Sample records for cold atom manipulation

  1. Optimal control of complex atomic quantum systems

    PubMed Central

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-01-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688

  2. Optimal control of complex atomic quantum systems.

    PubMed

    van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S

    2016-10-11

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  3. EDITORIAL: Cold Quantum GasesEditorial: Cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Vassen, W.; Hemmerich, A.; Arimondo, E.

    2003-04-01

    This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of cold quantum gases. Different aspects of atom optics, matter wave interferometry, laser manipulation of atoms and molecules, and production of very cold and degenerate gases are presented. The variety of subjects demonstrates the steadily expanding role associated with this research area. The topics discussed in this issue, extending from basic physics to applications of atom optics and of cold atomic samples, include: bulletBose--Einstein condensation bulletFermi degenerate gases bulletCharacterization and manipulation of quantum gases bulletCoherent and nonlinear cold matter wave optics bulletNew schemes for laser cooling bulletCoherent cold molecular gases bulletUltra-precise atomic clocks bulletApplications of cold quantum gases to metrology and spectroscopy bulletApplications of cold quantum gases to quantum computing bulletNanoprobes and nanolithography. This special issue is published in connection with the 7th International Workshop on Atom Optics and Interferometry, held in Lunteren, The Netherlands, from 28 September to 2 October 2002. This was the last in a series of Workshops organized with the support of the European Community that have greatly contributed to progress in this area. The scientific part of the Workshop was managed by A Hemmerich, W Hogervorst, W Vassen and J T M Walraven, with input from members of the International Programme Committee who are listed below. The practical aspects of the organization were ably handled by Petra de Gijsel from the Vrije Universiteit in Amsterdam. The Workshop was funded by the European Science Foundation (programme BEC2000+), the European Networks 'Cold Quantum Gases (CQG)', coordinated by E Arimondo, and 'Cold Atoms and Ultraprecise Atomic Clocks (CAUAC)', coordinated by J Henningsen, by the German Physical Society (DFG), by the Dutch Foundation for Fundamental Research on Matter (FOM) and by the Dutch Gelderland province. We thank all these sponsors and the members of the International Programme Committee for making the Workshop such a success. At this point we take the opportunity to express our gratitude to both authors and reviewers, for their efforts in preparing and ensuring the high quality of the papers in this special issue. Wim Vassen Vrije Universiteit, Amsterdam Andreas Hemmerich Universität Hamburg Ennio Arimondo Università di Pisa Guest Editors International Programme Committee A Aspect Orsay, France E Cornell Boulder, USA W Ertmer Hannover, Germany T W Haensch Munich, Germany A Hemmerich Hamburg, Germany W Hogervorst Amsterdam, The Netherlands D Kleppner Cambridge, USA C Salomon Paris, France G V Shlyapnikov Amsterdam, Paris, Moscow S Stringari Trento, Italy W Vassen Amsterdam, The Netherlands J T M Walraven Amsterdam, The Netherlands

  4. Coherent and dynamic beam splitting based on light storage in cold atoms

    PubMed Central

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457

  5. Matter-wave entanglement and teleportation by molecular dissociation and collisions.

    PubMed

    Opatrný, T; Kurizki, G

    2001-04-02

    We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.

  6. Matter-Wave Entanglement and Teleportation by Molecular Dissociation and Collisions

    NASA Astrophysics Data System (ADS)

    Opatrný, T.; Kurizki, G.

    2001-04-01

    We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.

  7. A new generation of high-performance operational quantum sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lautier-Gaud, Jean; Desruelle, Bruno; Ménoret, Vincent; Schaff, Jean-François; Stern, Guillaume; Vermeulen, Pierre

    2016-04-01

    After 30 years of academic research in cold atom sciences, intensive developments are being conducted to improve the compactness and the reliability of experimental set-ups in order to transfer such devices from laboratory-based research to an operational utilization outside of the laboratory. We will present the long-lasting developments that we have been carrying to provide the first industrial cold-atom absolute gravimeter and the first industrial cold-atom atomic clock. We will present in detail the principles of operation and the main features of our instruments. Their performances in terms of sensitivity, stability and accuracy and the latest results they achieved will be reviewed. We will then discuss their use to support other research activities. One of the key technology elements of such instruments that need to be addressed is the laser system used to cool down and manipulate the atoms. A specific focus on our latest developments in this area in terms of performances will be proposed.

  8. A transportable cold atom inertial sensor for space applications

    NASA Astrophysics Data System (ADS)

    Ménoret, V.; Geiger, R.; Stern, G.; Cheinet, P.; Battelier, B.; Zahzam, N.; Pereira Dos Santos, F.; Bresson, A.; Landragin, A.; Bouyer, P.

    2017-11-01

    Atom interferometry has hugely benefitted from advances made in cold atom physics over the past twenty years, and ultra-precise quantum sensors are now available for a wide range of applications [1]. In particular, cold atom interferometers have shown excellent performances in the field of acceleration and rotation measurements [2,3], and are foreseen as promising candidates for navigation, geophysics, geo-prospecting and tests of fundamental physics such as the Universality of Free Fall (UFF). In order to carry out a test of the UFF with atoms as test masses, one needs to compare precisely the accelerations of two atoms with different masses as they fall in the Earth's gravitational field. The sensitivity of atom interferometers scales like the square of the time during which the atoms are in free fall, and on ground this interrogation time is limited by the size of the experimental setup to a fraction of a second. Sending an atom interferometer in space would allow for several seconds of excellent free-fall conditions, and tests of the UFF could be carried out with precisions as low as 10-15 [4]. However, cold atoms experiments rely on complex laser systems, which are needed to cool down and manipulate the atoms, and these systems are usually very sensitive to temperature fluctuations and vibrations. In addition, when operating an inertial sensor, vibrations are a major issue, as they deteriorate the performances of the instrument. This is why cold atom interferometers are usually used in ground based facilities, which provide stable enough environments. In order to carry out airborne or space-borne measurements, one has to design an instrument which is both compact and stable, and such that vibrations induced by the platform will not deteriorate the sensitivity of the sensor. We report on the operation of an atom interferometer on board a plane carrying out parabolic flights (Airbus A300 Zero-G, operated by Novespace). We have constructed a compact and stable laser setup, which is well suited for onboard applications. Our goal is to implement a dual-species Rb-K atom interferometer in order to carry out a test of the UFF in the plane. In this perspective, we are designing a dual-wavelength laser source, which will enable us to cool down and coherently manipulate the quantum states of both atoms. We have successfully tested a preliminary version of the source and obtained a double species magneto-optical trap (MOT).

  9. UHV-compatible magnetic material for atom optics

    NASA Astrophysics Data System (ADS)

    Hopkins, S. A.; Hinds, E. A.; Boshier, M. G.

    Magnetic videotape is of great interest for trapping and guiding cold atomic vapors, but was hitherto considered unsuitable for manipulating Bose-Einstein condensates (BEC) because of the presumed evolution of gas under vacuum. We have studied the outgassing in vacuum of the most promising tape, Ampex 398 Betacam SP. We find that after cleaning in ethanol and baking for 200 h at 100 °C the magnetic patterns are undisturbed and the outgassing is remarkably small: 4×10-10 Torrls-1cm-2, due mostly to hydrogen. This makes the tape exceedingly attractive for manipulation of BEC.

  10. Magnetic conveyor belt for transporting and merging trapped atom clouds.

    PubMed

    Hänsel, W; Reichel, J; Hommelhoff, P; Hänsch, T W

    2001-01-22

    We demonstrate an integrated magnetic device which transports cold atoms near a surface with very high positioning accuracy. Time-dependent currents in a lithographic conductor pattern create a moving chain of potential wells; atoms are transported in these wells while remaining confined in all three dimensions. We achieve mean fluxes up to 10(6) s(-1) with a negligible heating rate. An extension of this device allows merging of atom clouds by unification of two Ioffe-Pritchard potentials. The unification, which we demonstrate experimentally, can be performed without loss of phase space density. This novel, all-magnetic atom manipulation offers exciting perspectives, such as trapped-atom interferometry.

  11. Hybrid Systems: Cold Atoms Coupled to Micro Mechanical Oscillators =

    NASA Astrophysics Data System (ADS)

    Montoya Monge, Cris A.

    Micro mechanical oscillators can serve as probes in precision measurements, as transducers to mediate photon-phonon interactions, and when functionalized with magnetic material, as tools to manipulate spins in quantum systems. This dissertation includes two projects where the interactions between cold atoms and mechanical oscillators are studied. In one of the experiments, we have manipulated the Zeeman state of magnetically trapped Rubidium atoms with a magnetic micro cantilever. The results show a spatially localized effect produced by the cantilever that agrees with Landau-Zener theory. In the future, such a scalable system with highly localized interactions and the potential for single-spin sensitivity could be useful for applications in quantum information science or quantum simulation. In a second experiment, work is in progress to couple a sample of optically trapped Rubidium atoms to a levitated nanosphere via an optical lattice. This coupling enables the cooling of the center-of-mass motion of the nanosphere by laser cooling the atoms. In this system, the atoms are trapped in the optical lattice while the sphere is levitated in a separate vacuum chamber by a single-beam optical tweezer. Theoretical analysis of such a system has determined that cooling the center-of-mass motion of the sphere to its quantum ground state is possible, even when starting at room temperature, due to the excellent environmental decoupling achievable in this setup. Nanospheres cooled to the quantum regime can provide new tests of quantum behavior at mesoscopic scales and have novel applications in precision sensing.

  12. Plasmonic trapping potentials for cold atoms

    NASA Astrophysics Data System (ADS)

    Mildner, Matthias; Horrer, Andreas; Fleischer, Monika; Zimmermann, Claus; Slama, Sebastian

    2018-07-01

    This paper reports on conceptual and experimental work towards the realization of plasmonic surface traps for cold atoms. The trapping mechanism is based on the combination of a repulsive and an attractive potential generated by evanescent light waves that are plasmonically enhanced. The strength of enhancement can be locally manipulated via the thickness of a metal nanolayer deposited on top of a dielectric substrate. Thus, in principle the trapping geometry can be predefined by the metal layer design. We present simulations of a plasmonic lattice potential using a gold grating with sinusoidally modulated thickness. Experimentally, a first plasmonic test structure is presented and characterized. Furthermore, the surface potential landscape is detected by reflecting ultracold atom clouds from the test structure revealing the influence of both evanescent waves. A parameter range is identified where stable traps can be expected.

  13. PHARAO flight model: optical on ground performance tests

    NASA Astrophysics Data System (ADS)

    Lévèque, T.; Faure, B.; Esnault, F. X.; Grosjean, O.; Delaroche, C.; Massonnet, D.; Escande, C.; Gasc, Ph.; Ratsimandresy, A.; Béraud, S.; Buffe, F.; Torresi, P.; Larivière, Ph.; Bernard, V.; Bomer, T.; Thomin, S.; Salomon, C.; Abgrall, M.; Rovera, D.; Moric, I.; Laurent, Ph.

