and air blast dentin hypersensitivity examinations were performed at baseline, immediately after paste application and 4 and 12 weeks later. A statistically significant difference in air blast (p = 0.001) and tactile (p = 0.047) hypersensitivity reduction over time was observed between the two therapy modes. After 12-weeks, statistically significant differences were indicated between the test and control group with respect to baseline-adjusted mean tactile (41.94%; p = 0.038) and air blast hypersensitivity scores (46.5%; p = 0.017). The tested in-office desensitizing paste containing 8.0% arginine and calcium carbonate provides significantly greater hypersensitivity relief compared to calcium carbonate alone.
INTERIOR OF COLD STORAGE ROOM, SHOWING MOVABLE HANGING RACKS. ...
INTERIOR OF COLD STORAGE ROOM, SHOWING MOVABLE HANGING RACKS. - Naval Air Station Barbers Point, Aircraft Storehouse, Between Midway & Card Streets at Enterprise Avenue intersection, Ewa, Honolulu County, HI
NASA Technical Reports Server (NTRS)
Kniskern, Marc W.
1990-01-01
The thermal effects of simulant gas injection and aerodynamic heating at the model's surface on the measurements of a non-watercooled, flow through balance were investigated. A stainless steel model of a hypersonic air breathing propulsion cruise missile concept (HAPCM-50) was used to evaluate this balance. The tests were conducted in the 20-inch Mach 6 wind tunnel at NASA-Langley. The balance thermal effects were evaluated at freestream Reynolds numbers ranging from .5 to 7 x 10(exp 6) ft and angles of attack between -3.5 to 5 deg at Mach 6. The injection gases considered included cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon-12. The stagnation temperatures of the cold air, hot air, and Ar-Fr(12) reached 111, 214, and 283 F, respectively within the balance. A bakelite sleeve was inserted into the inner tube of the balance to minimize the thermal effects of these injection gases. Throughout the tests, the normal force, side force, yaw moment, roll moment, and pitching moment balance measurements were unaffected by the balance thermal effects of the injection gases and the wind tunnel flow. However, the axial force (AF) measurement was significantly affected by balance heating. The average zero shifts in the AF measurements were 1.9, 3.8, and 5.9 percent for cold air, hot air, and Ar-Fr(12) injection, respectively. The AF measurements decreased throughout these tests which lasted from 70 to 110 seconds. During the cold air injection tests, the AF measurements were accurate up to at least ten seconds after the model was injected into the wind tunnel test section. For the hot air and Ar-Fr(12) tests, the AF measurements were accurate up to at least five seconds after model injection.
Argon used as dry suit insulation gas for cold-water diving.
Vrijdag, Xavier Ce; van Ooij, Pieter-Jan Am; van Hulst, Robert A
2013-06-03
Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13 degrees C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. No diver had to abort the test due to cold. No differences in core temperature and thermal comfort score were found between the two groups. Core temperature remained unchanged during the dives. Thermal comfort score showed a significant decrease in both groups after a 60-min dive compared to baseline. In these tests the combination of the dry suit and undergarment was sufficient to maintain core temperature and thermal comfort for a dive of 1h in water at 13 degrees C. The use of argon as a suit inflation gas had no added value for thermal insulation compared to air for these dives.
Automated algorithm for mapping regions of cold-air pooling in complex terrain
NASA Astrophysics Data System (ADS)
Lundquist, Jessica D.; Pepin, Nicholas; Rochford, Caitlin
2008-11-01
In complex terrain, air in contact with the ground becomes cooled from radiative energy loss on a calm clear night and, being denser than the free atmosphere at the same elevation, sinks to valley bottoms. Cold-air pooling (CAP) occurs where this cooled air collects on the landscape. This article focuses on identifying locations on a landscape subject to considerably lower minimum temperatures than the regional average during conditions of clear skies and weak synoptic-scale winds, providing a simple automated method to map locations where cold air is likely to pool. Digital elevation models of regions of complex terrain were used to derive surfaces of local slope, curvature, and percentile elevation relative to surrounding terrain. Each pixel was classified as prone to CAP, not prone to CAP, or exhibiting no signal, based on the criterion that CAP occurs in regions with flat slopes in local depressions or valleys (negative curvature and low percentile). Along-valley changes in the topographic amplification factor (TAF) were then calculated to determine whether the cold air in the valley was likely to drain or pool. Results were checked against distributed temperature measurements in Loch Vale, Rocky Mountain National Park, Colorado; in the Eastern Pyrenees, France; and in Yosemite National Park, Sierra Nevada, California. Using CAP classification to interpolate temperatures across complex terrain resulted in improvements in root-mean-square errors compared to more basic interpolation techniques at most sites within the three areas examined, with average error reductions of up to 3°C at individual sites and about 1°C averaged over all sites in the study areas.
NASA Astrophysics Data System (ADS)
Garcia-Rivera, Jose M.; Lin, Yuh-Lang; Rastigejev, Yevgenii
2016-06-01
The interactions between an Appalachian cold-air damming event and the near passage of Tropical Storm Kyle (2002) along the coastal Carolinas are assessed by using a numerical weather prediction model. As the storm moved along the coastline, it began extra-tropical transition, bringing heavy rains to both the coastal region and inland towards the Piedmont of North Carolina. Our goal is to quantify the effects of both interacting weather systems on heavy precipitation to improve the dynamical understanding of such effects, as well as precipitation forecasts in the study region. A series of sensitivity tests were performed to isolate and quantify the effects of both systems on the total accumulated precipitation. It was found that (a) for this type of along-coast track, the pre-existing cold-air damming played only a minor role on the total accumulated precipitation, (b) the outer circulation of Kyle weakened the cold-air damming due to a redirection of the mean flow away from the east side of the Appalachian Mountains, and (c) the combination of Kyle with a shortwave mid- to upper-level trough and a surface coastal front were responsible for the heavy precipitation experienced in the study area through the advection of moisture, vorticity, and the forcing of upward motion.
NASA Astrophysics Data System (ADS)
Devade, Kiran D.; Pise, Ashok T.
2017-01-01
Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.
NASA Astrophysics Data System (ADS)
Hall, Steven J.; Maurer, Gregory; Hoch, Sebastian W.; Taylor, Raili; Bowling, David R.
2014-12-01
Urban montane valleys are often characterized by periodic wintertime temperature inversions (cold air pools) that increase atmospheric particulate matter concentrations, potentially stimulating the deposition of major ions to these snow-covered ecosystems. We assessed spatial and temporal patterns of ion concentrations in snow across urban to montane gradients in Salt Lake City, Utah, USA, and the adjacent Wasatch Mountains during January 2011, a period of several persistent cold air pools. Ion concentrations in fresh snow samples were greatest in urban sites, and were lower by factors of 4-130 in a remote high-elevation montane site. Adjacent undeveloped canyons experienced significant incursions of particulate-rich urban air during stable atmospheric conditions, where snow ion concentrations were lower but not significantly different from urban sites. Surface snow ion concentrations on elevation transects in and adjacent to Salt Lake City varied with temporal and spatial trends in aerosol concentrations, increasing following exposure to particulate-rich air as cold air pools developed, and peaking at intermediate elevations (1500-1600 m above sea level, or 200-300 m above the valley floor). Elevation trends in ion concentrations, especially NH4+ and NO3-, corresponded with patterns of aerosol exposure inferred from laser ceilometer data, suggesting that high particulate matter concentrations stimulated fog or dry ion deposition to snow-covered surfaces at the top of the cold air pools. Fog/dry deposition inputs were similar to wet deposition at mid-elevation montane sites, but appeared negligible at lower and higher-elevation sites. Overall, snow ion concentrations in our urban and adjacent montane sites exceeded many values reported from urban precipitation in North America, and greatly exceeded those reported for remote snowpacks. Sodium, Cl-, NH4+, and NO3- concentrations in fresh snow were high relative to previously measured urban precipitation, with means of 120, 117, 42, and 39 μeq l-1, respectively. After exposure to atmospheric particulate matter during cold pool events, surface snow concentrations peaked at 2500, 3600, 93, and 90 μeq l-1 for these ions. Median nitrogen (N) deposition in fresh urban snow samples measured 0.8 kg N ha-1 during January 2011, with similar fog/dry deposition inputs at mid-elevation montane sites. Wintertime anthropogenic air pollution represents a significant source of ions to snow-covered ecosystems proximate to urban montane areas, with important implications for ecosystem function.
Analytical methods to predict liquid congealing in ram air heat exchangers during cold operation
NASA Astrophysics Data System (ADS)
Coleman, Kenneth; Kosson, Robert
1989-07-01
Ram air heat exchangers used to cool liquids such as lube oils or Ethylene-Glycol/water solutions can be subject to congealing in very cold ambients, resulting in a loss of cooling capability. Two-dimensional, transient analytical models have been developed to explore this phenomenon with both continuous and staggered fin cores. Staggered fin predictions are compared to flight test data from the E-2C Allison T56 engine lube oil system during winter conditions. For simpler calculations, a viscosity ratio correction was introduced and found to provide reasonable cold ambient performance predictions for the staggered fin core, using a one-dimensional approach.
Field Performance of Inverter-Driven Heat Pumps in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, James; Aldrich, Robb
2015-08-19
Traditionally, air-source heat pumps (ASHPs) have been used more often in warmer climates; however, some new ASHPs are gaining ground in colder areas. These systems operate at subzero (Fahrenheit) temperatures and many do not include backup electric resistance elements. There are still uncertainties, however, about capacity and efficiency in cold weather. Also, questions such as “how cold is too cold?” do not have clear answers. These uncertainties could lead to skepticism among homeowners; poor energy savings estimates; suboptimal system selection by heating, ventilating, and air-conditioning contractors; and inconsistent energy modeling. In an effort to better understand and characterize the heatingmore » performance of these units in cold climates, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven, ductless ASHPs across the Northeast. Operating data were collected for three Mitsubishi FE18 units, three Mitsubishi FE12 units, and one Fujitsu 15RLS2 unit. The intent of this research was to assess heat output, electricity consumption, and coefficients of performance (COPs) at various temperatures and load conditions. This assessment was accomplished with long- and short-term tests that measured power consumption; supply, return, and outdoor air temperatures; and airflow through the indoor fan coil.« less
NASA Astrophysics Data System (ADS)
Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin
2018-05-01
Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.
... as triggers include: Cold air Dry air Air pollution High pollen counts Chlorine in swimming pools Chemicals used with ice rink resurfacing equipment Respiratory infections or other lung disease Activities with extended periods of deep breathing, such ...
Air quality and exercise-induced bronchoconstriction in elite athletes.
Rundell, Kenneth W; Sue-Chu, Malcolm
2013-08-01
A higher prevalence of airway hyperresponsiveness, airway remodeling, and asthma has been identified among athletes who compete and train in environmental conditions of cold dry air and/or high air pollution. Repeated long-duration exposure to cold/dry air at high minute ventilation rates can cause airway damage. Competition or training at venues close to busy roadways, or in indoor ice arenas or chlorinated swimming pools, harbors a risk for acute and chronic airway disorders from high pollutant exposure. This article discusses the effects of these harsh environments on the airways, and summarizes potential mechanisms and prevalence of airway disorders in elite athletes. Copyright © 2013 Elsevier Inc. All rights reserved.
Nakamoto, M
1990-01-01
Plasma norepinephrine and epinephrine in vibration syndrome subjects and age-matched healthy controls were measured for the purpose of estimating the responsibility of the sympathetic nervous system to cold exposure. In preliminary experiment, it was confirmed that cold air exposure of the whole body was more suitable than one-hand immersion in cold water. In the main experiment, 195 subjects were examined. Sixty-five subjects had vibration syndrome with vibration-induced white finger (VWF + group) and 65 subjects had vibration syndrome without VWF (VWF- group) and 65 controls had no symptoms (control group). In the three groups, plasma norepinephrine levels increased during cold air exposure of whole body at 7 degrees +/- 1.5 degrees C. Blood pressure increased and skin temperature decreased during cold exposure. Percent increase of norepinephrine in the VWF+ group was the highest while that in VWF- group followed and that in the control group was the lowest. This whole-body response of the sympathetic nervous system to cold conditions reflected the VWF which are characteristic symptoms of vibration syndrome. Excluding the effects of shivering and a cold feeling under cold conditions, it was confirmed that the sympathetic nervous system in vibration syndrome is activated more than in the controls. These results suggest that vibration exposure to hand and arm affects the sympathetic nervous system.
1992-12-30
this report was 1ý.F,;,Amdauncdunc Rsearch Professor of Physics Approvei: b K. E. Woel Chairman Department of Physics Released by: P .Mar o, Dean of...R.J. Yamartino, 1987: Environmental Protection Agency complex terrain model development: final rep. EPA/600/3-88/006, U.S., 486 pp. Stull , R.B., 1988...Denmark Mr. Randall Nyman 1 ACTA Vandenberg AFB, CA 93437-5000 Prof. Gordon Schacher 1 Dean of Faculty and Graduate Studies Naval Postgraduate
An index of anomalous convective instability to detect tornadic and hail storms
NASA Astrophysics Data System (ADS)
Qian, Weihong; Leung, Jeremy Cheuk-Hin; Luo, Weimeng; Du, Jun; Gao, Jidong
2017-12-01
In this article, the synoptic-scale spatial structures for raising tornadic and hail storms are compared by analyzing the total and anomalous variable fields from the troposphere to the stratosphere. 15 cases of tornado outbreaks and 20 cases of hail storms that occurred in the central United States during 1980-2011 were studied. The anomalous temperature-height field shows that a tornadic or hail storm usually occurs at the boundary of anomalous warm and cold air masses horizontally in the troposphere. In one side, an anomalous warm air mass in the mid-low troposphere and an anomalous cold air mass in the stratosphere are vertically separated by a positive center of height anomalies at the upper troposphere. In another side, an opposite vertical pattern shows that an anomalous cold air mass in the mid-low troposphere and an anomalous warm air mass in the stratosphere are separated by a negative center of height anomalies at the upper troposphere. Therefore, two pairs of adjacent anomalous warm/cold centers and one pair of anomalous high/low centers combining together form a major tornadic or hail storm paradigm, which can be physically considered as the storage of anomalous potential energy (APE) to generate severe weather. To quantitatively measure the APE, we define an index of anomalous convective instability (ACI) which is a difference of integrating temperature anomalies based on two vertically opposite anomalous air masses. The APE transformation to anomalous kinetic energy, which reduces horizontal and vertical gradients of temperature anomalies, produces anomalous rising and sinking flows in the lower-layer anomalous warm and cold air mass sides, respectively. The intensity of ACI index for tornadic storm cases is 1.5 times larger than that of hail storm cases in average. Thus, this expression of anomalous variables is better than total variables used in the traditional synoptic chart and the ACI index is better than other indices to detect potential tornadic and hail storms in order to understand the environmental conditions affecting severe weather in analytical and model output datasets.
14 CFR 29.1101 - Carburetor air preheater design.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air preheater design. 29.1101... Carburetor air preheater design. Each carburetor air preheater must be designed and constructed to— (a) Ensure ventilation of the preheater when the engine is operated in cold air; (b) Allow inspection of the...
14 CFR 25.1101 - Carburetor air preheater design.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air preheater design. 25.1101... Carburetor air preheater design. Each carburetor air preheater must be designed and constructed to— (a) Ensure ventilation of the preheater when the engine is operated in cold air; (b) Allow inspection of the...
14 CFR 29.1101 - Carburetor air preheater design.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air preheater design. 29.1101... Carburetor air preheater design. Each carburetor air preheater must be designed and constructed to— (a) Ensure ventilation of the preheater when the engine is operated in cold air; (b) Allow inspection of the...
14 CFR 25.1101 - Carburetor air preheater design.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air preheater design. 25.1101... Carburetor air preheater design. Each carburetor air preheater must be designed and constructed to— (a) Ensure ventilation of the preheater when the engine is operated in cold air; (b) Allow inspection of the...
NASA Astrophysics Data System (ADS)
Mora, Carla
2010-05-01
Occurrence, formation, spatial patterns and intensity of cold air pools/lakes were studied in the Serra da Estrela (40° 20'N 7° 35'W, 1993m, Central Portugal) from January to December 2000. Data was collected using a network of air temperature dataloggers installed at different topographic positions (interfluves, valley floors and slopes) recording at 2-h intervals. A k-means classification was applied to the dataset of instantaneous air temperatures, and 3 types of thermal patterns were identified. Type 1 (66% cases) shows events with decreasing air temperatures with altitude. Type 2 (27% cases) shows accumulation of cold air in the valleys with higher valley floors showing the lowest temperatures. Type 3 (7% cases) show accumulation of cold air, but with lowest air temperatures in the valleys at lower altitudes. Causal factors for the occurrence of the patterns were studied by applying discriminant analysis on meteorological and topographical variables. Type 1 occurs under atmospheric instability conditions, while types 2 and 3 relate to atmospheric stability. Types 2 and 3 are controlled by seasonality and local insolation/shadowing effects. For the detailed study of cold air accumulations, two approaches were followed: the analysis of temperature differences between a station in a crest and a station in a glacial cirque floor; and, the analysis of 5-min interval temperature data along a transect in the Zêzere valley.The differences in air temperature between the glacier cirque floor (Covão Cimeiro, 1620m) and the crest (Cântaro Gordo, 1870m) were classified into 9 types of regime. Thermal inversions in the cirque were found in 6 types (48%). These are characterized in detail and the geographical and meteorological controlling factors are analyzed using one-way ANOVA and discriminant analysis. The 6 types show different daily regimes and inversion intensities, as well as a seasonal trend. The maximum inversion intensity was 9 °C, and the minimum temperature -17 °C at the cirque floor. Simultaneoulsy, the ridge showed -9 °C. Thermal inversions show atmospheric stability with low wind speed and low cloudiness. The sequence of patterns throughout the year is controlled by topographic factors and insolation at the cirque floor. The formation of thermal inversions in a NNE-SSW direction valley (Zêzere valley), their durationand dissipation were studied in detail during 5 days of atmospheric stability using air temperature recorded at 5-min intervals. During the day, air temperature decreased with altitude (-0.7 °C/100m to -1 °C/100m), and during the night, the valley floor showed lower temperatures than the mountain summit. During the night a thermal belt formed and the valley floor was 3 °C colder than the top of the inversion layer. During the day there was an asymmetry in the distribution of temperatures along the valley controlled by solar radiation. Air temperatures ranged from -5 °C to 16 °C. The results show the effect of topography on air temperatures in situations of atmospheric stability and can be extrapolated to the mountains with similar climatic and topographic conditions. The identification of the shadowing effect induced by valleys and its impact on the maintenance of cold air lakes during the morning in the valleys of North-South orientation can be of special interest for planning and environmental impact studies.
40 CFR 420.100 - Applicability; description of the cold forming subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.100 Applicability; description of the cold forming subcategory. (a) The provisions of this...
40 CFR 420.100 - Applicability; description of the cold forming subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.100 Applicability; description of the cold forming subcategory. (a) The provisions of this...
40 CFR 420.100 - Applicability; description of the cold forming subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.100 Applicability; description of the cold forming subcategory. (a) The provisions of this...
40 CFR 420.100 - Applicability; description of the cold forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.100 Applicability; description of the cold forming subcategory. (a) The provisions of this...
Nakao, Motoyuki; Yamauchi, Keiko; Ishihara, Yoko; Omori, Hisamitsu; Ichinnorov, Dashtseren; Solongo, Bandi
2017-06-23
Ulaanbaatar, Mongolia, is known as severely air-polluted city in the world due to increased coal consumption in the cold season. The health effects of air pollution in Mongolia such as mortality, morbidity and symptoms have been previously reported. However, the concept of health-related quality of life (HR-QoL), which refers to the individual's perception of well-being, should also be included as an adverse health outcome of air pollution. Surveys on the Mongolian people living in Ulaanbaatar were performed in the warm and cold seasons. Self-completed questionnaires on the subjects' HR-QoL, data from health checkups and pulmonary function tests by respiratory specialists were collected for Mongolian adults aged 40-79 years (n = 666). Ambient PM2.5 and PM10 were concurrently sampled and the components were analyzed to estimate the source of air pollution. In logistic regression analyses, respiratory symptoms and smoke-rich fuels were associated with reduced HR-QoL (> 50th percentile vs. ≤ 50th percentile). PM 2.5 levels were much higher in the cold season (median 86.4 μg/m 3 (IQR: 58.7-121.0)) than in the warm season (12.2 μg/m 3 (8.9-21.2). The receptor model revealed that the high PM2.5 concentration in the cold season could be attributed to solid fuel combustion. The difference in HR-QoL between subjects with and without ventilatory impairment was assessed after the stratification of the subjects by season and household fuel type. There were no significant differences in HR-QoL between subjects with and without ventilatory impairment regardless of household fuel type in the warm season. In contrast, subjects with ventilatory impairment who used smoke-rich fuel in the cold season had a significantly lower HR-QoL. Our study showed that air pollution in Ulaanbaatar worsened in the cold season and was estimated to be contributed by solid fuel combustion. Various aspects of HR-QoL in subjects with ventilatory impairment using smoke-rich fuels deteriorated only in the cold season while those with normal lung function did not. These results suggest that countermeasures or interventions by the policymakers to reduce coal usage would improve HR-QoL of the residents of Ulaanbaatar, especially for those with ventilatory impairment in the winter months.
NASA Astrophysics Data System (ADS)
Mayer, Simon; Jenner, Florian; Aeschbach, Werner
2017-04-01
Applications of inert gases in groundwater hydrology require a profound understanding of underlying biogeochemical processes. Some of these processes are, however, not well understood and therefore require further investigation. This is the first study simultaneously investigating soil air and groundwater in the context of noble gas tracer applications, accounting for seasonal effects in different climate regions. The sampled data confirm a general reliability of common assumptions proposed in the literature. In particular, a solubility-controlled description of excess air formation and of groundwater degassing can be confirmed. This study identifies certain effects which need to be taken into account to reliably evaluate noble gas patterns. First, long-term samplings suggest a permanent temperature-driven equilibration of shallow groundwater with entrapped air bubbles, even some years after recharge. Second, minor groundwater degassing is found to challenge existing excess air model approaches, depending on the amount and the fractionation of excess air. Third, soil air composition data of this study imply a potential bias of noble gas temperatures by up to about 2℃ due to microbial oxygen depletion and a reduced sum value of O2+CO2. This effect causes systematically lower noble gas temperatures in tropical groundwater samples and in shallow mid-latitude groundwater samples after strong recharge during the warm season. However, a general bias of noble gas temperatures in mid-latitudes is probably prevented by a predominant recharge during the cold season, accompanied by nearly atmospheric noble gas mixing ratios in the soil air. Findings of this study provide a remarkable contribution to the reliability of noble gas tracer applications in hydrology, in particular with regard to paleoclimate reconstructions and an understanding of subsurface gas dynamics.
Cold pool organization and the merging of convective updrafts in a Large Eddy Simulation
NASA Astrophysics Data System (ADS)
Glenn, I. B.; Krueger, S. K.
2016-12-01
Cold pool organization is a process that accelerates the transition from shallow to deep cumulus convection, and leads to higher deep convective cloud top heights. The mechanism by which cold pool organization enhances convection remains not well understood, but the basic idea is that since precipitation evaporation and a low equivalent potential temperature in the mid-troposphere lead to strong cold pools, the net cold pool effect can be accounted for in a cumulus parameterization as a relationship involving those factors. Understanding the actual physical mechanism at work will help quantify the strength of the relationship between cold pools and enhanced deep convection. One proposed mechanism of enhancement is that cold pool organization leads to reduced distances between updrafts, creating a local environment more conducive to convection as updrafts entrain parcels of air recently detrained by their neighbors. We take this hypothesis one step further and propose that convective updrafts actually merge, not just exchange recently processed air. Because entrainment and detrainment around an updraft draws nearby air in or pushes it out, respectively, they act like dynamic flow sources and sinks, drawing each other in or pushing each other away. The acceleration is proportional to the inverse square of the distance between two updrafts, so a small reduction in distance can make a big difference in the rate of merging. We have shown in previous research how merging can be seen as collisions between different updraft air parcels using Lagrangian Parcel Trajectories (LPTs) released in a Large Eddy Simulation (LES) during a period with organized deep convection. Now we use a Eulerian frame of reference to examine the updraft merging process during the transition from shallow to organized deep convection. We use a case based on the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) for our LES. We directly measure the rate of entrainment and the properties of the entrained air for all convective updrafts in the simulation. We use a tracking algorithm to define merging between convective updrafts. We will show the rate of merging as the transition between shallow and deep convection occurs and the different distributions of entrainment rate and ultimate detrainment height of merged and non-merged updrafts.
Wang, Jun; Tong, Yuxin; Yang, Qichang; Xin, Min
2016-01-01
The commercial use of a plant production system with artificial light (PPAL) is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15–35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W) was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m2 each) was maintained at 25 and 20°C during photoperiod and dark period, respectively, for lettuce production. A null CO2 balance enrichment method was used in both PPALs. In one PPAL (PPALe), an air exchanger (air flow rate: 250 m3·h−1) was used along with a heat pump (cooling capacity: 3.2 kW) to maintain the indoor air temperature at the set-point. The other PPAL (PPALc) with only a heat pump (cooling capacity: 3.2 kW) was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP), electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2 to 30.0°C: (1) the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; (2) hourly electric-energy consumption for cooling in the PPALe reduced by 15.8–73.7% compared with that in the PPALc; (3) daily supply of CO2 in the PPALe reduced from 0.15 to 0.04 kg compared with that in the PPALc with the outdoor air temperature ranging from −5.6 to 2.7°C; (4) no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL. PMID:27066012
A demonstration of the antimicrobial effectiveness of various copper surfaces
2013-01-01
Background Bacterial contamination on touch surfaces results in increased risk of infection. In the last few decades, work has been done on the antimicrobial properties of copper and its alloys against a range of micro-organisms threatening public health in food processing, healthcare and air conditioning applications; however, an optimum copper method of surface deposition and mass structure has not been identified. Results A proof-of-concept study of the disinfection effectiveness of three copper surfaces was performed. The surfaces were produced by the deposition of copper using three methods of thermal spray, namely, plasma spray, wire arc spray and cold spray The surfaces were then inoculated with meticillin-resistant Staphylococcus aureus (MRSA). After a two hour exposure to the surfaces, the surviving MRSA were assayed and the results compared. The differences in the copper depositions produced by the three thermal spray methods were examined in order to explain the mechanism that causes the observed differences in MRSA killing efficiencies. The cold spray deposition method was significantly more effective than the other methods. It was determined that work hardening caused by the high velocity particle impacts created by the cold spray technique results in a copper microstructure that enhances ionic diffusion, and copper ions are principally responsible for antimicrobial activity. Conclusions This test showed significant microbiologic differences between coatings produced by different spray techniques and demonstrates the importance of the copper application technique. The cold spray technique shows superior anti-microbial effectiveness caused by the high impact velocity imparted to the sprayed particles which results in high dislocation density and high ionic diffusivity. PMID:23537176
Numerical analyses of a rocket engine turbine and comparison with air test data
NASA Technical Reports Server (NTRS)
Tran, Ken; Chan, Daniel C.; Hudson, Susan T.; Gaddis, Stephen W.
1992-01-01
The study presents cold air test data on the Space Shuttle Main Engine High Pressure Fuel Turbopump turbine recently collected at the NASA Marshall Space Flight Center. Overall performance data, static pressures on the first- and second-stage nozzles, and static pressures along with the gas path at the hub and tip are gathered and compared with various (1D, quasi-3D, and 3D viscous) analysis procedures. The results of each level of analysis are compared to test data to demonstrate the range of applicability for each step in the design process of a turbine. One-dimensional performance prediction, quasi-3D loading prediction, 3D wall pressure distribution prediction, and 3D viscous wall pressure distribution prediction are illustrated.
A Theoretical Study of Cold Air Damming.
NASA Astrophysics Data System (ADS)
Xu, Qin
1990-12-01
The dynamics of cold air damming are examined analytically with a two-layer steady state model. The upper layer is a warm and saturated cross-mountain (easterly or southeasterly onshore) flow. The lower layer is a cold mountain-parallel (northerly) jet trapped on the windward (eastern) side of the mountain. The interface between the two layers represents a coastal front-a sloping inversion layer coupling the trapped cold dome with the warm onshore flow above through pressure continuity.An analytical expression is obtained for the inviscid upper-layer flow with hydrostatic and moist adiabatic approximations. Blackadar's PBL parameterization of eddy viscosity is used in the lower-layer equations. Solutions for the mountain-parallel jet and its associated secondary transverse circulation are obtained by expanding asymptotically upon a small parameter proportional to the square root of the inertial aspect ratio-the ratio between the mountain height and the radius of inertial oscillation. The geometric shape of the sloping interface is solved numerically from a differential-integral equation derived from the pressure continuity condition imposed at the interface.The observed flow structures and force balances of cold air damming events are produced qualitatively by the model. In the cold dome the mountain-parallel jet is controlled by the competition between the mountain-parallel pressure gradient and friction: the jet is stronger with smoother surfaces, higher mountains, and faster mountain-normal geostrophic winds. In the mountain-normal direction the vertically averaged force balance in the cold dome is nearly geostrophic and controls the geometric shape of the cold dome. The basic mountain-normal pressure gradient generated in the cold dome by the negative buoyancy distribution tends to flatten the sloping interface and expand the cold dome upstream against the mountain-normal pressure gradient (produced by the upper-layer onshore wind) and Coriolis force (induced by the lower-layer mountain-parallel jet). It is found that the interface slope increases and the cold dome shrinks as the Froude number and/or upstream mountain-parallel geostrophic wind increase, or as the Rossby number, upper-layer depth, and/or surface roughness length decrease, and vice versa. The cold dome will either vanish or not be in a steady state if the Froude number is large enough or the roughness length gets too small. The theoretical findings are explained physically based on detailed analyses of the force balance along the inversion interface.
Heat transfer to two-phase air/water mixtures flowing in small tubes with inlet disequilibrium
NASA Technical Reports Server (NTRS)
Janssen, J. M.; Florschuetz, L. W.; Fiszdon, J. P.
1986-01-01
The cooling of gas turbine components was the subject of considerable research. The problem is difficult because the available coolant, compressor bleed air, is itself quite hot and has relatively poor thermophysical properties for a coolant. Injecting liquid water to evaporatively cool the air prior to its contact with the hot components was proposed and studied, particularly as a method of cooling for contingency power applications. Injection of a small quantity of cold liquid water into a relatively hot coolant air stream such that evaporation of the liquid is still in process when the coolant contacts the hot component was studied. No approach was found whereby heat transfer characteristics could be confidently predicted for such a case based solely on prior studies. It was not clear whether disequilibrium between phases at the inlet to the hot component section would improve cooling relative to that obtained where equilibrium was established prior to contact with the hot surface.
Air Conditioner Ready to Change Industry - Continuum Magazine | NREL
create very dry air, ideal for cooling with evaporative techniques. Desiccants, which can be liquids or into an innovative "cooling core." This would marry the desiccants' capacity to create dry air using heat and evaporative coolers' capability to turn dry air into cold air. If it worked, it
Prediction of air temperature for thermal comfort of people in outdoor environments
NASA Astrophysics Data System (ADS)
Huang, Jianhua
2007-05-01
Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.
NASA Technical Reports Server (NTRS)
Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In
2014-01-01
We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.
Cold air plasma to decontaminate inanimate surfaces of the hospital environment.
Cahill, Orla J; Claro, Tânia; O'Connor, Niall; Cafolla, Anthony A; Stevens, Niall T; Daniels, Stephen; Humphreys, Hilary
2014-03-01
The hospital environment harbors bacteria that may cause health care-associated infections. Microorganisms, such as multiresistant bacteria, can spread around the patient's inanimate environment. Some recently introduced biodecontamination approaches in hospitals have significant limitations due to the toxic nature of the gases and the length of time required for aeration. This study evaluated the in vitro use of cold air plasma as an efficient alternative to traditional methods of biodecontamination of hospital surfaces. Cultures of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli, and Acinetobacter baumannii were applied to different materials similar to those found in the hospital environment. Artificially contaminated sections of marmoleum, mattress, polypropylene, powder-coated mild steel, and stainless steel were then exposed to a cold air pressure plasma single jet for 30 s, 60 s, and 90 s, operating at approximately 25 W and 12 liters/min flow rate. Direct plasma exposure successfully reduced the bacterial load by log 3 for MRSA, log 2.7 for VRE, log 2 for ESBL-producing E. coli, and log 1.7 for A. baumannii. The present report confirms the efficient antibacterial activity of a cold air plasma single-jet plume on nosocomial bacterially contaminated surfaces over a short period of time and highlights its potential for routine biodecontamination in the clinical environment.
Effects of cold temperature and ethanol content on VOC ...
Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 °C and 24 °C). The cold start phase and cold ambient temperature increased VOC and MSAT emissions dramatically by up to several orders of magnitude compared to emissions during other phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials during the cold starts were significantly higher during cold temperature tests by 7 to 21 times the warm temperature values. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, the VOC emissions from E0 and E10 fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles. This manuscript communicates APPCD research activities on air toxics VOC emissions from mobile sources from the EPAct dynamometer study. Speciated VOC emissions from light-duty vehicles running on gasoline and ethanol blends at cold tem
How to prevent frostbite and hypothermia
Cold temperatures, wind, rain, and even sweat cool your skin and pull heat away from your body. You also lose heat ... inside your clothes Protect you from cold air, wind, snow, or rain Protect you from contact with ...
Overview of Air Liquide refrigeration systems between 1.8 K and 200 K
NASA Astrophysics Data System (ADS)
Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau
2014-01-01
Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.
Overview of Air Liquide refrigeration systems between 1.8 K and 200 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondrand, C.; Durand, F.; Delcayre, F.
Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves weremore » used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.« less
NASA Technical Reports Server (NTRS)
Tian, Baijun; Waliser, Duane E.; Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Yung, Yuk L.; Wang, Bin
2006-01-01
The atmospheric moisture and temperature profiles from the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit on the NASA Aqua mission, in combination with the precipitation from the Tropical Rainfall Measuring Mission (TRMM), are employed to study the vertical moist thermodynamic structure and spatial-temporal evolution of the Madden-Julian oscillation (MJO). The AIRS data indicate that, in the Indian Ocean and western Pacific, the temperature anomaly exhibits a trimodal vertical structure: a warm (cold) anomaly in the free troposphere (800-250 hPa) and a cold (warm) anomaly near the tropopause (above 250 hPa) and in the lower troposphere (below 800 hPa) associated with enhanced (suppressed) convection. The AIRS moisture anomaly also shows markedly different vertical structures as a function of longitude and the strength of convection anomaly. Most significantly, the AIRS data demonstrate that, over the Indian Ocean and western Pacific, the enhanced (suppressed) convection is generally preceded in both time and space by a low-level warm and moist (cold and dry) anomaly and followed by a low-level cold and dry (warm and moist) anomaly. The MJO vertical moist thermodynamic structure from the AIRS data is in general agreement, particularly in the free troposphere, with previous studies based on global reanalysis and limited radiosonde data. However, major differences in the lower-troposphere moisture and temperature structure between the AIRS observations and the NCEP reanalysis are found over the Indian and Pacific Oceans, where there are very few conventional data to constrain the reanalysis. Specifically, the anomalous lower-troposphere temperature structure is much less well defined in NCEP than in AIRS for the western Pacific, and even has the opposite sign anomalies compared to AIRS relative to the wet/dry phase of the MJO in the Indian Ocean. Moreover, there are well-defined eastward-tilting variations of moisture with height in AIRS over the central and eastern Pacific that are less well defined, and in some cases absent, in NCEP. In addition, the correlation between MJO-related mid-tropospheric water vapor anomalies and TRMM precipitation anomalies is considerably more robust in AIRS than in NCEP, especially over the Indian Ocean. Overall, the AIRS results are quite consistent with those predicted by the frictional Kelvin-Rossby wave/conditional instability of the second kind (CISK) theory for the MJO.
NASA Astrophysics Data System (ADS)
Adolph, Alden C.; Albert, Mary R.; Hall, Dorothy K.
2018-03-01
As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin
temperature) can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR) sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA) meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS) surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of -0.4 °C, spanning a range of temperatures from -35 to -5 °C (RMSE = 1.6 °C and mean bias = -0.7 °C prior to cloud masking). For our study area and time series, MODIS surface temperature products agree with skin surface temperatures better than previous studies indicated, especially at temperatures below -20 °C, where other studies found a significant cold bias. We show that the apparent cold bias present in other comparisons of 2 m air temperature and MODIS surface temperature may be a result of the near-surface temperature inversion. Further investigation of how in situ IR skin temperatures compare to MODIS surface temperature at lower temperatures (below -35 °C) is warranted to determine whether a cold bias exists for those temperatures.
Economic contribution of 'artificial upwelling' mariculture to sea-thermal power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roels, O.A.
1976-07-01
Deep-sea water has two valuable properties: it is uniformly cold and, compared to surface water, it is rich in nutrients such as nitrate and phosphate which are necessary for plant growth. In tropical and subtropical areas, the temperature difference between the warm surface water and the cold deep water can be used for sea-thermal power generation or other cooling applications such as air-conditioning, ice-making, desalination, and cooling of refineries, power plants, etc. Once the deep water is brought to the surface, utilization of both the cold temperature and the nutrient content is likely to be more advantageous than the usemore » of only one of them. Claude demonstrated the technical feasibility of sea-thermal power generation in Cuba in 1930. The technical feasibility of artificial upwelling mariculture in the St. Croix installation has been demonstrated. Results to date demonstrate that the gross sales value of the potential mariculture yield from a given volume of deep-sea water is many times that of the sales value of the power which can be generated by the Claude process from the same volume of deep water. Utilizing both the nutrient content and the cold temperature of the deep water may therefore make sea-thermal power generation economically feasible.« less
Study on the Influence of the Cold-End Cooling Water Thickness on the Generative Performance of TEG
NASA Astrophysics Data System (ADS)
Zhou, Li; Guo, Xuexun; Tan, Gangfeng; Ji, Kangping; Xiao, Longjie
2017-05-01
At present, about 40% of the fuel energy is discharged into air with the exhaust gas when an automobile is working, which is a big waste of energy. A thermoelectric generator (TEG) has the ability to harvest the waste heat energy in the exhaust gas. The traditional TEG cold-end is cooled by the engine cooling system, and although its structure is compact, the TEG weight and the space occupied are important factors restricting its application. In this paper, under the premise of ensuring the TEG maximum net output power and reducing the TEG water consumption as much as possible, the optimization of the TEG water thickness in the normal direction of the cold-end surface (WTNCS) is studied, which results in lighter weight, less space occupied and better automobile fuel economy. First, the thermal characteristics of the target diesel vehicle exhaust gas are evaluated based on the experimental data. Then, according to the thermoelectric generation model and the cold-end heat transfer model, the effect of the WTNCS on the cold-end temperature control stability and the system flow resistance are studied. The results show that the WTNCS influences the TEG cold-end temperature. When the engine works in a stable condition, the cold-end temperature decreases with the decrease of the WTNCS. The optimal value of the WTNCS is 0.02 m and the TEG water consumption is 8.8 L. Comparin it with the traditional vehicle exhaust TEG structure, the power generation increased slightly, but the water consumption decreased by about 39.5%, which can save fuel at0.18 L/h when the vehicle works at the speed of 60 km/h.
Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy
NASA Astrophysics Data System (ADS)
Jieyu, Zheng; Yanzhong, Li; Guangpeng, Li; Biao, Si
In this paper, a novel single-column air separation process is proposed with the implementation of heat pump technique and introduction of LNG coldenergy. The proposed process is verifiedand optimized through simulation on the Aspen Hysys® platform. Simulation results reveal that thepower consumption per unit mass of liquid productis around 0.218 kWh/kg, and the total exergy efficiency of the systemis 0.575. According to the latest literatures, an energy saving of 39.1% is achieved compared with those using conventional double-column air separation units.The introduction of LNG cold energy is an effective way to increase the system efficiency.
Volkov, Alexander G; Xu, Kunning G; Kolobov, Vladimir I
2017-12-01
Low temperature (cold) plasma finds an increasing number of applications in biology, medicine and agriculture. In this paper, we report a new effect of plasma induced morphing and movements of Venus flytrap and Mimosa pudica. We have experimentally observed plasma activation of sensitive plant movements and morphing structures in these plants similar to stimulation of their mechanosensors in vivo. Application of an atmospheric pressure argon plasma jet to the inside or outside of a lobe, midrib, or cilia in Dionaea muscipula Ellis induces trap closing. Treatment of Mimosa pudica by plasma induces movements of pinnules and petioles similar to the effects of mechanical stimulation. We have conducted control experiments and simulations to illustrate that gas flow and UV radiation associated with plasma are not the primary reasons for the observed effects. Reactive oxygen and nitrogen species (RONS) produced by cold plasma in atmospheric air appear to be the primary reason of plasma-induced activation of phytoactuators in plants. Some of these RONS are known to be signaling molecules, which control plants' developmental processes. Understanding these mechanisms could promote plasma-based technology for plant developmental control and future use for plant protection from pathogens. Our work offers new insight into mechanisms which trigger plant morphing and movement. Copyright © 2017 Elsevier B.V. All rights reserved.
Synoptic climatological analysis of persistent cold air pools over the Carpathian Basin
NASA Astrophysics Data System (ADS)
Szabóné André, Karolina; Bartholy, Judit; Pongrácz, Rita
2016-04-01
A persistent cold air pool (PCAP) is a winter-time, anticyclone-related weather event over a relatively large basin. During this time the air is colder near the surface than aloft. This inversion near the surface can last even for weeks. As the cold air cools down, relative humidity increases and fog forms. The entire life cycle of a PCAP depends on the large scale circulation pattern. PCAP usually appears when an anticyclone builds up after a cold front passed over the examined basin, and it is usually destructed by a coming strong cold front of another midlatitude cyclone. Moreover, the intensity of the anticyclone affects the intensity of the PCAP. PCAP may result in different hazards for the population: (1) Temperature inversion in the surface layers together with weak wind may lead to severe air pollution causing health problems for many people, especially, elderly and children. (2) The fog and/or smog during chilly weather conditions often results in freezing rain. Both fog and freezing rain can distract transportation and electricity supply. Unfortunately, the numerical weather prediction models have difficulties to predict PCAP formation and destruction. One of the reasons is that PCAP is not defined objectively with a simple formula, which could be easily applied to the numerical output data. However, according to some recommendations from the synoptic literature, the shallow convective potential energy (SCPE) can be used to mathematically describe PCAP. In this study, we used the ERA-Interim reanalysis datasets to examine this very specific weather event (i.e., PCAP) over the Carpathian Basin. The connection between the mean sea level pressure and some PCAP measures (e.g., SCPE, energy deficit, etc.) is evaluated. For instance, we used logistic regression to identify PCAP periods over the Carpathian Basin. Then, further statistical analysis includes the evaluation of the length and intensity of these PCAP periods.
Morabito, Marco; Iannuccilli, Maurizio; Crisci, Alfonso; Capecchi, Valerio; Baldasseroni, Alberto; Orlandini, Simone; Gensini, Gian Franco
2014-10-01
To investigate the short-term effect of air temperature on outdoor occupational injuries (out_OI) in Central Italy, also by taking different geographical factors and employment sectors of workers into account. Out_OI for all of Tuscany (Central Italy), from 2003 to 2010 (n=162,399), were provided by the National Institute of Insurance for Occupational Illness and Injury. Representative daily meteorological data of the geographical area under study were obtained from the European Reanalysis-interim climatological reanalysis archive. Relationships between short-term changes in air temperature and out_OI were studied through Generalised Additive Models. The exposure-response curves of out_OI and short-term changes in air temperature generally showed significant out_OI increases when cold conditions occurred. The air temperature breakpoint corresponded to the 10th centile (-0.8°C) of the air temperature time series used in this study: a 1°C decrease in temperature below the 10th centile corresponded to a 2.3% (CI 1.3% to 3.3%) increase of out_OI throughout all of Tuscany. The cold effect was strongest in plain areas, especially when out_OI occurred in vehicles other than cars. No relationships of injuries with temperature extremes were observed in workers who generally spend half or most of their time outdoors, such as construction, land and forestry workers. However, these latter outdoor workers showed significant linear associations of injuries with typical (far-from-extreme) temperatures. This large population-based study highlights the significant and independent effects of short-term air temperature changes (especially cold) in triggering out_OI. These findings represent the first step towards developing a geographically differentiated, operative outdoor-temperature-occupational-health warning system aimed at preventing outdoor work injuries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.
2006-01-01
Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.
NASA Astrophysics Data System (ADS)
Hasebe, F.; Inai, Y.; Shiotani, M.; Fujiwara, M.; Vömel, H.; Nishi, N.; Ogino, S.-Y.; Shibata, T.; Iwasaki, S.; Komala, N.; Peter, T.; Oltmans, S. J.
2013-04-01
A network of balloon-borne radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since the late 1990s in the Tropical Pacific to capture the evolution of dehydration of air parcels advected quasi-horizontally in the Tropical Tropopause Layer (TTL). The analysis of this dataset is made on isentropes taking advantage of the conservative properties of tracers moving adiabatically. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in relative humidity with respect to ice (RHice) have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Although further observational evidence is needed to confirm the credibility of such high values of RHice, the evolution of TTL dehydration is evident from the data in isentropic scatter plots between the sonde-observed mixing ratio (OMR) and the minimum saturation mixing ratio (SMRmin) along the back trajectories associated with the observed air mass. Supersaturation exceeding the critical value of homogeneous ice nucleation (OMR > 1.6 × SMRmin) is frequently observed on the 360 and 365 K surfaces indicating that cold trap dehydration is in progress in the TTL. The near correspondence between the two (OMR ~ SMRmin) at 380 K on the other hand implies that this surface is not sufficiently cold for the advected air parcels to be dehydrated. Above 380 K, cold trap dehydration would scarcely function while some moistening occurs before the air parcels reach the lowermost stratosphere at around 400 K where OMR is generally smaller than SMRmin.
Exercise in cold air and hydrogen peroxide release in exhaled breath condensate.
Marek, E; Volke, J; Mückenhoff, K; Platen, P; Marek, W
2013-01-01
Athletes have changes in the lung epithelial cells caused by inhalation of cold and dry air. The exhaled breath condensate contains a number of mediators from the respiratory system and H(2)O(2) is described as a marker of airways inflammation. The aim of this study was to determine the influence of exercise combined with cold air on the H(2)O(2) release in the exhaled breath. Twelve males (23.1 ± 1.5 years) were randomly assigned at 2 different days (1 day rest) to perform a 50 min run (75-80% of their max. heart rate) under normal (N) laboratory (18.1 ± 1.1°C) or cold (C) field condition (-15.2 ± 3.1°C). Before and immediately after each run, the EBC was collected under laboratory conditions and was analyzed amperometrically. Prior to the two runs, H(2)O(2) concentrations were 145.0 ± 31.0 (N) and 160.0 ± 49.1 nmol/L (C) and theoretical release was 70.3 ± 37.1 (N) and 82.6 ± 27.1 pmol/min (C) (p > 0.05). After each run, H(2)O(2) concentration increased significantly to 388.0 ± 22.8 nmol/L (N) and 622.1 ± 44.2 nmol/L (C) (p < 0.05), along with an increase in the theoretical release: 249.2 ± 35.7 pmol/min (N) and 400.9 ± 35.7 pmol/min (C) (p < 0.05). We conclude that release of H(2)O(2) into the EBC takes place under both resting conditions and after exercise. The concentration and release of H(2)O(2) increased after exercise in cold air compared to resting and laboratory conditions, which points to an increase in inflammatory and oxidative stress.
Vertical climatic belts in the Tatra Mountains in the light of current climate change
NASA Astrophysics Data System (ADS)
Łupikasza, Ewa; Szypuła, Bartłomiej
2018-04-01
The paper discusses temporal changes in the configuration of vertical climatic belts in the Tatra Mountains as a result of current climate change. Meteorological stations are scarce in the Tatra Mountains; therefore, we modelled decadal air temperatures using existing data from 20 meteorological stations and the relationship between air temperature and altitude. Air temperature was modelled separately for northern and southern slopes and for convex and concave landforms. Decadal air temperatures were additionally used to delineate five climatic belts previously distinguished by Hess on the basis of threshold values of annual air temperature. The spatial extent and location of the borderline isotherms of 6, 4, 2, 0, and - 2 °C for four decades, including 1951-1960, 1981-1990, 1991-2000, and 2001-2010, were compared. Significant warming in the Tatra Mountains, uniform in the vertical profile, started at the beginning of the 1980s and led to clear changes in the extent and location of the vertical climatic belts delineated on the basis of annual air temperature. The uphill shift of the borderline isotherms was more prominent on southern than on northern slopes. The highest rate of changes in the extent of the climatic belts was found above the isotherm of 0 °C (moderately cold and cold belts). The cold belt dramatically diminished in extent over the research period.
Markov Chain-Based Acute Effect Estimation of Air Pollution on Elder Asthma Hospitalization
Luo, Li; Zhang, Fengyi; Sun, Lin; Li, Chunyang; Huang, Debin; Han, Gao; Wang, Bin
2017-01-01
Background Asthma caused substantial economic and health care burden and is susceptible to air pollution. Particularly, when it comes to elder asthma patient (older than 65), the phenomenon is more significant. The aim of this study is to investigate the Markov-based acute effects of air pollution on elder asthma hospitalizations, in forms of transition probabilities. Methods A retrospective, population-based study design was used to assess temporal patterns in hospitalizations for asthma in a region of Sichuan province, China. Approximately 12 million residents were covered during this period. Relative risk analysis and Markov chain model were employed on daily hospitalization state estimation. Results Among PM2.5, PM10, NO2, and SO2, only SO2 was significant. When air pollution is severe, the transition probability from a low-admission state (previous day) to high-admission state (next day) is 35.46%, while it is 20.08% when air pollution is mild. In particular, for female-cold subgroup, the counterparts are 30.06% and 0.01%, respectively. Conclusions SO2 was a significant risk factor for elder asthma hospitalization. When air pollution worsened, the transition probabilities from each state to high admission states increase dramatically. This phenomenon appeared more evidently, especially in female-cold subgroup (which is in cold season for female admissions). Based on our work, admission amount forecast, asthma intervention, and corresponding healthcare allocation can be done. PMID:29147496
1989-01-01
England while waiting for an outbreak of cold air (Larson, 1988). Even before the arrival of the storm trailing the cold air behind it, both shear and...and simulation of storm -induced mixed-layer deepening. J. Phys. Oceanogr., 8. 582-599. 217 Riley, J.J., and R.W. Metcalf: 1987. Direct numerical...the severe downslope wind storm which occurs in the lee of major mountain barriers (Lilly and Kennedy, 1973: Lilly. 1978) under suitable atmospheric
NASA Astrophysics Data System (ADS)
Koç, Sevgul Ozturk; Galioglu, Sezin; Ozturk, Seckin; Kurç, Burcu Akata; Koç, Emrah; Salamov, Bahtiyar G.
2018-02-01
We have analyzed the interaction between microdischarge and microporous zeolite electronic materials modified by silver (Ag0) nanoparticles (resistivity 1011 to 106 Ω cm) on the atmospheric pressure cold plasma generation in air. The generation and maintenance of stable cold plasma is studied according to the effect of the Ag0 nanoparticles. The role of charge carriers in mixed conductivity processes and electrical features of zeolite from low pressure to atmospheric pressure is analyzed in air microplasmas for both before and after breakdown regimes. The results obtained from the experiments indicate that Ag0 nanoparticles play a significant role in considerably reducing the breakdown voltage in plasma electronic devices with microporous zeolite electronic materials.
Investigation of Counter-Flow in a Heat Pipe-Thermoelectric Generator (HPTEG)
NASA Astrophysics Data System (ADS)
Remeli, Muhammad Fairuz; Singh, Baljit; Affandi, Nor Dalila Nor; Ding, Lai Chet; Date, Abhijit; Akbarzadeh, Aliakbar
2017-05-01
This study explores a method of generating electricity while recovering waste heat through the integration of heat pipes and thermoelectric generators (i.e. HPTEG system). The simultaneous waste heat recovery and power generation processes are achieved without the use of any moving parts. The HPTEG system consists of bismuth telluride thermoelectric generators (TEG), which are sandwiched between two finned pipes to achieve a temperature gradient across the TEG for electricity generation. A counter-flow heat exchanger was built using two separate air ducts. The air ducts were thermally coupled using the HPTEG modules. The evaporator section of the heat pipe absorbed the waste heat in a hot air duct. The heat was then transferred across the TEG surfaces. The condenser section of the HPTEG collected the excess heat from the TEG cold side before releasing it to the cold air duct. A 2-kW electrical heater was installed in the hot air duct to simulate the exhaust gas. An air blower was installed at the inlet of each duct to direct the flow of air into the ducts. A theoretical model was developed for predicting the performance of the HPTEG system using the effectiveness-number of transfer units method. The developed model was able to predict the thermal and electrical output of the HPTEG, along with the rate of heat transfer. The results showed that by increasing the cold air velocity, the effectiveness of the heat exchanger was able to be increased from approximately 52% to 58%. As a consequence of the improved heat transfer, maximum power output of 4.3 W was obtained.
Under EPA Settlement, Chicopee, Mass. Cold Storage Warehouse Company Improves Public Protections
A Chicopee, Mass., company that operates a cold storage warehouse is spending more than half a million dollars, primarily on public safety enhancements, to resolve claims it violated the federal Clean Air Act's chemical release prevention requirements...
Decontamination of foods by cold plasma
USDA-ARS?s Scientific Manuscript database
Cold plasma is a novel nonthermal food processing technology for meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium to inactivate microbes without the use of conventional antimicrobial chemical agents. ...
Cold plasma decontamination of foods
USDA-ARS?s Scientific Manuscript database
Cold plasma is a novel nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry and fruits and vegetables. This flexible sanitizing method uses electricity and a carrier gas such as air, oxygen, nitrogen or helium; antimicrobi...
NASA Astrophysics Data System (ADS)
Kumar, M.; Singh, H.; Singh, N.; Chavan, N. M.; Kumar, S.; Joshi, S. V.
2015-12-01
The erosion-corrosion (E-C) behavior of a cold-spray nanostructured Ni-20Cr coating was studied under cyclic conditions in a coal-fired boiler. This study was done for 15 cycles (1500 h), in which each cycle comprised 100 h of heating in the boiler environment, followed by 1 h of cooling under ambient air conditions. The E-C extent was evaluated in terms of thickness loss data of the samples. The eroded-corroded samples were characterized using XRD, SEM/EDS, and x-ray mapping analyses. The nanostructured coating offered excellent E-C protection to boiler tube material (SA 516 steel) under harsh live conditions of the boiler. This E-C resistance offered by investigated coating may be attributed to the presence of protective NiO and Cr2O3 phases in its oxide scale and its superior as-sprayed microhardness.
Should anthropogenic warming lead to more frequent cold air outbreaks over the northeastern U.S.?
NASA Astrophysics Data System (ADS)
Nicholas, R.
2014-12-01
For the northeastern United States, Winter 2013-14 was the coldest winter since the late 1970s and perhaps the coldest on record relative to prevailing climatic conditions. Frequent snowstorms and cold air outbreaks led to considerable press coverage and heated scholarly debate over the possible role of anthropogenic climate change in modulating wintertime variability in the northern hemisphere polar jet. While mechanisms have been proposed, to date, the observational record offers no definitive evidence for such a relationship, nor does it conclusively exclude one. To further explore this question, we employ a large, initial conditions ensemble of the Community Earth System Model forced with historical and RCP8.5 emissions. The ensemble effectively samples internal variability in the climate system and is used to assess the potential for forced changes in polar jet variability and the frequency of cold air outbreaks over the northeastern U.S. with projected increases in global mean temperature during the 21st century.
An evaluation of the wind chill factor: its development and applicability.
Bluestein, M
1998-04-01
The wind chill factor has become a standard meteorologic term in cold climates. Meteorologic charts provide wind chill temperatures meant to represent the hypothetical air temperature that would, under conditions of no wind, effect the same heat loss from unclothed human skin as does the actual combination of air temperature and wind velocity. As this wind chill factor has social and economic significance, an investigation was conducted on the development of this factor and its applicability based on modern heat transfer principles. The currently used wind chill factor was found to be based on a primitive study conducted by the U.S. Antarctic Service over 50 years ago. The resultant equation for the wind chill temperature assumes an unrealistic constant skin temperature and utilizes heat transfer coefficients that differ markedly from those obtained from equations of modern convective heat transfer methods. The combined effect of these two factors is to overestimate the effect of a given wind velocity and to predict a wind chill temperature that is too low.
NASA Astrophysics Data System (ADS)
Wong, S.; Naud, C. M.; Kahn, B. H.; Wu, L.; Fetzer, E. J.
2017-12-01
Different sectors in extratropical cyclonic systems (ETCs) exhibit various patterns in atmospheric moisture transport and provide an excellent test bed for studying coupling between cloud processes and large-scale circulation. Large-scale atmospheric moisture transport diagnosed from the Modern-Era Retrospective analysis for Research and Applications Version 2 and cloud properties (cloud top pressure and optical depth, cloud effective radii and thermodynamic phase) from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) will be composited around Northern Hemispheric ETCs over ocean according to their stages of development. Atmospheric diabatic heating rates (Q1) and moisture sinks (Q2) are also inferred from the reanalysis winds, temperature, and specific humidity. Across the warm fronts, elevated convection in the pre-warm front regime is associated with frequent stratiform clouds with middle-to-upper tropospheric heating and lower tropospheric cooling, while upright convection in the warm front regime has frequent deep convective clouds with free-tropospheric heating and strong boundary layer cooling. Thinner stratiform and cirrus clouds are evident in the warm sector with top-heavy profiles of rising motion and diabatic heating. Moisture advection exhibits a sharp gradient across the cold fronts, with convection in the pre-cold front regime highly dependent on the stage of the ETC development. Heating in the boundary layers of the cold sector, polar-air intrusion, and pre-warm sector regimes depends on the amount of low-level clouds, which is again modulated by the stage of the ETC development.
Sea ice-induced cold air advection as a mechanism controlling tundra primary productivity
NASA Astrophysics Data System (ADS)
Macias-Fauria, M.; Karlsen, S. R.
2015-12-01
The recent sharp decline in Arctic sea ice extent, concentration, and volume leaves urgent questions regarding its effects on ecological processes. Changes in tundra productivity have been associated with sea ice dynamics on the basis that most tundra ecosystems lay close to the sea. Although some studies have addressed the potential effect of sea ice decline on the primary productivity of terrestrial arctic ecosystems (Bhatt et al., 2010), a clear picture of the mechanisms and patterns linking both processes remains elusive. We hypothesised that sea ice might influence tundra productivity through 1) cold air advection during the growing season (direct/weather effect) or 2) changes in regional climate induced by changes in sea ice (indirect/climate effect). We present a test on the direct/weather effect hypothesis: that is, tundra productivity is coupled with sea ice when sea ice remains close enough from land vegetation during the growing season for cold air advection to limit temperatures locally. We employed weekly MODIS-derived Normalised Difference Vegetation Index (as a proxy for primary productivity) and sea ice data at a spatial resolution of 232m for the period 2000-2014 (included), covering the Svalbard Archipelago. Our results suggest that sea ice-induced cold air advection is a likely mechanism to explain patterns of NDVI trends and heterogeneous spatial dynamics in the Svalbard archipelago. The mechanism offers the potential to explain sea ice/tundra productivity dynamics in other Arctic areas.
NASA Astrophysics Data System (ADS)
Qiu, Hong; Tian, Linwei; Ho, Kin-fai; Yu, Ignatius T. S.; Thach, Thuan-Quoc; Wong, Chit-Ming
2016-05-01
The short-term effects of ambient cold temperature on mortality have been well documented in the literature worldwide. However, less is known about which subpopulations are more vulnerable to death related to extreme cold. We aimed to examine the personal characteristics and underlying causes of death that modified the association between extreme cold and mortality in a case-only approach. Individual information of 197,680 deaths of natural causes, daily temperature, and air pollution concentrations in cool season (November-April) during 2002-2011 in Hong Kong were collected. Extreme cold was defined as those days with preceding week with a daily maximum temperature at or less than the 1st percentile of its distribution. Logistic regression models were used to estimate the effects of modification, further controlling for age, seasonal pattern, and air pollution. Sensitivity analyses were conducted by using the 5th percentile as cutoff point to define the extreme cold. Subjects with age of 85 and older were more vulnerable to extreme cold, with an odds ratio (OR) of 1.33 (95 % confidence interval (CI), 1.22-1.45). The greater risk of extreme cold-related mortality was observed for total cardiorespiratory diseases and several specific causes including hypertensive diseases, stroke, congestive heart failure, chronic obstructive pulmonary disease (COPD), and pneumonia. Hypertensive diseases exhibited the greatest vulnerability to extreme cold exposure, with an OR of 1.37 (95 % CI, 1.13-1.65). Sensitivity analyses showed the robustness of these effect modifications. This evidence on which subpopulations are vulnerable to the adverse effects of extreme cold is important to inform public health measures to minimize those effects.
The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations
NASA Technical Reports Server (NTRS)
Atlas, Robert; Bloom, Stephen; Otterman, Joseph
2000-01-01
Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.
NASA Astrophysics Data System (ADS)
Ivey, C. E.; Sun, X.; Holmes, H.
2017-12-01
Land surface processes are important in meteorology and climate research since they control the partitioning of surface energy and water exchange at the earth's surface. The surface layer is coupled to the planetary boundary layer (PBL) by surface fluxes, which serve as sinks or sources of energy, moisture, momentum, and atmospheric pollutants. Quantifying the surface heat and momentum fluxes at the land-atmosphere interface, especially for different surface land cover types, is important because they can further influence the atmospheric dynamics, vertical mixing, and transport processes that impact local, regional, and global climate. A cold air pool (CAP) forms when a topographic depression (i.e., valley) fills with cold air, where the air in the stagnant layer is colder than the air aloft. Insufficient surface heating, which is not able to sufficiently erode the temperature inversion that forms during the nighttime stable boundary layer, can lead to the formation of persistent CAPs during wintertime. These persistent CAPs can last for days, or even weeks, and are associated with increased air pollution concentrations. Thus, realistic simulations of the land-atmosphere exchange are meaningful to achieve improved predictions of the accumulation, transport, and dispersion of air pollution concentrations. The focus of this presentation is on observations and modeling results using turbulence data collected in Salt Lake Valley, Utah during the 2010-2011 wintertime Persistent Cold Air Pool Study (PCAPS). Turbulent fluxes and the surface energy balance over seven land use types are quantified. The urban site has an energy balance ratio (EBR) larger than one (1.276). Negative Bowen ratio (-0.070) is found at the cropland site. In addition to turbulence observations, half-hourly WRF simulated net radiation, latent heat, sensible heat, ground heat fluxes during one persistent CAP event are evaluated using the PCAPS observations. The results show that sensible and latent heat fluxes during the CAP event are overestimated. The sensitivity of WRF results to large-scale forcing datasets, PBL schemes and land surface models (LSMs) are also investigated. The optimal WRF configuration for simulating surface turbulent fluxes and atmospheric mixing during CAP events is determined.
Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.
Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin
2014-01-01
Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions.
Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete
Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin
2014-01-01
Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions. PMID:24895671
NASA Astrophysics Data System (ADS)
Shen, Lu; Mickley, Loretta J.; Leibensperger, Eric M.; Li, Mingwei
2017-12-01
We find that summertime air quality in the eastern U.S. displays strong dependence on North Atlantic sea surface temperatures, resulting from large-scale ocean-atmosphere interactions. Using observations, reanalysis data sets, and climate model simulations, we further identify a multidecadal variability in surface air quality driven by the Atlantic Multidecadal Oscillation (AMO). In one-half cycle ( 35 years) of the AMO from cold to warm phase, summertime maximum daily 8 h ozone concentrations increase by 1-4 ppbv and PM2.5 concentrations increase by 0.3-1.0 μg m-3 over much of the east. These air quality changes are related to warmer, drier, and more stagnant weather in the AMO warm phase, together with anomalous circulation patterns at the surface and aloft. If the AMO shifts to the cold phase in future years, it could partly offset the climate penalty on U.S. air quality brought by global warming, an effect which should be considered in long-term air quality planning.
Can Nocturnal Cold Air Drainage be Used to Monitor Ecosystem Function?
NASA Astrophysics Data System (ADS)
Pypker, T. G.; Unsworth, M. H.; Sulzman, E. W.; Lamb, B.; Allwine, G.; Mix, A. C.; Bond, B. J.
2005-12-01
Ecosystem carbon dynamics in flat, uniform terrain are commonly studied using standard micrometeorological techniques such as eddy covariance or gradient methods. But many of the world's ecosystems are in complex topography that is inappropriate for these methods. Nocturnal cold air drainage commonly occurs in mountainous terrain. This drainage provides an opportunity to monitor ecosystem carbon dynamics because as air flows downhill through a watershed, it collects respired CO2 from the soil and vegetation. If the nocturnal drainage can be treated as a river of air flowing down a valley, sampling this air from a tower at the base of a watershed could provide an estimate of ecosystem respiration and the 12C/13C ratio. To interpret the measured CO2 and the 12C/13C ratio, the characteristics of the drainage and the footprint (source area) of air passing the tower must be understood. To explore the potential of using nocturnal cold air drainage we built a 37 m tower at the base of a deeply incised watershed of ~40 y-old Douglas-fir in the Oregon Cascades. At various heights on the tower we monitored air temperature, wind speed/direction, and the CO2 concentration and 12C/13C isotopic ratio with a combination of thermistors, sonic anemometers (2-D and 3-D) and a CO2 profile system. The temperature gradient along the axis of the watershed was monitored by 30 temperature sensors from the base to the top of the watershed. The maximum drainage windspeeds on the tower occurred near sunset and, unlike past reports of cold air drainage, this drainage was very deep (> 37 m). The drainage became well mixed when the vertical profile of potential temperature became isothermal. It remained well mixed through the night into the early morning. The drainage occurred on most summer nights and typically provided a range of CO2 (> 60 ppm) sufficient for "Keeling plot" analysis. In September 2005, we released a tracer in the watershed (SF6) to determine the varying footprint size of the tower. The footprint size and windspeed varied throughout the night, resulting in a change in the CO2 concentration at the tower. Further analysis will determine how the CO2 passing the tower is altered by entrainment of the air overlying the drainage and the change in the source area of the drainage.
Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans
Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou
2011-01-01
This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292
Vascular conductance is reduced after menthol or cold application.
Olive, Jennifer L; Hollis, Brandon; Mattson, Elizabeth; Topp, Robert
2010-09-01
To compare the effects of commercially sold menthol (3.5%) ointment and cold application on blood flow in the forearm. : Prospective counterbalanced design. University research laboratory. Twelve (6 men and 6 women) college-aged students. Each participant had blood flow measured in the brachial artery for 5 minutes before and 10 minutes after menthol ointment or cold application to the forearm. Blood velocity, arterial diameter size, and blood pressure were recorded during testing procedures. Vascular conductance was calculated based on these measures and used to describe limb blood flow. We observed a significant reduction (35%; P = 0.004) in vascular conductance within 60 seconds of menthol and cold application to the forearm. Vascular conductance remained significantly reduced for 10 minutes by approximately 19% after both menthol and cold application [F(2.313, 43.594) = 10.328, P < 0.0001]. There was no significant difference between conditions [F(1, 19) = 0.000, P = 0.945]. The application of a 3.5% menthol ointment significantly reduces conductance in the brachial artery within 60 seconds of application, and this effect is maintained for at least 10 minutes after application. The overall decline in conductance is similar between menthol ointment and cold application.
A new dynamical index for classification of cold surge types over East Asia
NASA Astrophysics Data System (ADS)
Park, Tae-Won; Ho, Chang-Hoi; Jeong, Jee-Hoon; Heo, Jin-Woo; Deng, Yi
2015-11-01
The cold surges over East Asia can be classified into wave-train type and blocking type according to their dynamic origins. In the present study, two dynamic indices are proposed to objectively identify cold surge types using potential temperature ( θ) on the dynamic tropopause at 2-potential vorticity units (2-PVU) surface. The two indices are designed to represent primary characteristics of the two types of cold surge. The wave-train index ( WI) is defined as a difference of anomalous θ on the 2-PVU surface between the western North Pacific and northeast China, which captures a southward (northward) intrusion of cold (warm) air mass related to the trough-ridge pattern. The blocking index ( BI) is defined as a difference of anomalous θ between the subarctic region and northeast China, which indicates air mass overturning related to a reversal of the usual meridional θ gradient commonly observed in the occurrence of blocking type cold surge. Composite analyses based on the distribution of the WI and BI clearly demonstrate the dynamic evolutions of corresponding cold surge types. The wave-train cold surge is associated with a southeastward expansion of the Siberian High and northerly wind near surface, which is caused by growing baroclinic waves. During the blocking cold surge, a geopotential height dipole indicating the subarctic blocking and deepening of East Asian coastal trough induces a southward expansion of the Siberian High and northeasterly wind. Compared to the wave-train type, the blocking cold surge exhibits a longer duration and stronger intensity. In the new framework of these dynamic indices, we can detect a third type of cold surge when both the wave-train and the blocking occur together. In addition, we can exclude the events that do not have the essential features of the upper tropospheric disturbances or the subarctic anticyclonic circulation, which are responsible for cold surge occurrence, using the new indices.
NASA Astrophysics Data System (ADS)
Sugiartha, N.; Sastra Negara, P.
2018-01-01
A thermoelectric module composes of integrated p-n semiconductors as hot and cold side junctions and uses Seebeck effect between them to function as a thermoelectric generator (TEG) to directly convert heat into electrical power. Exhaust heat from engines as otherwise wasted to the atmosphere is one of the heat sources freely available to drive the TEG. This paper evaluates technical feasibility on the use of a Peltier thermoelectric module for energy recovery application of such kind of waste heat. An experimental apparatus has been setup to simulate real conditions of automobile engine exhaust piping system. It includes a square section aluminium ducting, an aluminium fin heat sink and a TEC1 12706 thermoelectric module. A heater and a cooling fan are employed to simulate hot exhaust gas and ambient air flows, respectively. Electrical loading is controlled by resistors. Dependent variables measured during the test are cold and hot side temperatures, open and loaded circuit output voltages and electrical current. The test results revealed a promising application of the Peltier thermoelectric module for the engine exhaust heat recovery, though the loaded output power produced and loaded output voltage are still far lower than the commercially thermoelectric module originally purposed for the TEG application.
NASA Technical Reports Server (NTRS)
Lau, N.-C.; Lau, K.-M.
1984-01-01
The evolution of extratropical transient waves as they propagate eastward from the Eurasian land mass toward the Pacific during selected cold surge events in the winter Monsoon Experiment (MONEX) is studied. The outstanding cold surge episodes during MONEX are first identified, and the salient synoptic features related to these events are described using composite streamline charts. The structure of rapidly varying disturbances accompanying the cold surges and the associated energetics are examined, and the behavior of those fluctuations over relatively longer time scales is addressed.
The Air Force and the Cold War
2005-09-01
March 2001. 49An Air Force Association Special Report 49An Air Force As ociation Special Report CANAN , James. War in Space. Harper & Row, 1982...Press, 1989. GARDNER, Lloyd C. Spheres of Influence: The Great Powers Partition Europe, From Munich to Yalta. Ivan R. Dee Publisher, 1993. GARTHOFF
Zarubina, I V; Ganapol'skiĭ, V P; Shabanov, P D
2008-01-01
The effect of cold exposure (-10 degrees C, air speed--2.5 m/sec, 40 minutes) on physical activity, cognitive processes and metabolic status of 75 volunteers, healthy men of 20-24, was studied in termobarocomplex Tabaj (Japan). Cold exposure reduced physical and cognitive activity, the activity of kreatine phosphokinase, superoxide dismutase, the levels of redox glutation and pyruvate. Preliminary administration of adaptogenic drug trekrezan 0.2 g prior to cold exposure normalized the indexes studied of physical activity and metabolic status. It is suggested that trekrezan can be used as a meteoadaptogenic drug for rapid and effective adaptation to cold exposure of environment.
2018-03-19
When the polar vortex dips south it often makes headlines. Frigid air, usually confined to the arctic, spills into lower parts of the continent making it a chilly challenge for people going about their day. But there's a warm part to the story as well. While the eastern and southern United States were shivering in January the arctic was experiencing above average temperatures. In maps created with data by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite, warmer-than-normal temperatures are colored in red and below average temperatures are colored in blue. Provided in geographic and polar projections, the maps show regions of unusually cold air hovering over the eastern and southern U.S., eastern Canada and Greenland in January. February shows colder-than-normal air blanketing the northwest U.S., Canada, Western Europe, northwest Africa and East Asia. In both cases, the arctic remains exceptionally warm. During most winters the polar vortex is like a giant counterclockwise whirlpool spinning around the north pole with cold air at its center. Occasionally the vortex splits and its parts move south, usually over the continents. At the same time, warm air from the south moves in to fill the gap, and that northward movement usually occurs over the oceans. The cold air movement gets the most attention because it typically affects many millions of people. However, that cooling is very often accompanied by warming somewhere over the Arctic -- an equally important part of the polar vortex story that usually goes unnoticed but is very apparent in the images shown here. More images are available at https://photojournal.jpl.nasa.gov/catalog/PIA22344
Disinfecting Filters For Recirculated Air
NASA Technical Reports Server (NTRS)
Pilichi, Carmine A.
1992-01-01
Simple treatment disinfects air filters by killing bacteria, algae, fungi, mycobacteria, viruses, spores, and any other micro-organisms filters might harbor. Concept applied to reusable stainless-steel wire mesh filters and disposable air filters. Treatment used on filters in air-circulation systems in spacecraft, airplanes, other vehicles, and buildings to help prevent spread of colds, sore throats, and more-serious illnesses.
NASA Technical Reports Server (NTRS)
Kofskey, M. G.; Nusbaum, W. J.
1978-01-01
A cold air experimental investigation of a free power turbine designed for a 112-kW automotive gas-turbine was made over a range of speeds from 0 to 130 percent of design equivalent speeds and over a range of pressure ratio from 1.11 to 2.45. Results are presented in terms of equivalent power, torque, mass flow, and efficiency for the design power point setting of the variable stator.
Cold Cathode Electron Beam Controlled CO2 Laser Performance.
1974-10-01
Siegman (ref. 7), the cavity parameters are g, - 3/2, g2 3/4 so that 0he cavity will be confocal when the mirror separation is 2.5 m. The laser output was...E. Siegman , Laser Focus 7, 42, 1971. 8. W. F. Krupke and W. R. Sooy, IEEE Journal Quant. Elec. QE-5, 575, 1969. 9. 0. R. Wood, et al., Appl. Phys...U t AD/A-000 413 COLD CATHODE ELECTRON BEAM CONTROLLED C02 LASER PERFORMANCE Leslie L. McKee, 1II, et al Air Force Weapons Laboratory Kirtland Air
Simulating the moderating effect of a lake on downwind temperatures
NASA Technical Reports Server (NTRS)
Bill, R. G., Jr.; Chen, E.; Sutherland, R. A.; Bartholic, J. F.
1979-01-01
A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant.
The 400W at 1.8K Test Facility at CEA-Grenoble
NASA Astrophysics Data System (ADS)
Roussel, P.; Girard, A.; Jager, B.; Rousset, B.; Bonnay, P.; Millet, F.; Gully, P.
2006-04-01
A new test facility with a cooling capacity respectively of 400W at 1.8K or 800W at 4.5K, is now under nominal operation in SBT (Low Temperature Department) at CEA Grenoble. It has been recently used for thermohydraulic studies of two phase superfluid helium in autumn 2004. In the near future, this test bench will allow: - to test industrial components at 1.8K (magnets, cavities of accelerators) - to continue the present studies on thermohydraulics of two phase superfluid helium - to develop and simulate new cooling loops for ITER Cryogenics, and other applications such as high Reynolds number flows This new facility consists of a cold box connected to a warm compressor station (one subatmospheric oil ring pump in series with two screw compressors). The cold box, designed by AIR LIQUIDE, comprises two centrifugal cold compressors, a cold turbine, a wet piston expander, counter flow heat exchangers and two phase separators at 4.5K and 1.8K. The new facility uses a Programmable Logic Controller (PLC) connected to a bus for the measurements. The design is modular and will allow the use of saturated fluid flow (two phase flow at 1.8K or 4.5K) or single phase fluid forced flow. Experimental results and cooling capacity in different operation modes are detailed.
