Cold Atom Source Containing Multiple Magneto-Optical Traps
NASA Technical Reports Server (NTRS)
Ramirez-Serrano, Jaime; Kohel, James; Kellogg, James; Lim, Lawrence; Yu, Nan; Maleki, Lute
2007-01-01
An apparatus that serves as a source of a cold beam of atoms contains multiple two-dimensional (2D) magneto-optical traps (MOTs). (Cold beams of atoms are used in atomic clocks and in diverse scientific experiments and applications.) The multiple-2D-MOT design of this cold atom source stands in contrast to single-2D-MOT designs of prior cold atom sources of the same type. The advantages afforded by the present design are that this apparatus is smaller than prior designs.
Miniaturized Lab System for Future Cold Atom Experiments in Microgravity
NASA Astrophysics Data System (ADS)
Kulas, Sascha; Vogt, Christian; Resch, Andreas; Hartwig, Jonas; Ganske, Sven; Matthias, Jonas; Schlippert, Dennis; Wendrich, Thijs; Ertmer, Wolfgang; Maria Rasel, Ernst; Damjanic, Marcin; Weßels, Peter; Kohfeldt, Anja; Luvsandamdin, Erdenetsetseg; Schiemangk, Max; Grzeschik, Christoph; Krutzik, Markus; Wicht, Andreas; Peters, Achim; Herrmann, Sven; Lämmerzahl, Claus
2017-02-01
We present the technical realization of a compact system for performing experiments with cold 87Rb and 39K atoms in microgravity in the future. The whole system fits into a capsule to be used in the drop tower Bremen. One of the advantages of a microgravity environment is long time evolution of atomic clouds which yields higher sensitivities in atom interferometer measurements. We give a full description of the system containing an experimental chamber with ultra-high vacuum conditions, miniaturized laser systems, a high-power thulium-doped fiber laser, the electronics and the power management. In a two-stage magneto-optical trap atoms should be cooled to the low μK regime. The thulium-doped fiber laser will create an optical dipole trap which will allow further cooling to sub- μK temperatures. The presented system fulfills the demanding requirements on size and power management for cold atom experiments on a microgravity platform, especially with respect to the use of an optical dipole trap. A first test in microgravity, including the creation of a cold Rb ensemble, shows the functionality of the system.
Key technologies and applications of laser cooling and trapping {sup 87}Rb atomic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ru, Ning, E-mail: runing@buaa.edu.cn; Zhang, Li, E-mail: mewan@buaa.edu.cn; Key Laboratory for Metrology, Changcheng Institute of Metrology and Measurement
2016-06-28
Atom Interferometry is proved to be a potential method for measuring the acceleration of atoms due to Gravity, we are now building a feasible system of cold atom gravimeter. In this paper development and the important applications of laser cooling and trapping atoms are introduced, some key techniques which are used to obtain {sup 87}Rb cold atoms in our experiments are also discussed.
Development of the Science Data System for the International Space Station Cold Atom Lab
NASA Technical Reports Server (NTRS)
van Harmelen, Chris; Soriano, Melissa A.
2015-01-01
Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.
A Compact, High-Flux Cold Atom Beam Source
NASA Technical Reports Server (NTRS)
Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis
2012-01-01
The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.
Rydberg excitation of cold atoms inside a hollow-core fiber
NASA Astrophysics Data System (ADS)
Langbecker, Maria; Noaman, Mohammad; Kjærgaard, Niels; Benabid, Fetah; Windpassinger, Patrick
2017-10-01
We report on a versatile, highly controllable hybrid cold Rydberg atom fiber interface, based on laser cooled atoms transported into a hollow-core kagome crystal fiber. Our experiments demonstrate the feasibility of exciting cold Rydberg atoms inside a hollow-core fiber and we study the influence of the fiber on Rydberg electromagnetically induced transparency (EIT) signals. Using a temporally resolved detection method to distinguish between excitation and loss, we observe two different regimes of the Rydberg excitations: one EIT regime and one regime dominated by atom loss. These results are a substantial advancement towards future use of our system for quantum simulation or information.
Simulation of Laser Cooling and Trapping in Engineering Applications
NASA Technical Reports Server (NTRS)
Ramirez-Serrano, Jaime; Kohel, James; Thompson, Robert; Yu, Nan; Lunblad, Nathan
2005-01-01
An advanced computer code is undergoing development for numerically simulating laser cooling and trapping of large numbers of atoms. The code is expected to be useful in practical engineering applications and to contribute to understanding of the roles that light, atomic collisions, background pressure, and numbers of particles play in experiments using laser-cooled and -trapped atoms. The code is based on semiclassical theories of the forces exerted on atoms by magnetic and optical fields. Whereas computer codes developed previously for the same purpose account for only a few physical mechanisms, this code incorporates many more physical mechanisms (including atomic collisions, sub-Doppler cooling mechanisms, Stark and Zeeman energy shifts, gravitation, and evanescent-wave phenomena) that affect laser-matter interactions and the cooling of atoms to submillikelvin temperatures. Moreover, whereas the prior codes can simulate the interactions of at most a few atoms with a resonant light field, the number of atoms that can be included in a simulation by the present code is limited only by computer memory. Hence, the present code represents more nearly completely the complex physics involved when using laser-cooled and -trapped atoms in engineering applications. Another advantage that the code incorporates is the possibility to analyze the interaction between cold atoms of different atomic number. Some properties that cold atoms of different atomic species have, like cross sections and the particular excited states they can occupy when interacting with each other and light fields, play important roles not yet completely understood in the new experiments that are under way in laboratories worldwide to form ultracold molecules. Other research efforts use cold atoms as holders of quantum information, and more recent developments in cavity quantum electrodynamics also use ultracold atoms to explore and expand new information-technology ideas. These experiments give a hint on the wide range of applications and technology developments that can be tackled using cold atoms and light fields. From more precise atomic clocks and gravity sensors to the development of quantum computers, there will be a need to completely understand the whole ensemble of physical mechanisms that play a role in the development of such technologies. The code also permits the study of the dynamic and steady-state operations of technologies that use cold atoms. The physical characteristics of lasers and fields can be time-controlled to give a realistic simulation of the processes involved such that the design process can determine the best control features to use. It is expected that with the features incorporated into the code it will become a tool for the useful application of ultracold atoms in engineering applications. Currently, the software is being used for the analysis and understanding of simple experiments using cold atoms, and for the design of a modular compact source of cold atoms to be used in future research and development projects. The results so far indicate that the code is a useful design instrument that shows good agreement with experimental measurements (see figure), and a Windows-based user-friendly interface is also under development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Na; Wu, Yu-Ping; Min, Hao
A radio-frequency (RF) source designed for cold atom experiments is presented. The source uses AD9858, a direct digital synthesizer, to generate the sine wave directly, up to 400 MHz, with sub-Hz resolution. An amplitude control circuit consisting of wideband variable gain amplifier and high speed digital to analog converter is integrated into the source, capable of 70 dB off isolation and 4 ns on-off keying. A field programmable gate array is used to implement a versatile frequency and amplitude co-sweep logic. Owing to modular design, the RF sources have been used on many cold atom experiments to generate various complicatedmore » RF sequences, enriching the operation schemes of cold atoms, which cannot be done by standard RF source instruments.« less
Light-induced atomic desorption in a compact system for ultracold atoms
Torralbo-Campo, Lara; Bruce, Graham D.; Smirne, Giuseppe; Cassettari, Donatella
2015-01-01
In recent years, light-induced atomic desorption (LIAD) of alkali atoms from the inner surface of a vacuum chamber has been employed in cold atom experiments for the purpose of modulating the alkali background vapour. This is beneficial because larger trapped atom samples can be loaded from vapour at higher pressure, after which the pressure is reduced to increase the lifetime of the sample. We present an analysis, based on the case of rubidium atoms adsorbed on pyrex, of various aspects of LIAD that are useful for this application. Firstly, we study the intensity dependence of LIAD by fitting the experimental data with a rate-equation model, from which we extract a correct prediction for the increase in trapped atom number. Following this, we quantify a figure of merit for the utility of LIAD in cold atom experiments and we show how it can be optimised for realistic experimental parameters. PMID:26458325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter
2014-08-15
We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.
Feshbach Prize: New Phenomena and New Physics from Strongly-Correlated Quantum Matter
NASA Astrophysics Data System (ADS)
Carlson, Joseph A.
2017-01-01
Strongly correlated quantum matter is ubiquitous in physics from cold atoms to nuclei to the cold dense matter found in neutron stars. Experiments from table-top to the extremely large scale experiments including FRIB and LIGO will help determine the properties of matter across an incredible scale of distances and energies. Questions to be addressed include the existence of exotic states of matter in cold atoms and nuclei, the response of this correlated matter to external probes, and the behavior of matter in extreme astrophysical environments. A more complete understanding is required, both to understand these diverse phenomena and to employ this understanding to probe for new underlying physics in experiments including neutrinoless double beta decay and accelerator neutrino experiments. I will summarize some aspects of our present understanding and highlight several important prospects for the future.
Cold Atom Optics on Ground and in Space
NASA Astrophysics Data System (ADS)
Rasel, E. M.
Microgravity is the ultimate laboratory environment for experiments in fundamental physics based on cold atoms. The talk will give a survey of recent activities on atomic quantum sensors and atom lasers. Inertial atomic quantum sensors are a promising and complementary technique for experiments in fundamental physics. Pioneering experiments at Yale [1,2] and Stanford [3] displayed recently the fascinating potential of matter-wave interferometers for precision measurements. The talk will present the status of a transportable matter-wave sensor under development at the Institut für Quantenoptik in Hannover: CASI. CASI stands for Cold Atom Sagnac Interferometer. The use of cold atoms makes it possible to realise compact devices with sensitivities competitive with classical state-of-the-art sensors. CASI's projected sensitivity is about 10-9 rad/ssurd Hz at the projection noise limit. The heart of our set-up will be a 15cm-long Mach-Zehnder interferometer formed by coherently splitting the atoms with Raman-type interactions. CASI is designed as a movable device, that it can be compared with other matter-wave sensors such as the cold caesium atom gyroscope at the BNM-SYRTE in Paris [4]. CASI is intimately connected with HYPER, an European initiative to send four atom interferometers in space hosted on a drag-free satellite. Main emphasis of the mission is placed on the mapping of the Earth's Lense-Thirring effect. Tests of the Equivalence Principle is under consideration as an alternative goal of high scientific value. HYPER was selected three years ago by the European Space Agency (ESA) as candidate for a future small-satellite mission within the next 10 to 15 years and is supported with detailed feasibility studies [5]. The latest status of the mission will be given. [1] T.L. Gustavson, A. Landragin, M.A, Kasevich, Rotation sensing with a dual atom-interferometer Sagnac gyroscope, Class. Quantum Grav. 17, 2385-2398 (2000) [2] J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry, Phys. Rev. A 65, 033608-1 (2002) [3] A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry, Metrologia 38, 25-61 (2001) [4] F. Yver-Leduc, P. Cheinet, J. Fils, A. Clairon, N. Dimarcq, D. Holleville, P. Bouyer, and A. Landragin. A. J. Opt. B : Quant. Semiclass. Opt. 5, S136 (2003) [5] http://sci.esa.int/home/hyper/index.cfm
Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows
NASA Astrophysics Data System (ADS)
Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.
2018-01-01
Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.
Compact Single Site Resolution Cold Atom Experiment for Adiabatic Quantum Computing
2016-02-03
goal of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically 1. REPORT DATE (DD-MM-YYYY) 4...of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically separated and optically addressed...Specifically, we will design and construct a set of compact single atom traps with integrated optics, suitable for heralded entanglement and loophole
Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms
NASA Astrophysics Data System (ADS)
Sayrin, Clément; Junge, Christian; Mitsch, Rudolf; Albrecht, Bernhard; O'Shea, Danny; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno
2015-10-01
The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.
A proposed atom interferometry determination of G at 10-5 using a cold atomic fountain
NASA Astrophysics Data System (ADS)
Rosi, G.
2018-02-01
In precision metrology, the determination of the Newtonian gravity constant G represents a real problem, since its history is plagued by huge unknown discrepancies between a large number of independent experiments. In this paper, we propose a novel experimental setup for measuring G with a relative accuracy of 10-5 , using a standard cold atomic fountain and matter wave interferometry. We discuss in detail the major sources of systematic errors, and provide the expected statistical uncertainty. The feasibility of determining G at the 10-6 level is also discussed.
Single-shot imaging of trapped Fermi gas
NASA Astrophysics Data System (ADS)
Gajda, Mariusz; Mostowski, Jan; Sowiński, Tomasz; Załuska-Kotur, Magdalena
2016-07-01
Recently developed techniques allow for simultaneous measurements of the positions of all ultra-cold atoms in a trap with high resolution. Each such single-shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single-shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single-shot measurements in the case of cloud of ultra-cold noninteracting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms.
NASA Astrophysics Data System (ADS)
Sabard, A.; de Villiers Lovelock, H. L.; Hussain, T.
2018-01-01
Cold gas dynamic spray is being explored as a repair technique for high-value metallic components, given its potential to produce pore and oxide-free deposits of between several micrometers and several millimeters thick with good levels of adhesion and mechanical strength. However, feedstock powders for cold spray experience rapid solidification if manufactured by gas atomization and hence can exhibit non-equilibrium microstructures and localized segregation of alloying elements. Here, we used sealed quartz tube solution heat treatment of a precipitation hardenable 7075 aluminum alloy feedstock to yield a consistent and homogeneous powder phase composition and microstructure prior to cold spraying, aiming for a more controllable heat treatment response of the cold spray deposits. It was shown that the dendritic microstructure and solute segregation in the gas-atomized powders were altered, such that the heat-treated powder exhibits a homogeneous distribution of solute atoms. Micro-indentation testing revealed that the heat-treated powder exhibited a mean hardness decrease of nearly 25% compared to the as-received powder. Deformation of the powder particles was enhanced by heat treatment, resulting in an improved coating with higher thickness ( 300 μm compared to 40 μm for untreated feedstock). Improved particle-substrate bonding was evidenced by formation of jets at the particle boundaries.
Competing bosonic condensates in optical lattice with a mixture of single and pair hoppings
NASA Astrophysics Data System (ADS)
Travin, V. M.; Kopeć, T. K.
2017-01-01
A system of ultra-cold atoms with single boson and pair tunneling of bosonic atoms is considered in an optical lattice at arbitrary temperature. A mean-field theory was applied to the extended Bose-Hubbard Hamiltonian describing the system in order to investigate the competition between superfluid and pair superfluid as a function of the chemical potential and the temperature. To this end we have applied a method based on the Laplace transform method for the efficient calculation of the statistical sum for the quantum Hamiltonian. These results may be of interest for experiments on cold atom systems in optical lattices.
Technology development for laser-cooled clocks on the International Space Station
NASA Technical Reports Server (NTRS)
Klipstein, W. M.
2003-01-01
The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrow, O.; Carroll, A.; Chattopadhyay, S.
A cold atom interferometer is being developed using 85Rb atoms towards a search for the dark contents of the vacuum, and as a test stand for inertial sensing applications. Here we outline the current status of the experiment and report the observation of Ramsey interference fringes in the apparatus.
Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber
Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido
2016-01-01
We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160
Coherent forward broadening in cold atom clouds
NASA Astrophysics Data System (ADS)
Sutherland, R. T.; Robicheaux, F.
2016-02-01
It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.
Beyond mean-field effects in Bloch Oscillations of cold atoms in an optical cavity
NASA Astrophysics Data System (ADS)
Venkatesh Balasubramanian, Prasanna; O'Dell, Duncan
2012-06-01
In our earlier publication [1] we proposed using Bloch oscillations of cold atoms inside an Fabry-Perot resonator for sensitive measurements of force. The analysis in [1] was performed using a coherent mean-field description for the atoms and the light. In the current work we extend this description substantially by including the effects of fluctuations in both the atomic and light fields. This analysis is used to set realistic limits on the precision to which the force can be measured. We also make contact with the optomechanical description of the combined atom-cavity system which has proved so successful for describing recent pioneering experiments [2].[4pt] [1] B. Prasanna Venkatesh et al, Phys. Rev. A 80, 063834 (2009).[0pt] [2] S. Gupta et al, Phys. Rev. Lett. 99, 213601 (2007); F.Brennecke et al, Science 322, 235 (2008).
Spontaneous evolution of rydberg atoms into an ultracold plasma
Robinson; Tolra; Noel; Gallagher; Pillet
2000-11-20
We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm(-1). When the atoms are initially bound by 70 cm(-1), this evolution occurs when most of the atoms are translationally cold, <1 mK, but a small fraction, approximately 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma.
NASA Astrophysics Data System (ADS)
Kunz, Paul; Meyer, David; Quraishi, Qudsia
2015-05-01
Within the class of nonlinear optical effects that exhibit sub-natural linewidth features, electromagnetically induced transparency (EIT) and nonlinear magneto-optical rotation (NMOR) stand out as having made dramatic impacts on various applications including atomic clocks, magnetometry, and single photon storage. A related effect, known as electromagnetically induced absorption (EIA), has received less attention in the literature. Here, we report on the first observation of EIA in cold atoms using the Hanle configuration, where a single laser beam is used to both pump and probe the atoms while sweeping a magnetic field through zero along the beam direction. We find that, associated with the EIA peak, a ``twist'' appears in the corresponding NMOR signal. A similar twist has been previously noted by Budker et al., in the context of warm vapor optical magnetometry, and was ascribed to optical pumping through nearby hyperfine levels. By studying this feature through numerical simulations and cold atom experiments, thus rendering the hyperfine levels well resolved, we enhance the understanding of the optical pumping mechanism behind it, and elucidate its relation to EIA. Finally, we demonstrate a useful application of these studies through a simple and rapid method for nulling background magnetic fields within our atom chip apparatus.
Coherent Forward Broadening in Cold Atom Clouds
NASA Astrophysics Data System (ADS)
Sutherland, R. T.; Robicheaux, Francis
2016-05-01
It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hachtel, A. J.; Gillette, M. C.; Clements, E. R.
A novel home-built system for imaging cold atom samples is presented using a readily available astronomy camera which has the requisite sensitivity but no timing-control. We integrate the camera with LabVIEW achieving fast, low-jitter imaging with a convenient user-defined interface. We show that our system takes precisely timed millisecond exposures and offers significant improvements in terms of system jitter and readout time over previously reported home-built systems. Our system rivals current commercial “black box” systems in performance and user-friendliness.
NASA Astrophysics Data System (ADS)
Krems, R. V.; Buchachenko, A. A.
2005-09-01
Based on measurements of the Zeeman relaxation in a cold gas of He3 [C. I. Hancox, S. C. Doret, M. I. Hummon, L. Luo, and J. M. Doyle, Nature (London) 431, 281 (2004)], we show that the electronic interaction anisotropy between rare-earth atoms with nonzero electronic orbital angular momenta and helium is extremely small. The interaction of the rare-earth atoms with He gives rise to several adiabatic potentials with different electronic symmetries. It is demonstrated that the energy splitting between these potentials does not exceed 0.09cm-1 at interatomic distances larger than the turning point for collisions at 0.8K, including the region of the van der Waals interaction minima.
Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel
NASA Astrophysics Data System (ADS)
Poulin, Jerome; Light, Philip S.; Kashyap, Raman; Luiten, Andre N.
2011-11-01
We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow beam can confine cold atoms to the darkest regions of the beam, thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and a guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-μm-radius core hollow fiber, it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When the MOT is positioned farther away, coupling efficiencies over 50% can be achieved with larger core fibers.
Theory of a peristaltic pump for fermionic quantum fluids
NASA Astrophysics Data System (ADS)
Romeo, F.; Citro, R.
2018-05-01
Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.
NASA Astrophysics Data System (ADS)
Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming
2017-08-01
In this work, we study strongly interacting spinor atoms in a lattice subject to a two dimensional (2d) anisotropic Rashba type of spin orbital coupling (SOC) and an Zeeman field. We find the interplay between the Zeeman field and the SOC provides a new platform to host rich and novel classes of quantum commensurate and in-commensurate phases, excitations and phase transitions. These commensurate phases include two collinear states at low and high Zeeman field, two co-planar canted states at mirror reflected SOC parameters respectively. Most importantly, there are non-coplanar incommensurate Skyrmion (IC-SkX) crystal phases surrounded by the four commensurate phases. New excitation spectra above all the five phases, especially on the IC-SKX phase are computed. Three different classes of quantum commensurate to in-commensurate transitions from the IC-SKX to its four neighboring commensurate phases are identified. Finite temperature behaviors and transitions are discussed. The critical temperatures of all the phases can be raised above that reachable by current cold atom cooling techniques simply by tuning the number of atoms N per site. In view of recent impressive experimental advances in generating 2d SOC for cold atoms in optical lattices, these new many-body phenomena can be explored in the current and near future cold atom experiments. Applications to various materials such as MnSi, {Fe}}0.5 {Co}}0.5Si, especially the complex incommensurate magnetic ordering in Li2IrO3 are given.
Two-Photon Excitation of Launched Cold Atoms in Flight
NASA Astrophysics Data System (ADS)
Goodsell, Anne; Gonzalez, Rene; Alejandro, Eduardo; Erwin, Emma
2017-04-01
We demonstrate two-photon bi-chromatic excitation of cold rubidium atoms in flight, using the pathway 5S1 / 2 -> 5P3 / 2 -> 5D5 / 2 with two resonant photons. In our experiment, atoms are laser-cooled in a magneto-optical trap and launched upward in discrete clouds with a controllable vertical speed of 7.1 +/-0.6 m/s and a velocity spread that is less than 10% of the launch speed. Outside the cooling beams, as high as 14 mm above the original center of the trap, the launched cold atoms are illuminated simultaneously by spatially-localized horizontal excitation beams at 780 nm (5S1 / 2 -> 5P3 / 2) and 776 nm (5P3 / 2 -> 5D5 / 2). We monitor transmission of the 780-nm beam over a range of intensities of 780-nm and 776-nm light. As the center of the moving cloud passes the excitation beams, we observe as much as 97.9 +/-1.2% transmission when the rate of two-photon absorption is high and the 5S1 / 2 and 5P3 / 2 states are depopulated, compared to 87.6 +/-0.9% transmission if only the 780-nm beam is present. This demonstrates two-photon excitation of a launched cold-atom source with controllable launch velocity and narrow velocity spread, as a foundation for three-photon excitation to Rydberg states. Research supported by Middlebury College Bicentennial Fund, Palen Fund, and Gladstone Award.
NASA Astrophysics Data System (ADS)
Chien, Chih-Chun; Gruss, Daniel; Di Ventra, Massimiliano; Zwolak, Michael
2013-06-01
The study of time-dependent, many-body transport phenomena is increasingly within reach of ultra-cold atom experiments. We show that the introduction of spatially inhomogeneous interactions, e.g., generated by optically controlled collisions, induce negative differential conductance in the transport of atoms in one-dimensional optical lattices. Specifically, we simulate the dynamics of interacting fermionic atoms via a micro-canonical transport formalism within both a mean-field and a higher-order approximation, as well as with a time-dependent density-matrix renormalization group (DMRG). For weakly repulsive interactions, a quasi-steady-state atomic current develops that is similar to the situation occurring for electronic systems subject to an external voltage bias. At the mean-field level, we find that this atomic current is robust against the details of how the interaction is switched on. Further, a conducting-non-conducting transition exists when the interaction imbalance exceeds some threshold from both our approximate and time-dependent DMRG simulations. This transition is preceded by the atomic equivalent of negative differential conductivity observed in transport across solid-state structures.
Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2017-04-01
Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].
An ultracold potassium Rydberg source for experiments in quantum optics and many-body physics
NASA Astrophysics Data System (ADS)
Conover, Charles; Dupre, Pamela; Tong, Ai Phuong; Sanon, Carlvin; Clarke, Kevin; Doolittle, Brian; Louria, Stephen; Adamson, Philip
2017-04-01
We report on the development of an apparatus for the study of quantum dynamics of Rydberg atoms of potassium. Samples of Rydberg atoms at 1 mK and varying density are excited in a magneto-optical trap of 107 K-39 atoms. The atoms are excited to Rydberg states in a steps from 4s to 5p and from 5p to ns and nd states using stabilized external-cavity diode lasers at 405 nm and 980 nm. Selective field ionization and detection with microchannel plates provides a platform for spectroscopic measurements in potassium, exploration of multiphoton processes, and experiments on cold atom collisions. This research was supported by the National Science Foundation under Grant PHY-1126599.
A transportable cold atom inertial sensor for space applications
NASA Astrophysics Data System (ADS)
Ménoret, V.; Geiger, R.; Stern, G.; Cheinet, P.; Battelier, B.; Zahzam, N.; Pereira Dos Santos, F.; Bresson, A.; Landragin, A.; Bouyer, P.
2017-11-01
Atom interferometry has hugely benefitted from advances made in cold atom physics over the past twenty years, and ultra-precise quantum sensors are now available for a wide range of applications [1]. In particular, cold atom interferometers have shown excellent performances in the field of acceleration and rotation measurements [2,3], and are foreseen as promising candidates for navigation, geophysics, geo-prospecting and tests of fundamental physics such as the Universality of Free Fall (UFF). In order to carry out a test of the UFF with atoms as test masses, one needs to compare precisely the accelerations of two atoms with different masses as they fall in the Earth's gravitational field. The sensitivity of atom interferometers scales like the square of the time during which the atoms are in free fall, and on ground this interrogation time is limited by the size of the experimental setup to a fraction of a second. Sending an atom interferometer in space would allow for several seconds of excellent free-fall conditions, and tests of the UFF could be carried out with precisions as low as 10-15 [4]. However, cold atoms experiments rely on complex laser systems, which are needed to cool down and manipulate the atoms, and these systems are usually very sensitive to temperature fluctuations and vibrations. In addition, when operating an inertial sensor, vibrations are a major issue, as they deteriorate the performances of the instrument. This is why cold atom interferometers are usually used in ground based facilities, which provide stable enough environments. In order to carry out airborne or space-borne measurements, one has to design an instrument which is both compact and stable, and such that vibrations induced by the platform will not deteriorate the sensitivity of the sensor. We report on the operation of an atom interferometer on board a plane carrying out parabolic flights (Airbus A300 Zero-G, operated by Novespace). We have constructed a compact and stable laser setup, which is well suited for onboard applications. Our goal is to implement a dual-species Rb-K atom interferometer in order to carry out a test of the UFF in the plane. In this perspective, we are designing a dual-wavelength laser source, which will enable us to cool down and coherently manipulate the quantum states of both atoms. We have successfully tested a preliminary version of the source and obtained a double species magneto-optical trap (MOT).
Modeling Strongly Correlated Fermi Systems Using Ultra-Cold Atoms
2008-06-28
the two-dimensional Hubbard model on a square lattice ( a model which is purported to describe the high-temperature superconducting cuprates...beams and (2) stroboscopically alternating the beams very rapidly (~100 kHz) such that the beams were never on simultaneously ( the atoms experience a ...gases relies on (1) using a large-volume, magnetic trap to compress the atomic gas to a volume that can be captured by an optical trap
Subpicosecond X rotations of atomic clock states
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2018-05-01
We demonstrate subpicosecond-timescale population transfer between the pair of hyperfine ground states of atomic rubidium using a single laser-pulse. Our scheme utilizes the geometric and dynamic phases induced during Rabi oscillation through the fine-structure excited state to construct an X rotation gate for the hyperfine-state qubit system. The experiment performed with a femtosecond laser and cold rubidium atoms, in a magnetooptical trap, shows over 98% maximal population transfer between the clock states.
STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials
2016-11-02
STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber...other than abstracts): Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): Books Number of Manuscripts: 0.00Number of
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-01-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688
Optimal control of complex atomic quantum systems.
van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S
2016-10-11
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
NASA Astrophysics Data System (ADS)
Jennewein, Stephan; Brossard, Ludovic; Sortais, Yvan R. P.; Browaeys, Antoine; Cheinet, Patrick; Robert, Jacques; Pillet, Pierre
2018-05-01
We measure the coherent scattering of low-intensity, near-resonant light by a cloud of laser-cooled two-level rubidium atoms with a size comparable to the wavelength of light. We isolate a two-level atomic structure by applying a 300-G magnetic field. We measure both the temporal and the steady-state coherent optical response of the cloud for various detunings of the laser and for atom numbers ranging from 5 to 100. We compare our results to a microscopic coupled-dipole model and to a multimode, paraxial Maxwell-Bloch model. In the low-intensity regime, both models are in excellent agreement, thus validating the Maxwell-Bloch model. Comparing to the data, the models are found in very good agreement for relatively low densities (n /k3≲0.1 ), while significant deviations start to occur at higher density. This disagreement indicates that light scattering in dense, cold atomic ensembles is still not quantitatively understood, even in pristine experimental conditions.
Low-temperature physics: Chaos in the cold
NASA Astrophysics Data System (ADS)
Julienne, Paul S.
2014-03-01
A marriage between theory and experiment has shown that ultracold erbium atoms trapped with laser light and subjected to a magnetic field undergo collisions that are characterized by quantum chaos. See Letter p.475
1982-10-13
35. . Wiese, W.L., Smith, M.W., and Miles , B.M. (1969) Atomic Transition Probabilities, Vol. II, NSRDS-NBS 22. 8. Green, B.D., private communication...sidearms simultane- ously changes the flow velocity (that is, the residence time) and the ratio of charge to number density E/N in the discharge plasma , as...Levels, Vol. I, NSRDS-NBS 35. 7. Wiese, W. L., Smith, M. W., and Miles , B. M. (1969’, Atomic Transition Probabilities, Vol. II, NSRDS-NBS 22. 8. Green, B
Enhancement of collective atomic recoil lasing due to pump phase modulation
NASA Astrophysics Data System (ADS)
Robb, G. R. M.; Burgess, R. T. L.; Firth, W. J.
2008-10-01
We investigate the effect of a phase-modulated pump beam on collective backscattering [also termed collective atomic recoil lasing (CARL)] by a cold, collisionless atomic gas. We show using a numerical analysis that different regimes can be identified in which the atomic dynamics evolves in a qualitatively different manner during the light-atom interaction, depending on the magnitude of the pump modulation frequency. Our results also demonstrate that phase-modulating the pump field can substantially enhance the backscattered field intensity relative to the case of a monochromatic pump which has been used in CARL experiments to date.
NASA Astrophysics Data System (ADS)
Lee, Jongmin; Eichenfield, Matt; Douglas, Erica; Mudrick, John; Biedermann, Grant; Jau, Yuan-Yu
2017-04-01
Trapping neutral atoms in the evanescent fields generated by microfabricated nano-waveguides will provide a new platform for neutral atom quantum controls via strong atom-photon interactions. At Sandia National Labs, we are aiming at developing the related technology that can enable the efficient optical coupling to the waveguide at multiple wavelengths, fabrication nano-waveguides to handle required optical power, more robust waveguide structure, and the new fabrication geometry to facilitate the cold-atom experiments. We will report our latest results on the related subjects. Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
Many-body physics using cold atoms
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh
Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin, which have Feshbach-induced spin-dependent interactions, to produce a quantum dimer model. I propose an experiment to detect the ground state in this system. In a final project, I develop tools to simulate the dynamics of fermionic superfluids in which fermions interact via a short-range interaction.
Science Goals of the Primary Atomic Reference Clock in Space (PARCS) Experiment
NASA Technical Reports Server (NTRS)
Ashby, N.
2003-01-01
The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled Cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. PARCS is a joint project of the National Institute of Standards and Technology (NIST), NASA's Jet Propulsion Laboratory (JPL), and the University of Colorado (CU). This paper concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5x10(exp -14) at one second, and accuracies better than 10(exp -16) are projected.
Pattern Formations for Optical Switching Using Cold Atoms as a Nonlinear Medium
NASA Astrophysics Data System (ADS)
Schmittberger, Bonnie; Greenberg, Joel; Gauthier, Daniel
2011-05-01
The study of spatio-temporal pattern formation in nonlinear optical systems has both led to an increased understanding of nonlinear dynamics as well as given rise to sensitive new methods for all-optical switching. Whereas the majority of past experiments utilized warm atomic vapors as nonlinear media, we report the first observation of an optical instability leading to pattern formation in a cloud of cold Rubidium atoms. When we shine a pair of counterpropagating pump laser beams along the pencil-shaped cloud's long axis, new beams of light are generated along cones centered on the trap. This generated light produces petal-like patterns in the plane orthogonal to the pump beams that can be used for optical switching. We gratefully acknowledge the financial support of the NSF through Grant #PHY-0855399 and the DARPA Slow Light Program.
PHARAO flight model: optical on ground performance tests
NASA Astrophysics Data System (ADS)
Lévèque, T.; Faure, B.; Esnault, F. X.; Grosjean, O.; Delaroche, C.; Massonnet, D.; Escande, C.; Gasc, Ph.; Ratsimandresy, A.; Béraud, S.; Buffe, F.; Torresi, P.; Larivière, Ph.; Bernard, V.; Bomer, T.; Thomin, S.; Salomon, C.; Abgrall, M.; Rovera, D.; Moric, I.; Laurent, Ph.
2017-11-01
PHARAO (Projet d'Horloge Atomique par Refroidissement d'Atomes en Orbite), which has been developed by CNES, is the first primary frequency standard specially designed for operation in space. PHARAO is the main instrument of the ESA mission ACES (Atomic Clock Ensemble in Space). ACES payload will be installed on-board the International Space Station (ISS) to perform fundamental physics experiments. All the sub-systems of the Flight Model (FM) have now passed the qualification process and the whole FM of the cold cesium clock, PHARAO, is being assembled and will undergo extensive tests. The expected performances in space are frequency accuracy less than 3.10-16 (with a final goal at 10-16) and frequency stability of 10-13 τ-1/2. In this paper, we focus on the laser source performances and the main results on the cold atom manipulation.
Tunneling of Two Interacting Fermions
NASA Astrophysics Data System (ADS)
Ishmukhamedov, Ilyas; Ishmukhamedov, Altay
2018-04-01
We consider two interacting atoms subject to a one-dimensional anharmonic trap and magnetic field gradient. This system has been recently investigated by the Heidelberg group in the experiment on two 6Li atoms. In the present paper the tunneling of two cold 6Li atoms, initially prepared in the center-of-mass and relative motion excited state, is explored and full time-dependent simulation of the tunneling dynamics is performed. The dynamics is analyzed for the interatomic coupling strength ranging from strong attraction to strong repulsion.
Pawlak, Mariusz; Shagam, Yuval; Klein, Ayelet; Narevicius, Edvardas; Moiseyev, Nimrod
2017-03-16
We recently developed an adiabatic theory for cold molecular collision experiments. In our previous application of this theory ( Pawlak, M.; et al. J. Chem. Phys. 2015 , 143 , 074114 ), we assumed that during the experiment the collision of an atom with a diatom takes place when the diatom is in the ground rotational state and is located in a plane. In this paper, we present how the variational approach of the adiabatic theory for low-temperature collision experiments can be used for the study a 5D collision between the atom and the diatomic molecule with no limitations on its rotational quantum states and no plane restrictions. Moreover, we show here the dramatic differences in the measured reaction rates of He(2 3 S 1 ) + ortho/para-H 2 → He(1s 2 ) + ortho/para-H 2 + + e - resulting from the anisotropic long-range interactions in the reaction. In collisions of metastable helium with molecular hydrogen in the ground rotational state, the isotropic potential term dominates the dynamics. When the collision is with molecular hydrogen in the first excited rotational state, the nonisotropic interactions play an important role in the dynamics. The agreement of our results with the latest experimental findings ( Klein , A. ; et al. Nat. Phys. 2017 , 13 , 35 - 38 ) is very good.
Laser-Free Cold-Atom Gymnastics
NASA Astrophysics Data System (ADS)
Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi
2017-01-01
We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.
Dynamic of cold-atom tips in anharmonic potentials
Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József
2016-01-01
Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505
Nonclassical storage and retrieval of a multiphoton pulse in cold Rydberg atoms
NASA Astrophysics Data System (ADS)
Tian, Xue-Dong; Liu, Yi-Mou; Bao, Qian-Qian; Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.
2018-04-01
We investigate the storage and retrieval of a multiphoton probe field in cold Rydberg atoms with an effective method based on the superatom model. This probe field is found greatly attenuated in light intensity and two-photon correlation yet suffering little temporal broadening as a result of the partial dipole blockade of Rydberg excitation. In particular, the output field energy exhibits an intriguing saturation effect against the input field energy accompanied by an inhomogeneous nonclassical antibunching feature as a manifestation of the dynamic cooperative optical nonlinearity. Our numerical results are qualitatively consistent with those in a recent experiment and could be extended to pursue quantum information applications of nonclassical light fields.
Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor
NASA Astrophysics Data System (ADS)
Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.
2006-04-01
This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.
Experimental Investigation of the Influence of the Laser Beam Waist on Cold Atom Guiding Efficiency.
Song, Ningfang; Hu, Di; Xu, Xiaobin; Li, Wei; Lu, Xiangxiang; Song, Yitong
2018-02-28
The primary purpose of this study is to investigate the influence of the vertical guiding laser beam waist on cold atom guiding efficiency. In this study, a double magneto-optical trap (MOT) apparatus is used. With an unbalanced force in the horizontal direction, a cold atomic beam is generated by the first MOT. The cold atoms enter the second chamber and are then re-trapped and cooled by the second MOT. By releasing a second atom cloud, the process of transferring the cold atoms from MOT to the dipole trap, which is formed by a red-detuned converged 1064-nm laser, is experimentally demonstrated. And after releasing for 20 ms, the atom cloud is guided to a distance of approximately 3 mm. As indicated by the results, the guiding efficiency depends strongly on the laser beam waist; the efficiency reaches a maximum when the waist radius ( w ₀) of the laser is in the range of 15 to 25 μm, while the initial atom cloud has a radius of 133 μm. Additionally, the properties of the atoms inside the dipole potential trap, such as the distribution profile and lifetime, are deduced from the fluorescence images.
Hybrid Systems: Cold Atoms Coupled to Micro Mechanical Oscillators =
NASA Astrophysics Data System (ADS)
Montoya Monge, Cris A.
Micro mechanical oscillators can serve as probes in precision measurements, as transducers to mediate photon-phonon interactions, and when functionalized with magnetic material, as tools to manipulate spins in quantum systems. This dissertation includes two projects where the interactions between cold atoms and mechanical oscillators are studied. In one of the experiments, we have manipulated the Zeeman state of magnetically trapped Rubidium atoms with a magnetic micro cantilever. The results show a spatially localized effect produced by the cantilever that agrees with Landau-Zener theory. In the future, such a scalable system with highly localized interactions and the potential for single-spin sensitivity could be useful for applications in quantum information science or quantum simulation. In a second experiment, work is in progress to couple a sample of optically trapped Rubidium atoms to a levitated nanosphere via an optical lattice. This coupling enables the cooling of the center-of-mass motion of the nanosphere by laser cooling the atoms. In this system, the atoms are trapped in the optical lattice while the sphere is levitated in a separate vacuum chamber by a single-beam optical tweezer. Theoretical analysis of such a system has determined that cooling the center-of-mass motion of the sphere to its quantum ground state is possible, even when starting at room temperature, due to the excellent environmental decoupling achievable in this setup. Nanospheres cooled to the quantum regime can provide new tests of quantum behavior at mesoscopic scales and have novel applications in precision sensing.
Matterwave interferometric velocimetry of cold Rb atoms
NASA Astrophysics Data System (ADS)
Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim
2018-03-01
We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 ?K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.
Matterwave interferometric velocimetry of cold Rb atoms
NASA Astrophysics Data System (ADS)
Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim
2018-02-01
We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 $\\mu$K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.
Large Fizeau's light-dragging effect in a moving electromagnetically induced transparent medium.
Kuan, Pei-Chen; Huang, Chang; Chan, Wei Sheng; Kosen, Sandoko; Lan, Shau-Yu
2016-10-03
As one of the most influential experiments on the development of modern macroscopic theory from Newtonian mechanics to Einstein's special theory of relativity, the phenomenon of light dragging in a moving medium has been discussed and observed extensively in different types of systems. To have a significant dragging effect, the long duration of light travelling in the medium is preferred. Here we demonstrate a light-dragging experiment in an electromagnetically induced transparent cold atomic ensemble and enhance the dragging effect by at least three orders of magnitude compared with the previous experiments. With a large enhancement of the dragging effect, we realize an atom-based velocimeter that has a sensitivity two orders of magnitude higher than the velocity width of the atomic medium used. Such a demonstration could pave the way for motional sensing using the collective state of atoms in a room temperature vapour cell or solid state material.
Cold Atom Clock Test of Lorentz Invariance in the Matter Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Peter; Chapelet, Frederic; Bize, Sebastien
2006-02-17
We report on a new experiment that tests for a violation of Lorentz invariance (LI), by searching for a dependence of atomic transition frequencies on the orientation of the spin of the involved states (Hughes-Drever type experiment). The atomic frequencies are measured using a laser cooled {sup 133}Cs atomic fountain clock, operating on a particular combination of Zeeman substates. We analyze the results within the framework of the Lorentz violating standard model extension (SME), where our experiment is sensitive to a largely unexplored region of the SME parameter space, corresponding to first measurements of four proton parameters and improvements bymore » 11 and 13 orders of magnitude on the determination of four others. In spite of the attained uncertainties, and of having extended the search into a new region of the SME, we still find no indication of LI violation.« less
Computer Simulations: A Tool to Predict Experimental Parameters with Cold Atoms
2013-04-01
Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an...specifically designed to work with cold atom systems and atom chips, and is already able to compute their key properties. We simulate our experimental...also allows one to choose different physics and define the interdependencies between them. It is not specifically designed for cold atom systems or
Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry
NASA Astrophysics Data System (ADS)
Schmittberger, Bonnie; Gauthier, Daniel
2013-05-01
The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.