    2017-11-01

    PHARAO (Projet d'Horloge Atomique par Refroidissement d'Atomes en Orbite), which has been developed by CNES, is the first primary frequency standard specially designed for operation in space. PHARAO is the main instrument of the ESA mission ACES (Atomic Clock Ensemble in Space). ACES payload will be installed on-board the International Space Station (ISS) to perform fundamental physics experiments. All the sub-systems of the Flight Model (FM) have now passed the qualification process and the whole FM of the cold cesium clock, PHARAO, is being assembled and will undergo extensive tests. The expected performances in space are frequency accuracy less than 3.10-16 (with a final goal at 10-16) and frequency stability of 10-13 τ-1/2. In this paper, we focus on the laser source performances and the main results on the cold atom manipulation.

  14. Coherent control of the formation of cold heteronuclear molecules by photoassociation

    NASA Astrophysics Data System (ADS)

    de Lima, Emanuel F.

    2017-01-01

    We consider the formation of cold diatomic molecules in the electronic ground state by photoassociation of atoms of dissimilar species. A combination of two transition pathways from the free colliding pair of atoms to a bound vibrational level of the electronic molecular ground state is envisioned. The first pathway consists of a pump-dump scheme with two time-delayed laser pulses in the near-infrared frequency domain. The pump pulse drives the transition to a bound vibrational level of an excited electronic state, while the dump pulse transfers the population to a bound vibrational level of the electronic ground state. The second pathway takes advantage of the existing permanent dipole moment and employs a single pulse in the far-infrared domain to drive the transition from the unbound atoms directly to a bound vibrational level in the electronic ground state. We show that this scheme offers the possibility to coherently control the photoassociation yield by manipulating the relative phase and timing of the pulses. The photoassociation mechanism is illustrated for the formation of cold LiCs molecules.

  15. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    NASA Astrophysics Data System (ADS)

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  16. Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review

    PubMed Central

    Morrissey, Michael J.; Deasy, Kieran; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic

    2013-01-01

    The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications. PMID:23945738

  17. Double-image storage optimized by cross-phase modulation in a cold atomic system

    NASA Astrophysics Data System (ADS)

    Qiu, Tianhui; Xie, Min

    2017-09-01

    A tripod-type cold atomic system driven by double-probe fields and a coupling field is explored to store double images based on the electromagnetically induced transparency (EIT). During the storage time, an intensity-dependent signal field is applied further to extend the system with the fifth level involved, then the cross-phase modulation is introduced for coherently manipulating the stored images. Both analytical analysis and numerical simulation clearly demonstrate a tunable phase shift with low nonlinear absorption can be imprinted on the stored images, which effectively can improve the visibility of the reconstructed images. The phase shift and the energy retrieving rate of the probe fields are immune to the coupling intensity and the atomic optical density. The proposed scheme can easily be extended to the simultaneous storage of multiple images. This work may be exploited toward the end of EIT-based multiple-image storage devices for all-optical classical and quantum information processings.

  18. Compact Laser System for Field Deployable Ultracold Atom Sensors

    NASA Astrophysics Data System (ADS)

    Pino, Juan; Luey, Ben; Anderson, Mike

    2013-05-01

    As ultracold atom sensors begin to see their way to the field, there is a growing need for small, accurate, and robust laser systems to cool and manipulate atoms for sensing applications such as magnetometers, gravimeters, atomic clocks and inertial sensing. In this poster we present a laser system for Rb, roughly the size of a paperback novel, capable of generating and controlling light sufficient for the most complicated of cold atom sensors. The system includes >100dB of non-mechanical, optical shuttering, the ability to create short, microsecond pulses, a Demux stage to port light onto different optical paths, and an atomically referenced, frequency agile laser source. We will present data to support the system, its Size Weight and Power (SWaP) requirements, as well as laser stability and performance. funded under DARPA

  19. Composite pulses for interferometry in a thermal cold atom cloud

    NASA Astrophysics Data System (ADS)

    Dunning, Alexander; Gregory, Rachel; Bateman, James; Cooper, Nathan; Himsworth, Matthew; Jones, Jonathan A.; Freegarde, Tim

    2014-09-01

    Atom interferometric sensors and quantum information processors must maintain coherence while the evolving quantum wave function is split, transformed, and recombined, but suffer from experimental inhomogeneities and uncertainties in the speeds and paths of these operations. Several error-correction techniques have been proposed to isolate the variable of interest. Here we apply composite pulse methods to velocity-sensitive Raman state manipulation in a freely expanding thermal atom cloud. We compare several established pulse sequences, and follow the state evolution within them. The agreement between measurements and simple predictions shows the underlying coherence of the atom ensemble, and the inversion infidelity in a ˜80μK atom cloud is halved. Composite pulse techniques, especially if tailored for atom interferometric applications, should allow greater interferometer areas, larger atomic samples, and longer interaction times, and hence improve the sensitivity of quantum technologies from inertial sensing and clocks to quantum information processors and tests of fundamental physics.

  20. Entanglement manipulation via Coulomb interaction in an optomechanical cavity assisted by two-level cold atoms

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Tian, Xue-Dong; Liu, Yi-Mou; Cui, Cui-Li; Wu, Jin-Hui

    2018-06-01

    We investigate the stationary entanglement properties in a hybrid system consisting of an optical cavity, a mechanical resonator, a charged object, and an atomic ensemble. Numerical results show that this hybrid system exhibits three kinds of controllable bipartite entanglements in an experimentally accessible parameter regime with the help of the charged object. More importantly, it is viable to enhance on demand each bipartite entanglement at the expense of reducing others by modulating the Coulomb coupling strength. Last but not least, these bipartite entanglements seem more robust against on the environmental temperature for the positive Coulomb interaction.

  1. Ultracold molecule assembly with photonic crystals

    NASA Astrophysics Data System (ADS)

    Pérez-Ríos, Jesús; Kim, May E.; Hung, Chen-Lung

    2017-12-01

    Photoassociation (PA) is a powerful technique to synthesize molecules directly and continuously from cold and ultracold atoms into deeply bound molecular states. In freespace, however, PA efficiency is constrained by the number of spontaneous decay channels linking the initial excited molecular state to a sea of final (meta)stable rovibronic levels. Here, we propose a novel scheme based on molecules strongly coupled to a guided photonic mode in a photonic crystal waveguide that turns PA into a powerful tool for near deterministic formation of ultracold molecules in their ground rovibrational level. Our example shows a potential ground state molecule production efficiency > 90 % , and a saturation rate > {10}6 molecules per second. By combining state-of-the-art cold atomic and molecular physics with nanophotonic engineering, our scheme presents a novel experimental package for trapping, cooling, and optically manipulating ultracold molecules, thus opening up new possibilities in the direction of ultracold chemistry and quantum information.

  2. Nonlinear optical memory for manipulation of orbital angular momentum of light.

    PubMed

    de Oliveira, R A; Borba, G C; Martins, W S; Barreiro, S; Felinto, D; Tabosa, J W R

    2015-11-01

    We report on the demonstration of a nonlinear optical memory (NOM) for storage and on-demand manipulation of orbital angular momentum (OAM) of light via higher-order nonlinear processes in cold cesium atoms. A spatially resolved phase-matching technique is used to select each order of the nonlinear susceptibility associated, respectively, with time-delayed four-, six-, and eight-wave mixing processes. For a specific configuration of the stored OAM of the incident beams, we demonstrated that the OAM of the retrieved beam can be manipulated according to the order of the nonlinear process chosen by the operator for reading out the NOM. This demonstration indicates new pathways for applications in classical and quantum information processing where OAM of light is used to encode optical information.

  3. Cold Bose-Einstein condensates for surface reflection

    NASA Astrophysics Data System (ADS)

    Saba, M.; Leanhardt, A. E.; Pasquini, T. A.; Sanner, C.; Schirotzek, A.; Shin, Y.; Pritchard, D. E.; Ketterle, W.

    2004-05-01

    Atoms can be reflected from a solid surface in spite of the attraction provided by the Casimir-Polder potential if their de Broglie wavelength exceeds the range of the attractive potential, an effect known as quantum reflection and demonstrated for atomic beams hitting a surface at grazing angle [1]. Quantum reflection of atomic Bose-Einstein condensates would have important consequences for experiments and applications requiring manipulation of condensates close to surfaces. However, no matter how cold a condensate is when approaching a surface, the atoms will hit the surface with a kinetic energy appropriate to the healing length, an energy roughly equal to the chemical potential and determined by atom-atom interactions. We circumvented this limitation by building a loose trap for the condensate, so that the atomic cloud can be kept very dilute, reaching the large healing length required to observe quantum reflection [2]. The trap consisted of a small single coil with electric current running in it that pushes the atoms upward, balancing gravity downward. The gravito-magnetic trap had a mean trap frequency of 1 Hz, so that condensates could sit in the trap for several minutes and reach temperatures as low as 500 pK, the lowest temperature ever recorded. We will then discuss how these condensates, whose healing length equals the condensate size, behave when approached to a silicon surface. [1] F. Shimizu, Phys. Rev. Lett. 86, 987 (2001); [2] A. E. Leanhardt et al., Science 301, 1513 (2003)

  4. Laser Controlled Tunneling in a Vertical Optical Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaufils, Q.; Tackmann, G.; Wang, X.

    2011-05-27

    Raman laser pulses are used to induce coherent tunneling between neighboring sites of a vertical 1D optical lattice. Such tunneling occurs when the detuning of a probe laser from the atomic transition frequency matches multiples of the Bloch frequency, allowing for a spectroscopic control of the coupling between Wannier-Stark (WS) states. In particular, we prepare coherent superpositions of WS states of adjacent sites, and investigate the coherence time of these superpositions by realizing a spatial interferometer. This scheme provides a powerful tool for coherent manipulation of external degrees of freedom of cold atoms, which is a key issue for quantummore » information processing.« less

  5. Optical beams with embedded vortices: building blocks for atom optics and quantum information

    NASA Astrophysics Data System (ADS)

    Chattrapiban, N.; Arakelyan, I.; Mitra, S.; Hill, W. T., III

    2006-05-01

    Laser beams with embedded vortices, Bessel or Laguerre-Gaussian modes, provide a unique opportunity for creating elements for atom optics, entangling photons and, potentially, mediating novel quantum interconnects between photons and matter. High-order Bessel modes, for example, contain intensity voids and propagate nearly diffraction-free for tens of meters. These vortices can be exploited to produce dark channels oriented longitudinally (hollow beams) or transversely to the laser propagation direction. Such channels are ideal for generating networks or circuits to guide and manipulate cold neutral atoms, an essential requirement for realizing future applications associated with atom interferometry, atom lithography and even some neutral atom-based quantum computing architectures. Recently, we divided a thermal cloud of neutral atoms moving within a blue-detuned beam into two clouds with two different momenta by crossing two hollow beams. In this presentation, we will describe these results and discuss the prospects for extending the process to coherent ensembles of matter.