Bouzigon, Romain; Grappe, Frederic; Ravier, Gilles; Dugue, Benoit
2016-10-01
Cold therapy is commonly used as a method to relieve pain and inflammation. This review focuses primarily on two methods of cold therapy that have received recent attention: whole-body cryotherapy and partial-body cryotherapy. These methods are used to induce physiological and psychological benefits in humans in the context of medicine, health and sports. The subjects experiencing cryotherapy are dressed in minimal clothing and are exposed to very cold air (at -110°C or less) for 1-4min. Despite the increasing scientific interest in these methods, there is a lack of information about the technologies used. Moreover, there is no existing reference concerning exposure protocols and the relationship between temperature, duration, number of repetitions and the treatments' desired effects. The aim of this review is to compare whole- and partial-body cryotherapy effects (especially on skin temperature) and to classify the protocols for exposure according to the desired effects. This review emphasises 1) the lack of information concerning the actual temperatures inside the cabin or chamber during exposure and 2) the heterogeneity among the exposure protocols that have been reported in the scientific literature. This review will be valuable and relevant to health professionals endeavouring to optimize the cold treatments offered to patients and producers of cryotherapy apparatus striving to create more efficient devices that meet market requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.
INTERIOR OF WESTERN SECTION, SHOWING WALL OF COLD STORAGE ROOM ...
INTERIOR OF WESTERN SECTION, SHOWING WALL OF COLD STORAGE ROOM (IN BAYS 32 TO 34) AND ROLLING DOORS AT WEST END, VIEW FACING SOUTH-SOUTHWEST. - Naval Air Station Barbers Point, Aircraft Storehouse, Between Midway & Card Streets at Enterprise Avenue intersection, Ewa, Honolulu County, HI
Heated, humidified air for the common cold.
Singh, Meenu; Singh, Manvi
2013-06-04
Heated, humidified air has long been used by sufferers of the common cold. The theoretical basis is that steam may help congested mucus drain better and heat may destroy the cold virus as it does in vitro. To assess the effects of inhaling heated water vapour (steam) in the treatment of the common cold by comparing symptoms, viral shedding and nasal resistance. In this updated review we searched CENTRAL 2013, Issue 2, MEDLINE (1966 to February week 4, 2013), EMBASE (1990 to March 2013) and Current Contents (1994 to March 2013). Randomised controlled trials (RCTs) using heated water vapour in participants with the common cold or participants with experimentally induced common cold. The two review authors independently reviewed all retrieved articles and excluded any articles, editorials and abstracts with inadequate outcome descriptions. The studies we included were subjected to a methodological assessment. We included six trials (394 trial participants). Three trials in which patient data could be pooled found benefits of steam for symptom relief for the common cold (odds ratio (OR) 0.31; 95% confidence interval (CI) 0.16 to 0.60). However, results on symptom indices were equivocal. No studies demonstrated an exacerbation of clinical symptom scores. One study conducted in the USA demonstrated worsened nasal resistance, while an earlier Israeli study showed improvement. One study examined viral shedding and antibody titres in nasal washings; there was no change in either between treatment and placebo groups. Minor side effects (including discomfort or irritation of the nose) were reported in some studies. Steam inhalation has not shown any consistent benefits in the treatment of the common cold, hence is not recommended in the routine treatment of common cold symptoms until more double-blind, randomised trials with a standardised treatment modality are conducted.
More Frequent Weak Stratospheric Polar Vortex States Linked to Cold Extremes
NASA Astrophysics Data System (ADS)
Kretschmer, M.; Coumou, D.; Agel, L. A.; Barlow, M. A.; Tziperman, E.; Cohen, J. L.
2016-12-01
The extra-tropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, referred to as the stratospheric polar vortex (SPV) which confines cold temperatures at high latitudes. Previous studies showed that a weak SPV can lead to cold-air outbreaks in the mid-latitudes but the exact relationships and mechanisms are still unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in Central and eastern Asia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid to late winter (January and February) has increased significantly accompanied by subsequent cold surface temperatures in the mid-latitudes. Furthermore, we show that stratospheric and El Niño/Southern Oscillation (ENSO) variability can explain most of the observed spatially heterogenic winter temperature trends in the era of Arctic amplification but the contribution of ENSO is less important. We show that the weakening of the SPV was related to a strengthening Siberian high and poleward heat flux. These findings support the hypothesis that a warming Arctic has weakened the SPV and thereby increased the frequency of cold-air outbreaks.
NASA Astrophysics Data System (ADS)
Sulca, J. C.; Vuille, M. F.; Roundy, P. E.; Trasmonte, G.; Silva, Y.; Takahashi, K.
2015-12-01
The Mantaro basin (MB) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during austral summer (January-March), that strongly damage crops. However, little is known about the causes and impacts of such cold episodes. The main goal of this study is thus to characterize cold episodes in the MB and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MB daily minimum temperature (Tmin) for the period 1958-2014 from Huayao station, located within the MB was used. A cold episode is defined when daily minimum temperature drops below its 10-percentile for at least one day. Additionally, to study the sensitivity between physical mechanisms associated with cold episodes and temperature, cold episodes are classified in three groups: Weak cold episodes (7.5 ≤ Tmin ≤ 10 percentile), strong cold episodes (Tmin ≤ 2.5 percentile), but excluding the 9 coldest events (Tmin ≤ 0 ͦ C), henceforth referred to as extraordinary cold episodes. Several gridded reanalysis were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events. Weak and strong cold episodes in the MB are mainly associated with a weakening of the Bolivian High-Nordeste Low system by tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the development of cloud cover (e.g., positive OLR anomalies over MB). The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below 10-percentile. Simultaneously, northeastern Brazil (NEB) registers negative OLR anomalies, strong convection and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of its climatologic position. By contrast, extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. On interannual timescales, El Niño may limit the occurrence of all types of cold episodes in the MB through enhanced tropical tropospheric background warming.
Cold chain monitoring during cold transportation of human corneas for transplantation.
Net, M; Trias, E; Navarro, A; Ruiz, A; Diaz, P; Fontenla, J R; Manyalich, M
2003-08-01
As recommended by international standards the cornea should be maintained in a specific temperature range (2 degrees -8 degrees C) to guarantee its viability. However, there is no standard packaging method to maintain these conditions during transport. Our packaging system is similar to those used by the main eye banks in Spain and elsewhere in Europe. The objective is to monitor the cold chain in the current packaging method to validate the maintenance of temperature within the adequate range for a minimum 24-hour period. The effects of the following variables were studied: number and freezing temperature of the cold packs; air volume in the packaging system; position of the cornea in the packaging system; and the wall section of the container. Exterior temperature was maintained constant at 20 degrees to 24 degrees C. The cold chain was monitored using a device that measures temperature continuously and for which a histogram of temperature variation can be downloaded to a computer for further analysis. When the cold packs were frozen to -40 degrees C or the number of cold packs increased to four, the temperature decreased quickly to 0 degrees C and the transport period was not prolonged. The main objective was to improve isolation by reducing inner air volume, and maintaining the position of the cornea in the container. The currently used cold packaging systems (not frozen, 4 degrees C) do not maintain the temperature within the accepted range for the required distribution period. The improved system maintains the cornea at between 2 degrees C and 6 degrees C for a minimum of 24 hours.
Seeing Off the Bear: Anglo-American Air Power Cooperation During the Cold War,
1995-01-01
Force History and Museums Program United States Air Force Washington, D.C. 1995 .ApprovAd fox r’Thiic r ~elease, j,, 117-~ I 7,CTh D Disbution...Air Power History Symposium began in late 1992 under the direction of General Bryce Poe II, President of the Air Force Historical Foundation, Air...vii Introduction and Welcome General Bryce Poe II; Air Marshal Sir Frederick Sowrey .............. 3 Opening
The Next Generation of Cold Immersion Dry Suit Design Evolution for Hypothermia Prevention
NASA Technical Reports Server (NTRS)
Galofaro, Joel
2013-01-01
This new utility patent is an active design that relies on the lung's role as an organic heat exchanger for providing deep body core heating of air. It is based on the fact that the greatest heat loss mechanism for an insulated human body immersed in a cold water environment is due to heat loss through respiration. This innovation successfully merges two existing technologies (cold immersion suit and existing valve technologies) to produce a new product that helps prevent against the onset of hypothermia at sea. During normal operations, a human maintains an approximate body temperature of [98.6 F (37 C)]. A mechanism was developed to recover the warm temperature from the body and reticulate it in a survival suit. The primary intention is to develop an encompassing systems design that can both easily and cost effectively be integrated in all existing currently manufactured cold water survival suits, and as such, it should be noted that the cold water immersion suit is only used as a framework or tool for laying out the required design elements. At the heart of the suit is the Warm Air Recovery (WAR) system, which relies on a single, large Main Purge Valve (MPV) and secondary Purge Valves (PV) to operate. The main purge valve has a thin membrane, which is normally closed, and acts as a one-way check valve. When warm air is expelled from the lungs, it causes the main purge valve to open. Air forced from the MPV is dumped directly into the suit, thereby providing warmth to the torso, legs, and arms. A slight positive over-pressure in the suit causes warm waste air (or water if the suit is punctured) to be safely vented into the sea through large PVs located at the bottom of each arm and leg. The secondary purge valves act to prevent the buildup of large concentrations of CO2 gas and help guard against asphyxia. It is noted that the MPV causes the inhalation and exhalation cycles to be completely isolated from one another in the current suit design.
Preconcentrator with high volume chiller for high vapor pressure particle detection
Linker, Kevin L
2013-10-22
Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.
Box-Behnken statistical design to optimize thermal performance of energy storage systems
NASA Astrophysics Data System (ADS)
Jalalian, Iman Joz; Mohammadiun, Mohammad; Moqadam, Hamid Hashemi; Mohammadiun, Hamid
2018-05-01
Latent heat thermal storage (LHTS) is a technology that can help to reduce energy consumption for cooling applications, where the cold is stored in phase change materials (PCMs). In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing RT25 as phase change material (PCM). Process optimization of the experimental conditions (inlet air temperature and velocity and number of slabs) was carried out by means of Box-Behnken design (BBD) of Response surface methodology (RSM). Two parameters (cooling time and COP value) were chosen to be the responses. Both of the responses were significantly influenced by combined effect of inlet air temperature with velocity and number of slabs. Simultaneous optimization was performed on the basis of the desirability function to determine the optimal conditions for the cooling time and COP value. Maximum cooling time (186 min) and COP value (6.04) were found at optimum process conditions i.e. inlet temperature of (32.5), air velocity of (1.98) and slab number of (7).
A high performance porous flat-plate solar collector
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Clarke, V.; Reynolds, R.
1979-01-01
A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.
40 CFR 86.1809-12 - Prohibition of defeat devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
40 CFR 86.1809-10 - Prohibition of defeat devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
40 CFR 86.1809-12 - Prohibition of defeat devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
40 CFR 86.1809-10 - Prohibition of defeat devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
40 CFR 86.1809-10 - Prohibition of defeat devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
40 CFR 86.1809-12 - Prohibition of defeat devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...
ENSO's far reaching connection to Indian cold waves.
Ratnam, J V; Behera, Swadhin K; Annamalai, H; Ratna, Satyaban B; Rajeevan, M; Yamagata, Toshio
2016-11-23
During boreal winters, cold waves over India are primarily due to transport of cold air from higher latitudes. However, the processes associated with these cold waves are not yet clearly understood. Here by diagnosing a suite of datasets, we explore the mechanisms leading to the development and maintenance of these cold waves. Two types of cold waves are identified based on observed minimum surface temperature and statistical analysis. The first type (TYPE1), also the dominant one, depicts colder than normal temperatures covering most parts of the country while the second type (TYPE2) is more regional, with significant cold temperatures only noticeable over northwest India. Quite interestingly the first (second) type is associated with La Niña (El Niño) like conditions, suggesting that both phases of ENSO provide a favorable background for the occurrence of cold waves over India. During TYPE1 cold wave events, a low-level cyclonic anomaly generated over the Indian region as an atmospheric response to the equatorial convective anomalies is seen advecting cold temperatures into India and maintaining the cold waves. In TYPE2 cold waves, a cyclonic anomaly generated over west India anomalously brings cold winds to northwest India causing cold waves only in those parts.
The Gonzaga desulfurization flue gas process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelleher, R.L.; O'Leary, T.J.; Shirk, I.A.
1984-01-01
The Gonzaga desulfurization flue gas process removes sulfur dioxide from a flue by cold water scrubbing. Sulfur dioxide is significantly more soluable in cold water (35/sup 0/F to 60/sup 0/F) than in warm water (100/sup 0/F). Sulfur dioxide reacts in water similarly as carbon dioxide reacts in water, in that both gasses are released from the water as the temperature of the water increases. The researchers at the Gonzaga University developed this process from the observations and techniques used in studying the acid and aldehyde concentrations in flue gasses with varying of fuel to air ratios. The apparatus was fixedmore » to a stationary engine and a gas/oil fired boiler. The flue gas was cooled to the dew point temperature of the air entering the combustion chamber on the pre-air heater. The system is described in two parts: the energies required for cooling in the scrubbing section and the energies required in the treatment section. The cold flue gas is utilized in cooling the scrubber section.« less
Deep convective clouds at the tropopause
NASA Astrophysics Data System (ADS)
Aumann, H. H.; Desouza-Machado, S. G.
2010-07-01
Data from the Advanced Infrared Sounder (AIRS) on the EOS Aqua spacecraft identify thousands of cloud tops colder than 225 K, loosely referred to as Deep Convective Clouds (DCC). Many of these cloud tops have "inverted" spectra, i.e. areas of strong water vapor, CO2 and ozone opacity, normally seen in absorption, are now seen in emission. We refer to these inverted spectra as DCCi. They are found in about 0.4% of all spectra from the tropical oceans excluding the Western Tropical Pacific (WTP), 1.1% in the WTP. The cold clouds are the anvils capping thunderstorms and consist of optically thick cirrus ice clouds. The precipitation rate associated with DCCi suggests that imbedded in these clouds, protruding above them, and not spatially resolved by the AIRS 15 km FOV, are even colder bubbles, where strong convection pushes clouds to within 5 hPa of the pressure level of the tropopause cold point. Associated with DCCi is a local upward displacement of the tropopause, a cold "bulge", which can be seen directly in the brightness temperatures of AIRS and AMSU channels with weighting function peaking between 40 and 2 hPa, without the need for a formal temperature retrieval. The bulge is not resolved by the analysis in numerical weather prediction models. The locally cold cloud tops relative to the analysis give the appearance (in the sense of an "illusion") of clouds overshooting the tropopause and penetrating into the stratosphere. Based on a simple model of optically thick cirrus clouds, the spectral inversions seen in the AIRS data do not require these clouds to penetrate into the stratosphere. However, the contents of the cold bulge may be left in the lower stratosphere as soon as the strong convection subsides. The heavy precipitation and the distortion of the temperature structure near the tropopause indicate that DCCi are associated with intense storms. Significant long-term trends in the statistical properties of DCCi could be interesting indicators of climate change.
Condensation of atmospheric moisture from tropical maritime air masses as a freshwater resource.
Gerard, R D; Worzel, J L
1967-09-15
A method is proposed whereby potable water may be obtained by condensing moisture from the atmosphere in suitable seashore or island areas. Deep, cold, offshore seawater is used as a source of cold and is pumped to condensers set up on shore to intercept the flow of highly humid, tropical, maritime air masses. This air, when cooled, condenses moisture, which is conducted away and stored for use as a water supply. Windmill-driven generators would supply low-cost power for the operation. Side benefits are derived by using the nutritious deep water to support aquiculture in nearby lagoons or to enhance the productivity of the outfall area. Additional benefits are derived from the condenser as an air-conditioning device for nearby residents. The islands of the Caribbean are used as an example of a location in the trade-winds belt where nearly optimum conditions for the operation of this system can be found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
New inverter-driven ASHPs are gaining ground in colder climates. These systems operate at sub-zero temperatures without the use of electric resistance backup. There are still uncertainties, however, about cold-climate capacity and efficiency in cold weather and questions such as measuring: power consumption, supply, return, and outdoor air temperatures, and air flow through the indoor fan coil. CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10 degrees F. The reasons for the wide range in heating performance likelymore » include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.« less
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.
2017-01-01
Studies of various injector configurations in a 7-point Lean Direct Injector (LDI) array are reported for both non-reacting (cold) flow and for Jet-A/air reacting flows. For cold flow, central recirculation zone (CRZ) formation is investigated and for reacting flows, combustor operability and dynamics are of interest. 2D Particle Image Velocimetry (PIV) measurements are described for the cold flow experiments and flame chemiluminescence imaging and dynamic pressure results are discussed for the reacting flow cases. PIV results indicate that for this configuration the close spacing between swirler elements leads to strong interaction that affects whether a CRZ forms, and pilot recess and counter-swirl helps to isolate swirlers from one another. Dynamics results focus on features identified near 500-Hz.
Lidar network observation of dust layer evolution over the Gobi Desert in MAY 2013
NASA Astrophysics Data System (ADS)
Kawai, Kei; Kai, Kenji; Jin, Yoshitaka; Sugimoto, Nobuo; Batdorj, Dashdondog
2018-04-01
A lidar network captured the evolution of a dust layer in the Gobi Desert on 22-23 May 2013. The lidar network consists of a ceilometer and two AD-Net lidars in Mongolia. The dust layer was generated by a strong wind due to a cold front and elevated over the surface of the cold front by an updraft of the warm air in the cold-front system. It was evolving from the atmospheric boundary layer to the free troposphere while moving 600 km through the desert with the cold front.
Existing Whole-House Solutions Case Study: Retrofitting a 1960s Split-Level Cold-Climate Home
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puttagunta, S.
2015-08-01
National programs such as Home Performance with ENERGY STAR® and numerous other utility air sealing programs have brought awareness to homeowners of the benefits of energy efficiency retrofits. Yet, these programs tend to focus on the low-hanging fruit: air-sealing the thermal envelope and ductwork where accessible, switch to efficient lighting, and low-flow fixtures. At the other end of the spectrum, deep-energy retrofit programs are also being encouraged by various utilities across the country. While deep energy retrofits typically seek 50% energy savings, they are often quite costly and most applicable to gut-rehab projects. A significant potential for lowering energy usagemore » in existing homes lies between the low hanging fruit and deep energy retrofit approaches - retrofits that save approximately 30% in energy over the existing conditions.« less
Medical Surveillance Monthly Report (MSMR). Volume 17, Number 09, September 2010
2010-09-01
Chlamydia Gonorrhea Syphilis Cold d Heatd Q Fever Tuberculosis 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 Air...Chlamydia Gonorrhea Syphilis Cold c Heatc Q Fever Tuberculosis 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010...borne Sexually transmitted Environmental Travel associated Lyme disease Malaria Chlamydia Gonorrhea Syphilis Cold c Heatc Q Fever Tuberculosis 2009
Properties of the Central American cold surge
NASA Technical Reports Server (NTRS)
Mcguirk, James P.; Reding, Philip J.; Zhang, Yuxia
1993-01-01
The Central American cold surge (CACS) is a frontal incursion from the United States into Central America and resembles the East Asian cold surge. They occur more frequently than analyzed by NMC or by published results, based on our observations between 1979 and 1990. Climatology and structure are quantified, based on surface and upper air stations throughout Central America and satellite products from GOES visible and infrared sensors and SSM/I precipitable water and rain rate sensors.
Hollow-Cathode Source Generates Plasma
NASA Technical Reports Server (NTRS)
Deininger, W. D.; Aston, G.; Pless, L. C.
1989-01-01
Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Y.; Besant, R.W.; Chen, H.
1999-07-01
An experimental investigation of frost growth on a flat, cold surface supplied by subfreezing, turbulent, humid, parallel flow of air is presented. The operating conditions are typical of many commercial freezers. A test loop was constructed to perform the tests, and the frost height, frost mass concentration, and cold surface heat flux were measured using specially designed and calibrated instrumentation. Twenty tests were done for steady operating conditions, each starting with no initial frost accumulation, and were run for two to six hours giving 480 data samples. Measured results show that the frost characteristics differ significantly with frost growth datamore » taken previously for room temperature airflow. Depending on the temperature of the cold plate and the relative humidity of the subfreezing supply air, the frost could appear to be either smooth or rough. Smooth frost, which occurred at warmer plate temperatures and lower supply air relative humidities, gave rise to frost growth that was much thinner and denser than that for the rough, thick, low-density frost. Frost growth characteristics are correlated as a function of five independent variables (time, distance from the leading edge, cold plate temperature ratio, humidity ratio, and Reynolds number). These correlations are presented separately for the full data set, the rough frost data, and the smooth frost data.« less
Persistent cold air outbreaks over North America in a warming climate
Gao, Yang; Leung, L. Ruby; Lu, Jian; ...
2015-03-30
This study examines future changes of cold air outbreaks (CAO) using a multi-model ensemble of global climate simulations from the Coupled Model Intercomparison Project Phase 5 as well as regional high resolution climate simulations. In the future, while robust decrease of CAO duration dominates in most regions, the magnitude of decrease over northwestern U.S. is much smaller than the surrounding regions. We identified statistically significant increases in sea level pressure during CAO events centering over Yukon, Alaska, and Gulf of Alaska that advects continental cold air to northwestern U.S., leading to blocking and CAO events. Changes in large scale circulationmore » contribute to about 50% of the enhanced sea level pressure anomaly conducive to CAO in northwestern U.S. in the future. High resolution regional simulations revealed potential contributions of increased existing snowpack to increased CAO in the near future over the Rocky Mountain, southwestern U.S., and Great Lakes areas through surface albedo effects, despite winter mean snow water equivalent decreases in the future. Overall, the multi-model projections emphasize that cold extremes do not completely disappear in a warming climate. Concomitant with the relatively smaller reduction in CAO events in northwestern U.S., the top 5 most extreme CAO events may still occur in the future, and wind chill warning will continue to have societal impacts in that region.« less
Design and cold-air test of single-stage uncooled turbine with high work output
NASA Technical Reports Server (NTRS)
Moffitt, T. P.; Szanca, E. M.; Whitney, W. J.; Behning, F. P.
1980-01-01
A solid version of a 50.8 cm single stage core turbine designed for high temperature was tested in cold air over a range of speed and pressure ratio. Design equivalent specific work was 76.84 J/g at an engine turbine tip speed of 579.1 m/sec. At design speed and pressure ratio, the total efficiency of the turbine was 88.6 percent, which is 0.6 point lower than the design value of 89.2 percent. The corresponding mass flow was 4.0 percent greater than design.
Atmospheric pressure cold plasma as an antifungal therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Peng; Wu Haiyan; Sun Yi
2011-01-10
A microhollow cathode based, direct-current, atmospheric pressure, He/O{sub 2} (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.
Hypothermic general cold adaptation induced by local cold acclimation.
Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H
1996-01-01
To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P < 0.05) without a change either in metabolic heat production or in lower limb skin temperatures during SCAT after LCA. It was concluded that local cold adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P < 0.05). However, the hypothermic insulative general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P < 0.05) was observed but was rather related to a "T3 polar syndrome" occurring during LCA.
Aquifer thermal energy storage. International symposium: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste ormore » by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.« less
Method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors
NASA Technical Reports Server (NTRS)
Nalim, M. Razi (Inventor); Paxson, Daniel E. (Inventor)
1999-01-01
A method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors having a plurality of channels formed around a periphery thereof. A first port injects a supply of cool air into the channels. A second port allows the supply of cool air to exit the channels and flow to a combustor. A third port injects a supply of hot gas from the combustor into the channels. A fourth port allows the supply of hot gas to exit the channels and flow to a turbine. A diverting port and a reinjection port are connected to the second and third ports, respectively. The diverting port diverts a portion of the cool air exiting through the second port as reinjection air. The diverting port is fluidly connected to the reinjection port which reinjects the reinjection air back into the channels. The reinjection air evacuates the channels of the hot gas resident therein and cools the channel walls, a pair of end walls of the rotor, ducts communicating with the rotor and subsequent downstream components. In a second embodiment, the second port receives all of the cool air exiting the channels and the diverting port diverts a portion of the cool air just prior to the cool air flowing to the combustor.
Heated, humidified air for the common cold.
Singh, M
2006-07-19
Heated, humidified air has long been used by common cold sufferers. The theoretical basis is that steam may help congested mucus drain better and heat may destroy cold virus as it does in vitro. To assess the effects of inhaling heated water vapour (steam), in the treatment of the common cold by comparing symptoms, viral shedding and nasal resistance. In this updated review we searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library issue 4, 2005); MEDLINE (2003 to December Week 2 2005); EMBASE (July 2003 to September 2005); and Current Contents (current five years). Randomized controlled trials (RCTs) using heated water vapor in patients with the common cold or volunteers with experimentally induced common cold. All the articles retrieved were initially subjected to a review for inclusion or exclusion criteria. Review articles, editorials and abstracts with inadequate outcome descriptions were excluded. Studies selected for inclusion were subjected to a methodological assessment. Six trials were included. Three found benefits of steam for symptom relief with the common cold (odds ratio (OR) 95% confidence interval (CI) 0.31; 0.16 to 0.60; relative risk (RR) 0.56; 95% CI 0.4 to 0.79). Results on symptom indices were equivocal. No studies demonstrated an exacerbation of clinical symptom scores. One USA study demonstrated worsened nasal resistance, while an earlier Israeli one showed improvement. One study examined viral shedding and antibody titres in nasal washings: there was no change of either between treatment and placebo groups. Minor side effects (including discomfort or irritation of the nose) were reported in some studies. Steam inhalation are not recommended in the routine treatment of common cold symptoms until more double-blind RCT trials are conducted.
1. EXTERIOR VIEW OF BUILDING 25A (COLD CHAMBER), LOOKING NORTHEAST, ...
1. EXTERIOR VIEW OF BUILDING 25A (COLD CHAMBER), LOOKING NORTHEAST, WITH WIND TUNNEL IN BACKGROUND (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
Cold plasma reduces Salmonella on sliced roma tomatoes: efficacy of air versus nitrogen
USDA-ARS?s Scientific Manuscript database
A rapid, waterless, contact-free method of decontamination for tomatoes and tomato slices is of interest to processors and the food service industry. Cold plasma is a novel antimicrobial treatment for fresh and fresh-cut fruits and vegetables. Slices of Roma tomatoes were spot inoculated with three ...
Improved Comfort | Efficient Windows Collaborative
temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior
Evaluation of Low-Pressure Cold Plasma for Disinfection of ISS Grown Produce and Metal Instruments
NASA Technical Reports Server (NTRS)
Hummerick, Mary E.; Hintze, Paul E.; Maloney, Philip R.; Spencer, Lashelle E.; Coutts, Janelle L.; Franco, Carolina
2016-01-01
Low pressure cold plasma, using breathing air as the plasma gas, has been shown to be effective at precision cleaning aerospace hardware at Kennedy Space Center.Both atmospheric and low pressure plasmas are relatively new technologies being investigated for disinfecting agricultural commodities and medical instruments.
Convective structure of the planetary boundary layer of the ocean during gale
NASA Technical Reports Server (NTRS)
Melfi, S. H.; Boers, R.
1986-01-01
The structure of the Planetary Boundary Layer (PBL) was measured, using an airborne lidar, over the Atlantic Ocean during several intensive observation periods of the Genesis of Atlantic Lows Experiment (GALE). Primary emphasis is on the understanding of the convective structure within the PBL during cold air outbreaks. Cold outbreaks generally occur in between the development of coastal storms; and behind a cold front sweeping down from Canada out across the Atlantic. As the cold dry air moves over the relatively warm ocean, it is heated and moistened. The transfer of latent and sensible heat during these events accounts for most of the heat transfer between the ocean and atmosphere during winter. Moistening of the PBL during these eventsis believed to be an important factor in determining the strength of development of the storm system which follows. In general, the more PBL moisture available as latent heat the higher the probability the storm will intensify. The major mechanism for vertical mixing of heat and mositure within the PBL is cellular convection. Knowlede of the organization and structure of the convection is important for understanding the process.
Diagnostic Analysis of Second Strengthen Heavy Rain in Western Guangdong for NO.1011 Typhoon Fanapi
NASA Astrophysics Data System (ADS)
Liu, L.
2013-12-01
In order to learn more about the development mechanism of the rainstorm which is caused by No.1101 super typhoon "Fanapi", this paper use weather diagnostic methods to study two processes of heavy rain after "Fanapi" landed in the western part of Guangdong by applying Ncep1 ° × 1 ° reanalysis data and observed precipitation data. Through the preliminary analysis of this typhoon rainstorm, the result shows that cold air and water vapor transmission mainly cause the second strengthen precipitation ,the isoline slope of pseudoequivalent potential temperature reflect the second strengthen precipitation ,the upper troposphere high potential vorticity pass down and the cold dry air in the upper atomosphere confronts with the warm moist air in the lower atmosphere so that the precipitation increase.
Observations of the convective plume of a lake under cold-air advective conditions
NASA Technical Reports Server (NTRS)
Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.; Chen, E.
1978-01-01
Moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold-air advective conditions. Point temperature measurements north and south of the lake and data obtained from a thermal scanner flown at 1.6 km indicate that surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C under conditions of moderate winds (about 4 m/s). No substantial temperature effects were observed with surface wind speed less than 1 m/s. Fluxes of sensible and latent heat from Lake Apopka were calculated from measurements of lake temperature, net radiation, relative humidity, and air temperature above the lake. Bulk transfer coefficients and the Bowen ratio were calculated and found to be in agreement with reported data for nonadvective conditions.
Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier
Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri
2014-01-01
Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368
Hetrick, Robert Eugene; Hilbert, Harold Sean; Parsons, Michael Howard; Stockhausen, William Francis
1997-10-07
A fuel injection system used in the intake air passageway of an internal combustion engine has a strategy for reducing cold start hydrocarbon emissions. The fuel injector has an actuator which allows the fuel spray pattern to be varied from one which is widely dispersed and atomized to one which is only weakly dispersed. A strategy for varying the spray pattern during the engine warm-up period after cold start is disclosed. The strategy increases evaporation within the passageway so that cold start overfuelling and attendant hydrocarbon emissions are reduced.
Judée, F; Simon, S; Bailly, C; Dufour, T
2018-04-15
Cold atmospheric plasmas are weakly ionized gases that can be generated in ambient air. They produce energetic species (e.g. electrons, metastables) as well as reactive oxygen species, reactive nitrogen species, UV radiations and local electric field. Their interaction with a liquid such as tap water can hence change its chemical composition. The resulting "plasma-activated liquid" can meet many applications, including medicine and agriculture. Consequently, a complete experimental set of analytical techniques dedicated to the characterization of long lifetime chemical species has been implemented to characterize tap water treated using cold atmospheric plasma process and intended to agronomy applications. For that purpose, colorimetry and acid titrations are performed, considering acid-base equilibria, pH and temperature variations induced during plasma activation. 16 species are quantified and monitored: hydroxide and hydronium ions, ammonia and ammonium ions, orthophosphates, carbonate ions, nitrite and nitrate ions and hydrogen peroxide. The related consumption/production mechanisms are discussed. In parallel, a chemical model of electrical conductivity based on Kohlrausch's law has been developed to simulate the electrical conductivity of the plasma-activated tap water (PATW). Comparing its predictions with experimental measurements leads to a narrow fitting, hence supporting the self-sufficiency of the experimental set, I.e. the fact that all long lifetime radicals of interest present in PATW are characterized. Finally, to evaluate the potential of cold atmospheric plasmas for agriculture applications, tap water has been daily plasma-treated to irrigate lentils seeds. Then, seedlings lengths have been measured and compared with untreated tap water, showing an increase as high as 34.0% and 128.4% after 3 days and 6 days of activation respectively. The interaction mechanisms between plasma and tap water are discussed as well as their positive synergy on agronomic results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cardiovascular autonomic control during short-term thermoneutral and cool head-out immersion.
Mourot, Laurent; Bouhaddi, Malika; Gandelin, Emmanuel; Cappelle, Sylvie; Dumoulin, Gilles; Wolf, Jean-Pierre; Rouillon, Jean Denis; Regnard, Jacques
2008-01-01
Moderately cold head-out water immersion stimulates both baro- and cold-receptors, and triggers complex and contradictory effects on the cardiovascular system and its autonomic nervous control. To assess the effects of water immersion and cold on cardiovascular status and related autonomic nervous activity. Hemodynamic variables and indexes of autonomic nervous activity (analysis of heart rate and blood pressure variability) were evaluated in 12 healthy subjects during 3 exposures of 20 min each in the upright position, i.e., in air (AIR, 24-25 degrees C), and during head-out water immersion at 35-36 degrees C (WIn) and 26-27 degrees C (WIc). Plasma noradrenaline, systolic and diastolic blood pressure, and total peripheral resistances were reduced during WIn compared to AIR (263.9 +/- 39.4 vs. 492.5 +/- 35.7 pg x ml(-1), 116.5 +/- 3.7 and 65.4 +/- 1.7 mmHg vs. 140.8 +/- 4.7 and 89.8 +/- 2.8 mmHg, 14.1 +/- 1.0 vs. 16.3 +/- 0.9 mmHg x L(-1) x min, respectively) while they were increased during WIc (530.8 +/- 84.7 pg ml(-1), 148.0 +/- 7.0 mmHg, 80.8 +/- 3.0 mmHg, and 25.8 +/- 1.9 mmHg x L(-1) x min, respectively). The blood pressure variability was reduced to the same extent during WIc and Win compared to AIR. Heart rate decreased during WIn (67.8 +/- 2.7 vs. 81.2 +/- 2.7 bpm during AIR), in parallel with an increased cardiac parasympathetic activity. This pattern was strengthened during WIc (55.3 +/- 2.2 bpm). Thermoneutral WI lowered sympathetic activity and arterial tone, while moderate whole-body skin cooling triggered vascular sympathetic activation. Conversely, both WI and cold triggered cardiac parasympathetic activation, highlighting a complex autonomic control of the cardiovascular system.
Aléx, Jonas; Karlsson, Stig; Björnstig, Ulf; Saveman, Britt-Inger
2015-01-01
The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients' exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients' temperatures in the prehospital emergency care. A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30) was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30) no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS), subjective comments on cold experiences, and finger, ear and air temperatures. Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001) but decreased in the control group (p=0.014). A significant higher proportion (57%) of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, p<0.001). At arrival, finger, ear and compartment air temperature showed no statistical significant difference between groups. Mean transport time was approximately 15 minutes. The use of active heat from underneath increases the patients' thermal comfort and may prevent the negative consequences of cold stress.
Preparation of nonconducting infrared-absorbing thin films
NASA Astrophysics Data System (ADS)
Gradhand, Martin; Breitenstein, Otwin
2005-05-01
A simple procedure for preparing colloidal "black" bismuth films is introduced, which leaves the target cold and does not pollute the recipient. The Bi evaporation occurs in a closed box in the evaporation chamber with an internal radiation shield. The bismuth is evaporated from a tantalum boat at a residual air pressure of 2×102Pa. The resulting films with a thickness of about 10μm are structureless down to a spatial resolution of 5.6μm, they become electrically insulating after 48h storage time in air, and they show an IR absorbance of above 70% in the 3-5μm wavelength range. The films are easily removable in an ultrasonic water bath. Thus, these films are ideally appropriate to increase the IR emissivity of microelectronic structures in microthermal infrared failure analysis investigations such as lock-in thermography, as is demonstrated in an application example. The application of this film may improve the thermographic detection limit of heat sources below metallized areas by up to a factor of 10, leading to a saving in acquisition time by a factor of 100.
NASA Astrophysics Data System (ADS)
Smith, E. T.
2017-12-01
Periods of extreme cold impact the mid-latitudes every winter. Depending on the magnitude and duration of the occurrence, extremely cold periods may be deemed cold air outbreaks (CAOs). Atmospheric teleconnections impact the displacement of polar air, but the relationship between the primary teleconnections and the manifestation of CAOs is not fully understood. A systematic CAO index was developed from 20 surface weather stations based on a set of criteria concerning magnitude, duration, and spatial extent. Statistical analyses of the data were used to determine the overall trends in CAOs. Clusters of sea level pressure (SLP), 100mb, and 10mb geopotential height anomalies were mapped utilizing self-organizing maps (SOMs) to understand the surface, upper-tropospheric Polar Vortex (PV), and stratospheric PV patterns preceding CAOs. The Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and Pacific-North American (PNA) teleconnections were used as variables to explain the magnitude and location of mid-latitude Arctic air displacement. Persistently negative SLP anomalies across the Arctic and North Atlantic were evident 1 - 2 weeks prior to the CAOs throughout the winter. The upper-tropospheric and stratospheric PV were found to be persistently weak/weakening prior to mid-winter CAOs and predominantly strong and off-centered prior to early and late season CAOs. Negative phases of the AO and NAO were favored prior to CAOs, while the PNA favored a near-neutral phase. This method of CAO and synoptic pattern characterization benefits from a continuous pattern representation and provides insight as to how specific teleconnections impact the atmospheric flow in a way that leads to CAOs in the eastern U.S.
NASA Astrophysics Data System (ADS)
Choi, Jae-Won; Cha, Yumi; Kim, Hae-Dong
2018-02-01
The results of the present study prove that snowfall occurred due to the polar low (PL) in the Korean Peninsula and six cases of snowfall exceeding a snow depth of 2 cm over the past 16 years in Busan, South Korea. A strong northwesterly air current with a cold outbreak at the lower level passed through the Korean Peninsula and penetrated into the East/Japan Sea causing the generation and characteristics of a PL. However, a northeasterly air current due to a synoptic low (SL) in East Japan approached the east coast via the East/Japan Sea, which generated a wind field with mesoscale cyclonic circulation. In the center of this cyclone, a strong positive vorticity region was revealed from the lower level to the upper level. The air temperature in the center of the PL was warmer than the surrounding areas at the lower level. As the PL developed and the air temperature decreased, a rapid tropopause drop followed due to the effect of the cold core along with the cutoff low at the mid-level or the higher level. As a result, the stratification became more unstable. The PL moved into Busan as the cold core at the upper level rapidly moved to the lower latitudes, which formed an unstable region around Busan. The PL decayed because the cutoff low, the cold core, and the positive vorticity region at the upper level quickly moved to the east, thereby causing the stratification to stabilize. Also, because the approach to the Japanese Archipelago caused an increase in surface friction, the original structure could no longer be maintained.