Correlation in photon pairs generated using four-wave mixing in a cold atomic ensemble
NASA Astrophysics Data System (ADS)
Ferdinand, Andrew Richard; Manjavacas, Alejandro; Becerra, Francisco Elohim
2017-04-01
Spontaneous four-wave mixing (FWM) in atomic ensembles can be used to generate narrowband entangled photon pairs at or near atomic resonances. While extensive research has been done to investigate the quantum correlations in the time and polarization of such photon pairs, the study and control of high dimensional quantum correlations contained in their spatial degrees of freedom has not been fully explored. In our work we experimentally investigate the generation of correlated light from FWM in a cold ensemble of cesium atoms as a function of the frequencies of the pump fields in the FWM process. In addition, we theoretically study the spatial correlations of the photon pairs generated in the FWM process, specifically the joint distribution of their orbital angular momentum (OAM). We investigate the width of the distribution of the OAM modes, known as the spiral bandwidth, and the purity of OAM correlations as a function of the properties of the pump fields, collected photons, and the atomic ensemble. These studies will guide experiments involving high dimensional entanglement of photons generated from this FWM process and OAM-based quantum communication with atomic ensembles. This work is supported by AFORS Grant FA9550-14-1-0300.
ERIC Educational Resources Information Center
Armenta, Sergio; de la Guardia, Miguel
2011-01-01
Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…
Quantum simulation of ultrafast dynamics using trapped ultracold atoms.
Senaratne, Ruwan; Rajagopal, Shankari V; Shimasaki, Toshihiko; Dotti, Peter E; Fujiwara, Kurt M; Singh, Kevin; Geiger, Zachary A; Weld, David M
2018-05-25
Ultrafast electronic dynamics are typically studied using pulsed lasers. Here we demonstrate a complementary experimental approach: quantum simulation of ultrafast dynamics using trapped ultracold atoms. Counter-intuitively, this technique emulates some of the fastest processes in atomic physics with some of the slowest, leading to a temporal magnification factor of up to 12 orders of magnitude. In these experiments, time-varying forces on neutral atoms in the ground state of a tunable optical trap emulate the electric fields of a pulsed laser acting on bound charged particles. We demonstrate the correspondence with ultrafast science by a sequence of experiments: nonlinear spectroscopy of a many-body bound state, control of the excitation spectrum by potential shaping, observation of sub-cycle unbinding dynamics during strong few-cycle pulses, and direct measurement of carrier-envelope phase dependence of the response to an ultrafast-equivalent pulse. These results establish cold-atom quantum simulation as a complementary tool for studying ultrafast dynamics.
Near-Resonant Imaging of Trapped Cold Atomic Samples
You, L.; Lewenstein, Maciej
1996-01-01
We study the formation of diffraction patterns in the near-resonant imaging of trapped cold atomic samples. We show that the spatial imaging can provide detailed information on the trapped atomic clouds. PMID:27805110
Energy Cascade in Quantum Gases
NASA Astrophysics Data System (ADS)
Yin, X. Y.; Ho, Tin-Lun
Energy cascade is ubiquitous in systems far from equilibrium. Facilitated by particle interactions and external forces, it can lead to highly complex phenomena like fully developed turbulence, characterized by power law velocity correlation functions. Yet despite decades of research, how these power laws emerge from first principle remains unclear. Recently, experiments show that when a Bose condensate is subjected to periodic shaking, its momentum distribution exhibits a power law behavior. The flexibility of cold atom experiments has provided new opportunities to explore the emergence of these power laws, and to disentangle different sources of energy cascade. Here, we point out that recent experiments in cold atoms imply that classical turbulence is part of a larger family of scale invariant phenomena that include ideal gases. Moreover, the property of the entire family is contained in the structure of its Floquet states. For ideal gases, we show analytically that its momentum distribution acquires a 1 /q2 tail in each dimension when it is shaken periodically. We acknowledge NSF Grant DMR1309615, MURI Grant FP054294-D, and NASA Fundamental Physics Grant 1518233.
Cold atoms in one-dimensional rings: a Luttinger liquid approach to precision measurement
NASA Astrophysics Data System (ADS)
Ragole, Stephen; Taylor, Jacob
Recent experiments have realized ring shaped traps for ultracold atoms. We consider the one-dimensional limit of these ring systems with a moving weak barrier, such as a blue-detuned laser beam. In this limit, we employ Luttinger liquid theory and find an analogy with the superconducting charge qubit. In particular, we find that strongly-interacting atoms in such a system could be used for precision rotation sensing. We compare the performance of this new sensor to the state of the art non-interacting atom interferometry. Funding provided by the Physics Frontier Center at the JQI and by DARPA QUASAR.
Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory
NASA Astrophysics Data System (ADS)
Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.
2017-12-01
The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.
Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory
NASA Astrophysics Data System (ADS)
Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.
2018-05-01
The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.
Prospects for atomic frequency standards
NASA Technical Reports Server (NTRS)
Audoin, C.
1984-01-01
The potentialities of different atomic frequency standards which are not yet into field operation, for most of them, but for which preliminary data, obtained in laboratory experiments, give confidence that they may improve greatly the present state of the art are described. The review will mainly cover the following devices: (1) cesium beam frequency standards with optical pumping and detection; (2) optically pumped rubidium cells; (3) magnesium beam; (4) cold hydrogen masers; and (5) traps with stored and cooled ions.
NASA Astrophysics Data System (ADS)
Hall, Felix H. J.; Eberle, Pascal; Hegi, Gregor; Raoult, Maurice; Aymar, Mireille; Dulieu, Olivier; Willitsch, Stefan
2013-08-01
Cold chemical reactions between laser-cooled Ca+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the range of collision energies ⟨E coll⟩/k B=20 mK-20 K. The lowest energies were achieved in experiments using single localised Ca+ ions. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes in this system (non-radiative and radiative charge transfer as well as radiative association leading to the formation of CaRb+ molecular ions) have been analysed using high-level quantum-chemical calculations of the potential energy curves of CaRb+ and quantum-scattering calculations for the radiative channels. For the present low-energy scattering experiments, it is shown that the energy dependence of the reaction rate constants is governed by long-range interactions in line with the classical Langevin model, but their magnitude is determined by short-range non-adiabatic and radiative couplings which only weakly depend on the asymptotic energy. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral reactive collisions.
NASA Astrophysics Data System (ADS)
Hur, Gwang-Ok
The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with < p > as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific < p > close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are investigated for one particular system, the double-delta kicked rotor. We computed Nearest Neighbour Spacing (NNS) distributions as well as the number variances (E2 statistics). We find that even in regimes where the corresponding classical dynamics are fully chaotic, the statistics are, unex pectedly, intermediate between fully chaotic (GOE) and fully regular (Pois- son). It is argued that they are analogous to the critical statistics seen in the Anderson metal-insulator transition.
Improved atom number with a dual color magneto—optical trap
NASA Astrophysics Data System (ADS)
Cao, Qiang; Luo, Xin-Yu; Gao, Kui-Yi; Wang, Xiao-Rui; Chen, Dong-Min; Wang, Ru-Quan
2012-04-01
We demonstrate a novel dual color magneto—optical trap (MOT), which uses two sets of overlapping laser beams to cool and trap 87Rb atoms. The volume of cold cloud in the dual color MOT is strongly dependent on the frequency difference of the laser beams and can be significantly larger than that in the normal MOT with single frequency MOT beams. Our experiment shows that the dual color MOT has the same loading rate as the normal MOT, but much longer loading time, leading to threefold increase in the number of trapped atoms. This indicates that the larger number is caused by reduced light induced loss. The dual color MOT is very useful in experiments where both high vacuum level and large atom number are required, such as single chamber quantum memory and Bose—Einstein condensation (BEC) experiments. Compared to the popular dark spontaneous-force optical trap (dark SPOT) technique, our approach is technically simpler and more suitable to low power laser systems.
Sympathetic cooling of nanospheres with cold atoms
NASA Astrophysics Data System (ADS)
Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew
2016-05-01
Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.
Measurement of magnetic field gradients using Raman spectroscopy in a fountain
NASA Astrophysics Data System (ADS)
Srinivasan, Arvind; Zimmermann, Matthias; Efremov, Maxim A.; Davis, Jon P.; Narducci, Frank A.
2017-02-01
In many experiments involving cold atoms, it is crucial to know the strength of the magnetic field and/or the magnetic field gradient at the precise location of a measurement. While auxiliary sensors can provide some of this information, the sensors are usually not perfectly co-located with the atoms and so can only provide an approximation to the magnetic field strength. In this article, we describe a technique to measure the magnetic field, based on Raman spectroscopy, using the same atomic fountain source that will be used in future magnetically sensitive measurements.
Optical storage with electromagnetically induced transparency in cold atoms at a high optical depth
NASA Astrophysics Data System (ADS)
Zhang, Shanchao; Zhou, Shuyu; Liu, Chang; Chen, J. F.; Wen, Jianming; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang
2012-06-01
We report experimental demonstration of efficient optical storage with electromagnetically induced transparency (EIT) in a dense cold ^85Rb atomic ensemble trapped in a two-dimensional magneto-optical trap. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency for coherent optical pulses has a saturation value of 50% as OD > 50. Our result is consistent with that obtained from hot vapor cell experiments which suggest that a four-wave mixing nonlinear process degrades the EIT storage coherence and efficiency. We apply this EIT quantum memory for narrow-band single photons with controllable waveforms, and obtain an optimal storage efficiency of 49±3% for single-photon wave packets. This is the highest single-photon storage efficiency reported up to today and brings the EIT atomic quantum memory close to practical application because an efficiency of above 50% is necessary to operate the memory within non-cloning regime and beat the classical limit.
Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases
NASA Astrophysics Data System (ADS)
Ding, Yijue
This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.
Ion-Atom Cold Collisions and Atomic Clocks
NASA Technical Reports Server (NTRS)
Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.
1997-01-01
Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions, exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.
The lab and the land: overcoming the Arctic in Cold War Alaska.
Farish, Matthew
2013-03-01
The militarization of Alaska during and after World War II created an extraordinary set of new facilities. But it also reshaped the imaginative role of Alaska as a hostile environment, where an antagonistic form of nature could be defeated with the appropriate combination of technology and training. One of the crucial sites for this reformulation was the Arctic Aeromedical Laboratory, based at Ladd Air Force Base in Fairbanks. In the first two decades of the Cold War, its employees conducted numerous experiments on acclimatization and survival. The laboratory is now best known for an infamous set of tests involving the application of radioactive tracers to indigenous Alaskans--experiments publicized by post-Cold War panels established to evaluate the tragic history of atomic-era human subject research. But little else has been written about the laboratory's relationship with the populations and landscapes that it targeted for study. This essay presents the laboratory as critical to Alaska's history and the history of the Cold War sciences. A consideration of the laboratory's various projects also reveals a consistent fascination with race. Alaskan Natives were enrolled in experiments because their bodies were understood to hold clues to the mysteries of northern nature. A scientific solution would aid American military campaigns not only in Alaska, but in cold climates everywhere.
Rahman, Mohammad Mahmudur; Brown, Richard J C; Kim, Ki-Hyun; Yoon, Hye-On; Phan, Nhu-Thuc
2013-01-01
In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hg(o)), the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS). Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS). The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species.
Rahman, Mohammad Mahmudur; Brown, Richard J. C.; Yoon, Hye-On; Phan, Nhu-Thuc
2013-01-01
In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hgo), the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS). Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS). The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species. PMID:23589708
Pruttivarasin, Thaned; Katori, Hidetoshi
2015-11-01
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp; Katori, Hidetoshi; Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
Tests of CPT, Lorentz invariance and the WEP with antihydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzscheiter, M.H.; ATHENA Collaboration
1999-03-01
Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invariance. Equally well, such a system could be used for searches of violations of the Weak Equivalence Principle (WEP) at high precision. The author describes his plans to form a significant number of cold, trapped antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen and comment on possible first experiments.
Quantum simulation of disordered systems with cold atoms
NASA Astrophysics Data System (ADS)
Garreau, Jean-Claude
2017-01-01
This paper reviews the physics of quantum disorder in relation with a series of experiments using laser-cooled atoms exposed to "kicks" of a standing wave, realizing a paradigmatic model of quantum chaos, the kicked rotor. This dynamical system can be mapped onto a tight-binding Hamiltonian with pseudo-disorder, formally equivalent to the Anderson model of quantum disorder, with quantum chaos playing the role of disorder. This provides a very good quantum simulator for the Anderson physics. xml:lang="fr"
A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect
NASA Astrophysics Data System (ADS)
Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai
2016-06-01
In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.
NASA Astrophysics Data System (ADS)
Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.
2015-07-01
If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.
Cold Bose-Einstein condensates for surface reflection
NASA Astrophysics Data System (ADS)
Saba, M.; Leanhardt, A. E.; Pasquini, T. A.; Sanner, C.; Schirotzek, A.; Shin, Y.; Pritchard, D. E.; Ketterle, W.
2004-05-01
Atoms can be reflected from a solid surface in spite of the attraction provided by the Casimir-Polder potential if their de Broglie wavelength exceeds the range of the attractive potential, an effect known as quantum reflection and demonstrated for atomic beams hitting a surface at grazing angle [1]. Quantum reflection of atomic Bose-Einstein condensates would have important consequences for experiments and applications requiring manipulation of condensates close to surfaces. However, no matter how cold a condensate is when approaching a surface, the atoms will hit the surface with a kinetic energy appropriate to the healing length, an energy roughly equal to the chemical potential and determined by atom-atom interactions. We circumvented this limitation by building a loose trap for the condensate, so that the atomic cloud can be kept very dilute, reaching the large healing length required to observe quantum reflection [2]. The trap consisted of a small single coil with electric current running in it that pushes the atoms upward, balancing gravity downward. The gravito-magnetic trap had a mean trap frequency of 1 Hz, so that condensates could sit in the trap for several minutes and reach temperatures as low as 500 pK, the lowest temperature ever recorded. We will then discuss how these condensates, whose healing length equals the condensate size, behave when approached to a silicon surface. [1] F. Shimizu, Phys. Rev. Lett. 86, 987 (2001); [2] A. E. Leanhardt et al., Science 301, 1513 (2003)
Single-photon-level quantum image memory based on cold atomic ensembles
Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2013-01-01
A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711
Recent developments in trapping and manipulation of atoms with adiabatic potentials
NASA Astrophysics Data System (ADS)
Garraway, Barry M.; Perrin, Hélène
2016-09-01
A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.
Cavity enhanced atomic magnetometry
Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer
2015-01-01
Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853
Advances in antihydrogen physics.
Charlton, Mike; Van der Werf, Dirk Peter
2015-01-01
The creation of cold antihydrogen atoms by the controlled combination of positrons and antiprotons has opened up a new window on fundamental physics. More recently, techniques have been developed that allow some antihydrogen atoms to be created at low enough kinetic energies that they can be held inside magnetic minimum neutral atom traps. With confinement times of many minutes possible, it has become feasible to perform experiments to probe the properties of the antiatom for the first time. We review the experimental progress in this area, outline some of the motivation for studying basic aspects of antimatter physics and provide an outlook of where we might expect this field to go in the coming years.
Potential energy surfaces of the low-lying electronic states of the Li + LiCs system
NASA Astrophysics Data System (ADS)
Jasik, P.; Kilich, T.; Kozicki, J.; Sienkiewicz, J. E.
2018-03-01
Ab initio quantum chemistry calculations are performed for the mixed alkali triatomic system. Global minima of the ground and first excited doublet states of the trimer are found and Born-Oppenheimer potential energy surfaces of the Li atom interacting with the LiCs molecule were calculated for these states. The lithium atom is placed at various distances and bond angles from the lithium-caesium dimer. Three-body nonadditive forces of the Li2Cs molecule in the global minimum are investigated. Dimer-atom interactions are found to be strongly attractive and may be important in the experiments, particularly involving cold alkali polar dimers.
Dong, Jin-yang; Zhang, Gui-xin; Wang, Chang-quan
2012-01-01
As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.
Study of Spray Disintegration in Accelerating Flow Fields
NASA Technical Reports Server (NTRS)
Nurick, W. H.
1972-01-01
An analytical and experimental investigation was conducted to perform "proof of principlem experiments to establish the effects of propellant combustion gas velocity on propella'nt atomization characteristics. The propellants were gaseous oxygen (GOX) and Shell Wax 270. The fuel was thus the same fluid used in earlier primary cold-flow atomization studies using the frozen wax method. Experiments were conducted over a range in L* (30 to 160 inches) at two contraction ratios (2 and 6). Characteristic exhaust velocity (c*) efficiencies varied from SO to 90 percent. The hot fire experimental performance characteristics at a contraction ratio of 6.0 in conjunction with analytical predictions from the drovlet heat-up version of the Distributed Energy Release (DER) combustion computer proDam showed that the apparent initial dropsize compared well with cold-flow predictions (if adjusted for the gas velocity effects). The results also compared very well with the trend in perfomnce as predicted with the model. significant propellant wall impingement at the contraction ratio of 2.0 precluded complete evaluation of the effect of gross changes in combustion gas velocity on spray dropsize.
1998-11-01
to develop and build an atomic bomb. The project was under the direction of physicist J. Robert Oppenheimer , a former student at the Los Alamos Ranch...of AAF Facilities (1942- 1943 ) 39 Victory in Sight and the Atomic Age: Consolidation and Disposition of Facilities ( 1943 - 1945 ) 42 Cold War ( 1945 ...Sight and the Atomic Age ( 1943 - 1945 ) 61 Cold War Inception (July 1945 -January 1953) 63 Nuclear Escalation (January 1953-November 1963) 72 Detente
EDITORIAL: Cold Quantum GasesEditorial: Cold Quantum Gases
NASA Astrophysics Data System (ADS)
Vassen, W.; Hemmerich, A.; Arimondo, E.
2003-04-01
This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of cold quantum gases. Different aspects of atom optics, matter wave interferometry, laser manipulation of atoms and molecules, and production of very cold and degenerate gases are presented. The variety of subjects demonstrates the steadily expanding role associated with this research area. The topics discussed in this issue, extending from basic physics to applications of atom optics and of cold atomic samples, include: bulletBose--Einstein condensation bulletFermi degenerate gases bulletCharacterization and manipulation of quantum gases bulletCoherent and nonlinear cold matter wave optics bulletNew schemes for laser cooling bulletCoherent cold molecular gases bulletUltra-precise atomic clocks bulletApplications of cold quantum gases to metrology and spectroscopy bulletApplications of cold quantum gases to quantum computing bulletNanoprobes and nanolithography. This special issue is published in connection with the 7th International Workshop on Atom Optics and Interferometry, held in Lunteren, The Netherlands, from 28 September to 2 October 2002. This was the last in a series of Workshops organized with the support of the European Community that have greatly contributed to progress in this area. The scientific part of the Workshop was managed by A Hemmerich, W Hogervorst, W Vassen and J T M Walraven, with input from members of the International Programme Committee who are listed below. The practical aspects of the organization were ably handled by Petra de Gijsel from the Vrije Universiteit in Amsterdam. The Workshop was funded by the European Science Foundation (programme BEC2000+), the European Networks 'Cold Quantum Gases (CQG)', coordinated by E Arimondo, and 'Cold Atoms and Ultraprecise Atomic Clocks (CAUAC)', coordinated by J Henningsen, by the German Physical Society (DFG), by the Dutch Foundation for Fundamental Research on Matter (FOM) and by the Dutch Gelderland province. We thank all these sponsors and the members of the International Programme Committee for making the Workshop such a success. At this point we take the opportunity to express our gratitude to both authors and reviewers, for their efforts in preparing and ensuring the high quality of the papers in this special issue. Wim Vassen Vrije Universiteit, Amsterdam Andreas Hemmerich Universität Hamburg Ennio Arimondo Università di Pisa Guest Editors International Programme Committee A Aspect Orsay, France E Cornell Boulder, USA W Ertmer Hannover, Germany T W Haensch Munich, Germany A Hemmerich Hamburg, Germany W Hogervorst Amsterdam, The Netherlands D Kleppner Cambridge, USA C Salomon Paris, France G V Shlyapnikov Amsterdam, Paris, Moscow S Stringari Trento, Italy W Vassen Amsterdam, The Netherlands J T M Walraven Amsterdam, The Netherlands
Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y.-W.; Liao, W.-T.; Peters, Thorsten
We study the creation of stationary light pulses (SLPs), i.e., light pulses without motion, based on the effect of electromagnetically induced transparency with two counterpropagating coupling fields in cold atoms. We show that the Raman excitations created by counterpropagating probe and coupling fields prohibit the formation of SLPs in media of cold and stationary atoms such as laser-cooled atom clouds, Bose condensates or color-center crystals. A method is experimentally demonstrated to suppress these Raman excitations and SLPs are realized in laser-cooled atoms. Furthermore, we report the first experimental observation of a bichromatic SLP at wavelengths for which no Bragg gratingmore » can be established. Our work advances the understanding of SLPs and opens a new avenue to SLP studies for few-photon nonlinear interactions.« less
Cold atom quantum sensors for space
NASA Astrophysics Data System (ADS)
Singh, Yeshpal
2016-07-01
Quantum sensors based on cold atoms offer the opportunity to perform highly accurate measurements of physical phenomena related to time, gravity and rotation. The deployment of such technologies in the microgravity environment of space may enable further enhancement of their performance, whilst permitting the detection of these physical phenomena over much larger scales than is possible with a ground-based instrument. In this talk, I will present an overview of the activities of the UK National Quantum Hub in Sensors and Metrology in developing cold atoms technology for space. Our activities are focused in two main areas: optical clocks and atom interferometers. I will also discuss our contributions to recent initiatives including STE-QUEST and AI-GOAT, the ESA/NASA initiative aiming at an atom interferometer gravitational wave detector in space.
Laser and Optical Subsystem for NASA's Cold Atom Laboratory
NASA Astrophysics Data System (ADS)
Kohel, James; Kellogg, James; Elliott, Ethan; Krutzik, Markus; Aveline, David; Thompson, Robert
2016-05-01
We describe the design and validation of the laser and optics subsystem for NASA's Cold Atom Laboratory (CAL), a multi-user facility being developed at NASA's Jet Propulsion Laboratory for studies of ultra-cold quantum gases in the microgravity environment of the International Space Station. Ultra-cold atoms will be generated in CAL by employing a combination of laser cooling techniques and evaporative cooling in a microchip-based magnetic trap. Laser cooling and absorption imaging detection of bosonic mixtures of 87 Rb and 39 K or 41 K will be accomplished using a high-power (up to 500 mW ex-fiber), frequency-agile dual wavelength (767 nm and 780 nm) laser and optical subsystem. The CAL laser and optical subsystem also includes the capability to generate high-power multi-frequency optical pulses at 784.87 nm to realize a dual-species Bragg atom interferometer. Currently at Humboldt-Universität zu Berlin.
A minimalistic and optimized conveyor belt for neutral atoms.
Roy, Ritayan; Condylis, Paul C; Prakash, Vindhiya; Sahagun, Daniel; Hessmo, Björn
2017-10-20
Here we report of a design and the performance of an optimized micro-fabricated conveyor belt for precise and adiabatic transportation of cold atoms. A theoretical model is presented to determine optimal currents in conductors used for the transportation. We experimentally demonstrate a fast adiabatic transportation of Rubidium ( 87 Rb) cold atoms with minimal loss and heating with as few as three conveyor belt conductors. This novel design of a multilayered conveyor belt structure is fabricated in aluminium nitride (AlN) because of its outstanding thermal and electrical properties. This demonstration would pave a way for a compact and portable quantum device required for quantum information processing and sensors, where precise positioning of cold atoms is desirable.
Experimental realization of real-time feedback-control of single-atom arrays
NASA Astrophysics Data System (ADS)
Kim, Hyosub; Lee, Woojun; Ahn, Jaewook
2016-05-01
Deterministic loading of neutral atoms on particular locations has remained a challenging problem. Here we show, in a proof-of-principle experimental demonstration, that such deterministic loading can be achieved by rearrangement of atoms. In the experiment, cold rubidium atom were trapped by optical tweezers, which are the hologram images made by a liquid-crystal spatial light modulator (LC-SLM). After the initial occupancy was identified, the hologram was actively controlled to rearrange the captured atoms on to unfilled sites. For this, we developed a new flicker-free hologram algorithm that enables holographic atom translation. Our demonstration show that up to N=9 atoms were simultaneously moved in the 2D plane with the movable degrees of freedom of 2N=18 and the fidelity of 99% for single-atom 5- μm translation. It is hoped that our in situ atom rearrangement becomes useful in scaling quantum computers. Samsung Science and Technology Foundation [SSTF-BA1301-12].
Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C
2015-05-01
Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.
Efimov-driven phase transitions of the unitary Bose gas.
Piatecki, Swann; Krauth, Werner
2014-03-20
Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.
Clean Floquet Time Crystals: Models and Realizations in Cold Atoms
NASA Astrophysics Data System (ADS)
Huang, Biao; Wu, Ying-Hai; Liu, W. Vincent
2018-03-01
Time crystals, a phase showing spontaneous breaking of time-translation symmetry, has been an intriguing subject for systems far away from equilibrium. Recent experiments found such a phase in both the presence and the absence of localization, while in theories localization by disorder is usually assumed a priori. In this work, we point out that time crystals can generally exist in systems without disorder. A series of clean quasi-one-dimensional models under Floquet driving are proposed to demonstrate this unexpected result in principle. Robust time crystalline orders are found in the strongly interacting regime along with the emergent integrals of motion in the dynamical system, which can be characterized by level statistics and the out-of-time-ordered correlators. We propose two cold atom experimental schemes to realize the clean Floquet time crystals, one by making use of dipolar gases and another by synthetic dimensions.
Mott Time Crystal: Models and Realizations in Cold Atoms
NASA Astrophysics Data System (ADS)
Huang, Biao; Wu, Ying-Hai; Liu, W. Vincent
2017-04-01
Time crystals, a phase showing spontaneously breaking of time-translation symmetry, has been an intriguing subject for systems far away from equilibrium. Recent experiments found such a phase both in the presence and absence of localization, while in theories localization is usually assumed a priori. In this work, we point out that time crystals can generally exist in systems without disorder and is not in a pre-thermal state. A series of driven interacting ladder models are proposed to demonstrate this unexpected result in principle. Robust time crystalline orders are found in the Mott regime due to the emergent integrals of motion in the dynamical system, which can be characterized by the out-of-time-order correlators (OTOC). We propose two cold atom experimental schemes to realize the Mott time crystals, one by making use of dipolar gases and another by synthetic dimensions. U.S. ARO (W911NF-11-1-0230), AFOSR (FA9550-16-1-0006).
Designing Ratchets in Ultra-cold Atoms for the Advanced Undergraduate Laboratory
NASA Astrophysics Data System (ADS)
Hachtel, Andrew; Gillette, Matthew; Clements, Ethan; Zhong, Shan; Ducay, Rey; Bali, Samir
2014-05-01
We propose to perform ratchet experiments in cold Rubidium atoms using state-of-the-art home-built tapered amplifier and imaging systems. Our tapered amplifier system amplifies the output from home-built external cavity tunable diode lasers up to a factor 100 and costs less than 5,000, in contrast to commercial tapered amplifier systems, which cost upward of 20,000. We have developed an imaging system with LabVIEW integration, which allows for approximately 2 millisecond exposures and microsecond control of experimental parameters. Our imaging system also costs less than 5,000 in comparison to commercial options, which cost between 40-50,000. Progress toward implementation of a one-dimensional rocking ratchet is described. We gratefully acknowledge funding from the American Chemical Society Petroleum Research Fund and Miami University. We also acknowledge the Miami University Instrumentation Laboratory for their invaluable contributions.
Mesoscopic coherence in light scattering from cold, optically dense and disordered atomic systems
NASA Astrophysics Data System (ADS)
Kupriyanov, D. V.; Sokolov, I. M.; Havey, M. D.
2017-02-01
Coherent effects manifested in light scattering from cold, optically dense and disordered atomic systems are reviewed from a primarily theoretical point of view. Development of the basic theoretical tools is then elaborated through several physical atomic physics based processes which have been at least partly explored experimentally. These include illustrations drawn from the coherent backscattering effect, random lasing in atomic gases, quantum memories and light-atoms interface assisted by the light trapping mechanism. Current understanding and challenges associated with the transition to high atomic densities and cooperativity in the scattering process are also discussed in some detail.
Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination
NASA Astrophysics Data System (ADS)
Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H.
2016-05-01
We study three-body recombination of Ba++Rb +Rb in the mK regime where a single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the three-body rate coefficient k3 and compare the results to the theoretical prediction, k3∝Ecol-3 /4, where Ecol is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s -wave regime.
NASA Astrophysics Data System (ADS)
Ladjimi, Hela; Sardar, Dibyendu; Farjallah, Mohamed; Alharzali, Nisrin; Naskar, Somnath; Mlika, Rym; Berriche, Hamid; Deb, Bimalendu
2018-07-01
In this theoretical work, we calculate potential energy curves, spectroscopic parameters and transition dipole moments of molecular ions BeX+ (X=Na, K, Rb) composed of alkaline ion Be and alkali atom X with a quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarisation potentials and full configuration interaction. We study in detail collisions of the alkaline ion and alkali atom in quantum regime. Besides, we study the possibility of the formation of molecular ions from the ion-atom colliding systems by stimulated Raman adiabatic process and discuss the parameters regime under which the population transfer is feasible. Our results are important for ion-atom cold collisions and experimental realisation of cold molecular ion formation.
Dark optical lattice of ring traps for cold atoms
NASA Astrophysics Data System (ADS)
Courtade, Emmanuel; Houde, Olivier; Clément, Jean-François; Verkerk, Philippe; Hennequin, Daniel
2006-09-01
We propose an optical lattice for cold atoms made of a one-dimensional stack of dark ring traps. It is obtained through the interference pattern of a standard Gaussian beam with a counterpropagating hollow beam obtained using a setup with two conical lenses. The traps of the resulting lattice are characterized by a high confinement and a filling rate much larger than unity, even if loaded with cold atoms from a magneto-optical trap. We have implemented this system experimentally, and demonstrated its feasibility. Applications in statistical physics, quantum computing, and Bose-Einstein condensate dynamics are conceivable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemarie, Gabriel; Delande, Dominique; Chabe, Julien
Using a cold atomic gas exposed to laser pulses - a realization of the chaotic quasiperiodic kicked rotor with three incommensurate frequencies - we study experimentally and theoretically the Anderson metal-insulator transition in three dimensions. Sensitive measurements of the atomic wave function and the use of finite-size scaling techniques make it possible to unambiguously demonstrate the existence of a quantum phase transition and to measure its critical exponents. By taking proper account of systematic corrections to one-parameter scaling, we show the universality of the critical exponent {nu}=1.59{+-}0.01, which is found to be equal to the one previously computed for themore » Anderson model.« less
A circularly polarized optical dipole trap and other developments in laser trapping of atoms
NASA Astrophysics Data System (ADS)
Corwin, Kristan Lee
Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.
Characterization and limits of a cold-atom Sagnac interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauguet, A.; Canuel, B.; Leveque, T.
2009-12-15
We present the full evaluation of a cold-atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal, allowing us to reach the fundamental limit of the quantum projection noise for short term measurements. The technical limits to the long term sensitivity and accuracy have been identified, clearing the way for the next generation of ultrasensitive atom gyroscopes.
Study of open systems with molecules in isotropic liquids
NASA Astrophysics Data System (ADS)
Kondo, Yasushi; Matsuzaki, Masayuki
2018-05-01
We are interested in dynamics of a system in an environment, or an open system. Such phenomena as crossover from Markovian to non-Markovian relaxation and thermal equilibration are of our interest. Open systems have experimentally been studied with ultra cold atoms, ions in traps, optics, and cold electric circuits because well-isolated systems can be prepared here and thus the effects of environments can be controlled. We point out that some molecules solved in isotropic liquid are well isolated and thus they can also be employed for studying open systems in Nuclear Magnetic Resonance (NMR) experiments. First, we provide a short review on related phenomena of open systems that helps readers to understand our motivation. We, then, present two experiments as examples of our approach with molecules in isotropic liquids. Crossover from Markovian to non-Markovian relaxation was realized in one NMR experiment, while relaxation-like phenomena were observed in approximately isolated systems in the other.
Optical Precursor with Four-Wave Mixing and Storage Based on a Cold-Atom Ensemble
NASA Astrophysics Data System (ADS)
Ding, Dong-Sheng; Jiang, Yun Kun; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2015-03-01
We observed optical precursors in four-wave mixing based on a cold-atom gas. Optical precursors appear at the edges of pulses of the generated optical field, and propagate through the atomic medium without absorption. Theoretical analysis suggests that these precursors correspond to high-frequency components of the signal pulse, which means the atoms cannot respond quickly to rapid changes in the electromagnetic field. In contrast, the low-frequency signal components are absorbed by the atoms during transmission. We also showed experimentally that the backward precursor can be stored using a Raman transition of the atomic ensemble and retrieved later.
Anisotropic Interactions between Cold Rydberg Atoms
2015-09-28
AFRL-AFOSR-CL-TR-2015-0002 Anisotropic interactions between cold Rydberg atoms Luis Marcassa INSTITUTO DE FISICA DE SAO CARLOS Final Report 09/28...problem with the report +551633739806 Organization / Institution name Instituto de Fisica de Sao Carlos Grant/Contract Title The full title of the
AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam
NASA Astrophysics Data System (ADS)
Doser, M.; Aghion, S.; Amsler, C.; Bonomi, G.; Brusa, R. S.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Evans, C.; Fanì, M.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Khalidova, O.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Marton, J.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Prelz, F.; Prevedelli, M.; Rienaecker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sandaker, H.; Santoro, R.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.
2018-03-01
The efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n=1-3 and n=3-15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of ?, radial compression to sub-millimetre radii of mixed ? plasmas in 1 T field, high-efficiency transfer of ? to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen-cooling of antiprotons and formation of a beam of antihydrogen-are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
A proposed experimental search for chameleons using asymmetric parallel plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrage, Clare; Copeland, Edmund J.; Stevenson, James A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: ed.copeland@nottingham.ac.uk, E-mail: james.stevenson@nottingham.ac.uk
2016-08-01
Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate howmore » experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.« less
The ATLAS3D project - XXVII. Cold gas and the colours and ages of early-type galaxies
NASA Astrophysics Data System (ADS)
Young, Lisa M.; Scott, Nicholas; Serra, Paolo; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Weijmans, Anne-Marie
2014-11-01
We present a study of the cold gas contents of the ATLAS3D early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M⊙, derived from dynamical models) are found to have H I masses up to M(H I)/M* ˜ 0.06 and H2 masses up to M(H2)/M* ˜ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M⊙, where such signatures are found in ˜50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.
Exotic topological density waves in cold atomic Rydberg-dressed fermions
Li, Xiaopeng; Sarma, S Das
2015-01-01
Versatile controllability of interactions in ultracold atomic and molecular gases has now reached an era where quantum correlations and unconventional many-body phases can be studied with no corresponding analogues in solid-state systems. Recent experiments in Rydberg atomic gases have achieved exquisite control over non-local interactions, allowing novel quantum phases unreachable with the usual local interactions in atomic systems. Here we study Rydberg-dressed atomic fermions in a three-dimensional optical lattice predicting the existence of hitherto unheard-of exotic mixed topological density wave phases. By varying the spatial range of the non-local interaction, we find various chiral density waves with spontaneous time-reversal symmetry breaking, whose quasiparticles form three-dimensional quantum Hall and Weyl semimetal states. Remarkably, certain density waves even exhibit mixed topologies beyond the existing topological classification. Our results suggest gapless fermionic states could exhibit far richer topology than previously expected. PMID:25972134
Laboratory measurements of H-D substitution rates in solid methanol-dn (n=0-2) at 10 K
NASA Astrophysics Data System (ADS)
Nagaoka, Akihiro; Watanabe, Naoki; Kouchi, Akira
The deuterium fractionation of interstellar methanol is investigated experimentally using the ASURA (Apparatus for SUrface Reactions in Astrophysics) system. Recent observations toward the low-mass protostars IRAS16293 found the very high D/H ratios in formaldehyde and methanol up to 0.2 and 0.4, respectively (Loinard et al. 2000; Parise et al. 2004; Aikawa et al. 2005). To date, several models have been proposed to explain D-fractionation mechanism. Pure gas-phase models are difficult to reproduce the D-fractionation, particularly, for multideuterated species, while the results of some gas-grain models can achieve the observed fractionation levels fairly well (Stantcheva & Herbst 2003). However, the gas-grain models require many assumptions regarding the grain surface reactions. Then, the experiments on the surface reaction have been highly desirable. In this context, we performed the experiments on the formation of deuterated formaldehyde and methanol on cold (10 K) interstellar grain analogues and revealed that a key route for the D-fractionation is not successive addition of H and D to CO as previously considered (e.g., Charnley, Tielens, & Rodgers 1997) but H-D substitution in solid CH3OH on icy grains (Nagaoka, Watanabe, & Kouchi 2005). We report the results of further experiments on the deuteration of CH3OH using a cold (30 K) atomic D beam. The relative rates of H-D substitution reactions; CH3OH → CH2DOH, CH2DOH → CHD2OH, CHD2OH → CD3OH, were measured. Experiments were performed using the ASURA system described previously (Watanabe et al. 2004; Nagaoka, Watanabe, & Kouchi 2005). The experimental procedure is as follows. An aluminum substrate was placed in the centre of an ultra-high vacuum chamber (10-10 Torr) and cooled to 10 K by a helium refrigerator. The solid samples of normal and deuterated methanol (CH3OH, CH2DOH, CHD2OH) were vapor-deposited on the substrate. The D atoms produced by dissociation of D2 molecules by microwave discharge were irradiated to samples. D atoms were cooled to 30 K in the atomic source chamber before irradiation. During the irradiation with D atoms, we measured the variations of chemical composition of the samples, in-situ, with FT-IR. From the attenuation curves of parent molecules upon the irradiation with cold D atoms, we determined the relative rates of H-D substitution reactions (k1, k2, k3) of solid methanol;
| CH3OH | k1 → | CH2DOH | k2 → | CHD2OH | k3 → | CD3OH, |
Single element injector testing for STME injector technology
NASA Technical Reports Server (NTRS)
Hulka, J.; Schneider, J. A.; Davis, J.
1992-01-01
An oxidizer-swirled coaxial element injector is being developed for application in the liquid oxygen/gaseous hydrogen Space Transportation Main Engine (STME) for the National Launch System (NLS) vehicle. This paper reports on the first two parts of a four part single injector element study for optimization of the STME injector design. Measurements of Rupe mixing efficiency and atomization characteristics are reported for single element versions of injection elements from two multielement injectors that have been recently hot fire tested. Rather than attempting to measure a definitive mixing efficiency or droplet size parameters of these injector elements, the purpose of these experiments was to provide a baseline comparison for evaluating future injector element design modifications. Hence, all the experiments reported here were conducted with cold flow simulants to nonflowing, ambient conditions. Mixing experiments were conducted with liquid/liquid simulants to provide economical trend data. Atomization experiments were conducted with liquid/gas simulants without backpressure. The results, despite significant differences from hot fire conditions, were found to relate to mixing and atomization parameters deduced from the hot fire testing, suggesting that these experiments are valid for trend analyses. Single element and subscale multielement hot fire testing will verify optimized designs before committing to fullscale fabrication.
NASA Astrophysics Data System (ADS)
Mulders, N.; Wyatt, A. F. G.
1994-02-01
It has been shown that it is possible to create ultra-cold 4He atom beams, using a metal film heater covered with a superfluid helium film. The transient behaviour of the atom pulse can be improved significantly by shaping of the heater pulse. The leading edge of more energetic atoms can be suppressed nearly completely, leaving a core of mono-energetic atoms. The maximum number of atoms in the pulse is determined by the amount of helium in the superfluid film on the heater. This seriously limits the ranges of pulse width and energy over which this beam source can be operated. However, these can be increased significantly by using porous gold smoke heaters.
Protonium production in ATHENA
NASA Astrophysics Data System (ADS)
Venturelli, L.; Amoretti, M.; Amsler, C.; Bonomi, G.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hayano, R. S.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Rizzini, E. Lodi; Macrì, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L. G.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; van der Werf, D. P.; Variola, A.; Yamazaki, Y.; Zurlo, N.; Athena Collaboration
2007-08-01
The ATHENA experiment at CERN, after producing cold antihydrogen atoms for the first time in 2002, has synthesised protonium atoms in vacuum at very low energies. Protonium, i.e. the antiproton-proton bound system, is of interest for testing fundamental physical theories. In the nested penning trap of the ATHENA apparatus protonium has been produced as result of a chemical reaction between an antiproton and the simplest matter molecule, H2+. The formed protonium atoms have kinetic energies in the range 40-700 meV and are metastable with mean lifetimes of the order of 1 μs. Our result shows that it will be possible to start measurements on protonium at low energy antiproton facilities, such as the AD at CERN or FLAIR at GSI.
Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang
2013-09-01
We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.
Atom-by-atom assembly of defect-free one-dimensional cold atom arrays.
Endres, Manuel; Bernien, Hannes; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D
2016-11-25
The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a platform for the deterministic preparation of regular one-dimensional arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of more than 50 atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach may enable controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements. Copyright © 2016, American Association for the Advancement of Science.
Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas (Author’s Manuscript)
2017-01-27
Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas Yong Xu,∗ Sheng-Tao Wang, and L.-M. Duan Department of Physics, University...atomic gas trapped in an optical lattice. Recently, condensed matter systems have proven to be a powerful platform to study low energy gapless...possess a nonzero quantized Chern number. This leads to a natural question of whether there exists a topological ring exhibiting both a quantized Chern
A new generation of high-performance operational quantum sensors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lautier-Gaud, Jean; Desruelle, Bruno; Ménoret, Vincent; Schaff, Jean-François; Stern, Guillaume; Vermeulen, Pierre
2016-04-01
After 30 years of academic research in cold atom sciences, intensive developments are being conducted to improve the compactness and the reliability of experimental set-ups in order to transfer such devices from laboratory-based research to an operational utilization outside of the laboratory. We will present the long-lasting developments that we have been carrying to provide the first industrial cold-atom absolute gravimeter and the first industrial cold-atom atomic clock. We will present in detail the principles of operation and the main features of our instruments. Their performances in terms of sensitivity, stability and accuracy and the latest results they achieved will be reviewed. We will then discuss their use to support other research activities. One of the key technology elements of such instruments that need to be addressed is the laser system used to cool down and manipulate the atoms. A specific focus on our latest developments in this area in terms of performances will be proposed.