  6. Silicon carbide transparent chips for compact atomic sensors

    NASA Astrophysics Data System (ADS)

    Huet, L.; Ammar, M.; Morvan, E.; Sarazin, N.; Pocholle, J.-P.; Reichel, J.; Guerlin, C.; Schwartz, S.

    2017-11-01

    Atom chips [1] are an efficient tool for trapping, cooling and manipulating cold atoms, which could open the way to a new generation of compact atomic sensors addressing space applications. This is in particular due to the fact that they can achieve strong magnetic field gradients near the chip surface, hence strong atomic confinement at moderate electrical power. However, this advantage usually comes at the price of reducing the optical access to the atoms, which are confined very close to the chip surface. We will report at the conference experimental investigations showing how these limits could be pushed farther by using an atom chip made of a gold microcircuit deposited on a single-crystal Silicon Carbide (SiC) substrate [2]. With a band gap energy value of about 3.2 eV at room temperature, the latter material is transparent at 780nm, potentially restoring quasi full optical access to the atoms. Moreover, it combines a very high electrical resistivity with a very high thermal conductivity, making it a good candidate for supporting wires with large currents without the need of any additional electrical insulation layer [3].

  7. Time-resolved brightness measurements by streaking

    NASA Astrophysics Data System (ADS)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  8. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology.

    PubMed

    Bressel, U; Borodin, A; Shen, J; Hansen, M; Ernsting, I; Schiller, S

    2012-05-04

    Advanced techniques for manipulation of internal states, standard in atomic physics, are demonstrated for a charged molecular species for the first time. We address individual hyperfine states of rovibrational levels of a diatomic ion by optical excitation of individual hyperfine transitions, and achieve controlled transfer of population into a selected hyperfine state. We use molecular hydrogen ions (HD+) as a model system and employ a novel frequency-comb-based, continuous-wave 5  μm laser spectrometer. The achieved spectral resolution is the highest obtained so far in the optical domain on a molecular ion species. As a consequence, we are also able to perform the most precise test yet of the ab initio theory of a molecule.

  9. Sub-kilohertz excitation lasers for quantum information processing with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Legaie, Remy; Picken, Craig J.; Pritchard, Jonathan D.

    2018-04-01

    Quantum information processing using atomic qubits requires narrow linewidth lasers with long-term stability for high fidelity coherent manipulation of Rydberg states. In this paper, we report on the construction and characterization of three continuous-wave (CW) narrow linewidth lasers stabilized simultaneously to an ultra-high finesse Fabry-Perot cavity made of ultra-low expansion (ULE) glass, with a tunable offset-lock frequency. One laser operates at 852~nm while the two locked lasers at 1018~nm are frequency doubled to 509~nm for excitation of $^{133}$Cs atoms to Rydberg states. The optical beatnote at 509~nm is measured to be 260(5)~Hz. We present measurements of the offset between the atomic and cavity resonant frequencies using electromagnetically induced transparency (EIT) for high-resolution spectroscopy on a cold atom cloud. The long-term stability is determined from repeated spectra over a period of 20 days yielding a linear frequency drift of $\\sim1$~Hz/s.

  10. A circularly polarized optical dipole trap and other developments in laser trapping of atoms

    NASA Astrophysics Data System (ADS)

    Corwin, Kristan Lee

    Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.

  11. Cold Atom Source Containing Multiple Magneto-Optical Traps

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, Jaime; Kohel, James; Kellogg, James; Lim, Lawrence; Yu, Nan; Maleki, Lute

    2007-01-01

    An apparatus that serves as a source of a cold beam of atoms contains multiple two-dimensional (2D) magneto-optical traps (MOTs). (Cold beams of atoms are used in atomic clocks and in diverse scientific experiments and applications.) The multiple-2D-MOT design of this cold atom source stands in contrast to single-2D-MOT designs of prior cold atom sources of the same type. The advantages afforded by the present design are that this apparatus is smaller than prior designs.

  12. Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor

    2017-12-01

    Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.

  13. Non-stationary and relaxation phenomena in cavity-assisted quantum memories

    NASA Astrophysics Data System (ADS)

    Veselkova, N. G.; Sokolov, I. V.

    2017-12-01

    We investigate the non-stationary and relaxation phenomena in cavity-assisted quantum memories for light. As a storage medium we consider an ensemble of cold atoms with standard Lambda-scheme of working levels. Some theoretical aspects of the problem were treated previously by many authors, and recent experiments stimulate more deep insight into the ultimate ability and limitations of the device. Since quantum memories can be used not only for the storage of quantum information, but also for a substantial manipulation of ensembles of quantum states, the speed of such manipulation and hence the ability to write and retrieve the signals of relatively short duration becomes important. In our research we do not apply the so-called bad cavity limit, and consider the memory operation of the signals whose duration is not much larger than the cavity field lifetime, accounting also for the finite lifetime of atomic coherence. In our paper we present an effective approach that makes it possible to find the non-stationary amplitude and phase behavior of strong classical control field, that matches the desirable time profile of both the envelope and the phase of the retrieved quantized signal. The phase properties of the retrieved quantized signals are of importance for the detection and manipulation of squeezing, entanglement, etc by means of optical mixing and homodyning.

  14. Higher order microfibre modes for dielectric particle trapping and propulsion

    PubMed Central

    Maimaiti, Aili; Truong, Viet Giang; Sergides, Marios; Gusachenko, Ivan; Nic Chormaic, Síle

    2015-01-01

    Optical manipulation in the vicinity of optical micro- and nanofibres has shown potential across several fields in recent years, including microparticle control, and cold atom probing and trapping. To date, most work has focussed on the propagation of the fundamental mode through the fibre. However, along the maximum mode intensity axis, higher order modes have a longer evanescent field extension and larger field amplitude at the fibre waist compared to the fundamental mode, opening up new possibilities for optical manipulation and particle trapping. We demonstrate a microfibre/optical tweezers compact system for trapping and propelling dielectric particles based on the excitation of the first group of higher order modes at the fibre waist. Speed enhancement of polystyrene particle propulsion was observed for the higher order modes compared to the fundamental mode for particles ranging from 1 μm to 5 μm in diameter. The optical propelling velocity of a single, 3 μm polystyrene particle was found to be 8 times faster under the higher order mode than the fundamental mode field for a waist power of 25 mW. Experimental data are supported by theoretical calculations. This work can be extended to trapping and manipulation of laser-cooled atoms with potential for quantum networks. PMID:25766925

  15. Control of tunneling in a double-well potential with chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Vatasescu, Mihaela

    2012-11-01

    We investigate the use of chirped laser pulses to control the tunneling dynamics in the 0g-(6s,6p3/2) double well of Cs2 coupled with other electronic surfaces. The possibility to manipulate the tunneling dynamics appears in a pump-dump scheme designed to form deeply bound cold molecules by photoassociation of two cold cesium atoms in the 0g-(6s,6p3/2) electronic state coupled with a3Σu+ (6s,6s) electronic state. The dump pulse is acting on the 0g-(6s,6p3/2) barrier and can be used to control the tunneling and to capture population in the inner well in deep vibrational levels out of tunneling resonances.

  16. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    NASA Astrophysics Data System (ADS)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  17. Spontaneous evolution of rydberg atoms into an ultracold plasma

    PubMed

    Robinson; Tolra; Noel; Gallagher; Pillet

    2000-11-20

    We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm(-1). When the atoms are initially bound by 70 cm(-1), this evolution occurs when most of the atoms are translationally cold, <1 mK, but a small fraction, approximately 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma.

  18. STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials

    DTIC Science & Technology

    2016-11-02

    STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber...other than abstracts): Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): Books Number of Manuscripts: 0.00Number of

  19. Decelerating and Trapping Large Polar Molecules.

    PubMed

    Patterson, David

    2016-11-18

    Manipulating the motion of large polyatomic molecules, such as benzonitrile (C 6 H 5 CN), presents significant difficulties compared to the manipulation of diatomic molecules. Although recent impressive results have demonstrated manipulation, trapping, and cooling of molecules as large as CH 3 F, no general technique for trapping such molecules has been demonstrated, and cold neutral molecules larger than 5 atoms have not been trapped (M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, G. Rempe, Nature 2012, 491, 570-573). In particular, extending Stark deceleration and electrostatic trapping to such species remains challenging. Here, we propose to combine a novel "asymmetric doublet state" Stark decelerator with recently demonstrated slow, cold, buffer-gas-cooled beams of closed-shell volatile molecules to realize a general system for decelerating and trapping samples of a broad range of volatile neutral polar prolate asymmetric top molecules. The technique is applicable to most stable volatile molecules in the 100-500 AMU range, and would be capable of producing trapped samples in a single rotational state and at a motional temperature of hundreds of mK. Such samples would immediately allow for spectroscopy of unprecedented resolution, and extensions would allow for further cooling and direct observation of slow intramolecular processes such as vibrational relaxation and Hertz-level tunneling dynamics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Controlling the delocalization-localization transition of light via electromagnetically induced transparency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng Jing; Huang Guoxiang; State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062

    2011-05-15

    We propose a scheme to realize a transition from delocalization to localization of light waves via electromagnetically induced transparency. The system we suggested is a resonant cold atomic ensemble having N configuration, with a control field consisting of two pairs of laser beams with different cross angles, which produce an electromagnetically induced quasiperiodic waveguide (EIQPW) for the propagation of a signal field. By appropriately tuning the incommensurate rate or relative modulation strength between the two pairs of control-field components, the signal field can exhibit the delocalization-localization transition as it transports inside the atomic ensemble. The delocalization-localization transition point is determinedmore » and the propagation property of the signal field is studied in detail. Our work provides a way of realizing wave localization via atomic coherence, which is quite different from the conventional, off-resonant mechanism-based Aubry-Andre model, and the great controllability of the EIQPW also allows an easy manipulation of the delocalization-localization transition.« less

  1. Radical Chemistry and Charge Manipulation with an Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Gross, Leo

    The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).

  2. Coherent manipulation of a solid-state artificial atom with few photons.

    PubMed

    Giesz, V; Somaschi, N; Hornecker, G; Grange, T; Reznychenko, B; De Santis, L; Demory, J; Gomez, C; Sagnes, I; Lemaître, A; Krebs, O; Lanzillotti-Kimura, N D; Lanco, L; Auffeves, A; Senellart, P

    2016-06-17

    In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom-photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment.