Measurement of cytoplasmic Ca2+ concentration in Saccharomyces cerevisiae induced by air cold plasma
NASA Astrophysics Data System (ADS)
Xiaoyu, DONG
2018-03-01
In this study, a novel approach to measure the absolute cytoplasmic Ca2+ concentration ([Ca2+]cyt) using the Ca2+ indicator fluo-3 AM was established. The parameters associated with the probe fluo-3 AM were optimized to accurately determine fluorescence intensity from the Ca2+-bound probe. Using three optimized parameters (final concentration of 6 mM probe, incubation time of 135 min, loading probe before plasma treatment), the maximum fluorescence intensity (F max = 527.8 a.u.) and the minimum fluorescence intensity (F min = 63.8 a.u.) were obtained in a saturated Ca2+ solution or a solution of lacking Ca2+. Correspondingly, the maximum [Ca2+]cyt induced by cold plasma was 1232.5 nM. Therefore, the Ca2+ indicator fluo-3 AM was successfully applied to measure the absolute [Ca2+]cyt in Saccharomyces cerevisiae stimulated by cold plasma at atmospheric air pressure.
NASA Astrophysics Data System (ADS)
Borys, Randolph D.; Lowenthal, Douglas H.; Mitchell, David L.
A study was conducted to examine the relationships among air pollutant loadings, cloud microphysics, and snowfall rates in cold mountain clouds. It was hypothesized that variations in pollutant loadings would be reflected in shifts in the cloud droplet size distribution. A field program was conducted at Storm Peak Laboratory (SPL) at an elevation of 3210 m MSL in northwestern Colorado. Cold precipitating clouds were sampled during January, 1995. Cloud water was collected and analyzed for major ion and trace element chemistry. Cloud droplet concentrations and size were measured continuously using a PMS FSSP-100. The results indicate a direct relationship between clear-air equivalent (CAE) sulfate concentrations in cloud water and cloud droplet concentrations, an indirect relationship between droplet number and droplet size, a direct relationship between droplet size and snowfall rate, and an indirect relationship between CAE sulfate concentration and snowfall rate.
Cold acclimation and cognitive performance: A review.
Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain
2017-12-01
Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.
Nasal variation in relation to high-altitude adaptations among Tibetans and Andeans.
Butaric, Lauren N; Klocke, Ross P
2018-05-01
High-altitude (>2500 m) populations face several pressures, including hypoxia and cold-dry air, resulting in greater respiratory demand to obtain more oxygen and condition inspired air. While cardiovascular and pulmonary adaptations to high-altitude hypoxia have been extensively studied, adaptations of upper-respiratory structures, e.g., nasal cavity, remain untested. This study investigates whether nasal morphology presents adaptations to hypoxic (larger noses) and/or cold-dry (tall/narrow noses) conditions among high-altitude samples. CT scans of two high- and four low-altitude samples from diverse climates were collected (n = 130): high-altitude Tibetans and Peruvians; low-altitude Peruvians, Southern Chinese (temperate), Mongolian-Buriats (cold-dry), and Southeast Asians (hot-wet). Facial and nasal distances were calculated from 3D landmarks placed on digitally-modeled crania. Temperature, precipitation, and barometric pressure data were also obtained. Principal components analysis and analyses of variance primarily indicate size-related differences among the cold-dry (Mongolian-Buriats) and hot-wet (Southeast Asians) adapted groups. Two-block partial least squares (PLS) analysis show weak relationships between size-standardized nasal dimensions and environmental variables. However, among PLS1 (85.90% of covariance), Tibetans display relatively larger nasal cavities related to lower temperatures and barometric pressure; regression analyses also indicate high-altitude Tibetans possess relatively larger internal nasal breadths and heights for their facial size. Overall, nasal differences relate to climate among the cold-dry and hot-wet groups. Specific nasal adaptations were not identified among either Peruvian group, perhaps due to their relatively recent migration history and population structure. However, high-altitude Tibetans seem to exhibit a compromise in nasal morphology, serving in increased oxygen uptake, and air-conditioning processes. © 2018 Wiley Periodicals, Inc.
Prediction of facial cooling while walking in cold wind.
Tikuisis, Peter; Ducharme, Michel B; Brajkovic, Dragan
2007-09-01
A dynamic model of cheek cooling has been modified to account for increased skin blood circulation of individuals walking in cold wind. This was achieved by modelling the cold-induced vasodilation response to cold as a varying blood perfusion term, which provided a source of convective heat to the skin tissues of the model. Physiologically-valid blood perfusion was fitted to replicate the cheek skin temperature responses of 12 individuals experimentally exposed to air temperatures from -10 to 10 degrees C at wind speeds from 2 to 8 ms(-1). Resultant cheek skin temperatures met goodness-of-fit criteria and implications on wind chill predictions are discussed.
Reflections of a Technocrat: Managing Defense, Air, and Space Programs during the Cold War
2006-08-01
per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing...any other US government agency. Cleared for public release: distribution unlimited. Air University Library Cataloging Data McLucas, John L...Sturdevant of the Air Force Space Command, Kenneth Werrell of the Air University, and R. Cargill Hall of the NRO, who also supplied useful unclassified
NASA Astrophysics Data System (ADS)
Wang, F.; Vavrus, S. J.
2017-12-01
Horizontal temperature advection plays an especially prominent role in affecting winter climate over continental interiors, where both climatological conditions and extreme weather are strongly regulated by transport of remote air masses. Central North America is one such region, and it experienced a major cold-air outbreak (CAO) a few years ago that some have related to amplified Arctic warming. Despite the known importance of dynamics in shaping the winter climate of this sector and the potential for climate change to modify heat transport, limited attention has been paid to the regional impact of thermal advection. Here, we use a reanalysis product and output from the Community Earth System Model's Large Ensemble to quantify the roles of zonal and meridional temperature advection over the central U. S. during winter, both in the late 20th and 21st centuries. We frame our findings as a "tug of war" between opposing influences of the two advection components and between these dynamical forcings vs. thermodynamic changes under greenhouse warming. For example, Arctic amplification leads to much warmer polar air masses, causing a moderation of cold-air advection into the central U. S., yet the model also simulates a wavier mean circulation and stronger northerly flow during CAOs, favoring lower regional temperatures. We also compare the predominant warming effect of zonal advection and overall cooling effect of meridional temperature advection as an additional tug of war. During both historical and future periods, zonal temperature advection is stronger than meridional advection over the Central U. S. The model simulates a future weakening of both zonal and meridional temperature advection, such that westerly flow provides less warming and northerly flow less cooling. On the most extreme warm days in the past and future, both zonal and meridional temperature advection have positive (warming) contributions. On the most extreme cold days, meridional cold air advection is more important than zonal warm air advection. CAOs in the future feature stronger northerly flow but less extreme temperatures (even relative to the warmer climate), exemplifying the complex competition between thermodynamic and dynamic influences.
Estimating Water Use Efficiency at the Watershed Scale Using Stable Isotopes
NASA Astrophysics Data System (ADS)
Kavanagh, K.; Blecker, S. W.; Marshall, J. D.
2006-12-01
Ecosystem water use efficiency (WUE) is an important indicator of ecosystem processes, especially under drought conditions. Nocturnal cold air drainage provides an opportunity to monitor ecosystem WUE because as air flows downhill through a watershed, it collects respired CO2 from the soil and vegetation. Thus, sampling the CO2 concentration and δ13C throughout the cold air profile at the base of a constrained watershed could provide an estimate of ecosystem WUE. Because cold air profiles are very deep in complex terrain, they are difficult to sample. We used a tethered helium balloon and attached tubing to investigate the potential of using nocturnal cold air drainage to estimate ecosystem WUE at the watershed scale. The balloon was launched at the base of a constrained forested watershed in Northern Idaho. We monitored air temperature, CO2 concentration and δ13C from 0.1m to 206m on July 22, Aug 16 and Aug 27 , 2006. The inversion was deep, frequently reaching 166m, with observed lapse rates of 63.0, 65.0, and 54.0 °C/km. On the same sample dates, CO2 concentrations ranged from approx. 385 ppm at the top of the profile to 460 ppm at 1m. The δ13C typically ranged from -8.4 ‰ to -11.0 ‰ from 206 to 1m respectively. This range of CO2 concentrations (> 60 ppm) was sufficient for "Keeling plot" analysis and ecosystem respired δ13C was estimated as -24.49, -24.78 and -24.89 ‰. These values matched the mean soil respired CO2 δ13C of -25.0 ‰ (SD=0.98) measured at 40 points in the watershed on Aug 18. These measurements were made during a pronounced seasonal drought and when maximum vapor pressure deficit exceeded 2 kPa almost every day. After the drought breaks in the fall, we will determine if this sampling method is robust enough to detect shifts in δ13C due to soil water availability and declining vapor pressure deficits.
Aciksoz, Semra; Akyuz, Aygul; Tunay, Servet
2017-12-01
To investigate the effect of the self-administered superficial local hot and cold applications on pain, and the functional status and the quality of life in primary knee osteoarthritis patients. Superficial local hot and cold application is used as a nonpharmacological method for the treatment of knee osteoarthritis. However, various guidelines for the management of knee osteoarthritis have conflicting recommendation for hot and cold therapy. A randomised clinical trial design. The sample consisted of patients (n = 96) who were diagnosed with primary knee osteoarthritis. During the application stage, patients were designated to the hot and cold application groups and administered hot and cold application twice a day for 3 weeks together with standard osteoarthritis treatment. The control group only used standard osteoarthritis treatment. The data were collected with a Descriptive Information Form, a Pain Scale, the WOMAC Osteoarthritis Index, the Nottingham Health Profile (NHP) and a Patient Satisfaction Evaluation Form. Outcome measures included pain intensity, functional status and quality of life. We found decreased primary measurement pain scores and improved functional status scores and quality of life scores after the application programme compared to the pre-application stage in both the hot and cold application groups. Once the application was completed, the pain scores, functional status scores and quality-of-life scores on the second measurements were found to be still statistically lower than the pre-application scores but higher than the first measurement ([p < .001, χ 2 = 48.000; p < .001, χ 2 = 34.000], [p < .001, χ 2 = 22.000; p = .001 χ 2 =14.000] and [p = .005, χ 2 = 16.000; p = .001, χ 2 = 12.500]). There was no difference in the perceived pain, functional status and quality of life between the pre-application, postapplication and 2 weeks postapplication periods of the individuals in three groups (p > .05). It was found that both hot and cold application resulted in a mild improvement in pain, functional status and quality of life, but this improvement was not sufficient to create a significant difference between the groups. This study contributes to the literature on hot and cold application methods as self-management strategies for patients with knee osteoarthritis. © 2017 John Wiley & Sons Ltd.
Chen, Jiaming; Yang, Xiaoqiang; Huang, Xiaomao; Duan, Shihua; Long, Chuan; Chen, Jiakuan; Rong, Jun
2017-02-28
Cold tolerance is a key determinant of the geographical distribution range of a plant species and crop production. Cold acclimation can enhance freezing-tolerance of plant species through a period of exposure to low nonfreezing temperatures. As a subtropical evergreen broadleaf plant, oil-tea camellia demonstrates a relatively strong tolerance to freezing temperatures. Moreover, wild oil-tea camellia is an essential genetic resource for the breeding of cultivated oil-tea camellia, one of the four major woody oil crops in the world. The aims of our study are to identify variations in transcriptomes of wild oil-tea camellia from different latitudes and elevations, and discover candidate genes for cold acclimation. Leaf transcriptomes were obtained of wild oil-tea camellia from different elevations in Lu and Jinggang Mountains, China. Huge amounts of simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs) and insertion/deletions (InDels) were identified. Based on SNPs, phylogenetic analysis was performed to detect genetic structure. Wild oil-tea camellia samples were genetically differentiated mainly between latitudes (between Lu and Jinggang Mountains) and then among elevations (within Lu or Jinggang Mountain). Gene expression patterns of wild oil-tea camellia samples were compared among different air temperatures, and differentially expressed genes (DEGs) were discovered. When air temperatures were below 10 °C, gene expression patterns changed dramatically and majority of the DEGs were up-regulated at low temperatures. More DEGs concerned with cold acclimation were detected at 2 °C than at 5 °C, and a putative C-repeat binding factor (CBF) gene was significantly up-regulated only at 2 °C, suggesting a stronger cold stress at 2 °C. We developed a new method for identifying significant functional groups of DEGs. Among the DEGs, transmembrane transporter genes were found to be predominant and many of them encoded transmembrane sugar transporters. Our study provides one of the largest transcriptome dataset in the genus Camellia. Wild oil-tea camellia populations were genetically differentiated between latitudes. It may undergo cold acclimation when air temperatures are below 10 °C. Candidate genes for cold acclimation may be predominantly involved in transmembrane transporter activities.
40 CFR 1065.925 - PEMS preparation for field testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 1065.925 Section 1065.925 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... purge any gaseous sampling PEMS instruments with ambient air until sampling begins to prevent system contamination from excessive cold-start emissions. (e) Conduct calibrations and verifications. (f) Operate any...
USDA-ARS?s Scientific Manuscript database
Effects of treatment voltage and time of in-package atmospheric cold plasma (ACP) were studied on ozone formation, microbiological quality, surface color, and pH of fresh chicken fillets. Samples were sealed in food trays in air, treated with a dielectric-barrier-discharge (DBD) ACP system, and stor...
Traveling-Wave Tube Cold-Test Circuit Optimization Using CST MICROWAVE STUDIO
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Kory, Carol L.; Wilson, Jeffrey D.; Wintucky, Edwin G.; Dayton, James A., Jr.
2003-01-01
The internal optimizer of CST MICROWAVE STUDIO (MWS) was used along with an application-specific Visual Basic for Applications (VBA) script to develop a method to optimize traveling-wave tube (TWT) cold-test circuit performance. The optimization procedure allows simultaneous optimization of circuit specifications including on-axis interaction impedance, bandwidth or geometric limitations. The application of Microwave Studio to TWT cold-test circuit optimization is described.
Mphaphlele, Matsie; Dharmadhikari, Ashwin S; Jensen, Paul A; Rudnick, Stephen N; van Reenen, Tobias H; Pagano, Marcello A; Leuschner, Wilhelm; Sears, Tim A; Milonova, Sonya P; van der Walt, Martie; Stoltz, Anton C; Weyer, Karin; Nardell, Edward A
2015-08-15
Transmission is driving the global tuberculosis epidemic, especially in congregate settings. Worldwide, natural ventilation is the most common means of air disinfection, but it is inherently unreliable and of limited use in cold climates. Upper room germicidal ultraviolet (UV) air disinfection with air mixing has been shown to be highly effective, but improved evidence-based dosing guidelines are needed. To test the efficacy of upper room germicidal air disinfection with air mixing to reduce tuberculosis transmission under real hospital conditions, and to define the application parameters responsible as a basis for proposed new dosing guidelines. Over an exposure period of 7 months, 90 guinea pigs breathed only untreated exhaust ward air, and another 90 guinea pigs breathed only air from the same six-bed tuberculosis ward on alternate days when upper room germicidal air disinfection was turned on throughout the ward. The tuberculin skin test conversion rates (>6 mm) of the two chambers were compared. The hazard ratio for guinea pigs in the control chamber converting their skin test to positive was 4.9 (95% confidence interval, 2.8-8.6), with an efficacy of approximately 80%. Upper room germicidal UV air disinfection with air mixing was highly effective in reducing tuberculosis transmission under hospital conditions. These data support using either a total fixture output (rather than electrical or UV lamp wattage) of 15-20 mW/m(3) total room volume, or an average whole-room UV irradiance (fluence rate) of 5-7 μW/cm(2), calculated by a lighting computer-assisted design program modified for UV use.
Heated, humidified air for the common cold.
Singh, Meenu; Singh, Manvi
2011-05-11
Heated, humidified air has long been used by sufferers of the common cold. The theoretical basis is that steam may help congested mucus drain better and heat may destroy the cold virus as it does in vitro. To assess the effects of inhaling heated water vapour (steam) in the treatment of the common cold by comparing symptoms, viral shedding and nasal resistance. In this updated review we searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2010, Issue 3), which contains the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to July Week 1, 2010), EMBASE (1990 to July 2010) and Current Contents (1994 to July 2010). Randomised controlled trials (RCTs) using heated water vapour in participants with the common cold or participants with experimentally-induced common cold. We reviewed all retrieved articles and excluded any articles, editorials and abstracts with inadequate outcome descriptions. The studies we included were subjected to a methodological assessment. Six trials (394 trial participants) were included. Three trials in which patient data could be pooled found benefits of steam for symptom relief for the common cold (odds ratio (OR) 0.31; 95% confidence interval (CI) 0.16 to 0.60). However, results on symptom indices were equivocal. No studies demonstrated an exacerbation of clinical symptom scores. One study conducted in the USA demonstrated worsened nasal resistance, while an earlier Israeli study showed improvement. One study examined viral shedding and antibody titres in nasal washings; there was no change in either between treatment and placebo groups. Minor side effects (including discomfort or irritation of the nose) were reported in some studies. Steam inhalation has not shown any consistent benefits in the treatment of the common cold, hence is not recommended in the routine treatment of common cold symptoms until more double-blind, randomized trials with a standardised treatment modality are conducted.
Effect of cold compress application on tissue temperature in healthy dogs.
Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K
2013-03-01
To measure the effect of cold compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 (superficial), 1.0 (middle), and 1.5 (deep) cm into a shaved, lumbar, epaxial region to measure tissue temperature. Cold (-16.8°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no cold compress. Mean temperature associated with 5 minutes of application at the superficial depth was significantly decreased, compared with control temperatures. Application for 10 and 20 minutes significantly reduced the temperature at all depths, compared with controls and 5 minutes of application. Twenty minutes of application significantly decreased temperature at only the middle depth, compared with 10 minutes of application. With this method of cold treatment, increasing application time from 10 to 20 minutes caused a further significant temperature change at only the middle tissue depth; however, for maximal cooling, the minimum time of application should be 20 minutes. Possible changes in tissue temperature and adverse effects of application > 20 minutes require further evaluation.
Observations of the microclimate of a lake under cold air advective conditions
NASA Technical Reports Server (NTRS)
Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.
1977-01-01
The moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold air advective conditions. Point temperature measurements north and south of the lake and data obtained from the NOAA satellite and a thermal scanner flown at 1.6 km, indicate that, under conditions of moderate winds (approximately 4m/sec), surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C. With surface wind speed less than 1m/sec, no substantial temperature effects were observed. Results of this study are being used in land use planning, lake level control and in agriculture for selecting planting sites.
Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX
NASA Technical Reports Server (NTRS)
Wu, Dong L.
2012-01-01
How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.
NASA Astrophysics Data System (ADS)
McCoy, Isabel; Wood, Robert; Fletcher, Jennifer
Marine low clouds are key influencers of the climate and contribute significantly to uncertainty in model climate sensitivity due to their small scale and complex processes. Many low clouds occur in large-scale cellular patterns, known as open and closed mesoscale cellular convection (MCC), which have significantly different radiative and microphysical properties. Investigating MCC development and meteorological controls will improve our understanding of their impacts on the climate. We conducted an examination of time-varying meteorological conditions associated with satellite-determined open and closed MCC. The spatial and temporal patterns of MCC clouds were compared with key meteorological control variables calculated from ERA-Interim Reanalysis to highlight dependencies and major differences. This illustrated the influence of environmental stability and surface forcing as well as the role of marine cold air outbreaks (MCAO, the movement of cold air from polar-regions across warmer waters) in MCC cloud formation. Such outbreaks are important to open MCC development and may also influence the transition from open to closed MCC. Our results may lead to improvements in the parameterization of cloudiness and advance the simulation of marine low clouds. National Science Foundation Graduate Research Fellowship Grant (DGE-1256082).
Persistent Cold Air Outbreaks over North America Under Climate Warming
NASA Astrophysics Data System (ADS)
Gao, Y.; Leung, L. R.; Lu, J.
2014-12-01
This study evaluates the change of cold air outbreaks (CAO) over North America using Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble of global climate simulations as well as regional high resolution climate simulations. In future, while robust decrease of CAO duration dominates in most of the North America, the decrease over northwestern U.S. was found to have much smaller magnitude than the surrounding regions. We found statistically significant increase of the sea level pressure over gulf of Alaska, leading to the advection of cold air to northwestern U.S.. By shifting the probability distribution of present temperature towards future warmer conditions, we identified the changes in large scale circulation contribute to about 50% of the enhanced sea level pressure. Using the high resolution regional climate model results, we found that increases of existing snowpack could potentially trigger the increase of CAO in the near future over the southwestern U.S. and Rocky Mountain through surface albedo effects. By the end of this century, the top 5 most extreme historical CAO events may still occur and wind chill warning will continue to have societal impacts over North America in particular over northwestern United States.
NASA Astrophysics Data System (ADS)
Fiorella, R.; Bares, R.; Lin, J. C.; Strong, C.; Bowen, G. J.
2017-12-01
Water released from the combustion of fossil fuels, while a negligible part of the global hydrological cycle, may be a significant contributor to urban humidity as fossil fuel emissions are strongly concentrated in space and time. The fraction of urban humidity comprised of combustion-derived vapor (CDV) cannot be observed through humidity measurements alone. However, the distinct stable isotopic composition of CDV, which arises from the reaction of 18O-enriched atmospheric O2 with 2H-depleted organic molecules, represents a promising method to apportion observed humidity between CDV and advected vapor. We apply stable water vapor isotopes to investigate variability in CDV amount and its relationship to atmospheric conditions in Salt Lake City, Utah. The Salt Lake Valley experiences several periods of atmospheric stratification during winter known as cold air pools, during which concentrations of CDV and pollutants can be markedly elevated due to reduced atmospheric mixing. Therefore, the SLV during winter is an ideal place to investigate variability in CDV fraction across a spectrum of boundary layer conditions, ranging from well-mixed to very stable. We present water vapor isotope data from four winters (2013-2017) from the top of a 30 m building on the University of Utah (U of U) Campus. Additionally, we present water vapor isotope data from the summit of Hidden Peak from the 2016-2017 winter, 25 km SE and 2000 m above the U of U site. The Hidden Peak site is consistently above the cold air pool emplaced in the SLV during stable events. We find the expression of the CDV signal in the valley is related to the atmospheric structure of the cold air pools in the SLV, and that the fraction of CDV inferred in the valley is likely related to the mixing height within the cold air pool. Furthermore, we find that patterns between the Hidden Peak and U of U sites during inversion events may record the large-scale atmospheric dynamics promoting emplacement of the cold air pool in the SLV. Further refinements of CDV estimation through stable isotope methods will bring improved mechanistic understanding of the role of CDV in the urban hydrological cycle and improve model simulations of urban environments.
Cold thermal injury from cold caps used for the prevention of chemotherapy-induced alopecia.
Belum, Viswanath Reddy; de Barros Silva, Giselle; Laloni, Mariana Tosello; Ciccolini, Kathryn; Goldfarb, Shari B; Norton, Larry; Sklarin, Nancy T; Lacouture, Mario E
2016-06-01
The use of scalp cooling for the prevention of chemotherapy-induced alopecia (CIA) is increasing. Cold caps are placed onto the hair-bearing areas of the scalp for varying time periods before, during, and after cytotoxic chemotherapy. Although not yet reported, improper application procedures could result in adverse events (AEs). At present, there are no evidence-based scalp cooling protocols, and there is no regulatory oversight of their use. To report the occurrence of cold thermal injury (frostbite) on the scalp, following the use of cold caps for the prevention of CIA. We identified four patients who developed cold thermal injuries on the scalp following the application of cold caps. Medical records were analyzed to retrieve the demographic and clinical characteristics. The cold thermal injuries in our patients were grade 1/2 in severity and improved with topical interventions and interruption of cold cap use, although grade 1 persistent alopecia ensued in 3 patients. The true incidence of such injuries in this setting, however, remains unknown. Cold thermal injuries are likely infrequent and preventable AEs that may result from improper device application procedures during cold cap use. Although these untoward events are usually mild to moderate in severity, the potential occurrence of long-term sequelae (e.g., permanent alopecia and scarring) or the need to discontinue cold cap use, are not known. Prospective studies are needed to further elucidate the risk and standardize healthcare delivery methods, and to improve patient/supportive/healthcare provider education.
Plevkova, J; Kollarik, M; Poliacek, I; Brozmanova, M; Surdenikova, L; Tatar, M; Mori, N; Canning, B J
2013-07-15
The cold-sensitive cation channel TRPM8 is a target for menthol, which is used routinely as a cough suppressant and as an additive to tobacco and food products. Given that cold temperatures and menthol activate neurons through gating of TRPM8, it is unclear how menthol actively suppresses cough. In this study we describe the antitussive effects of (-)-menthol in conscious and anesthetized guinea pigs. In anesthetized guinea pigs, cough evoked by citric acid applied topically to the tracheal mucosa was suppressed by menthol only when it was selectively administered as vapors to the upper airways. Menthol applied topically to the tracheal mucosa prior to and during citric acid application or administered continuously as vapors or as an aerosol to the lower airways was without effect on cough. These actions of upper airway menthol treatment were mimicked by cold air delivered to the upper airways but not by (+)-menthol, the inactive isomer of menthol, or by the TRPM8/TRPA1 agonist icilin administered directly to the trachea. Subsequent molecular analyses confirmed the expression of TRPM8 in a subset of nasal trigeminal afferent neurons that do not coincidently express TRPA1 or TRPV1. We conclude that menthol suppresses cough evoked in the lower airways primarily through a reflex initiated from the nose.
NASA Astrophysics Data System (ADS)
Shukurov, K. A.; Semenov, V. A.
2018-01-01
On the basis of observational data on daily mean surface air temperature (SAT) and sea ice concentration (SIC) in the Barents Sea (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949-2016. An analysis of surface backward trajectories of air-particle motions has revealed the most probable paths of both cold and warm air invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm air invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005-2016 when compared to 1970-1999. The results suggest that a winter SIC decrease in the BS in 2005-2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.
NASA Astrophysics Data System (ADS)
Bohan, Richard J.; Vandegrift, Guy
2003-02-01
Warm air aloft is stable. This explains the lack of strong winds in a warm front and how nighttime radiative cooling can lead to motionless air that can trap smog. The stability of stratospheric air can be attributed to the fact that it is heated from above as ultraviolet radiation strikes the ozone layer. On the other hand, fluid heated from below is unstable and can lead to Bernard convection cells. This explains the generally turbulent nature of the troposphere, which receives a significant fraction of its heat directly from the Earth's warmer surface. The instability of cold fluid aloft explains the violent nature of a cold front, as well as the motion of Earth's magma, which is driven by radioactive heating deep within the Earth's mantle. This paper describes how both effects can be demonstrated using four standard beakers, ice, and a bit of food coloring.
The Built Environment of Cold War Era Servicewomen
2006-08-01
60 Figure 51. WAVES at work on engine maintenance, Naval Air Station Banana River, FL, 30 August 1944...Naval Air Station Banana River, FL, 30 Aug. 1944 (NARA, RG 80-G Box 758, 244458... Banana River, FL, 30 August 1944 (NARA, RG 80-G Box 758, 244460). ERDC/CERL M-06-2 61 Figure 52. WAVES packing parachutes, Naval Air Station
Concrete deck performance relative to air entrainment.
DOT National Transportation Integrated Search
2009-12-01
Damage to concrete due to freeze-thaw (F-T) action is a serious concern for agencies in cold regions of the United : States. The most effective method to protect concrete from F-T damage is through the addition of an air entraining : agent as an admi...
NASA Astrophysics Data System (ADS)
Moore, Kent; Renfrew, Ian; Bromwich, David; Wilson, Aaron; Vage, Kjetil; Bai, Lesheng
2017-04-01
Open ocean convection, where a loss of surface buoyancy leads to an overturning of the water column, occurs in four distinct regions of the North Atlantic and is an integral component of the Atlantic Meridional Overturning Circulation (AMOC). The overturning typically occurs during cold air outbreaks characterized by large surface turbulent heat fluxes and convective roll cloud development. Here we compare the statistics of the air-sea interaction over these convection sites as represented in three reanalyses with horizontal grid sizes ranging from 80km to 15km. We show that increasing the resolution increases the magnitude and frequency of the most extreme total turbulent heat fluxes, as well as displacing the maxima downstream away from the ice edges. We argue that these changes are a result of the higher resolution reanalysis being better able to represent mesoscale processes that occur within the atmospheric boundary layer during cold air outbreaks.
NASA Astrophysics Data System (ADS)
Papritz, L.; Grams, C. M.
2018-03-01
The regional variability of wintertime marine cold air outbreaks (CAOs) in the northeastern North Atlantic is studied focusing on the role of weather regimes in modulating the large-scale circulation. Each regime is characterized by a typical CAO frequency anomaly pattern and a corresponding imprint in air-sea heat fluxes. Cyclonically dominated regimes, Greenland blocking and the Atlantic ridge regime are found to provide favorable conditions for CAO formation in at least one major sea of the study region; CAO occurrence is suppressed, however, by blocked regimes whose associated anticyclones are centered over northern Europe (European / Scandinavian blocking). Kinematic trajectories reveal that strength and location of the storm tracks are closely linked to the pathways of CAO air masses and, thus, CAO occurrence. Finally, CAO frequencies are also linked to the strength of the stratospheric polar vortex, which is understood in terms of associated variations in the frequency of weather regimes.
Agudelo-Calderón, Carlos A; Quiroz-Arcentales, Leonardo; García-Ubaque, Juan C; Robledo-Martínez, Rocío; García-Ubaque, Cesar A
2016-02-01
Objectives To determine concentrations of PM10, mercury and lead in indoor air of homes, water sources and soil in municipalities near mining operations. Method 6 points were evaluated in areas of influence and 2 in control areas. For measurements of indoor air, we used the NIOSH 600 method (PM10), NIOSH 6009 (mercury) and NIOSH 7300 (lead). For water analysis we used the IDEAM Guide for monitoring discharges. For soil analysis, we used the cold vapor technique (mercury) and atomic absorption (lead). Results In almost all selected households, the average PM10 and mercury concentrations in indoor air exceeded applicable air quality standards. Concentrations of lead were below standard levels. In all water sources, high concentrations of lead were found and in some places within the mining areas, high levels of iron, aluminum and mercury were also found. In soil, mercury concentrations were below the detection level and for lead, differences between the monitored points were observed. Conclusions The results do not establish causal relationships between mining and concentration of these pollutants in the evaluated areas because of the multiplicity of sources in the area. However, such studies provide important information, useful to agents of the environmental health system and researchers. Installation of networks for environmental monitoring to obtain continuous reports is suggested.
Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes
Santiago, Margarita; Ramírez-Sarmiento, César A.; Zamora, Ricardo A.; Parra, Loreto P.
2016-01-01
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications. PMID:27667987
Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes.
Santiago, Margarita; Ramírez-Sarmiento, César A; Zamora, Ricardo A; Parra, Loreto P
2016-01-01
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Keramidas, M E; Kölegård, R; Mekjavic, I B; Eiken, O
2015-10-01
The study examined the effects of a 10-day normobaric hypoxic confinement (FiO2: 0.14), with [hypoxic exercise training (HT); n = 8)] or without [hypoxic ambulatory (HA; n = 6)] exercise, on the hand temperature responses during and after local cold stress. Before and after the confinement, subjects immersed their right hand for 30 min in 8 °C water [cold water immersion (CWI)], followed by a 15-min spontaneous rewarming (RW), while breathing either room air (AIR), or a hypoxic gas mixture (HYPO). The hand temperature responses were monitored with thermocouples and infrared thermography. The confinement did not influence the hand temperature responses of the HA group during the AIR and HYPO CWI and the HYPO RW phases; but it impaired the AIR RW response (-1.3 °C; P = 0.05). After the confinement, the hand temperature responses were unaltered in the HT group throughout the AIR trial. However, the average hand temperature was increased during the HYPO CWI (+0.5 °C; P ≤ 0.05) and RW (+2.4 °C; P ≤ 0.001) phases. Accordingly, present findings suggest that prolonged exposure to normobaric hypoxia per se does not alter the hand temperature responses to local cooling; yet, it impairs the normoxic RW response. Conversely, the combined stimuli of continuous hypoxia and exercise enhance the finger cold-induced vasodilatation and hand RW responses, specifically, under hypoxic conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Nishikawa, H.; Tachibana, Y.; Udagawa, Y.
2012-12-01
Although the influence of the anomalous midlatitude SST upon atmospheric local circulation has been getting common in particular over the Kuroshio and the Gulf Stream regions, observational studies on the influence of the Okhotsk Sea, which is to the north of the Kuroshio, upon the atmospheric local circulation is much less than those of the Kuroshio. The climate of the Okhotsk SST is very peculiar. Extremely cold SST spots, whose summertime SST is lower than 5 Celsius degrees, are formed around Kuril Islands. Because SSTs are generally determined by local air-sea interaction as well as temperature advection, it is very difficult to isolate only the oceanic influence upon the atmosphere. The SST in this cold spot is, however, dominated by the tidal mixing, which is independent of the atmospheric processes. This unique condition may ease the account for the oceanic influence only. Although the SST environment of the Okhotsk Sea is good for understanding the oceanic influence upon the atmosphere, only a few studies has been executed in this region because of the difficulty of observations by research vessels in this region, where territory problems between Japan and Russia is unsolved. Because of the scant of direct observation, the Okhotsk Sea was still mysterious. In 2006 August, GPS radiosonde observation was carried out by Russian research vessel Khromov in the Sea of Okhotsk by the cooperation between Japan and Russia, and strong SST gradient of about 7 Celsius degrees/10km was observed around the Kuril Islands. The purpose of this study is to demonstrate observational finding of meso-scale atmospheric anticyclonic circulation influenced by the cold oceanic spot around the Kuril Island. The summaries of the observation are as follows. Meso-scale atmospheric ageostrophic anticyclonic circulation in the atmospheric marine-boundary layer is observed in and around the cold spot. A high air pressure area as compared with other surrounding areas is also located at the area of the ageostrophic anticyclonic circulation. In addition, the location of the cold dome in the atmospheric marine-boundary layer is in accordance with that of the large SST gradient. The cold dome with denser air than the surroundings probably strengthened the high pressure associated with subsidence over the cold dome. The downward direction of the sensible heat flux estimated by surface meteorological observation suggests that the cold dome was formed by the cooling by the cold sea. During the observation period around this area, the synoptic-scale sea level pressure field hardly changed. No reanalysis data sets resolve this anticyclonic circulation in this area. Therefore, we can conclude that the meso-scale anticyclone was formed by the influence of this cold SST and its large gradient.
Low pressure cold spraying on materials with low erosion resistance
NASA Astrophysics Data System (ADS)
Shikalov, V. S.; Klinkov, S. V.; Kosarev, V. F.
2017-10-01
In present work, the erosion-adhesion transition was investigated during cold spraying of aluminum particles on brittle ceramic substrates. Cold spraying was carried out with aid of sonic nozzle, which use allows significantly reducing the gas stagnation pressure without the effect of flow separation inside the nozzle and, accordingly, reducing the velocity of the spraying particles. Two stagnation pressures were chosen. The coating tracks were sprayed at different air temperatures in nozzle pre-chamber under each of regimes. Single sprayed tracks were obtained and their profiles were investigated by optical profilometry.
NASA Astrophysics Data System (ADS)
Bayrak, Ergin; Çağlayan, Akın; Konukman, Alp Er S.
2017-10-01
Finned tube evaporators are used in a wide range of applications such as commercial and industrial cold/freezed storage rooms with high traffic loading under frosting conditions. In this case study, an evaporator with an integrated fan was manufactured and tested under frosting conditions by only changing the air flow rate in an ambient balanced type test laboratory compared to testing in a wind tunnel with a more uniform flow distribution in order to detect the effect of air flow rate on frosting. During the test, operation was performed separately based on three different air flow rates. The parameters concerning test operation such as the changes of air temperature, air relative humidity, surface temperature, air-side pressure drop and refrigerant side capacity etc. were followed in detail for each air flow rate. At the same time, digital images were captured in front of the evaporator; thus, frost thicknesses and blockage ratios at the course of fan stall were determined by using an image-processing technique. Consequently, the test and visual results showed that the trendline of air-side pressure drop increased slowly at the first stage of test operations, then increased linearly up to a top point and then the linearity was disrupted instantly. This point speculated the beginning of defrost operation for each case. In addition, despite detecting a velocity that needs to be avoided, a test applied at minimum air velocity is superior to providing minimum capacity in terms of loss of capacity during test operations.
Physiological changes in women during exercise in cold environments
NASA Astrophysics Data System (ADS)
Murray, S. J.; Shephard, R. J.; Radomski, M. W. M.
1986-12-01
Both the stress of exercise and the stress of a cold environment have been shown to increase the mobilization and utilization of body fat, thereby reducing body fat stores. Much of the research has been done on either rats or male human subjects. The purpose of this research was to show the physiological changes which occur to young, relatively obese, women who exercised during five consecutive days, for 200 min per day, in each of three environmental, chamber conditions: (1) warm-warm (WW), +15‡C; (2) cold-cold (CC), -20‡C; and (3) cold-warm (CW), -20‡C ambient temperature, with +18‡C air pumped to face masks for warmed air breathing. Oxygen cost of exercise, respiratory quotients, energy intake and utilization, and body composition changes were measured before, during, and after each environmental condition. While the respiratory quotients and the skinfold measurements decreased in the colder conditions, the underwater weighing determined percentage body fat did not show the same decrement as the skinfold measures, indicating a possible translocation of body fat from the subcutaneous depots to the deep body fat depots. Body mass loss was significant (P<0.05) only in the WW condition. Thermogenesis would have been centred in the skeletal muscle and liver during the CW condition; however, with facial and upper airway cooling in the CC condition; brown adipose tissue (BAT) hypertrophy may be postulated at this more intense level of cold stress. Due to a greater stability of depot fat in the female, a longer cold exposure would be required to observe the fully developed BAT thermogenesis which would follow after the consequences of fat translocation which we have documented.