ERIC Educational Resources Information Center
Niece, Brian K.; Hauri, James F.
2013-01-01
Mercury is a known neurotoxin that is particularly harmful to children and unborn fetuses. Consumption of contaminated fish is one major route of mercury exposure. This laboratory experiment gives students an opportunity to measure mercury concentrations in store-bought seafood and compare the results to suggested exposure limits. The U.S.…
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy
NASA Astrophysics Data System (ADS)
Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.
2017-06-01
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10-9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy.
Diermaier, M; Jepsen, C B; Kolbinger, B; Malbrunot, C; Massiczek, O; Sauerzopf, C; Simon, M C; Zmeskal, J; Widmann, E
2017-06-12
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of ν HF =1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10 -9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy
Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.
2017-01-01
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10−9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration. PMID:28604657
A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubelka-Lange, André, E-mail: andre.kubelka@zarm.uni-bremen.de; Herrmann, Sven; Grosse, Jens
Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10{supmore » 5} {sup 87}Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.« less
A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket.
Kubelka-Lange, André; Herrmann, Sven; Grosse, Jens; Lämmerzahl, Claus; Rasel, Ernst M; Braxmaier, Claus
2016-06-01
Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10(5) (87)Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.
Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.
Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T
2015-09-02
Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.
Optical coupling of cold atoms to a levitated nanosphere
NASA Astrophysics Data System (ADS)
Montoya, Cris; Witherspoon, Apryl; Fausett, Jacob; Lim, Jason; Kitching, John; Geraci, Andrew
2017-04-01
Cooling mechanical oscillators to their quantum ground state enables the study of quantum phenomena at macroscopic levels. In many cases, the temperature required to cool a mechanical mode to the ground state is below what current cryogenic systems can achieve. As an alternative to cooling via cryogenic systems, it has been shown theoretically that optically trapped nanospheres could reach the ground state by sympathetically cooling the spheres via cold atoms. Such cooled spheres can be used in quantum limited sensing and matter-wave interferometry, and could also enable new hybrid quantum systems where mechanical oscillators act as transducers. In our setup, optical fields are used to couple a sample of cold Rubidium atoms to a nanosphere. The sphere is optically levitated in a separate vacuum chamber, while the atoms are trapped in a 1-D optical lattice and cooled using optical molasses. This work is partially supported by NSF, Grant No. PHY-1506431.
Defect-free atomic array formation using the Hungarian matching algorithm
NASA Astrophysics Data System (ADS)
Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2017-05-01
Deterministic loading of single atoms onto arbitrary two-dimensional lattice points has recently been demonstrated, where by dynamically controlling the optical-dipole potential, atoms from a probabilistically loaded lattice were relocated to target lattice points to form a zero-entropy atomic lattice. In this atom rearrangement, how to pair atoms with the target sites is a combinatorial optimization problem: brute-force methods search all possible combinations so the process is slow, while heuristic methods are time efficient but optimal solutions are not guaranteed. Here, we use the Hungarian matching algorithm as a fast and rigorous alternative to this problem of defect-free atomic lattice formation. Our approach utilizes an optimization cost function that restricts collision-free guiding paths so that atom loss due to collision is minimized during rearrangement. Experiments were performed with cold rubidium atoms that were trapped and guided with holographically controlled optical-dipole traps. The result of atom relocation from a partially filled 7 ×7 lattice to a 3 ×3 target lattice strongly agrees with the theoretical analysis: using the Hungarian algorithm minimizes the collisional and trespassing paths and results in improved performance, with over 50% higher success probability than the heuristic shortest-move method.
Ultra-Cold Atoms on Optical Lattices
ERIC Educational Resources Information Center
Ghosh, Parag
2009-01-01
The field of ultra-cold atoms, since the achievement of Bose-Einstein Condensation (Anderson et al., 1995; Davis et al., 1995; Bradley et al., 1995), have seen an immensely growing interest over the past decade. With the creation of optical lattices, new possibilities of studying some of the widely used models in condensed matter have opened up.…
ERIC Educational Resources Information Center
Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly
2015-01-01
Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…
Ice surfaces in the mesosphere: Absence of dangling bonds in the presence of atomic oxygen
NASA Astrophysics Data System (ADS)
Boulter, James E.; Morgan, Christopher G.; Marschall, Jochen
2005-07-01
Ice deposition experiments in the presence of microwave discharge-dissociated molecular oxygen suggest heterogeneous interactions between dangling OH bonds on the ice surface and atomic oxygen. Ice films deposited on a gold substrate at temperatures of 115, 130, and 140 K from oxygen/water gas mixtures representative of the summertime polar mesosphere exhibit infrared absorption features characteristic of dangling bonds, whereas films grown in the presence of atomic oxygen do not. Dangling bond spectral features are shown to diminish rapidly when the microwave discharge is activated during ice deposition. Similar decreases were not seen when the gas stream was heated or when the ice film was slowly annealed from 130 to 160 K. One interpretation of these results is that atomic oxygen binds to dangling bond sites during ice growth, a phenomenon that may also occur during the formation of ice particles observed just below the cold summertime mesopause.
Decay dynamics in the coupled-dipole model
NASA Astrophysics Data System (ADS)
Araújo, M. O.; Guerin, W.; Kaiser, R.
2018-06-01
Cooperative scattering in cold atoms has gained renewed interest, in particular in the context of single-photon superradiance, with the recent experimental observation of super- and subradiance in dilute atomic clouds. Numerical simulations to support experimental signatures of cooperative scattering are often limited by the number of dipoles which can be treated, well below the number of atoms in the experiments. In this paper, we provide systematic numerical studies aimed at matching the regime of dilute atomic clouds. We use a scalar coupled-dipole model in the low excitation limit and an exclusion volume to avoid density-related effects. Scaling laws for super- and subradiance are obtained and the limits of numerical studies are pointed out. We also illustrate the cooperative nature of light scattering by considering an incident laser field, where half of the beam has a ? phase shift. The enhanced subradiance obtained under such condition provides an additional signature of the role of coherence in the detected signal.
Temporal and spatiotemporal correlation functions for trapped Bose gases
NASA Astrophysics Data System (ADS)
Kohnen, M.; Nyman, R. A.
2015-03-01
Density correlations unambiguously reveal the quantum nature of matter. Here, we study correlations between measurements of density in cold-atom clouds at different times at one position, and also at two separated positions. We take into account the effects of finite-size and -duration measurements made by light beams passing through the atom cloud. We specialize to the case of Bose gases in harmonic traps above critical temperature, for weakly perturbative measurements. For overlapping measurement regions, shot-noise correlations revive after a trap oscillation period. For nonoverlapping regions, bosonic correlations dominate at long times, and propagate at finite speeds. Finally, we give a realistic measurement protocol for performing such experiments.
Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel
NASA Astrophysics Data System (ADS)
Chen, Y.-S.; Haley, D.; Gerstl, S. S. A.; London, A. J.; Sweeney, F.; Wepf, R. A.; Rainforth, W. M.; Bagot, P. A. J.; Moody, M. P.
2017-03-01
The design of atomic-scale microstructural traps to limit the diffusion of hydrogen is one key strategy in the development of hydrogen-embrittlement-resistant materials. In the case of bearing steels, an effective trapping mechanism may be the incorporation of finely dispersed V-Mo-Nb carbides in a ferrite matrix. First, we charged a ferritic steel with deuterium by means of electrolytic loading to achieve a high hydrogen concentration. We then immobilized it in the microstructure with a cryogenic transfer protocol before atom probe tomography (APT) analysis. Using APT, we show trapping of hydrogen within the core of these carbides with quantitative composition profiles. Furthermore, with this method the experiment can be feasibly replicated in any APT-equipped laboratory by using a simple cold chain.
Probing Atomic Dynamics and Structures Using Optical Patterns
NASA Astrophysics Data System (ADS)
Schmittberger, Bonnie L.; Gauthier, Daniel J.
2015-05-01
Pattern formation is a widely studied phenomenon that can provide fundamental insights into nonlinear systems. Emergent patterns in cold atoms are of particular interest in condensed matter physics and quantum information science because one can relate optical patterns to spatial structures in the atoms. In our experimental system, we study multimode optical patterns generated from a sample of cold, thermal atoms. We observe this nonlinear optical phenomenon at record low input powers due to the highly nonlinear nature of the spatial bunching of atoms in an optical lattice. We present a detailed study of the dynamics of these bunched atoms during optical pattern formation. We show how small changes in the atomic density distribution affect the symmetry of the generated patterns as well as the nature of the nonlinearity that describes the light-atom interaction. We gratefully acknowledge the financial support of the National Science Foundation through Grant #PHY-1206040.
Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble
NASA Astrophysics Data System (ADS)
Park, Kwang-Kyoon; Cho, Young-Wook; Chough, Young-Tak; Kim, Yoon-Ho
2018-04-01
We report an experimental demonstration of the nonclassical stationary light pulse (SLP) in a cold atomic ensemble. A single collective atomic excitation is created and heralded by detecting a Stokes photon in the spontaneous Raman scattering process. The heralded single atomic excitation is converted into a single stationary optical excitation or the single-photon SLP, whose effective group velocity is zero, effectively forming a trapped single-photon pulse within the cold atomic ensemble. The single-photon SLP is then released from the atomic ensemble as an anti-Stokes photon after a specified trapping time. The second-order correlation measurement between the Stokes and anti-Stokes photons reveals the nonclassical nature of the single-photon SLP. Our work paves the way toward quantum nonlinear optics without a cavity.
Coherent and dynamic beam splitting based on light storage in cold atoms
Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho
2016-01-01
We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457
Compact mode-locked diode laser system for high precision frequency comparisons in microgravity
NASA Astrophysics Data System (ADS)
Christopher, H.; Kovalchuk, E. V.; Wicht, A.; Erbert, G.; Tränkle, G.; Peters, A.
2017-11-01
Nowadays cold atom-based quantum sensors such as atom interferometers start leaving optical labs to put e.g. fundamental physics under test in space. One of such intriguing applications is the test of the Weak Equivalence Principle, the Universality of Free Fall (UFF), using different quantum objects such as rubidium (Rb) and potassium (K) ultra-cold quantum gases. The corresponding atom interferometers are implemented with light pulses from narrow linewidth lasers emitting near 767 nm (K) and 780 nm (Rb). To determine any relative acceleration of the K and Rb quantum ensembles during free fall, the frequency difference between the K and Rb lasers has to be measured very accurately by means of an optical frequency comb. Micro-gravity applications not only require good electro-optical characteristics but are also stringent in their demand for compactness, robustness and efficiency. For frequency comparison experiments the rather complex fiber laser-based frequency comb system may be replaced by one semiconductor laser chip and some passive components. Here we present an important step towards this direction, i.e. we report on the development of a compact mode-locked diode laser system designed to generate a highly stable frequency comb in the wavelength range of 780 nm.
AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam.
Doser, M; Aghion, S; Amsler, C; Bonomi, G; Brusa, R S; Caccia, M; Caravita, R; Castelli, F; Cerchiari, G; Comparat, D; Consolati, G; Demetrio, A; Di Noto, L; Evans, C; Fanì, M; Ferragut, R; Fesel, J; Fontana, A; Gerber, S; Giammarchi, M; Gligorova, A; Guatieri, F; Haider, S; Hinterberger, A; Holmestad, H; Kellerbauer, A; Khalidova, O; Krasnický, D; Lagomarsino, V; Lansonneur, P; Lebrun, P; Malbrunot, C; Mariazzi, S; Marton, J; Matveev, V; Mazzotta, Z; Müller, S R; Nebbia, G; Nedelec, P; Oberthaler, M; Pacifico, N; Pagano, D; Penasa, L; Petracek, V; Prelz, F; Prevedelli, M; Rienaecker, B; Robert, J; Røhne, O M; Rotondi, A; Sandaker, H; Santoro, R; Smestad, L; Sorrentino, F; Testera, G; Tietje, I C; Widmann, E; Yzombard, P; Zimmer, C; Zmeskal, J; Zurlo, N
2018-03-28
The efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n =1-3 and n =3-15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of [Formula: see text], radial compression to sub-millimetre radii of mixed [Formula: see text] plasmas in 1 T field, high-efficiency transfer of [Formula: see text] to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen-cooling of antiprotons and formation of a beam of antihydrogen-are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).
Trapping cold ground state argon atoms.
Edmunds, P D; Barker, P F
2014-10-31
We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39) C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10) cm(3) s(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerdes, K.D.; Holtzscheiter, E.W.
2006-07-01
The U.S. Department of Energy's (DOE) Office of Environmental Management (EM) has collaborated with the Russian Federal Atomic Energy Agency - Rosatom (formerly Minatom) for 14 years on waste management challenges of mutual concern. Currently, EM is cooperating with Rosatom to explore issues related to high-level waste and investigate Russian experience and technologies that could support EM site cleanup needs. EM and Rosatom are currently implementing six collaborative projects on high-level waste issues: 1) Advanced Melter Technology Application to the U.S. DOE Defense Waste Processing Facility (DWPF) - Cold Crucible Induction Heated Melter (CCIM); 2) - Design Improvements to themore » Cold Crucible Induction Heated Melter; 3) Long-term Performance of Hanford Low-Activity Glasses in Burial Environments; 4) Low-Activity-Waste (LAW) Glass Sulfur Tolerance; 5) Improved Retention of Key Contaminants of Concern in Low Temperature Immobilized Waste Forms; and, 6) Documentation of Mixing and Retrieval Experience at Zheleznogorsk. Preliminary results and the path forward for these projects will be discussed. An overview of two new projects 7) Entombment technology performance and methodology for the Future 8) Radiation Migration Studies at Key Russian Nuclear Disposal Sites is also provided. The purpose of this paper is to provide an overview of EM's objectives for participating in cooperative activities with the Russian Federal Atomic Energy Agency, present programmatic and technical information on these activities, and outline specific technical collaborations currently underway and planned to support DOE's cleanup and closure mission. (authors)« less
Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler
NASA Astrophysics Data System (ADS)
Lee, J.; Park, D. H.; Mittal, S.; Dagenais, M.; Rolston, S. L.
2013-04-01
An integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a one dimensional optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps.
NASA Astrophysics Data System (ADS)
Ramos, Andira; Moore, Kaitlin; Raithel, Georg
2015-05-01
Recent significant disagreement with the previously established size of the proton demonstrates a need to reconsider the current value of the Rydberg constant, the effects of the nuclear charge distribution and QED in hydrogen-like atoms. An experiment is in progress to obtain a measurement of the Rydberg constant by studying circular Rydberg atoms, which exhibit very small QED shifts and electron wavefunctions which do not overlap with the nucleus. Cold Rydberg atoms are trapped using a ponderomotive potential. To drive the transitions, a novel type of spectroscopy is used which utilizes an optical-lattice field that is intensity-modulated at the frequencies of atomic transitions. The method is free of typical spectroscopic selection rules and has been shown to drive transitions up to fifth order. Combined with optical Rydberg-atom trapping, the method enables the measurement of narrow, sub-THz transitions between long-lived circular Rydberg levels. Energy shifts affecting this precision measurement will also be discussed. This work is suported by NSF, NIST and NASA grants.
Spontaneous lateral atomic recoil force close to a photonic topological material
NASA Astrophysics Data System (ADS)
Hassani Gangaraj, S. Ali; Hanson, George W.; Antezza, Mauro; Silveirinha, Mário G.
2018-05-01
We investigate the quantum recoil force acting on an excited atom close to the surface of a nonreciprocal photonic topological insulator (PTI). The main atomic emission channel is the unidirectional surface plasmon propagating at the PTI-vacuum interface, and we show that it enables a spontaneous lateral recoil force that scales at short distances as 1 /d4 , where d is the atom-PTI separation. Remarkably, the sign of the recoil force is polarization and orientation independent, and it occurs in a translation-invariant homogeneous system in thermal equilibrium. Surprisingly, the recoil force persists for very small values of the gyration pseudovector, which, for a biased plasma, corresponds to very low cyclotron frequencies. The ultrastrong recoil force is rooted in the quasihyperbolic dispersion of the surface plasmons. We consider both an initially excited atom and a continuous pump scenario, the latter giving rise to a steady lateral force whose direction can be changed at will by simply varying the orientation of the biasing magnetic field. Our predictions may be tested in experiments with cold Rydberg atoms and superconducting qubits.
Quantum simulation of transverse Ising models with Rydberg atoms
NASA Astrophysics Data System (ADS)
Schauss, Peter
2018-04-01
Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.
Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment
NASA Astrophysics Data System (ADS)
Williams, Jason; D'Incao, Jose; Chiow, Sheng-Wey; Yu, Nan
2015-05-01
Precision atom interferometers (AI) in space promise exciting technical capabilities for fundamental physics research, with proposals including unprecedented tests of the weak equivalence principle, precision measurements of the fine structure and gravitational constants, and detection of gravity waves and dark energy. Consequently, multiple AI-based missions have been proposed to NASA, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory (CAL) onboard the International Space Station. In this talk, I will discuss our plans and preparation at JPL for the proposed flight experiments to use the CAL facility to study the leading-order systematics expected to corrupt future high-precision measurements of fundamental physics with AIs in microgravity. The project centers on the physics of pairwise interactions and molecular dynamics in these quantum systems as a means to overcome uncontrolled shifts associated with the gravity gradient and few-particle collisions. We will further utilize the CAL AI for proof-of-principle tests of systematic mitigation and phase-readout techniques for use in the next-generation of precision metrology experiments based on AIs in microgravity. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Bose and Fermi Gases of Ultracold Ytterbium in a Triangular Optical Lattice
NASA Astrophysics Data System (ADS)
Thobe, Alexander; Doerscher, Soeren; Hundt, Bastian; Kochanke, Andre; Becker, Christoph; Sengstock, Klaus
2013-05-01
Quantum gases of alkaline-earth like atoms such as Calcium, Strontium and Ytterbium (Yb) open up exciting new possibilities for the study of many body physics in optical lattices, ranging from SU(N) symmetric spin Hamiltonians to the Kondo Lattice Model. Here, we present experimental studies of ultracold bosonic and fermionic Yb quantum gases. Unlike other experiments studying ultracold alkaline earth-like atoms, we have implemented a 2D-MOT instead of a Zeeman slower as a source of cold atoms. From the 2D-MOT, operating on the broad 1S0 -->1P1 transtition, the atoms are directly loaded into the 3D-MOT operating on a narrow intercombination line. The atoms are then evaporatively cooled to quantum degeneracy in a crossed optical dipole trap. With this setup we routinely produce BECs and degenerate Fermi gases of different Yb isotopes. Moreover, we present first results on spectroscopy of an interacting fermi gas on the ultranarrow 1S0 -->3P0 clock transition in a magic wavelength optical lattice. In future experiments, this spectroscopy will serve as a versatile tool for interaction sensing and selective addressing of atoms in a wavelength tunable, state dependent, triangular optical lattice, which we are currently implementing. This work is supported by DFG within SFB 925 and GrK 1355, as well as EU FETOpen (iSense).
Probing Molecular Ions With Laser-Cooled Atomic Ions
2017-10-11
Sept. 23, 2015 Precision Chemical Dynamics and Quantum Control of Ultracold Molecular Ion Reactions , Cold Molecular Ions at the Quantum limit (COMIQ...ken.brown@chemistry.gatech.edu This work solved an old mystery about the lifetime of Ca+ due to reactions with background gases in laser-cooling experiments...Relative to other alkaline earths, Ca+ had a much slower reaction rate. We discovered the reason is that the Doppler cooling laser is near
2015-06-01
gram AVS acid volatile sulfides BrCl bromium chloride cm centimeter(s) cm2 g-1 square centimeter(s) per gram CVAFS cold vapor atomic...Production The DGT devices used in our experiments consist of three principal components: a diffusive gel, a resin gel, and a membrane. Gel synthesis is...based on the laboratory procedures for the synthesis of polyacrylamide electrophoresis gels (Clarisse and Hintelmann 2006); although, instead of
Core filling and snaking instability of dark solitons in spin-imbalanced superfluid Fermi gases
NASA Astrophysics Data System (ADS)
Reichl, Matthew D.; Mueller, Erich J.
2017-05-01
We use the time-dependent Bogoliubov-de Gennes equations to study dark solitons in three-dimensional spin-imbalanced superfluid Fermi gases. We explore how the shape and dynamics of dark solitons are altered by the presence of excess unpaired spins which fill their low-density core. The unpaired particles broaden the solitons and suppress the transverse snake instability. We discuss ways of observing these phenomena in cold-atom experiments.
A low-power reversible alkali atom source
NASA Astrophysics Data System (ADS)
Kang, Songbai; Mott, Russell P.; Gilmore, Kevin A.; Sorenson, Logan D.; Rakher, Matthew T.; Donley, Elizabeth A.; Kitching, John; Roper, Christopher S.
2017-06-01
An electrically controllable, solid-state, reversible device for sourcing and sinking alkali vapor is presented. When placed inside an alkali vapor cell, both an increase and decrease in the rubidium vapor density by a factor of two are demonstrated through laser absorption spectroscopy on 10-15 s time scales. The device requires low voltage (5 V), low power (<3.4 mW peak power), and low energy (<10.7 mJ per 10 s pulse). The absence of oxygen emission during operation is shown through residual gas analysis, indicating that Rb is not lost through chemical reaction but rather by ion transport through the designed channel. This device is of interest for atomic physics experiments and, in particular, for portable cold-atom systems where dynamic control of alkali vapor density can enable advances in science and technology.
Plenoptic Imaging of a Three Dimensional Cold Atom Cloud
NASA Astrophysics Data System (ADS)
Lott, Gordon
2017-04-01
A plenoptic imaging system is capable of sampling the rays of light in a volume, both spatially and angularly, providing information about the three dimensional (3D) volume being imaged. The extraction of the 3D structure of a cold atom cloud is demonstrated, using a single plenoptic camera and a single image. The reconstruction is tested against a reference image and the results discussed along with the capabilities and limitations of the imaging system. This capability is useful when the 3D distribution of the atoms is desired, such as determining the shape of an atom trap, particularly when there is limited optical access. Gratefully acknowledge support from AFRL.
Trapping hydrogen atoms from a neon-gas matrix: a theoretical simulation.
Bovino, S; Zhang, P; Kharchenko, V; Dalgarno, A
2009-08-07
Hydrogen is of critical importance in atomic and molecular physics and the development of a simple and efficient technique for trapping cold and ultracold hydrogen atoms would be a significant advance. In this study we simulate a recently proposed trap-loading mechanism for trapping hydrogen atoms released from a neon matrix. Accurate ab initio quantum calculations are reported of the neon-hydrogen interaction potential and the energy- and angular-dependent elastic scattering cross sections that control the energy transfer of initially cold atoms are obtained. They are then used to construct the Boltzmann kinetic equation, describing the energy relaxation process. Numerical solutions of the Boltzmann equation predict the time evolution of the hydrogen energy distribution function. Based on the simulations we discuss the prospects of the technique.
Dual-axis high-data-rate atom interferometer via cold ensemble exchange
Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.
2014-11-24
We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at μg/ √Hz and μrad/s/ √Hz levels, making thismore » a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less
Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms
NASA Astrophysics Data System (ADS)
Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui
2018-03-01
We present an experimental demonstration of converting a microwave field to an optical field via frequency mixing in a cloud of cold 87Rb atoms, where the microwave field strongly couples to an electric dipole transition between Rydberg states. We show that the conversion allows the phase information of the microwave field to be coherently transferred to the optical field. With the current energy level scheme and experimental geometry, we achieve a photon-conversion efficiency of ˜0.3 % at low microwave intensities and a broad conversion bandwidth of more than 4 MHz. Theoretical simulations agree well with the experimental data, and they indicate that near-unit efficiency is possible in future experiments.
Photonic quantum state transfer between a cold atomic gas and a crystal.
Maring, Nicolas; Farrera, Pau; Kutluer, Kutlu; Mazzera, Margherita; Heinze, Georg; de Riedmatten, Hugues
2017-11-22
Interfacing fundamentally different quantum systems is key to building future hybrid quantum networks. Such heterogeneous networks offer capabilities superior to those of their homogeneous counterparts, as they merge the individual advantages of disparate quantum nodes in a single network architecture. However, few investigations of optical hybrid interconnections have been carried out, owing to fundamental and technological challenges such as wavelength and bandwidth matching of the interfacing photons. Here we report optical quantum interconnection of two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be transferred faithfully between a cold atomic ensemble and a rare-earth-doped crystal by means of a single photon at 1,552 nanometre telecommunication wavelength, using cascaded quantum frequency conversion. We demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred to the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85 per cent. Our results open up the prospect of optically connecting quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks.
Reply to ``Comment on `Quantum time-of-flight distribution for cold trapped atoms' ''
NASA Astrophysics Data System (ADS)
Ali, Md. Manirul; Home, Dipankar; Majumdar, A. S.; Pan, Alok K.
2008-02-01
In their comment Gomes [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali , Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.
Reply to 'Comment on 'Quantum time-of-flight distribution for cold trapped atoms''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Md. Manirul; Home, Dipankar; Pan, Alok K.
2008-02-15
In their comment Gomes et al. [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali et al., Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.
Toward a nanoscience emulator with two dimensional atomic gases
NASA Astrophysics Data System (ADS)
Wang, Ping; Ma, Q.; Dutta, S.; Chen, Yong P.
2009-05-01
We report our experimental progress in constructing a cold atom apparatus for emulating phenomena in nanoscience using low dimensional atom gases. Our first experiments will be performed with a 2D ^87Rb Bose-Einstein condensate created in an optical lattice. Our compact vacuum system consists of two AR-coated glass cells --- a low vacuum magneto-optical trap (MOT) chamber and a high vacuum ``science chamber'', connected by a 15cm-long tube for differential pumping. We have used elliptically shaped cooling laser beams and magnet field coils to realize an elongated MOT in the first chamber, and transferred the atoms to a second MOT in the science chamber by a push laser beam. In the science chamber, a 50W, 1550nm single frequency erbium fiber laser is used to produce an optical dipole trap and optical lattice.In addition, controllable disorder can be introduced with laser speckle and inter-atomic interactions can be tuned by atomic density or Feshbach resonance. We plan to explore important phenomena in nanoscience, such as 2D disorder-induced conductor-insulator transition, quantum Hall effect and graphene-like physics in such a tunable 2D atomic gas in optical lattices.
Molecular Diagnostics of Fusion and Laboratory Plasmas
NASA Astrophysics Data System (ADS)
Fantz, U.
2005-05-01
The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments.
Spectral correlations in Anderson insulating wires
NASA Astrophysics Data System (ADS)
Marinho, M.; Micklitz, T.
2018-01-01
We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.
Present and future experiments using bright low-energy positron beams
NASA Astrophysics Data System (ADS)
Hugenschmidt, Christoph
2017-01-01
Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.
Self-organization in cold atomic gases: a synchronization perspective.
Tesio, E; Robb, G R M; Oppo, G-L; Gomes, P M; Ackemann, T; Labeyrie, G; Kaiser, R; Firth, W J
2014-10-28
We study non-equilibrium spatial self-organization in cold atomic gases, where long-range spatial order spontaneously emerges from fluctuations in the plane transverse to the propagation axis of a single optical beam. The self-organization process can be interpreted as a synchronization transition in a fully connected network of fictitious oscillators, and described in terms of the Kuramoto model. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Temporal interference with frequency-controllable long photons from independent cold atomic sources
NASA Astrophysics Data System (ADS)
Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.
2018-01-01
The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.
Generation of subnatural-linewdith biphotons from a hot rubidium atomic vapor cell
NASA Astrophysics Data System (ADS)
Zhu, Lingbang; Shu, Chi; Guo, Xianxin; Chen, Peng; Xiao, Yanhong; Jeong, Heejeong; Du, Shengwang
2017-04-01
We report the generation of narrowband entangled photon pairs (biphotons) from a hot atomic vapor cell. Making use of backward spontaneous four-wave mixing with electromagnetically induced transparency (EIT), we produced subnatural-linewidth (1.9 MHz < 6 MHz) biphotons from a Doppler-broadened (0.5 GHz) hot (63 C) paraffin-coated rubidium 87 vapor cell. The biphoton coherence time is controable and can be tuned up to 100 ns by EIT. The uncorrelated photons from resonance Raman scattering are suppressed by a spatially separated and tailored optical pumping beam. The spectral brightness is as high as 14,000 s- 1 MHz- 1 . As compared with the cold-atom experiment , the hot atomic vapour cell configuration is much simpler for operation and maintenance, and it is a continuous biphoton source. Our demonstration may lead to miniature narrowband biphoton sources based on atomic vapour cells for practical quantum applications and engineering. The work was supported by Hong Kong Research Grants Council (Project No. 16301214), and in part by the CAS/SAFEA International Partnership Program for Creative Research Teams. L.Z. acknowledges support from the Undergraduate Research Opportunities Program.
Zhao, N.; Zhong, Y.; Huang, M.L.; Ma, H.T.; Dong, W.
2015-01-01
The growth behavior of intermetallic compounds (IMCs) at the liquid-solid interfaces in Cu/Sn/Cu interconnects during reflow at 250 °C and 280 °C on a hot plate was investigated. Being different from the symmetrical growth during isothermal aging, the interfacial IMCs showed clearly asymmetrical growth during reflow, i.e., the growth of Cu6Sn5 IMC at the cold end was significantly enhanced while that of Cu3Sn IMC was hindered especially at the hot end. It was found that the temperature gradient had caused the mass migration of Cu atoms from the hot end toward the cold end, resulting in sufficient Cu atomic flux for interfacial reaction at the cold end while inadequate Cu atomic flux at the hot end. The growth mechanism was considered as reaction/thermomigration-controlled at the cold end and grain boundary diffusion/thermomigration-controlled at the hot end. A growth model was established to explain the growth kinetics of the Cu6Sn5 IMC at both cold and hot ends. The molar heat of transport of Cu atoms in molten Sn was calculated as + 11.12 kJ/mol at 250 °C and + 14.65 kJ/mol at 280 °C. The corresponding driving force of thermomigration in molten Sn was estimated as 4.82 × 10−19 N and 6.80 × 10−19 N. PMID:26311323
Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases
NASA Astrophysics Data System (ADS)
Dong, Lin
Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have become an emergent field of theoretical and experimental studies. Because of the novel application of two-photon Raman transitions, ultra-cold neutral atoms behave like charged particles in magnetic field. The Raman coupling naturally gives rise to an effective spin-orbit interaction which couples the atoms center-of-mass motion to its selected pseudo-spin degrees of freedom. Combined with unprecedented controllability of interactions, geometry, disorder strength, spectroscopy, and high resolution measurement of momentum distribution, etc., we are truly in an exciting era of fulfilling and going beyond Richard Feynman's vision. of realizing quantum simulators to better understand the quantum mechanical nature of the universe, manifested immensely in the ultra-cold regimes. In this dissertation, we present a collection of theoretical progresses made by the doctoral candidate and his colleagues and collaborators. From the past few years of work, we mainly address three aspects of the synthetic spin-orbit and light field induced coupling in ultracold quantum gases: a) The ground-state physics of singleparticle system, two-body bound states, and many-body systems, all of which are subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The symmetry breaking, topological phase transition and quench dynamics, which are conveniently offered by the realized experimental setup; c) The proposal and implications of light field induced dynamical spin-orbit coupling for atoms inside optical cavity. Our work represents an important advancement of theoretical understanding to the active research frontier of ultra-cold atom physics with spin-orbit coupling.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE will be unpacked for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Matrix isolation infrared spectra of O2 and N2 insertion reactions with atomic uranium
NASA Astrophysics Data System (ADS)
Hunt, Rodney D.; Toth, L. Mac; Yustein, Jason T.; Andrews, Lester
1993-10-01
Laser ablation of refractory metals can be an effective source of vapor for matrix isolation IR studies. This combination of techniques was used for the first time to study the mechanisms of U vapor reactions with atmospheric components. U atoms and O2 were codeposited with excess Ar at 12 K. The dominant codeposition products were UO2 and UO3. In contrast, the UO yield was always small because UO2 is formed by an insertion mechanism. This mechanism was verified in the 16O2/18O2 experiments which failed to produce 16OU18O. The effects of UV photolysis and matrix annealings were also examined. The U atoms and O2 reaction requires little or no activation energy since UO2 was formed from cold reagents. New charge-transfer species, (UO2+2)(O2-2) and (UO+2)(O-2), and a weak complex, UO3-O2, were primarily produced under conditions which favored further O2 reactions. Similar U atom and N2 experiments produced only linear NUN which is also produced by an insertion mechanism. This U reaction represents the first time that atom was observed breaking and inserting into the triple bond of N2. Photolysis dramatically increased the NUN yield by 3-fold. Matrix annealings produced weak UN2-N2 and UN2-2N2 complexes.
NASA Astrophysics Data System (ADS)
Wang, Shengtao
The ability to precisely and coherently control atomic systems has improved dramatically in the last two decades, driving remarkable advancements in quantum computation and simulation. In recent years, atomic and atom-like systems have also been served as a platform to study topological phases of matter and non-equilibrium many-body physics. Integrated with rapid theoretical progress, the employment of these systems is expanding the realm of our understanding on a range of physical phenomena. In this dissertation, I draw on state-of-the-art experimental technology to develop several new ideas for controlling and applying atomic systems. In the first part of this dissertation, we propose several novel schemes to realize, detect, and probe topological phases in atomic and atom-like systems. We first theoretically study the intriguing properties of Hopf insulators, a peculiar type of topological insulators beyond the standard classification paradigm of topological phases. Using a solid-state quantum simulator, we report the first experimental observation of Hopf insulators. We demonstrate the Hopf fibration with fascinating topological links in the experiment, showing clear signals of topological phase transitions for the underlying Hamiltonian. Next, we propose a feasible experimental scheme to realize the chiral topological insulator in three dimensions. They are a type of topological insulators protected by the chiral symmetry and have thus far remained unobserved in experiment. We then introduce a method to directly measure topological invariants in cold-atom experiments. This detection scheme is general and applicable to probe of different topological insulators in any spatial dimension. In another study, we theoretically discover a new type of topological gapless rings, dubbed a Weyl exceptional ring, in three-dimensional dissipative cold atomic systems. In the second part of this dissertation, we focus on the application of atomic systems in quantum computation and simulation. Trapped atomic ions are one of the leading platforms to build a scalable, universal quantum computer. The common one-dimensional setup, however, greatly limits the system's scalability. By solving the critical problem of micromotion, we propose a two-dimensional architecture for scalable trapped-ion quantum computation. Hamiltonian tomography for many-body quantum systems is essential for benchmarking quantum computation and simulation. By employing dynamical decoupling, we propose a scalable scheme for full Hamiltonian tomography. The required number of measurements increases only polynomially with the system size, in contrast to an exponential scaling in common methods. Finally, we work toward the goal of demonstrating quantum supremacy. A number of sampling tasks, such as the boson sampling problem, have been proposed to be classically intractable under mild assumptions. An intermediate quantum computer can efficiently solve the sampling problem, but the correct operation of the device is not known to be classically verifiable. Toward practical verification, we present an experimental friendly scheme to extract useful and robust information from the quantum boson samplers based on coarse-grained measurements. In a separate study, we introduce a new model built from translation-invariant Ising-interacting spins. This model possesses several advantageous properties, catalyzing the ultimate experimental demonstration of quantum supremacy.
Tunable atom-light beam splitter using electromagnetically induced transparency
NASA Astrophysics Data System (ADS)
Zhu, Xinyu; Wen, Rong; Chen, J. F.
2018-06-01
With electromagnetically induced transmission (EIT), an optical field can be converted into collective atomic excitation and stored in the atomic medium through switching off the strong-coupling field adiabatically. By varying the power of the coupling pulse, we can control the ratio between the transmitted optical field and the stored atomic mode. We use a cloud of cold 85Rb atoms prepared in magneto-optical trap as the experimental platform. Based on a model of EIT dark-state polariton, we consider the real case where the atomic medium has a finite length. The theoretical calculation gives numerical results that agree well with the experimental data. The results show that the ratio can be changed approximately from 0 to 100%, when the maximum power of the coupling pulse (the pulse length is 100 ns) varies from 0 to 20 mW, in the cold atomic ensemble with an optical depth of 40. This process can be used to achieve an atom-light hybrid beam splitter with tunable splitting ratio and thus find potential application in interferometric measurement and quantum information processing.
Cold atoms as a coolant for levitated optomechanical systems
NASA Astrophysics Data System (ADS)
Ranjit, Gambhir; Montoya, Cris; Geraci, Andrew A.
2015-01-01
Optically trapped dielectric objects are well suited for reaching the quantum regime of their center-of-mass motion in an ultrahigh-vacuum environment. We show that ground-state cooling of an optically trapped nanosphere is achievable when starting at room temperature, by sympathetic cooling of a cold-atomic gas optically coupled to the nanoparticle. Unlike cavity cooling in the resolved-sideband limit, this system requires only a modest cavity finesse and it allows the cooling to be turned off, permitting subsequent observation of strongly coupled dynamics between the atoms and sphere. Nanospheres cooled to their quantum ground state could have applications in quantum information science or in precision sensing.
The Search for a Cold War Grand Strategy: NSC 68 & 162
2014-05-22
Robert Dallek, Harry S. Truman (New York: Times Books, 2008); Ernest R. May, American Cold War Strategy (New York: Bedford Books of St. Martin’s Press...Gave the Soviets the Atomic Bomb (New Haven: Yale University Press, 2009), 119. 32Robert C. Williams , Klaus Fuchs, Atom Spy (Cambridge, MA: Harvard...possibilities, including preemptive buying.”52 Dr. Ernest O. Lawrence was the final consultant engaged by the State-Defense Policy Review Group. The
NASA Astrophysics Data System (ADS)
Rebolledo, David; Green, Anne J.; Burton, Michael; Brooks, Kate; Breen, Shari L.; Gaensler, B. M.; Contreras, Yanett; Braiding, Catherine; Purcell, Cormac
2017-12-01
We report high spatial resolution observations of the H I 21cm line in the Carina Nebula and the Gum 31 region obtained with the Australia Telescope Compact Array. The observations covered ∼12 °^2 centred on l = 287.5°, b = -1°, achieving an angular resolution of ∼35 arcsec. The H I map revealed complex filamentary structures across a wide range of velocities. Several 'bubbles' are clearly identified in the Carina Nebula complex, produced by the impact of the massive star clusters located in this region. An H I absorption profile obtained towards the strong extragalactic radio source PMN J1032-5917 showed the distribution of the cold component of the atomic gas along the Galactic disc, with the Sagittarius-Carina and Perseus spiral arms clearly distinguishable. Preliminary calculations of the optical depth and spin temperatures of the cold atomic gas show that the H I line is opaque (τ ≳ 2) at several velocities in the Sagittarius-Carina spiral arm. The spin temperature is ∼100 K in the regions with the highest optical depth, although this value might be lower for the saturated components. The atomic mass budget of Gum 31 is ∼35 per cent of the total gas mass. H I self-absorption features have molecular counterparts and good spatial correlation with the regions of cold dust as traced by the infrared maps. We suggest that in Gum 31 regions of cold temperature and high density are where the atomic to molecular gas-phase transition is likely to be occurring.
Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2013-09-13
Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.
Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.
Araújo, Michelle O; Krešić, Ivor; Kaiser, Robin; Guerin, William
2016-08-12
Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.
High-stability compact atomic clock based on isotropic laser cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esnault, Francois-Xavier; Holleville, David; Rossetto, Nicolas
2010-09-15
We present a compact cold-atom clock configuration where isotropic laser cooling, microwave interrogation, and clock signal detection are successively performed inside a spherical microwave cavity. For ground operation, a typical Ramsey fringe width of 20 Hz has been demonstrated, limited by the atom cloud's free fall in the cavity. The isotropic cooling light's disordered properties provide a large and stable number of cold atoms, leading to a high signal-to-noise ratio limited by atomic shot noise. A relative frequency stability of 2.2x10{sup -13{tau}-1/2} has been achieved, averaged down to 4x10{sup -15} after 5x10{sup 3} s of integration. Development of such amore » high-performance compact clock is of major relevance for on-board applications, such as satellite-positioning systems. As a cesium clock, it opens the door to a new generation of compact primary standards and timekeeping devices.« less
2-qubit quantum state transfer in spin chains and cold atoms with weak links
NASA Astrophysics Data System (ADS)
Lorenzo, Salvatore; Apollaro, Tony J. G.; Trombettoni, Andrea; Paganelli, Simone
In this paper we discuss the implementation of 2-qubit quantum state transfer (QST) in inhomogeneous spin chains where the sender and the receiver blocks are coupled through the bulk channel via weak links. The fidelity and the typical timescale of the QST are discussed as a function of the parameters of the weak links. Given the possibility of implementing with cold atoms in optical lattices a variety of condensed matter systems, including spin systems, we also discuss the possible implementation of the discussed 2-qubit QST with cold gases with weak links, together with a discussion of the applications and limitations of the presented results.
Multivessel system for cold-vapor mercury generation. Determination of mercury in hair and fish.
Boaventura, G R; Barbosa, A C; East, G A
1997-01-01
A multivessel system for the determination of mercury (Hg) by cold-vapor atomic absorption spectrometry (CV-AAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed. The performance of the proposed device was tested by determining total Hg in quality-control samples of hair and fishes following acid digestion. Application of the apparatus to the determination of Hg by CV-AAS following alkaline digestion was studied as well. The detection limit obtained for CV-AAS was 0.11 ng/mL and for ICP-AES 1.39 ng/mL. The results show that the system is appropriate to be used in techniques involving cold-vapor generation of Hg.
Population kinetics on K alpha lines of partially ionized Cl atoms.
Kawamura, Tohru; Nishimura, Hiroaki; Koike, Fumihiro; Ochi, Yoshihiro; Matsui, Ryoji; Miao, Wen Yong; Okihara, Shinichiro; Sakabe, Shuji; Uschmann, Ingo; Förster, Eckhart; Mima, Kunioki
2002-07-01
A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.