  3. Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation

    NASA Astrophysics Data System (ADS)

    Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T.

    2012-05-01

    Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.

  4. Laser-Free Cold-Atom Gymnastics

    NASA Astrophysics Data System (ADS)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  5. Dynamic of cold-atom tips in anharmonic potentials

    PubMed Central

    Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József

    2016-01-01

    Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505

  6. A Compact, High-Flux Cold Atom Beam Source

    NASA Technical Reports Server (NTRS)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  7. A Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales.

  8. Real-space Wigner-Seitz Cells Imaging of Potassium on Graphite via Elastic Atomic Manipulation

    PubMed Central

    Yin, Feng; Koskinen, Pekka; Kulju, Sampo; Akola, Jaakko; Palmer, Richard E.

    2015-01-01

    Atomic manipulation in the scanning tunnelling microscopy, conventionally a tool to build nanostructures one atom at a time, is here employed to enable the atomic-scale imaging of a model low-dimensional system. Specifically, we use low-temperature STM to investigate an ultra thin film (4 atomic layers) of potassium created by epitaxial growth on a graphite substrate. The STM images display an unexpected honeycomb feature, which corresponds to a real-space visualization of the Wigner-Seitz cells of the close-packed surface K atoms. Density functional simulations indicate that this behaviour arises from the elastic, tip-induced vertical manipulation of potassium atoms during imaging, i.e. elastic atomic manipulation, and reflects the ultrasoft properties of the surface under strain. The method may be generally applicable to other soft e.g. molecular or biomolecular systems. PMID:25651973

  9. Experimental Investigation of the Influence of the Laser Beam Waist on Cold Atom Guiding Efficiency.

    PubMed

    Song, Ningfang; Hu, Di; Xu, Xiaobin; Li, Wei; Lu, Xiangxiang; Song, Yitong

    2018-02-28

    The primary purpose of this study is to investigate the influence of the vertical guiding laser beam waist on cold atom guiding efficiency. In this study, a double magneto-optical trap (MOT) apparatus is used. With an unbalanced force in the horizontal direction, a cold atomic beam is generated by the first MOT. The cold atoms enter the second chamber and are then re-trapped and cooled by the second MOT. By releasing a second atom cloud, the process of transferring the cold atoms from MOT to the dipole trap, which is formed by a red-detuned converged 1064-nm laser, is experimentally demonstrated. And after releasing for 20 ms, the atom cloud is guided to a distance of approximately 3 mm. As indicated by the results, the guiding efficiency depends strongly on the laser beam waist; the efficiency reaches a maximum when the waist radius ( w ₀) of the laser is in the range of 15 to 25 μm, while the initial atom cloud has a radius of 133 μm. Additionally, the properties of the atoms inside the dipole potential trap, such as the distribution profile and lifetime, are deduced from the fluorescence images.

  10. Computer Simulations: A Tool to Predict Experimental Parameters with Cold Atoms

    DTIC Science & Technology

    2013-04-01

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an...specifically designed to work with cold atom systems and atom chips, and is already able to compute their key properties. We simulate our experimental...also allows one to choose different physics and define the interdependencies between them. It is not specifically designed for cold atom systems or

  11. Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Gauthier, Daniel

    2013-05-01

    The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  12. Near-Resonant Imaging of Trapped Cold Atomic Samples

    PubMed Central

    You, L.; Lewenstein, Maciej

    1996-01-01

    We study the formation of diffraction patterns in the near-resonant imaging of trapped cold atomic samples. We show that the spatial imaging can provide detailed information on the trapped atomic clouds. PMID:27805110

  13. Bose-Einstein Condensates in 1D Optical Lattices: Nonlinearity and Wannier-Stark Spectra

    NASA Astrophysics Data System (ADS)

    Arimondo, Ennio; Ciampini, Donatella; Morsch, Oliver

    The development of powerful laser cooling and trapping techniques has made possible the controlled realization of dense and cold gaseous samples, thus opening the way for investigations in the ultracold temperature regimes not accessible with conventional techniques. A Bose-Einstein condensate (BEC) represents a peculiar gaseous state where all the particles reside in the same quantum mechanical state. Therefore BECs exhibit quantum mechanical phe-nomena on a macroscopic scale with a single quantum mechanical wavefunction describing the external degrees of freedom. That control of the external degrees of freedom is combined with a precise control of the internal degrees. The BEC investigation has become a very active area of research in contem-porary physics. The BEC study encompasses different subfields of physics, i.e., atomic and molecular physics, quantum optics, laser spectroscopy, solid state physics. Atomic physics and laser spectroscopy provide the methods for creating and manipulating the atomic and molecular BECs. However owing to the interactions between the particles composing the condensate and to the configuration of the external potential, concepts and methods from solid state physics are extensively used for BEC description.

  14. Biphoton Generation Driven by Spatial Light Modulation: Parallel-to-Series Conversion

    NASA Astrophysics Data System (ADS)

    Zhao, Luwei; Guo, Xianxin; Sun, Yuan; Su, Yumian; Loy, M. M. T.; Du, Shengwang

    2016-05-01

    We demonstrate the generation of narrowband biphotons with controllable temporal waveform by spontaneous four-wave mixing in cold atoms. In the group-delay regime, we study the dependence of the biphoton temporal waveform on the spatial profile of the pump laser beam. By using a spatial light modulator, we manipulate the spatial profile of the pump laser and map it onto the two-photon entangled temporal wave function. This parallel-to-series conversion (or spatial-to-temporal mapping) enables coding the parallel classical information of the pump spatial profile to the sequential temporal waveform of the biphoton quantum state. The work was supported by the Hong Kong RGC (Project No. 601113).

  15. Key technologies and applications of laser cooling and trapping {sup 87}Rb atomic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ru, Ning, E-mail: runing@buaa.edu.cn; Zhang, Li, E-mail: mewan@buaa.edu.cn; Key Laboratory for Metrology, Changcheng Institute of Metrology and Measurement

    2016-06-28

    Atom Interferometry is proved to be a potential method for measuring the acceleration of atoms due to Gravity, we are now building a feasible system of cold atom gravimeter. In this paper development and the important applications of laser cooling and trapping atoms are introduced, some key techniques which are used to obtain {sup 87}Rb cold atoms in our experiments are also discussed.

  16. Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory

    NASA Astrophysics Data System (ADS)

    Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.

    2017-12-01

    The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.

  17. Rydberg excitation of cold atoms inside a hollow-core fiber

    NASA Astrophysics Data System (ADS)

    Langbecker, Maria; Noaman, Mohammad; Kjærgaard, Niels; Benabid, Fetah; Windpassinger, Patrick

    2017-10-01

    We report on a versatile, highly controllable hybrid cold Rydberg atom fiber interface, based on laser cooled atoms transported into a hollow-core kagome crystal fiber. Our experiments demonstrate the feasibility of exciting cold Rydberg atoms inside a hollow-core fiber and we study the influence of the fiber on Rydberg electromagnetically induced transparency (EIT) signals. Using a temporally resolved detection method to distinguish between excitation and loss, we observe two different regimes of the Rydberg excitations: one EIT regime and one regime dominated by atom loss. These results are a substantial advancement towards future use of our system for quantum simulation or information.

  18. Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory

    NASA Astrophysics Data System (ADS)

    Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.

    2018-05-01

    The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.

  19. Sympathetic cooling of nanospheres with cold atoms

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  20. Role of orbital overlap in atomic manipulation

    NASA Astrophysics Data System (ADS)

    Jarvis, Sam; Sweetman, Adam; Bamidele, Joseph; Kantorovich, Lev; Moriarty, Philip

    2012-06-01

    We conduct ab initio simulations illustrating that the ability to achieve atomic manipulation using a dynamic force microscope depends on the precise orientation of the dangling bond(s) at the tip apex and their charge density with respect to those of surface atoms. Using the Si(100)-c(4×2) surface as a prototype, we demonstrate that it is possible to select tip apices capable of performing atomic manipulation tasks which are unachievable using another choice of apex. Specific tip apices can be identified via examination of F(z) curves taken at different lateral positions.

  1. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions, exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.

  2. Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction.

    PubMed

    Turpin, A; Polo, J; Loiko, Yu V; Küber, J; Schmaltz, F; Kalkandjiev, T K; Ahufinger, V; Birkl, G; Mompart, J

    2015-01-26

    We present a novel approach for the optical manipulation of neutral atoms in annular light structures produced by the phenomenon of conical refraction occurring in biaxial optical crystals. For a beam focused to a plane behind the crystal, the focal plane exhibits two concentric bright rings enclosing a ring of null intensity called the Poggendorff ring. We demonstrate both theoretically and experimentally that the Poggendorff dark ring of conical refraction is confined in three dimensions by regions of higher intensity. We derive the positions of the confining intensity maxima and minima and discuss the application of the Poggendorff ring for trapping ultra-cold atoms using the repulsive dipole force of blue-detuned light. We give analytical expressions for the trapping frequencies and potential depths along both the radial and the axial directions. Finally, we present realistic numerical simulations of the dynamics of a 87Rb Bose-Einstein condensate trapped inside the Poggendorff ring which are in good agreement with corresponding experimental results.

  3. Taking the Ethics of Einstein into the 21st Century

    NASA Astrophysics Data System (ADS)

    Neuenschwander, Dwight E.

    2004-10-01

    We are an inquisitive species. Our curiosity about the structure of matter led to the discovery of the nucleus. In the cultural and political environment of the times, how short were the steps from the innocence of discovery to the atomic bombings of Hiroshima and Nagasaki, and the Cold War that followed! If you had been a graduate student in 1942, invited to help build these nuclear weapons, what would you have done? If the choice of how to end World War II had been yours to make instead of President Truman's-invade Japan, or use the new atomic bomb-what would you have decided? The deeper issues did not go away in 1945. They continue to haunt all scientists today, from hydrogen bombs to general manipulation to environmental sustainability. How do intellectual questions about nature lead to potentially horrific applications of knowledge? What are our ethical responsibilities as physicists? What ethical principles should guide scientific research and its applications?

  4. Laser manipulation of atomic and molecular flows

    NASA Astrophysics Data System (ADS)

    Lilly, Taylor C.