Aléx, Jonas; Karlsson, Stig; Björnstig, Ulf; Saveman, Britt-Inger
2015-01-01
Background The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients' exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients' temperatures in the prehospital emergency care. Methods A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30) was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30) no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS), subjective comments on cold experiences, and finger, ear and air temperatures. Results Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001) but decreased in the control group (p=0.014). A significant higher proportion (57%) of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, p<0.001). At arrival, finger, ear and compartment air temperature showed no statistical significant difference between groups. Mean transport time was approximately 15 minutes. Conclusions The use of active heat from underneath increases the patients' thermal comfort and may prevent the negative consequences of cold stress.
Aléx, Jonas; Karlsson, Stig; Björnstig, Ulf; Saveman, Britt-Inger
2015-01-01
Background The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients’ exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients’ temperatures in the prehospital emergency care. Methods A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30) was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30) no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS), subjective comments on cold experiences, and finger, ear and air temperatures. Results Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001) but decreased in the control group (p=0.014). A significant higher proportion (57%) of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, p<0.001). At arrival, finger, ear and compartment air temperature showed no statistical significant difference between groups. Mean transport time was approximately 15 minutes. Conclusions The use of active heat from underneath increases the patients’ thermal comfort and may prevent the negative consequences of cold stress. PMID:26374468
NASA Astrophysics Data System (ADS)
Wang, Mian
This thesis research is consist of four chapters, including biomimetic three-dimensional tissue engineered nanostructured bone model for breast cancer bone metastasis study (Chapter one), cold atmospheric plasma for selectively ablating metastatic breast cancer (Chapter two), design of biomimetic and bioactive cold plasma modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow derived mesenchymal stem cells (Chapter three), and enhanced osteoblast and mesenchymal stem cell functions on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes for orthopedic applications (Chapter four). All the thesis research is focused on nanomaterials and the use of cold plasma technique for various biomedical applications.
Solar Transparent Radiators by Optical Nanoantennas.
Jönsson, Gustav; Tordera, Daniel; Pakizeh, Tavakol; Jaysankar, Manoj; Miljkovic, Vladimir; Tong, Lianming; Jonsson, Magnus P; Dmitriev, Alexandre
2017-11-08
Architectural windows are a major cause of thermal discomfort as the inner glazing during cold days can be several degrees colder than the indoor air. Mitigating this, the indoor temperature has to be increased, leading to unavoidable thermal losses. Here we present solar thermal surfaces based on complex nanoplasmonic antennas that can raise the temperature of window glazing by up to 8 K upon solar irradiation while transmitting light with a color rendering index of 98.76. The nanoantennas are directional, can be tuned to absorb in different spectral ranges, and possess a structural integrity that is not substrate-dependent, and thus they open up for application on a broad range of surfaces.
Dowd, G; Thomas, R S; Monkman, J L
1975-01-01
Instrumental development is now entering a more logical era, where the former artistic character of electronics is being replaced by cold technology. Because of this, one should be expect more reliability; however, there still exist many weak links in practical application. Digital readout systems and computer processing induce a false sense of security. In reality, it is the sample-measurement relationship that determines an instrument's credibility and not the number of digits on its meter. In describing three faulty practices that greatly influence an instrument's performance, it is hoped that measurement may be more closely related to the sample!
40 CFR 420.100 - Applicability; description of the cold forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming... works from cold rolling and cold working pipe and tube operations in which unheated steel is passed... controlled mechanical properties in the steel. (b) The limitations and standards set out below for cold...
Experiences issues with plastic parts at cold temperatures
NASA Technical Reports Server (NTRS)
Sandor, Mike; Agarwal, Shri
2005-01-01
Missions to MARS/planets/asteroids require electronic parts to operate and survive at extreme cold conditions. At extreme cold temperatures many types of cold related failures can occur. Office 514 is currently evaluating plastic parts under various cold temperature conditions and applications. Evaluations, screens, and qualifications are conducted on flight parts.
2009-01-01
Agreement (L,nderJ) ;ng PA) stipu atmg thaI Cold War propertIes significant for their distir.c:ivc physical characteristics and ~hclr historic function...launch complex th t dir Iy upported ooerational missions 0 the exceptionally imp rtant Cold War program. n You l1ave aiso submi tea a map that outlines
Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...
Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...
NASA Astrophysics Data System (ADS)
Liu, Xiao-Huan; Zhang, Yang; Olsen, Kristen M.; Wang, Wen-Xing; Do, Bebhinn A.; Bridgers, George M.
2010-07-01
The prediction of future air quality and its responses to emission control strategies at national and state levels requires a reliable model that can replicate atmospheric observations. In this work, the Mesoscale Model (MM5) and the Community Multiscale Air Quality Modeling (CMAQ) system are applied at a 4-km horizontal grid resolution for four one-month periods, i.e., January, June, July, and August in 2002 to evaluate model performance and compare with that at 12-km. The evaluation shows skills of MM5/CMAQ that are overall consistent with current model performance. The large cold bias in temperature at 1.5 m is likely due to too cold soil initial temperatures and inappropriate snow treatments. The large overprediction in precipitation in July is due likely to too frequent afternoon convective rainfall and/or an overestimation in the rainfall intensity. The normalized mean biases and errors are -1.6% to 9.1% and 15.3-18.5% in January and -18.7% to -5.7% and 13.9-20.6% in July for max 1-h and 8-h O 3 mixing ratios, respectively, and those for 24-h average PM 2.5 concentrations are 8.3-25.9% and 27.6-38.5% in January and -57.8% to -45.4% and 46.1-59.3% in July. The large underprediction in PM 2.5 in summer is attributed mainly to overpredicted precipitation, inaccurate emissions, incomplete treatments for secondary organic aerosols, and model difficulties in resolving complex meteorology and geography. While O 3 prediction shows relatively less sensitivity to horizontal grid resolutions, PM 2.5 and its secondary components, visibility indices, and dry and wet deposition show a moderate to high sensitivity. These results have important implications for the regulatory applications of MM5/CMAQ for future air quality attainment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C Keith; Uselton, Robert B.; Shen, Bo
A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47more » L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.« less
Hasanzadeh, Farzaneh; Kashouk, Narges Mohammadi; Amini, Shahram; Asili, Javad; Emami, Seyed Ahmad; Vashani, Hamidreza Behnam; Sahebkar, Amirhossein
2016-01-01
Post-surgical chest tube removal (CTR) is associated with a significant pain and discomfort for patients. Current treatment strategies for reducing CTR-associated pain and anxiety are limited and partially efficacious. To determine the effects of cold application, inhalation of lavender essential oil, and their combination on pain and anxiety during CTR was investigated. This randomized controlled open-label trial was conducted with 80 patients in the cardiac surgery intensive care unit who had a chest tube for duration of at least 24 hours after coronary artery bypass grafting (CABG). Patients were randomized (n=20 in each group) to receive cold application, aromatherapy with lavender oil, cold application in combination with lavender oil inhalation, or none of the above interventions (control group). The intensity and quality of pain and anxiety were evaluated using the visual analogue scale, short form and modified-McGill pain questionnaire (SFM-MPQ) and the Spielberger situational anxiety level inventory (STAII) scale, respectively. Patients in all treatment groups had significantly lower pain intensity and anxiety compared with the control group immediately, 5, 10 and 15 min after CTR. There was no statistically significant difference in the SFM-MPQ total scores between the intervention groups. With respect to anxiety score, there was a significantly reduced anxiety level immediately after CTR in the aromatherapy and cold-aromatherapy combination groups versus the cold application group. The present results suggested the efficacy of cold application and aromatherapy with lavender oil in reducing pain and anxiety associated with post-CABG CTR. PMID:27047319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohata, Tetsuo; Furukawa, Teruo; Higuchi, Keiji
1994-08-01
Perennial cave ice in a cave located at Mt. Fuji in central Japan was studied to investigate the basic characteristics and the cause for existence of such ice under warm ground-level climate considering the ice cave as a thermal and hydrological system. Fuji Ice Cave is a lava tube cave 150 m in length with a collapsed part at the entrance. Measurements from 1984 to 1986 showed that the surface-level change of floor ice occurred due to freezing and melting at the surface and that melting at the bottom of the ice was negligible. The annual amplitude of change inmore » surface level was larger near the entrance. Meterological data showed that the cold air inflow to the cave was strong in winter, but in summer the cave was maintained near 0[degrees]C with only weak inflow of warm air. The predominant wind system was from the entrance to the interior in both winter and summer, but the spatial scale of the wind system was different. Heat budget consideration of the cave showed that the largest component was the strong inflow of subzero dry air mass in winter. Cooling in winter was compensated for by summer inflow of warm air, heat transport from the surrounding ground layer, and loss of sensible heat due to cooling of the cave for the observed year. Strong inflow of cold air and weak inflow of warm air, which is extremely low compared to the ground level air, seemed to be the most important condition. Thus the thermal condition of the cave is quasi-balanced at the presence condition below 0[degrees]C with ice. It can be said that the interrelated result of the climatological and special structural conditions makes this cave very cold, and allows perennial ice to exist in the cave. Other climatological factors such as precipitation seem to be minor factors. 17 refs., 3 figs., 3 tabs.« less
Toward the Twenty-first Century: Air Command and Staff College Curriculum from Theory to Practice.
ERIC Educational Resources Information Center
Butler, Stephen L.
Responding to a perceived need resulting from the collapse of the Soviet Union, the dismantling of the Berlin Wall, and the end of the Cold War, the Air Command and Staff College (ACSC) at Maxwell Air Force Base (Alabama) revised its curriculum. Data for the descriptive study were gathered through interviews of the leadership of the school and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
In this second study on solutions to ice dams in 1-1/2 story homes, five test homes located in both cold and very cold climates were analyzed for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. The reason for choosing this house type was they are very common in our area and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach for whole housemore » (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR Building America industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled us to compare air tightness data from over 220 homes using similar air seal methods.« less
Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger
NASA Astrophysics Data System (ADS)
Park, Joonhee; Lee, Joo-Young
2016-04-01
This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P < 0.001), preferred hot thermal stimulation ( P = 0.006), and wore heavier clothing during daily life ( P < 0.001) than HSCT. LSCT had significantly lower maximal finger temperatures ( T max) ( P = 0.040), smaller amplitude ( P = 0.029), and delayed onset time of CIVD ( P = 0.080) when compared to HSCT. Some questions examining the self-identified cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P < 0.1). These results indicate that self-identified cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.
Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger.
Park, Joonhee; Lee, Joo-Young
2016-04-01
This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance (P < 0.001), preferred hot thermal stimulation (P = 0.006), and wore heavier clothing during daily life (P < 0.001) than HSCT. LSCT had significantly lower maximal finger temperatures (T max) (P = 0.040), smaller amplitude (P = 0.029), and delayed onset time of CIVD (P = 0.080) when compared to HSCT. Some questions examining the self-identified cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude (P < 0.1). These results indicate that self-identified cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.
40 CFR 86.201-11 - General applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-11 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emissions from 1994...
40 CFR 86.201-94 - General applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-94 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emission from 1994...
40 CFR 86.201-94 - General applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-94 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emission from 1994...
40 CFR 86.201-94 - General applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-94 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emission from 1994...
40 CFR 86.201-11 - General applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-11 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emissions from 1994...
40 CFR 86.201-11 - General applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-11 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emissions from 1994...
Haisch, Christoph; Schneider, Jenny; Fleisch, Manuel; Gutzmann, Henning; Klassen, Thomas; Bahnemann, Detlef W
2017-10-03
Films prepared by cold spray have potential applications as photoanodes in electrochemical water splitting and waste water purification. In the present study cold sprayed photoelectrodes produced with WO 3 (active under visible light illumination) and TiO 2 (active under UV illumination) on titanium metal substrates were investigated as photoanodes for the oxidation of water and methanol, respectively. Methanol was chosen as organic model pollutant in acidic electrolytes. Main advantages of the cold sprayed photoelectrodes are the improved metal-semiconductor junctions and the superior mechanical stability. Additionally, the cold spray method can be utilized as a large-scale electrode fabrication technique for photoelectrochemical applications. Incident photon to current efficiencies reveal that cold sprayed TiO 2 /WO 3 photoanodes exhibit the best photoelectrochemical properties with regard to the water and methanol oxidation reactions in comparison with the benchmark photocatalyst Aeroxide TiO 2 P25 due to more efficient harvesting of the total solar light irradiation related to their smaller band gap energies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... solvent/air interface, the maximum volume of parts that can be cleaned at one time. In most cases, the cleaning capacity is equal to the volume (length times width times height) of the cleaning chamber. Cold... designed to be easily opened and closed without disturbing the vapor zone. Air disturbances include, but...
Cold Weather and Cardiovascular Disease
... This traps air between layers, forming a protective insulation. Also, wear a hat or head scarf. Heat can be lost through your head. And ears ... which traps air between layers forming a protective insulation. Wear a hat because much of your body’s heat can be lost through your head. Learn CPR. ...
49 CFR 232.107 - Air source requirements and cold weather operations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the system. (e) A railroad shall adopt and comply with detailed written operating procedures tailored...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT... railroad shall adopt and comply with a written plan to monitor all yard air sources, other than locomotives...
49 CFR 232.107 - Air source requirements and cold weather operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the system. (e) A railroad shall adopt and comply with detailed written operating procedures tailored...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT... railroad shall adopt and comply with a written plan to monitor all yard air sources, other than locomotives...
49 CFR 232.107 - Air source requirements and cold weather operations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the system. (e) A railroad shall adopt and comply with detailed written operating procedures tailored...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT... railroad shall adopt and comply with a written plan to monitor all yard air sources, other than locomotives...
49 CFR 232.107 - Air source requirements and cold weather operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the system. (e) A railroad shall adopt and comply with detailed written operating procedures tailored...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT... railroad shall adopt and comply with a written plan to monitor all yard air sources, other than locomotives...
Détente from the Air: Monitoring Air Pollution during the Cold War.
Rothschild, Rachel
During the period of détente in the 1970s, a Norwegian proposal to construct an air pollution monitoring network for the European continent resulted in the first concrete collaboration between the communist and capitalist blocs after the 1975 Helsinki Accords. Known as the "European-wide monitoring programme" or EMEP, the network earned considerable praise from diplomats for facilitating cooperation across the Iron Curtain. Yet as this article argues, EMEP was strongly influenced by the politics of détente and the constraints of the Cold War even as it helped to decrease tensions. Concerns about national security and sharing data with the enemy shaped both the construction of the monitoring network and the modeling of pollution transport. The article also proposes that environmental monitoring systems like EMEP reveal the ways in which observational technologies can affect conceptions of the natural world and the role of science in public policy.
The influence of cold on energy expenditure at rest and during exercise in person in the North.
Grishin, O V; Ustuzaninova, N V
2007-01-01
In the majority of research on human adaptation in the North signs of hypoxia were found. In physiology studies of animals it is established that adaptive changes to cold and hypoxia have much in common, for example, the decrease of spent energy (hypometabolism). This phenomenon has been studied much less in humans than in animals. The first study was that of A. Hemingway and L. Birzis which showed that under the influence of air temperature of -3 degrees C on natives of Kalahari deserts the average body temperature and level of metabolism decrease. The reduction of lung ventilation and decrease of heat loss in humans was interpreted as the result of cold. However, it is obvious that ventilation decrease in humans in cold air leads to reduction of oxygen consumption, i.e. to hypoxia. It is possible to assume that adaptation of Northerners is closely connected with cold and hypoxia. At hypoxia and under cold conditions the decrease of energy expenditure is the natural phenomenon. Y. Gauiter and M. Bonora, S. Wood consider that the fall of body temperature observable at hypoxia is a consequence of the decrease in oxygen consumption and reduction of energy expenditure. Besides, the decrease in oxygen consumption (Vo2) always precedes the fall of body temperature. In the work of C. Pedraz, J. Mortola it is shown that the external warming at hypoxia in newborn cats and dogs during restoration of body temperature up to the reference values is not accompanied by authentic change of metabolism. It remains lowered as under the previous conditions of hypoxia (before warming). It specifies that the fall in body temperature at hypoxia is a consequence instead of the reason of Vo2 fall. This is an important question for the human's adaptation--the influence of cold and hypoxia on spent energy. The paper presents the results of research into the effects of cold on resting and exercise energy expenditure among Northerners of the Russian North.
NASA Astrophysics Data System (ADS)
Laroussi, M.; Lu, X.; Keidar, M.
2017-07-01
Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.
Heated, humidified air for the common cold.
Singh, Meenu; Singh, Manvi; Jaiswal, Nishant; Chauhan, Anil
2017-08-29
Heated, humidified air has long been used by people with the common cold. The theoretical basis is that steam may help congested mucus drain better and that heat may destroy the cold virus as it does in vitro. This is an update of a review last published in 2013. To assess the effects of inhaling heated water vapour (steam) in the treatment of the common cold by comparing symptoms, viral shedding, and nasal resistance. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (to February 2017), MEDLINE (1966 to 24 February 2017), Embase (1990 to 24 February 2017), and Current Contents (1998 to 24 February 2017). We also searched World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) (8 March 2017) and ClinicalTrials.gov (8 March 2017) as well as reference lists of included studies. Randomised controlled trials using heated water vapour in participants with the common cold or experimentally induced common cold were eligible for inclusion. We used standard methodological procedures expected by Cochrane. Three review authors independently screened titles and abstracts for inclusion of potential studies identified from the search. We recorded the selection process in sufficient detail to complete a PRISMA flow diagram. We used a data collection form for study characteristics and outcome data that was developed and used for previous versions of this review. Two review authors independently extracted data, and a third review author resolved any disagreements. We used Review Manager 5 software to analyse data. We included six trials from five publications involving a total of 387 participants. We included no new studies in this 2017 update. The 'Risk of bias' assessment suggested an unclear risk of bias in the domain of randomisation and a low risk of bias in performance, detection, attrition, and reporting.It was uncertain whether heated, humidified air provides symptomatic relief for the common cold, as the fixed-effect analysis showed evidence of an effect (odds ratio (OR) 0.30, 95% confidence interval (CI) 0.16 to 0.56; 2 studies, 149 participants), but the random-effects analysis showed no significant difference in the results (OR 0.22, 95% CI 0.03 to 1.95). There is an argument for using either form of analysis. No studies demonstrated an exacerbation of clinical symptom scores. One study conducted in the USA demonstrated worsened nasal resistance, but an earlier Israeli study showed improvement. One study examined viral shedding in nasal washings, finding no significant difference between treatment and placebo groups (OR 0.47, 95% CI 0.04 to 5.19). As judged by the subjective response to therapy (i.e. therapy did not help), the number of participants reporting resolution of symptoms was not significantly higher in the heated humidified group (OR 0.58, 95% CI 0.28 to 1.18; 2 studies, 124 participants). There was significant heterogeneity in the effects of heated, humidified air on different outcomes, therefore we graded the quality of the evidence as low. Some studies reported minor adverse events (including discomfort or irritation of the nose). The current evidence does not show any benefits or harms from the use of heated, humidified air delivered via the RhinoTherm device for the treatment of the common cold. There is a need for more double-blind, randomised trials that include standardised treatment modalities.
Self-cleaning feed distributing delivery device for glass melters
Mensink, Daniel L.
1992-01-01
A self cleaning, plug resistant, adjustable parameter feed distributing and delivery apparatus for a glass melter comprising a housing with a passage therethrough for a glass slurry, a cold finger within the passage for creating a dispersion pattern of the slurry, a movable slotted tube for controlling the confluence of air propellant and slurry in the passage, and a plurality of ribs that extend through the slots in the slotted tube to urge the slurry forward if it becomes stuck or resists forward movement. Coolant passages in the housing and the cold finger maintain the slurry temperature below that of the melter plenum. The cold finger is axially movable to adjust the dispersion pattern to the desired consistency. Other design features of size can be applied for use in situations requiring different parameters of pattern, particle size, rate, and feed consistencies. The device utilizes air as both a propellant and a surface cleansing mechanism. Other fluids may be used as propellants where process compatibility requires.
NASA Astrophysics Data System (ADS)
Barbosa, Humberto
Previous studies on severe storms and related flash foods over large urban areas of Southeastern Brazil have proceeded through the analyses of specific individual case studies. These urban areas, especially in austral summer, are prone to severe convective rainfall that affects targets that are difficult to protect, such as vulnerable communities. The synoptic case on 24 October 2007 showed severe thunderstorms with heavy rains produced widespread street flooding and major damage across the Rio de Janeiro metropolitan area and surrounding locations. The suspected cause determining heavy rains were associated with the intrusion of the cold front towards this urban area, and the interaction that occurred between it and the tropical moist air mass moved from the Amazon deep convection. In this context, METEOSAT Second Generation is an important tool to monitoring the dynamical evolution of cloud structures. This event presented the need to explore possible applications of METEOSAT-9 image analyses in this particular location to account for the possibility of tracking the weather disturbances. One way of supporting the exploratory analyses was by applying the RGB air masses and IR 10.8 images. The results showed that both the RGB air masses and IR 10.8 analyses attain clear and good approach in monitoring and evaluating severe storms that can cause widespread daily rains over the large urban areas located at Southeastern Brazil.
NASA Astrophysics Data System (ADS)
Ando, Y.; Ogi, M.; Tachibana, Y.
2013-12-01
On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For reference, the conventional AO index is shown by the gray line. (b) a 5-day running mean WP index, (c) area-averaged Surface Air Temperature anomalies in Japan, (d) Air Temperature anomalies, (e) heat flux anomalies, and (f) Sea Surface Temperature anomalies. The boxed area on the Sea of Japan indicates the area in which the (d)-(f) indexes were calculated.
Cold thermal injury from cold caps used for the prevention of chemotherapy-induced alopecia
Belum, Viswanath Reddy; de Barros Silva, Giselle; Laloni, Mariana Tosello; Ciccolini, Kathryn; Sklarin, Nancy T.; Lacouture, Mario E.
2017-01-01
INTRODUCTION The use of scalp cooling for the prevention of chemotherapy-induced alopecia (CIA) is increasing. Cold caps are placed onto the hair-bearing areas of the scalp for varying time periods before, during, and after cytotoxic chemotherapy cycles. Although not yet reported, improper application procedures could result in undesirable adverse events (AEs). At present, there are no evidence-based scalp cooling protocols, and there is no regulatory oversight of their use. OBJECTIVE To report the occurrence of cold thermal injury (frostbite) on the scalp, following the use of cold caps for the prevention of CIA. MATERIALS AND METHODS We identified four patients who developed cold thermal injuries on the scalp following the application of cold caps. Medical records were analyzed to retrieve the demographic, clinical, and histologic characteristics. RESULTS The cold thermal injuries in our patients were grade 1/2 in severity and improved with topical interventions, although mild persistent alopecia ensued in 3 patients. The true incidence of such injuries in this setting however, remains unknown. CONCLUSIONS Cold thermal cold injuries are likely an infrequent and preventable AE that may result from improper device application procedures during scalp cooling. Although these untoward events are usually mild to moderate in severity, the potential occurrence of long-term sequelae (e.g. permanent alopecia, scarring) are not known. Future prospective studies are needed to further elucidate the risk and standardized delivery methods, and patient/clinical education. PMID:27146710
Prediction of nearfield jet entrainment by an interactive mixing/afterburning model
NASA Technical Reports Server (NTRS)
Dash, S. M.; Pergament, H. S.; Wilmoth, R. G.
1978-01-01
The development of a computational model (BOAT) for calculating nearfield jet entrainment, and its application to the prediction of nozzle boattail pressures, is discussed. BOAT accounts for the detailed turbulence and thermochemical processes occurring in the nearfield shear layers of jet engine (and rocket) exhaust plumes while interfacing with the inviscid exhaust and external flowfield regions in an overlaid, interactive manner. The ability of the model to analyze simple free shear flows is assessed by detailed comparisons with fundamental laboratory data. The overlaid methodology and the entrainment correction employed to yield the effective plume boundary conditions are assessed via application of BOAT in conjunction with the codes comprising the NASA/LRC patched viscous/inviscid model for determining nozzle boattail drag for subsonic/transonic external flows. Comparisons between the predictions and data on underexpanded laboratory cold air jets are presented.
NASA Astrophysics Data System (ADS)
Wang, Shuai; Fu, Gang; Pang, Huaji
2017-12-01
The synoptic situation and mesoscale structure of an explosive extratropical cyclone over the Northwestern Pacific in March 2007 are investigated through weather station observations and data reanalysis. The cyclone is located beneath the poleward side of the exit of a 200 hPa jet, which is a strong divergent region aloft. At mid-level, the cyclone lies on the downstream side of a well-developed trough, where a strong ascending motion frequently occurs. Cross-section analyses with weather station data show that the cyclone has a warm and moist core. A `nose' of the cold front, which is characterized by a low-level protruding structure in the equivalent potential temperature field, forms when the cyclone moves offshore. This `nose' structure is hypothesized to have been caused by the heating effect of the Kuroshio Current. Two low-level jet streams are also identified on the western and eastern sides of the cold front. The western jet conveys cold and dry air at 800-900 hPa. The wind in the northern part is northeasterly, and the wind in the southern part is northwesterly. By contrast, the eastern jet carries warm and moist air into the cyclone system, ascending northward from 900 hPa to 600-700 hPa. The southern part is dominated by the southerly wind, and the wind in the northern part is southwesterly. The eastern and western jets significantly increase the air temperature and moisture contrast in the vicinity of the cold front. This increase could play an important role in improving the rapid cyclogenesis process.
Björnsson, Eythór; Lúdvíksdóttir, Dóra; Hedenström, Hans; Eriksson, Britt-Marie; Högman, Marieann; Venge, Per; Janson, Christer
2007-07-01
The aim of this study was to characterise non-asthmatic subjects with asthma-like symptoms during a common cold, particularly in relation to airway hyperresponsiveness (AHR). Subjects with acute respiratory infections and a group of controls (n = 20 + 20), age 20-65 years, underwent bronchial provocations with methacholine, adenosine and cold air. All were non-smokers and had no history of asthma or heart disease. Those with infection had asthma-like symptoms (>2). Measurements of exhaled nitric oxide (eNO), serum levels of eosinophil cationic protein (ECP), eosinophil peroxidase, myeloperoxidase and human neutrophil lipocalin were made at each provocation. A 17-day symptom and peak flow diary was calculated. No differences between the two groups were found, regarding responsiveness to methacholine, adenosine or cold air challenge, as well as the inflammatory markers measured. In the infected group, the mean (standard deviation) ECP was higher in those with AHR to methacholine or cold air [15.7 (6.5) and 11.4 (4.2) microg/L, respectively; P < 0.05]; furthermore, eNO was higher in the infected group [116 (54) and 88 (52) nL/min, respectively; P = 0.055]. The infected group had, at all times, more symptoms and higher peak flow, with a decrease in the symptoms (P = 0.02) and a tendency to change in peak flow variation (P = 0.06). AHR does not seem to be the main cause of asthma-like symptoms in adults with infectious wheezing. Peak flow variation and symptom prevalence during the post-infection period may imply airway pathology different from AHR.
Exacerbation of South Asian monsoon biases in GCMs using when using coupled ocean models
NASA Astrophysics Data System (ADS)
Turner, Andrew
2015-04-01
Cold biases during spring in the northern Arabian Sea of coupled ocean-atmosphere GCMs have previously been shown to limit monsoon rainfall over South Asia during the subsequent summer, by limiting the availability of moisture being advected. The cold biases develop following advection of cold dry air on anomalous northerly low level flow, suggestive of a too-strong winter monsoon in the coupled GCMs. As the same time, these cold biases and the anomalous advection have been related to larger scales by interaction with progression of the midlatitude westerly upper level flow. In this study we compare monsoon characteristics in 20th century historical and AMIP integrations of the CMIP5 multi-model database. We use a period of 1979-2005, common to both the AMIP and historical integrations. While all available observed boundary conditions, including sea-surface temperature (SST), are prescribed in the AMIP integrations, the historical integrations feature ocean-atmosphere models that generate SSTs via air-sea coupled processes. In AMIP experiments, the seasonal mean monsoon rainfall is shown to be systematically larger than in the coupled versions, with an earlier onset date also shown using a variety of circulation and precipitation metrics. In addition, examination of the springtime jet structure suggests that it sits too far south in the coupled models, leading to a delayed formation of the South Asia High over the Tibetan Plateau in summer. Further, we show that anomalous low entropy air is being advected near the surface from the north over the Arabian Sea in spring in the coupled models.
USDA-ARS?s Scientific Manuscript database
The effect of in-package cold plasmas (CP) was studied on microbiological shelf life and surface lightness of fresh chicken fillets (pectoralis major) . chicken fillets were packaged in food trays in air or modified atmosphere (MA) gas (O2:CO2:N2 = 65:30:5) and stored at 4' after exposed to an in-pa...
Regional differences in sweat rate response of steers to short-term heat stress
USDA-ARS?s Scientific Manuscript database
Six Angus steers (319±8.5 kg) were assigned to one of two groups (hot or cold exposure) of three steers each, and placed into two environmental chambers initially maintained at 16.5–18.8°C air temperature (Ta). cold chamber Ta was lowered to 8.4°C, while Ta within the hot chamber was increased to 32...
Economic Dimensions of Civil Conflicts
2012-09-01
international system after the Cold War , due to changes in the nature of war , and globalization. First , before the Cold War , insurgent movements were dependent...socialist and post-secession transitions.121 First , the civil war and NATO’s air bombardment devastated the country and an already crippled economic...Uncertainty The devastation of war , a volatile security environment and political uncertainty were the first major obstacles for post-conflict economic
Predicting survival time for cold exposure
NASA Astrophysics Data System (ADS)
Tikuisis, Peter
1995-06-01
The prediction of survival time (ST) for cold exposure is speculative as reliable controlled data of deep hypothermia are unavailable. At best, guidance can be obtained from case histories of accidental exposure. This study describes the development of a mathematical model for the prediction of ST under sedentary conditions in the cold. The model is based on steady-state heat conduction in a single cylinder comprised of a core and two concentric annular shells representing the fat plus skin and the clothing plus still boundary layer, respectively. The ambient condition can be either air or water; the distinction is made by assigning different values of insulation to the still boundary layer. Metabolic heat production ( M) is comprised of resting and shivering components with the latter predicted by temperature signals from the core and skin. Where the cold exposure is too severe for M to balance heat loss, ST is largely determined by the rate of heat loss from the body. Where a balance occurs, ST is governed by the endurance time for shivering. End of survival is marked by the deep core temperature reaching a value of 30° C. The model was calibrated against survival data of cold water (0 to 20° C) immersion and then applied to cold air exposure. A sampling of ST predictions for the nude exposure of an average healthy male in relatively calm air (1 km/h wind speed) are the following: 1.8, 2.5, 4.1, 9.0, and >24 h for -30, -20, -10, 0, and 10° C, respectively. With two layers of loose clothing (average thickness of 1 mm each) in a 5 km/h wind, STs are 4.0, 5.6, 8.6, 15.4, and >24 h for -50, -40, -30, -20, and -10° C. The predicted STs must be weighted against the extrapolative nature of the model. At present, it would be prudent to use the predictions in a relative sense, that is, to compare or rank-order predicted STs for various combinations of ambient conditions and clothing protection.
Dimitriou, Konstantinos; Kassomenos, Pavlos
2017-01-01
This paper analyzed air quality in six cities in Southern Germany (Ulm, Augsburg, Konstanz, Freiburg, Stuttgart and Munich), in conjunction with the prevailing synoptic conditions. Air quality was estimated through the calculation of a daily Air Stress Index (ASI) constituted by five independent components, each one expressing the contribution of one of the five main pollutants (PM 10 , O 3 , SO 2 , NO 2 and CO) to the total air stress. As it was deduced from ASI components, PM 10 from combustion sources and photochemically produced tropospheric O 3 are the most hazardous pollutants at the studied sites, throughout cold and warm periods respectively, yet PM 10 contribute substantially to the overall air stress during both seasons. The influence of anticyclonic high pressure systems, leading to atmospheric stagnation, was associated with increased ASI values, mainly due to the entrapment of PM 10 . Moderate air stress was generally estimated in all cities however a cleaner atmosphere was detected principally in Freiburg when North Europe was dominated by low pressure systems. Daily events of notably escalated ASI values were further analyzed with backward air mass trajectories. Throughout cold period, ASI episodes were commonly related to eastern airflows carrying exogenous PM 10 originated from eastern continental Europe. During warm period, ASI episodes were connected to the arrival of regionally circulated air parcels reflecting lack of dispersion and accumulation of pollutants in accordance with the synoptic analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
2014-01-01
Background The relative importance of different sources of air pollution for cardiovascular disease is unclear. The aims were to compare the associations between acute myocardial infarction (AMI) hospitalisations in Gothenburg, Sweden and 1) the long-range transported (LRT) particle fraction, 2) the remaining particle fraction, 3) geographical air mass origin, and 4) influence of local dispersion during 1985–2010. Methods A case-crossover design was applied using lag0 (the exposure the same day as hospitalisation), lag1 (exposure one day prior hospitalisation) and 2-day cumulative average exposure (CA2) (mean of lag0 and lag1). The LRT fractions included PMion (sum of sulphate, nitrate and ammonium) and soot measured at a rural site. The difference between urban PM10 (particulate matter with an aerodynamic diameter smaller than 10 μm) and rural PMion was a proxy for locally generated PM10 (PMrest). The daily geographical origin of air mass was estimated as well as days with limited or effective local dispersion. The entire year was considered, as well as warm and cold periods, and different time periods. Results In total 28 215 AMI hospitalisations occurred during 26 years. PM10, PMion, PMrest and soot did not influence AMI for the entire year. In the cold period, the association was somewhat stronger for PMrest than for urban PM10; the strongest associations were observed during 1990–2000 between AMI and CA2 of PMrest (6.6% per inter-quartile range (IQR), 95% confidence interval 2.1 to 11.4%) and PM10 (4.1%, 95% CI 0.2% − 8.2%). Regarding the geographical air mass origins there were few associations. Days with limited local dispersion showed an association with AMI in the cold period of 2001–2010 (6.7%, 95% CI 0.0% − 13.0%). Conclusions In the cold period, locally generated PM and days with limited local dispersion affected AMI hospitalisations, indicating importance of local emissions from e.g. traffic. PMID:25069830
NASA Astrophysics Data System (ADS)
Xaplanteris, C. L.; Filippaki, E. D.; Christodoulakis, J. K.; Kazantzaki, M. A.; Tsakalos, E. P.; Xaplanteris, L. C.
2015-08-01
The second half of the 20th century can be characterized and named as the `plasma era', as the plasma gathered scientific interest because of its special physical behaviour. Thus, it was considered as the fourth material state and the plasma physics began to form consequently. In addition to this, many important applications of plasma were discovered and put to use. Especially, in last few decades, there has been an increased interest in the use of cold atmospheric plasma in bio-chemical applications. Until now, thermal plasma has been commonly used in many bio-medical and other applications; however, more recent efforts have shown that plasma can also be produced at lower temperature (close to the environment temperature) by using ambient air in an open space (in atmospheric pressure). However, two aspects remain neglected: firstly, low-temperature plasma production with a large area, and secondly, acquiring the necessary knowledge and understanding the relevant interaction mechanisms of plasma species with microorganisms. These aspects are currently being investigated at the `Demokritos' Plasma Laboratory in Athens, Greece with radio frequency (27.12 MHz and it integer harmonics)-driven sub-atmospheric pressure plasma (100 Pa). The first aspect was achieved with atmospheric plasma being produced at a low temperature (close to the environment temperature) and in a large closed space systems. Regarding the plasma effect on living microorganisms, preliminary experiments and findings have already been carried out and many more have been planned for the near future.
Non-stationary Drainage Flows and Cold Pools in Gentle Terrain
NASA Astrophysics Data System (ADS)
Mahrt, L.
2015-12-01
Previous studies have concentrated on organized topography with well-defined slopes or valleys in an effort to understand the flow dynamics. However, most of the Earth's land surface consists of gentle terrain that is quasi three dimensional. Different scenarios are briefly classified. A network of measurements are analyzed to examine shallow cold pools and drainage flow down the valley which develop for weak ambient wind and relatively clear skies. However, transient modes constantly modulate or intermittently eliminate the cold pool, which makes extraction and analysis of the horizontal structure of the cold pool difficult with traditional analysis methods. Singular value decomposition successfully isolates the effects of large-scale flow from local down-valley cold air drainage within the cold pool in spite of the intermittent nature of this local flow. The traditional concept of a cold pool must be generalized to include cold pool intermittency, complex variation of temperature related to some three-dimensionality and a diffuse cold pool top. Different types of cold pools are classified in terms of the stratification and gradient of potential temperature along the slope. The strength of the cold pool is related to a forcing temperature scale proportional to the net radiative cooling divided by the wind speed above the valley. The scatter is large partly due to nonstationarity of the marginal cold pool in this shallow valley
Space station common module thermal management: Design and construction of a test bed
NASA Technical Reports Server (NTRS)
Barile, R. G.
1986-01-01
In this project, a thermal test bed was designed, simulated, and planned for construction. The thermal system features interior and exterior thermal loads and interfacing with the central-radiator thermal bus. Components of the test bed include body mounted radiator loop with interface heat exchangers (600 Btu/hr); an internal loop with cabin air-conditioning and cold plates (3400 Btu/hr); interface heat exchangers to the central bus (13,000 Btu/hr); and provisions for new technology including advanced radiators, thermal storage, and refrigeration. The apparatus will be mounted in a chamber, heated with lamps, and tested in a vacuum chamber with LN2-cooled walls. Simulation of the test bed was accomplished using a DEC PRO 350 computer and the software package TK! olver. Key input variables were absorbed solar radiation and cold plate loads. The results indicate temperatures on the two loops will be nominal when the radiation and cold plate loads are in the range of 25% to 75% of peak loads. If all loads fall to zero, except the cabin air system which was fixed, the radiator fluid will drop below -100 F and may cause excessive pressure drop. If all loads reach 100%, the cabin air temperature could rise to 96 F.
NASA Astrophysics Data System (ADS)
Schuster, Z.; Potter, K. W.