Theory of a Quantum Scanning Microscope for Cold Atoms
NASA Astrophysics Data System (ADS)
Yang, D.; Laflamme, C.; Vasilyev, D. V.; Baranov, M. A.; Zoller, P.
2018-03-01
We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.
Theory of a Quantum Scanning Microscope for Cold Atoms.
Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P
2018-03-30
We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.
Quantum phenomena in gravitational field
NASA Astrophysics Data System (ADS)
Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.
2011-10-01
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.
EPA Method 245.2: Mercury (Automated Cold Vapor Technique)
Method 245.2 describes procedures for preparation and analysis of drinking water samples for analysis of mercury using acid digestion and cold vapor atomic absorption. Samples are prepared using an acid digestion technique.
NASA Astrophysics Data System (ADS)
Fan, Qiu-Bo; Wang, Yi-Ru; Chen, Jin; Pan, Yue-Wu; Han, Bai-Ping; Fu, Chang-Bao; Sun, Yan
2017-06-01
The steady-state properties of a hybrid system are investigated in this paper. Many cold atoms in the four-level tripod configuration are confined in an optical cavity with a movable end mirror. The confined cold atoms are driven with two external classical fields and an internal cavity field. The internal cavity field is excited by an external driving field and shows a radiation pressure upon the movable end mirror. The coupling of atom-light and opto-mechanical interactions is enhanced by embedding a four-level atomic system in a typical opto-mechanical cavity. And an enhanced nonlinear feedback mechanism is offered by the enhanced coupling, which permits the observation of five and three steady-state solutions for relevant variables near two-photon resonance. The enhanced nonlinear feedback mechanism also allows us to observe the obvious difference in the double-EIT phenomenon between the atom-assisted opto-mechanical system and usual atom-field system.
Lasers, Cold Atoms and Atomic Clocks: Realizing the Second Today
NASA Astrophysics Data System (ADS)
Calonico, Davide
2013-09-01
The time is the physical quantity that mankind could measure with the best accuracy, thanks to the properties of the atomic physics, as the present definition of time is based on atomic energy transitions. This short review gives some basic information on the heart of the measurement of time in the contemporary world, i.e. the atomic clocks, and some trends related.
Quantum enhancement of momentum diffusion in the delta-kicked rotor.
d'Arcy, M B; Godun, R M; Oberthaler, M K; Cassettari, D; Summy, G S
2001-08-13
We present detailed observations of the quantum delta-kicked rotor in the vicinity of a quantum resonance. Our experiment consists of an ensemble of cold cesium atoms subject to a pulsed off-resonant standing wave of light. We measure the mean energy and show clearly that at the quantum resonance it is a local maximum. We also examine the effect of noise on the system and find that the greatest sensitivity to this occurs at the resonances. This makes these regions ideal for examining quantum-classical correspondence. A picture based on diffraction is developed which allows the experiments to be readily understood.
The ASACUSA antihydrogen and hydrogen program: results and prospects
NASA Astrophysics Data System (ADS)
Malbrunot, C.; Amsler, C.; Arguedas Cuendis, S.; Breuker, H.; Dupre, P.; Fleck, M.; Higaki, H.; Kanai, Y.; Kolbinger, B.; Kuroda, N.; Leali, M.; Mäckel, V.; Mascagna, V.; Massiczek, O.; Matsuda, Y.; Nagata, Y.; Simon, M. C.; Spitzer, H.; Tajima, M.; Ulmer, S.; Venturelli, L.; Widmann, E.; Wiesinger, M.; Yamazaki, Y.; Zmeskal, J.
2018-03-01
The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of `cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
DARPA looks beyond GPS for positioning, navigating, and timing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, David
Cold-atom interferometry, microelectromechanical systems, signals of opportunity, and atomic clocks are some of the technologies the defense agency is pursuing to provide precise navigation when GPS is unavailable.
Lurking systematics in dust-based estimates of galaxy ISM masses
NASA Astrophysics Data System (ADS)
Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle
2018-01-01
We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. With observations of cold neutral atomic and molecular gas, we calibrate predictive relationships using infrared dust emission and gas depletion time methods. We derive a set of self-consistent predictions of cold gas masses with ~20% scatter, and the greatest accuracy for total cold gas mass. However, significant systematic residuals are found in all calibrations which depend strongly on the molecular-to-atomic hydrogen mass ratio, and they can over/under-predict gas masses by >0.5 dex. Extending these types of indirect predictions to high-z galaxies (e.g., using ALMA observations of dust continuum to determine gas masses) requires implicit assumptions about the conditions in their interstellar medium. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.
Integrated Optical Dipole Trap for Cold Neutral Atoms with an Optical Waveguide Coupler
NASA Astrophysics Data System (ADS)
Lee, J.; Park, D. H.; Mittal, S.; Meng, Y.; Dagenais, M.; Rolston, S. L.
2013-05-01
Using an optical waveguide, an integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a 1D optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps and present current research progress towards a fiber-coupled silicon nitride optical waveguide integrable with atom chips. Work is supported by the ARO Atomtronics MURI. Work is supported by the ARO Atomtronics MURI.
Topological bound states of a quantum walk with cold atoms
NASA Astrophysics Data System (ADS)
Mugel, Samuel; Celi, Alessio; Massignan, Pietro; Asbóth, János K.; Lewenstein, Maciej; Lobo, Carlos
2016-08-01
We suggest a method for engineering a quantum walk, with cold atoms as walkers, which presents topologically nontrivial properties. We derive the phase diagram, and show that we are able to produce a boundary between topologically distinct phases using the finite beam width of the applied lasers. A topologically protected bound state can then be observed, which is pinned to the interface and is robust to perturbations. We show that it is possible to identify this bound state by averaging over spin sensitive measures of the atom's position, based on the spin distribution that these states display. Interestingly, there exists a parameter regime in which our system maps on to the Creutz ladder.
Fifteen years of cold matter on the atom chip: promise, realizations, and prospects
Keil, Mark; Amit, Omer; Zhou, Shuyu; Groswasser, David; Japha, Yonathan; Folman, Ron
2016-01-01
Here we review the field of atom chips in the context of Bose–Einstein Condensates (BEC) as well as cold matter in general. Twenty years after the first realization of the BEC and 15 years after the realization of the atom chip, the latter has been found to enable extraordinary feats: from producing BECs at a rate of several per second, through the realization of matter-wave interferometry, and all the way to novel probing of surfaces and new forces. In addition, technological applications are also being intensively pursued. This review will describe these developments and more, including new ideas which have not yet been realized. PMID:27499585
Composite material reinforced with atomized quasicrystalline particles and method of making same
Biner, Suleyman B.; Sordelet, Daniel J.; Lograsso, Barbara K.; Anderson, Iver E.
1998-12-22
A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).
Influence of quantum effects on the parameters of a cold cathode with carbon nanotubes
NASA Astrophysics Data System (ADS)
Glukhova, O. E.; Kolesnikova, A. S.; Slepchenkov, M. M.
2016-01-01
We consider the effect of an external electric field on the parameters of a cold cathode on carbon nanotubes using the quantum-mechanical approach to the description of the interaction of the field with the atomic structure of nanoemitters. It is established for the first time that an increase in the length of the emitting edge of the tube in a field of 10-11 V/nm increases the field emission current of electrons by 3-10%. It is found that in a field of 11 V/nm and higher, atoms of the upper edge of a carbon nanotube are detached with the subsequent destruction of the atomic core.
Novel Infrared Dynamics of Cold Atoms on Hot Graphene
NASA Astrophysics Data System (ADS)
Sengupta, Sanghita; Kotov, Valeri; Clougherty, Dennis
The low-energy dynamics of cold atoms interacting with macroscopic graphene membranes exhibits severe infrared divergences when treated perturbatively. These infrared problems are even more pronounced at finite temperature due to the (infinitely) many flexural phonons excited in graphene. We have devised a technique to take account (resummation) of such processes in the spirit of the well-known exact solution of the independent boson model. Remarkably, there is also similarity to the infrared problems and their treatment (via the Bloch-Nordsieck scheme) in finite temperature ``hot'' quantum electrodynamics and chromodynamics due to the long-range, unscreened nature of gauge interactions. The method takes into account correctly the strong damping provided by the many emitted phonons at finite temperature. In our case, the inverse membrane size plays the role of an effective low-energy scale, and, unlike the above mentioned field theories, there remains an unusual, highly nontrivial dependence on that scale due to the 2D nature of the problem. We present detailed results for the sticking (atomic damping rate) rate of cold atomic hydrogen as a function of the membrane temperature and size. We find that the rate is very strongly dependent on both quantities.
Quantum computation with cold bosonic atoms in an optical lattice.
García-Ripoll, Juan José; Cirac, Juan Ignacio
2003-07-15
We analyse an implementation of a quantum computer using bosonic atoms in an optical lattice. We show that, even though the number of atoms per site and the tunnelling rate between neighbouring sites is unknown, one may operate a universal set of gates by means of adiabatic passage.
Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions
NASA Technical Reports Server (NTRS)
Shortt, Brian; Chutjian, Ara; Orient, Otto
2008-01-01
A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.
View of MISSE-8 taken during a session of EVA
2011-07-12
ISS028-E-016111 (12 July 2011) --- This close-up image, recorded during a July 12 spacewalk, shows the Materials on International Space Station Experiment - 8 (MISSE-8). The experiment package is a test bed for materials and computing elements attached to the outside of the orbiting complex. These materials and computing elements are being evaluated for the effects of atomic oxygen, ultraviolet, direct sunlight, radiation, and extremes of heat and cold. This experiment allows the development and testing of new materials and computing elements that can better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials and computing elements when they are exposed to the space environment, with applications in the design of future spacecraft.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered and secured onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as MISSE is lifted by crane from its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as a crane is used to lift MISSE out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians work to attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Thermonuclear Propaganda: Presentations of Nuclear Strategy in the Early Atomic Age
2014-06-01
comics .17 One scholar of atomic culture noted the ambiguity of the duality of the atomic age as a central tenant to building the “most powerful of all...2004). 18 Ferenc Morton Szasz, Atomic Comics : Cartoonists Confront the Nuclear World (Reno, NV: University of Nevada Press, 2012), 135. 19 Ibid...research.archives.gov/description/36952. 28 Osgood, Total Cold War; Szasz, Atomic Comics ; Zeman and Amundson, Atomic Culture, 3-4. 10 the most modern
Roy, Tapta Kanchan; Kopysov, Vladimir; Nagornova, Natalia S; Rizzo, Thomas R; Boyarkin, Oleg V; Gerber, R Benny
2015-05-18
Calculated structures of the two most stable conformers of a protonated decapeptide gramicidin S in the gas phase have been validated by comparing the vibrational spectra, calculated from first- principles and measured in a wide spectral range using infrared (IR)-UV double resonance cold ion spectroscopy. All the 522 vibrational modes of each conformer were calculated quantum mechanically and compared with the experiment without any recourse to an empirical scaling. The study demonstrates that first-principles calculations, when accounting for vibrational anharmonicity, can reproduce high-resolution experimental spectra well enough for validating structures of molecules as large as of 200 atoms. The validated accurate structures of the peptide may serve as templates for in silico drug design and absolute calibration of ion mobility measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dielectronic recombination experiments at the storage rings: From the present CSR to the future HIAF
NASA Astrophysics Data System (ADS)
Huang, Z. K.; Wen, W. Q.; Xu, X.; Wang, H. B.; Dou, L. J.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Li, J.; Ma, X. M.; Mao, L. J.; Yang, J. C.; Yuan, Y. J.; Xu, W. Q.; Xie, L. Y.; Xu, T. H.; Yao, K.; Dong, C. Z.; Zhu, L. F.; Ma, X.
2017-10-01
Dielectronic recombination (DR) experiments of highly charged ions at the storage rings have been developed as a precision spectroscopic tool to investigate the atomic structure as well as nuclear properties of stable and unstable nuclei. The DR experiment on lithium-like argon ions was successfully performed at main Cooler Storage Ring (CSRm) at Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex. The DR experiments on heavy highly charged ions and even radioactive ions are currently under preparation at the experimental Cooler Storage Ring (CSRe) at HIRFL. The current status of DR experiments at the CSRm and the preparation of the DR experiments at the CSRe are presented. In addition, an overview of DR experiments by employing an electron cooler and a separated ultra-cold electron target at the upcoming High Intensity heavy ion Accelerator Facility (HIAF) will be given.
NASA Astrophysics Data System (ADS)
Robertson, Scott; Michel, Florent; Parentani, Renaud
2017-08-01
We show that measuring commuting observables can be sufficient to assess that a bipartite state is entangled according to either nonseparability or the stronger criterion of "steerability." Indeed, the measurement of a single observable might reveal the strength of the interferences between the two subsystems, as if an interferometer were used. For definiteness, we focus on the two-point correlation function of density fluctuations obtained by in situ measurements in homogeneous one-dimensional cold atomic Bose gases. We then compare this situation to that found in transonic stationary flows mimicking a black hole geometry where correlated phonon pairs are emitted on either side of the sonic horizon by the analogue Hawking effect. We briefly apply our considerations to two recent experiments.
Versatile single-chip event sequencer for atomic physics experiments
NASA Astrophysics Data System (ADS)
Eyler, Edward
2010-03-01
A very inexpensive dsPIC microcontroller with internal 32-bit counters is used to produce a flexible timing signal generator with up to 16 TTL-compatible digital outputs, with a time resolution and accuracy of 50 ns. This time resolution is easily sufficient for event sequencing in typical experiments involving cold atoms or laser spectroscopy. This single-chip device is capable of triggered operation and can also function as a sweeping delay generator. With one additional chip it can also concurrently produce accurately timed analog ramps, and another one-chip addition allows real-time control from an external computer. Compared to an FPGA-based digital pattern generator, this design is slower but simpler and more flexible, and it can be reprogrammed using ordinary `C' code without special knowledge. I will also describe the use of the same microcontroller with additional hardware to implement a digital lock-in amplifier and PID controller for laser locking, including a simple graphics-based control unit. This work is supported in part by the NSF.
NASA Astrophysics Data System (ADS)
D'Incao, Jose; Williams, Jason
2017-04-01
NASA's Cold Atom Laboratory (CAL) is a multi-user facility scheduled for launch to the ISS in 2017. Our flight experiments with CAL will characterize and mitigate leading-order systematics in dual-atomic-species atom interferometers in microgravity relevant for future fundamental physics missions in space. As part of the initial state preparation for interferometry studies, here, we study the RF association and dissociation of weakly bound heteronuclear Feshbach molecules for expected parameters relevant for the microgravity environment of CAL. This includes temperatures on the pico-Kelvin range and atomic densities as low as 108/cm3. We show that under such conditions, thermal and loss effects can be greatly suppressed, resulting in high efficiency in both association and dissociation of extremely weakly bound Feshbach molecules and allowing for high accuracy determination coherent properties of such processes. In addition we study the possibility to implement delta-kick cooling techniques for weakly bound heteronuclear molecules and explore numerically other methods for molecular association and dissociation including the effects of three-body interactions. This research is supported by the National Aeronautics and Space Administration.
A multi-channel tunable source for atomic sensors
NASA Astrophysics Data System (ADS)
Bigelow, Matthew S.; Roberts, Tony D.; McNeil, Shirley A.; Hawthorne, Todd; Battle, Phil
2015-09-01
We have designed and completed initial testing on a laser source suitable for atomic interferometry from compact, robust, integrated components. Our design is enabled by capitalizing on robust, well-commercialized, low-noise telecom components with high reliability and declining costs which will help to drive the widespread deployment of this system. The key innovation is the combination of current telecom-based fiber laser and modulator technology with periodicallypoled waveguide technology to produce tunable laser light at rubidium D1 and D2 wavelengths (and expandable to other alkalis) using second harmonic generation (SHG). Unlike direct-diode sources, this source is immune to feedback at the Rb line eliminating the need for bulky high-power isolators in the system. In addition, the source has GHz-level frequency agility and in our experiments was found to only be limited by the agility of our RF generator. As a proof-of principle, the source was scanned through the Doppler-broadened Rb D2 absorption line. With this technology, multiple channels can be independently tuned to produce the fields needed for addressing atomic states in atom interferometers and clocks. Thus, this technology could be useful in the development cold-atom inertial sensors and gyroscopes.
LOX/Hydrogen Coaxial Injector Atomization Test Program
NASA Technical Reports Server (NTRS)
Zaller, M.
1990-01-01
Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.
A permanent magnet trap for buffer gas cooled atoms and molecules
NASA Astrophysics Data System (ADS)
Nohlmans, D.; Skoff, S. M.; Hendricks, R. J.; Segal, D. M.; Sauer, B. E.; Hinds, E. A.; Tarbutt, M. R.
2013-05-01
Cold molecules are set to provide a wealth of new science compared to their atomic counterparts. Here we want to present preliminary results for cooling and trapping atoms/molecules in a permanent magnetic trap. By replacing the conventional buffer gas cell with an arrangement of permanent magnets, we will be able to trap a fraction of the molecules right where they are cooled. For this purpose we have designed a quadrupole trap using NdFeB magnets, which has a trap depth of 0.4 K for molecules with a magnetic moment of 1 μB. Cold helium gas is pulsed into the trap region by a solenoid valve and the atoms/molecules are subsequently ablated into this and cooled via elastic collisions, leaving a fraction of them trapped. This new set-up is currently being tested with lithium atoms as they are easier to make. After having optimised the trapping and detection processes, we will use the same trap for YbF molecules.
Lai, Chen-Yen; Chien, Chih-Chun
2016-01-01
While batteries offer electronic source and sink for electronic devices, atomic analogues of source and sink and their theoretical descriptions have been a challenge in cold-atom systems. Here we consider dynamically emerged local potentials as controllable source and sink for bosonic atoms. Although a sink potential can collect bosons in equilibrium and indicate its usefulness in the adiabatic limit, sudden switching of the potential exhibits low effectiveness in pushing bosons into it. This is due to conservation of energy and particle in isolated systems such as cold atoms. By varying the potential depth and interaction strength, the systems can further exhibit averse response, where a deeper emerged potential attracts less bosonic atoms into it. To explore possibilities for improving the effectiveness, we investigate what types of system-environment coupling can help bring bosons into a dynamically emerged sink, and a Lindblad operator corresponding to local cooling is found to serve the purpose. PMID:27849034
Imaging Spatial Correlations of Rydberg Excitations in Cold Atom Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarzkopf, A.; Sapiro, R. E.; Raithel, G.
2011-09-02
We use direct spatial imaging of cold {sup 85}Rb Rydberg atom clouds to measure the Rydberg-Rydberg correlation function. The results are in qualitative agreement with theoretical predictions [F. Robicheaux and J. V. Hernandez, Phys. Rev. A 72, 063403 (2005)]. We determine the blockade radius for states 44D{sub 5/2}, 60D{sub 5/2}, and 70D{sub 5/2} and investigate the dependence of the correlation behavior on excitation conditions and detection delay. Experimental data hint at the existence of long-range order.
Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling
NASA Technical Reports Server (NTRS)
Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg
2006-01-01
Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.
Size dependence of single-photon superradiance of cold and dilute atomic ensembles
NASA Astrophysics Data System (ADS)
Kuraptsev, A. S.; Sokolov, I. M.
2017-11-01
We report a theoretical investigation of angular distribution of a single-photon superradiance from cold and dilute atomic clouds. In the present work we focus our attention on the dependence of superradiance on the size and shape of the cloud. We analyze the dynamics of the afterglow of atomic ensemble excited by pulse radiation. Two theoretical approaches are used. The first is the quantum microscopic approach based on a coupled-dipole model. The second approach is random walk approximation. We show that the results obtained in both approaches coincide with a good accuracy for incoherent fluorescence excited by short resonant pulses. We also show that the superradiance decay rate changes with size differently for radiation emitted into different directions.
Novel ways of creating and detecting topological order with cold atoms and ions
NASA Astrophysics Data System (ADS)
Lewenstein, Maciej
2015-03-01
In my talk I will focus on novel physics and novel quantum phases that are expected in lattice systems of ultra-cold atoms or ions in synthetic gauge fields, generated via lattice modulations and shaking. I will discuss fractal energy spectra and topological phases in long-range spin chains realized with trapped ions or atoms in nanofibers, and synthetic gauge fields in synthetic dimensions. I will spend large part of the talk discussing the ways to detect topological effects and order, via tomography of band insulators from quench dynamics, or via direct imaging of topological edge states. This work was supported by ERC AdG OSYRIS, EU IP SIQS, EU STREP EQUAM and Spanish Ministry Grant FOQUS.
Composite material reinforced with atomized quasicrystalline particles and method of making same
Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.
1998-12-22
A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ding, Dong-Sheng; Shi, Shuai; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2016-02-01
Quantum memory is an essential building block for quantum communication and scalable linear quantum computation. Storing two-color entangled photons with one photon being at the telecommunication (telecom) wavelength while the other photon is compatible with quantum memory has great advantages toward the realization of the fiber-based long-distance quantum communication with the aid of quantum repeaters. Here, we report an experimental realization of storing a photon entangled with a telecom photon in polarization as an atomic spin wave in a cold atomic ensemble, thus establishing the entanglement between the telecom-band photon and the atomic-ensemble memory in a polarization degree of freedom. The reconstructed density matrix and the violation of the Clauser-Horne-Shimony-Holt inequality clearly show the preservation of quantum entanglement during storage. Our result is very promising for establishing a long-distance quantum network based on cold atomic ensembles.
Dong, Ming-Xin; Zhang, Wei; Hou, Zhi-Bo; Yu, Yi-Chen; Shi, Shuai; Ding, Dong-Sheng; Shi, Bao-Sen
2017-11-15
Multi-photon entangled states not only play a crucial role in research on quantum physics but also have many applications in quantum information fields such as quantum computation, quantum communication, and quantum metrology. To fully exploit the multi-photon entangled states, it is important to establish the interaction between entangled photons and matter, which requires that photons have narrow bandwidth. Here, we report on the experimental generation of a narrowband four-photon Greenberger-Horne-Zeilinger state with a fidelity of 64.9% through multiplexing two spontaneous four-wave mixings in a cold Rb85 atomic ensemble. The full bandwidth of the generated GHZ state is about 19.5 MHz. Thus, the generated photons can effectively match the atoms, which are very suitable for building a quantum computation and quantum communication network based on atomic ensembles.
Cold atomic hydrogen in the inner galaxy
NASA Technical Reports Server (NTRS)
Dickey, J. M.; Garwood, R. W.
1986-01-01
The VLA is used to measure 21 cm absorption in directions with the absolute value of b less than 1 deg., the absolute value of 1 less than 25 deg. to probe the cool atomic gas in the inner galaxy. Abundant H I absorption is detected; typical lines are deep and narrow, sometimes blending in velocity with adjacent features. Unlike 21 cm emission not all allowed velocities are covered: large portions of the l-v diagram are optically thin. Although not similar to H I emission, the absorption shows a striking correspondence with CO emission in the inner galaxy: essentially every strong feature detected in one survey is seen in the other. The provisional conclusion is that in the inner galaxy most cool atomic gas is associated with molecular cloud complexes. There are few or no cold atomic clouds devoid of molecules in the inner galaxy, although these are common in the outer galaxy.
Science Goals for the PARCS mission on the International Space Station
NASA Astrophysics Data System (ADS)
Ashby, Neil; Hollberg, Leo; Jefferts, Steven; Klipstein, William; Seidel, David; Sullivan, Donald
2003-05-01
The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. This presentation concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5×10-14 at one second, and uncertainties below 10-16 are projected. The relativistic frequency shift should be measurable at least 40 times better than the previous best measurement made by Gravity Probe A. Significant improvements in testing fundamental assumptions of relativity theory, such as local position invariance (LPI), are expected. PARCS is scheduled for launch in 2007 and may very well fly with the Stanford superconducting microwave oscillator (SUMO) which will allow a Kennedy-Thorndike-type experiment with an improvement of better than three orders of magnitude compared to previous best results. PARCS will also provide a much-improved realization of the second, and a stable time reference in space. PARCS is a joint project by the National Institue of Standards and Technology (NIST), the University of Colorado (CU) and NASA's Jet Propulsion Laboratory (JPL).
A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan
2014-08-01
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.
A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.
Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan
2014-08-08
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.
Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate
Zhang, Yongping; Chen, Gang; Zhang, Chuanwei
2013-01-01
Spin-orbit coupling (SOC), the intrinsic interaction between a particle spin and its motion, is responsible for various important phenomena, ranging from atomic fine structure to topological condensed matter physics. The recent experimental breakthrough on the realization of SOC for ultra-cold atoms provides a completely new platform for exploring spin-orbit coupled superfluid physics. However, the SOC strength in the experiment is not tunable. In this report, we propose a scheme for tuning the SOC strength through a fast and coherent modulation of the laser intensities. We show that the many-body interaction between atoms, together with the tunable SOC, can drive a quantum phase transition (QPT) from spin-balanced to spin-polarized ground states in a harmonic trapped Bose-Einstein condensate (BEC), which resembles the long-sought Dicke QPT. We characterize the QPT using the periods of collective oscillations of the BEC, which show pronounced peaks and damping around the quantum critical point. PMID:23727689
Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation
NASA Astrophysics Data System (ADS)
Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury
2018-03-01
The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.
Goldstone and Higgs modes of photons inside a cavity
NASA Astrophysics Data System (ADS)
Yi-Xiang, Yu; Ye, Jinwu; Liu, Wu-Ming
2013-12-01
Goldstone and Higgs modes have been detected in various condensed matter, cold atom and particle physics experiments. Here, we demonstrate that the two modes can also be observed in optical systems with only a few (artificial) atoms inside a cavity. We establish this connection by studying the U(1)/Z2 Dicke model where N qubits (atoms) coupled to a single photon mode. We determine the Goldstone and Higgs modes inside the super-radiant phase and their corresponding spectral weights by performing both 1/J = 2/N expansion and exact diagonalization (ED) study at a finite N. We find nearly perfect agreements between the results achieved by the two approaches when N gets down even to N = 2. The quantum finite size effects at a few qubits make the two modes quite robust against an effectively small counterrotating wave term. We present a few schemes to reduce the critical coupling strength, so the two modes can be observed in several current available experimental systems by just conventional optical measurements.
Nonequilibrium dynamic critical scaling of the quantum Ising chain.
Kolodrubetz, Michael; Clark, Bryan K; Huse, David A
2012-07-06
We solve for the time-dependent finite-size scaling functions of the one-dimensional transverse-field Ising chain during a linear-in-time ramp of the field through the quantum critical point. We then simulate Mott-insulating bosons in a tilted potential, an experimentally studied system in the same equilibrium universality class, and demonstrate that universality holds for the dynamics as well. We find qualitatively athermal features of the scaling functions, such as negative spin correlations, and we show that they should be robustly observable within present cold atom experiments.
NASA Technical Reports Server (NTRS)
Vidali, Gianfranco
1998-01-01
The goal of our project is to study hydrogen recombination reactions on solid surfaces under conditions that are relevant in astrophysics. Laboratory experiments were conducted using low-flux, cold atomic H and D beams impinging on a sample kept under ultra high vacuum conditions. Realistic analogues of interstellar dust grains were used. Our results show that current models for hydrogen recombination reactions have to be modified to take into account the role of activated diffusion of H on surfaces even at low temperature.
Atomic References for Measuring Small Accelerations
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan
2009-01-01
Accelerometer systems that would combine the best features of both conventional (e.g., mechanical) accelerometers and atom interferometer accelerometers (AIAs) have been proposed. These systems are intended mainly for use in scientific research aboard spacecraft but may also be useful on Earth in special military, geological, and civil-engineering applications. Conventional accelerometers can be sensitive, can have high dynamic range, and can have high frequency response, but they lack accuracy and long-term stability. AIAs have low frequency response, but they offer high sensitivity, and high accuracy for measuring small accelerations. In a system according to the proposal, a conventional accelerometer would be used to perform short-term measurements of higher-frequency components of acceleration, while an AIA would be used to provide consistent calibration of, and correction of errors in, the measurements of the conventional accelerometer in the lower-frequency range over the long term. A brief description of an AIA is prerequisite to a meaningful description of a system according to the proposal. An AIA includes a retroreflector next to one end of a cell that contains a cold cloud of atoms in an ultrahigh vacuum. The atoms in the cloud are in free fall. The retroreflector is mounted on the object, the acceleration of which is to be measured. Raman laser beams are directed through the cell from the end opposite the retroreflector, then pass back through the cell after striking the retroreflector. The Raman laser beams together with the cold atoms measure the relative acceleration, through the readout of the AIA, between the cold atoms and the retroreflector.
NASA Astrophysics Data System (ADS)
Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.
2016-01-01
Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high-mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules - methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO→H2CO→CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical-chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addition reactions, but is also subject to H-atom-induced abstraction reactions, yielding CO again. In a similar way, H2CO is also formed in abstraction reactions involving CH3OH. The dominant methanol H-atom abstraction product is expected to be CH2OH, while H-atom additions to H2CO should at least partially proceed through CH3O intermediate radicals. The occurrence of H-atom abstraction reactions in ice mantles leads to more reactive intermediates (HCO, CH3O and CH2OH) than previously thought, when assuming sequential H-atom addition reactions only. This enhances the probability to form COMs through radical-radical recombination without the need of UV photolysis or cosmic rays as external triggers.
Recent progress on the cold atoms clocks at BNM-LPTF
NASA Astrophysics Data System (ADS)
Abgrall, M.; Lemonde, P.; Bize, S.; Sortais, Y.; Zhang, S.; Santarelli, G.; Laurent, P.; Clairon, A.; Salomon, C.
We present recent results on microwave frequency standards using cold atoms. Two cesium fountains have been built and exhibit a frequency accuracy of 1×10-15. Though quite different in their design, both fountains are found to give the same frequency within the error bars of the measurements. One of the fountains is transportable. It was moved to Germany and used as a reference for a phase coherent measurement of the 1S-2S transition of hydrogen with a 2×10-14 accuracy. When using a cryogenic sapphire oscillator as an interrogation oscillator, the frequency stability reaches the fundamental limit set by the quantum projection noise. A short term stability of 4×10-14 τ-1/2 has been obtained. One limitation to the performances of cesium fountains is the frequency shift due to collisions between cold atoms. We show that with rubidium atoms, this effect can be decreased by two orders of magnitude. This feature should allow to vastly improve both the stability and accuracy of microwave fountains. Finally by tracking the frequency between rubidium and cesium fountains, we test the stability of the fine structure constant α with a few 10-15 resolution. We also present the status of the ACES space project.
Antihydrogen Trapped in the ALPHA Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowe, Paul David
2011-02-25
In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i] Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome. The unique design features of the ALPHA apparatus will be explained. These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise themore » perturbations to trapped charged particles which may cause particle loss and heating[iv]. The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried. The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures', G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii] 'Autoresonant Excitation of Antiproton Plasmas' G.B. Andresen et al., Phys. Rev. Lett. 106, 025002 (2011)« less
Antihydrogen Trapped in the ALPHA Experiment
Bowe, Paul David
2017-12-18
In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i] Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome. The unique design features of the ALPHA apparatus will be explained. These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating[iv]. The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried. The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures', G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii] 'Autoresonant Excitation of Antiproton Plasmas' G.B. Andresen et al., Phys. Rev. Lett. 106, 025002 (2011)
New Experimental Approaches and Theoretical Modeling Methods for Laser Cooling Atoms and Molecules
2006-07-27
support of experimental efforts in various laboratories to produce ultracold molecules by laser -induced photoassociation of laser -cooled atoms. We are......temperatures so far have been 25mK [7], rather than tens of µK as one can achieve with laser cooling of atoms. Thus an approach that begins with cold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mike
2015-02-01
This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Coherent control of the formation of cold heteronuclear molecules by photoassociation
NASA Astrophysics Data System (ADS)
de Lima, Emanuel F.
2017-01-01
We consider the formation of cold diatomic molecules in the electronic ground state by photoassociation of atoms of dissimilar species. A combination of two transition pathways from the free colliding pair of atoms to a bound vibrational level of the electronic molecular ground state is envisioned. The first pathway consists of a pump-dump scheme with two time-delayed laser pulses in the near-infrared frequency domain. The pump pulse drives the transition to a bound vibrational level of an excited electronic state, while the dump pulse transfers the population to a bound vibrational level of the electronic ground state. The second pathway takes advantage of the existing permanent dipole moment and employs a single pulse in the far-infrared domain to drive the transition from the unbound atoms directly to a bound vibrational level in the electronic ground state. We show that this scheme offers the possibility to coherently control the photoassociation yield by manipulating the relative phase and timing of the pulses. The photoassociation mechanism is illustrated for the formation of cold LiCs molecules.
Additive manufacturing of magnetic shielding and ultra-high vacuum flange for cold atom sensors.
Vovrosh, Jamie; Voulazeris, Georgios; Petrov, Plamen G; Zou, Ji; Gaber, Youssef; Benn, Laura; Woolger, David; Attallah, Moataz M; Boyer, Vincent; Bongs, Kai; Holynski, Michael
2018-01-31
Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological performance. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique relevant to the manufacture of quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of 5 ± 0.5 × 10 -10 mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.
Dimensional crossover and cold-atom realization of topological Mott insulators
Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.
2015-01-01
Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers. PMID:25669431
View of MISSE-8 taken during a session of EVA
2011-07-12
ISS028-E-016107 (12 July 2011) --- This medium close-up image, recorded during a July 12 spacewalk, shows the Materials on International Space Station Experiment - 8 (MISSE-8). The experiment package is a test bed for materials and computing elements attached to the outside of the orbiting complex. These materials and computing elements are being evaluated for the effects of atomic oxygen, ultraviolet, direct sunlight, radiation, and extremes of heat and cold. This experiment allows the development and testing of new materials and computing elements that can better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials and computing elements when they are exposed to the space environment, with applications in the design of future spacecraft.
Using Resistivity to Measure H/Pd and D/Pd Loading:. Method and Significance
NASA Astrophysics Data System (ADS)
McKubre, M. C. H.; Tanzella, F. L.
The resistance ratio method is the most frequent technique used to determine the extent of interstitial loading of hydrogen or deuterium atoms into palladium electrodes, or extended structures used in electrolytic or gas phase cold fusion experiments. Specifically, advantage is taken of an empirical relationship between the measured resistance, R, normalized to that of the same body at the same temperature in the absence of hydrogen isotope, R0, hence R/R0, and the atomic fraction occupancy of octahedral interstitials, x = H/Pd or D/Pd. This method was first suggested and employed in cold fusion studies by the present authors, and received immediate and widespread acceptance because of the ease with which this experimental technique could be used to make in situ, real-time measurements of a parameter, D/Pd, anticipated or hypothesized at that time to relate to cold fusion heat excess or nuclear production. We take up this topic again 15 years later in an attempt to clear up some errors and misunderstandings regarding the resistance ratio method and its application in cold fusion studies. The relationship between R/R0 and x is empirical. That is, calibrations are only as good as the experiments that support the shape of the curve and cannot be used outside the range (P, T, x) in which data are taken. The original calibration (unaccountably and erroneously immortalized as the "famous Baranowski curve") involved an extrapolation of known data into the region of cold fusion interest in the D-Pd system, at x > 0.6. Present theory and results focus new attention on the very high loading region as x approaches or even exceeds unity, where double occupation of octahedral sites, tetrahedral site occupancy, new phase formation or new electrical states, may be relevant to the underlying physical process of excess heat and nuclear production. Rather than simply using the resistance ratio as a qualitative tool to determine whether an electrode is better or lesser loaded, it is now important to obtain accurate quantitative information for x close to unity. With further experimentation and analysis of published data it is apparent that the curve originally published in 1990 is in error in the high loading condition. This paper describes how this empirical fit has been improved over the years for both H/Pd and D/Pd by employing new data, new analysis of old data, new experimental methods and results.
NASA Astrophysics Data System (ADS)
2016-02-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Ultracold atoms and their applications", was held in the conference hall of the Lebedev Physical Institute, RAS, on 28 October 2015.The papers collected in this issue were written based on talks given at the session:(1) Vishnyakova G A, Golovizin A A, Kalganova E S, Tregubov D O, Khabarova K Yu (Lebedev Physical Institute, Russian Academy of Sciences, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region), Sorokin V N, Sukachev D D, Kolachevsky N N (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Ultracold lanthanides: from optical clock to a quantum simulator"; (2) Barmashova T V, Martiyanov K A, Makhalov V B (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod), Turlapov A V (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod) "Fermi liquid to Bose condensate crossover in a two-dimensional ultracold gas experiment"; (3) Taichenachev A V, Yudin V I, Bagayev S N (Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects"; (4) Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A (Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information". • Ultracold lanthanides: from optical clock to a quantum simulator, G A Vishnyakova, A A Golovizin, E S Kalganova, V N Sorokin, D D Sukachev, D O Tregubov, K Yu Khabarova, N N Kolachevsky Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 168-173 • Fermi liquid-to-Bose condensate crossover in a two-dimensional ultracold gas experiment, T V Barmashova, K A Mart'yanov, V B Makhalov, A V Turlapov Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 174-183 • Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects, A V Taichenachev, V I Yudin, S N Bagayev Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 184-195 • Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information, I I Ryabtsev, I I Beterov, D B Tret'yakov, V M Èntin, E A Yakshina Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 196-208
NASA Astrophysics Data System (ADS)
Ancilotto, Francesco; Rossini, Davide; Pilati, Sebastiano
2018-04-01
The dynamics of a one-dimensional two-component Fermi gas in the presence of a quasiperiodic optical lattice (OL) is investigated by means of a density functional theory approach. Inspired by the protocol implemented in recent cold-atom experiments—designed to identify the many-body localization transition—we analyze the relaxation of an initially prepared imbalance between the occupation number of odd and of even sites. For quasidisorder strength beyond the Anderson localization transition, the imbalance survives for long times, indicating the inability of the system to reach local equilibrium. The late-time value of the imbalance diminishes for increasing interaction strength. Close to the critical quasidisorder strength corresponding to the noninteracting (Anderson) transition, the interacting system displays an extremely slow relaxation dynamics, consistent with subdiffusive behavior. The amplitude of the imbalance fluctuations around its running average is found to decrease with time, and such damping is more effective with increasing interaction strengths. While our study addresses the setup with two equally intense OLs, very similar effects due to interactions have been observed also in recent cold-atom experiments performed in the tight-binding regime, i.e., where one of the two OLs is very deep and the other is much weaker.
Positronium production in cryogenic environments
NASA Astrophysics Data System (ADS)
Cooper, B. S.; Alonso, A. M.; Deller, A.; Liszkay, L.; Cassidy, D. B.
2016-03-01
We report measurements of positronium (Ps) formation following positron irradiation of mesoporous SiO2 films and Ge(100) single crystals at temperatures ranging from 12-700 K. As both of these materials generate Ps atoms via nonthermal processes, they are able to function as positron-positronium converters at cryogenic temperatures. Our data show that such Ps formation is possibly provided the targets are not compromised by adsorption of residual gas. In the case of SiO2 films, we observe a strong reduction in the Ps formation efficiency following irradiation with UV laser light (λ =243.01 nm) below 250 K, in accordance with previous observations of radiation-induced surface paramagnetic centers. Conversely, Ps emission from Ge is enhanced by irradiation with visible laser light (λ =532 nm) via a photoemission process that persists at cryogenic temperatures. Both mesoporous SiO2 films and Ge crystals were found to produce Ps efficiently in cryogenic environments. Accordingly, these materials are likely to prove useful in several areas of research, including Ps mediated antihydrogen formation conducted in the cold bore of a superconducting magnet, the production of Rydberg Ps for experiments in which the effects of black-body radiation must be minimized, and the utilization of mesoporous structures that have been modified to produce cold Ps atoms.
Tremsin, Anton S.; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S.; Vogel, Sven C.
2017-01-01
Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5–10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity. PMID:28102285
Propagation of light through small clouds of cold interacting atoms
NASA Astrophysics Data System (ADS)
Jennewein, S.; Sortais, Y. R. P.; Greffet, J.-J.; Browaeys, A.
2016-11-01
We demonstrate experimentally that a dense cloud of cold atoms with a size comparable to the wavelength of light can induce large group delays on a laser pulse when the laser is tightly focused on it and is close to an atomic resonance. Delays as large as -10 ns are observed, corresponding to "superluminal" propagation with negative group velocities as low as -300 m /s . Strikingly, this large delay is associated with a moderate extinction owing to the very small size of the dense cloud. It implies that a large phase shift is imprinted on the continuous laser beam. Our system may thus be useful for applications to quantum technologies, such as variable delay line for individual photons or phase imprint between two beams at the single-photon level.
Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates.
Wu, Zhan; Zhang, Long; Sun, Wei; Xu, Xiao-Tian; Wang, Bao-Zong; Ji, Si-Cong; Deng, Youjin; Chen, Shuai; Liu, Xiong-Jun; Pan, Jian-Wei
2016-10-07
Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. Copyright © 2016, American Association for the Advancement of Science.
The effect of atomic response time in the theory of Doppler cooling of trapped ions
NASA Astrophysics Data System (ADS)
Janacek, H.; Steane, A. M.; Lucas, D. M.; Stacey, D. N.
2018-03-01
We describe a simple approach to the problem of incorporating the response time of an atom or ion being Doppler-cooled into the theory of the cooling process. The system being cooled does not in general respond instantly to the changing laser frequencies it experiences in its rest frame, and this 'dynamic effect' can affect significantly the temperatures attainable. It is particularly important for trapped ions when there is a slow decay out of the cooling cycle requiring the use of a repumping beam. We treat the cases of trapped ions with two and three internal states, then apply the theory to ?. For this ion experimental data exist showing the ion to be cold under conditions for which heating is predicted if the dynamic effect is neglected. The present theory accounts for the observed behaviour.
Synchronization of a self-sustained cold-atom oscillator
NASA Astrophysics Data System (ADS)
Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.
2018-04-01
Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.