    The continuing advance of laser technology enables a range of broadly applicable, laser-based flow manipulation techniques. The characteristics of these laser-based flow manipulations suggest that they may augment, or be superior to, such traditional electro-mechanical methods as ionic flow control, shock tubes, and small scale wind tunnels. In this study, methodology was developed for investigating laser flow manipulation techniques, and testing their feasibility for a number of aerospace, basic physics, and micro technology applications. Theories for laser-atom and laser-molecule interactions have been under development since the advent of laser technology. The theories have yet to be adequately integrated into kinetic flow solvers. Realizing this integration would greatly enhance the scaling of laser-species interactions beyond the realm of ultra-cold atomic physics. This goal was realized in the present study. A representative numerical investigation, of laser-based neutral atomic and molecular flow manipulations, was conducted using near-resonant and non-resonant laser fields. To simulate the laser interactions over a range of laser and flow conditions, the following tools were employed: a custom collisionless gas particle trajectory code and a specifically modified version of the Direct Simulation Monte Carlo statistical kinetic solver known as SMILE. In addition to the numerical investigations, a validating experiment was conducted. The experimental results showed good agreement with the numerical simulations when experimental parameters, such as finite laser line width, were taken into account. Several areas of interest were addressed: laser induced neutral flow steering, collimation, direct flow acceleration, and neutral gas heating. Near-resonant continuous wave laser, and non-resonant pulsed laser, interactions with cesium and nitrogen were simulated. These simulations showed trends and some limitations associated with these interactions, used for flow steering and collimation. The use of one of these interactions, the induced dipole force, was extended beyond a single Gaussian laser field. The interference patterns associated with counter-propagating laser fields, or "optical lattices," were shown to be capable of both direct species acceleration and gas heating. This study resulted in predictions for a continuous, resonant laser-cesium flow with accelerations of 106 m/s2. For this circumstance, a future straightforward proof of principle experiment has been identified. To demonstrate non-resonant gas heating, a series of pulsed optical lattices were simulated interacting with neutral non-polar species. An optimum time between pulses was identified as a function of the collisional relaxation time. Using the optimum time between pulses, molecular nitrogen simulations showed an increase in gas temperature from 300 K to 2470 K at 1 atm, for 50 successive optical lattice pulses. A second proof of principle experiment was identified for future investigation.

  5. A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.

  6. {pi} junction and spontaneous current state in a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashimura, Takashi; Tsuchiya, Shunji; CREST

    2011-07-15

    We discuss an idea to realize a spontaneous current in a superfluid Fermi gas. When a polarized Fermi superfluid (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms in the hyperfine state described by pseudospin {sigma}={up_arrow},{down_arrow}) is loaded onto a ring-shaped trap with a weak potential barrier, some excess atoms ({Delta}N=N{sub {up_arrow}}-N{sub {down_arrow}}) are localized around the barrier. As shown in our previous paper [T. Kashimura, S. Tsuchiya, and Y. Ohashi, Phys. Rev. A 82, 033617 (2010)], this polarized potential barrier works as a {pi} junction in the sense that the superfluid order parameter changes its sign acrossmore » the barrier. Because of this, the phase of the superfluid order parameter outside the junction is shown to be twisted by {pi} along the ring, which naturally leads to a circulating supercurrent. While the ordinary supercurrent state is obtained as a metastable state, this spontaneous current state is shown to be more stable than the case with no current. Our results indicate that localized excess atoms would be useful for the manipulation of the superfluid order parameter in cold Fermi gases.« less

  7. Miniaturized Lab System for Future Cold Atom Experiments in Microgravity

    NASA Astrophysics Data System (ADS)

    Kulas, Sascha; Vogt, Christian; Resch, Andreas; Hartwig, Jonas; Ganske, Sven; Matthias, Jonas; Schlippert, Dennis; Wendrich, Thijs; Ertmer, Wolfgang; Maria Rasel, Ernst; Damjanic, Marcin; Weßels, Peter; Kohfeldt, Anja; Luvsandamdin, Erdenetsetseg; Schiemangk, Max; Grzeschik, Christoph; Krutzik, Markus; Wicht, Andreas; Peters, Achim; Herrmann, Sven; Lämmerzahl, Claus

    2017-02-01

    We present the technical realization of a compact system for performing experiments with cold 87Rb and 39K atoms in microgravity in the future. The whole system fits into a capsule to be used in the drop tower Bremen. One of the advantages of a microgravity environment is long time evolution of atomic clouds which yields higher sensitivities in atom interferometer measurements. We give a full description of the system containing an experimental chamber with ultra-high vacuum conditions, miniaturized laser systems, a high-power thulium-doped fiber laser, the electronics and the power management. In a two-stage magneto-optical trap atoms should be cooled to the low μK regime. The thulium-doped fiber laser will create an optical dipole trap which will allow further cooling to sub- μK temperatures. The presented system fulfills the demanding requirements on size and power management for cold atom experiments on a microgravity platform, especially with respect to the use of an optical dipole trap. A first test in microgravity, including the creation of a cold Rb ensemble, shows the functionality of the system.

  8. Development of the Science Data System for the International Space Station Cold Atom Lab

    NASA Technical Reports Server (NTRS)

    van Harmelen, Chris; Soriano, Melissa A.

    2015-01-01

    Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.

  9. Applications of AFM for atomic manipulation and spectroscopy

    NASA Astrophysics Data System (ADS)

    Custance, Oscar

    2009-03-01

    Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)

  10. Airplanes, Combat and Maintenance Crews, and Air Bases. The World War II and Early Cold War Architectural Legacy of Holloman Air Force Base (ca. 1942-1962)

    DTIC Science & Technology

    1998-11-01

    to develop and build an atomic bomb. The project was under the direction of physicist J. Robert Oppenheimer , a former student at the Los Alamos Ranch...of AAF Facilities (1942- 1943 ) 39 Victory in Sight and the Atomic Age: Consolidation and Disposition of Facilities ( 1943 - 1945 ) 42 Cold War ( 1945 ...Sight and the Atomic Age ( 1943 - 1945 ) 61 Cold War Inception (July 1945 -January 1953) 63 Nuclear Escalation (January 1953-November 1963) 72 Detente

  11. Simulation of Laser Cooling and Trapping in Engineering Applications

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, Jaime; Kohel, James; Thompson, Robert; Yu, Nan; Lunblad, Nathan

    2005-01-01

    An advanced computer code is undergoing development for numerically simulating laser cooling and trapping of large numbers of atoms. The code is expected to be useful in practical engineering applications and to contribute to understanding of the roles that light, atomic collisions, background pressure, and numbers of particles play in experiments using laser-cooled and -trapped atoms. The code is based on semiclassical theories of the forces exerted on atoms by magnetic and optical fields. Whereas computer codes developed previously for the same purpose account for only a few physical mechanisms, this code incorporates many more physical mechanisms (including atomic collisions, sub-Doppler cooling mechanisms, Stark and Zeeman energy shifts, gravitation, and evanescent-wave phenomena) that affect laser-matter interactions and the cooling of atoms to submillikelvin temperatures. Moreover, whereas the prior codes can simulate the interactions of at most a few atoms with a resonant light field, the number of atoms that can be included in a simulation by the present code is limited only by computer memory. Hence, the present code represents more nearly completely the complex physics involved when using laser-cooled and -trapped atoms in engineering applications. Another advantage that the code incorporates is the possibility to analyze the interaction between cold atoms of different atomic number. Some properties that cold atoms of different atomic species have, like cross sections and the particular excited states they can occupy when interacting with each other and light fields, play important roles not yet completely understood in the new experiments that are under way in laboratories worldwide to form ultracold molecules. Other research efforts use cold atoms as holders of quantum information, and more recent developments in cavity quantum electrodynamics also use ultracold atoms to explore and expand new information-technology ideas. These experiments give a hint on the wide range of applications and technology developments that can be tackled using cold atoms and light fields. From more precise atomic clocks and gravity sensors to the development of quantum computers, there will be a need to completely understand the whole ensemble of physical mechanisms that play a role in the development of such technologies. The code also permits the study of the dynamic and steady-state operations of technologies that use cold atoms. The physical characteristics of lasers and fields can be time-controlled to give a realistic simulation of the processes involved such that the design process can determine the best control features to use. It is expected that with the features incorporated into the code it will become a tool for the useful application of ultracold atoms in engineering applications. Currently, the software is being used for the analysis and understanding of simple experiments using cold atoms, and for the design of a modular compact source of cold atoms to be used in future research and development projects. The results so far indicate that the code is a useful design instrument that shows good agreement with experimental measurements (see figure), and a Windows-based user-friendly interface is also under development.

  12. Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.-W.; Liao, W.-T.; Peters, Thorsten

    We study the creation of stationary light pulses (SLPs), i.e., light pulses without motion, based on the effect of electromagnetically induced transparency with two counterpropagating coupling fields in cold atoms. We show that the Raman excitations created by counterpropagating probe and coupling fields prohibit the formation of SLPs in media of cold and stationary atoms such as laser-cooled atom clouds, Bose condensates or color-center crystals. A method is experimentally demonstrated to suppress these Raman excitations and SLPs are realized in laser-cooled atoms. Furthermore, we report the first experimental observation of a bichromatic SLP at wavelengths for which no Bragg gratingmore » can be established. Our work advances the understanding of SLPs and opens a new avenue to SLP studies for few-photon nonlinear interactions.« less

  13. Cold atom quantum sensors for space

    NASA Astrophysics Data System (ADS)

    Singh, Yeshpal

    2016-07-01

    Quantum sensors based on cold atoms offer the opportunity to perform highly accurate measurements of physical phenomena related to time, gravity and rotation. The deployment of such technologies in the microgravity environment of space may enable further enhancement of their performance, whilst permitting the detection of these physical phenomena over much larger scales than is possible with a ground-based instrument. In this talk, I will present an overview of the activities of the UK National Quantum Hub in Sensors and Metrology in developing cold atoms technology for space. Our activities are focused in two main areas: optical clocks and atom interferometers. I will also discuss our contributions to recent initiatives including STE-QUEST and AI-GOAT, the ESA/NASA initiative aiming at an atom interferometer gravitational wave detector in space.

  14. Laser and Optical Subsystem for NASA's Cold Atom Laboratory

    NASA Astrophysics Data System (ADS)

    Kohel, James; Kellogg, James; Elliott, Ethan; Krutzik, Markus; Aveline, David; Thompson, Robert

    2016-05-01

    We describe the design and validation of the laser and optics subsystem for NASA's Cold Atom Laboratory (CAL), a multi-user facility being developed at NASA's Jet Propulsion Laboratory for studies of ultra-cold quantum gases in the microgravity environment of the International Space Station. Ultra-cold atoms will be generated in CAL by employing a combination of laser cooling techniques and evaporative cooling in a microchip-based magnetic trap. Laser cooling and absorption imaging detection of bosonic mixtures of 87 Rb and 39 K or 41 K will be accomplished using a high-power (up to 500 mW ex-fiber), frequency-agile dual wavelength (767 nm and 780 nm) laser and optical subsystem. The CAL laser and optical subsystem also includes the capability to generate high-power multi-frequency optical pulses at 784.87 nm to realize a dual-species Bragg atom interferometer. Currently at Humboldt-Universität zu Berlin.