2015-12-01
Cold groundwater discharges in the headwaters of streams in the Driftless Area of Wisconsin help support cold-water fisheries that are valued by anglers throughout the Midwestern U.S. With climate change expected to increase temperatures and threaten the cold-water habitat of species such as brook and brown trout, the Wisconsin Department of Natural Resources is focusing resources on restoration as means of adapting to climate change. One of the challenges they face is a lack of site-specific temperature data in the headwaters streams that they are targeting for restoration activities. Previous work has shown that there is a strong relationship between air and stream temperature. In this study, we calculated weekly mean air-stream temperature relationships for Driftless region headwaters streams and used air temperature projections from a set of statistically-downscaled GCM models to model thermal metrics relevant to fish species suitability described by Lyons et al. (2009) for historical (1961-2000) and future (2046-2065) conditions. We then combined the stream temperature projections with a GIS analysis of physiographic and geologic features to attempt to develop a way of predicting ungaged headwaters streams in the region that are likely to be resilient to temperature increases due to climate change.
NASA Astrophysics Data System (ADS)
Meng, Chunchun; Ma, Yaoming
2016-04-01
Compared with European Centre for Medium-Range Weather Forecasts (ERA-interim) Reanalysis data and Global Summary Of Day (GSOD) observation data, the outcomes from RAMS of the 2008/2009 severe autumn/winter drought in eastern china are analyzed in this study. The reanalysis data showed that most parts of north China are controlled by northwest wind which was accompanied by cold air, the warm and moist air from South Sea is so weak to meet with cold air, therefore forming a circulation which is unfavorable for the formation of precipitation over Eastern China. RAMS performs very well over the simulation of this atmospheric circulation, so do the rainfall and air temperature over China and where the drought occurred. Meanwhile, the simulation of the time series of precipitation and temperature behaves excellent, the square of correlation coefficient between simulations and observations reached above 0.8. Although the performance of RAMS on this drought simulation is fairly accurate, there is amount of research work to be continued to complete a more realistic simulation. KEY WORDS RAMS; severe drought; numerical simulation; atmospheric circulation; precipitation and air temperature
Yanagawa, Youichi; Ishikawa, Kouhei; Takeuchi, Ikuto; Nagasawa, Hiroki; Jitsuiki, Kei; Ohsaka, Hiromichi; Omori, Kazuhiko
The local fire department executed a training simulation for chemical and explosive incidents at a large sports facility. In this training simulation, a physician-staffed helicopter arrived at the request of the fire department and landed just outside the cold zone in the parking area. The doctor and nurse of the helicopter were escorted to a red area in the cold zone, which was selected based on the results of postdecontamination triage. After the patients had been treated, they were air medically evacuated to the base hospital. In the Tokyo subway sarin attack in 1995, St Luke's International Hospital admitted over 600 victims. During this incident, 23.2% of medical staff suffered secondary injury from sarin exposure. If air medial crews respond with subsequent postexposure effects during flight, an affected pilot could lose control of the helicopter, resulting in a fatal crash. Based on potential safety concerns for air medical and ground personnel, our recommendation would be that air medical helicopters not be dispatched to sites of chemical, biological, radiological, nuclear, and explosive incidents. Copyright © 2018 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Possibility of the market expansion of large capacity optical cold archive
NASA Astrophysics Data System (ADS)
Matsumoto, Ikuo; Sakata, Emiko
2017-08-01
The field, IoT and Big data, which is activated by the revolution of ICT, has caused rapid increase of distribution data of various business application. As a result, data with low access frequency has been rapidly increasing into a huge scale that human has never experienced before. This data with low access frequency is called "cold data", and the storage for cold data is called "cold storage". In this situation, the specifications of storage including access frequency, response speed and cost is determined by the application's request.
Joining Forces: Preparing to Fight Coalition Air War
2013-06-01
as a communications officer, he graduated from pilot training and was assigned to Dyess AFB, Texas, as a B-1 pilot. Following an operational...the reality of the deficiencies themselves. The deficiencies may require a reduction in global commitments, which might increase security risks...the Air Power Challenges of the Post -Cold War Era (Maxwell AFB, AL: Air University Press, 2011), 28. 13 Benjamin S. Lambeth, The Transformation of
Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.
Lyons, J.; Stewart, J.S.; Mitro, M.
2010-01-01
Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56.0-93.5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1?? C and water 0.8?? C), moderate warming (air 3?? C and water 2.4?? C) and major warming (air 5?? C and water 4?? C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. ?? 2010 The Authors. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles.
Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.
Stewart, Jana S.; Lyons, John D.; Matt Mitro,
2010-01-01
Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0–93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.
Lifecycle of laser-produced air sparks
Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.
2015-06-03
Here, we investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlifemore » images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N 2 +. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less
Spectral Cloud-Filtering of AIRS Data: Non-Polar Ocean
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Gregorich, David; Barron, Diana
2004-01-01
The Atmospheric Infrared Sounder (AIRS) is a grating array spectrometer which covers the thermal infrared spectral range between 640 and 1700/cm. In order to retain the maximum radiometric accuracy of the AIRS data, the effects of cloud contamination have to be minimized. We discuss cloud filtering which uses the high spectral resolution of AIRS to identify about 100,000 of 500,000 non-polar ocean spectra per day as relatively "cloud-free". Based on the comparison of surface channels with the NCEP provided global real time sst (rtg.sst), AIRS surface sensitive channels have a cold bias ranging from O.5K during the day to 0.8K during the night. Day and night spatial coherence tests show that the cold bias is due to cloud contamination. During the day the cloud contamination is due to a 2-3% broken cloud cover at the 1-2 km altitude, characteristic of low stratus clouds. The cloud-contamination effects surface sensitive channels only. Cloud contamination can be reduced to 0.2K by combining the spectral filter with a spatial coherence threshold, but the yield drops to 16,000 spectra per day. AIRS was launched in May 2002 on the Earth Observing System (EOS) Aqua satellite. Since September 2002 it has returned 4 million spectra of the globe each day.
Lifecycle of laser-produced air sparks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S., E-mail: hari@pnnl.gov; Brumfield, B. E.; Phillips, M. C.
2015-06-15
We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images.more » Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N{sub 2}{sup +}. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less
40 CFR 1066.701 - Applicability and general provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Cold Temperature Test Procedures § 1066.701 Applicability and...) temperature range. (b) Do not apply the humidity correction factor in § 1066.615(a) for cold temperature...
On non-equilibrium atmospheric pressure plasma jets and plasma bullet
NASA Astrophysics Data System (ADS)
Lu, Xinpei
2012-10-01
Because of the enhanced plasma chemistry, atmospheric pressure nonequilibrium plasmas (APNPs) have been widely studied for several emerging applications such as biomedical applications. For the biomedical applications, plasma jet devices, which generate plasma in open space (surrounding air) rather than in confined discharge gaps only, have lots of advantages over the traditional dielectric barrier discharge (DBD) devices. For example, it can be used for root canal disinfection, which can't be realized by the traditional plasma device. On the other hand, currently, the working gases of most of the plasma jet devices are noble gases or the mixtures of the noble gases with small amount of O2, or air. If ambient air is used as the working gas, several serious difficulties are encountered in the plasma generation process. Amongst these are high gas temperatures and disrupting instabilities. In this presentation, firstly, a brief review of the different cold plasma jets developed to date is presented. Secondly, several different plasma jet devices developed in our lab are reported. The effects of various parameters on the plasma jets are discussed. Finally, one of the most interesting phenomena of APNP-Js, the plasma bullet is discussed and its behavior is described. References: [1] X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012); [2] Y. Xian, X. Lu, S. Wu, P. Chu, and Y. Pan, Appl. Phys. Lett. 100, 123702 (2012); [3] X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, P. Chu, and Y. Pan, J. Phys. D 45, 165205 (2012).
NASA Astrophysics Data System (ADS)
Wu, Mengwen; Luo, Yali
2016-08-01
A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme rainfall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolution surface observations, sounding data, and radar measurements. New convective cells are continuously initiated along a mesoscale boundary at the surface, leading to formation and maintenance of the quasi-linear-shaped MCS from about 2000 BT 19 to 1200 BT 20 May. The boundary is originally formed between a cold dome generated by previous convection and southwesterly flow from the ocean carrying higher equivalent potential temperature ( θ e) air. The boundary is subsequently maintained and reinforced by the contrast between the MCS-generated cold outflow and the oceanic higher- θ e air. The cold outflow is weak (wind speed ≤ 5 m s -1), which is attributable to the characteristic environmental conditions, i.e., high humidity in the lower troposphere and weak horizontal winds in the middle and lower troposphere. The low speed of the cold outflow is comparable to that of the near surface southerly flow from the ocean, resulting in very slow southward movement of the boundary. The boundary features temperature contrasts of 2-3°C and is roughly 500-m deep. Despite its shallowness, the boundary appears to exert a profound influence on continuous convection initiation because of the very low level of free convection and small convection inhibition of the near surface oceanic air, building several parallel rainbands (of about 50-km length) that move slowly eastward along the MCS and produce about 80% of the total rainfall. Another MCS moves into the area from the northwest and merges with the local MCS at about 1200 BT. The cold outflow subsequently strengthens and the boundary moves more rapidly toward the southeast, leading to end of the event in 3 h.
NASA Astrophysics Data System (ADS)
Grzebielec, Andrzej; Rusowicz, Artur; Szelągowski, Adam
2017-04-01
In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller), and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of energy efficiency was the use of waste heat from the air compressor. Before any changes, the heat was picked up by a chilled water system. The idea was to use the heat for cold generation. Temperature of oil and air in the compressor exceeds 65°C, which makes it a perfect heat source for an adsorption refrigeration device. This solution reduced the cooling demand by 147 kW, thus reducing power consumption by 36.75 kW. This study shows that even in factories where air is heavily polluted with tar, there are huge potentials for energy recovery using existing technical solutions. It is important to note that problems of this kind should always be approached individually.
Controlling Microbial Safety Challenges of Meat Using High Voltage Atmospheric Cold Plasma
Han, Lu; Ziuzina, Dana; Heslin, Caitlin; Boehm, Daniela; Patange, Apurva; Sango, David M.; Valdramidis, Vasilis P.; Cullen, Patrick J.; Bourke, Paula
2016-01-01
Atmospheric cold plasma (ACP) is a non-thermal technology, effective against a wide range of pathogenic microorganisms. Inactivation efficacy results from plasma generated reactive species. These may interact with any organic components in a test matrix including the target microorganism, thus food components may exert a protective effect against the antimicrobial mode of action. The effect of an in-package high voltage ACP process applied in conjunction with common meat processing MAP gas compositions as well as bacteria type and meat model media composition have been investigated to determine the applicability of this technology for decontamination of safety challenges associated with meat products. E. coli, L. monocytogenes, and S. aureus in PBS were undetectable after 60 s of treatment at 80 kVRMS in air, while ACP treatment of the contaminated meat model required post-treatment refrigeration to retain antimicrobial effect. The nutritive components in the meat model exerted a protective effect during treatment, where 300 s ACP exposure yielded a maximum reduction of 1.5 log using a high oxygen atmosphere, whilst using air and high nitrogen atmospheres yielded lower antimicrobial efficacy. Furthermore, an ROS assay was performed to understand the protective effects observed using the meat model. This revealed that nutritive components inhibited penetration of ROS into bacterial cells. This knowledge can assist the optimization of meat decontamination using ACP technology where interactions with all components of the food matrix require evaluation. PMID:27446018
Oregon Air Ambulance Services.
1986-01-01
Bleiler, 1982) highlights the ....~ ~ ~- - ... ._.. 15 results of non-regulation. A 42-year old woman, hospitalized with cardiovascular disease in...Humidity. Air at altitude is cold, possessing little moisture. Patients with respiratory problems can experience severe respiratory distress...services. Respiratory therapists and, consequently, specialized respiratory therapy forms were rarely used. Again, six agencies did not retain copies of the
Keeping warm with fur in cold water: entrainment of air in hairy surfaces
NASA Astrophysics Data System (ADS)
Nasto, Alice; Regli, Marianne; Brun, Pierre-Thomas; Clanet, Christophe; Hosoi, Anette
2015-11-01
Instead of relying on a thick layer of body fat for insulation as many aquatic mammals do, fur seals and otters trap air in their dense fur for insulation in cold water. Using a combination of model experiments and theory, we rationalize this mechanism of air trapping underwater for thermoregulation. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS. Modeling the hairy texture as a network of capillary tubes, the imbibition speed of water into the hairs is obtained through a balance of hydrostatic pressure and viscous stress. In this scenario, the bending of the hairs and capillary forces are negligible. The maximum diving depth that can be achieved before the hairs are wetted to the roots is predicted from a comparison of the diving speed and imbibition speed. The amount of air that is entrained in hairy surfaces is greater than what is expected for classic Landau-Levich-Derjaguin plate plunging. A phase diagram with the parameters from experiments and biological data allows a comparison of the model system and animals.
Cold start dynamics and temperature sliding observer design of an automotive SOFC APU
NASA Astrophysics Data System (ADS)
Lin, Po-Hsu; Hong, Che-Wun
This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.
Detection of Extremes with AIRS and CrIS
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Manning, Evan M.; Behrangi, Ali
2013-01-01
Climate change is expected to be detected first as changes in extreme values rather than in mean values. The availability of data of from two instruments in the same orbit, AIRS data for the past eleven years and AIRS and CrIS data from the past year, provides an opportunity to evaluate this using examples of climate relevance: Desertification, seen as changes in hot extremes, severe storm, seen as a change in extremely cold clouds and the warming of the polar zone. We use AIRS to establish trends for the 1%tile, the mean and 99%tile brightness temperatures measured with the 900 cm(exp -1) channel from AIRS for the past 11 years. This channel is in the clearest part of the 11 micron atmospheric window. Substantial trends are seen for land and ocean, which in the case of the 1%tile (cold) extremes are related to the current shift of deep convection from ocean to land. Changes are also seen in the 99%tile for day tropical land, but their interpretation is at present unclear. We also see dramatic changes for the mean and 99%tile of the North Polar area. The trends are an order of magnitude larger than the instrument trend of about 3 mK/year. We use the statistical distribution from the past year derived from AIRS to evaluate the accuracy of continuing the trends established with AIRS with CrIS data. We minimize the concern about differences in the spectral response functions by limiting the analysis to the channel at 900 cm(exp -1).While the two instruments agree within 100 mK for the global day/night land/ocean mean values, there are significant differences when evaluating the1% and 99%tiles. We see a consistent warm bias in the CrIS data relative to AIRS for the 1%tile (extremely cold, cloudy) data in the tropical zone, particularly for tropical land, but the bias is not day/night land/ocean consistent. At this point the difference appears to be due to differences in the radiometric response of AIRS and CrIS to differences in the day/night land/ocean cloud types. Unless the effect can be mitigated by a future reprocessing the CrIS data, it will significantly complicate the concatenation of the AIRS and CrIS data records for the continuation of trends in extreme values.
Field Investigation of an Air-Source Cold Climate Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Abdelaziz, Omar; Rice, C Keith
In the U.S., there are approximately 2.6 million dwellings that use electricity for heating in cold and very cold regions with an annual energy consumption of 0.16 quads (0.17 EJ). A high performance cold climate heat pump (CCHP) would result in significant savings over current technologies (greater than 60% compared to electric resistance heating). We developed an air-source cold climate heat pump, which uses tandem compressors, with a single compressor rated for the building design cooling load, and running two compressors to provide, at -13 F (-25 C), 75% of rated heating capacity. The tandem compressors were optimized for heatingmore » operation and are able to tolerate discharge temperatures up to 280 F (138 C). A field investigation was conducted in the winter of 2015, in an occupied home in Ohio, USA. During the heating season, the seasonal COP was measured at 3.16, and the heat pump was able to operate down to -13 F (-25 C) and eliminate resistance heat use. The heat pump maintained an acceptable comfort level throughout the heating season. In comparison to a previous single-speed heat pump in the home, the CCHP demonstrated more than 40% energy savings in the peak heating load month. This paper illustrates the measured field performance, including compressor run time, frost/defrosting operations, distributions of building heating load and capacity delivery, comfort level, field measured COPs, etc.« less
Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, Craig B.; Whiteman, Charles D.; Horel, John D.
2003-06-01
The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah minimum temperature record of -56 C. The evolution of cold-pool characteristics depended on the strength of prevailing flows above the basin. On an undisturbed day, a 30 C diurnal temperature range and a strong nocturnal potential temperature inversion (22 K in 100 m) were observed in the basin. Initially, downslope flows formed on the basin sidewalls. As a very strong potential temperature jump (17 K)more » developed at the top of the cold pool, however, the winds died within the basin and over the sidewalls. A persistent turbulent sublayer formed below the jump. Turbulent sensible heat flux on the basin floor became negligible shortly after sunset while the basin atmosphere continued to cool. Temperatures over the slopes, except for a 1 to 2-m-deep layer, became warmer than over the basin center at the same altitude. Cooling rates for the entire basin near sunset were comparable to the 90 W m-2 rate of loss of net longwave radiation at the basin floor, but these rates decreased to only a few watts per square meter by sunrise. This paper compares the observed cold-pool buildup in basins with inversion buildup in valleys.« less
CO2 rebreathing: a possible contributory factor to some cases of sudden infant death?
Skadberg, B T; Oterhals, A; Finborud, K; Markestad, T
1995-09-01
Physical and geometrical conditions influencing carbon dioxide (CO2) accumulation near the face of a sleeping infant positioned deep in a cot or pram (open cot shaft) or underneath bedding (closed cot shaft) were investigated. By means of mathematical and data-based simulation, and an experimental rebreathing model, both hypothetical (dry, exhaled air +20 degrees C) and more physiological conditions (heated, humidified exhaled air, room temperature +20 degrees C; with and without pooling of cold air within the shaft) were tested. With exhaled air at +20 degrees C, the CO2 concentration increased to about 10% within 5 min. The increase was faster the smaller the volume, and the smaller the opening of the cot shaft. When expiratory air was heated, the CO2 concentration increased with the same speed as when the shaft was closed, but to only 0.1-0.3% when the shaft was open. Pooling of cold air in the shaft increased CO2 accumulation 70-200 times the concentration in air (to <5.5%) when the shaft was open. Turbulence of the air outside the open shaft reduced the increase in CO2 concentration. The experiments imply that CO2 may accumulate around an infant's head when placed deep in a cot or pram with the bedding and walls creating a narrow, vertical, shaft-like tunnel to the surrounding air. Although the CO2 concentration may theoretically attain dangerous levels in such circumstances, a rapid equilibrium between the air within and outside the cot usually occurs due to convection of the expiratory air and turbulence from drafts, the infant's body movements and breathing. Such factors will largely eliminated any significant rebreathing with the exception of the extreme situation when expired air is contained within a closed space.
Wolf, M B; Garner, R P
1997-01-01
A model was developed of transient changes in metabolic heat production and core temperature for humans subjected to cold conditions. It was modified to predict thermal effects of the upper parts of the body being sprayed with water from a system designed to reduce the smoke effects of an airplane fire. Temperature changes were computed at 25 body segments in response to water immersion, cold-air exposure, and windy conditions. Inputs to the temperature controller were: (a) temperature change signals from skin segments and (b) an integrated signal of the product of skin and head-core (hypothalamic) temperature changes. The controller stimulated changes in blood flow to skin and muscle and heat production by shivering. Two controller parameters were adjusted to obtain good predictions of temperature and heat-production experimental data in head-out, water-immersion (0 degree-28 degrees C) studies in humans. A water layer on the skin whose thickness decreased transiently due to evaporation was added to describe the effects of the water-spray system. Because the layer evaporated rapidly in a very cold and windy environment, its additional cooling effect over a 60-min exposure period was minimal. The largest additional decrease in rectal temperature due to the water layer was < 1 degree C, which was in normal conditions where total decreases were small.
The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol
Plevkova, J.; Kollarik, M.; Poliacek, I.; Brozmanova, M.; Surdenikova, L.; Tatar, M.; Mori, N.
2013-01-01
The cold-sensitive cation channel TRPM8 is a target for menthol, which is used routinely as a cough suppressant and as an additive to tobacco and food products. Given that cold temperatures and menthol activate neurons through gating of TRPM8, it is unclear how menthol actively suppresses cough. In this study we describe the antitussive effects of (−)-menthol in conscious and anesthetized guinea pigs. In anesthetized guinea pigs, cough evoked by citric acid applied topically to the tracheal mucosa was suppressed by menthol only when it was selectively administered as vapors to the upper airways. Menthol applied topically to the tracheal mucosa prior to and during citric acid application or administered continuously as vapors or as an aerosol to the lower airways was without effect on cough. These actions of upper airway menthol treatment were mimicked by cold air delivered to the upper airways but not by (+)-menthol, the inactive isomer of menthol, or by the TRPM8/TRPA1 agonist icilin administered directly to the trachea. Subsequent molecular analyses confirmed the expression of TRPM8 in a subset of nasal trigeminal afferent neurons that do not coincidently express TRPA1 or TRPV1. We conclude that menthol suppresses cough evoked in the lower airways primarily through a reflex initiated from the nose. PMID:23640596
Henriksson, Otto; Lundgren, Peter; Kuklane, Kalev; Holmér, Ingvar; Naredi, Peter; Bjornstig, Ulf
2012-02-01
In the prehospital care of a cold and wet person, early application of adequate insulation is of utmost importance to reduce cold stress, limit body core cooling, and prevent deterioration of the patient's condition. Most prehospital guidelines on protection against cold recommend the removal of wet clothing prior to insulation, and some also recommend the use of a waterproof vapor barrier to reduce evaporative heat loss. However, there is little scientific evidence of the effectiveness of these measures. Using a thermal manikin with wet clothing, this study was conducted to determine the effect of wet clothing removal or the addition of a vapor barrier on thermal insulation and evaporative heat loss using different amounts of insulation in both warm and cold ambient conditions. A thermal manikin dressed in wet clothing was set up in accordance with the European Standard for assessing requirements of sleeping bags, modified for wet heat loss determination, and the climatic chamber was set to -15 degrees Celsius (°C) for cold conditions and +10°C for warm conditions. Three different insulation ensembles, one, two or seven woollen blankets, were chosen to provide different levels of insulation. Five different test conditions were evaluated for all three levels of insulation ensembles: (1) dry underwear; (2) dry underwear with a vapor barrier; (3) wet underwear; (4) wet underwear with a vapor barrier; and (5) no underwear. Dry and wet heat loss and thermal resistance were determined from continuous monitoring of ambient air temperature, manikin surface temperature, heat flux and evaporative mass loss rate. Independent of insulation thickness or ambient temperature, the removal of wet clothing or the addition of a vapor barrier resulted in a reduction in total heat loss of 19-42%. The absolute heat loss reduction was greater, however, and thus clinically more important in cold environments when little insulation is available. A similar reduction in total heat loss was also achieved by increasing the insulation from one to two blankets or from two to seven blankets. Wet clothing removal or the addition of a vapor barrier effectively reduced evaporative heat loss and might thus be of great importance in prehospital rescue scenarios in cold environments with limited insulation available, such as in mass-casualty situations or during protracted evacuations in harsh conditions.
The Temporary Environment - Cold Regions Habitability
1976-10-01
studied: Arny. Air Force and FAA. Mobi/e hrduutei unkta Any industria ! unit that requires travel in the cold weather utilizes Army or civilian equipment ...vironmnts studied andc mecn in succeeding sctic.nis proceeds to a much fitter analysis . &nalyses start with prolic %,omparisuns of action patterns and...fornali/e cinviromnmienltal analysis below the le:vel ol’the behavior setting. l ie does specify smaller units such as cvosetties. syninnorphs. and
The impact of acclimatization on thermophysiological strain for contrasting regional climates
NASA Astrophysics Data System (ADS)
de Freitas, C. R.; Grigorieva, E. A.
2014-12-01
During acclimatization to heat and cold, the body experiences additional thermally induced physiological strain. The first signs show up in the respiratory organs because respiration is a continuous heat exchange process in which the body is in closest contact with the ambient air. There are no behavioral or other adjustments to prevent the ambient air from entering into the body's core area through the respiratory tract. The Acclimatization Thermal Strain Index (ATSI) describes the acclimatization thermal loading (ATL) on respiratory organs until full adaptation is achieved. The aim here is to further assess the ATSI scheme using a range of actual but contrasting bioclimatic conditions. To simulate ATL, scenarios of the consequences of acclimatization due to movement to or from five contrasting climates are used. The results show that adjusting to cold comes with greater physiological strain than adjusting to heat, the biggest impact occurring for a change of location from hot-humid to cold-dry climatic conditions. The approach can be used to assess risks due to increases in short-term thermal variability in weather conditions such as encountered during heat waves and cold snaps. The information could also be useful for assessing the need for public health services and measures that might be used to help mitigate impacts.
The impact of acclimatization on thermophysiological strain for contrasting regional climates.
de Freitas, C R; Grigorieva, E A
2014-12-01
During acclimatization to heat and cold, the body experiences additional thermally induced physiological strain. The first signs show up in the respiratory organs because respiration is a continuous heat exchange process in which the body is in closest contact with the ambient air. There are no behavioral or other adjustments to prevent the ambient air from entering into the body's core area through the respiratory tract. The Acclimatization Thermal Strain Index (ATSI) describes the acclimatization thermal loading (ATL) on respiratory organs until full adaptation is achieved. The aim here is to further assess the ATSI scheme using a range of actual but contrasting bioclimatic conditions. To simulate ATL, scenarios of the consequences of acclimatization due to movement to or from five contrasting climates are used. The results show that adjusting to cold comes with greater physiological strain than adjusting to heat, the biggest impact occurring for a change of location from hot-humid to cold-dry climatic conditions. The approach can be used to assess risks due to increases in short-term thermal variability in weather conditions such as encountered during heat waves and cold snaps. The information could also be useful for assessing the need for public health services and measures that might be used to help mitigate impacts.
The Nature of Cold-induced Dormancy in Urediospores of Puccinia graminis tritici
Maheshwari, Ramesh; Sussman, Alfred S.
1971-01-01
When air-dry urediospores of the wheat stem rust, Puccinia graminis f. sp. tritici, are exposed to temperatures below freezing, their germinability is markedly reduced, even after prolonged thawing at room temperature. Germinability is fully restored by a brief heat-shock or by vapor phase hydration. We have found that this “cold dormancy” cannot be reversed once the spores contact liquid water. Enhanced loss of metabolites occurs immediately upon suspension of cold-dormant urediospores in liquid without a prior heat-shock. Such leakage is two to three times greater than from untreated or heatshocked cold-dormant spores and accounts for up to 70% of the soluble pool of metabolites normally present in germinating urediospores. Respiratory activity of cold-dormant urediospores declines rapidly during incubation in liquid. Incorporation of isotopic carbon into cold-dormant urediospores is only a fraction of that of untreated or heat-activated spores. Thus, cold shock transforms the spores into a state of supersensitivity to liquid water, which is reversed by heat-shock or slow hydration by vapor phase equilibration. The primary cause of damage to cold-dormant cells exposed to liquid water appears to be irreversible permeability damage, followed by metabolic injury. PMID:16657610
Odd cloud in the Ross Sea, Antarctica
NASA Technical Reports Server (NTRS)
2002-01-01
On January 28, 2002, MODIS captured this image of an interesting cloud formation in the boundary waters between Antarctica's Ross Sea and the Southern Ocean. A dragon? A snake? A fish? No, but it is an interesting example of the atmospheric physics of convection. The 'eye' of this dragon-looking cloud is likely a small spot of convection, the process by which hot moist air rises up into the atmosphere, often producing big, fluffy clouds as moisture in the air condenses as rises into the colder parts of the atmosphere. A false color analysis that shows different kinds of clouds in different colors reveals that the eye is composed of ice crystals while the 'body' is a liquid water cloud. This suggests that the eye is higher up in the atmosphere than the body. The most likely explanation for the eye feature is that the warm, rising air mass had enough buoyancy to punch through the liquid water cloud. As a convective parcel of air rises into the atmosphere, it pushes the colder air that is higher up out of its way. That cold air spills down over the sides of the convective air mass, and in this case has cleared away part of the liquid cloud layer below in the process. This spilling over of cold air from higher up in the atmosphere is the reason why thunderstorms are often accompanied by a cool breeze. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
Cloud Streets over the Atlantic Ocean
2017-12-08
In the midst of a cold snap that sent temperatures 20–40°F (11–22°C) below normal across much of the United States, the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite captured this image of cloud streets over the Atlantic Ocean on January 7, 2014. Cloud streets—long parallel bands of cumulus clouds—form when cold air blows over warmer waters and a warmer air layer (or temperature inversion) rests over the top of both. The comparatively warm water gives up heat and moisture to the cold air above, and columns of heated air called thermals naturally rise through the atmosphere. The temperature inversion acts like a lid, so when the rising thermals hit it, they roll over and loop back on themselves, creating parallel cylinders of rotating air. As this happens, the moisture cools and condenses into flat-bottomed, fluffy-topped cumulus clouds that line up parallel to the direction of the prevailing wind. On January 7, the winds were predominantly out of the northwest. Cloud streets can stretch for hundreds of kilometers if the land or water surface underneath is uniform. Sea surface temperature need to be at least 40°F (22°C) warmer than the air for cloud streets to form. More info: earthobservatory.nasa.gov/NaturalHazards/view.php?id=82800 NASA Earth Observatory image courtesy Jeff Schmaltz LANCE/EOSDIS MODIS Rapid Response Team, GSFC. Caption by Adam Voiland. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A mesoscale vortex over Halley Station, Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.; Lachlan-Cope, T.A.; Warren, D.E.
1993-05-01
A detailed analysis of the evolution and structure of a mesoscale vortex and associated cloud comma that developed at the eastern edge of the Weddell Sea, Antarctica, during the early part of January 1986 is presented. The system remained quasi-stationary for over three days close to the British research station Halley (75[degrees]36'S, 26'42[degrees]W) and gave severe weather with gale-force winds and prolonged snow. The formation and development of the system were investigated using conventional surface and upper-air meteorological observations taken at Halley, analyses from the U.K. Meteorological Office 15-level model, and satellite imagery and sounder data from the TIROS-N-NOAA seriesmore » of polar orbiting satellites. The thermal structure of the vortex was examined using atmospheric profiles derived from radiance measurements from the TIROS Operational Vertical Sounder. Details of the wind field were examined using cloud motion vectors derived from a sequence of Advanced Very High Resolution Radiometer images. The vortex developed inland of the Brunt Ice Shelf in a strong baroclinic zone separating warm air, which had been advected polewards down the eastern Weddell Sea, and cold air descending from the Antarctic Plateau. The system intensified when cold, continental air associated with an upper-level short-wave trough was advected into the vortex. A frontal cloud band developed when slantwise ascent of warm air took place at the leading edge of the cold-air outbreak. Most of the precipitation associated with the low occurred on this cloud band. The small sea surface-atmospheric temperature differences gave only limited heat fluxes and there was no indication of deep convection associated with the system. The vortex was driven by baroclinic forcing and had some features in common with the baroclinic type of polar lows that occur in the Northern Hemisphere. 25 refs., 14 figs.« less
NASA Technical Reports Server (NTRS)
Goldstein, Arthur W
1947-01-01
The performance of the turbine component of an NACA research jet engine was investigated with cold air. The interaction and the matching of the turbine with the NACA eight-stage compressor were computed with the combination considered as a jet engine. The over-all performance of the engine was then determined. The internal aerodynamics were studied to the extent of investigating the performance of the first stator ring and its influence on the turbine performance. For this ring, the stream-filament method for computing velocity distribution permitted efficient sections to be designed, but the design condition of free-vortex flow with uniform axial velocities was not obtained.
NASA Technical Reports Server (NTRS)
Roelke, R. J.; Haas, J. E.
1981-01-01
The aerodynamic performance of the inlet manifold and stator assembly of the compressor drive turbine was experimentally determined with cold air as the working fluid. The investigation included measurements of mass flow and stator-exit fluid torque as well as radial surveys of total pressure and flow angle at the stator inlet and annulus surveys of total pressure and flow angle at the stator exit. The stator-exit aftermixed flow conditions and overall stator efficiency were obtained and compared with their design values and the experimental results from three other stators. In addition, an analysis was made to determine the constituent aerodynamic losses that made up the stator kinetic energy loss.
Study on indoor thermal environment in winter for rural residences in Yulin region
NASA Astrophysics Data System (ADS)
Yanjun, Li; Weixiao, Han
2018-02-01
Yulin region is located in the northern part of Shaanxi Province, China. The winter here is very cold and it has a long duration. In this paper, a rural residence which was located in Yulin region was taken as a study object. Indoor thermal environment of the rural residence were tested, including indoor air temperature and air relative humidity. Then, test data were analyzed. It was summarized that indoor thermal environment of test room can not fully meet human thermal comfort needs, and some tactics of regulation building thermal environment were proposed. This research contributes to improvement of indoor thermal environment for local rural residences and it provides reference for rural residences in other cold regions.
An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Xinpei; Jiang Zhonghe; Xiong Qing
2008-02-25
In this letter, a room temperature atmospheric pressure plasma jet device is reported. The high voltage electrode of the device is covered by a quartz tube with one end closed. The device, which is driven by a kilohertz ac power supply, is capable of generating a plasma plume up to 11 cm long in the surrounding room air. The rotational and vibrational temperatures of the plasma plume are 300 and 2300 K, respectively. A simple electrical model shows that, when the plasma plume is contacted with a human, the voltage drop on the human is less than 66 V formore » applied voltage of 5 kV (rms)« less
First Scientific Working Group Meeting of Airborne Doppler Lidar Wind Velocity Measurement Program
NASA Technical Reports Server (NTRS)
Kaufman, J. W. (Editor)
1980-01-01
The purpose of the first scientific working group meeting was fourfold: (1) to identify flight test options for engineering verification of the MSFC Doppler Lidar; (2) to identify flight test options for gathering data for scientific/technology applications; (3) to identify additional support equipment needed on the CV 990 aircraft for the flight tests; and (4) to identify postflight data processing and data sets requirements. The working group identified approximately ten flight options for gathering data on atmospheric dynamics processes, including turbulence, valley breezes, and thunderstorm cloud anvil and cold air outflow dynamics. These test options will be used as a basis for planning the fiscal year 1981 tests of the Doppler Lidar system.
High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks
NASA Technical Reports Server (NTRS)
Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan
2004-01-01
The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to atmosphere. We anticipate future improvements in the AIRS retrieval algorithm will lead to improved understanding of the exchange of sensible and latent heat from ocean to atmosphere, and more realistic near-surface lapse rates.
NASA Astrophysics Data System (ADS)
Carr, C. G.; Pettit, E. C.
2017-12-01
Blood Falls is a place where red water comes out from under ice to the top of the ice and makes a strange red water fall. This ice is part of the big ice at the bottom of the world. The red water only comes out at some times and not every year, but it always comes out at the same place. The red water is important because it has tiny tiny not-animal life that tells us how life could be on other worlds. Knowing about the ice and red water is important because this ice is cold, colder than other ice in other places, and we want to know how water can get through. We didn't know why the red water comes up from under the ice when it does or how. We wanted to understand how the ice breaks and we watched the ice by taking pictures all year to see when the red water comes out. We found out that in the cold part of one year, the red water came out even though the air was not warm enough for water to be water! We think the red water comes out because the red water is blocked under the heavy ice and gets pushed tight. In the cold part of the year, cracks break down from the air into the ice and other cracks break up from under the ice because the red water is so pushed. The cracks from the top and bottom of the ice join, and the red water comes out. We used listening boxes that can feel how the ground moves to understand that the ice is breaking at the bottom and we can see that it breaks at the top of the ice. The red water can stay water and not ice inside the big ice because the red water has tiny pieces of the same stuff that can turn ice into water on the roads. If the ice breaks in the cold time, no water can get in from the top of the ice, so the red water under the ice stays clean from the air water. If the ice breaks in the warm time of year, water could get in from the top of the ice and make the red water under the ice not clean from the air. Since we saw in our pictures that the red water came out in the cold time of year, this means the red water could stay clean from the air. Maybe we can use this to tell us how life on other worlds could stay clean and safe under ice. It can also tell us how water can get through very cold ice.
Alcohol Brine Freezing of Japanese Horse Mackerel (Trachurus japonicus) for Raw Consumption
NASA Astrophysics Data System (ADS)
Maeda, Toshimichi; Yuki, Atsuhiko; Sakurai, Hiroshi; Watanabe, Koichiro; Itoh, Nobuo; Inui, Etsuro; Seike, Kazunori; Mizukami, Yoichi; Fukuda, Yutaka; Harada, Kazuki
In order to test the possible application of alcohol brine freezing to Japanese horse mackerel (Trachurus japonicus) for raw consumption, the quality and taste of fish frozen by direct immersion in 60% ethanol brine at -20, -25 and -30°C was compared with those by air freezing and fresh fish without freezing. Cracks were not found during the freezing. Smell of ethanol did not remain. K value, an indicator of freshness, of fish frozen in alcohol brine was less than 8.3%, which was at the same level as those by air freezing and fresh fish. Oxidation of lipid was at the same level as air freezing does, and lower than that of fresh fish. The pH of fish frozen in alcohol brine at -25 and -30°C was 6.5 and 6.6, respectively, which were higher than that by air freezing and that of fresh fish. Fish frozen in alcohol brine was better than that by air and at the same level as fresh fish in total evaluation of sensory tests. These results show that the alcohol brine freezing is superior to air freezing, and fish frozen in alcohol brine can be a material for raw consumption. The methods of thawing in tap water, cold water, refrigerator, and at room temperature were compared. Thawing in tap water is considered to be convenient due to the short thaw time and the quality of thawed fish that was best among the methods.
NASA Astrophysics Data System (ADS)
Liu, H.; Zhang, Y.; Williams, Q. L.; Jiang, H.; Sheng, L.