NASA Astrophysics Data System (ADS)
Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong
2018-04-01
The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.
NASA Astrophysics Data System (ADS)
Raithel, Georg
2017-04-01
Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).
NASA Astrophysics Data System (ADS)
Wüster, S.; Rost, J.-M.
2018-02-01
We review Rydberg aggregates, assemblies of a few Rydberg atoms exhibiting energy transport through collective eigenstates, considering isolated atoms or assemblies embedded within clouds of cold ground-state atoms. We classify Rydberg aggregates, and provide an overview of their possible applications as quantum simulators for phenomena from chemical or biological physics. Our main focus is on flexible Rydberg aggregates, in which atomic motion is an essential feature. In these, simultaneous control over Rydberg-Rydberg interactions, external trapping and electronic energies, allows Born-Oppenheimer surfaces for the motion of the entire aggregate to be tailored as desired. This is illustrated with theory proposals towards the demonstration of joint motion and excitation transport, conical intersections and non-adiabatic effects. Additional flexibility for quantum simulations is enabled by the use of dressed dipole-dipole interactions or the embedding of the aggregate in a cold gas or Bose-Einstein condensate environment. Finally we provide some guidance regarding the parameter regimes that are most suitable for the realization of either static or flexible Rydberg aggregates based on Li or Rb atoms. The current status of experimental progress towards enabling Rydberg aggregates is also reviewed.
C and RB Fountains:. Recent Results
NASA Astrophysics Data System (ADS)
Bize, S.; Sortais, Y.; Abgrall, M.; Zhang, S.; Calonico, D.; Mandache, C.; Lemonde, P.; Laurent, P.; Santarelli, G.; Salomon, C.; Clairon, A.; Luiten, A.; Tobar, M.
2002-04-01
We discuss the present performance and limits of our Cs and Rb fountains. The BNM/LPTF operates three cold atom clocks: two Cs fountains and a dual Cs-Rb fountain. By using an ultra-stable cryogenic sapphire oscillator to interrogate the atoms the frequency stability reaches 3.6 × 10-14τ-1/2. The accuracy of our fountains is now near 10-15. We discuss here the problems to be solved to reach a 10-16 accuracy. For instance this implies a continuous monitoring of the collisional frequency shift at the percent level in Cs. In contrast, 87Rb cold atom clocks exhibit a collisional shift ~ 100 times smaller than Cs which should lead to a better ultimate accuracy. Comparing the hyperfine energies of atoms with different atomic numbers Z, one can search for a possible violation of the Einstein Equivalence Principle. When interpreted as a test of the stability of the fine structure constant (α = e2/4πγ0ħc), measurements of the ratio νRb/νCs spread over a two year interval show no change of α at the 7 × 10-15/year level.
A new approach to driving and controlling precision lasers for cold-atom science
NASA Astrophysics Data System (ADS)
Luey, Ben; Shugrue, Jeremy; Anderson, Mike
2014-05-01
Vescent's Integrated Control Electronics (ICE) Platform is a new approach to controlling and driving lasers and other electoral devices in complex atomic and optical experiments. By employing low-noise, high-bandwidth analog electronics with digital control, ICE combines the performance of analog design with the convenience of the digital world. Utilizing a simple USB COM port interface, ICE can easily be controlled via LabView, Python, or an FPGA. High-speed TTL inputs enable precise external timing or triggering. ICE is capable of generating complex timing internally, enabling ICE to drive an entire experiment or it can be directed by an external control program. The system is capable of controlling up to 8 unique ICE slave boards providing flexibility to tailor an assortment of electronics hardware to the needs of a specific experiment. Examples of ICE slave boards are: a current controller and peak-lock laser servo, a four channel temperature controller, a current controller and offset phase lock servo. A single ensemble can drive, stabilize, and frequency lock 3 lasers in addition to powering an optical amplifier, while still leaving 2 remaining slots for further control needs. Staff Scientist
Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping
NASA Astrophysics Data System (ADS)
Stuhl, B. K.
While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.
A new method for quasi-reagent-free biomonitoring of mercury in human urine.
Schlathauer, Maria; Reitsam, Verena; Schierl, Rudolf; Leopold, Kerstin
2017-05-01
A novel analytical method for sampling and extraction of mercury (Hg) from human urine is presented in this work. The method is based on selective accumulation and separation of Hg from fresh urine sample onto active nanogold-coated silica material by highly efficient solid-phase extraction. After thermal desorption of Hg from the extractant, detection is performed by atomic fluorescence spectrometry (AFS). The feasibility and validity of the optimized, quasi-reagent-free approach was confirmed by recovery experiments in spiked real urine (recovery rate 96.13 ± 5.34%) and by comparison of found Hg concentrations in real urine samples - originating from occupationally exposed persons - with values obtained from reference methods cold vapor - atomic absorption spectrometry (CVAAS) and cold vapor - atomic fluorescence spectrometry (CV-AFS). A very good agreement of the found values reveals the validity of the proposed approach. The limit of detection (LOD) was found to be as low as 0.004 μg Hg L -1 and a high reproducibility with a relative standard deviations ≤4.2% (n = 6) is given. Moreover, storage of the samples for up to one week at an ambient temperature of 30 °C reveals no analyte losses or contamination. In conclusion, the proposed method enables easy-to-handle on-site extraction of total Hg from human urine ensuring at the same time reagent-free sample stabilization, providing quick and safe sampling, which can be performed by untrained persons. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Catinella, Barbara; Saintonge, Amélie; Janowiecki, Steven; Cortese, Luca; Davé, Romeel; Lemonias, Jenna J.; Cooper, Andrew P.; Schiminovich, David; Hummels, Cameron B.; Fabello, Silvia; Geréb, Katinka; Kilborn, Virginia; Wang, Jing
2018-05-01
We present the extended GALEX Arecibo SDSS Survey (xGASS), a gas fraction-limited census of the atomic hydrogen (H I) gas content of 1179 galaxies selected only by stellar mass (M⋆ = 109-1011.5 M⊙) and redshift (0.01 < z < 0.05). This includes new Arecibo observations of 208 galaxies, for which we release catalogues and H I spectra. In addition to extending the GASS H I scaling relations by one decade in stellar mass, we quantify total (atomic+molecular) cold gas fractions and molecular-to-atomic gas mass ratios, Rmol, for the subset of 477 galaxies observed with the IRAM 30 m telescope. We find that atomic gas fractions keep increasing with decreasing stellar mass, with no sign of a plateau down to log M⋆/M⊙ = 9. Total gas reservoirs remain H I-dominated across our full stellar mass range, hence total gas fraction scaling relations closely resemble atomic ones, but with a scatter that strongly correlates with Rmol, especially at fixed specific star formation rate. On average, Rmol weakly increases with stellar mass and stellar surface density μ⋆, but individual values vary by almost two orders of magnitude at fixed M⋆ or μ⋆. We show that, for galaxies on the star-forming sequence, variations of Rmol are mostly driven by changes of the H I reservoirs, with a clear dependence on μ⋆. Establishing if galaxy mass or structure plays the most important role in regulating the cold gas content of galaxies requires an accurate separation of bulge and disc components for the study of gas scaling relations.
A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms
Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan
2014-01-01
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a “hairline” solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877
Shock wave loading of a magnetic guide
NASA Astrophysics Data System (ADS)
Kindt, L.
2011-10-01
The atom laser has long been a holy grail within atom physics and with the creation of an atom laser we hope to bring a similar revolution in to the field of atom optics. With the creation of the Bose-Einstein Condensate (BEC) in 1995 the path to an atom laser was initiated. An atom laser is continues source of BEC. In a Bose condensate all the atoms occupy the same quantum state and can be described by the same wave function and phase. With an atom laser the De Broglie wavelength of atoms can be much smaller than the wavelength of light. Due to the ultimate control over the atoms the atom laser is very interesting for atom optics, lithography, metrology, etching and deposition of atoms on a surface. All previous atom lasers have been created from atoms coupled out from an existing Bose-Einstein Condensate. There are different approaches but common to them all is that the duration of the output of the atom laser is limited by the size of the initial BEC and they all have a low flux. This leaves the quest to build a continuous high flux atom laser. An alternative approach to a continuous BEC beam is to channel a continuous ultra cold atomic beam into a magnetic guide and then cool this beam down to degeneracy. Cooling down a continuous beam of atoms faces three large problems: The collision rate has to be large enough for effective rethermalization, since evaporative cooling in 2D is not as effective as in 3D and a large thermal conductivity due to atoms with a high angular momentum causes heating downstream in the guide. We have built a 4 meter magnetic guide that is placed on a downward slope with a magnetic barrier in the end. In the guide we load packets of ultra cold rubidium atoms with a frequency rate large enough for the packets to merge together to form a continuous atomic beam. The atomic beam is supersonic and when the beam reaches the end barrier it will return and collide with itself. The collisions lowers the velocity of the beam into subsonic velocities and a shock wave is created between the two velocity regions. In order to conserve number of particle, momentum and enthalpy the density of the atomic beam passing through the shock wave must increase. We have build such a shock wave in an atomic beam and observed the density increase due to this. As an extra feature having a subsonic beam on a downward slope adds an extra density increase due to gravitational compression. Loading ultra cold atoms into a 3D trap from the dense subsonic beam overcomes the problem with 2D cooling and thermal conductivity. This was done and evaporative cooling was applied creating an unprecedented large number rubidium BEC.
Frequency Standards and Metrology
NASA Astrophysics Data System (ADS)
Maleki, Lute
2009-04-01
Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and imaging an event horizon (Invited) / S. Doeleman. Optically-pumped space cesium clock for Galileo: results of the breadboard / R. Ruffieux ... [et al.] -- pt. IV. Optical clocks I: lattice clocks. Optical lattice clock: seven years of progress and next steps (Invited) / H. Katori, M. Takamoto and T. Akatsuka. The Yb optical lattice clock (Invited) / N. D. Demke ... [et al.]. Optical Lattice clock with Sr atoms (Invited) / P. G. Westergaard ... [et al.]. Development of an optical clock based on neutral strontium atoms held in a lattice trap / E. A. Curtis ... [et al.]. Decoherence and losses by collisions in a [symbol]Sr lattice clock / J. S. R. Vellore Winfred ... [et al.]. Lattice Yb optical clock and cryogenic Cs fountain at INRIM / F. Levi ... [et al.] -- pt. V. Optical clocks II: ion clocks. [Symbol]Yb+ single-ion optical frequency standards (Invited) / Chr. Tamm ... [et al.]. An optical clock based on a single trapped [symbol]Sr+ ion (Invited) / H. S. Margolis ... [et al.]. A trapped [symbol]Yb+ ion optical frequency standard based on the [symbol] transition (Invited) / P. Gill ... [et al.]. Overview of highly accurate RF and optical frequency standards at the National Research Council of Canada (Invited) / A. A. Madej ... [et al.] -- pt. VI. Optical frequency combs. Extreme ultraviolet frequency combs for spectroscopy (Invited) / A. Ozawa ... [et al.]. Development of an optical clockwork for the single trapped strontium ion standard at 445 THz / J. E. Bernard ... [et al.]. A phase-coherent link between the visible and infrared spectral ranges using a combination of CW OPO and femtosecond laser frequency comb / E. V. Kovalchuk and A. Peters. Improvements to the robustness of a TI: sapphire-based femtosecond comb at NPL / V. Tsatourian ... [et al.] -- pt. VII. Atomic microwave standards. NIST FI and F2 (Invited) / T. P. Heavner ... [et al.]. Atomic fountains for the USNO master clock (Invited) / C. Ekstrom ... [et al.]. The transportable cesium fountain clock NIM5: its construction and performance (Invited) / T. Li ... [et al.].Compensated multi-pole mercury trapped ion frequency standard and stability evaluation of systematic effects (Invited) / E. A. Burt ... [et al.]. Research of frequency standards in SIOM - atomic frequency standards based on coherent storage (Invited) / B. Yan ... [et al.]. The PTB fountain clock ensemble preliminary characterization of the new fountain CSF2 / N. Nemitz ... [et al.]. The pulsed optically pumped clock: microwave and optical detection / S. Micalizio ... [et al.]. Research on characteristics of pulsed optically pumped rubidium frequency standard / J. Deng ... [et al.]. Status of the continuous cold fountain clocks at METAS-LTF / A. Joyet ... [et al.]. Experiments with a new [symbol]Hg+ ion clock / E. A. Burt ... [et al.]. Optimising a high-stability CW laser-pumped rubidium gas-cell frequency standard / C. Affolderbach ... [et al.]. Raman-Ramsey Cs cell atomic clock / R. Boudot ... [et al.] -- pt. VIII. Microwave resonators & oscillators. Solutions and ultimate limits in temperature compensation of metallic cylindrical microwave resonators (Invited) / A. De Marchi. Cryogenic sapphire oscillators (Invited) / J. G. Hartnett, E. N. Ivanov and M. E. Tobar. Ultra-stable optical cavity: design and experiments / J. Millo ... [et al.]. New results for whispering gallery mode cryogenic sapphire maser oscillators / K. Benmessai ... [et al.] -- pt. IX. Advanced techniques. Fundamental noise-limited optical phase locking at Femtowatt light levels (Invited) / J. Dick ... [et al.]. Microwave and optical frequency transfer via optical fibre / G. Marra ... [et al.]. Ultra-stable laser source for the [symbol]Sr+ single-ion optical frequency standard at NRC / P. Dubé, A. A. Madej and J. E. Bernard. Clock laser system for a strontium lattice clock / T. Legero ... [et al.]. Measurement noise floor for a long-distance optical carrier transmission via fiber / G. Grosche ... [et al.]. Optical frequency transfer over 172 KM of installed fiber / S. Crane -- pt. X. Miniature systems. Chip-scale atomic devices: precision atomic instruments based on MEMS (Invited) / J. Kitching ... [et al.]. CSAC - the chip-scale atomic clock (Invited) / R. Lutwak ... [et al.]. Reaching a few 10[symbol] stability level with a compact cold atom clock / F. X. Esnault ... [et al.]. Evaluation of Lin||Lin CPT for compact and high performance frequency standard / E. Breschi ... [et al.] -- pt. XI. Time scales. Atomic time scales TAI and TI(BIPM): present status and prospects (Invited) / G. Petit. Weight functions for biases in atomic frequency standards / J. H. Shirley -- pt. XII. Interferometers. Definition and construction of noise budget in atom interferometry (Invited) / E. D'Ambriosio. Characterization of a cold atom gyroscope (Invited) / A. Landragin ... [et al.]. A mobile atom interferometer for high precision measurements of local gravity / M. Schmidt ... [et al.]. Demonstration of atom interferometer comprised of geometric beam splitters / Hiromitsu Imai and Atsuo Morinaga -- pt. XIII. New directions. Active optical clocks (Invited) / J. Chen. Prospects for a nuclear optical frequency standard based on Thorium-229 (Invited) / E. Peik ... [et al.]. Whispering gallery mode oscillators and optical comb generators (Invited) / A. B. Matsko ... [et al.]. Frequency comparison using energy-time entangled photons / A. Stefanov -- List of participants.
Spin-orbit-coupled fermions in an optical lattice clock
NASA Astrophysics Data System (ADS)
Kolkowitz, S.; Bromley, S. L.; Bothwell, T.; Wall, M. L.; Marti, G. E.; Koller, A. P.; Zhang, X.; Rey, A. M.; Ye, J.
2017-02-01
Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.
Cold Rydberg atoms in circular states
NASA Astrophysics Data System (ADS)
Anderson, David; Schwarzkopf, Andrew; Raithel, Georg
2012-06-01
Circular-state Rydberg atoms are interesting in that they exhibit a unique combination of extraordinary properties; long lifetimes (˜n^5), large magnetic moments (l=|m|=n-1) and no first order Stark shift. Circular states have found applications in cavity quantum electrodynamics and precision measurements [1,2], among other studies. In this work we present the production of circular states in an atom trapping apparatus using an adiabatic state-switching method (the crossed-field method [3]). To date, we have observed lifetimes of adiabatically prepared states of several milliseconds. Their relatively large ionization electric fields have been verified by time-of-flight signatures of ion trajectories. We intend to explore the magnetic trapping of circular state Rydberg atoms, as well as their production and interaction properties in ultra-cold and degenerate samples.[4pt] [1] P. Bertet et al., Phys. Rev. Lett., 88, 14 (2002)[0pt] [2] M. Brune et al., Phys. Rev. Lett., 72, 21 (1994)[0pt] [3] D. Delande and J.C. Gay, Europhys. Lett., 5, 303-308 (1988).
Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions
NASA Astrophysics Data System (ADS)
Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.
2016-09-01
We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.
Quantum simulation of the Hubbard model with dopant atoms in silicon
Salfi, J.; Mol, J. A.; Rahman, R.; Klimeck, G.; Simmons, M. Y.; Hollenberg, L. C. L.; Rogge, S.
2016-01-01
In quantum simulation, many-body phenomena are probed in controllable quantum systems. Recently, simulation of Bose–Hubbard Hamiltonians using cold atoms revealed previously hidden local correlations. However, fermionic many-body Hubbard phenomena such as unconventional superconductivity and spin liquids are more difficult to simulate using cold atoms. To date the required single-site measurements and cooling remain problematic, while only ensemble measurements have been achieved. Here we simulate a two-site Hubbard Hamiltonian at low effective temperatures with single-site resolution using subsurface dopants in silicon. We measure quasi-particle tunnelling maps of spin-resolved states with atomic resolution, finding interference processes from which the entanglement entropy and Hubbard interactions are quantified. Entanglement, determined by spin and orbital degrees of freedom, increases with increasing valence bond length. We find separation-tunable Hubbard interaction strengths that are suitable for simulating strongly correlated phenomena in larger arrays of dopants, establishing dopants as a platform for quantum simulation of the Hubbard model. PMID:27094205
Tracing the atomic nitrogen abundance in star-forming regions with ammonia deuteration
NASA Astrophysics Data System (ADS)
Furuya, Kenji; Persson, Magnus V.
2018-06-01
Partitioning of elemental nitrogen in star-forming regions is not well constrained. Most nitrogen is expected to be partitioned among atomic nitrogen (N I), molecular nitrogen (N_2), and icy N-bearing molecules, such as NH_3 and N_2. N I is not directly observable in the cold gas. In this paper, we propose an indirect way to constrain the amount of N I in the cold gas of star-forming clouds, via deuteration in ammonia ice, the [ND2H/NH2D]/[NH2D/NH3] ratio. Using gas-ice astrochemical simulations, we show that if atomic nitrogen remains as the primary reservoir of nitrogen during cold ice formation stages, the [ND2H/NH2D]/[NH2D/NH3] ratio is close to the statistical value of 1/3 and lower than unity, whereas if atomic nitrogen is largely converted into N-bearing molecules, the ratio should be larger than unity. Observability of ammonia isotopologues in the inner hot regions around low-mass protostars, where ammonia ice has sublimated, is also discussed. We conclude that the [ND2H/NH2D]/[NH2D/NH3] ratio can be quantified using a combination of Very Large Array and Atacama Large Millimeter/submillimeter Array observations with reasonable integration times, at least towards IRAS 16293-2422, where high molecular column densities are expected.
Two body and multibody interaction in a cold Rydberg gas
NASA Astrophysics Data System (ADS)
Han, Jianing; Gallagher, Tom
2009-05-01
Cold Rydberg atoms trapped in a Magneto Optical Trap (MOT) are not isolated and they tend to bond through dipole-dipole and multiple-multiple interactions between Rydberg atoms. The dipole-dipole interaction and van der Waals interaction between two atoms have been intensively studied. However, the fact that the dipole-dipole interaction and van der Waals interaction show the same size of broadening, studied by Raithel's group, and there is transition between two molecular states, studied by Farooqi and Overstreet, can not be explained by the two atom picture. The purpose of this paper is to show the multibody nature of a dense cold Rydberg gas by studying the molecular state microwave spectrum. Specifically, single body, two body and three body interaction regions are separated. Moreover, the multibody energy levels for selected geometries are calculated. In addition, multibody blockade will be discussed. [3pt] [1] A. Reinhard, K. C. Younge, T. Cubel Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008).[0pt] [2] S.M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic,Y.P. Zhang, J.R. Ensher, A.S. Estrin, C. Boisseau, R. Cote, E.E. Eyler, and P.L. Gould, Phys. Rev. Lett. 91, 183002 (2003).[0pt] [3] K. Richard Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403 (2007).
Humeniuk, Stephan; Büchler, Hans Peter
2017-12-08
We present a method for computing the full probability distribution function of quadratic observables such as particle number or magnetization for the Fermi-Hubbard model within the framework of determinantal quantum Monte Carlo calculations. Especially in cold atom experiments with single-site resolution, such a full counting statistics can be obtained from repeated projective measurements. We demonstrate that the full counting statistics can provide important information on the size of preformed pairs. Furthermore, we compute the full counting statistics of the staggered magnetization in the repulsive Hubbard model at half filling and find excellent agreement with recent experimental results. We show that current experiments are capable of probing the difference between the Hubbard model and the limiting Heisenberg model.
KSC-20171002-MH-CSH01_0001-MISSE_Arrival_Integration_H265-3170951
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE is unpacked and moved for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Plasmonic trapping potentials for cold atoms
NASA Astrophysics Data System (ADS)
Mildner, Matthias; Horrer, Andreas; Fleischer, Monika; Zimmermann, Claus; Slama, Sebastian
2018-07-01
This paper reports on conceptual and experimental work towards the realization of plasmonic surface traps for cold atoms. The trapping mechanism is based on the combination of a repulsive and an attractive potential generated by evanescent light waves that are plasmonically enhanced. The strength of enhancement can be locally manipulated via the thickness of a metal nanolayer deposited on top of a dielectric substrate. Thus, in principle the trapping geometry can be predefined by the metal layer design. We present simulations of a plasmonic lattice potential using a gold grating with sinusoidally modulated thickness. Experimentally, a first plasmonic test structure is presented and characterized. Furthermore, the surface potential landscape is detected by reflecting ultracold atom clouds from the test structure revealing the influence of both evanescent waves. A parameter range is identified where stable traps can be expected.
Charge transfer in ultracold gases via Feshbach resonances
NASA Astrophysics Data System (ADS)
Gacesa, Marko; Côté, Robin
2017-06-01
We investigate the prospects of using magnetic Feshbach resonance to control charge exchange in ultracold collisions of heteroisotopic combinations of atoms and ions of the same element. The proposed treatment, readily applicable to alkali or alkaline-earth metals, is illustrated on cold collisions of +9Be and 10Be. Feshbach resonances are characterized by quantum scattering calculations in a coupled-channel formalism that includes non-Born-Oppenheimer terms originating from the nuclear kinetic operator. Near a resonance predicted at 322 G, we find the charge exchange rate coefficient to rise from practically zero to values greater than 10-12cm3 /s. Our results suggest controllable charge exchange processes between different isotopes of suitable atom-ion pairs, with potential applications to quantum systems engineered to study charge diffusion in trapped cold atom-ion mixtures and emulate many-body physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Michael George
This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Matter-wave entanglement and teleportation by molecular dissociation and collisions.
Opatrný, T; Kurizki, G
2001-04-02
We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.
Matter-Wave Entanglement and Teleportation by Molecular Dissociation and Collisions
NASA Astrophysics Data System (ADS)
Opatrný, T.; Kurizki, G.
2001-04-01
We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.
NASA Astrophysics Data System (ADS)
Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle J.
2018-05-01
We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. We calibrate predictions for cold neutral atomic and molecular gas using infrared dust emission and gas depletion time methods that are self-consistent and have ˜20 per cent accuracy (with the highest accuracy in the prediction of total cold gas mass). However, modest systematic residual dependences are found in all calibrations that depend on the partition between molecular and atomic gas, and can over/underpredict gas masses by up to 0.3 dex. As expected, dust-based estimates are best at predicting the total gas mass while depletion time-based estimates are only able to predict the (star-forming) molecular gas mass. Additionally, we advise caution when applying these predictions to high-z galaxies, as significant (0.5 dex or more) errors can arise when incorrect assumptions are made about the dominant gas phase. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.
Kondo length in bosonic lattices
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
Nonexponential Decoherence and Momentum Subdiffusion in a Quantum Lévy Kicked Rotator
NASA Astrophysics Data System (ADS)
Schomerus, Henning; Lutz, Eric
2007-06-01
We investigate decoherence in the quantum kicked rotator (modeling cold atoms in a pulsed optical field) subjected to noise with power-law tail waiting-time distributions of variable exponent (Lévy noise). We demonstrate the existence of a regime of nonexponential decoherence where the notion of a decoherence rate is ill defined. In this regime, dynamical localization is never fully destroyed, indicating that the dynamics of the quantum system never reaches the classical limit. We show that this leads to quantum subdiffusion of the momentum, which should be observable in an experiment.
Physics at the FMQT’08 conference
NASA Astrophysics Data System (ADS)
Špička, V.; Nieuwenhuizen, Th. M.; Keefe, P. D.
2010-01-01
This paper summarizes the recent state of the art of the following topics presented at the FQMT’08 conference: Foundations of quantum physics, Quantum measurement; Quantum noise, decoherence and dephasing; Cold atoms and Bose-Einstein condensation; Physics of quantum computing and information; Nonequilibrium quantum statistical mechanics; Quantum, mesoscopic and partly classical thermodynamics; Mesoscopic, nano-electro-mechanical systems and optomechanical systems; Spins systems and their dynamics, Brownian motion and molecular motors; Physics of biological systems, and Relevant experiments from the nanoscale to the macroscale. To all these subjects an introduction is given and the recent literature is overviewed. The paper contains some 680 references in total.
Cold chemistry with ionic partners: quantum features of HeH+(1Σ) with H(1S) at ultralow energies.
Bovino, S; Tacconi, M; Gianturco, F A
2011-07-28
Quantum reactive calculations are presented for an ion-atom reaction involving the HeH(+)cation and its destruction via a barrierless interaction with H atoms. The range of collision energies considered is that of a cold trap regime (around and below millikelvin) where the ionic partner could be spatially confined. Specific resonant features caused by the interplay of the strong ionic interaction with the very slow partners' dynamics are found and analyzed. Indications are also given on the consequences of the abstraction mechanism that acts for this reaction at low energies. © 2011 American Chemical Society
Optical binding with cold atoms
NASA Astrophysics Data System (ADS)
Máximo, C. E.; Bachelard, R.; Kaiser, R.
2018-04-01
Optical binding is a form of light-mediated forces between elements of matter which emerge in response to the collective scattering of light. Such a phenomenon has been studied mainly in the context of the equilibrium stability of dielectric sphere arrays which move amid dissipative media. In this article, we demonstrate that optically bounded states of a pair of cold atoms can exist, in the absence of nonradiative damping. We study the scaling laws for the unstable-stable phase transition at negative detuning and the unstable-metastable one for positive detuning. In addition, we show that angular momentum can lead to dynamical stabilization with infinite-range scaling.
Light storage in a cold atomic ensemble with a high optical depth
NASA Astrophysics Data System (ADS)
Park, Kwang-Kyoon; Chough, Young-Tak; Kim, Yoon-Ho
2017-06-01
A quantum memory with a high storage efficiency and a long coherence time is an essential element in quantum information applications. Here, we report our recent development of an optical quantum memory with a rubidium-87 cold atom ensemble. By increasing the optical depth of the medium, we have achieved a storage efficiency of 65% and a coherence time of 51 μs for a weak laser pulse. The result of a numerical analysis based on the Maxwell-Bloch equations agrees well with the experimental results. Our result paves the way toward an efficient optical quantum memory and may find applications in photonic quantum information processing.
Arbitrarily shaped high-coherence electron bunches from cold atoms
NASA Astrophysics Data System (ADS)
McCulloch, A. J.; Sheludko, D. V.; Saliba, S. D.; Bell, S. C.; Junker, M.; Nugent, K. A.; Scholten, R. E.
2011-10-01
Ultrafast electron diffractive imaging of nanoscale objects such as biological molecules and defects in solid-state devices provides crucial information on structure and dynamic processes: for example, determination of the form and function of membrane proteins, vital for many key goals in modern biological science, including rational drug design. High brightness and high coherence are required to achieve the necessary spatial and temporal resolution, but have been limited by the thermal nature of conventional electron sources and by divergence due to repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that, if the electrons are shaped into ellipsoidal bunches with uniform density, the Coulomb explosion can be reversed using conventional optics, to deliver the maximum possible brightness at the target. Here we demonstrate arbitrary and real-time control of the shape of cold electron bunches extracted from laser-cooled atoms. The ability to dynamically shape the electron source itself and to observe this shape in the propagated electron bunch provides a remarkable experimental demonstration of the intrinsically high spatial coherence of a cold-atom electron source, and the potential for alleviation of electron-source brightness limitations due to Coulomb explosion.
NASA Astrophysics Data System (ADS)
Kawasaki, K.; Jin, F.; Kishita, A.; Tohji, K.; Enomoto, H.
2007-03-01
With increasing environmental awareness and crude oil price, biodiesel fuel (BDF) is gaining recognition as a renewable fuel which may be used as an alternative diesel fuel without any modification to the engine. The cold flow and viscosity of BDF, however, is a major drawback that limited its use in cold area. In this study, therefore, we investigated that partial oxidation of high molecular weight unsaturated carboxylic acids in subcritical water, which major compositions in BDF, to upgrade biodiesel fuel. Oleic acid, (HOOC(CH2)7CH=CH(CH2)7CH3), was selected as a model compound of high molecular weight unsaturated carboxylic acids. All experiments were performed with a batch reactor made of SUS 316 with an internal volume of 5.7 cm3. Oleic acid was oxidized at 300 °C with oxygen supply varying from 1-10 %. Results showed that a large amount of carboxylic acids and aldehydes having 8-9 carbon atoms were formed. These experimental results suggest that the hydrothermal oxidative cleavage may mainly occur at double bonds and the cleavage of double bonds could improve the cold flow and viscosity of BDF.
NASA Astrophysics Data System (ADS)
Schmidt-Bocking, Horst
2008-05-01
The correlated many-particle dynamics in Coulombic systems, which is one of the unsolved fundamental problems in AMO-physics, can now be experimentally approached with so far unprecedented completeness and precision. The recent development of the COLTRIMS technique (COLd Target Recoil Ion Momentum Spectroscopy) provides a coincident multi-fragment imaging technique for eV and sub-eV fragment detection. In its completeness it is as powerful as the bubble chamber in high energy physics. In recent benchmark experiments quasi snapshots (duration as short as an atto-sec) of the correlated dynamics between electrons and nuclei has been made for atomic and molecular objects. This new imaging technique has opened a powerful observation window into the hidden world of many-particle dynamics. Recent multiple-ionization studies will be presented and the observation of correlated electron pairs will be discussed.
Note: A 3D-printed alkali metal dispenser
NASA Astrophysics Data System (ADS)
Norrgard, E. B.; Barker, D. S.; Fedchak, J. A.; Klimov, N.; Scherschligt, J.; Eckel, S.
2018-05-01
We demonstrate and characterize a source of Li atoms made from direct metal laser sintered titanium. The source's outgassing rate is measured to be 5(2) × 10-7 Pa L s-1 at a temperature T = 330 °C, which optimizes the number of atoms loaded into a magneto-optical trap. The source loads ≈107 7Li atoms in the trap in ≈1 s. The loaded source weighs 700 mg and is suitable for a number of deployable sensors based on cold atoms.
Ahmed, Shubbir; Guptasarma, Purnananda
2014-01-01
Some years ago, we showed that thermo-chemically denatured, partially-unfolded forms of Pyrococcus furiosus triosephosphateisomerase (PfuTIM) display cold-denaturation upon cooling, and heat-renaturation upon reheating, in proportion with the extent of initial partial unfolding achieved. This was the first time that cold-denaturation was demonstrated for a hyperthermophile protein, following unlocking of surface salt bridges. Here, we describe the behavior of another hyperthermophile protein, the small, monomeric, 53 residues-long rubredoxin from Pyrococcus furiosus (PfRd), which is one of the most thermostable proteins known to man. Like PfuTIM, PfRd too displays cold-denaturation after initial thermo-chemical perturbation, however, with two differences: (i) PfRd requires considerably higher temperatures as well as higher concentrations of guanidium hydrochloride (Gdm.HCl) than PfuTIM; (ii) PfRd's cold-denaturation behavior during cooling after thermo-chemical perturbation is incompletely reversible, unlike PfuTIM's, which was clearly reversible (from each different conformation generated). Differential cold-denaturation treatments allow PfRd to access multiple partially-unfolded states, each of which is clearly highly kinetically-stable. We refer to these as ‘Trishanku’ unfolding intermediates (or TUIs). Fascinatingly, refolding of TUIs through removal of Gdm.HCl generates multiple partially-refolded, monomeric, kinetically-trapped, non-native ‘Trishanku’ refolding intermediates (or TRIs), which differ from each other and from native PfRd and TUIs, in structural content and susceptibility to proteolysis. We find that the occurrence of cold denaturation and observations of TUI and TRI states is contingent on the oxidation status of iron, with redox agents managing to modulate the molecule's behavior upon gaining access to PfRd's iron atom. Mass spectrometric examination provides no evidence of the formation of disulfide bonds, but other experiments suggest that the oxidation status of iron (and its extent of burial) together determine whether or not PfRd shows cold denaturation, and also whether redox agents are able to modulate its behavior. PMID:24603413
Coherent Spectroscopy of Ultra-Cold Mercury for the UV to VUV
2015-11-20
AFRL-AFOSR-VA-TR-2015-0388 COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV R Jason Jones ARIZONA UNIV BOARD OF REGENTS TUCSON Final...TITLE AND SUBTITLE COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0563 5c. PROGRAM...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A 13. SUPPLEMENTARY NOTES 14. ABSTRACT Narrow UV transitions in atomic Hg can be utilized
Hetrick, Robert Eugene; Hilbert, Harold Sean; Parsons, Michael Howard; Stockhausen, William Francis
1997-10-07
A fuel injection system used in the intake air passageway of an internal combustion engine has a strategy for reducing cold start hydrocarbon emissions. The fuel injector has an actuator which allows the fuel spray pattern to be varied from one which is widely dispersed and atomized to one which is only weakly dispersed. A strategy for varying the spray pattern during the engine warm-up period after cold start is disclosed. The strategy increases evaporation within the passageway so that cold start overfuelling and attendant hydrocarbon emissions are reduced.
Non-destructive monitoring of Bloch oscillations in an optical cavity
NASA Astrophysics Data System (ADS)
Klinder, Jens; Kessler, Hans; Venkatesh, B. Prasanna; Georges, Christoph; Vargas, Jose; Hemmerich, Andreas
2017-04-01
Bloch oscillations are a hallmark of coherent wave dynamics in periodic potentials. They occur as the response of quantum mechanical particles in a lattice if a weak force is applied. In optical lattices with their perfect periodic structure they can be readily observed and employed as a quantum mechanical force sensor, for example, for precise measurements of the gravitational acceleration. However, the destructive character of the measurement process in previous experimental implementations poses serious limitations for the precision of such measurements. We show that the use of an optical cavity operating in the regime of strong cooperative coupling allows one to directly monitor Bloch oscillations of a cloud of cold atoms in the light leaking out of the cavity. Hence, with a single atomic sample the Bloch oscillation dynamics can be mapped out, while in previous experiments, each data point required the preparation of a new atom cloud. The use of a cavity-based monitor should greatly improve the precision of Bloch oscillation measurements for metrological purposes. This work was partially supported by DFG-SFB925 and the Hamburg centre of ultrafast imaging (CUI).
Thin Metallic Films from Solvated Metal Atoms.
1987-07-14
platinium , and especially indium are discussed. N, ; ,, -- !, : N) By Dist , , . N S f1 -- ~~r, 821-19 C[ Thin metallic films from solvated metal atoms...metallic films. Cold, palladium, platinium , and especially indium are discussed. 1- INTRQDUCTION In the field of chemistry an active and broad area of
Single element injector cold flow testing for STME swirl coaxial injector element design
NASA Technical Reports Server (NTRS)
Hulka, J.; Schneider, J. A.
1993-01-01
An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.
NASA Astrophysics Data System (ADS)
Raithel, Georg; Zhao, Jianming
2017-04-01
Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).
Spectrum of spin waves in cold polarized gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreeva, T. L., E-mail: phdocandreeva@yandex.ru
2017-02-15
The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.
Optical atomic phase reference and timing.
Hollberg, L; Cornell, E H; Abdelrahmann, A
2017-08-06
Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity. On the other hand, the dynamics of gravity, evidenced by the recent spectacular results in experimental detection of gravity waves by the LIGO Scientific Collaboration, shows dramatically that there is new physics to be seen and understood in space-time science. Those systems require strain measurements at less than or equal to 10 -20 As we discuss here, cold atom optical frequency references are still many orders of magnitude away from the frequency stability that should be achievable with narrow-linewidth quantum transitions and large numbers of very cold atoms, and they may be able to achieve levels of phase stability, Δ Φ / Φ total ≤ 10 -20 , that could make an important impact in gravity wave science.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Lineshapes of Dipole-Dipole Resonances in a Cold Rydberg Gas
NASA Astrophysics Data System (ADS)
Richards, B. G.; Jones, R. R.
2015-05-01
We have examined the lineshapes associated with Stark tuned, dipole-dipole resonances involving Rydberg atoms in a cold gas. Rb atoms in a MOT are laser excited from the 5 p level to 32p3 / 2 in the presence of a weak electric field. A fast rising electric field pulse Stark tunes the total energy of two 32 p atom pairs so it is (nearly) degenerate with that of the 32s1 / 2+33s1 / 2 states. Because of the dipole-dipole coupling, atom pairs separated by a distance R, develop 32s1 / 2+33s1 / 2 character. The maximum probability for finding atoms in s-states depends on the detuning from degeneracy and on the dipole-dipole coupling. We obtain the ``resonance'' lineshape by measuring, via state-selective field ionization, the s-state population as a function of the tuning field. The resonance width decreases with density due to R-3 dependence of the dipole-dipole coupling. In principle, the lineshape provides information about the distribution of Rydberg atom spacings in the sample. For equally spaced atoms, the lineshape should be Lorentzian while for a random nearest neighbor distribution it appears as a cusp. At low densities nearly Gaussian lineshapes are observed with widths that are too large to be the result of inhomogeneous electric or magnetic fields. Supported by the NSF.
Two-body loss rates for reactive collisions of cold atoms
NASA Astrophysics Data System (ADS)
Cop, C.; Walser, R.
2018-01-01
We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.
NASA Astrophysics Data System (ADS)
Xiaojun, Jiang; Haichao, Zhang; Yuzhu, Wang
2016-03-01
We report the experimental investigation of electromagnetically induced transparency (EIT) in a Zeeman-sublevels Λ-type system of cold 87Rb atoms in free space. We use the Zeeman substates of the hyperfine energy states 52S1/2, F = 2 and 52P3/2, F‧ = 2 of 87Rb D2 line to form a Λ-type EIT scheme. The EIT signal is obtained by scanning the probe light over 1 MHz in 4 ms with an 80 MHz arbitrary waveform generator. More than 97% transparency and 100 kHz EIT window are observed. This EIT scheme is suited for an application of pulsed coherent storage atom clock (Yan B, et al. 2009 Phys. Rev. A 79 063820). Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).
Lunar exospheric argon modeling
NASA Astrophysics Data System (ADS)
Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.
2015-07-01
Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap argon, 0.007% of the total lunar surface, is consistent with the presence of adsorbed water in such PSRs.
First Measurement of the Atomic Electric Dipole Moment of (225)Ra.
Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T
2015-06-12
The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22) e cm (95% confidence).
Magnetic conveyor belt for transporting and merging trapped atom clouds.
Hänsel, W; Reichel, J; Hommelhoff, P; Hänsch, T W
2001-01-22
We demonstrate an integrated magnetic device which transports cold atoms near a surface with very high positioning accuracy. Time-dependent currents in a lithographic conductor pattern create a moving chain of potential wells; atoms are transported in these wells while remaining confined in all three dimensions. We achieve mean fluxes up to 10(6) s(-1) with a negligible heating rate. An extension of this device allows merging of atom clouds by unification of two Ioffe-Pritchard potentials. The unification, which we demonstrate experimentally, can be performed without loss of phase space density. This novel, all-magnetic atom manipulation offers exciting perspectives, such as trapped-atom interferometry.
Dipolar and spinor bosonic systems
NASA Astrophysics Data System (ADS)
Yukalov, V. I.
2018-05-01
The main properties and methods of describing dipolar and spinor atomic systems, composed of bosonic atoms or molecules, are reviewed. The general approach for the correct treatment of Bose-condensed atomic systems with nonlocal interaction potentials is explained. The approach is applied to Bose-condensed systems with dipolar interaction potentials. The properties of systems with spinor interaction potentials are described. Trapped atoms and atoms in optical lattices are considered. Effective spin Hamiltonians for atoms in optical lattices are derived. The possibility of spintronics with cold atom is emphasized. The present review differs from the previous review articles by concentrating on a thorough presentation of basic theoretical points, helping the reader to better follow mathematical details and to make clearer physical conclusions.
Vajpai, Navratna; Nisius, Lydia; Wiktor, Maciej; Grzesiek, Stephan
2013-01-29
Proteins denature not only at high, but also at low temperature as well as high pressure. These denatured states are not easily accessible for experiment, because usually heat denaturation causes aggregation, whereas cold or pressure denaturation occurs at temperatures well below the freezing point of water or pressures above 5 kbar, respectively. Here we have obtained atomic details of the pressure-assisted, cold-denatured state of ubiquitin at 2,500 bar and 258 K by high-resolution NMR techniques. Under these conditions, a folded, native-like and a disordered state exist in slow exchange. Secondary chemical shifts show that the disordered state has structural propensities for a native-like N-terminal β-hairpin and α-helix and a nonnative C-terminal α-helix. These propensities are very similar to the previously described alcohol-denatured (A-)state. Similar to the A-state, (15)N relaxation data indicate that the secondary structure elements move as independent segments. The close similarity of pressure-assisted, cold-denatured, and alcohol-denatured states with native and nonnative secondary elements supports a hierarchical mechanism of folding and supports the notion that similar to alcohol, pressure and cold reduce the hydrophobic effect. Indeed, at nondenaturing concentrations of methanol, a complete transition from the native to the A-state can be achieved at ambient temperature by varying the pressure from 1 to 2,500 bar. The methanol-assisted pressure transition is completely reversible and can also be induced in protein G. This method should allow highly detailed studies of protein-folding transitions in a continuous and reversible manner.
Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim
2002-01-01
A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki, E-mail: toshiaki.tanigaki.mv@hitachi.com
2015-02-16
Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.
First uncertainty evaluation of the FoCS-2 primary frequency standard
NASA Astrophysics Data System (ADS)
Jallageas, A.; Devenoges, L.; Petersen, M.; Morel, J.; Bernier, L. G.; Schenker, D.; Thomann, P.; Südmeyer, T.
2018-06-01
We report the uncertainty evaluation of the Swiss continuous primary frequency standard FoCS-2 (Fontaine Continue Suisse). Unlike other primary frequency standards which are working with clouds of cold atoms, this fountain uses a continuous beam of cold caesium atoms bringing a series of metrological advantages and specific techniques for the evaluation of the uncertainty budget. Recent improvements of FoCS-2 have made possible the evaluation of the frequency shifts and of their uncertainties in the order of . When operating in an optimal regime a relative frequency instability of is obtained. The relative standard uncertainty reported in this article, , is strongly dominated by the statistics of the frequency measurements.
Observation of optically induced feshbach resonances in collisions of cold atoms
Fatemi; Jones; Lett
2000-11-20
We have observed optically induced Feshbach resonances in a cold ( <1 mK) sodium vapor. The optical coupling of the ground and excited-state potentials changes the scattering properties of an ultracold gas in much the same way as recently observed magnetically induced Feshbach resonances, but allows for some experimental conveniences associated with using lasers. The scattering properties can be varied by changing either the intensity or the detuning of a laser tuned near a photoassociation transition to a molecular state in the dimer. In principle this method allows the scattering length of any atomic species to be altered. A simple model is used to fit the dispersive resonance line shapes.
Lindblad, Andreas; Söderström, Johan; Nicolas, Christophe; Robert, Emmanuel; Miron, Catalin
2013-11-01
This paper describes the philosophy and design goals regarding the construction of a versatile sample environment: a source capable of producing beams of atoms, molecules, clusters, and nanoparticles in view of studying their interaction with short wavelength (vacuum ultraviolet and x-ray) synchrotron radiation. In the design, specific care has been taken of (a) the use standard components, (b) ensuring modularity, i.e., that swiftly switching between different experimental configurations was possible. To demonstrate the efficiency of the design, proof-of-principle experiments have been conducted by recording x-ray absorption and photoelectron spectra from isolated nanoparticles (SiO2) and free mixed clusters (Ar/Xe). The results from those experiments are showcased and briefly discussed.
NASA Astrophysics Data System (ADS)
Hernández Vera, Mario; Yurtsever, Ersin; Wester, Roland; Gianturco, Franco A.
2018-05-01
We present an extensive range of accurate ab initio calculations, which map in detail the spatial electronic potential energy surface that describes the interaction between the molecular anion NH2 - (1A1) in its ground electronic state and the He atom. The time-independent close-coupling method is employed to generate the corresponding rotationally inelastic cross sections, and then the state-changing rates over a range of temperatures from 10 to 30 K, which is expected to realistically represent the experimental trapping conditions for this ion in a radio frequency ion trap filled with helium buffer gas. The overall evolutionary kinetics of the rotational level population involving the molecular anion in the cold trap is also modelled during a photodetachment experiment and analyzed using the computed rates. The present results clearly indicate the possibility of selectively detecting differences in behavior between the ortho- and para-anions undergoing photodetachment in the trap.
Three Dimensional Imaging of Cold Atoms in a Magneto Optical Trap with a Light Field Microscope
2017-09-14
dimensional (3D) volume of the atoms is reconstructed using a modeled point spread function (PSF), taking into consideration the low magnification (1.25...axis fluorescence image. Optical axis separation between two atom clouds is measured to a 100µm accuracy in a 3mm deep volume , with a 16µm in-focus...79 vi Page 4.5 Phase Term Effects on the 3D Volume
Development of a Strontium Magneto-Optical Trap for Probing Casimir-Polder Potentials
NASA Astrophysics Data System (ADS)
Martin, Paul J.
In recent years, cold atoms have been the centerpiece of many remarkably sensitive measurements, and much effort has been made to devise miniaturized quantum sensors and quantum information processing devices. At small distances, however, mechanical effects of the quantum vacuum begin to significantly impact the behavior of the cold-atom systems. A better understanding of how surface composition and geometry affect Casimir and Casimir-Polder potentials would benefit future engineering of small-scale devices. Unfortunately, theoretical solutions are limited and the number of experimental techniques that can accurately detect such short-range forces is relatively small. We believe the exemplary properties of atomic strontium--which have enabled unprecedented frequency metrology in optical lattice clocks--make it an ideal candidate for probing slight spectroscopic perturbations caused by vacuum fluctuations. To that end, we have constructed a magneto-optical trap for strontium to enable future study of atom-surface potentials, and the apparatus and proposed detection scheme are discussed herein. Of special note is a passively stable external-cavity diode laser we developed that is both affordable and competitive with high-end commercial options.
NASA Astrophysics Data System (ADS)
Dulieu, O.; Hall, F. H. J.; Eberle, P.; Hegi, G.; Raoult, M.; Aymar, M.; Willitsch, S.
2013-05-01
Cold chemical reactions between laser-cooled Ca+ or Ba+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the collision energy range Ecoll /kB = 20 mK-20 K. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes including the radiative formation of CaRb+ and BaRb+ molecular ions has been analyzed using accurate potential energy curves and quantum-scattering calculations for the radiative channels. It is shown that the energy dependence of the reaction rates is governed by long-range interactions, while its magnitude is determined by short-range non-adiabatic and radiative couplings. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral collisions. This work was supported by the Swiss National Science Foundation and the COST Action ''Ion Traps for Tomorrow's Applications''.
NASA Astrophysics Data System (ADS)
Mirza, Imran M.; Schotland, John C.
2018-05-01
We study single photon transport in a one-dimensional disordered lattice of three-level atoms coupled to an optical waveguide. In particular, we study atoms of \\Lambda-type that are capable of exhibiting electromagnetically induced transparency (EIT) and separately consider disorder in the atomic positions and transition frequencies. We mainly address the question of how preferential emission into waveguide modes (chirality) can influence the formation of spatially localized states. Our work has relevance to experimental studies of cold atoms coupled to nanoscale waveguides and has possible applications to quantum communications.
Cold Atom Interferometers Used In Space (CAIUS) for Measuring the Earth's Gravity Field
NASA Astrophysics Data System (ADS)
Carraz, O.; Luca, M.; Siemes, C.; Haagmans, R.; Silvestrin, P.
2016-12-01
In the past decades, it has been shown that atomic quantum sensors are a newly emerging technology that can be used for measuring the Earth's gravity field. There are two ways of making use of that technology: One is a gravity gradiometer concept and the other is in a low-low satellite-to-satellite ranging concept. Whereas classical accelerometers typically suffer from high noise at low frequencies, Cold Atom Interferometers are highly accurate over the entire frequency range. We recently proposed a concept using cold atom interferometers for measuring all diagonal elements of the gravity gradient tensor and the full spacecraft angular velocity in order to achieve better performance than the GOCE gradiometer over a larger part of the spectrum, with the ultimate goals of determining the fine structures in the gravity field better than today. This concept relies on a high common mode rejection, which relaxes the drag free control compare to GOCE mission, and benefits from a long interaction time with the free falling clouds of atoms due to the micro gravity environment in space as opposed to the 1-g environment on-ground. Other concept is also being studied in the frame of NGGM, which relies on the hybridization between quantum and classical techniques to improve the performance of accelerometers. This could be achieved as it is realized in frequency measurements where quartz oscillators are phase locked on atomic or optical clocks. This technique could correct the spectrally colored noise of the electrostatic accelerometers in the lower frequencies. In both cases, estimation of the Earth gravity field model from the instruments has to be evaluated taking into account different system parameters such as attitude control, altitude of the satellite, time duration of the mission, etc. Miniaturization, lower consumptions and upgrading Technical Readiness Level are the key engineering challenges that have to be faced for these space quantum technologie.
Hageman, Philip L.
2007-01-01
New methods for the determination of total mercury in geologic materials and dissolved mercury in aqueous samples have been developed that will replace the methods currently (2006) in use. The new methods eliminate the use of sodium dichromate (Na2Cr2O7 ?2H2O) as an oxidizer and preservative and significantly lower the detection limit for geologic and aqueous samples. The new methods also update instrumentation from the traditional use of cold vapor-atomic absorption spectrometry to cold vapor-atomic fluorescence spectrometry. At the same time, the new digestion procedures for geologic materials use the same size test tubes, and the same aluminum heating block and hot plate as required by the current methods. New procedures for collecting and processing of aqueous samples use the same procedures that are currently (2006) in use except that the samples are now preserved with concentrated hydrochloric acid/bromine monochloride instead of sodium dichromate/nitric acid. Both the 'old' and new methods have the same analyst productivity rates. These similarities should permit easy migration to the new methods. Analysis of geologic and aqueous reference standards using the new methods show that these procedures provide mercury recoveries that are as good as or better than the previously used methods.
Underground atom gradiometer array for mass distribution monitoring and advanced geodesy
NASA Astrophysics Data System (ADS)
Canuel, B.
2015-12-01
After more than 20 years of fundamental research, atom interferometers have reached sensitivity and accuracy levels competing with or beating inertial sensors based on different technologies. Atom interferometers offer interesting applications in geophysics (gravimetry, gradiometry, Earth rotation rate measurements), inertial sensing (submarine or aircraft autonomous positioning), metrology (new definition of the kilogram) and fundamental physics (tests of the standard model, tests of general relativity). Atom interferometers already contributed significantly to fundamental physics by, for example, providing stringent constraints on quantum-electrodynamics through measurements of the hyperfine structure constant, testing the Equivalence Principle with cold atoms, or providing new measurements for the Newtonian gravitational constant. Cold atom sensors have moreover been established as key instruments in metrology for the new definition of the kilogram or through international comparisons of gravimeters. The field of atom interferometry (AI) is now entering a new phase where very high sensitivity levels must be demonstrated, in order to enlarge the potential applications outside atomic physics laboratories. These applications range from gravitational wave (GW) detection in the [0.1-10 Hz] frequency band to next generation ground and space-based Earth gravity field studies to precision gyroscopes and accelerometers. The Matter-wave laser Interferometric Gravitation Antenna (MIGA) presented here is a large-scale matter-wave sensor which will open new applications in geoscience and fundamental physics. The MIGA consortium gathers 18 expert French laboratories and companies in atomic physics, metrology, optics, geosciences and gravitational physics, with the aim to build a large-scale underground atom-interferometer instrument by 2018 and operate it till at least 2023. In this paper, we present the main objectives of the project, the status of the construction of the instrument and the motivation for the applications of MIGA in geosciences
2000-03-01
shivering thermogenesis and vasoconstriction) during cold exposure is unknown. Thus, a series of experiments were executed to determine if serial cold ...to cold exposure? The results of these studies suggest that 1) serial cold water blunts shivering leadmg™ower core temperatures, 2) thermoregulatory...fatigues (i.e., causes blunted shivering thermogenesis and vasoconstriction) during cold exposure is unknown. Thus, a series of experiments were
MISR Browse Images: Cold Land Processes Experiment (CLPX)
Atmospheric Science Data Center
2013-04-02
... MISR Browse Images: Cold Land Processes Experiment (CLPX) These MISR Browse images provide a ... over the region observed during the NASA Cold Land Processes Experiment (CLPX). CLPX involved ground, airborne, and satellite measurements ...
Note: A fast pneumatic sample-shuttle with attenuated shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancalana, Valerio; Dancheva, Yordanka; Stiaccini, Leonardo
2014-03-15
We describe a home-built pneumatic shuttle suitable for the fast displacement of samples in the vicinity of a highly sensitive atomic magnetometer. The samples are magnetized at 1 T using a Halbach assembly of magnets. The device enables the remote detection of free-induction-decay in ultra-low-field and zero-field nuclear magnetic resonance (NMR) experiments, in relaxometric measurements and in other applications involving the displacement of magnetized samples within time intervals as short as a few tens of milliseconds. Other possible applications of fast sample shuttling exist in radiological studies, where samples have to be irradiated and then analyzed in a cold environment.
Thermodynamic properties of fullerite C70
NASA Astrophysics Data System (ADS)
Rekhviashvili, S. Sh.
2017-08-01
A new expression for the isochoric heat capacity and the equation of state of fullerite C70 are obtained in the framework of a quantum-statistical method. Analogs of the Debye law and Dulong-Petit law for this fullerite are formulated. Fullerene C70 molecules are modeled by isotropic quantum oscillators under the assumption that their nonsphericity weakly influences the thermodynamic properties of the condensed phase. The intramolecular oscillations of carbon atoms are described using the Debye theory and the cold contribution to the free energy of fullerite is calculated using the Lennard-Jones pair potential for fullerene molecules. A comparison of the proposed theory to experiment shows good agreement.
Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Wu, Cheng-Da; Fang, Te-Hua; Wu, Chung-Chin
2016-03-01
The size effect on the cold-welding mechanism and mechanical properties of Au nanowires (NWs) in head-to-head contact are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. The results are discussed in terms of atomic trajectories, slip vectors, stress, radial distribution function, and weld strength ratio. Simulation results show that during the cold-welding process, a few disordered atoms/defects in the jointing area rearrange themselves and transform into a face-centered cubic crystalline structure. With an increase in contact between the two NWs, dislocations gradually form on the (111) slip plane and then on a twin plane, leading to an increase in the lateral deformation of 4-nm-wide NWs. The effect of structural instability increases with decreasing NW width, making the alignment of the two NWs more difficult. The elongation ability of the welded NWs increases with increasing NW width. Smaller NWs have better weld strength.
Artificial Gauge Fields for Ultracold Neutral Atoms
NASA Astrophysics Data System (ADS)
Jimenez-Garcia, Karina
2013-05-01
Ultracold atoms are a versatile probe for physics at the core of the most intriguing and fascinating systems in the quantum world. Due to the high degree of experimental control offered by such systems, effective Hamiltonians can be designed and experimentally implemented on them. This unique feature makes ultracold atom systems ideal for quantum simulation of complex phenomena as important as high-temperature superconductivity, and recently of novel artificial gauge fields. Suitably designed artificial gauge fields allow neutral particles to experience synthetic- electric or magnetic fields; furthermore, their generalization to matrix valued gauge fields leads to spin-orbit coupling featuring unprecedented control in contrast to ordinary condensed matter systems, thus allowing the characterization of the underlying mechanism of phenomena such as the spin Hall effect and topological insulators. In this talk, I will present an overview of our experiments on quantum simulation with ultracold atom systems by focusing on the realization of light induced artificial gauge fields. We illuminate our Bose-Einstein condensates with a pair of far detuned ``Raman'' lasers, thus creating dressed states that are spin and momentum superpositions. We adiabatically load the atoms into the lowest energy dressed state, where they acquire an experimentally-tunable effective dispersion relation, i.e. we introduce gauge terms into the Hamiltonian. We control such light-induced gauge terms via the strength of the Raman coupling and the detuning from Raman resonance. Our experimental techniques for ultracold bosons have surpassed the apparent limitations imposed by their neutral charge, bosonic nature, and ultra-low energy and have allowed the observation of these new and exciting phenomena. Future work might allow the realization of the bosonic quantum Hall effect, of topological insulators and of systems supporting Majorana fermions using cold atoms. This work was partially supported by the ONR; the ARO with funds from the DARPA OLE program; the Atomtronics MURI; and the NSF through the PFC at the JQI. I acknowledge the support from CONACYT.
Infrared problem in quantum acoustodynamics
NASA Astrophysics Data System (ADS)
Clougherty, Dennis P.; Sengupta, Sanghita
2017-05-01
Quantum electrodynamics (QED) provides a highly accurate description of phenomena involving the interaction of atoms with light. We argue that the quantum theory describing the interaction of cold atoms with a vibrating membrane—quantum acoustodynamics (QAD)—shares many issues and features with QED. Specifically, the adsorption of an atom on a vibrating membrane can be viewed as the counterpart to QED radiative electron capture. A calculation of the adsorption rate to lowest order in the atom-phonon coupling is finite; however, higher-order contributions suffer from an infrared problem mimicking the case of radiative capture in QED. Terms in the perturbation series for the adsorption rate diverge as a result of massless particles in the model (flexural phonons of the membrane in QAD and photons in QED). We treat this infrared problem in QAD explicitly to obtain finite results by regularizing with a low-frequency cutoff that corresponds to the inverse size of the membrane. Using a coherent-state basis for the soft-phonon final state, we then sum the dominant contributions to derive a new formula for the multiphonon adsorption rate of atoms on the membrane that gives results that are finite, nonperturbative in the atom-phonon coupling, and consistent with the Kinoshita-Lee-Nauenberg theorem. For micromembranes, we predict a reduction with increasing membrane size for the low-energy adsorption rate. We discuss the relevance of this to the adsorption of a cold gas of atomic hydrogen on suspended graphene.
First Measurement of the Atomic Electric Dipole Moment of Ra 225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, R. H.; Dietrich, M. R.; Kalita, M. R.
The radioactive radium-225 (Ra-225) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, Ra-225 is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of Ra-225 atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of vertical bar d(Ra-225)vertical bar < 5.0 x 10(-22) e cm (95% confidence).
Cost-Effective Systems for Atomic Layer Deposition
ERIC Educational Resources Information Center
Lubitz, Michael; Medina, Phillip A., IV; Antic, Aleks; Rosin, Joseph T.; Fahlman, Bradley D.
2014-01-01
Herein, we describe the design and testing of two different home-built atomic layer deposition (ALD) systems for the growth of thin films with sub-monolayer control over film thickness. The first reactor is a horizontally aligned hot-walled reactor with a vacuum purging system. The second reactor is a vertically aligned cold-walled reactor with a…
Hyperfine state entanglement of spinor BEC and scattering atom
NASA Astrophysics Data System (ADS)
Li, Zhibing; Bao, Chengguang; Zheng, Wei
2018-05-01
Condensate of spin-1 atoms frozen in a unique spatial mode may possess large internal degrees of freedom. The scattering amplitudes of polarized cold atoms scattered by the condensate are obtained with the method of fractional parentage coefficients that treats the spin degrees of freedom rigorously. Channels with scattering cross sections enhanced by the square of the atom number of the condensate are found. Entanglement between the condensate and the propagating atom can be established by scattering. Entanglement entropy is analytically obtained for arbitrary initial states. Our results also give a hint for the establishment of quantum thermal ensembles in the hyperfine space of spin states.
Superfluid qubit systems with ring shaped optical lattices
Amico, Luigi; Aghamalyan, Davit; Auksztol, Filip; Crepaz, Herbert; Dumke, Rainer; Kwek, Leong Chuan
2014-01-01
We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide an implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n ~ 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit. PMID:24599096
Spectral asymmetry of atoms in the van der Waals potential of an optical nanofiber
NASA Astrophysics Data System (ADS)
Patterson, B. D.; Solano, P.; Julienne, P. S.; Orozco, L. A.; Rolston, S. L.
2018-03-01
We measure the modification of the transmission spectra of cold 87Rb atoms in the proximity of an optical nanofiber (ONF). Van der Waals interactions between the atoms an the ONF surface decrease the resonance frequency of atoms closer to the surface. An asymmetric spectra of the atoms holds information of their spatial distribution around the ONF. We use a far-detuned laser beam coupled to the ONF to thermally excite atoms at the ONF surface. We study the change of transmission spectrum of these atoms as a function of heating laser power. A semiclassical phenomenological model for the thermal excitation of atoms in the atom-surface van der Waals bound states is in good agreement with the measurements. This result suggests that van der Waals potentials could be used to trap and probe atoms at few nanometers from a dielectric surface, a key tool for hybrid photonic-atomic quantum systems.
Mass, radius and composition of the outer crust of nonaccreting cold neutron stars
NASA Astrophysics Data System (ADS)
Hempel, Matthias; Schaffner-Bielich, Jürgen
2008-01-01
The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick and Sutherland, which was extended by including higher order corrections of the atomic binding, screening, exchange and zero-point energy. The most recent experimental nuclear data from the atomic mass table of Audi, Wapstra and Thibault from 2003 are used. Extrapolation to the drip line is utilized by various state-of-the-art theoretical nuclear models (finite range droplet, relativistic nuclear field and non-relativistic Skyrme Hartree Fock parameterizations). The different nuclear models are compared with respect to the mass and radius of the outer crust for different neutron star configurations and the nuclear compositions of the outer crust.
Horizon in random matrix theory, the Hawking radiation, and flow of cold atoms.
Franchini, Fabio; Kravtsov, Vladimir E
2009-10-16
We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connection between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.
Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.
Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho
2016-12-16
Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.
Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms
NASA Astrophysics Data System (ADS)
Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho
2016-12-01
Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.
Quantum tunneling of oxygen atoms on very cold surfaces.
Minissale, M; Congiu, E; Baouche, S; Chaabouni, H; Moudens, A; Dulieu, F; Accolla, M; Cazaux, S; Manicó, G; Pirronello, V
2013-08-02
Any evolving system can change state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the chemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at submonolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.
Direct evidence of three-body interactions in a cold {sup 85}Rb Rydberg gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Jianing
2010-11-15
Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A.more » S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett. 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.« less
Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.
2018-04-01
N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.
Collisional Cooling of Light Ions by Cotrapped Heavy Atoms.
Dutta, Sourav; Sawant, Rahul; Rangwala, S A
2017-03-17
We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.
Double-image storage optimized by cross-phase modulation in a cold atomic system
NASA Astrophysics Data System (ADS)
Qiu, Tianhui; Xie, Min
2017-09-01
A tripod-type cold atomic system driven by double-probe fields and a coupling field is explored to store double images based on the electromagnetically induced transparency (EIT). During the storage time, an intensity-dependent signal field is applied further to extend the system with the fifth level involved, then the cross-phase modulation is introduced for coherently manipulating the stored images. Both analytical analysis and numerical simulation clearly demonstrate a tunable phase shift with low nonlinear absorption can be imprinted on the stored images, which effectively can improve the visibility of the reconstructed images. The phase shift and the energy retrieving rate of the probe fields are immune to the coupling intensity and the atomic optical density. The proposed scheme can easily be extended to the simultaneous storage of multiple images. This work may be exploited toward the end of EIT-based multiple-image storage devices for all-optical classical and quantum information processings.
NASA Astrophysics Data System (ADS)
Merlet, S.; Bodart, Q.; Malossi, N.; Landragin, A.; Pereira Dos Santos, F.; Gitlein, O.; Timmen, L.
2010-08-01
We report a comparison between two absolute gravimeters: the LNE-SYRTE cold atom gravimeter and FG5#220 of Leibniz Universität of Hannover. They rely on different principles of operation: atomic and optical interferometry. Both are movable which enabled them to participate in the last International Comparison of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral comparison took place in the LNE watt balance laboratory and showed an agreement of (4.3 ± 6.4) µGal.
A quantum trampoline for ultra-cold atoms
NASA Astrophysics Data System (ADS)
Robert-de-Saint-Vincent, M.; Brantut, J.-P.; Bordé, Ch. J.; Aspect, A.; Bourdel, T.; Bouyer, P.
2010-01-01
We have observed the interferometric suspension of a free-falling Bose-Einstein condensate periodically submitted to multiple-order diffraction by a vertical 1D standing wave. This scheme permits simultaneously the compensation of gravity and coherent splitting/recombination of the matter waves. It results in high-contrast interference in the number of atoms detected at constant height. For long suspension times, multiple-wave interference is revealed through a sharpening of the fringes. We characterize our atom interferometer and use it to measure the acceleration of gravity.
Trapped atoms along nanophotonic resonators
NASA Astrophysics Data System (ADS)
Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung
2017-04-01
Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.
Precision Spectroscopy on Single Cold Trapped Molecular Nitrogen Ions
NASA Astrophysics Data System (ADS)
Hegi, Gregor; Najafian, Kaveh; Germann, Matthias; Sergachev, Ilia; Willitsch, Stefan
2016-06-01
The ability to precisely control and manipulate single cold trapped particles has enabled spectroscopic studies on narrow transitions of ions at unprecedented levels of precision. This has opened up a wide range of applications, from tests of fundamental physical concepts, e.g., possible time-variations of fundamental constants, to new and improved frequency standards. So far most of these experiments have concentrated on atomic ions. Recently, however, attention has also been focused on molecular species, and molecular nitrogen ions have been identified as promising candidates for testing a possible time-variation of the proton/electron mass ratio. Here, we report progress towards precision-spectroscopic studies on dipole-forbidden vibrational transitions in single trapped N2+ ions. Our approach relies on the state-selective generation of single N2+ ions, subsequent infrared excitation using high intensity, narrow-band quantum-cascade lasers and a quantum-logic scheme for non-destructive state readout. We also characterize processes limiting the state lifetimes in our experiment, which impair the measurement fidelity. P. O. Schmidt et. al., Science 309 (2005), 749. M. Kajita et. al., Phys. Rev. A 89 (2014), 032509 M. Germann , X. Tong, S. Willitsch, Nature Physics 10 (2014), 820. X. Tong, A. Winney, S. Willitsch, Phys. Rev. Lett. 105 (2010), 143001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindblad, Andreas; Söderström, Johan; Nicolas, Christophe
2013-11-15
This paper describes the philosophy and design goals regarding the construction of a versatile sample environment: a source capable of producing beams of atoms, molecules, clusters, and nanoparticles in view of studying their interaction with short wavelength (vacuum ultraviolet and x-ray) synchrotron radiation. In the design, specific care has been taken of (a) the use standard components, (b) ensuring modularity, i.e., that swiftly switching between different experimental configurations was possible. To demonstrate the efficiency of the design, proof-of-principle experiments have been conducted by recording x-ray absorption and photoelectron spectra from isolated nanoparticles (SiO{sub 2}) and free mixed clusters (Ar/Xe). Themore » results from those experiments are showcased and briefly discussed.« less
After Crossroads: The Fate of the Atomic Bomb Target Fleet
NASA Astrophysics Data System (ADS)
Delgado, James P.
2016-04-01
The atomic tests at Bikini Atoll left a submerged archaeological legacy in the form of sixty-one shipwrecks at or near Bikini, Kwajalein, the California coast, and in two other lesser cases off Oahu and the coast of Washington State. Together they comprise a unique maritime cultural landscape of the Cold War, and the naval aspects of that conflict.
Effects of various conditions in cold-welding of copper nanowires: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Zhou, Hongjian; Wu, Wen-ping; Wu, Runni; Hu, Guoming; Xia, Re
2017-11-01
Cold-welding possesses such desirable environment as low temperature and low applied stress, thus becoming the prime candidate for nanojointing and nanoassembly techniques. To explore the welding mechanism of nanoscale structures, here, molecular dynamics was performed on copper nanowires under different welding conditions and various original characteristics to obtain an atomic-level depiction of their cold-welding behavior. By analyzing the mechanical properties of as-welded nanowires, the relations between welding quality and welding variables are revealed and identified. This comparison study will be of great importance to future mechanical processing and structural assembly of metallic nanowires.
NASA Astrophysics Data System (ADS)
Cere, Alessandro; Leong, Victor; Kaur Gulati, Gurpreet; Srivathsan, Bharath; Kosen, Sandoko; Kurtsiefer, Christian
2015-05-01
The realization of quantum networks and long distance quantum communication rely on the capability of generating entanglement between separated nodes. We demonstrate the compatibility of two different sources of single photons: a single atom and four-wave mixing in a cold cloud of atoms. The four-wave mixing process in a cloud of cold 87Rb generates photon pairs. The cascade level scheme used ensures the generation of heralded single photons with exponentially decaying temporal envelope. The temporal shape of the heralding photons matches the shape of photons emitted by spontaneous decay but for the shorter coherence time A single 87Rb atom is trapped in an far-off-resonance optical dipole trap and can be excited with high probability using a short (~3 ns) intense pulse of resonant light, emitting a single photon by spontaneous decay. A large numerical aperture lens collects ~4% of the total fluorescence. The heralded and the triggered photons are launched into a Houng-Ou-Mandel interferometer: a symmetrical beam-splitter with outputs connected to single photon detectors. Scanning the relative delay between the two sources we observe the HOM dip with a maximum visibility of 70 +/-4%.
A compact micro-wave synthesizer for transportable cold-atom interferometers
NASA Astrophysics Data System (ADS)
Lautier, J.; Lours, M.; Landragin, A.
2014-06-01
We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of 87Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de métrologie et d'essais-Systémes de référence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of -65 dB rad2 Hz-1 at 10 Hz offset frequency and a white phase noise level in the order of -120 dB rad2 Hz-1 for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.
Non-thermalization in trapped atomic ion spin chains
NASA Astrophysics Data System (ADS)
Hess, P. W.; Becker, P.; Kaplan, H. B.; Kyprianidis, A.; Lee, A. C.; Neyenhuis, B.; Pagano, G.; Richerme, P.; Senko, C.; Smith, J.; Tan, W. L.; Zhang, J.; Monroe, C.
2017-10-01
Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.
Non-thermalization in trapped atomic ion spin chains.
Hess, P W; Becker, P; Kaplan, H B; Kyprianidis, A; Lee, A C; Neyenhuis, B; Pagano, G; Richerme, P; Senko, C; Smith, J; Tan, W L; Zhang, J; Monroe, C
2017-12-13
Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).
Detecting many-body-localization lengths with cold atoms
NASA Astrophysics Data System (ADS)
Guo, Xuefei; Li, Xiaopeng
2018-03-01
Considering ultracold atoms in optical lattices, we propose experimental protocols to study many-body-localization (MBL) length and criticality in quench dynamics. Through numerical simulations with exact diagonalization, we show that in the MBL phase the perturbed density profile following a local quench remains exponentially localized in postquench dynamics. The size of this density profile after long-time-dynamics defines a localization length, which tends to diverge at the MBL-to-ergodic transition as we increase the system size. The determined localization transition point agrees with previous exact diagonalization calculations using other diagnostics. Our numerical results provide evidence for violation of the Harris-Chayes bound for the MBL criticality. The critical exponent ν can be extracted from our proposed dynamical procedure, which can then be used directly in experiments to determine whether the Harris-Chayes-bound holds for the MBL transition. These proposed protocols to detect localization criticality are justified by benchmarking to the well-established results for the noninteracting three-dimensional Anderson localization.
Chiral sp-orbital paired superfluid of fermionic atoms in a 2D spin-dependent optical lattice
NASA Astrophysics Data System (ADS)
Liu, Bo; Li, Xiaopeng; Wu, Biao; Liu, W. Vincent
2014-03-01
Recent progress in realizing synthetic quantum orbital materials in chequerboard and hexagonal optical lattices opens an avenue towards exploiting unconventional quantum states, advancing our understanding of correlated quantum matter. Here, we unveil a chiral sp -orbital paired superfluid state for an interacting two-component Fermi gas in a 2D spin-dependent optical lattice. Surprisingly, this novel state is found to exist in a wide regime of experimentally tunable interaction strengths. The coexistence of this chiral superfluid and the ferro-orbital order is reminiscent of that of magnetism and superconductivity which is a long-standing issue in condensed matter physics. The topological properties are demonstrated by the existence of gapless chiral fermions in the presence of domain wall defects, reminiscent of quantum Hall edge states. Such properties can be measured by radio frequency spectroscopy in cold atomic experiments. Work supported in part by U.S. ARO, AFOSR, and DARPA-OLE-ARO, Kaufman Foundation, and NSF of China.
Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap
NASA Astrophysics Data System (ADS)
Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.
2015-05-01
The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.
Energy and Technology Review, October 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.C.; de Vore, L.; Gleason, K.
1990-10-01
This report discuss the following topics: History of Cold Fusion Experiments; LLNL Experiments on Cold Fusion; Roundtable Discussion on Cold Fusion; and Using MeV Ions To Characterize and Modify Materials.
A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth.
Zhang, Shanchao; Chen, J F; Liu, Chang; Zhou, Shuyu; Loy, M M T; Wong, G K L; Du, Shengwang
2012-07-01
We describe the apparatus of a dark-line two-dimensional (2D) magneto-optical trap (MOT) of (85)Rb cold atoms with high optical depth (OD). Different from the conventional configuration, two (of three) pairs of trapping laser beams in our 2D MOT setup do not follow the symmetry axes of the quadrupole magnetic field: they are aligned with 45° angles to the longitudinal axis. Two orthogonal repumping laser beams have a dark-line volume in the longitudinal axis at their cross over. With a total trapping laser power of 40 mW and repumping laser power of 18 mW, we obtain an atomic OD up to 160 in an electromagnetically induced transparency (EIT) scheme, which corresponds to an atomic-density-length product NL = 2.05 × 10(15) m(-2). In a closed two-state system, the OD can become as large as more than 600. Our 2D MOT configuration allows full optical access of the atoms in its longitudinal direction without interfering with the trapping and repumping laser beams spatially. Moreover, the zero magnetic field along the longitudinal axis allows the cold atoms maintain a long ground-state coherence time without switching off the MOT magnetic field, which makes it possible to operate the MOT at a high repetition rate and a high duty cycle. Our 2D MOT is ideal for atomic-ensemble-based quantum optics applications, such as EIT, entangled photon pair generation, optical quantum memory, and quantum information processing.
NASA Astrophysics Data System (ADS)
Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg
2017-06-01
We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.
NASA Astrophysics Data System (ADS)
Legg, Thomas; Farries, Mark
2017-02-01
Cold atom interferometers are emerging as important tools for metrology. Designed into gravimeters they can measure extremely small changes in the local gravitational field strength and be used for underground surveying to detect buried utilities, mineshafts and sinkholes prior to civil works. To create a cold atom interferometer narrow linewidth, frequency stabilised lasers are required to cool the atoms and to setup and measure the atom interferometer. These lasers are commonly either GaAs diodes, Ti Sapphire lasers or frequency doubled InGaAsP diodes and fibre lasers. The InGaAsP DFB lasers are attractive because they are very reliable, mass-produced, frequency controlled by injection current and simply amplified to high powers with fibre amplifiers. In this paper a laser system suitable for Rb atom cooling, based on a 1560nm DFB laser and erbium doped fibre amplifier, is described. The laser output is frequency doubled with fibre coupled periodically poled LiNbO3 to a wavelength of 780nm. The output power exceeds 1 W at 780nm. The laser is stabilised at 1560nm against a fibre Bragg resonator that is passively temperature compensated. Frequency tuning over a range of 1 GHz is achieved by locking the laser to sidebands of the resonator that are generated by a phase modulator. This laser design is attractive for field deployable rugged systems because it uses all fibre coupled components with long term proven reliability.
NASA Astrophysics Data System (ADS)
Muniz, Sérgio R.; Bagnato, Vanderlei S.; Bhattacharya, M.
2015-06-01
In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here, we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution and is presented through practical examples, including a nonuniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the nontrivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce themes of current modern research.
Horizon in Random Matrix Theory, the Hawking Radiation, and Flow of Cold Atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franchini, Fabio; Kravtsov, Vladimir E.
2009-10-16
We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connectionmore » between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.« less
NASA Astrophysics Data System (ADS)
Murphy, James; Jones, Phil; Hill, Steve J.
1996-12-01
A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.
Dynamics of entanglement entropy of interacting fermions in a 1D driven harmonic trap
NASA Astrophysics Data System (ADS)
McKenney, Joshua R.; Porter, William J.; Drut, Joaquín E.
2018-03-01
Following up on a recent analysis of two cold atoms in a time-dependent harmonic trap in one dimension, we explore the entanglement entropy of two and three fermions in the same situation when driven through a parametric resonance. We find that the presence of such a resonance in the two-particle system leaves a clear imprint on the entanglement entropy. We show how the signal is modified by attractive and repulsive contact interactions, and how it remains present for the three-particle system. Additionaly, we extend the work of recent experiments to demonstrate how restricting observation to a limited subsystem gives rise to locally thermal behavior.
NASA Astrophysics Data System (ADS)
Boulter, J. E.; Morgan, C. G.; Marschall, J.
2006-05-01
Remote observations of PMCs have become more sophisticated and have increased in geographic and temporal coverage, while numerical models have advanced in detail and predictive power. Together, these advances enable new questions of PMC morphology, optical properties, and microphysical processes in their formation and dissipation. Laboratory investigations also advance this understanding, simulating physical and chemical processes unique to this atmospheric region under comparable conditions. In this work, ice deposition experiments in the presence of microwave discharge-dissociated molecular oxygen suggest heterogeneous interactions between dangling OH bonds on the ice surface and atomic oxygen. Ice films deposited on a gold substrate at temperatures of 115, 130, and 140 K from oxygen/water gas mixtures representative of the summertime polar mesosphere exhibit infrared absorption features characteristic of dangling bonds, whereas films grown in the presence of atomic oxygen do not. Dangling bond spectral features are shown to diminish rapidly when the microwave discharge is activated during ice deposition. Similar decreases were not seen when the gas stream was heated or when the ice film was slowly annealed from 130 to 160 K. One interpretation of these results is that atomic oxygen binds to dangling bond sites during ice growth, a phenomenon that may also occur during the formation of ice particles observed just below the cold summertime mesopause.
Direct evidence of three-body interactions in a cold Rb85 Rydberg gas
NASA Astrophysics Data System (ADS)
Han, Jianing
2010-11-01
Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.233201 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.91.183002 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.011403 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.
Formation of Low-Energy Antihydrogen
NASA Astrophysics Data System (ADS)
Holzscheiter, Michael H.
1999-02-01
Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invarianz. We describe our plans to trap antiprotons and positrons in a combined Penning trap and to form a significant number of cold antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen.
Molecular Beam Studies of Volatile Liquids and Fuel Surrogates Using Liquid MICR
2014-12-23
Detailed discussions of the microjet technique are carried out in the following publications. Nozzle Liquid Jet Chopper Wheel Cold Collector Cold...process is shown in the picture below; heating and evaporation occur within 1 ms of fuel leaving the fuel injector . This atomization proves is often...liquid jet. This analysis leads to criteria for selecting the temperature and nozzle radius for producing stable jets in vacuum. Figure 4 depicts the
Optical ferris wheel for ultracold atoms
NASA Astrophysics Data System (ADS)
Franke-Arnold, S.; Leach, J.; Padgett, M. J.; Lembessis, V. E.; Ellinas, D.; Wright, A. J.; Girkin, J. M.; Ohberg, P.; Arnold, A. S.
2007-07-01
We propose a versatile optical ring lattice suitable for trapping cold and quantum degenerate atomic samples. We demonstrate the realisation of intensity patterns from pairs of Laguerre-Gauss (exp(iℓө) modes with different ℓ indices. These patterns can be rotated by introducing a frequency shift between the modes. We can generate bright ring lattices for trapping atoms in red-detuned light, and dark ring lattices suitable for trapping atoms with minimal heating in the optical vortices of blue-detuned light. The lattice sites can be joined to form a uniform ring trap, making it ideal for studying persistent currents and the Mott insulator transition in a ring geometry.
Deterministic and storable single-photon source based on a quantum memory.
Chen, Shuai; Chen, Yu-Ao; Strassel, Thorsten; Yuan, Zhen-Sheng; Zhao, Bo; Schmiedmayer, Jörg; Pan, Jian-Wei
2006-10-27
A single-photon source is realized with a cold atomic ensemble (87Rb atoms). A single excitation, written in an atomic quantum memory by Raman scattering of a laser pulse, is retrieved deterministically as a single photon at a predetermined time. It is shown that the production rate of single photons can be enhanced considerably by a feedback circuit while the single-photon quality is conserved. Such a single-photon source is well suited for future large-scale realization of quantum communication and linear optical quantum computation.
Cold-hearted or cool-headed: physical coldness promotes utilitarian moral judgment
Nakamura, Hiroko; Ito, Yuichi; Honma, Yoshiko; Mori, Takuya; Kawaguchi, Jun
2014-01-01
In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1) participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2) participants had a high-level construal mindset and focused on abstract goals (e.g., save many); or (3) there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the “cool-headed” deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being “cold-hearted,” reduced empathetic concern, and facilitated utilitarian moral judgments. PMID:25324800
Three Distinct Deformation Behaviors of Cementite Lamellae in a Cold-Drawn Pearlitic Wire
NASA Astrophysics Data System (ADS)
Xin, Tuo; Liu, Guiju; Liang, Wenshuang; Cai, Rongsheng; Feng, Honglei; Li, Chen; Li, Jian; Wang, Yiqian
2018-03-01
High-resolution transmission electron microscopy is used to investigate the deformation behaviors of cementite lamellae in the heavily cold-drawn piano wires. Three distinct morphologies of cementite are observed, namely, complete lamella, partly-broken lamella and nearly-disappeared lamella. For the complete cementite lamella, it remains a single-crystalline structure. For the partly-broken cementite lamella, polycrystalline structure and neck-down region appear to release the residual strain. The lattice expansion of ferrite takes place in two perpendicular directions indicating that the carbon atoms dissolve from cementite into ferrite lattices. An orientation relationship is found between ferrite and cementite phases in the cold-drawn pearlitic wire.
Forming a Bose-Einstein Condensate
2014-09-26
This sequence of false-color images shows the formation of a Bose-Einstein condensate in the Cold Atom Laboratory prototype at NASA Jet Propulsion Laboratory as the temperature gets progressively closer to absolute zero.
Combustion of liquid sprays at high pressures
NASA Technical Reports Server (NTRS)
Shearer, A. J.; Faeth, G. M.
1977-01-01
The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.