  15. A minimalistic and optimized conveyor belt for neutral atoms.

    PubMed

    Roy, Ritayan; Condylis, Paul C; Prakash, Vindhiya; Sahagun, Daniel; Hessmo, Björn

    2017-10-20

    Here we report of a design and the performance of an optimized micro-fabricated conveyor belt for precise and adiabatic transportation of cold atoms. A theoretical model is presented to determine optimal currents in conductors used for the transportation. We experimentally demonstrate a fast adiabatic transportation of Rubidium ( 87 Rb) cold atoms with minimal loss and heating with as few as three conveyor belt conductors. This novel design of a multilayered conveyor belt structure is fabricated in aluminium nitride (AlN) because of its outstanding thermal and electrical properties. This demonstration would pave a way for a compact and portable quantum device required for quantum information processing and sensors, where precise positioning of cold atoms is desirable.

  16. Preparing isolated vibrational wave packets with light-induced molecular potentials by chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Vatasescu, Mihaela

    2012-05-01

    We consider a specific wave packet preparation arising from the control of tunneling in the 0g-(6s,6p3/2) double well potential of a Cs2 cold molecule with chirped laser pulses. Such a possibility to manipulate the population dynamics in the 0g-(6s,6p3/2) potential appears in a pump-dump scheme designed to form cold molecules by photoassociation of two cold cesium atoms. The initial population in the 0g-(6s,6p3/2) double well is a wave packet prepared in the outer well at large interatomic distances (94 a0) by a photoassociation step with a first chirped pulse, being a superposition of several vibrational states whose energies surround the energy of a tunneling resonance. Our present work is focused on a second delayed chirped pulse, coupling the 0g-(6s,6p3/2) surface with the a3Σu+(6s,6s) one in the zone of the double well barrier (15 a0) and creating deeply bound cold molecules in the a3Σu+(6s,6s) state. We explore the parameters choice (intensity, duration, chirp rate and sign) for this second pulse, showing that picoseconds pulses with a negative chirp can lead to trapping of population in the inner well in strongly bound vibrational states, out of the resonant tunneling able to transfer it back to the outer well.

  17. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    PubMed

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.

  18. Mesoscopic coherence in light scattering from cold, optically dense and disordered atomic systems

    NASA Astrophysics Data System (ADS)

    Kupriyanov, D. V.; Sokolov, I. M.; Havey, M. D.

    2017-02-01

    Coherent effects manifested in light scattering from cold, optically dense and disordered atomic systems are reviewed from a primarily theoretical point of view. Development of the basic theoretical tools is then elaborated through several physical atomic physics based processes which have been at least partly explored experimentally. These include illustrations drawn from the coherent backscattering effect, random lasing in atomic gases, quantum memories and light-atoms interface assisted by the light trapping mechanism. Current understanding and challenges associated with the transition to high atomic densities and cooperativity in the scattering process are also discussed in some detail.

  19. Spectroscopic properties of the molecular ions BeX+ (X=Na, K, Rb): forming cold molecular ions from an ion-atom mixture by stimulated Raman adiabatic process

    NASA Astrophysics Data System (ADS)

    Ladjimi, Hela; Sardar, Dibyendu; Farjallah, Mohamed; Alharzali, Nisrin; Naskar, Somnath; Mlika, Rym; Berriche, Hamid; Deb, Bimalendu

    2018-07-01

    In this theoretical work, we calculate potential energy curves, spectroscopic parameters and transition dipole moments of molecular ions BeX+ (X=Na, K, Rb) composed of alkaline ion Be and alkali atom X with a quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarisation potentials and full configuration interaction. We study in detail collisions of the alkaline ion and alkali atom in quantum regime. Besides, we study the possibility of the formation of molecular ions from the ion-atom colliding systems by stimulated Raman adiabatic process and discuss the parameters regime under which the population transfer is feasible. Our results are important for ion-atom cold collisions and experimental realisation of cold molecular ion formation.

  20. Dark optical lattice of ring traps for cold atoms

    NASA Astrophysics Data System (ADS)

    Courtade, Emmanuel; Houde, Olivier; Clément, Jean-François; Verkerk, Philippe; Hennequin, Daniel

    2006-09-01

    We propose an optical lattice for cold atoms made of a one-dimensional stack of dark ring traps. It is obtained through the interference pattern of a standard Gaussian beam with a counterpropagating hollow beam obtained using a setup with two conical lenses. The traps of the resulting lattice are characterized by a high confinement and a filling rate much larger than unity, even if loaded with cold atoms from a magneto-optical trap. We have implemented this system experimentally, and demonstrated its feasibility. Applications in statistical physics, quantum computing, and Bose-Einstein condensate dynamics are conceivable.

  1. Atom chip gravimeter

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] P. Berg et al., Composite-Light-Pulse Technique for High-Precision Atom Interferometry, Phys. Rev. Lett., 114, 063002, 2015. [2] A. Peters et al., Measurement of gravitational acceleration by dropping atoms, Nature 400, 849, 1999. [3] D. Schlippert et al., Quantum Test of the Universality of Free Fall, Phys. Rev. Lett., 112, 203002, 2014. [4] A. Louchet-Chauvet et al., The influence of transverse motion within an atomic gravimeter, New J. Phys. 13, 065026, 2011. [5] Q. Bodart et al., A cold atom pyramidal gravimeter with a single laser beam, Appl. Phys. Lett. 96, 134101, 2010. [6] H. Müntinga et al., Interferometry with Bose-Einstein Condensates in Microgravity, Phys. Rev. Lett., 110, 093602, 2013. [7] T. Kovachy et al., Matter Wave Lensing to Picokelvin Temperatures, Phys. Rev. Lett. 114, 143004, 2015. [8] J. Rudolph et al., A high-flux BEC source for mobile atom interferometers, New J. Phys. 17, 065001, 2015.

  2. Two-probe atomic-force microscope manipulator and its applications.

    PubMed

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  3. Characterization and limits of a cold-atom Sagnac interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauguet, A.; Canuel, B.; Leveque, T.

    2009-12-15

    We present the full evaluation of a cold-atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal, allowing us to reach the fundamental limit of the quantum projection noise for short term measurements. The technical limits to the long term sensitivity and accuracy have been identified, clearing the way for the next generation of ultrasensitive atom gyroscopes.

  4. Optical Precursor with Four-Wave Mixing and Storage Based on a Cold-Atom Ensemble

    NASA Astrophysics Data System (ADS)

    Ding, Dong-Sheng; Jiang, Yun Kun; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2015-03-01

    We observed optical precursors in four-wave mixing based on a cold-atom gas. Optical precursors appear at the edges of pulses of the generated optical field, and propagate through the atomic medium without absorption. Theoretical analysis suggests that these precursors correspond to high-frequency components of the signal pulse, which means the atoms cannot respond quickly to rapid changes in the electromagnetic field. In contrast, the low-frequency signal components are absorbed by the atoms during transmission. We also showed experimentally that the backward precursor can be stored using a Raman transition of the atomic ensemble and retrieved later.

  5. Anisotropic Interactions between Cold Rydberg Atoms

    DTIC Science & Technology

    2015-09-28

    AFRL-AFOSR-CL-TR-2015-0002 Anisotropic interactions between cold Rydberg atoms Luis Marcassa INSTITUTO DE FISICA DE SAO CARLOS Final Report 09/28...problem with the report +551633739806 Organization / Institution name Instituto de Fisica de Sao Carlos Grant/Contract Title The full title of the

  6. Manipulating, Reacting, and Constructing Single Molecules with a Scanning Tunneling Microscope Tip

    NASA Astrophysics Data System (ADS)

    Hla, S.-W.

    The fascinating advances in atom and molecule manipulation with the scanning tunneling microscope (STM) tip allow scientists to fabricate artificial atomic scale structures, to study local quantum phenomena, or to probe physical and chemical properties of single atoms and molecules on surfaces. Recent achievements in individual synthesis of single molecules with the STM tip further open up an entirely new opportunities in nanoscience and technology. The STM manipulation techniques usef ul in the molecular construction are reviewed and prospects for future opportunities of single molecule chemical engineering and their possible implications to nano-scale science and technology are discussed.

  7. Atom-by-atom assembly

    NASA Astrophysics Data System (ADS)

    Hla, Saw Wai

    2014-05-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed.

  8. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation

    PubMed Central

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method. PMID:24899871

  9. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    PubMed

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  10. Ultra-cold 4He atom beams

    NASA Astrophysics Data System (ADS)

    Mulders, N.; Wyatt, A. F. G.

    1994-02-01

    It has been shown that it is possible to create ultra-cold 4He atom beams, using a metal film heater covered with a superfluid helium film. The transient behaviour of the atom pulse can be improved significantly by shaping of the heater pulse. The leading edge of more energetic atoms can be suppressed nearly completely, leaving a core of mono-energetic atoms. The maximum number of atoms in the pulse is determined by the amount of helium in the superfluid film on the heater. This seriously limits the ranges of pulse width and energy over which this beam source can be operated. However, these can be increased significantly by using porous gold smoke heaters.

  11. Simple, reliable, and nondestructive method for the measurement of vacuum pressure without specialized equipment.

    PubMed

    Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang

    2013-09-01

    We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.

  12. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays.

    PubMed

    Endres, Manuel; Bernien, Hannes; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D

    2016-11-25

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a platform for the deterministic preparation of regular one-dimensional arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of more than 50 atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach may enable controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements. Copyright © 2016, American Association for the Advancement of Science.

  13. Realizing universal Majorana fermionic quantum computation

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Jie; He, Jing; Kou, Su-Peng

    2014-08-01

    Majorana fermionic quantum computation (MFQC) was proposed by S. B. Bravyi and A. Yu. Kitaev [Ann. Phys. (NY) 298, 210 (2002), 10.1006/aphy.2002.6254], who indicated that a (nontopological) fault-tolerant quantum computer built from Majorana fermions may be more efficient than that built from distinguishable two-state systems. However, until now scientists have not known how to realize a MFQC in a physical system. In this paper we propose a possible realization of MFQC. We find that the end of a line defect of a p-wave superconductor or superfluid in a honeycomb lattice traps a Majorana zero mode, which becomes the starting point of MFQC. Then we show how to manipulate Majorana fermions to perform universal MFQC, which possesses possibilities for high-level local controllability through individually addressing the quantum states of individual constituent elements by using timely cold-atom technology.

  14. Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas (Author’s Manuscript)

    DTIC Science & Technology

    2017-01-27

    Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas Yong Xu,∗ Sheng-Tao Wang, and L.-M. Duan Department of Physics, University...atomic gas trapped in an optical lattice. Recently, condensed matter systems have proven to be a powerful platform to study low energy gapless...possess a nonzero quantized Chern number. This leads to a natural question of whether there exists a topological ring exhibiting both a quantized Chern

  15. Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms

    NASA Astrophysics Data System (ADS)

    Sayrin, Clément; Junge, Christian; Mitsch, Rudolf; Albrecht, Bernhard; O'Shea, Danny; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno

    2015-10-01

    The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.