2008-12-01
Understanding seasonal and intraseasonal variations in evaporation over lake/reservoir is important for water resource management as well as predicting variations in hydrology as a result of climate change. Since August of 2007, we have conducted a long-term eddy covariance measurement of evaporation and the surface energy budget over Ross Barnett Reservoir (32o26'N, 90o02'W) in Mississippi, USA. The fetch for eddy covariance system exceeds 2 km in all directions and the water depth is about 4 m around the flux tower. The tower with its height of 4 m stands over a stationary wood platform with its size of 3 m × 3 m and height of about 1 m above the water surface. Along with sensible and latent heat fluxes, microclimate data are also measured, including wind speed, wind direction, relative humidity, solar radiation, net radiation, air temperature at four levels, water surface temperature, and water temperature at eight depths down to about 4 m. Mississippi is subject to frequent influences of different synoptic weather systems in a year around. Incursions of these different systems bring in air masses with different properties in temperature and moisture. Cold fronts, for example, carry them with cold and dry air from north while warm fronts with warm and moist air. Our results indicate that synoptic weather variations play an important role in controlling evaporations and the surface energy budget. For example, daily H and LE (i.e., evaporation) during the passages of cold fronts are around 2-4 times those of normal days and these cold front events lead to an increase in the seasonal H by approximately 420 and LE by 160%. However, the warm weather systems suppress largely the turbulent exchanges of sensible and latent heat, leading to very small evaporation and sensible heat fluxes (even negative). These results imply that future potential changes in cold front activities (intensity, frequency, and duration) as a result of climate change may lead to substantial shifts in regional energy budget and hydrological balance in the southern regions with an abundance of open water bodies (e.g., lakes, reservoirs, swamps etc). Using these datasets, the daytime and nighttime evaporation rates are also analyzed and nighttime evaporative water losses are substantial, contributing a significant portion to the total evaporative water loss.
NASA Astrophysics Data System (ADS)
Viana, Liviany; Herdies, Dirceu; Muller, Gabriela
2017-04-01
An observational study was carried out to quantify the events of cold air outbreak moving above the Equator from 1980 to 2013 during the austral winter period (May, June, July, August and September), and later analyzed the behavior of the circulation responsible for this displacement. The observational datasets from the Sector of Climatological studies of the Institute of Airspace Control of the city of Iauarete (0.61N, 69.0W; 120m), located at the extreme northern of the Brazilian Amazon Basin, were used for the analyzes. The meteorological variables used were the temperatures minimum, maximum and maximum atmospheric pressure. A new methodology was used to identify these events, calculated by the difference between the monthly average and 2 (two) standard deviations for the extremes of the air temperature, and the sum of 1 (one) standard deviation for the maximum atmospheric pressure. As a result, a total of 11 cold events were recorded that reached the extreme northern of the Brazilian Amazon Basin, with values recorded at a minimum temperature of 17.8 °C, at the maximum temperature of 21.0 °C and maximum atmospheric pressure reaching 1021.2 hPa. These reductions and augmentation are equivalent to the negative anomalies of 5.9 and 8.7 °C at the minimum and maximum temperatures, respectively, while a positive anomaly of 7.1 hPa was observed at the maximum pressure. In relation to the dynamic behavior of large-scale circulation, a Rossby wave-type configuration propagating from west to east over subtropical latitudes was observed from the European Center for Medium-Range Weather Forecast (ECMWF) since the days before the arrival of the event in the city of Iauarete. This behavior was observed both in the anomalies of the gepotencial (250 hPa and 850 hPa) and in the southern component of the wind (250 hPa and 850 hPa), both presenting statistical significance of 99 % (Student's T test). Therefore, a new criterion for the identification of "friagens" in the tropical latitude has been able to represent the effects of colds air outbreak and the advancement of the cold air mass, which are subsidized by the large-scale circulation, and consequently contribute to the modifications in the weather and the life of the population over this Equatorial region.
Zhou, Maigeng; He, Guojun; Liu, Yunning; Yin, Peng; Li, Yichong; Kan, Haidong; Fan, Maorong; Xue, An; Fan, Maoyong
2015-02-01
China has experienced increasingly severe levels of air pollution in the past decades, yet studies on the health effects of air pollution in China at a national study level, remain limited. This study assess the sub-chronic effect of ambient air pollution on respiratory mortality in the 32 largest Chinese cities. We employ two-way fixed effects panel data analysis and monthly air pollution and mortality panel data. We estimate associations between monthly respiratory mortality and air pollution; pollution is defined as particulate matter with aerodynamic diameter <10μm. We adjust for city characteristics, seasonality (monthly effects), and weather conditions (precipitation and temperature). We examine the associations between monthly injury mortality and air pollution to check for robustness. The results show positive and statistically significant associations of air pollution with respiratory mortality. During the study period (2006-2010) a 10μg/m(3) increase in monthly PM10 concentration is associated with a 1.05% (95% CI, 0.08-2.04%) increase in adult respiratory mortality rate. The air pollution effect is the most salient in northern cities (with central heating system) during the cold season (October-April); a 10μg/m(3) increase in monthly PM10 concentrations is associated with a 1.62% (95% CI, 0.22-3.46%) increase in the elderly respiratory mortality rate. There is no statistically significant association between the young adult respiratory mortality and air pollution. The elderly respiratory mortality rate in China is positively and statistically significantly associated with air pollution. The effect is largest in northern cities during cold months when coal is burned for heating. Copyright © 2014 Elsevier Inc. All rights reserved.
Burning Graphene Layer-by-Layer
Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.
2015-01-01
Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466
A skilful prediction scheme for West China autumn precipitation
NASA Astrophysics Data System (ADS)
Wei, Ting; Song, Wenling; Dong, Wenjie; Ke, Zongjian; Sun, Linhai; Wen, Xiaohang
2018-01-01
West China is one of the country's largest precipitation centres in autumn. This region's agriculture and people are highly vulnerable to the variability in the autumn rain. This study documents that the water vapour for West China autumn precipitation (WCAP) is from the Bay of Bengal, the South China Sea and the Western Pacific. A strong convergence of the three water vapour transports (WVTs) and their encounter with the cold air from the northern trough over Lake Barkersh-Lake Baikal result in the intense WCAP. Three predictors in the preceding spring or summer are identified for the interannual variability of WCAP: (1) sea surface temperature in the Indo-Pacific warm pool in summer, (2) soil moisture from the Hexi Corridor to the Hetao Plain in summer and (3) snow cover extent over East Europe and West Siberian in spring. The cold SSTAs contribute to an abnormal regional meridional circulation and intensified WVTs. The wet soil results in greater air humidity and anomalous southerly emerging over East Asia. Reduced snow cover stimulates a Rossby wave train that weakens the cold air, favouring autumn rainfall in West China. The three predictors, which demonstrate the influences of air-sea interaction, land surface processes and the cryosphere on the WCAP, have clear physical significance and are independent with each other. We then develop a new statistical prediction model with these predictors and the multilinear regression analysis method. The predicted and observed WCAP shows high correlation coefficients of 0.63 and 0.51 using cross-validation tests and independent hindcasts, respectively.
A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models
Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long
2014-01-01
A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386
Cold sensitivity test for individuals with non-freezing cold injury: the effect of prior exercise
2013-01-01
Background One of the chronic symptoms of non-freezing cold injury (NFCI) is cold sensitivity. This study examined the effects of prior exercise on the response to a cold sensitivity test (CST) in NFCI patients with the aim of improving diagnostic accuracy. Methods Twenty three participants, previously diagnosed with NFCI by a Cold Injuries Clinic, undertook two CSTs. Participants either rested (air temperature 31°C) for approximately 80 min (prior rest condition (REST)) or rested for 30 min before exercising gently for 12 min (prior exercise condition (EX)). Following REST and EX, the participants placed their injured foot, covered in a plastic bag, into 15°C water for 2 min; this was followed by spontaneous rewarming in 31°C air for 10 min. Results The great toe skin temperature (Tsk) before immersion averaged 32.5 (3.4)°C in both conditions. Following immersion, the rate of rewarming of the great toe Tsk was faster in EX compared to REST and was higher 5 min (31.7 (3.4)°C vs. 29.8 (3.4)°C) and 10 min (33.8 (4.0)°C vs. 32.0 (4.0)°C) post-immersion. Over the first 5 min of rewarming, changes in the great toe Tsk correlated with the changes in skin blood flow (SkBF) in EX but not the REST condition. No relationship was observed between Tsk in either CST and the severity of NFCI as independently clinically assessed. Conclusions Exercise prior to the CST increased the rate of the toe Tsk rewarming, and this correlated with the changes in SkBF. However, the CST cannot be used in isolation in the diagnosis of NFCI, although the EX CST may prove useful in assessing the severity of post-injury cold sensitivity for prognostic and medico-legal purposes. PMID:23849038
To cool, but not too cool: that is the question--immersion cooling for hyperthermia.
Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J
2008-11-01
Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.
2014-01-01
Background Little evidence is available about the association between temperature and cerebrovascular mortality in China. This study aims to examine the effects of ambient temperature on cerebrovascular mortality in different climatic zones in China. Method We obtained daily data on weather conditions, air pollution and cerebrovascular deaths from five cities (Beijing, Tianjin, Shanghai, Wuhan, and Guangzhou) in China during 2004-2008. We examined city-specific associations between ambient temperature and the cerebrovascular mortality, while adjusting for season, long-term trends, day of the week, relative humidity and air pollution. We examined cold effects using a 1°C decrease in temperature below a city-specific threshold, and hot effects using a 1°C increase in temperature above a city-specific threshold. We used a meta-analysis to summarize the cold and hot effects across the five cities. Results Beijing and Tianjin (with low mean temperature) had lower thresholds than Shanghai, Wuhan and Guangzhou (with high mean temperature). In Beijing, Tianjin, Wuhan and Guangzhou cold effects were delayed, while in Shanghai there was no or short induction. Hot effects were acute in all five cities. The cold effects lasted longer than hot effects. The hot effects were followed by mortality displacement. The pooled relative risk associated with a 1°C decrease in temperature below thresholds (cold effect) was 1.037 (95% confidence interval (CI): 1.020, 1.053). The pooled relative risk associated with a 1°C increase in temperature above thresholds (hot effect) was 1.014 (95% CI: 0.979, 1.050). Conclusion Cold temperatures are significantly associated with cerebrovascular mortality in China, while hot effect is not significant. People in colder climate cities were sensitive to hot temperatures, while people in warmer climate cities were vulnerable to cold temperature. PMID:24690204
Chang, Christine Y.; Unda, Faride; Zubilewich, Alexandra; Mansfield, Shawn D.; Ensminger, Ingo
2015-01-01
Climate change will increase autumn air temperature, while photoperiod decrease will remain unaffected. We assessed the effect of increased autumn air temperature on timing and development of cold acclimation and freezing resistance in Eastern white pine (EWP, Pinus strobus) under field conditions. For this purpose we simulated projected warmer temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement (T-FACE) experiment and exposed EWP seedlings to ambient (Control) or elevated temperature (ET, +1.5°C/+3°C during day/night). Photosynthetic gas exchange, chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates (NSC), and cold hardiness were assessed over two consecutive autumns. Nighttime temperature below 10°C and photoperiod below 12 h initiated downregulation of assimilation in both treatments. When temperature further decreased to 0°C and photoperiod became shorter than 10 h, downregulation of the light reactions and upregulation of photoprotective mechanisms occurred in both treatments. While ET seedlings did not delay the timing of the downregulation of assimilation, stomatal conductance in ET seedlings was decreased by 20–30% between August and early October. In both treatments leaf NSC composition changed considerably during autumn but differences between Control and ET seedlings were not significant. Similarly, development of freezing resistance was induced by exposure to low temperature during autumn, but the timing was not delayed in ET seedlings compared to Control seedlings. Our results indicate that EWP is most sensitive to temperature changes during October and November when downregulation of photosynthesis, enhancement of photoprotection, synthesis of cold-associated NSCs and development of freezing resistance occur. However, we also conclude that the timing of the development of freezing resistance in EWP seedlings is not affected by moderate temperature increases used in our field experiments. PMID:25852717
NASA Astrophysics Data System (ADS)
Hearty, T. J., III; Vollmer, B.; Wei, J. C.; Huwe, P. M.; Albayrak, A.; Wu, D. L.; Cullather, R. I.; Meyer, D. L.; Lee, J. N.; Blaisdell, J. M.; Susskind, J.; Nowicki, S.
2017-12-01
The surface air and skin temperatures reported by the Atmospheric Infrared Sounder (AIRS), the Modern-Era Retrospective analysis for Research and Applications (MERRA), and MERRA-2 at Summit, Greenland are compared with near surface air temperatures measured at National Oceanic and Atmospheric Administration (NOAA) and Greenland Climate Network (GC-Net) weather stations. Therefore this investigation requires familiarity with a heterogeneous set of swath, grid, and point data in several different formats, different granularity, and different sampling. We discuss the current subsetting capabilities available at the GES DISC (Goddard Earth Sciences Data Information Services Center) to perform the inter-comparisons necessary to evaluate the quality and trustworthiness of these datasets. We also explore potential future services which may assist users with this type of intercomparison. We find the AIRS Surface Skin Temperature (TS) is best correlated with the NOAA 2 m air temperature (T2M) but it tends to be colder than the station measurements. The difference may be the result of the frequent near surface temperature inversions in the region. The AIRS Surface Air Temperature (SAT) is also well correlated with the NOAA T2M but it has a warm bias with respect to the NOAA T2M during the cold season and a larger standard error than surface temperature. This suggests that the extrapolation of the temperature profile to the surface is not valid for the strongest inversions. Comparing the temperature lapse rate derived from the 2 stations shows that the lapse rate can increase closer to the surface. We also find that the difference between the AIRS SAT and TS is sensitive to near surface inversions. The MERRA-2 surface and near surface temperatures show improvements over MERRA but little sensitivity to near surface temperature inversions.
A 14-week investigation during a warm and cold seasons was conducted to improve understanding of air pollution sources that might be impacting air quality in Ostrava, the Czech Republic. Fine particulate matter (PM2.5) samples were collected in consecutive 12-h day and night incr...
Communities along Utah’s Wasatch Front are currently developing strategies to reduce daily average PM2.5 levels to below National Ambient Air Quality Standards during wintertime, persistent, multi-day stable atmospheric conditions or cold-air pools. Speciated PM2.5 data from the ...
Regional Data Assimilation of AIRS Profiles and Radiances at the SPoRT Center
NASA Technical Reports Server (NTRS)
Zavodsky, Brad; Chou, Shih-hung; Jedlovec, Gary
2009-01-01
This slide presentation reviews the Short Term Prediction Research and Transition (SPoRT) Center's mission to improve short-term weather prediction at the regional and local scale. It includes information on the cold bias in Weather Research and Forcasting (WRF), troposphere recordings from the Atmospheric Infrared Sounder (AIRS), and vertical resolution of analysis grid.
Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows
NASA Astrophysics Data System (ADS)
Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael
Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.
Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya
2016-01-01
Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129
2011-08-01
Air Power Centre]), Col (GS) Thomas Lorber, FüAk (Führungsakademie); Lt Col Dr. Wolfgang Schmidt, Military- Historical Research Office, Potsdam; Lt Gen...Col (GS) Dr. Michael Wolfgang Romba, Col (GS) Hans-Dieter Schön and his staff, Col (GS) Lothar Schmidt, and Lt Col (GS) Michael Trautermann. In the...Multinational Air Wing (DMAW) Project,” accessed 2 March 2007, http://www.euroairgroup.org/act_DMAW.htm. 75. Wolfgang Lange, “Lufttransport—Ansätze
Investigation of the Intake of a Stationary Gas Turbine to Prevent Ice Formation
NASA Astrophysics Data System (ADS)
Tramposch, Andreas; Molnár, Vojtech; Ridzoň, František
2011-12-01
Repeated emergency shutdowns of a stationary gas turbine under conditions of sub-freezing temperatures and moist air have led to the suspicion that ice formation in the intake channel and compressor may be a contributing factor. To understand the reason, why the installed ice protection system is not effective, a numerical investigation of the intake channel with the installed hot air ice protection system has been performed. It is shown that mixing of hot air with cold outside air is incomplete, explaining the ice accretion.
Experimental Performance Evaluation of a Supersonic Turbine for Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Snellgrove, Lauren M.; Griffin, Lisa W.; Sieja, James P.; Huber, Frank W.
2003-01-01
In order to mitigate the risk of rocket propulsion development, efficient, accurate, detailed fluid dynamics analysis and testing of the turbomachinery is necessary. To support this requirement, a task was developed at NASA Marshall Space Flight Center (MSFC) to improve turbine aerodynamic performance through the application of advanced design and analysis tools. These tools were applied to optimize a supersonic turbine design suitable for a reusable launch vehicle (RLV). The hot gas path and blading were redesigned-to obtain an increased efficiency. The goal of the demonstration was to increase the total-to- static efficiency of the turbine by eight points over the baseline design. A sub-scale, cold flow test article modeling the final optimized turbine was designed, manufactured, and tested in air at MSFC s Turbine Airflow Facility. Extensive on- and off- design point performance data, steady-state data, and unsteady blade loading data were collected during testing.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
... Project: Monroe Cold Spring Hydroelectric Project. f. Location: The proposed Monroe Cold Spring... document on that resource agency. l. Description of the project: The proposed Monroe Cold Spring...
NASA Astrophysics Data System (ADS)
Keping, YAN; Qikang, JIN; Chao, ZHENG; Guanlei, DENG; Shengyong, YIN; Zhen, LIU
2018-04-01
This paper presents plasma-induced blood coagulation and its pilot application in rat hepatectomy by using a home-made pulsed cold plasma jet. Experiments were conducted on blood coagulation in vitro, the influence of plasma on tissue in vivo, and the pilot application of rat hepatectomy. Experimental results show that the cold plasma can lead to rapid blood coagulation. Compared with the control sample, the plasma-induced agglomerated layer of blood is thicker and denser, and is mostly composed of broken platelets. When the surface of the liver was treated by plasma, the influence of the plasma can penetrate into the liver to a depth of about 500 μm. During the rat hepatectomy, cold plasma was proved to be effective for stanching bleeding on incision. No obvious bleeding was found in the abdominal cavities of all six rats 48 h after the hepatectomy. This implies that cold plasma can be an effective modality to control bleeding during surgical operation.
An analysis of selected cases of derecho in Poland
NASA Astrophysics Data System (ADS)
Celiński-Mysław, Daniel; Matuszko, Dorota
2014-11-01
The paper analyses six cases of the derecho phenomena, which occurred in Poland between 2007 and 2012. The input data included reports on dangerous meteorological phenomena, SYNOP and METAR reports, MSL pressure maps, upper air maps at 500 hPa and 850 hPa, radar depictions and satellite images, upper air sounding plots and data from a system locating atmospheric discharges. Derechos are caused directly by the activity of mesoscale convective systems linked up with either, in winter, a cold front of a deep low-pressure system, or, in summer, with an area of wind convergence in a warm sector of a cyclone or with an articulated cold front which, moving within a low-pressure embayment, develops a very active secondary depression. It was found that southern and central Poland were the regions most frequently affected by derechos. Mid-level and high-level jet streams, augmented by high thermodynamic instability of air masses, were found to be conducive to the development of derechos.
Baldauf, Rich W; Gabele, Pete; Crews, William; Snow, Richard; Cook, J Rich
2005-09-01
The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.
Method for controlling exhaust gas heat recovery systems in vehicles
Spohn, Brian L.; Claypole, George M.; Starr, Richard D
2013-06-11
A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.
NASA Technical Reports Server (NTRS)
Roffe, G.; Raman, R. S. V.
1981-01-01
Tests were run using a perforated plate flameholder with a relatively short attached recirculation zone and a vee gutter flameholder with a relatively long attached recirculation zone. Combustor streamlines were traced in cold flow tests at ambient pressure. The amount of secondary air entrainment in the recirculation zones of the flameholders was determined by tracer gas testing at cold flow ambient pressure conditions. Combustion tests were caried out at entrance conditions of 0.5 MPa/630K and emission of NOx, CO and unburned hydrocarbons were measured along with lean stability and flashback limits. The degree of entrainment increases as dilution air injection decreases. Flashback appears to be a function of overall equivalence ratio and resistance to flashback increases with increasing combustor entrance velocity. Lean stability limit appears to be a function of both primary zone and flameholder recirculation zone equivalence ratios and resistance to lean blowout increases with increasing combustor entrance velocity.
NASA Astrophysics Data System (ADS)
Shi, Shukai; Wang, Xin; Chen, Weimin; Chen, Minzhi; Zhou, Xiaoyan
2018-05-01
The as-prepared lignin-based activated carbon (LAC) was post-treated by urea and radio-frequency cold plasma separately. The obtained results demonstrated that the BET surface and total volumes of the LAC and plasma-treated LACs were greater than the urea-modified sample. The analysis of surface elemental composition showed that the nitrogen content of urea-modified LAC and nitrogen plasma-treated LAC are 3.79% and 2.62% higher than that of original LAC respectively, while the oxygen content of air plasma-treated LAC is 10.23% higher than that of original LAC. The Fe(III) ions adsorbed studies with pseudo-second order kinetic model revealed that urea-modified LAC had faster chemisorption rates while air plasma-treated LAC had larger adsorption capacity within 3 h. Moreover, the adsorption capacity and chemisorption rates of LAC post-treated by nitrogen plasma are inferior to the air plasma-treated LAC.
Long-term changes in the hydroclimatic characteristics in the Baikal region
NASA Astrophysics Data System (ADS)
Voropay, N. N.; Kichigina, N. V.
2018-01-01
Since the end of the 19th century, global air temperature has been increasing. The period after 1976 is called the period of the most intensive warming. In Russia, the average annual air temperature rises at a rate of + 0.43 ° C / 10 years. The change of precipitation over the last 50-60 years on average in Russia is not significant. In the Baikal region, precipitation increase during the warm period (10-11%) and decrease during the cold period (4%). It is reflected on hydrological regime and the factors of river flow formation. The regional features of the hydrological regime dynamics of the Baikal region against the background of climate change are considered. Groups of the rivers with similar alternations of low water and high-water periods are allocated. Trends in runoff are analyzed. The increase in air temperature leads to intra annual redistribution of river flow. The majority of statistically significant trends of river run off are observed during the cold period of year.
Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings
NASA Astrophysics Data System (ADS)
Wegmann, Martin; Orsolini, Yvan; Zolina, Olga
2018-02-01
The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.
Southeast Asia: A Climatological Study
1997-05-01
forms an obstacle that prevents invasions of air from this high into southeast Asia. Austwrian Heat Low. This low develops during However, modified air is...Tibetan Plateau protects southeast Asia from the direct invasion of cold air from the Asiatic high and causes a very I n-AMar, V strong baroclinic zone...of Tonkin. more than 1,500 species of woody plants in Vietnam. At the Gulf, the Red River valley-the economic There are also numerous species of woody
Stanišić Stojić, Svetlana; Stanišić, Nemanja; Stojić, Andreja
2016-07-11
To propose a new method for including the cumulative mid-term effects of air pollution in the traditional Poisson regression model and compare the temperature-related mortality risk estimates, before and after including air pollution data. The analysis comprised a total of 56,920 residents aged 65 years or older who died from circulatory and respiratory diseases in Belgrade, Serbia, and daily mean PM10, NO2, SO2 and soot concentrations obtained for the period 2009-2014. After accounting for the cumulative effects of air pollutants, the risk associated with cold temperatures was significantly lower and the overall temperature-attributable risk decreased from 8.80 to 3.00 %. Furthermore, the optimum range of temperature, within which no excess temperature-related mortality is expected to occur, was very broad, between -5 and 21 °C, which differs from the previous findings that most of the attributable deaths were associated with mild temperatures. These results suggest that, in polluted areas of developing countries, most of the mortality risk, previously attributed to cold temperatures, can be explained by the mid-term effects of air pollution. The results also showed that the estimated relative importance of PM10 was the smallest of four examined pollutant species, and thus, including PM10 data only is clearly not the most effective way to control for the effects of air pollution.
Comparison of Vertical Soundings and Sidewall Air Temperature Measurements in a Small Alpine Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, Charles D.; Eisenbach, Stefan; Pospichal, Bernhard
2004-11-01
Tethered balloon soundings from two sites on the floor of a 1-km diameter limestone sinkhole in the Eastern Alps are compared with pseudo-vertical temperature ‘soundings’ from three lines of temperature data loggers on the basin’s northwest, southwest and southeast sidewalls. Under stable nighttime conditions with low background winds, the pseudo-vertical profiles from all three lines were good proxies for free air temperature soundings over the basin center, with a mean nighttime cold temperature bias of about 0.4°C and a standard deviation of 0.4°C. Cold biases were highest in the upper basin where relatively warm air subsides to replace air thatmore » spills out of the basin through the lowest altitude saddle. On a windy night, standard deviations increased to 1 - 2°C. After sunrise, the varying exposures of the data loggers to sunlight made the pseudo-vertical profiles less useful as proxies for free air soundings. The good correspondence between sidewall and free air temperatures during high static stability conditions suggests that sidewall soundings will prove useful in monitoring temperatures and vertical temperature gradients in the sinkhole. The sidewall soundings can produce more frequent profiles at less cost than tethersondes or rawinsondes, and provide valuable advantages for some types of meteorological analyses.« less
... Causes Dry skin can be caused by: The climate, such as cold, dry winter air or hot, ... Medical Dermatology, Associate Professor of Dermatology, Mayo Medical School, Scottsdale, AZ. Also reviewed by David Zieve, MD, ...
Two-phase gas-liquid flow characteristics inside a plate heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilpueng, Kitti; Wongwises, Somchai
In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-watermore » mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)« less
NASA Astrophysics Data System (ADS)
Gaal, Nikolett; Ihasz, Istvan
2013-04-01
We aimed to analyze the cold drops and the upper level lows formed in the middle troposphere - which are often difficult to be predicted - by means of the statistical methods and case studies. Cold drops are often followed by intensive events such as heavy rainfall, rainstorm, at times tubas and non mesocyclonical tornadoes. Due to the above mentioned events and the incentive of Aviation and Severe Weather Forecasting Division at Hungarian Meteorological Service, the phenomenon was analyzed in a complex way by a self-developed multiple method. Upper-Level Lows (ULL-s) are closed; cyclonically circulating eddies isolated from the main western stream in the middle and upper troposphere. They are also sometimes called "cold drops" because the air within an Upper Level low is colder than in its surroundings. The cold air within usually does not show up on the surface, meaning the vertical temperature gradient is high, which in turn causes instability and heavy storms, especially during the summer. An ULL-s diameter is about a couple hundred km-s, so it looks like a miniature cyclone. ERA INTERIM is the current state of reanalysis that is still in development. It also has the best possible spatial resolution, which leads to its usage in a wide area of fields. Our studies focused mainly on the cold drops' statistics and meteorology, as well as a few case studies. Since ULL's occur rarely, we developed a new ULL-recognition process to increase the number of samples available. First of all, we gathered 70days when cold drops occurred in the past 10 years. Then we analyzed them in 6-hour periods, for a total of 280 separate time periods. Finally, we have four main case studies in the paper. In the future, we would like to run further tests with our ULL-recognition algorithm to study the last 30 years of cold drops, and we would also like to experiment more with ULL forecasting as well.
Influence of Northeast Monsoon cold surges on air quality in Southeast Asia
NASA Astrophysics Data System (ADS)
Ashfold, M. J.; Latif, M. T.; Samah, A. A.; Mead, M. I.; Harris, N. R. P.
2017-10-01
Ozone (O3) is an important ground-level pollutant. O3 levels and emissions of O3 precursors have increased significantly over recent decades in East Asia and export of this O3 eastward across the Pacific Ocean is well documented. Here we show that East Asian O3 is also transported southward to tropical Southeast (SE) Asia during the Northeast Monsoon (NEM) season (defined as November to February), and that this transport pathway is especially strong during 'cold surges'. Our analysis employs reanalysis data and measurements from surface sites in Peninsular Malaysia, both covering 2003-2012, along with trajectory calculations. Using a cold surge index (northerly winds at 925 hPa averaged over 105-110°E, 5°N) to define sub-seasonal strengthening of the NEM winds, we find the largest changes in a region covering much of the Indochinese Peninsula and surrounding seas. Here, the levels of O3 and another key pollutant, carbon monoxide, calculated by the Monitoring Atmospheric Composition and Climate (MACC) Reanalysis are on average elevated by, respectively, >40% (∼15 ppb) and >60% (∼80 ppb) during cold surges. Further, in the broader region of SE Asia local afternoon exceedances of the World Health Organization's air quality guideline for O3 (100 μg m-3, or ∼50 ppb, averaged over 8 h) largely occur during these cold surges. Day-to-day variations in available O3 observations at surface sites on the east coast of Peninsular Malaysia and in corresponding parts of the MACC Reanalysis are similar, and are clearly linked to cold surges. However, observed O3 levels are typically ∼10-20 ppb lower than the MACC Reanalysis. We show that these observations are also subject to influence from local urban pollution. In agreement with past work, we find year-to-year variations in cold surge activity related to the El Nino-Southern Oscillation (ENSO), but this does not appear to be the dominant influence of ENSO on atmospheric composition in this region. Overall, our study indicates that the influence of East Asian pollution on air quality in SE Asia during the NEM could be at least as large as the corresponding, well-studied spring-time influence on North America. Both an enhanced regional observational capability and chemical modelling studies will be required to fully untangle the importance of this long-range influence relative to local processes.
Heated, humidified air for the common cold.
Singh, M
2001-01-01
Heated, humidified air is used by common cold sufferers since the invention of the steam kettle. There is scientific literature available investigating this mode of therapy using a rhinotherm. The present reviews addresses to the use of hot, humid air in common cold. To assess the effects of inhaling heated water vapour with the help of a rhinotherm (an equipment designed to deliver heated water vapour to a person's nasal cavity), in the treatment of the common cold by comparing a. symptoms b. viral shedding c. nasal resistance after a natural or experimentally induced common cold. We searched MEDLINE with MeSH headings: common cold, rhinopharyngitis, inhalation, steam, heated vapour, rhinothermy, till July 1999. EMBASE, Current Contents, review articles, cross references were also searched. Attempts were also made to contact the manufacturers for any unpublished data. Randomized trials using heated water vapour in a standardized way in patients with the common cold or volunteers with experimental induction of rhinovirus infection were included in the review. All the articles retrieved were initially subjected to a review for inclusion / exclusion criteria. Review articles, editorials, abstracts with inadequate outcome description were excluded. Studies selected for inclusion were subjected to a methodological assessment. The results of a systematic review of six trials with 319 participants, support the use of warm vapour inhalations in the common cold in terms of relief of symptoms (Odds Ratio with 95 % CI 0.31, 0.16-0.60, Relative risk 0.56, 0.4-0.79). Results on symptom score indices were equivocal. None of the studies demonstrated a worsening of clinical symptom scores. One study demonstrated increased nasal resistance one week after steam inhalation in contrast to an earlier study which showed improvement in the nasal resistance. There was no evidence of decreased viral shedding measured by virus isolation in the nasal secretions or measurement of viral titres in nasal washings among treatment group. The rhinovirus titres in the nasal washings from the treatment group were the same as those of the placebo group on day one prior to the treatment and on all four days after the treatment. The area under curve was also similar in the placebo and treatment groups for titres of virus in the nasal washings as were the average viral titres across five days of follow up, the maximum values after treatment, and viral shedding velocity i.e. amount of virus shed per day. Minor side effects due to thermal stress were reported in all the studies. Three trials demonstrated beneficial effects on the symptoms of the common cold. One study from Israel showed a decrease in nasal resistance measured by peak nasal expiratory and inspiratory flow rate. Studies done in North America failed to show any objective improvement in outcome measures with the study intervention. A multi-centre double blind randomised controlled trial testing this therapy with uniform outcome measures is recommended.
High in the Cold, Thin Air: Risks and Benefits.
ERIC Educational Resources Information Center
Schoene, Robert B.
1980-01-01
Health professionals should instruct mountain enthusiasts about the prevention and early treatment of the medical complications of acute high altitude exposure. Several clinical manifestations are described. (CJ)
21 CFR 211.52 - Washing and toilet facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities... cold water, soap or detergent, air driers or single-service towels, and clean toilet facilities easily...
21 CFR 211.52 - Washing and toilet facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities... cold water, soap or detergent, air driers or single-service towels, and clean toilet facilities easily...
21 CFR 211.52 - Washing and toilet facilities.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities... cold water, soap or detergent, air driers or single-service towels, and clean toilet facilities easily...
21 CFR 211.52 - Washing and toilet facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities... cold water, soap or detergent, air driers or single-service towels, and clean toilet facilities easily...
21 CFR 211.52 - Washing and toilet facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities... cold water, soap or detergent, air driers or single-service towels, and clean toilet facilities easily...
Reducing the risk of unplanned perioperative hypothermia.
Lynch, Susan; Dixon, Jacqueline; Leary, Donna
2010-11-01
Maintaining normothermia is important for patient safety, positive surgical outcomes, and increased patient satisfaction. Causes of unplanned hypothermia in the OR include cold room temperatures, the effects of anesthesia, cold IV and irrigation fluids, skin and wound exposure, and patient risk factors. Nurses at Riddle Memorial Hospital in Media, Pennsylvania, performed a quality improvement project to evaluate the effectiveness of using warm blankets, warm irrigation fluids, or forced-air warming on perioperative patients to maintain their core temperature during the perioperative experience. Results of the project showed that 75% of patients who received forced-air warming perioperatively had temperatures that reached or were maintained at 36° C (96.8° F) or higher within 15 minutes after leaving the OR. Copyright © 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Preliminary economic analysis of aquifer winter-chill storage at the John F. Kennedy airport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, E.C.; Thomas, J.F.
A conceptual design was formulated in conjuction with a cost analysis to determine the feasibility of retrofitting the present John F. Kennedy (JFK) airport air-conditioning system with an aquifer cold water storage system. It appears technically feasible to chill and store aquifer water at the airport site during the winter months for later air-conditioning use. However, the economic analysis shows that although a significant energy savings is realized, the money saved from reduced energy costs would not be enough to recover the necessary capital investment over a 20-year period. JFK airport may be a poor economic choice for an aquifermore » cold water storage demonstration site due to site specific problems, and other sites may provide economic incentive.« less
NASA Astrophysics Data System (ADS)
Raatikka, Veli-Pekka; Rytkönen, Mika; Näyhä, Simo; Hassi, Juhani
2007-05-01
The prevalence of cold-related complaints and symptoms in the general population has remained unknown. As part of the nationwide FINRISK 2002 health survey performed in Finland, 8,723 people aged 25 64 years filled in a questionnaire asking about the number of hours spent weekly in cold air, their sensations during cold exposure, cold-related complaints, symptoms of diseases, and degradation of performance. Cold thermal sensations at +5°C to -5°C were reported by 35% of men and 46% of women. Almost all subjects reported at least some cold-related complaints, most commonly musculoskeletal pain (men 30%, women 27%), followed by respiratory (25% / 29%), white finger (15% / 18%) and episodic peripheral circulation symptoms (12% / 15%). Decreased mental or physical performance in cold was reported by 75% of men and 70% of women, most commonly impairing manual dexterity and tactile sense. With declining temperature, the first symptom to emerge was pain in the elbow or the forearm (at -3°C), followed by increased excretion of mucus from the lungs (-5°C), while most other symptoms appeared only at lower temperatures of -15°C to -20°C. Most symptoms showed little or no association with the weekly duration of exposure, with the exception of cold-induced pain at most sites. Although, in general, Finns are well adapted to the cold climate, the high prevalence of cold-related complaints poses a challenge to the health care system in terms of decreased performance and the possibility that such symptoms predict more serious health effects, such as increased mortality.
Gronlund, Carina J; Sullivan, Kyle P; Kefelegn, Yonathan; Cameron, Lorraine; O'Neill, Marie S
2018-08-01
Cold and hot weather are associated with mortality and morbidity. Although the burden of temperature-associated mortality may shift towards high temperatures in the future, cold temperatures may represent a greater current-day problem in temperate cities. Hot and cold temperature vulnerabilities may coincide across several personal and neighborhood characteristics, suggesting opportunities for increasing present and future resilience to extreme temperatures. We present a narrative literature review encompassing the epidemiology of cold- and heat-related mortality and morbidity, related physiologic and environmental mechanisms, and municipal responses to hot and cold weather, illustrated by Detroit, Michigan, USA, a financially burdened city in an economically diverse metropolitan area. The Detroit area experiences sharp increases in mortality and hospitalizations with extreme heat, while cold temperatures are associated with more gradual increases in mortality, with no clear threshold. Interventions such as heating and cooling centers may reduce but not eliminate temperature-associated health problems. Furthermore, direct hemodynamic responses to cold, sudden exertion, poor indoor air quality and respiratory epidemics likely contribute to cold-related mortality. Short- and long-term interventions to enhance energy and housing security and housing quality may reduce temperature-related health problems. Extreme temperatures can increase morbidity and mortality in municipalities like Detroit that experience both extreme heat and prolonged cold seasons amidst large socioeconomic disparities. The similarities in physiologic and built-environment vulnerabilities to both hot and cold weather suggest prioritization of strategies that address both present-day cold and near-future heat concerns. Copyright © 2018. Published by Elsevier B.V.
Chan, Albert P C; Song, Wenfang; Yang, Yang
2015-01-01
This study aims to determine the appropriate microclimate cooling systems (MCSs) to reduce heat stress and improve human performance of occupational workers and their practicality in the occupational field. Meta-analysis was employed to summarize, analyze, and compare the effects of various MCSs on human performance with corresponding physiological and psychological responses, thereby providing solid suggestions for selecting suitable MCSs for occupational workers. Wearing MCSs significantly attenuated the increases in core temperature (-0.34 °C/h) and sweating rate (-0.30 L/h), and significantly improved human performance (+29.9%, effect size [EFS] = 1.1) compared with no cooling condition (CON). Cold air-cooled garments (ACG-Cs; +106.2%, EFS = 2.32) exhibited greater effects on improving human performance among various microclimate cooling garments (MCGs), followed by liquid cooling garments (LCGs; +68.1%, EFS = 1.86) and hybrid cooling garment combining air and liquid cooling (HBCG-AL; +59.1%, EFS=3.38), natural air-cooled garments (ACG-Ns; +39.9%, EFS = 1.12), and phase change material cooling garments (PCMCGs; +19.5%, EFS = 1.2). Performance improvement was observed to be positively and linearly correlated to the differences of core temperature increase rate (r = 0.65, p < 0.01) and sweating rate (r = 0.80, p < 0.001) between MCSs and CON. Considering their application in industrial settings, ACG-Cs, LCGs, and HBCG-AL are practical for work, in which workers do not move frequently, whereas ACG-Ns and PCMCGs are more applicable for the majority of occupational workers. Further enhancement of the cooling efficiency of these two cooling strategies should be initiated. Copyright © 2015 Elsevier Ltd. All rights reserved.