Gamma Ray Imaging of Inertial Confinement Fusion Experiments
NASA Astrophysics Data System (ADS)
Wilde, Carl; Volegov, Petr; Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Fittinghoff, David; Grim, Gary; NIF Nuclear Diagnostic Team Team; Advanced Imaging Team Team
2016-10-01
Experiments consisting of an ablatively driven plastic (CH) shell surrounding a deuterium tritium (DT) fuel region are routinely performed at the National Ignition Facility (NIF). Neutrons produced in the burning fuel in-elastically scatter with carbon atoms in the plastic shell producing 4.4 MeV gamma rays. Providing a spatially resolved distribution of the origin of these gammas can inform models of ablator physics and also provide a bounding volume for the cold fuel (un-burned DT fuel) region. Using the NIF neutron imaging system hardware, initial studies have been performed of the feasibility of imaging these gamma rays. A model of the system has been developed to inform under which experimental conditions this measurement can be made. Presented here is an analysis of the prospects for this diagnostic probe and a proposed set of modifications to the NIF neutron imaging line-of-site to efficiently enable this measurement.
Coherent Radiation in Atomic Systems
NASA Astrophysics Data System (ADS)
Sutherland, Robert Tyler
Over the last century, quantum mechanics has dramatically altered our understanding of light and matter. Impressively, exploring the relationship between the two continues to provide important insights into the physics of many-body systems. In this thesis, we add to this still growing field of study. Specifically, we discuss superradiant line-broadening and cooperative dipole-dipole interactions for cold atom clouds in the linear-optics regime. We then discuss how coherent radiation changes both the photon scattering properties and the excitation distribution of atomic arrays. After that, we explore the nature of superradiance in initially inverted clouds of multi-level atoms. Finally, we explore the physics of clouds with degenerate Zeeman ground states, and show that this creates quantum effects that fundamentally change the photon scattering of atomic ensembles.
Lei, Zirong; Chen, Luqiong; Hu, Kan; Yang, Shengchun; Wen, Xiaodong
2018-06-05
Cold vapor generation (CVG) of cadmium was firstly accomplished in non-aqueous media by using solid reductant of potassium borohydride (KBH 4 ) as a derivation reagent. The mixture of surfactant Triton X-114 micelle and octanol was innovatively used as the non-aqueous media for the CVG and atomic fluorescence spectrometry (AFS) was used for the elemental determination. The analyte ions were firstly extracted into the non-aqueous media from the bulk aqueous phase of analyte/sample solution via a novelly established ultrasound-assisted rapidly synergistic cloud point extraction (UARS-CPE) process and then directly mixed with the solid redcutant KBH 4 to generate volatile elemental state cadmium in a specially designed reactor, which was then rapidly transported to a commercial atomic fluorescence spectrometer for detection. Under the optimal conditions, the limit of detection (LOD) for cadmium was 0.004 μg L -1 . Compared to conventional hydride generation (HG)-AFS, the efficiency of non-aqueous phase CVG and the analytical performance of the developed system was considerably improved. Copyright © 2018 Elsevier B.V. All rights reserved.
Microscopy of the interacting Harper-Hofstadter model in the few-body limit
NASA Astrophysics Data System (ADS)
Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Borgnia, Dan; Preiss, Philipp; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus
2017-04-01
The interplay of magnetic fields and interacting particles can lead to exotic phases of matter exhibiting topological order and high degrees of spatial entanglement. While these phases were discovered in a solid-state setting, recent techniques have enabled the realization of gauge fields in systems of ultracold neutral atoms, offering a new experimental paradigm for studying these novel states of matter. This complementary platform holds promise for exploring exotic physics in fractional quantum Hall systems due to the microscopic manipulation and precision possible in cold atom systems. However, these experiments thus far have mostly explored the regime of weak interactions. Here, we show how strong interactions can modify the propagation of particles in a 2 × N , real-space ladder governed by the Harper-Hofstadter model. We observe inter-particle interactions affect the populating of chiral bands, giving rise to chiral dynamics whose multi-particle correlations indicate both bound and free-particle character. The novel form of interaction-induced chirality observed in these experiments demonstrates the essential ingredients for future investigations of highly entangled topological phases of many-body systems. We are supported by Grants from the National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program, an Army Research Office MURI program, and the NSF GRFP (MNR).
ERIC Educational Resources Information Center
Lawlor, John M., Jr.
In August 1945, the United States unleashed an atomic weapon against the Japanese at Hiroshima and Nagasaki and brought an end to World War II. These bombs killed in two ways -- by the blast's magnitude and resulting firestorm, and by nuclear fallout. After the Soviet Union exploded its first atom bomb in 1949, the Cold War waged between the two…
Majorana edge States in atomic wires coupled by pair hopping.
Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P
2013-10-25
We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.
A characteristic scale for cold gas
NASA Astrophysics Data System (ADS)
McCourt, Michael; Oh, S. Peng; O'Leary, Ryan; Madigan, Ann-Marie
2018-02-01
We find that clouds of optically thin, pressure-confined gas are prone to fragmentation as they cool below ∼106 K. This fragmentation follows the lengthscale ∼cstcool, ultimately reaching very small scales (∼0.1 pc/n), as they reach the temperature ∼104 K at which hydrogen recombines. While this lengthscale depends on the ambient pressure confining the clouds, we find that the column density through an individual fragment Ncloudlet ∼ 1017 cm-2 is essentially independent of environment; this column density represents a characteristic scale for atomic gas at 104 K. We therefore suggest that 'clouds' of cold, atomic gas may, in fact, have the structure of a mist or a fog, composed of tiny fragments dispersed throughout the ambient medium. We show that this scale emerges in hydrodynamic simulations, and that the corresponding increase in the surface area may imply rapid entrainment of cold gas. We also apply it to a number of observational puzzles, including the large covering fraction of diffuse gas in galaxy haloes, the broad-line widths seen in quasar and AGN spectra and the entrainment of cold gas in galactic winds. While our simulations make a number of assumptions and thus have associated uncertainties, we show that this characteristic scale is consistent with a number of observations, across a wide range of astrophysical environments. We discuss future steps for testing, improving and extending our model.
Controlled rephasing of single spin-waves in a quantum memory based on cold atoms
NASA Astrophysics Data System (ADS)
Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team
2015-05-01
Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.
A compact micro-wave synthesizer for transportable cold-atom interferometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lautier, J.; Lours, M.; Landragin, A., E-mail: arnaud.landragin@obspm.fr
2014-06-15
We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of {sup 87}Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de métrologie et d'essais−Systémes de référence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of −65 dB rad{sup 2} Hz{sup −1} at 10 Hz offset frequency and a white phase noise level in themore » order of −120 dB rad{sup 2} Hz{sup −1} for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.« less
NASA Astrophysics Data System (ADS)
Chang, Xia; Xie, Jiayu; Wu, Tianle; Tang, Bing
2018-07-01
A theoretical study on modulational instability and quantum discrete breather states in a system of cold bosonic atoms in zig-zag optical lattices is presented in this work. The time-dependent Hartree approximation is employed to deal with the multiple body problem. By means of a linear stability analysis, we analytically study the modulational instability, and estimate existence conditions of the bright stationary localized solutions for different values of the second-neighbor hopping constant. On the other hand, we get analytical bright stationary localized solutions, and analyze the influence of the second-neighbor hopping on their existence conditions. The predictions of the modulational instability analysis are shown to be reliable. Using these stationary localized single-boson wave functions, the quantum breather states corresponding to the system with different types of nonlinearities are constructed.
NASA Technical Reports Server (NTRS)
Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.
2000-01-01
A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.
Composite pulses for interferometry in a thermal cold atom cloud
NASA Astrophysics Data System (ADS)
Dunning, Alexander; Gregory, Rachel; Bateman, James; Cooper, Nathan; Himsworth, Matthew; Jones, Jonathan A.; Freegarde, Tim
2014-09-01
Atom interferometric sensors and quantum information processors must maintain coherence while the evolving quantum wave function is split, transformed, and recombined, but suffer from experimental inhomogeneities and uncertainties in the speeds and paths of these operations. Several error-correction techniques have been proposed to isolate the variable of interest. Here we apply composite pulse methods to velocity-sensitive Raman state manipulation in a freely expanding thermal atom cloud. We compare several established pulse sequences, and follow the state evolution within them. The agreement between measurements and simple predictions shows the underlying coherence of the atom ensemble, and the inversion infidelity in a ˜80μK atom cloud is halved. Composite pulse techniques, especially if tailored for atom interferometric applications, should allow greater interferometer areas, larger atomic samples, and longer interaction times, and hence improve the sensitivity of quantum technologies from inertial sensing and clocks to quantum information processors and tests of fundamental physics.
Magnetic trapping of cold bromine atoms.
Rennick, C J; Lam, J; Doherty, W G; Softley, T P
2014-01-17
Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.
Measurements of the Activation Energies for Atomic Hydrogen Diffusion on Pure Solid CO
NASA Astrophysics Data System (ADS)
Kimura, Y.; Tsuge, M.; Pirronello, V.; Kouchi, A.; Watanabe, N.
2018-05-01
The diffusion of hydrogen atoms on dust grains is a key process in the formation of interstellar H2 and some hydrogenated molecules such as formaldehyde and methanol. We investigate the adsorption and diffusion of H atoms on pure solid CO as an analog of dust surfaces observed toward some cold interstellar regions. Using a combination of photostimulated desorption and resonance-enhanced multiphoton ionization methods to detect H atoms directly, the relative adsorption probabilities and diffusion coefficients of the H atoms are measured on pure solid CO at 8, 12, and 15 K. There is little difference between the diffusion coefficients of the hydrogen and deuterium atoms, indicating that the diffusion is limited by thermal hopping. The activation energies controlling the H-atom diffusion depend on the surface temperature, and values of 22, 30, and ∼37 meV were obtained for 8, 12, and 15 K, respectively.
In situ single-atom array synthesis using dynamic holographic optical tweezers
Kim, Hyosub; Lee, Woojun; Lee, Han-gyeol; Jo, Hanlae; Song, Yunheung; Ahn, Jaewook
2016-01-01
Establishing a reliable method to form scalable neutral-atom platforms is an essential cornerstone for quantum computation, quantum simulation and quantum many-body physics. Here we demonstrate a real-time transport of single atoms using holographic microtraps controlled by a liquid-crystal spatial light modulator. For this, an analytical design approach to flicker-free microtrap movement is devised and cold rubidium atoms are simultaneously rearranged with 2N motional degrees of freedom, representing unprecedented space controllability. We also accomplish an in situ feedback control for single-atom rearrangements with the high success rate of 99% for up to 10 μm translation. We hope this proof-of-principle demonstration of high-fidelity atom-array preparations will be useful for deterministic loading of N single atoms, especially on arbitrary lattice locations, and also for real-time qubit shuttling in high-dimensional quantum computing architectures. PMID:27796372
Inductively guided circuits for ultracold dressed atoms
Sinuco-León, German A.; Burrows, Kathryn A.; Arnold, Aidan S.; Garraway, Barry M.
2014-01-01
Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control. PMID:25348163
Mach-Zehnder atom interferometer inside an optical fiber
NASA Astrophysics Data System (ADS)
Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu
2017-04-01
Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.
Santarelli, G; Audoin, C; Makdissi, A; Laurent, P; Dick, G J; Clairon, A
1998-01-01
Atomic frequency standards using trapped ions or cold atoms work intrinsically in a pulsed mode. Theoretically and experimentally, this mode of operation has been shown to lead to a degradation of the frequency stability due to the frequency noise of the interrogation oscillator. In this paper a physical analysis of this effect has been made by evaluating the response of a two-level atom to the interrogation oscillator phase noise in Ramsey and multi-Rabi interrogation schemes using a standard quantum mechanical approach. This response is then used to calculate the degradation of the frequency stability of a pulsed atomic frequency standard such as an atomic fountain or an ion trap standard. Comparison is made to an experimental evaluation of this effect in the LPTF Cs fountain frequency standard, showing excellent agreement.
Compact Laser System for Field Deployable Ultracold Atom Sensors
NASA Astrophysics Data System (ADS)
Pino, Juan; Luey, Ben; Anderson, Mike
2013-05-01
As ultracold atom sensors begin to see their way to the field, there is a growing need for small, accurate, and robust laser systems to cool and manipulate atoms for sensing applications such as magnetometers, gravimeters, atomic clocks and inertial sensing. In this poster we present a laser system for Rb, roughly the size of a paperback novel, capable of generating and controlling light sufficient for the most complicated of cold atom sensors. The system includes >100dB of non-mechanical, optical shuttering, the ability to create short, microsecond pulses, a Demux stage to port light onto different optical paths, and an atomically referenced, frequency agile laser source. We will present data to support the system, its Size Weight and Power (SWaP) requirements, as well as laser stability and performance. funded under DARPA
Morrissey, Michael J.; Deasy, Kieran; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic
2013-01-01
The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications. PMID:23945738
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozhdestvensky, Yu V
The possibility is studied for obtaining intense cold atomic beams by using the Renyi entropy to optimise the laser cooling process. It is shown in the case of a Gaussian velocity distribution of atoms, the Renyi entropy coincides with the density of particles in the phase space. The optimisation procedure for cooling atoms by resonance optical radiation is described, which is based on the thermodynamic law of increasing the Renyi entropy in time. Our method is compared with the known methods for increasing the laser cooling efficiency such as the tuning of a laser frequency in time and a changemore » of the atomic transition frequency in an inhomogeneous transverse field of a magnetic solenoid. (laser cooling)« less
Doughten, M.W.; Gillison, J.R.
1990-01-01
Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Cun; Aoun, Bachir; Cui, Lishan
Microstructure evolution of a cold-drawn NiTi shape memory alloy wire was investigated by means of in-situ synchrotron high-energy X-ray diffraction during continuous heating. The cold-drawn wire contained amorphous regions and nano-crystalline domains in its microstructure. Pair distribution function analysis revealed that the amorphous regions underwent structural relaxation via atomic rearrangement when heated above 100 °C. The nano-crystalline domains were found to exhibit a strong cold work induced lattice strain anisotropy having a preferential <111> fiber orientation along the wire axial direction. The lattice strain anisotropy systematically decreased upon heating above 200 °C, implying a structural recovery. A broad conical texturemore » was formed in the wire specimen after crystallization similar in detail to the initial <111> texture axial orientation of the nano-crystalline domains produced by the severe cold wire drawing deformation.« less
Microgravity Electron Electric Dipole Moment Experiment with a Cold Atom Beam
NASA Technical Reports Server (NTRS)
Gould, Harvey
2003-01-01
New physics beyond the Standard Model: The small CP violation contained in the Standard Model is insufficient to account for the baryon/antibaryon asymmetry in the universe. New sources of CP violation are provided by extensions to the Standard Model. They contain CP-violating phases that couple directly to leptons and from which a large electron electric dipole moment (EDM) may be generated. Observation of an electron EDM would be proof of a Standard Model extension because the Standard Model only allows an electron EDM of less than 10(exppp -57) C-m (S.I. units; 1 C-m = 1.6 x 10(exp -21) e-cm). A null result, however, constrains models and improving the limit tightens constraints, further restricting the models.
Revision of the criterion to avoid electron heating during laser aided plasma diagnostics (LAPD)
NASA Astrophysics Data System (ADS)
Carbone, E. A. D.; Palomares, J. M.; Hübner, S.; Iordanova, E.; van der Mullen, J. J. A. M.
2012-01-01
A criterion is given for the laser fluency (in J/m2) such that, when satisfied, disturbance of the plasma by the laser is avoided. This criterion accounts for laser heating of the electron gas intermediated by electron-ion (ei) and electron-atom (ea) interactions. The first heating mechanism is well known and was extensively dealt with in the past. The second is often overlooked but of importance for plasmas of low degree of ionization. It is especially important for cold atmospheric plasmas, plasmas that nowadays stand in the focus of attention. The new criterion, based on the concerted action of both ei and ea interactions is validated by Thomson scattering experiments performed on four different plasmas.
Nonequilibrium Hall Response After a Topological Quench
NASA Astrophysics Data System (ADS)
Unal, F. Nur; Mueller, Erich; Oktel, M. O.
2017-04-01
We theoretically study the Hall response of a lattice system following a quench where the topology of a filled band is suddenly changed. In the limit where the physics is dominated by a single Dirac cone, we find that the change in the Hall conductivity is two-thirds of the quantum of conductivity. We explore this universal behavior in the Haldane model, and discuss cold-atom experiments for its observation. Beyond linear response, the Hall effect crosses over from fractional to integer values. We investigate finite-size effects, and the role of the harmonic confinement. Furthermore, we explore the magnetic field quenches in ladders formed in synthetic dimensions. This work is supported by TUBITAK, NSFPHY-1508300, ARO-MURI W9111NF-14-1-0003.
Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition
NASA Astrophysics Data System (ADS)
Story, William A.; Brewer, Luke N.
2018-02-01
This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.
Cold plasma processing of local planetary ores for oxygen and metallurgically important metals
NASA Technical Reports Server (NTRS)
Lynch, D. C.; Bullard, D.; Ortega, R.
1990-01-01
The utilization of a cold plasma in chlorination processing is described. Essential equipment and instruments were received, the experimental apparatus assembled and tested, and preliminary experiments conducted. The results of the latter lend support to the original hypothesis: a cold plasma can both significantly enhance and bias chemical reactions. In two separate experiments, a cold plasma was used to reduce TiCl4 vapor and chlorinate ilmenite. The latter, reacted in an argon-chlorine plasma, yielded oxygen. The former experiment reveals that chlorine can be recovered as HCl vapor from metal chlorides in a hydrogen plasma. Furthermore, the success of the hydrogen experiments has lead to an analysis of the feasibility of direct hydrogen reduction of metal oxides in a cold plasma. That process would produce water vapor and numerous metal by-products.
Light, Thomas D.; Schmidt, Jeanine M.
2011-01-01
Mineralized and altered rock samples collected from the northern Talkeetna Mountains, Alaska, were analyzed by two different inductively coupled plasma atomic-emission spectrometry (ICP-AES) methods for as many as 44 elements; by fire assay and either direct-coupled plasma (DCP) or atomic absorption spectrophotometry (AAS) for gold (Au); by cold vapor atomic absorption (CVAA) for mercury (Hg); and by irradiated neutron activation analysis (INAA) for tungsten (W). The analytical results showed that some samples contain high values of multiple elements and may be potential indicators of hydrothermal mineralization in the area.
Strategic Applications of Ultra-Cold Atoms
2008-03-07
journals or in conference proceedings (N/A for none) 68.00Number of Papers published in peer-reviewed journals: Wolfgang Ketterle: New Frontiers with...Helmerson, V.S. Bagnato (American Institute of Physics, 2005) pp. 25-29. Wolfgang Ketterle: The Bose-Einstein Condensate- a Superfluid Gas of Coherent Atoms...Vuletic 0.10 No Wolfgang Ketterle 0.10 Yes David Pritchard 0.10 Yes Mara Prentiss 0.10 No 0.80FTE Equivalent: 8Total Number: Names of Under
Efficient multiparticle entanglement via asymmetric Rydberg blockade.
Saffman, M; Mølmer, K
2009-06-19
We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.
Hydrogenation at low temperatures does not always lead to saturation: the case of HNCO
NASA Astrophysics Data System (ADS)
Noble, J. A.; Theule, P.; Congiu, E.; Dulieu, F.; Bonnin, M.; Bassas, A.; Duvernay, F.; Danger, G.; Chiavassa, T.
2015-04-01
Context. It is generally agreed that hydrogenation reactions dominate chemistry on grain surfaces in cold, dense molecular cores, saturating the molecules present in ice mantles. Aims: We present a study of the low temperature reactivity of solid phase isocyanic acid (HNCO) with hydrogen atoms, with the aim of elucidating its reaction network. Methods: Fourier transform infrared spectroscopy and mass spectrometry were employed to follow the evolution of pure HNCO ice during bombardment with H atoms. Both multilayer and monolayer regimes were investigated. Results: The hydrogenation of HNCO does not produce detectable amounts of formamide (NH2CHO) as the major product. Experiments using deuterium reveal that deuteration of solid HNCO occurs rapidly, probably via cyclic reaction paths regenerating HNCO. Chemical desorption during these reaction cycles leads to loss of HNCO from the surface. Conclusions: It is unlikely that significant quantities of NH2CHO form from HNCO. In dense regions, however, deuteration of HNCO will occur. HNCO and DNCO will be introduced into the gas phase, even at low temperatures, as a result of chemical desorption.
Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space
NASA Technical Reports Server (NTRS)
Strayer, Don (Editor)
2003-01-01
The 2003 Fundamental Physics workshop included presentations ranging from forces acting on RNA to properties of clouds of degenerate Fermi atoms, to techniques to probe for a added space-time dimensions, and to flight hardware for low temperature experiments, amongst others. Mark Lee from NASA Headquarters described the new strategic plan that NASA has developed under Administrator Sean O'Keefe's leadership. Mark explained that the Fundamental Physics community now needs to align its research program and the roadmap describing the long-term goals of the program with the NASA plan. Ulf Israelsson of JPL discussed how the rewrite of the roadmap will be implemented under the leadership of the Fundamental Physics Discipline Working Group (DWG). Nick Bigelow, chair of the DWG, outlined how investigators can contribute to the writing of the roadmap. Results of measurements on very cold clouds of Fermi atoms near a Feshbach resonance were described by three investigators. Also, new measurements relating to tests of Einstein equivalence were discussed. Investigators also described methods to test other aspects of Einstein's relativity theories.
Controlled formation and reflection of a bright solitary matter-wave
Marchant, A. L.; Billam, T. P.; Wiles, T. P.; Yu, M. M. H.; Gardiner, S. A.; Cornish, S. L.
2013-01-01
Bright solitons are non-dispersive wave solutions, arising in a diverse range of nonlinear, one-dimensional systems, including atomic Bose–Einstein condensates with attractive interactions. In reality, cold-atom experiments can only approach the idealized one-dimensional limit necessary for the realization of true solitons. Nevertheless, it remains possible to create bright solitary waves, the three-dimensional analogue of solitons, which maintain many of the key properties of their one-dimensional counterparts. Such solitary waves offer many potential applications and provide a rich testing ground for theoretical treatments of many-body quantum systems. Here we report the controlled formation of a bright solitary matter-wave from a Bose–Einstein condensate of 85Rb, which is observed to propagate over a distance of ∼1.1 mm in 150 ms with no observable dispersion. We demonstrate the reflection of a solitary wave from a repulsive Gaussian barrier and contrast this to the case of a repulsive condensate, in both cases finding excellent agreement with theoretical simulations using the three-dimensional Gross–Pitaevskii equation. PMID:23673650
ScienceCast 132: The Coolest Spot in the Universe
2014-01-30
NASA researchers plan to create the coldest spot in the known Universe--inside the International Space Station. The device, known as the Cold Atom Lab, could discover new forms of matter and novel quantum phenomena.
Reading Suggestions on 1945 for Classroom Instruction
ERIC Educational Resources Information Center
Critchfield, James W.
1970-01-01
Readings are organized for teachers by these topics: World War II; The Atomic Bomb; The Cold War; American Political Personalities; and, General Events in the United States. A 7-item list is presented for high school students. (DB)
Tracing the Fuel for Forming Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-11-01
Huge reservoirs of cold hydrogen gas the raw fuel for star formation lurk in galaxies throughout the universe. A new study examines whether these reservoirs have always been similar, or whether those in distant galaxies are very different from those in local galaxies today.Left: Optical SLOAN images of the five HIGHz galaxies in this study. Right: ALMA images of the molecular gas in these galaxies. Both images are 30 wide. [Adapted from Cortese et al. 2017]Molecular or Atomic?The formation of stars is a crucial process that determines how galaxies are built and evolve over time. Weve observed that star formation takes place in cold clouds of molecular gas, and that star-formation rates increase in galaxies with a larger surface density of molecular hydrogen so we know that molecular hydrogen feeds the star-forming process.But not all cold gas in the interstellar medium of galaxies exists in molecular form. In the local universe, only around 30% of cold gas is found in molecular form (H2) and able to directly feed star formation; the rest is atomic hydrogen (H I). But is this true of galaxies earlier in the universe as well?Studying Distant GalaxiesCosmological simulations have predicted that earlier in our universes history, the ratio of molecular to atomic hydrogen could be larger i.e., more cold hydrogen may be in a form ready to fuel star formation but this prediction is difficult to test observationally. Currently, radio telescopes are not able to measure the atomic hydrogen in very distant galaxies, such as those at the peak of star formation in the universe, 10 billion years ago.Recently, however, we have measured atomic hydrogen in closer galaxies: those at a redshift of about z 0.20.4, a few billion years ago. One recent study of seven galaxies at this distance, usinga sample from a survey known as COOL BUDHIES, showed that the hydrogen reservoirs of these galaxies are dominated by molecular hydrogen, unlike in the local universe. If this is true of most galaxies at this distance, it would suggest that gas reservoirs have drastically changed in the short time between then and now.But a team of scientists from the International Centre for Radio Astronomy Research in Australia, led by Luca Cortese, has now challenged this conclusion.Top: molecular vs. atomic hydrogen gas in galaxies between z = 0 and z = 1.5. Bottom: the evolution of the molecular-to-atomic mass ratio with redshift. [Adapted from Cortese et al. 2017]Adding to the SampleCortese and collaborators combined observations from the Atacama Large Millimeter/submillimeter Array (ALMA) and Arecibo to estimate the ratio of molecular to atomic hydrogen in five HIGHz-survey massive star-forming galaxies at a redshift of z 0.2. They then combine these results with those of the COOL BUDHIES survey; they argue that, since the two surveys use different selection criteria, the combination of the two samples provides a fairer view of the overall population of star-forming galaxies at z 0.2.Intriguingly, the HIGHz galaxies do not show the molecular-gas dominance that the COOL BUDHIES galaxies do. Cortese and collaborators demonstrate that the addition of the HIGHz galaxies to the sample reveals that the gas reservoirs of star-forming disks 3 billion years ago are, in fact, still the same as what we see today, suggesting that star formation in galaxies at z 0.2 is likely fueled in much the same way as it is today.As telescope capabilities increase, we may be able to explore whether this continues to hold true for more distant galaxies. In the meantime, increasing our sample size within the range that we can observe will help us to further explore how galaxies have formed stars over time.CitationLuca Cortese et al 2017 ApJL 848 L7. doi:10.3847/2041-8213/aa8cc3
Ultracold molecule assembly with photonic crystals
NASA Astrophysics Data System (ADS)
Pérez-Ríos, Jesús; Kim, May E.; Hung, Chen-Lung
2017-12-01
Photoassociation (PA) is a powerful technique to synthesize molecules directly and continuously from cold and ultracold atoms into deeply bound molecular states. In freespace, however, PA efficiency is constrained by the number of spontaneous decay channels linking the initial excited molecular state to a sea of final (meta)stable rovibronic levels. Here, we propose a novel scheme based on molecules strongly coupled to a guided photonic mode in a photonic crystal waveguide that turns PA into a powerful tool for near deterministic formation of ultracold molecules in their ground rovibrational level. Our example shows a potential ground state molecule production efficiency > 90 % , and a saturation rate > {10}6 molecules per second. By combining state-of-the-art cold atomic and molecular physics with nanophotonic engineering, our scheme presents a novel experimental package for trapping, cooling, and optically manipulating ultracold molecules, thus opening up new possibilities in the direction of ultracold chemistry and quantum information.
NASA Astrophysics Data System (ADS)
Rinott, Shahar; Ribak, Amit; Chashka, Khanan; Randeria, Mohit; Kanigel, Amit
The crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation (BEC) was never realized in quantum materials. It is difficult to realize because, unlike in ultra cold atoms, one cannot tune the pairing interaction. We realize the BCS-BEC crossover in a nearly compensated semimetal Fe1+ySexTe1-x by tuning the Fermi energy ɛF via chemical doping, which permits us to systematically change Δ /ɛF from 0 . 16 to 0 . 50 , where Δ is the superconducting (SC) gap. We use angle-resolved photoemission spectroscopy to measure the Fermi energy, the SC gap and characteristic changes in the SC state electronic dispersion as the system evolves from a BCS to a BEC regime. Our results raise important questions about the crossover in multi-band superconductors which go beyond those addressed in the context of cold atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Click, D. R.; Edwards, T. B.; Wiedenman, B. J.
2013-03-18
This report contains the results and comparison of data generated from inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch ormore » qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.« less
Ionization Spectroscopic Measurement of nP Rydberg Levels of 87Rb Cold Atoms
NASA Astrophysics Data System (ADS)
Li, Yufan; Zaheeruddin, Syed; Zhao, Dongmei; Ma, Xinwen; Yang, Jie
2018-05-01
We created an ultracold plasma via the spontaneous ionization of cold dense Rydberg atoms of 87Rb in a magneto-optical trap (MOT), and measured the nS1/2 (n = 50-80), nP1/2 (n = 16-23), nP3/2 (n = 16-98), and nD5/2 (n = 49-96) Rydberg levels by detecting the electrons in the ultracold plasma. By fitting the energy levels of Rydberg states, the first ionization potential of 33690.950(11) cm-1 and the quantum defects of S, P, and D orbitals were obtained. The absolute transition energies of nS1/2 (n = 66-80), nP1/2 (n = 16-23), nP3/2 (n = 16-98), and nD5/2 (n = 58-96) states of 87Rb, as well as the quantum defects for p1/2 and p3/2 series, are given for the first time.
NASA Astrophysics Data System (ADS)
Song, Jun; Liu, Juanfang; Chen, Qinghua
For lithium-ion batteries, the composite silicon-based electrodes can prevent from losing electrical contact and hence retain the capacity over many cycles. To uncover the adhesion mechanism on the interface formed by the copper foil and the thin silicon coatings during the cold gas dynamic spraying (CGDS) at the microscopic level, the first-principle calculations are performed to investigate the interface properties between them. The ideal work of adhesion, fracture toughness and the interface electronic properties are analyzed. It is found that all the atoms on the interface have vertical displacements, and covalent and ionic bonds are formed between the interfacial Cu and Si atoms which increases the bonding strength. However, the ideal work of adhesion on the interface is lower than one of the Cu bulk and Si bulk, so that fracture would be easier to take place on the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Entin, V. M.; Yakshina, E. A.; Tretyakov, D. B.
2013-05-15
The spectra of the three-photon laser excitation 5S{sub 1/2} {yields} 5P{sub 3/2} {yields} 6S{sub 1/2}nP of cold Rb Rydberg atoms in an operating magneto-optical trap based on continuous single-frequency lasers at each stage are studied. These spectra contain two partly overlapping peaks of different amplitudes, which correspond to coherent three-photon excitation and incoherent three-step excitation due to the presence of two different ways of excitation through the dressed states of intermediate levels. A four-level theoretical model based on optical Bloch equations is developed to analyze these spectra. Good agreement between the experimental and calculated data is achieved by introducing additionalmore » decay of optical coherence induced by a finite laser line width and other broadening sources (stray electromagnetic fields, residual Doppler broadening, interatomic interactions) into the model.« less
Spectroscopic method to study low charge state ion and cold electron population in ECRIS plasma
NASA Astrophysics Data System (ADS)
Kronholm, R.; Kalvas, T.; Koivisto, H.; Tarvainen, O.
2018-04-01
The results of optical emission spectroscopy experiments probing the cold electron population of a 14 GHz Electron Cyclotron Resonance Ion Source (ECRIS) are reported. The study has been conducted with a high resolution spectrometer and data acquisition setup developed specifically for the diagnostics of weak emission line characteristic to ECRIS plasmas. The optical emission lines of low charge state ions and neutral atoms of neon have been measured and analyzed with the line-ratio method. The aforementioned electron population temperature of the cold electron population (Te < 100 eV) is determined for Maxwell-Boltzmann and Druyvesteyn energy distributions to demonstrate the applicability of the method. The temperature was found to change significantly when the extraction voltage of the ion source is turned on/off. In the case of the Maxwellian distribution, the temperature of the cold electron population is 20 ± 10 eV when the extraction voltage is off and 40 ± 10 eV when it is on. The optical emission measurements revealed that the extraction voltage also affects both neutral and ion densities. Based on the rate coefficient analysis with the aforementioned temperatures, switching the extraction voltage off decreases the rate coefficient of neutral to 1+ ionization to 42% and 1+ to 2+ ionization to 24% of the original. This suggests that switching the extraction voltage on favors ionization to charge states ≥2+ and, thus, the charge state distributions of ECRIS plasmas are probably different with the extraction voltage on/off. It is therefore concluded that diagnostics results of ECRIS plasmas obtained without the extraction voltage are not depicting the plasma conditions in normal ECRIS operation.
Optical Measurements of Strong Radio-Frequency Fields Using Rydberg Atoms
NASA Astrophysics Data System (ADS)
Miller, Stephanie Anne
There has recently been an initiative toward establishing atomic measurement standards for field quantities, including radio-frequency, millimeter-wave, and micro-wave electric fields. Current measurement standards are obtained using dipole antennas, which are fundamentally limited in frequency bandwidth (set by the physical size of the antenna) and accuracy (due to the metal perturbing the field during the measurement). Establishing an atomic standard rectifies these problems. My thesis work contributes to an ongoing effort towards establishing the viability of using Rydberg electromagnetically induced transparency (EIT) to perform atom-based measurements of radio-frequency (RF) fields over a wide range of frequencies and field strengths, focusing on strong-field measurements. Rydberg atoms are atoms with an electron excited to a high principal quantum number, resulting in a high sensitivity to an applied field. A model based on Floquet theory is implemented to accurately describe the observed atomic energy level shifts from which information about the field is extracted. Additionally, the effects due to the different electric field domains within the measurement volume are accurately modeled. Absolute atomic measurements of fields up to 296 V/m within a +/-0.35% relative uncertainty are demonstrated. This is the strongest field measured at the time of data publication. Moreover, the uncertainty is over an order of magnitude better than that of current standards. A vacuum chamber setup that I implemented during my graduate studies is presented and its unique components are detailed. In this chamber, cold-atom samples are generated and Rydberg atoms are optically excited within the ground-state sample. The Rydberg ion detection and imaging procedure are discussed, particularly the high magnification that the system provides. By analyzing the position of the ions, the spatial correlation g(2) (r) of Rydberg-atom distributions can be extracted. Aside from ion detection, EIT is implemented in the cold-atom samples. By measuring the timing of the probe photons exiting the EIT medium, the temporal correlation function g(2)(tau) can be extracted, yielding information about the timing between two different arbitrary photons. An experimental goal using this setup is to look at g(2)(tau) in conjunction with g(2)(r) for Rydberg atoms. Progress and preliminary measurements of ion detection and EIT spectra are presented including observed qualitative behaviors.
Optical angular momentum and atoms
2017-01-01
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766
Non-destructive Faraday imaging of dynamically controlled ultracold atoms
NASA Astrophysics Data System (ADS)
Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob
2013-05-01
We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.
A new type of caesium clock: a laser-cooled atomic fountain.
NASA Astrophysics Data System (ADS)
Clairon, A.
1995-05-01
In recent years, progress has been made in the field of cooling neutral atoms using a laser. An initial application is the construction of a new type of atomic clock. Today it is easy to produce a gas of caesium atoms at a temperature of a few microkelvins, corresponding to a mean square velocity of the order of 1 cm/s; all that is needed is two laser diodes forming an optical soup in a low pressure caesium cell. In the longer term, these cooled atoms will make it possible to build clocks whose performance will be one or two orders of magnitude better than those that exist at present. A prototype caesium clock using cold atoms has been operating for over a year that the LPTF in the Paris observatory. This article describes its design principles and gives a brief presentation of the results obtained so far.
Laser controlled atom source for optical clocks.
Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal
2016-11-18
Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.
Quenches across the self-organization transition in multimode cavities
NASA Astrophysics Data System (ADS)
Keller, Tim; Torggler, Valentin; Jäger, Simon B.; Schütz, Stefan; Ritsch, Helmut; Morigi, Giovanna
2018-02-01
A cold dilute atomic gas in an optical resonator can be radiatively cooled by coherent scattering processes when the driving laser frequency is tuned close to but below the cavity resonance. When the atoms are sufficiently illuminated, their steady state undergoes a phase transition from a homogeneous distribution to a spatially organized Bragg grating. We characterize the dynamics of this self-ordering process in the semi-classical regime when distinct cavity modes with commensurate wavelengths are quasi-resonantly driven by laser fields via scattering by the atoms. The lasers are simultaneously applied and uniformly illuminate the atoms; their frequencies are chosen so that the atoms are cooled by the radiative processes, and their intensities are either suddenly switched or slowly ramped across the self-ordering transition. Numerical simulations for different ramp protocols predict that the system will exhibit long-lived metastable states, whose occurrence strongly depends on the initial temperature, ramp speed, and the number of atoms.
von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R
2016-07-01
The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).
Fast-responding property of electromagnetically induced transparency in Rydberg atoms
NASA Astrophysics Data System (ADS)
Zhang, Qi; Bai, Zhengyang; Huang, Guoxiang
2018-04-01
We investigate the transient optical response property of an electromagnetically induced transparency (EIT) in a cold Rydberg atomic gas. We show that both the transient behavior and the steady-state EIT spectrum of the system depend strongly on Rydberg interaction. Especially, the response speed of the Rydberg-EIT can be five times faster (and even higher) than the conventional EIT without the Rydberg interaction. For comparison, two different theoretical approaches (i.e., two-atom model and many-atom model) are considered, revealing that Rydberg blockade effect plays a significant role for increasing the response speed of the Rydberg-EIT. The fast-responding Rydberg-EIT by using the strong, tunable Rydberg interaction uncovered here is not only helpful for enhancing the understanding of the many-body dynamics of Rydberg atoms but also useful for practical applications in quantum information processing by using Rydberg atoms.
Laser controlled atom source for optical clocks
Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal
2016-01-01
Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy. PMID:27857214
NASA Astrophysics Data System (ADS)
Topcu, Turker; Derevianko, Andrei
2013-11-01
Intensity-modulated optical lattice potentials can change sign for an alkali-metal Rydberg atom, and the atoms are not always attracted to intensity minima in optical lattices with wavelengths near the CO2 laser band. Here we demonstrate that such IR lattices can be tuned so that the trapping potential experienced by the Rydberg atom can be made to vanish for atoms in “targeted” Rydberg states. Such state-selective trapping of Rydberg atoms can be useful in controlled cold Rydberg collisions, cooling Rydberg states, and species-selective trapping and transport of Rydberg atoms in optical lattices. We tabulate wavelengths at which the trapping potential vanishes for the ns, np, and nd Rydberg states of Na and Rb atoms and discuss advantages of using such optical lattices for state-selective trapping of Rydberg atoms. We also develop exact analytical expressions for the lattice-induced polarizability for the mz=0 Rydberg states and derive an accurate formula predicting tune-out wavelengths at which the optical trapping potential becomes invisible to Rydberg atoms in targeted l=0 states.
The 'warm' side of coldness: Cold promotes interpersonal warmth in negative contexts.
Wei, Wenqi; Ma, Jingjing; Wang, Lei
2015-12-01
The concrete experience of physical warmth has been demonstrated to promote interpersonal warmth. This well-documented link, however, tells only half of the story. In the current study, we thus examined whether physical coldness can also increase interpersonal warmth under certain circumstances. We conducted three experiments to demonstrate that the relationship between the experience of physical temperature and interpersonal outcomes is context dependent. Experiment 1 showed that participants touching cold (vs. warm) objects were more willing to forgive a peer's dishonest behaviour. Experiment 2 demonstrated the fully interactive effect of temperature and context on interpersonal warmth: Participants touching cold (vs. warm) objects were less likely to assist an individual who had provided them with good service (positive social context), but more likely to assist an individual who had provided them with poor service (negative social context). Experiment 3 replicated the results of Experiment 2 using the likelihood to complain, a hostility-related indicator, as the dependent variable: In a pleasant queue (positive social context), participants touching cold objects were more likely to complain and those touching warm objects were less likely to complain compared with the control group. This pattern was reversed in an annoying queue (negative social context). © 2015 The Authors. British Journal of Social Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.
Li, Jiaming; de Melo, Leonardo F; Luo, Le
2017-03-30
We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.
An evaluation of a reagentless method for the determination of total mercury in aquatic life
Haynes, Sekeenia; Gragg, Richard D.; Johnson, Elijah; Robinson, Larry; Orazio, Carl E.
2006-01-01
Multiple treatment (i.e., drying, chemical digestion, and oxidation) steps are often required during preparation of biological matrices for quantitative analysis of mercury; these multiple steps could potentially lead to systematic errors and poor recovery of the analyte. In this study, the Direct Mercury Analyzer (Milestone Inc., Monroe, CT) was utilized to measure total mercury in fish tissue by integrating steps of drying, sample combustion and gold sequestration with successive identification using atomic absorption spectrometry. We also evaluated the differences between the mercury concentrations found in samples that were homogenized and samples with no preparation. These results were confirmed with cold vapor atomic absorbance and fluorescence spectrometric methods of analysis. Finally, total mercury in wild captured largemouth bass (n = 20) were assessed using the Direct Mercury Analyzer to examine internal variability between mercury concentrations in muscle, liver and brain organs. Direct analysis of total mercury measured in muscle tissue was strongly correlated with muscle tissue that was homogenized before analysis (r = 0.81, p < 0.0001). Additionally, results using this integrated method compared favorably (p < 0.05) with conventional cold vapor spectrometry with atomic absorbance and fluorescence detection methods. Mercury concentrations in brain were significantly lower than concentrations in muscle (p < 0.001) and liver (p < 0.05) tissues. This integrated method can measure a wide range of mercury concentrations (0-500 ??g) using small sample sizes. Total mercury measurements in this study are comparative to the methods (cold vapor) commonly used for total mercury analysis and are devoid of laborious sample preparation and expensive hazardous waste. ?? Springer 2006.
Hydrogen as an atomic beam standard
NASA Technical Reports Server (NTRS)
Peters, H. E.
1972-01-01
After a preliminary discussion of feasibility, new experimental work with a hydrogen beam is described. A space focused magnetic resonance technique with separated oscillatory fields is used with a monochromatic beam of cold hydrogen atoms which are selected from a higher temperature source. The first resonance curves and other experimental results are presented. These results are interpreted from the point of view of accuracy potential and frequency stability, and are compared with hydrogen maser and cesium beam capabilities.