  16. Microstructural Evolution in Solution Heat Treatment of Gas-Atomized Al Alloy (7075) Powder for Cold Spray

    NASA Astrophysics Data System (ADS)

    Sabard, A.; de Villiers Lovelock, H. L.; Hussain, T.

    2018-01-01

    Cold gas dynamic spray is being explored as a repair technique for high-value metallic components, given its potential to produce pore and oxide-free deposits of between several micrometers and several millimeters thick with good levels of adhesion and mechanical strength. However, feedstock powders for cold spray experience rapid solidification if manufactured by gas atomization and hence can exhibit non-equilibrium microstructures and localized segregation of alloying elements. Here, we used sealed quartz tube solution heat treatment of a precipitation hardenable 7075 aluminum alloy feedstock to yield a consistent and homogeneous powder phase composition and microstructure prior to cold spraying, aiming for a more controllable heat treatment response of the cold spray deposits. It was shown that the dendritic microstructure and solute segregation in the gas-atomized powders were altered, such that the heat-treated powder exhibits a homogeneous distribution of solute atoms. Micro-indentation testing revealed that the heat-treated powder exhibited a mean hardness decrease of nearly 25% compared to the as-received powder. Deformation of the powder particles was enhanced by heat treatment, resulting in an improved coating with higher thickness ( 300 μm compared to 40 μm for untreated feedstock). Improved particle-substrate bonding was evidenced by formation of jets at the particle boundaries.

  17. Light-induced atomic desorption in a compact system for ultracold atoms

    PubMed Central

    Torralbo-Campo, Lara; Bruce, Graham D.; Smirne, Giuseppe; Cassettari, Donatella

    2015-01-01

    In recent years, light-induced atomic desorption (LIAD) of alkali atoms from the inner surface of a vacuum chamber has been employed in cold atom experiments for the purpose of modulating the alkali background vapour. This is beneficial because larger trapped atom samples can be loaded from vapour at higher pressure, after which the pressure is reduced to increase the lifetime of the sample. We present an analysis, based on the case of rubidium atoms adsorbed on pyrex, of various aspects of LIAD that are useful for this application. Firstly, we study the intensity dependence of LIAD by fitting the experimental data with a rate-equation model, from which we extract a correct prediction for the increase in trapped atom number. Following this, we quantify a figure of merit for the utility of LIAD in cold atom experiments and we show how it can be optimised for realistic experimental parameters. PMID:26458325

  18. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.

    PubMed

    Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T

    2015-09-02

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.

  19. Optical coupling of cold atoms to a levitated nanosphere

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Witherspoon, Apryl; Fausett, Jacob; Lim, Jason; Kitching, John; Geraci, Andrew

    2017-04-01

    Cooling mechanical oscillators to their quantum ground state enables the study of quantum phenomena at macroscopic levels. In many cases, the temperature required to cool a mechanical mode to the ground state is below what current cryogenic systems can achieve. As an alternative to cooling via cryogenic systems, it has been shown theoretically that optically trapped nanospheres could reach the ground state by sympathetically cooling the spheres via cold atoms. Such cooled spheres can be used in quantum limited sensing and matter-wave interferometry, and could also enable new hybrid quantum systems where mechanical oscillators act as transducers. In our setup, optical fields are used to couple a sample of cold Rubidium atoms to a nanosphere. The sphere is optically levitated in a separate vacuum chamber, while the atoms are trapped in a 1-D optical lattice and cooled using optical molasses. This work is partially supported by NSF, Grant No. PHY-1506431.

  20. Towards atomically precise manipulation of 2D nanostructures in the electron microscope

    NASA Astrophysics Data System (ADS)

    Susi, Toma; Kepaptsoglou, Demie; Lin, Yung-Chang; Ramasse, Quentin M.; Meyer, Jannik C.; Suenaga, Kazu; Kotakoski, Jani

    2017-12-01

    Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In this review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomic-resolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Ångström-sized electron beam. To truly enable control, however, it is vital to understand the relevant atomic-scale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward.

  1. Ultra-Cold Atoms on Optical Lattices

    ERIC Educational Resources Information Center

    Ghosh, Parag

    2009-01-01

    The field of ultra-cold atoms, since the achievement of Bose-Einstein Condensation (Anderson et al., 1995; Davis et al., 1995; Bradley et al., 1995), have seen an immensely growing interest over the past decade. With the creation of optical lattices, new possibilities of studying some of the widely used models in condensed matter have opened up.…

  2. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Na; Wu, Yu-Ping; Min, Hao

    A radio-frequency (RF) source designed for cold atom experiments is presented. The source uses AD9858, a direct digital synthesizer, to generate the sine wave directly, up to 400 MHz, with sub-Hz resolution. An amplitude control circuit consisting of wideband variable gain amplifier and high speed digital to analog converter is integrated into the source, capable of 70 dB off isolation and 4 ns on-off keying. A field programmable gate array is used to implement a versatile frequency and amplitude co-sweep logic. Owing to modular design, the RF sources have been used on many cold atom experiments to generate various complicatedmore » RF sequences, enriching the operation schemes of cold atoms, which cannot be done by standard RF source instruments.« less

  4. Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function

    PubMed Central

    Berry, Daniel C.; Jiang, Yuwei; Graff, Jonathan M.

    2016-01-01

    Cold temperatures induce formation of beige adipocytes, which convert glucose and fatty acids to heat, and may increase energy expenditure, reduce adiposity and lower blood glucose. This therapeutic potential is unrealized, hindered by a dearth of genetic tools to fate map, track and manipulate beige progenitors and ‘beiging'. Here we examined 12 Cre/inducible Cre mouse strains that mark adipocyte, muscle and mural lineages, three proposed beige origins. Among these mouse strains, only those that marked perivascular mural cells tracked the cold-induced beige lineage. Two SMA-based strains, SMA-CreERT2 and SMA-rtTA, fate mapped into the majority of cold-induced beige adipocytes and SMA-marked progenitors appeared essential for beiging. Disruption of the potential of the SMA-tracked progenitors to form beige adipocytes was accompanied by an inability to maintain body temperature and by hyperglycaemia. Thus, SMA-engineered mice may be useful to track and manipulate beige progenitors, beige adipocyte formation and function. PMID:26729601

  5. Cold Atom Optics on Ground and in Space

    NASA Astrophysics Data System (ADS)

    Rasel, E. M.

    Microgravity is the ultimate laboratory environment for experiments in fundamental physics based on cold atoms. The talk will give a survey of recent activities on atomic quantum sensors and atom lasers. Inertial atomic quantum sensors are a promising and complementary technique for experiments in fundamental physics. Pioneering experiments at Yale [1,2] and Stanford [3] displayed recently the fascinating potential of matter-wave interferometers for precision measurements. The talk will present the status of a transportable matter-wave sensor under development at the Institut für Quantenoptik in Hannover: CASI. CASI stands for Cold Atom Sagnac Interferometer. The use of cold atoms makes it possible to realise compact devices with sensitivities competitive with classical state-of-the-art sensors. CASI's projected sensitivity is about 10-9 rad/ssurd Hz at the projection noise limit. The heart of our set-up will be a 15cm-long Mach-Zehnder interferometer formed by coherently splitting the atoms with Raman-type interactions. CASI is designed as a movable device, that it can be compared with other matter-wave sensors such as the cold caesium atom gyroscope at the BNM-SYRTE in Paris [4]. CASI is intimately connected with HYPER, an European initiative to send four atom interferometers in space hosted on a drag-free satellite. Main emphasis of the mission is placed on the mapping of the Earth's Lense-Thirring effect. Tests of the Equivalence Principle is under consideration as an alternative goal of high scientific value. HYPER was selected three years ago by the European Space Agency (ESA) as candidate for a future small-satellite mission within the next 10 to 15 years and is supported with detailed feasibility studies [5]. The latest status of the mission will be given. [1] T.L. Gustavson, A. Landragin, M.A, Kasevich, Rotation sensing with a dual atom-interferometer Sagnac gyroscope, Class. Quantum Grav. 17, 2385-2398 (2000) [2] J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry, Phys. Rev. A 65, 033608-1 (2002) [3] A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry, Metrologia 38, 25-61 (2001) [4] F. Yver-Leduc, P. Cheinet, J. Fils, A. Clairon, N. Dimarcq, D. Holleville, P. Bouyer, and A. Landragin. A. J. Opt. B : Quant. Semiclass. Opt. 5, S136 (2003) [5] http://sci.esa.int/home/hyper/index.cfm

  6. Probing Atomic Dynamics and Structures Using Optical Patterns

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2015-05-01

    Pattern formation is a widely studied phenomenon that can provide fundamental insights into nonlinear systems. Emergent patterns in cold atoms are of particular interest in condensed matter physics and quantum information science because one can relate optical patterns to spatial structures in the atoms. In our experimental system, we study multimode optical patterns generated from a sample of cold, thermal atoms. We observe this nonlinear optical phenomenon at record low input powers due to the highly nonlinear nature of the spatial bunching of atoms in an optical lattice. We present a detailed study of the dynamics of these bunched atoms during optical pattern formation. We show how small changes in the atomic density distribution affect the symmetry of the generated patterns as well as the nature of the nonlinearity that describes the light-atom interaction. We gratefully acknowledge the financial support of the National Science Foundation through Grant #PHY-1206040.

  7. Directed Atom-by-Atom Assembly of Dopants in Silicon.

    PubMed

    Hudak, Bethany M; Song, Jiaming; Sims, Hunter; Troparevsky, M Claudia; Humble, Travis S; Pantelides, Sokrates T; Snijders, Paul C; Lupini, Andrew R

    2018-05-17

    The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum-mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.

  8. Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyoon; Cho, Young-Wook; Chough, Young-Tak; Kim, Yoon-Ho

    2018-04-01

    We report an experimental demonstration of the nonclassical stationary light pulse (SLP) in a cold atomic ensemble. A single collective atomic excitation is created and heralded by detecting a Stokes photon in the spontaneous Raman scattering process. The heralded single atomic excitation is converted into a single stationary optical excitation or the single-photon SLP, whose effective group velocity is zero, effectively forming a trapped single-photon pulse within the cold atomic ensemble. The single-photon SLP is then released from the atomic ensemble as an anti-Stokes photon after a specified trapping time. The second-order correlation measurement between the Stokes and anti-Stokes photons reveals the nonclassical nature of the single-photon SLP. Our work paves the way toward quantum nonlinear optics without a cavity.