IEA HPT ANNEX 41 – Cold climate heat pumps: US country report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groll, Eckhard A.; Baxter, Van D.
In 2012 the International Energy Agency (IEA) Heat Pump Programme (now the Heat Pump Technologies (HPT) program) established Annex 41 to investigate technology solutions to improve performance of heat pumps for cold climates. Four IEA HPT member countries are participating in the Annex – Austria, Canada, Japan, and the United States (U.S.). The principal focus of Annex 41 is on electrically driven air-source heat pumps (ASHP) since that system type has the lowest installation cost of all heat pump alternatives. They also have the most significant performance challenges given their inherent efficiency and capacity issues at cold outdoor temperatures. Availabilitymore » of ASHPs with improved low ambient performance would help bring about a much stronger heat pump market presence in cold areas, which today rely predominantly on fossil fuel furnace heating systems.« less
Mechanisms for secondary eyewall formation, and cold-air damming: Tropical cyclone interactions
NASA Astrophysics Data System (ADS)
Garcia-Rivera, Jose Manuel
This dissertation consists of two topics, the mechanisms leading to secondary eyewall formation in tropical cyclones, and effects of tropical cyclone---cold-air interactions on heavy precipitation. The first research topic involves a proposed coupled mechanism for secondary eyewall formation (SEF; initiation of an eyewall replacement cycle), using a WRF-ARW simulation of Hurricane Katrina (2005). The storm underwent a series of structural changes that were deemed necessary for the cycle to begin. These included a significant increase of rainband activity in the SEF region and the eventual vertical coupling of azimuthal-mean updrafts that led to cycle initiation. Increased rainband activity outside the primary eyewall in the hours before was mostly related to an intensifying main feeder band. Close to initiation, an updraft (explained by a pre-existing hypothesis) emerged outside the primary eyewall near the top of the boundary layer (BL). This updraft then intensified and extended both upward and outward, while the storm intensified and approached SEF. Eventually, the updraft coupled with the upward motion associated with rainband-related convection near the SEF radius. Once the alignment occurred, the deep updraft quickly organized to support deep convection that led to SEF within hours of initiation. The coupling of updrafts emanating from the BL with the environmental upward motion associated with the pre-existing rainband activity is proposed to be the key for SEF initiation in this case. The second topic investigates the interactions between an Appalachian cold-air damming event and the near-passage of Tropical Storm Kyle (2002) along the coastal Carolinas, as assessed by using a numerical weather prediction model. While the storm moved along the coastline, it began extra-tropical transition, bringing heavy rains to both the coastal region and inland towards the Piedmont of North Carolina. Our goal is to quantify the effects of both interacting weather systems on heavy precipitation in order to improve the dynamical understanding of such effects, as well as precipitation forecasts in the study region. A series of sensitivity tests were performed to isolate and quantify the effects of both systems on the total accumulated precipitation. It was found that (a) for this type of along-coast track, the pre-existing cold-air damming played only a minor role on the total accumulated precipitation, (b) the outer circulation of Kyle weakened the cold-air damming due to a redirection of the mean flow away from the east side of the Appalachian Mountains, and (c) the combination of Kyle with a shortwave mid to upper-level trough and a surface coastal front were responsible for the heavy precipitation experienced in the study area through the advection of moisture, vorticity, and the forcing of upward motion.
Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation
Sunday, Jennifer M.; Bates, Amanda E.; Kearney, Michael R.; Colwell, Robert K.; Dulvy, Nicholas K.; Longino, John T.; Huey, Raymond B.
2014-01-01
Physiological thermal-tolerance limits of terrestrial ectotherms often exceed local air temperatures, implying a high degree of thermal safety (an excess of warm or cold thermal tolerance). However, air temperatures can be very different from the equilibrium body temperature of an individual ectotherm. Here, we compile thermal-tolerance limits of ectotherms across a wide range of latitudes and elevations and compare these thermal limits both to air and to operative body temperatures (theoretically equilibrated body temperatures) of small ectothermic animals during the warmest and coldest times of the year. We show that extreme operative body temperatures in exposed habitats match or exceed the physiological thermal limits of most ectotherms. Therefore, contrary to previous findings using air temperatures, most ectotherms do not have a physiological thermal-safety margin. They must therefore rely on behavior to avoid overheating during the warmest times, especially in the lowland tropics. Likewise, species living at temperate latitudes and in alpine habitats must retreat to avoid lethal cold exposure. Behavioral plasticity of habitat use and the energetic consequences of thermal retreats are therefore critical aspects of species’ vulnerability to climate warming and extreme events. PMID:24616528
NASA Astrophysics Data System (ADS)
de Szoeke, S. P.
2017-12-01
Averaged over the tropical marine boundary layer (BL), 130 W m-2 turbulent surface moist static energy (MSE) flux, 120 W m-2 of which is evaporation, is balanced by upward MSE flux at the BL top due to 1) incorporation of cold air by downdrafts from deep convective clouds, and 2) turbulent entrainment of dry air into the BL. Cold saturated downdraft air, and warm clear air entrained into the BL have distinct thermodynamic properties. This work observationally quantifies their respective MSE fluxes in the central Indian Ocean in 2011, under different convective conditions of the intraseasonal (40-90 day) Madden Julian oscillation (MJO). Under convectively suppressed conditions, entrainment and downdraft fluxes export equal shares (60 W m-2) of MSE from the BL. Downdraft fluxes are more variable, increasing for stronger convection. In the convectively active phase of the MJO, downdrafts export 90 W m-2 from the BL, compared to 40 W m-2 by entrainment. These processes that control the internal, latent (condensation), and MSE of the tropical marine atmospheric BL determine the parcel buoyancy and strength of tropical deep convection.
NASA Astrophysics Data System (ADS)
Wayand, N. E.; Stimberis, J.; Zagrodnik, J.; Mass, C.; Lundquist, J. D.
2016-12-01
Low-level cold air from eastern Washington state often flows westward through mountain passes in the Washington Cascades, creating localized inversions and locally reducing climatological temperatures. The persistence of this inversion during a frontal passage can result in complex patterns of snow and rain that are difficult to predict. Yet, these predictions are critical to support highway avalanche control, ski resort operations, and modeling of headwater snowpack storage. In this study we used observations of precipitation phase from a disdrometer and snow depth sensors across Snoqualmie Pass, WA, to evaluate surface-air-temperature-based and mesoscale-model-based predictions of precipitation phase during the anomalously warm 2014-2015 winter. The skill of surface-based methods was greatly improved by using air temperature from a nearby higher-elevation station, which was less impacted by low-level inversions. Alternatively, we found a hybrid method that combines surface-based predictions with output from the Weather Research and Forecasting mesoscale model to have improved skill over both parent models. These results suggest that prediction of precipitation phase in mountain passes can be improved by incorporating observations or models from above the surface layer.
Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation.
Sunday, Jennifer M; Bates, Amanda E; Kearney, Michael R; Colwell, Robert K; Dulvy, Nicholas K; Longino, John T; Huey, Raymond B
2014-04-15
Physiological thermal-tolerance limits of terrestrial ectotherms often exceed local air temperatures, implying a high degree of thermal safety (an excess of warm or cold thermal tolerance). However, air temperatures can be very different from the equilibrium body temperature of an individual ectotherm. Here, we compile thermal-tolerance limits of ectotherms across a wide range of latitudes and elevations and compare these thermal limits both to air and to operative body temperatures (theoretically equilibrated body temperatures) of small ectothermic animals during the warmest and coldest times of the year. We show that extreme operative body temperatures in exposed habitats match or exceed the physiological thermal limits of most ectotherms. Therefore, contrary to previous findings using air temperatures, most ectotherms do not have a physiological thermal-safety margin. They must therefore rely on behavior to avoid overheating during the warmest times, especially in the lowland tropics. Likewise, species living at temperate latitudes and in alpine habitats must retreat to avoid lethal cold exposure. Behavioral plasticity of habitat use and the energetic consequences of thermal retreats are therefore critical aspects of species' vulnerability to climate warming and extreme events.
... Data SAFETY Floods Tsunami Beach Hazards Wildfire Cold Tornadoes Fog Air Quality Heat Hurricanes Lightning Safe Boating ... Winter Weather Forecasts River Flooding Latest Warnings Thunderstorm/Tornado Outlook Hurricanes Fire Weather Outlooks UV Alerts Drought ...
Emerging Threats, Force Structures, and the Role of Air Power in Korea
2000-01-01
Cold War. From 1948 to 1989 two different ideolo- gies, Communism and Democracy, struggled for the hearts and minds of the people of the world. It...and eventually, space-based reconnaissance intelligence and communication sys- tems. Throughout the Cold War, large standing armies and navies...were still necessary to meet the threat. The two centers of Communism were the Soviet Union and China. To respond to the challenge from the spread of
Helfert, S; Reimer, M; Barnscheid, L; Hüllemann, P; Rengelshausen, J; Keller, T; Baron, R; Binder, A
2018-05-14
Human experimental pain models in healthy subjects offer unique possibilities to study mechanisms of pain within a defined setting of expected pain symptoms, signs and mechanisms. Previous trials in healthy subjects demonstrated that topical application of 40% menthol is suitable to induce cold hyperalgesia. The objective of this study was to evaluate the impact of suggestion on this experimental human pain model. The study was performed within a single-centre, randomized, placebo-controlled, double-blind, two-period crossover trial in a cohort of 16 healthy subjects. Subjects were tested twice after topical menthol application (40% dissolved in ethanol) and twice after ethanol (as placebo) application. In the style of a balanced placebo trial design, the subjects received during half of the testing the correct information about the applied substance (topical menthol or ethanol) and during half of the testing the incorrect information, leading to four tested conditions (treatment conditions: menthol-told-menthol and menthol-told-ethanol; placebo conditions: ethanol-told-menthol and ethanol-told-ethanol). Cold but not mechanical hyperalgesia was reliably induced by the model. The cold pain threshold decreased in both treatment conditions regardless whether true or false information was given. Minor suggestion effects were found in subjects with prior ethanol application. The menthol model is a reliable, nonsuggestible model to induce cold hyperalgesia. Mechanical hyperalgesia is not as reliable to induce. Cold hyperalgesia may be investigated under unbiased and suggestion-free conditions using the menthol model of pain. © 2018 European Pain Federation - EFIC®.
Liu, Xin; Li, Jun; Zheng, Qian; Bing, Haijian; Zhang, Ruijie; Wang, Yan; Luo, Chunling; Liu, Xiang; Wu, Yanhong; Pan, Suhong; Zhang, Gan
2014-12-16
Mountains are observed to preferentially accumulate persistent organic pollutants (POPs) at higher altitude due to the cold condensation effect. Forest soils characterized by high organic carbon are important for terrestrial storage of POPs. To investigate the dominant factor controlling the altitudinal distribution of POPs in mountainous areas, we measured concentrations of polychlorinated biphenyls (PCBs) in different environmental matrices (soil, moss, and air) from nine elevations on the eastern slope of Mt. Gongga, the highest mountain in Sichuan Province on the Tibetan Plateau. The concentrations of 24 measured PCBs ranged from 41 to 510 pg/g dry weight (dw) (mean: 260 pg/g dw) in the O-horizon soil, 280 to 1200 pg/g dw (mean: 740 pg/g dw) in moss, and 33 to 60 pg/m(3) (mean: 47 pg/m(3)) in air. Soil organic carbon was a key determinant explaining 75% of the variation in concentration along the altitudinal gradient. Across all of the sampling sites, the average contribution of the forest filter effect (FFE) was greater than that of the mountain cold trapping effect based on principal components analysis and multiple linear regression. Our results deviate from the thermodynamic theory involving cold condensation at high altitudes of mountain areas and highlight the importance of the FFE.
Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations
NASA Astrophysics Data System (ADS)
Xie, Z.
2015-12-01
In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.
1999-03-01
Sullivan, Jr., B.S. First Lieutenant, USAF Approved: Lt Col Michael K. Walters Date Chair, Advisory Committee Lt Col Cecilia A. Miner Date Member...constant for dry air (287 J K-1 kg-’), cp is the specific heat of air at constant pressure (1004 J K- kg’), L is the latent heat of evaporation (2.25...x 106 J kg’), w is the mixing ration (kg kg1). The existence of low 0e air aloft is important because the dry, cold air provides an atmosphere that is
Liquid metal reactor air cooling baffle
Hunsbedt, Anstein
1994-01-01
A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.
Liquid metal reactor air cooling baffle
Hunsbedt, A.
1994-08-16
A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.
The Cold War and Beyond: Chronology of the United States Air Force, 1947-1997
1997-01-01
aircraft lands on the ice at McMurdo Sound after a 2,200-mile flight from Christchurch, New Zealand . 15 November: Tuy Hoa AB, the first air base in South...by two F-15s and an E-3A to New Zealand , Malaysia, Singapore, and Thailand to demonstrate these new aircraft. 1 October: Operation Elf is initiated...Extender tanker from the 22d Air Refueling Wing, March AFB, California, operates for the first time from Christchurch International Airport, New Zealand
Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris)
Bormashenko, Edward; Shapira, Yekaterina; Grynyov, Roman; Whyman, Gene; Bormashenko, Yelena; Drori, Elyashiv
2015-01-01
The impact of cold radiofrequency air plasma on the wetting properties and water imbibition of beans (Phaseolus vulgaris) was studied. The influence of plasma on wetting of a cotyledon and seed coat (testa) was elucidated. It was established that cold plasma treatment leads to hydrophilization of the cotyledon and tissues constituting the testa when they are separately exposed to plasma. By contrast, when the entire bean is exposed to plasma treatment, only the external surface of the bean is hydrophilized by the cold plasma. Water imbibition by plasma-treated beans was studied. Plasma treatment markedly accelerates the water absorption. The crucial role of a micropyle in the process of water imbibition was established. It was established that the final percentage of germination was almost the same in the cases of plasma-treated, untreated, and vacuum-pumped samples. However, the speed of germination was markedly higher for the plasma-treated samples. The influence of the vacuum pumping involved in the cold plasma treatment on the germination was also clarified. PMID:25948708
Ha, Sandie; Zhu, Yeyi; Liu, Danping; Sherman, Seth; Mendola, Pauline
2017-01-01
Background Exposures to extreme ambient temperature and air pollution are linked to adverse birth outcomes, but the associations with small for gestational age (SGA) and term low birthweight (tLBW) are unclear. We aimed to investigate exposures to site-specific temperature extremes and selected criteria air pollutants in relation to SGA and tLBW. Methods We linked medical records of 220,572 singleton births (2002–2008) from 12 US sites to local temperature estimated by the Weather Research and Forecasting model, and air pollution estimated by modified Community Multiscale Air Quality models. Exposures to hot (>95th percentile) and cold (<5th percentile) were defined using site-specific distributions of daily temperature over three-month preconception, each trimester, and whole-pregnancy. Average concentrations of five criteria air pollutants and six fine particulate matter constituents were also calculated for these pregnancy windows. Poisson regression with generalized estimating equations calculated the relative risks (RR) and 95% confidence intervals for SGA (weight <10th percentile conditional on gestational age and sex) and tLBW (≥37 weeks and <2,500 grams) associated with an interquartile range increment of air pollutants, and cold or hot compared to mild (5–95th percentile) temperature. Models were adjusted for maternal demographics, lifestyle, and clinical factors, season, and site. Results Compared to mild temperature, cold exposure during trimester 2 [RR: 1.21 (1.05–1.38)], trimester 3 [RR: 1.18 (1.03–1.36)], and whole-pregnancy [RR: 2.57 (2.27–2.91)]; and hot exposure during trimester 3 [RR: 1.31 (1.15–1.50)] and whole-pregnancy [RR: 2.49 (2.20–2.83)] increased tLBW risk. No consistent association was observed between temperature and SGA. Air pollutant analyses were generally null but preconception elemental carbon was associated with a 4% increase in SGA while dust particles increased tLBW by 10%. Particulate matter ≤10 microns in the second trimester and whole pregnancy also appeared related to tLBW. Conclusions: Our findings suggest prenatal exposures to extreme ambient temperature relative to usual environment may increase tLBW risk. Given concerns related to climate change, these findings merit further investigation. PMID:28258738
Code of Federal Regulations, 2014 CFR
2014-10-01
... or four occupants. (b) Water. Each lavatory must be provided with hot and cold potable running water... by a collective bargaining agreement, individual hand towels, of cloth or paper, warm air blowers, or...
Code of Federal Regulations, 2012 CFR
2012-10-01
... or four occupants. (b) Water. Each lavatory must be provided with hot and cold potable running water... by a collective bargaining agreement, individual hand towels, of cloth or paper, warm air blowers, or...
Code of Federal Regulations, 2013 CFR
2013-10-01
... or four occupants. (b) Water. Each lavatory must be provided with hot and cold potable running water... by a collective bargaining agreement, individual hand towels, of cloth or paper, warm air blowers, or...
NASA Astrophysics Data System (ADS)
Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph K.
2017-11-01
We investigate nocturnal flow dynamics and temperature behaviour near the surface of a 170-m long gentle slope in a mid-range mountain valley. In contrast to many existing studies focusing on locations with significant topographic variations, gentle slopes cover a greater spatial extent of the Earth's surface. Air temperatures were measured using the high-resolution distributed-temperature-sensing method within a two-dimensional fibre-optic array in the lowest metre above the surface. The main objectives are to characterize the spatio-temporal patterns in the near-surface temperature and flow dynamics, and quantify their responses to the microtopography and land cover. For the duration of the experiment, including even clear-sky nights with weak winds and strong radiative forcing, the classical cold-air drainage predicted by theory could not be detected. In contrast, we show that the airflow for the two dominant flow modes originates non-locally. The most abundant flow mode is characterized by vertically-decoupled layers featuring a near-surface flow perpendicular to the slope and strong stable stratification, which contradicts the expectation of a gravity-driven downslope flow of locally produced cold air. Differences in microtopography and land cover clearly affect spatio-temporal temperature perturbations. The second most abundant flow mode is characterized by strong mixing, leading to vertical coupling with airflow directed down the local slope. Here variations of microtopography and land cover lead to negligible near-surface temperature perturbations. We conclude that spatio-temporal temperature perturbations, but not flow dynamics, can be predicted by microtopography, which complicates the prediction of advective-heat components and the existence and dynamics of cold-air pools in gently sloped terrain in the absence of observations.
Szulman, Gabriela Aída; Freilij, Héctor; Behrends, Ilse; Gentile, Ángela; Mallol, Javier
The episodes of bronchial obstruction at early age constitute a frequent problem in Pediatrics. The aim of this study was to evaluate the prevalence of recurrent wheezing in infants in Buenos Aires City, as well as to identify any associated factors. Cross-sectional study performed from 2011 to 2012 in the Children Hospital Ricardo Gutiérrez, Buenos Aires City, as part of the International Study of Wheezing in Infants. A validated questionnaire was applied to parents of infants aged between 12 and 15 months. The prevalence of wheezing, mostly the recurrent episodes (three or more), and their probable associated factors were evaluated. Data were statistically analyzed with χ 2 , Fisher's test, binary and logistics multiple regression analysis. The significance level was 0.05. Over 1063 infants, 58.9% (confidence interval (CI) 95% 55.9-61.9) presented at least one episode of wheezing and 26.3% (CI95% 23.8-29.9) three or more episodes (recurrent wheezing). Risk factors associated to wheezing were male gender (p=0.001), six or more episodes of cold during the first year of life (p <0.0001), age at first cold <4 months (p <0.0001); pneumonia (p <0.0001) and smoking during pregnancy (tobacco) (p=0.01). For recurrent wheezing, risk factors we considered as six or more episodes of cold during the first year of life (p <0.0001), early (< 4 month of age) onset wheezing (p <0.0001) and nocturnal wheezing (p <0.0001). The prevalence of recurrent wheezing among infants in Buenos Aires Ciy was high (26.3%). Some identified associated factors can be preventable. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
Simultaneous air transportation of the harvested heart and visceral organs for transplantation.
Aydin, U; Yazici, P; Kazimi, C; Bozoklar, A; Sozbilen, M; Zeytunlu, M; Kilic, M
2008-01-01
The purpose of this study was to evaluate the duration for organ procurement including both heart and visceral organs and outcomes of the simultaneous transportation of the teams back to the recipient hospitals. Between March 2005 and March 2007, 37/82 organ procurement was performed in the district hospitals and transported to our institution for organ transplantation. Combined heart and visceral organ procurement which was simultaneously transported to the recipient hospitals by one air vehicle was reviewed. After both the thoracic and abdominal cavities were entered, all intra-abdominal organs were mobilized allowing exposure of the inferior mesenteric vein and aorta. The supraceliac abdominal aorta was elevated. The attachments of the liver in the hilar region were incised and both kidneys and pancreas prepared for removal. After the inferior mesenteric vein and aorta were cannulated, simultaneous aortic cross-clamping was performed and cold preservation solution infused. Harvested organs were packed with ice and removed to the back table for initial preparation and packaging for air transport. The mean duration of 6 procurement procedures was 63 minutes (range 50-75 minutes) to aortic clamping, and 27.5 minutes (range, 20-40 minutes) between clamping and harvesting. Mean cold ischemia times for 6 hearts, 6 livers, 12 kidneys, 2 pancreas, and 1 small intestine were 2.4 hours (range, 2-3.5 hours), 5 hours (range, 3-8 hours), 10.3 hours (range, 8-15 hours), 6.7 hours, and 9.5 hours, respectively. No graft complication was observed to be associated with the procurement procedure. Better collaborations between surgical teams and rapid procurement techniques provide simultaneous air transportation back to the recipient hospital with reduced cold ischemia times of the visceral organs.
Using Wind and Temperature Fields to Study Dehydration Mechanisms in the Tropical Tropopause Layer
NASA Technical Reports Server (NTRS)
Pittman, Jasna; Miller, Timothy; Robertson, Franklin
2008-01-01
The tropics are the main region for troposphere-to-stratosphere transport (TST) of air. One of the dominant mechanisms that control tropical TST of water vapor is freeze-drying by the cold tropical tropopause. This mechanism is supported by evidence from satellite observations of the "tape recorder", where seasonal changes in stratospheric water vapor are in phase with seasonal changes in tropopause temperatures in the tropics. Over the last few years, however, the concept of the tropical tropopause has evolved from a single material surface to a layer called the Tropical Tropopause Layer (TTL). A recent hypothesis on dehydration mechanisms suggests that dehydration and entry point into the stratosphere are not always co-located (Holton and Gettelman, 2001). Instead, dehydration can occur during horizontal advection through Lagrangian 'cold pools', or coldest regions along a parcel's trajectory, as air ascends within the TTL while the entry point into the stratosphere occurs at a different geographical location. In this study, we investigate the impact that these Lagrangian cold pools have on TTL moisture. For this purpose, we use in situ measurements of TTL water vapor obtained aboard NASA's WB-57 aircraft over the Eastern Tropical Pacific, and we compare these measurements to minimum saturation water vapor mixing ratios obtained from three-dimensional backward trajectory calculations. Aircraft measurements show frequent unsaturated conditions, which suggest that the entry value of stratospheric water vapor in this region was not set by local saturation conditions. Trajectory calculations, driven by both ECMWF operational analysis and reanalysis winds and temperature fields, are used to explore the impact (e.g., geographical location, timing, dehydration magnitude) of the Lagrangian cold pools intercepted by the parcels sampled by the aircraft. We find noteworthy differences in the location of the Lagrangian cold pools using the two ECMWF data sets, namely influence of the Western Tropical Pacific region when using operational analysis fields versus influence of the Eastern Tropical Pacific and South America regions when using reanalysis fields. These results have a significant impact on our scientific conclusions on dehydration mechanisms affecting the air sampled by the aircraft, given that these regions have different thermodynamic and convective properties.
Air pollution and emergency department visits for depression in Edmonton, Canada.
Szyszkowicz, Mieczysław
2007-01-01
Depression is a common cause of morbidity. Sufferers are very sensitive to many external factors. Emergency department (ED) visits for this condition can be associated with the concentration of ambient air pollutants. The study objective was to examine and assess the associations between ED visits for depression and ambient air pollution. The present study analyzed 15,556 ED visits for depression (ICD-9: 311) at Edmonton hospitals between 1992 and 2002. The data were clustered based on the triplet {year, month, day of the week}. The generalized linear mixed models (GLMM) technique was used to regress the logarithm of the clustered counts for ED visits for depression on the levels of air pollutants (CO, NO2, SO2, O3, PM10 and PM2.5) and the meteorological variables. The number of ED visits for depression was analyzed separately for all patients, and males and females. An analysis by season was also conducted: for the whole year (I-XII), warm season (IV-IX), and cold season (X-III). After adjusting for temperature and relative humidity, the following increments in daily depression-related ED visits could be noted: 6.9% (95% CI: 1.3, 12.9) for carbon monoxide (CO) for all patients in warm season; 7.4% (95% CI: 0.5, 14.8) for nitrogen dioxide (NO2) for female patients in warm season; 4.5% (95% CI: 0.1, 9.1) for sulphur dioxide (SO2) for female patients in warm season; 6.9% (95% CI: 0.6, 13.6) for ground level ozone (O3, 1-day lagged) for female patients in warm season; 7.2% (95% CI: 2.7, 12.0) for particulate matter (PM10) for females in cold season; and 7.2% (95% CI: 2.0, 12.8) for particulate matter (PM2.5) for females in cold season. The findings provide support for the hypothesis that ED visits for depression are associated with exposure to ambient air pollution.
A Case Study of the Mechanisms Modulating the Evolution of Valley Fog
NASA Astrophysics Data System (ADS)
Hang, C.; Nadeau, D. F.; Gultepe, I.; Hoch, S. W.; Román-Cascón, C.; Pryor, K.; Fernando, H. J. S.; Creegan, E. D.; Leo, L. S.; Silver, Z.; Pardyjak, E. R.
2016-09-01
We present a valley fog case study in which radiation fog is modulated by topographic effects using data obtained from a field campaign conducted in Heber Valley, Utah from January 7-February 1, 2015, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. We use data collected on January 9, 2015 to gain insight into relationships between typical shallow radiation fog, turbulence, and gravity waves associated with the surrounding topography. A ≈ 10-30 m fog layer formed by radiative cooling was observed from 0720 to 0900 MST under cold air temperatures (≈-9 °C), near-saturated (relative humidity with respect to water ≈95 %), and calm wind (mostly <0.5 m s-1) conditions. Drainage flows were observed occasionally prior to fog formation, which modulated heat exchanges between air masses through the action of internal gravity waves and cold-air pool sloshing. The fog appeared to be triggered by cold-air advection from the south (≈200°) at 0700 MST. Quasi-periodic oscillations were observed before and during the fog event with a time period of about 15 min. These oscillations were detected in surface pressure, temperature, sensible heat flux, incoming longwave radiation, and turbulent kinetic energy measurements. We hypothesize that the quasi-periodic oscillations were caused by atmospheric gravity waves with a time period of about 10-20 min based on wavelet analysis. During the fog event, internal gravity waves led to about 1 °C fluctuations in air temperatures. After 0835 MST when net radiation became positive, fog started to dissipate due to the surface heating and heat absorption by the fog particles. Overall, this case study provides a concrete example of how fog evolution is modulated by very weak thermal circulations in mountainous terrain and illustrates the need for high density vertical and horizontal measurements to ensure that the highly spatially varying physics in complex terrain are sufficient for hypothesis testing.
Vertical Transport by Coastal Mesoscale Convective Systems
NASA Astrophysics Data System (ADS)
Lombardo, K.; Kading, T.
2016-12-01
This work is part of an ongoing investigation of coastal mesoscale convective systems (MCSs), including changes in vertical transport of boundary layer air by storms moving from inland to offshore. The density of a storm's cold pool versus that of the offshore marine atmospheric boundary layer (MABL), in part, determines the ability of the storm to successfully cross the coast, the mechanism driving storm propagation, and the ability of the storm to lift air from the boundary layer aloft. The ability of an MCS to overturn boundary layer air can be especially important over the eastern US seaboard, where warm season coastal MCSs are relatively common and where large coastal population centers generate concentrated regions of pollution. Recent work numerically simulating idealized MCSs in a coastal environment has provided some insight into the physical mechanisms governing MCS coastal crossing success and the impact on vertical transport of boundary layer air. Storms are simulated using a cloud resolving model initialized with atmospheric conditions representative of a Mid-Atlantic environment. Simulations are run in 2-D at 250 m horizontal resolution with a vertical resolution stretched from 100 m in the boundary layer to 250 m aloft. The left half of the 800 km domain is configured to represent land, while the right half is assigned as water. Sensitivity experiments are conducted to quantify the influence of varying MABL structure on MCS coastal crossing success and air transport, with MABL values representative of those observed over the western Mid-Atlantic during warm season. Preliminary results indicate that when the density of the cold pool is much greater than the MABL, the storm successfully crosses the coastline, with lifting of surface parcels, which ascend through the troposphere. When the density of the cold pool is similar to that of the MABL, parcels within the MABL remain at low levels, though parcels above the MABL ascend through the troposphere.
NASA Astrophysics Data System (ADS)
Popescu, Răzvan; Vespremeanu-Stroe, Alfred; Onaca, Alexandru; Vasile, Mirela; Cruceru, Nicolae; Pop, Olimpiu
2017-10-01
Ground and air temperature monitoring, geophysical soundings and dendrological investigations were applied to a basaltic talus slope-rock glacier system from Detunata site in the Apuseni Mountains (Western Romanian Carpathians) to verify the presence of sporadic permafrost at 1020-1110 m asl, well below the regional limit of mountain permafrost. The near 0 °C mean annual ground surface temperatures imposed by the large negative annual thermal anomalies of the ground (up to 7.4 °C), together with the high resistivity values and the occurrence of trees with severe growth anomalies, support the presence of permafrost at this location. Temperature measurements and ground air circulation experiments proved that the so-called "chimney effect" is the main process favoring the ground overcooling and allowed for the construction of a model of ground air circulation in complex morphology deposits. The texture and porosity of the debris were quantified along with the local morphology in order to evaluate their role upon the chimney circulation. The debris porosity was found to be very high promoting intense ground overcooling during the cold season, including the periods of high snow cover due to the development of snow funnels. It efficiently reduces the heat transfer during summer thus contributing essentially to permafrost preservation. In compound morphologies, the depressed and low-lying features are the cold zones subjected to winter overcooling and summer chill, while the high-positioned and convex-up landforms become warm air evacuation features with positive thermal anomalies. Tree-ring measurements showed that the growth of cold-affected trees is higher during colder intervals (years to decades) probably as a consequence of the weakened katabatic air outflow during cooler summers. The dendrological analysis of multi-centennial spruces and their growth rates also provided palaeoclimatic inferences for the last 200 years. Dendrological data describe the multi-centennial chimney circulation and its response to climate variability.
Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA.
Lyons, J; Stewart, J S; Mitro, M
2010-11-01
Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0-93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Staiger, Henning; Laschewski, Gudrun; Grätz, Angelika
2012-01-01
The Perceived Temperature (PT) is an equivalent temperature based on a complete heat budget model of the human body. It has proved its suitability for numerous applications across a wide variety of scales from micro to global and is successfully used both in daily forecasts and climatological studies. PT is designed for staying outdoors and is defined as the air temperature of a reference environment in which the thermal perception would be the same as in the actual environment. The calculation is performed for a reference subject with an internal heat production of 135 W m-2 (who is walking at 4 km h-1 on flat ground). In the reference environment, the mean radiant temperature equals the air temperature and wind velocity is reduced to a slight draught. The water vapour pressure remains unchanged. Under warm/humid conditions, however, it is implicitly related to a relative humidity of 50%. Clothing is adapted in order to achieve thermal comfort. If this is impossible, cold or heat stress will occur, respectively. The assessment of thermal perception by means of PT is based on Fanger's Predicted Mean Vote (PMV) together with additional model extensions taking account of stronger deviations from thermal neutrality. This is performed using a parameterisation based on a two-node model. In the cold, it allows the mean skin temperature to drop below the comfort value. In the heat, it assesses additionally the enthalpy of sweat-moistened skin and of wet clothes. PT has the advantages of being self-explanatory due to its deviation from air temperature and being—via PMV—directly linked to a thermo-physiologically-based scale of thermal perception that is widely used and has stood the test of time. This paper explains in detail the basic equations of the human heat budget and the coefficients of the parameterisations.
Staiger, Henning; Laschewski, Gudrun; Grätz, Angelika
2012-01-01
The Perceived Temperature (PT) is an equivalent temperature based on a complete heat budget model of the human body. It has proved its suitability for numerous applications across a wide variety of scales from micro to global and is successfully used both in daily forecasts and climatological studies. PT is designed for staying outdoors and is defined as the air temperature of a reference environment in which the thermal perception would be the same as in the actual environment. The calculation is performed for a reference subject with an internal heat production of 135 W m(-2) (who is walking at 4 km h(-1) on flat ground). In the reference environment, the mean radiant temperature equals the air temperature and wind velocity is reduced to a slight draught. The water vapour pressure remains unchanged. Under warm/humid conditions, however, it is implicitly related to a relative humidity of 50%. Clothing is adapted in order to achieve thermal comfort. If this is impossible, cold or heat stress will occur, respectively. The assessment of thermal perception by means of PT is based on Fanger's Predicted Mean Vote (PMV) together with additional model extensions taking account of stronger deviations from thermal neutrality. This is performed using a parameterisation based on a two-node model. In the cold, it allows the mean skin temperature to drop below the comfort value. In the heat, it assesses additionally the enthalpy of sweat-moistened skin and of wet clothes. PT has the advantages of being self-explanatory due to its deviation from air temperature and being--via PMV--directly linked to a thermo-physiologically-based scale of thermal perception that is widely used and has stood the test of time. This paper explains in detail the basic equations of the human heat budget and the coefficients of the parameterisations.
Temperature Inversions Have Cold Bottoms.
ERIC Educational Resources Information Center
Bohren, Craig F.; Brown, Gail M.
1982-01-01
Uses discussion and illustrations of several demonstrations on air temperature differences and atmospheric stability to explain the phenomena of temperature inversions. Relates this to the smog in Los Angeles and discusses the implications. (DC)
40 CFR 63.462 - Batch cold cleaning machine standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES... splashing against tank walls or parts being cleaned. (7) The owner or operator shall ensure that, when the...
40 CFR 63.462 - Batch cold cleaning machine standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES... splashing against tank walls or parts being cleaned. (7) The owner or operator shall ensure that, when the...
40 CFR 63.462 - Batch cold cleaning machine standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES... splashing against tank walls or parts being cleaned. (7) The owner or operator shall ensure that, when the...
40 CFR 63.462 - Batch cold cleaning machine standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES... splashing against tank walls or parts being cleaned. (7) The owner or operator shall ensure that, when the...
40 CFR 63.462 - Batch cold cleaning machine standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES... splashing against tank walls or parts being cleaned. (7) The owner or operator shall ensure that, when the...
NASA Technical Reports Server (NTRS)
Viger, Brent J.; Logan, Robert F.; Fink, Jeffrey E.
1992-01-01
Specially designed bag maintains helium atmosphere around large, low-temperature duct. Easy to install, durable, and reusable. Intended to prevent cryopumping occurring if air or nitrogen allowed to make contact with cold surface of duct.
40 CFR 63.460 - Applicability and designation of source.
Code of Federal Regulations, 2013 CFR
2013-07-01
... cold, and batch cold solvent cleaning machine that uses any solvent containing methylene chloride (CAS... combination of these halogenated HAP solvents, in a total concentration greater than 5 percent by weight, as a... to owners or operators of any solvent cleaning machine meeting the applicability criteria of...
40 CFR 63.460 - Applicability and designation of source.
Code of Federal Regulations, 2014 CFR
2014-07-01
... cold, and batch cold solvent cleaning machine that uses any solvent containing methylene chloride (CAS... combination of these halogenated HAP solvents, in a total concentration greater than 5 percent by weight, as a... to owners or operators of any solvent cleaning machine meeting the applicability criteria of...
40 CFR 63.460 - Applicability and designation of source.
Code of Federal Regulations, 2012 CFR
2012-07-01
... cold, and batch cold solvent cleaning machine that uses any solvent containing methylene chloride (CAS... combination of these halogenated HAP solvents, in a total concentration greater than 5 percent by weight, as a... to owners or operators of any solvent cleaning machine meeting the applicability criteria of...
Aerospace Applications of Non-Equilibrium Plasma
NASA Technical Reports Server (NTRS)
Blankson, Isaiah M.
2016-01-01
Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).
Cold Atom Source Containing Multiple Magneto-Optical Traps
NASA Technical Reports Server (NTRS)
Ramirez-Serrano, Jaime; Kohel, James; Kellogg, James; Lim, Lawrence; Yu, Nan; Maleki, Lute
2007-01-01
An apparatus that serves as a source of a cold beam of atoms contains multiple two-dimensional (2D) magneto-optical traps (MOTs). (Cold beams of atoms are used in atomic clocks and in diverse scientific experiments and applications.) The multiple-2D-MOT design of this cold atom source stands in contrast to single-2D-MOT designs of prior cold atom sources of the same type. The advantages afforded by the present design are that this apparatus is smaller than prior designs.
Finalize field testing of cold climate heat pump (CCHP) based on tandem vapor injection compressors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Baxter, Van D.; Abdelaziz, Omar
2017-03-01
This report describes the system diagram and control algorithm of a prototype air-source cold climate heat pump (CCHP) using tandem vapor injection (VI) compressors. The prototype was installed in Fairbanks, Alaska and underwent field testing starting in 09/2016. The field testing results of the past six months, including compressor run time fractions, measured COPs and heating capacities, etc., are presented as a function of the ambient temperature. Two lessons learned are also reported.
Keeping the Edge. Air Force Materiel Command Cold War Context (1945-1991). Volume 3: Index
2003-08-01
485 The Architects Collaborative (Harvard University) see Gropius , Walter , under Architects and Engineers, across the Department of Defense The...Sons (Newark, New Jersey) Volume II: 250 Graham, Anderson, Probst & White (Chicago) Volume II: 392, 455, 460, 461,475 Gropius , Walter ...models for Air Force research and development centers Gropius , Walter (The Architects Collaborative) see Architects and Engineers, across the