Unconventional States of Matter with Cold Atoms and Dipolar Molecules
2014-08-20
ferromagnetic state. For alkaline-earth fermions, the large SU(2N) symmetry greatly enhances quantum spin fluctuations, which give rises to novel...both bosons and fermions, novel quantum magnetism with large spin SU(2N) al- kaline fermions, novel topological states with synthetic gauge fields...presented in Sect. 1.1. The study of novel quantum magnetism with large spin alkaline earth atoms is presented in Sect. 1.2. In Sect. 1.3, we present our
Coherence properties of nanofiber-trapped cesium atoms.
Reitz, D; Sayrin, C; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A
2013-06-14
We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ∼ 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T(2)(*) = 0.6 ms and an irreversible dephasing time of T(2)(') = 3.7 ms. By modeling the signals, we find that, for our experimental parameters, T(2)(*) and T(2)(') are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.
NASA Astrophysics Data System (ADS)
Krim, Lahouari; Nourry, Sendres
2015-06-01
In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step towards complex organic molecules production in the interstellar medium.
A Cold-Pole Enhancement in Mercury’s Sodium Exosphere
Cassidy, Timothy A.; McClintock, William E.; Killen, Rosemary M.; Sarantos, Menelaos; Merkel, Aimee W.; Vervack, Ronald J.; Burger, Matthew H.
2018-01-01
The Ultraviolet and Visible Spectrometer (UVVS) component of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft characterized the local-time distribution of the sodium exosphere over the course of its orbital mission. The observations show that the sodium exosphere is enhanced above Mercury’s cold-pole longitudes. Based on previously published sodium exosphere models we infer that these regions act as nightside surface reservoirs, temporary sinks to the exosphere that collect sodium atoms transported anti-sunward. The reservoirs are revealed as exospheric enhancements when they are exposed to sunlight. As in the models the reservoir is depleted as the cold poles rotate from dawn to dusk, but unlike the models the depletion is only partial. The persistence of the reservoir means that it could, over the course of geologically long periods of time, contribute to an increase in the bulk concentration of sodium near the cold-pole longitudes. PMID:29720774
Dai, Gaole; Wang, Binjun; Xu, Shang; Lu, Yang; Shen, Yajing
2016-06-01
Cold welding has been regarded as a promising bottom-up nanofabrication technique because of its ability to join metallic nanostructures at room temperature with low applied stress and without introducing damage. Usually, the cold welding process can be done instantaneously for ultrathin nanowires (diameter <10 nm) in "head-to-head" joining. Here, we demonstrate that "dumbbell" shaped ultrathin gold nanorods can be cold welded in the "side-to-side" mode in a highly controllable manner and can form an extremely small nanogap via a relatively slow welding process (up to tens of minutes, allowing various functional applications). By combining in situ high-resolution transmission electron microscopic analysis and molecular dynamic simulations, we further reveal the underlying mechanism for this "side-to-side" welding process as being dominated by atom kinetics instead of thermodynamics, which provides critical insights into three-dimensional nanosystem integration as well as the building of functional nanodevices.
NASA Astrophysics Data System (ADS)
Gödecke, Niels; Maul, Christof; Chichinin, Alexey I.; Kauczok, Sebastian; Gericke, Karl-Heinz
2009-08-01
The bimolecular reaction O(D1)+N2O→NO+NO was photoinitiated in the (N2O)2 dimer at a wavelength of 193 nm and was investigated by three-dimensional (3D) velocity map imaging. State selective 3D momentum vector distributions were monitored and analyzed. For the first time, kinetic energy resolution and stereodynamic information about the reaction under constrained geometry conditions is available. Directly observable NO products exhibit moderate vibrational excitation and are rotationally and translationally cold. Speed and spatial distributions suggest a pronounced backward scattering of the observed products with respect to the direction of motion of the O(D1) atom. Forward scattered partner products, which are not directly detectable are also translationally cold, but carry very large internal energy as vibration or rotation. The results confirm and extend previous studies on the complex initiated reaction system. The restricted geometry of the van der Waals complex seems to favor an abstraction reaction of the terminal nitrogen atom by the O(D1) atom, which is in striking contrast to the behavior observed for the unrestricted gas phase reaction under bulk conditions.
Infrared emission associated with chemical reactions on Shuttle and SIRTF surfaces
NASA Technical Reports Server (NTRS)
Hollenbach, D. J.; Tielens, Alexander G. G. M.
1984-01-01
The infrared intensities which would be observed by the Shuttle Infrared Telescope Facility (SIRTF), and which are produced by surface chemistry following atmospheric impact on SIRTF and the shuttle are estimated. Three possible sources of reactants are analyzed: (1) direct atmospheric and scattered contaminant fluxes onto the shuttle's surface; (2) direct atmospheric and scattered contaminant fluxes onto the SIRTF sunshade; and (3) scattered fluxes onto the cold SIRTF mirror. The chemical reactions are primarily initiated by the dominent flux of reactive atomic oxygen on the surfaces. Using observations of the optical glow to constrain theoretical parameters, it is estimated for source (1) that the infrared glow on the SIRTF mirror will be comparable to the zodiacal background between 1 and 10 micron wavelengths. It is speculated that oxygen reacts with the atoms and the radicals bound in the organic molecules that reside on the shuttle and the Explorer surfaces. It is concluded that for source (2) that with suitable construction, a warm sunshade will produce insignificant infrared glow. It is noted that the atomic oxygen flux on the cold SIRTF mirror (3) is insufficient to produce significant infrared glow. Infrared absorption by the ice buildup on the mirror is also small.
Fission Product Separation from Pyrochemical Electrolyte by Cold Finger Melt Crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Versey, Joshua R.
This work contributes to the development of pyroprocessing technology as an economically viable means of separating used nuclear fuel from fission products and cladding materials. Electrolytic oxide reduction is used as a head-end step before electrorefining to reduce oxide fuel to metallic form. The electrolytic medium used in this technique is molten LiCl-Li2O. Groups I and II fission products, such as cesium (Cs) and strontium (Sr), have been shown to partition from the fuel into the molten LiCl-Li2O. Various approaches of separating these fission products from the salt have been investigated by different research groups. One promising approach is basedmore » on a layer crystallization method studied at the Korea Atomic Energy Research Institute (KAERI). Despite successful demonstration of this basic approach, there are questions that remain, especially concerning the development of economical and scalable operating parameters based on a comprehensive understanding of heat and mass transfer. This research explores these parameters through a series of experiments in which LiCl is purified, by concentrating CsCl in a liquid phase as purified LiCl is crystallized and removed via an argon-cooled cold finger.« less
Outer crust of nonaccreting cold neutron stars
NASA Astrophysics Data System (ADS)
Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen
2006-03-01
The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.
Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon
2017-06-01
We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime
NASA Astrophysics Data System (ADS)
Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.
2018-04-01
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.
Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M
2018-04-13
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Zeeman relaxation of cold atomic iron and nickel in collisions with He3
NASA Astrophysics Data System (ADS)
Johnson, Cort; Newman, Bonna; Brahms, Nathan; Doyle, John M.; Kleppner, Daniel; Greytak, Thomas J.
2010-06-01
We have measured the ratio γ of the diffusion cross section to the angular momentum reorientation cross section in the colliding Fe-He3 and Ni-He3 systems. Nickel (Ni) and iron (Fe) atoms are introduced via laser ablation into a cryogenically cooled experimental cell containing cold (<1 K) He3 buffer gas. Elastic collisions rapidly cool the translational temperature of the ablated atoms to the He3 temperature. γ is extracted by measuring the decays of the atomic Zeeman sublevels. For our experimental conditions, thermal energy is comparable to the Zeeman splitting. As a result, thermal excitations between Zeeman sublevels significantly impact the observed decay. To determine γ accurately, we introduce a model of Zeeman-state dynamics that includes thermal excitations. We find γNi-3He=5×103 and γFe-3He⩽3×103 at 0.75 K in a 0.8-T magnetic field. These measurements are interpreted in the context of submerged shell suppression of spin relaxation, as studied previously in transition metals and rare-earth-metal atoms [C. I. Hancox, S. C. Doret, M. T. Hummon, R. V. Krems, and J. M. Doyle, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.013201 94, 013201 (2005); C. I. Hancox, S. C. Doret, M. T. Hummon, L. Luo, and J. M. Doyle, Nature (London)NATUAS0028-083610.1038/nature02938 431, 281 (2004); A. Buchachenko, G. Chaasiski, and M. Szczniak, Eur. Phys. J. DEPJDF61434-606010.1140/epjd/e2006-00263-3 45, 147 (2007)].
Helium cluster isolation spectroscopy
NASA Astrophysics Data System (ADS)
Higgins, John Paul
Clusters of helium, each containing ~103- 104 atoms, are produced in a molecular beam and are doped with alkali metal atoms (Li, Na, and K) and large organic molecules. Electronic spectroscopy in the visible and UV regions of the spectrum is carried out on the dopant species. Since large helium clusters are liquid and attain an equilibrium internal temperature of 0.4 K, they interact weakly with atoms or molecules absorbed on their surface or resident inside the cluster. The spectra that are obtained are characterized by small frequency shifts from the positions of the gas phase transitions, narrow lines, and cold vibrational temperatures. Alkali atoms aggregate on the helium cluster surface to form dimers and trimers. The spectra of singlet alkali dimers exhibit the presence of elementary excitations in the superfluid helium cluster matrix. It is found that preparation of the alkali molecules on the surface of helium clusters leads to the preferential formation of high-spin, van der Waals bound, triplet dimers and quartet trimers. Four bound-bound and two bound-free transitions are observed in the triplet manifold of the alkali dimers. The quartet trimers serve as an ideal system for the study of a simple unimolecular reaction in the cold helium cluster environment. Analysis of the lowest quartet state provides valuable insight into three-body forces in a van der Waals trimer. The wide range of atomic and molecular systems studied in this thesis constitutes a preliminary step in the development of helium cluster isolation spectroscopy, a hybrid technique combining the advantages of high resolution spectroscopy with the synthetic, low temperature environment of matrices.
Optical beams with embedded vortices: building blocks for atom optics and quantum information
NASA Astrophysics Data System (ADS)
Chattrapiban, N.; Arakelyan, I.; Mitra, S.; Hill, W. T., III
2006-05-01
Laser beams with embedded vortices, Bessel or Laguerre-Gaussian modes, provide a unique opportunity for creating elements for atom optics, entangling photons and, potentially, mediating novel quantum interconnects between photons and matter. High-order Bessel modes, for example, contain intensity voids and propagate nearly diffraction-free for tens of meters. These vortices can be exploited to produce dark channels oriented longitudinally (hollow beams) or transversely to the laser propagation direction. Such channels are ideal for generating networks or circuits to guide and manipulate cold neutral atoms, an essential requirement for realizing future applications associated with atom interferometry, atom lithography and even some neutral atom-based quantum computing architectures. Recently, we divided a thermal cloud of neutral atoms moving within a blue-detuned beam into two clouds with two different momenta by crossing two hollow beams. In this presentation, we will describe these results and discuss the prospects for extending the process to coherent ensembles of matter.
Kazmerski, Lawrence L.
1990-01-01
A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.
NASA Astrophysics Data System (ADS)
Lyon, M.; Rolston, S. L.
2017-01-01
By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.
NASA Astrophysics Data System (ADS)
Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.
2013-12-01
In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.
From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid.
Hung, Chen-Lung; Gurarie, Victor; Chin, Cheng
2013-09-13
Predicting the dynamics of many-body systems far from equilibrium is a challenging theoretical problem. A long-predicted phenomenon in hydrodynamic nonequilibrium systems is the occurrence of Sakharov oscillations, which manifest in the anisotropy of the cosmic microwave background and the large-scale correlations of galaxies. Here, we report the observation of Sakharov oscillations in the density fluctuations of a quenched atomic superfluid through a systematic study in both space and time domains and with tunable interaction strengths. Our work suggests a different approach to the study of nonequilibrium dynamics of quantum many-body systems and the exploration of their analogs in cosmology and astrophysics.
Zoo of Quantum Phases and Excitations of Cold Bosonic Atoms in Optical Lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alon, Ofir E.; Streltsov, Alexej I.; Cederbaum, Lorenz S.
Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to shallow optical lattices are described by a single multiorbital mean-field approach in real space. For weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model. For strongly interacting bosons (i) additional MI phases appear, for which two (or more) atoms residing in each site undergo a Tonks-Girardeau-like transition and localize, and (ii) on-site excitation becomes the excitation lowest in energy. Experimental implications are discussed.
Experiences issues with plastic parts at cold temperatures
NASA Technical Reports Server (NTRS)
Sandor, Mike; Agarwal, Shri
2005-01-01
Missions to MARS/planets/asteroids require electronic parts to operate and survive at extreme cold conditions. At extreme cold temperatures many types of cold related failures can occur. Office 514 is currently evaluating plastic parts under various cold temperature conditions and applications. Evaluations, screens, and qualifications are conducted on flight parts.
A Herschel [C ii] Galactic plane survey. I. The global distribution of ISM gas components
NASA Astrophysics Data System (ADS)
Pineda, J. L.; Langer, W. D.; Velusamy, T.; Goldsmith, P. F.
2013-06-01
Context. The [C ii] 158 μm line is an important tool for understanding the life cycle of interstellar matter. Ionized carbon is present in a variety of phases of the interstellar medium (ISM), including the diffuse ionized medium, warm and cold atomic clouds, clouds in transition from atomic to molecular, and dense and warm photon dominated regions. Aims: Velocity-resolved observations of [C ii] are the most powerful technique available to disentangle the emission produced by these components. These observations can also be used to trace CO-dark H2 gas and determine the total mass of the ISM. Methods: The Galactic Observations of Terahertz C+ (GOT C+) project surveys the [C ii] 158 μm line over the entire Galactic disk with velocity-resolved observations using the Herschel/HIFI instrument. We present the first longitude-velocity maps of the [C ii] emission for Galactic latitudes b = 0°, ±0.5°, and ±1.0°. We combine these maps with those of H i, 12CO, and 13CO to separate the different phases of the ISM and study their properties and distribution in the Galactic plane. Results: [C ii] emission is mostly associated with spiral arms, mainly emerging from Galactocentric distances between 4 and 10 kpc. It traces the envelopes of evolved clouds as well as clouds that are in the transition between atomic and molecular. We estimate that most of the observed [C ii] emission is produced by dense photon dominated regions (~47%), with smaller contributions from CO-dark H2 gas (~28%), cold atomic gas (~21%), and ionized gas (~4%). Atomic gas inside the Solar radius is mostly in the form of cold neutral medium (CNM), while the warm neutral medium gas dominates the outer galaxy. The average fraction of CNM relative to total atomic gas is ~43%. We find that the warm and diffuse CO-dark H2 is distributed over a larger range of Galactocentric distances (4-11 kpc) than the cold and dense H2 gas traced by 12CO and 13CO (4-8 kpc). The fraction of CO-dark H2 to total H2 increases with Galactocentric distance, ranging from ~20% at 4 kpc to ~80% at 10 kpc. On average, CO-dark H2 accounts for ~30% of the molecular mass of the Milky Way. When the CO-dark H2 component is included, the radial distribution of the CO-to-H2 conversion factor is steeper than that when only molecular gas traced by CO is considered. Most of the observed [C ii] emission emerging from dense photon dominated regions is associated with modest far-ultraviolet fields in the range χ0 ≃ 1 - 30. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Ghezali, S.; Taleb, A.
2008-09-01
A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely proportional to the detuning δ and is responsible of the non specular aspect of the atomic reflection (atomic diffusion). In the contrary, we note that the specularity of the reflection preserve the coherence of the atomic wave packet. The atoms will constitute a probe of the rugosity of the prism surface which can be imperfect or super-polished.
Shear coaxial injector atomization phenomena for combusting and non-combusting conditions
NASA Technical Reports Server (NTRS)
Pal, S.; Moser, M. D.; Ryan, H. M.; Foust, M. J.; Santoro, R. J.
1992-01-01
Measurements of LOX drop size and velocity in a uni-element liquid propellant rocket chamber are presented. The use of the Phase Doppler Particle Analyzer in obtaining temporally-averaged probability density functions of drop size in a harsh rocket environment has been demonstrated. Complementary measurements of drop size/velocity for simulants under cold flow conditions are also presented. The drop size/velocity measurements made for combusting and cold flow conditions are compared, and the results indicate that there are significant differences in the two flowfields.
Three-dimensional modeling of diesel engine intake flow, combustion and emissions
NASA Technical Reports Server (NTRS)
Reitz, R. D.; Rutland, C. J.
1992-01-01
A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.
Microwave Remote Sensing and the Cold Land Processes Field Experiment
NASA Technical Reports Server (NTRS)
Kim, Edward J.; Cline, Don; Davis, Bert; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
The Cold Land Processes Field Experiment (CLPX) has been designed to advance our understanding of the terrestrial cryosphere. Developing a more complete understanding of fluxes, storage, and transformations of water and energy in cold land areas is a critical focus of the NASA Earth Science Enterprise Research Strategy, the NASA Global Water and Energy Cycle (GWEC) Initiative, the Global Energy and Water Cycle Experiment (GEWEX), and the GEWEX Americas Prediction Project (GAPP). The movement of water and energy through cold regions in turn plays a large role in ecological activity and biogeochemical cycles. Quantitative understanding of cold land processes over large areas will require synergistic advancements in 1) understanding how cold land processes, most comprehensively understood at local or hillslope scales, extend to larger scales, 2) improved representation of cold land processes in coupled and uncoupled land-surface models, and 3) a breakthrough in large-scale observation of hydrologic properties, including snow characteristics, soil moisture, the extent of frozen soils, and the transition between frozen and thawed soil conditions. The CLPX Plan has been developed through the efforts of over 60 interested scientists that have participated in the NASA Cold Land Processes Working Group (CLPWG). This group is charged with the task of assessing, planning and implementing the required background science, technology, and application infrastructure to support successful land surface hydrology remote sensing space missions. A major product of the experiment will be a comprehensive, legacy data set that will energize many aspects of cold land processes research. The CLPX will focus on developing the quantitative understanding, models, and measurements necessary to extend our local-scale understanding of water fluxes, storage, and transformations to regional and global scales. The experiment will particularly emphasize developing a strong synergism between process-oriented understanding, land surface models and microwave remote sensing. The experimental design is a multi-sensor, multi-scale (1-ha to 160,000 km ^ {2}) approach to providing the comprehensive data set necessary to address several experiment objectives. A description focusing on the microwave remote sensing components (ground, airborne, and spaceborne) of the experiment will be presented.
Advanced Accelerator Concepts Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtele, Jonathan S.
2014-05-13
A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitationmore » of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.« less
Coherent Spectroscopy of Ultra-Cold Mercury for the UV to VUV
2015-11-20
clock. During this funding period a novel UV laser system was developed to efficiently cool and trap atomic Hg to temperatures below 100 microKelvin...During this funding period a novel UV laser system was developed to efficiently cool and trap atomic Hg to temperatures below 100 microKelvin. This...able to slowly scan the UV laser system to locate the clock transition (using the standard technique
Nuclear Criticism after the Cold War: A Rhetorical Analysis of Two Contemporary Atomic Campaigns
1997-08-01
Craig & Jungerman, 1986). The implications of this fission were grasped by Leo Szilard and others that fission could result in the release of massive...research of Enrico Fermi and others to study the potential for sustained chained reactions 40 produced by an atomic "pile" ( Craig & Jungerman, 1986...project to build a hydrogen bomb began at the urging of Edward Teller and after the reservations of Oppenheimer, Fermi and others ( Craig & Jungerman, 1986
Critical Elements and Needs for Nuclear Weapons Maintenance: A Delphi Study
2012-06-01
means the world to me. You’ve always stood by my side and made life easier for me through all of the moves and deployments. I would also like to...recommendations will be discussed. Trinity and the Cold War July 16, 1945 forever changed the history of the world when the first atomic bomb...than one month later, atomic bombs were dropped on the Japanese cities of Hiroshima and Nagasaki bringing an end to World War II. Since that time, no
Thermal transpiration: A molecular dynamics study
NASA Astrophysics Data System (ADS)
T, Joe Francis; Sathian, Sarith P.
2014-12-01
Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas.
Geiger, Zachary A; Fujiwara, Kurt M; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V; Meier, Torsten; Weld, David M
2018-05-25
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Quantum dynamics of a two-state system induced by a chirped zero-area pulse
NASA Astrophysics Data System (ADS)
Lee, Han-gyeol; Song, Yunheung; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2016-02-01
It is well known that area pulses make Rabi oscillation and chirped pulses in the adiabatic interaction regime induce complete population inversion of a two-state system. Here we show that chirped zero-area pulses could engineer an interplay between the adiabatic evolution and Rabi-like rotations. In a proof-of-principle experiment utilizing spectral chirping of femtosecond laser pulses with a resonant spectral hole, we demonstrate that the chirped zero-area pulses could induce, for example, complete population inversion and return of the cold rubidium atom two-state system. Experimental result agrees well with the theoretically considered overall dynamics, which could be approximately modeled to a Ramsey-like three-pulse interaction, where the x and z rotations are driven by the hole and the main pulse, respectively.
Latitudinal oscillations of plasma within the Io torus
NASA Technical Reports Server (NTRS)
Cummings, W. D.; Dessler, A. J.; Hill, T. W.
1980-01-01
The equilibrium latitude and the period of oscillations about this equilibrium latitude are calculated for a plasma in a centrifugally dominated tilted dipole magnetic field representing Jupiter's inner magnetosphere. It is found that for a hot plasma the equilibrium latitude in the magnetic equator, for a cold plasma it is the centrifugal equator, and for a warm plasma it is somewhere in between. An illustrative model is adopted in which atoms are sputtered from the Jupiter-facing hemisphere of Io and escape Io's gravity to be subsequently ionized some distance from Io. Finally, it is shown that ionization generally does not occur at the equilibrium altitude, and that the resulting latitudinal oscillations provide an explanation for the irregularities in electron concentration within the torus, as reported by the radioastronomy experiment aboard Voyager I.
Experimental interstellar organic chemistry: Preliminary findings
NASA Technical Reports Server (NTRS)
Khare, B. N.; Sagan, C.
1971-01-01
In a simulation of interstellar organic chemistry in dense interstellar clouds or on grain surfaces, formaldehyde, water vapor, ammonia and ethane are deposited on a quartz cold finger and ultraviolet-irradiated in high vacuum at 77K. The HCHO photolytic pathway which produces an aldehyde radical and a superthermal hydrogen atom initiates solid phase chain reactions leading to a range of new compounds, including methanol, ethanol, acetaldehyde, acetonitrile, acetone, methyl formate, and possibly formic acid. Higher nitriles are anticipated. Genetic relations among these interstellar organic molecules (e.g., the Cannizzaro and Tischenko reactions) must exist. Some of them, rather than being synthesized from smaller molecules, may be degradation products of larger organic molecules, such as hexamethylene tetramine, which are candidate consitituents of the interstellar grains. The experiments reported here may also be relevant to cometary chemistry.
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas
NASA Astrophysics Data System (ADS)
Geiger, Zachary A.; Fujiwara, Kurt M.; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V.; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V.; Meier, Torsten; Weld, David M.
2018-05-01
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Sugiki, Toshihiko; Furuita, Kyoko; Fujiwara, Toshimichi; Kojima, Chojiro
2018-06-20
Amino acid selective isotope labeling is an important nuclear magnetic resonance technique, especially for larger proteins, providing strong bases for the unambiguous resonance assignments and information concerning the structure, dynamics, and intermolecular interactions. Amino acid selective 15 N labeling suffers from isotope dilution caused by metabolic interconversion of the amino acids, resulting in isotope scrambling within the target protein. Carbonyl 13 C atoms experience less isotope scrambling than the main-chain 15 N atoms do. However, little is known about the side-chain 13 C atoms. Here, the 13 C scrambling profiles of the Cα and side-chain carbons were investigated for 15 N scrambling-prone amino acids, such as Leu, Ile, Tyr, Phe, Thr, Val, and Ala. The level of isotope scrambling was substantially lower in 13 Cα and 13 C side-chain labeling than in 15 N labeling. We utilized this reduced scrambling-prone character of 13 C as a simple and efficient method for amino acid selective 13 C labeling using an Escherichia coli cold-shock expression system and high-cell density fermentation. Using this method, the 13 C labeling efficiency was >80% for Leu and Ile, ∼60% for Tyr and Phe, ∼50% for Thr, ∼40% for Val, and 30-40% for Ala. 1 H- 15 N heteronuclear single-quantum coherence signals of the 15 N scrambling-prone amino acid were also easily filtered using 15 N-{ 13 Cα} spin-echo difference experiments. Our method could be applied to the assignment of the 55 kDa protein.
Developments for the 6He beta - nu angular correlation experiment
NASA Astrophysics Data System (ADS)
Zumwalt, David W.
This thesis describes developments toward the measurement of the angular correlation between the beta and the antineutrino in the beta decay of 6He. This decay is a pure Gamow-Teller decay which is described in the Standard Model as a purely axial vector weak interaction. The angular correlation is characterized by the parameter abetanu = -1/3 in the Standard Model. Any deviation from this value would be evidence for tensor components in the weak interaction and would constitute new physics. A new method will be used to measure the parameter a betanu from 6He decays, featuring a magneto-optical trap that will measure the beta particle in coincidence with the recoiling 6Li daughter ion. This neutral atom trapping scheme provides cold, tightly confined atoms which will reduce systematic uncertainties related to the initial position of the decay. By knowing the initial position of the decay and measuring the time of flight of the recoiling 6Li daughter ion in coincidence with the beta, the angular correlation between the beta and the antineutrino can be deduced. We aim to measure a betanu first to the level of 1%, and eventually to the 0.1% level, which would represent an order of magnitude improvement in precision over past experiments. Towards this goal, we have designed, built, and successfully tested a liquid lithium target to provide >2×10. {10} 6He atoms/sto a low-background environment, which is the most intense source of 6He presently available. This allowed for an additional measurement of the 6He half-life (806.89 +/- 0.11stat +0.23-0.19syst ms) to be made with unprecedented precision, resolving discrepancies in past measurements. We have also tested our trapping and detection apparatus and have begun to record preliminary coincidence events.
The Production of Cold Gas Within Galaxy Outflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scannapieco, Evan
2017-03-01
I present a suite of three-dimensional simulations of the evolution of initially hot material ejected by starburst-driven galaxy outflows. The simulations are conducted in a comoving frame that moves with the material, tracking atomic/ionic cooling, Compton cooling, and dust cooling and destruction. Compton cooling is the most efficient of these processes, while the main role of atomic/ionic cooling is to enhance density inhomogeneities. Dust, on the other hand, has little effect on the outflow evolution, and is rapidly destroyed in all the simulations except for the case with the smallest mass flux. I use the results to construct a simplemore » steady-state model of the observed UV/optical emission from each outflow. The velocity profiles in this case are dominated by geometric effects, and the overall luminosities are extremely strong functions of the properties of the host system, as observed in ultra-luminous infrared galaxies (ULIRGs). Furthermore the luminosities and maximum velocities in several models are consistent with emission-line observations of ULIRGs, although the velocities are significantly greater than observed in absorption-line studies. It may be that absorption line observations of galaxy outflows probe entrained cold material at small radii, while emission-line observations probe cold material condensing from the initially hot medium at larger distances.« less
NASA Astrophysics Data System (ADS)
Kumar, S.; Durini, D.; Degenhardt, C.; van Waasen, S.
2018-01-01
Small-angle neutron scattering (SANS) experiments have become one of the most important techniques in the investigation of the properties of material on the atomic scale. Until 2001, nearly exclusively 3He-based detectors were used for neutron detection in these experiments, but due to the scarcity of 3He and its steeply rising price, researchers started to look for suitable alternatives. Scintillation based solid state detectors appeared as a prominent alternative. Silicon photomultipliers (SiPM), having single photon resolution, lower bias voltages compared to photomultiplier tubes (PMT), insensitivity to magnetic fields, low cost, possibility of modular design and higher readout rates, have the potential of becoming a photon detector of choice in scintillator based neutron detectors. The major concerns for utilizing the SiPM technology in this kind of applications are the increase in their noise performance and the decrease in their photon detection efficiency (PDE) due to direct exposure to neutrons. Here, a detailed comparative analysis of the PDE performance in the range between UV and NIR parts of the spectra for three different SiPM technologies, before and after irradiation with cold neutrons, has been carried out. For this investigation, one digital and two analog SiPM arrays were irradiated with 5Å wavelength cold neutrons and up to a dose of 6×1012 n/cm2 at the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany.
Fast machine-learning online optimization of ultra-cold-atom experiments.
Wigley, P B; Everitt, P J; van den Hengel, A; Bastian, J W; Sooriyabandara, M A; McDonald, G D; Hardman, K S; Quinlivan, C D; Manju, P; Kuhn, C C N; Petersen, I R; Luiten, A N; Hope, J J; Robins, N P; Hush, M R
2016-05-16
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our 'learner' discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.
Fast machine-learning online optimization of ultra-cold-atom experiments
Wigley, P. B.; Everitt, P. J.; van den Hengel, A.; Bastian, J. W.; Sooriyabandara, M. A.; McDonald, G. D.; Hardman, K. S.; Quinlivan, C. D.; Manju, P.; Kuhn, C. C. N.; Petersen, I. R.; Luiten, A. N.; Hope, J. J.; Robins, N. P.; Hush, M. R.
2016-01-01
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. PMID:27180805
NASA Astrophysics Data System (ADS)
Távora, Marco; Torres-Herrera, E. J.; Santos, Lea F.
2016-10-01
Despite being ubiquitous, out-of-equilibrium quantum systems are much less understood than systems at equilibrium. Progress in the field has benefited from a symbiotic relationship between theoretical studies and new experiments on coherent dynamics. The present work strengthens this connection by providing a general picture of the relaxation process of isolated lattice many-body quantum systems that are routinely studied in experiments with cold atoms, ions traps, and nuclear magnetic resonance. We show numerically and analytically that the long-time decay of the probability for finding the system in its initial state necessarily shows a power-law behavior ∝t-γ . This happens independently of the details of the system, such as integrability, level repulsion, and the presence or absence of disorder. Information about the spectrum, the structure of the initial state, and the number of particles that interact simultaneously is contained in the value of γ . From it, we can anticipate whether the initial state will or will not thermalize.
Atomtronics: Material and Device Physics of Quantum Gases
matter physics to electrical engineering. Our projects title Atomtronics: Material and device physics of quantum gases illustrates the chasm we bridged...starting from therich and fundamental physics already revealed with cold atoms systems, then leading to an understanding of the functional materials
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
NASA Astrophysics Data System (ADS)
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; Grierson, B. A.; Staebler, G. M.; Rice, J. E.; Yuan, X.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Sciortino, F.
2018-02-01
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.
Silicon carbide transparent chips for compact atomic sensors
NASA Astrophysics Data System (ADS)
Huet, L.; Ammar, M.; Morvan, E.; Sarazin, N.; Pocholle, J.-P.; Reichel, J.; Guerlin, C.; Schwartz, S.
2017-11-01
Atom chips [1] are an efficient tool for trapping, cooling and manipulating cold atoms, which could open the way to a new generation of compact atomic sensors addressing space applications. This is in particular due to the fact that they can achieve strong magnetic field gradients near the chip surface, hence strong atomic confinement at moderate electrical power. However, this advantage usually comes at the price of reducing the optical access to the atoms, which are confined very close to the chip surface. We will report at the conference experimental investigations showing how these limits could be pushed farther by using an atom chip made of a gold microcircuit deposited on a single-crystal Silicon Carbide (SiC) substrate [2]. With a band gap energy value of about 3.2 eV at room temperature, the latter material is transparent at 780nm, potentially restoring quasi full optical access to the atoms. Moreover, it combines a very high electrical resistivity with a very high thermal conductivity, making it a good candidate for supporting wires with large currents without the need of any additional electrical insulation layer [3].
Control of Goos-Hänchen shift via input probe field intensity
NASA Astrophysics Data System (ADS)
Ziauddin; Lee, Ray-Kuang; Qamar, Sajid
2016-11-01
We suggest a scheme to control Goos-Hänchen (GH) shift in an ensemble of strongly interacting Rydberg atoms, which act as super-atoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configurations where two fields, i.e, a strong control and a weak field are employed [D. Petrosyan, J. Otterbach, and M. Fleischhauer, Phys. Rev. Lett. 107, 213601 (2011)]. The propagation of probe field is influenced by two-photon correlation within the blockade distance, which are damped due to the saturation of super-atoms. The amplitude of GH shift in the reflected light depends on the intensity of probe field. We observe large negative GH shift in the reflected light for small values of the probe field intensities.
Electromagnetically induced grating with Rydberg atoms
NASA Astrophysics Data System (ADS)
Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid
2016-09-01
We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.
[Determination of metal elements in Achyranthis bidentatae radix from various habitats].
Tu, Wan-Qian; Zhang, Liu-Ji
2011-12-01
To establish an atomic absorption spectrometry method for determination of the contents of metal elements in Achyranthis Bidentatae Radix and analyze 21 batches of samples from different areas. Fe, Mn, Ca, Mg, K, Zn and Cu were detected by atomic absorption spectrometry with hydrogen flame detector, Pb, As and Cd were detected by graphite furnace atomic absorption, Hg was detected by cold atomic absorption. The heavy metal contents met the requirement of Chinese Pharmacopoeia. The contents of K, Mg, Cu and Mn in the samples of geo-authentic areas were higher,while the contents of Fe, Zn, Hg and Pb in the samples of non-authentic areas were higher. This method is sample, accurate, repeatable and could be used to evaluate the quality of Achyranthis Bidentatae Radix.
NASA Astrophysics Data System (ADS)
D'Incao, Jose P.; Willians, Jason R.
2015-05-01
Precision atom interferometers (AI) in space are a key element for several applications of interest to NASA. Our proposal for participating in the Cold Atom Laboratory (CAL) onboard the International Space Station is dedicated to mitigating the leading-order systematics expected to corrupt future high-precision AI-based measurements of fundamental physics in microgravity. One important focus of our proposal is to enhance initial state preparation for dual-species AIs. Our proposed filtering scheme uses Feshbach molecular states to create highly correlated mixtures of heteronuclear atomic gases in both their position and momentum distributions. We will detail our filtering scheme along with the main factors that determine its efficiency. We also show that the atomic and molecular heating and loss rates can be mitigated at the unique temperature and density regimes accessible on CAL. This research is supported by the National Aeronautics and Space Administration.
Multipolar Kondo effect in a S10-P32 mixture of 173Yb atoms
NASA Astrophysics Data System (ADS)
Kuzmenko, Igor; Kuzmenko, Tetyana; Avishai, Yshai; Jo, Gyu-Boong
2018-02-01
Whereas in the familiar Kondo effect the exchange interaction is dipolar, there are systems in which the exchange interaction is multipolar, as has been realized in a recent experiment. Here, we study multipolar Kondo effect in a Fermi gas of cold 173Yb atoms. Making use of different ac polarizabilities of the electronic ground state Yb (S10 ) and the long-lived metastable state Yb*(P32 ), it is suggested that the latter atoms can be localized and serve as a dilute concentration of magnetic impurities while the former ones remain itinerant. The exchange mechanism between the itinerant Yb and the localized Yb* atoms is analyzed and shown to be antiferromagnetic. The quadrupole and octupole interactions act to enhance the Kondo temperature TK that is found to be experimentally accessible. The bare exchange Hamiltonian needs to be decomposed into dipole (d), quadrupole (q), and octupole (o) interactions in order to retain its form under renormalization group (RG) analysis, in which the corresponding exchange constants (λd,λq, and λo) flow independently. Numerical solution of the RG scaling equations reveals a few finite fixed points. Arguments are presented that the Fermi-liquid fixed point at low temperature is unstable, indicating that the impurity is overscreened, which suggests a non-Fermi-liquid phase. The impurity contributions to the specific heat, entropy, and the magnetic susceptibility are calculated in the weak coupling regime (T ≫TK ), and are compared with the analogous results obtained for the standard case of dipolar exchange interaction (the s -d Hamiltonian).
Outer crust of nonaccreting cold neutron stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen
The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equationmore » of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.« less
Benchmarking study of the MCNP code against cold critical experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, S.
1991-01-01
The purpose of this study was to benchmark the widely used Monte Carlo code MCNP against a set of cold critical experiments with a view to using the code as a means of independently verifying the performance of faster but less accurate Monte Carlo and deterministic codes. The experiments simulated consisted of both fast and thermal criticals as well as fuel in a variety of chemical forms. A standard set of benchmark cold critical experiments was modeled. These included the two fast experiments, GODIVA and JEZEBEL, the TRX metallic uranium thermal experiments, the Babcock and Wilcox oxide and mixed oxidemore » experiments, and the Oak Ridge National Laboratory (ORNL) and Pacific Northwest Laboratory (PNL) nitrate solution experiments. The principal case studied was a small critical experiment that was performed with boiling water reactor bundles.« less
Entanglement between a Photonic Time-Bin Qubit and a Collective Atomic Spin Excitation.
Farrera, Pau; Heinze, Georg; de Riedmatten, Hugues
2018-03-09
Entanglement between light and matter combines the advantage of long distance transmission of photonic qubits with the storage and processing capabilities of atomic qubits. To distribute photonic states efficiently over long distances several schemes to encode qubits have been investigated-time-bin encoding being particularly promising due to its robustness against decoherence in optical fibers. Here, we demonstrate the generation of entanglement between a photonic time-bin qubit and a single collective atomic spin excitation (spin wave) in a cold atomic ensemble, followed by the mapping of the atomic qubit onto another photonic qubit. A magnetic field that induces a periodic dephasing and rephasing of the atomic excitation ensures the temporal distinguishability of the two time bins and plays a central role in the entanglement generation. To analyze the generated quantum state, we use largely imbalanced Mach-Zehnder interferometers to perform projective measurements in different qubit bases and verify the entanglement by violating a Clauser-Horne-Shimony-Holt Bell inequality.
Changing optical band structure with single photons
NASA Astrophysics Data System (ADS)
Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.
2017-11-01
Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.
Entanglement between a Photonic Time-Bin Qubit and a Collective Atomic Spin Excitation
NASA Astrophysics Data System (ADS)
Farrera, Pau; Heinze, Georg; de Riedmatten, Hugues
2018-03-01
Entanglement between light and matter combines the advantage of long distance transmission of photonic qubits with the storage and processing capabilities of atomic qubits. To distribute photonic states efficiently over long distances several schemes to encode qubits have been investigated—time-bin encoding being particularly promising due to its robustness against decoherence in optical fibers. Here, we demonstrate the generation of entanglement between a photonic time-bin qubit and a single collective atomic spin excitation (spin wave) in a cold atomic ensemble, followed by the mapping of the atomic qubit onto another photonic qubit. A magnetic field that induces a periodic dephasing and rephasing of the atomic excitation ensures the temporal distinguishability of the two time bins and plays a central role in the entanglement generation. To analyze the generated quantum state, we use largely imbalanced Mach-Zehnder interferometers to perform projective measurements in different qubit bases and verify the entanglement by violating a Clauser-Horne-Shimony-Holt Bell inequality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allwörden, H. von; Ruschmeier, K.; Köhler, A.
The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped {sup 3}He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambersmore » are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).« less
Consumer attitudes on cough and cold: US (ACHOO) survey results.
Blaiss, M S; Dicpinigaitis, P V; Eccles, R; Wingertzahn, M A
2015-08-01
The Attitudes of Consumers Toward Health, Cough, and Cold (ACHOO) survey was developed to better inform health care providers on the natural history and impact of common cold and cough, and related consumer experience and behaviors. Randomly selected US Internet/mobile device users were invited to participate in an online survey (N = 3333) in October 2012. Response quotas modeled upon 2010 US Census data ensured a demographically representative sample. To reduce potential bias from the quota design, 75% of the completed surveys were randomly selected as the primary analysis pool. Survey questions assessed participant demographics, frequency and duration of cough/cold symptoms, impact of symptoms on daily life, treatment preferences, and knowledge about cough/cold pathophysiology. In the past year, 84.6% of respondents had experienced at least one cold. Colds typically started with sore/scratchy throat (39.2%), nasal congestion (9.8%), and runny nose (9.3%) and lasted 3-7 days. Cough, the most common cold symptom (73.1%), had a delayed onset (typically 1-5 days after cold onset) and a long duration (>6 days in 35.2%). Nasal congestion and cough were the most bothersome symptoms. Many respondents waited until symptoms were 'bad enough' (42.6%) or multiple symptoms were present (20.2%) before using nonprescription medications. Drivers of choice included effectiveness in relieving symptoms, safety, and past experience. Respondents rarely consulted clinicians regarding treatment, and more than three-quarters had never received instructions from a clinician on how to choose a nonprescription cough/cold medication. Misperceptions regarding etiology and treatment of the common cold were prevalent. The main limitation is potential recall bias, since respondents had to recall cough/cold episodes over the prior year. The ACHOO survey confirms that cold is a common, bothersome experience and that there are gaps in consumers' knowledge of pathophysiology and appropriate management of cough/cold.
Generation of single photons with highly tunable wave shape from a cold atomic ensemble
Farrera, Pau; Heinze, Georg; Albrecht, Boris; Ho, Melvyn; Chávez, Matías; Teo, Colin; Sangouard, Nicolas; de Riedmatten, Hugues
2016-01-01
The generation of ultra-narrowband, pure and storable single photons with widely tunable wave shape is an enabling step toward hybrid quantum networks requiring interconnection of remote disparate quantum systems. It allows interaction of quantum light with several material systems, including photonic quantum memories, single trapped ions and opto-mechanical systems. Previous approaches have offered a limited tuning range of the photon duration of at most one order of magnitude. Here we report on a heralded single photon source with controllable emission time based on a cold atomic ensemble, which can generate photons with temporal durations varying over three orders of magnitude up to 10 μs without a significant change of the readout efficiency. We prove the nonclassicality of the emitted photons, show that they are emitted in a pure state, and demonstrate that ultra-long photons with nonstandard wave shape can be generated, which are ideally suited for several quantum information tasks. PMID:27886166