  9. EDITORIAL: Focus on Cold and Ultracold Molecules FOCUS ON COLD AND ULTRACOLD MOLECULES

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Ye, Jun

    2009-05-01

    Cold and ultracold molecules are the next wave of ultracold physics, giving rise to an exciting array of scientific opportunities, including many body physics for novel quantum phase transitions, new states of matter, and quantum information processing. Precision tests of fundamental physical laws benefit from the existence of molecular internal structure with exquisite control. The study of novel collision and reaction dynamics will open a new chapter of quantum chemistry. Cold molecules bring together researchers from a variety of fields, including atomic, molecular, and optical physics, chemistry and chemical physics, quantum information science and quantum simulations, condensed matter physics, nuclear physics, and astrophysics, a truly remarkable synergy of scientific explorations. For the past decade there have been steady advances in direct cooling techniques, from buffer-gas cooling to cold molecular beams to electro- and magneto-molecular decelerators. These techniques have allowed a large variety of molecules to be cooled for pioneering studies. Recent amazing advances in experimental techniques combining the ultracold and the ultraprecise have furthermore brought molecules to the point of quantum degeneracy. These latter indirect cooling techniques magnetically associate atoms from a Bose-Einstein condensate and/or a quantum degenerate Fermi gas, transferring at 90% efficiency highly excited Fano-Feshbach molecules, which are on the order of 10 000 Bohr radii in size, to absolute ground state molecules just a few Bohr across. It was this latter advance, together with significant breakthroughs in internal state manipulations, which inspired us to coordinate this focus issue now, and is the reason why we say the next wave of ultracold physics has now arrived. Whether directly or indirectly cooled, heteronuclear polar molecules offer distinct new features in comparison to cold atoms, while sharing all of their advantages (purity, high coherence, controllability, tunable interactions, no disorder, etc). First, they are more easily manipulated because of the strong response of their electric dipole moment to external electric fields, DC or AC. The electric dipole moment also creates the new aspect of long range interactions. Second, they have a rich internal structure, with vibrational and rotational states, fine or hyperfine structure, and Ω- or Λ-doublets. This internal structure allows for wonderful new possibilities in areas such as precision measurement and exquisite control of system dynamics. Therefore, although this focus issue contains a few articles on homonuclear molecules, more complex molecules such as benzene, and even a contribution on atomic chromium, which has a significant magnetic dipole moment, our main focus is on the heteronuclear polar case. This focus issue explores both direct and indirect cooling of mainly polar molecules, and the theory to support and inspire these advances. Thirty-eight research groups have contributed original work, and there are two review articles to complement these advances: the first covers cold and ultracold molecules broadly from few body to many body physics, including foundational theory, the technology to make them, and their scientific applications. The second is on the search for time variation of fundamental constants. The former review, which is comprehensive in nature, concludes with a list of open questions. This sets the tone for the focus issue, namely, openness, innovation, and possibility, an emphasis for which New Journal of Physics, an open-access journal of the highest quality, is especially fitted. Focus on Cold and Ultracold Molecules Contents Cold and ultracold molecules: science, technology and applications Lincoln D Carr, David DeMille, Roman V Krems and Jun Ye Ultracold molecules: new probes on the variation of fundamental constants Cheng Chin, V V Flambaum and M G Kozlov Probing the unitarity limit at low laser intensities Philippe Pellegrini and Robin Côté Single-photon molecular cooling Edvardas Narevicius, S Travis Bannerman and Mark G Raizen Quantum simulations of extended Hubbard models with dipolar crystals M Ortner, A Micheli, G Pupillo and P Zoller Collisional and molecular spectroscopy in an ultracold Bose-Bose mixture G Thalhammer, G Barontini, J Catani, F Rabatti, C Weber, A Simoni, F Minardi and M Inguscio Multi-channel modelling of the formation of vibrationally cold polar KRb molecules Svetlana Kotochigova, Eite Tiesinga and Paul S Julienne Formation of ultracold, highly polar X1Σ+ NaCs molecules C Haimberger, J Kleinert, P Zabawa, A Wakim and N P Bigelow Quantum polarization spectroscopy of correlations in attractive fermionic gases T Roscilde, M Rodríguez, K Eckert, O Romero-Isart, M Lewenstein, E Polzik and A Sanpera Inelastic semiclassical collisions in cold dipolar gases Michael Cavagnero and Catherine Newell Quasi-universal dipolar scattering in cold and ultracold gases J L Bohn, M Cavagnero and C Ticknor Stark deceleration of lithium hydride molecules S K Tokunaga, J M Dyne, E A Hinds and M R Tarbutt Molecular vibrational cooling by optical pumping with shaped femtosecond pulses D Sofikitis, S Weber, A Fioretti, R Horchani, M Allegrini, B Chatel, D Comparat and P Pillet Deeply bound ultracold molecules in an optical lattice Johann G Danzl, Manfred J Mark, Elmar Haller, Mattias Gustavsson, Russell Hart, Andreas Liem, Holger Zellmer and Hanns-Christoph Nägerl Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb K Aikawa, D Akamatsu, J Kobayashi, M Ueda, T Kishimoto and S Inouye Influence of a Feshbach resonance on the photoassociation of LiCs J Deiglmayr, P Pellegrini, A Grochola, M Repp, R Côté, O Dulieu, R Wester and M Weidemüller The kinematic cooling of molecules with laser-cooled atoms Ken Takase, Larry A Rahn, David W Chandler and Kevin E Strecker Coherent collapses of dipolar Bose-Einstein condensates for different trap geometries J Metz, T Lahaye, B Fröhlich, A Griesmaier, T Pfau, H Saito, Y Kawaguchi and M Ueda High-energy-resolution molecular beams for cold collision studies L P Parazzoli, N Fitch, D S Lobser and H J Lewandowski Collisional effects in the formation of cold guided beams of polar molecules M Motsch, C Sommer, M Zeppenfeld, L D van Buuren, P W H Pinkse and G Rempe Towards sympathetic cooling of large molecules: cold collisions between benzene and rare gas atoms P Barletta, J Tennyson and P F Barker Efficient formation of ground-state ultracold molecules via STIRAP from the continuum at a Feshbach resonance Elena Kuznetsova, Marko Gacesa, Philippe Pellegrini, Susanne F Yelin and Robin Côté Emergent timescales in entangled quantum dynamics of ultracold molecules in optical lattices M L Wall and L D Carr Rotational state resolved photodissociation spectroscopy of translationally and vibrationally cold MgH+ ions: toward rotational cooling of molecular ions K Højbjerre, A K Hansen, P S Skyt, P F Staanum and M Drewsen Collective transverse cavity cooling of a dense molecular beam Thomas Salzburger and Helmut Ritsch A Stark decelerator on a chip Samuel A Meek, Horst Conrad and Gerard Meijer Deceleration of molecules by dipole force potential: a numerical simulation Susumu Kuma and Takamasa Momose Ultracold molecules: vehicles to scalable quantum information processing Kathy-Anne Brickman Soderberg, Nathan Gemelke and Cheng Chin Magnetic field modification of ultracold molecule-molecule collisions T V Tscherbul, Yu V Suleimanov, V Aquilanti and R V Krems Spectroscopy of 39K85Rb triplet excited states using ultracold a 3Σ+ state molecules formed by photoassociation J T Kim, D Wang, E E Eyler, P L Gould and W C Stwalley Pumping vortex into a Bose-Einstein condensate of heteronuclear molecules Z F Xu, R Q Wang and L You Intense atomic and molecular beams via neon buffer-gas cooling David Patterson, Julia Rasmussen and John M Doyle Dynamical properties of dipolar Fermi gases T Sogo, L He, T Miyakawa, S Yi, H Lu and H Pu Collisions of bosonic ultracold polar molecules in microwave traps Alexander V Avdeenkov Cold TiO(X3Δ)-He collisions Mei-Ju Lu and Jonathan D Weinstein Investigation of dephasing rates in an interacting Rydberg gas U Raitzsch, R Heidemann, H Weimer, B Butscher, P Kollmann, R Löw, H P Büchler and T Pfau Impact of electric fields on highly excited rovibrational states of polar dimers Rosario González-Férez and Peter Schmelcher Phase transition from straight into twisted vortex lines in dipolar Bose-Einstein condensates M Klawunn and L Santos Stimulating the production of deeply bound RbCs molecules with laser pulses: the role of spin-orbit coupling in forming ultracold molecules Subhas Ghosal, Richard J Doyle, Christiane P Koch and Jeremy M Hutson Sensitive measurement of mp/me variance using vibrational transition frequencies of cold molecules Masatoshi Kajita

  10. Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate.

    PubMed

    Soe, We-Hyo; Manzano, Carlos; Renaud, Nicolas; de Mendoza, Paula; De Sarkar, Abir; Ample, Francisco; Hliwa, Mohamed; Echavarren, Antonio M; Chandrasekhar, Natarajan; Joachim, Christian

    2011-02-22

    Quantum states of a trinaphthylene molecule were manipulated by putting its naphthyl branches in contact with single Au atoms. One Au atom carries 1-bit of classical information input that is converted into quantum information throughout the molecule. The Au-trinaphthylene electronic interactions give rise to measurable energy shifts of the molecular electronic states demonstrating a NOR logic gate functionality. The NOR truth table of the single molecule logic gate was characterized by means of scanning tunnelling spectroscopy.

  11. Tomography of a Probe Potential Using Atomic Sensors on Graphene.

    PubMed

    Wyrick, Jonathan; Natterer, Fabian D; Zhao, Yue; Watanabe, Kenji; Taniguchi, Takashi; Cullen, William G; Zhitenev, Nikolai B; Stroscio, Joseph A

    2016-12-27

    Our ability to access and explore the quantum world has been greatly advanced by the power of atomic manipulation and local spectroscopy with scanning tunneling and atomic force microscopes, where the key technique is the use of atomically sharp probe tips to interact with an underlying substrate. Here we employ atomic manipulation to modify and quantify the interaction between the probe and the system under study that can strongly affect any measurement in low charge density systems, such as graphene. We transfer Co atoms from a graphene surface onto a probe tip to change and control the probe's physical structure, enabling us to modify the induced potential at a graphene surface. We utilize single Co atoms on a graphene field-effect device as atomic scale sensors to quantitatively map the modified potential exerted by the scanning probe over the whole relevant spatial and energy range.

  12. Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    NASA Astrophysics Data System (ADS)

    Poulin, Jerome; Light, Philip S.; Kashyap, Raman; Luiten, Andre N.

    2011-11-01

    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow beam can confine cold atoms to the darkest regions of the beam, thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and a guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-μm-radius core hollow fiber, it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When the MOT is positioned farther away, coupling efficiencies over 50% can be achieved with larger core fibers.

  13. PHARAO laser source flight model: Design and performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the lasermore » source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.« less

  14. Trapping cold ground state argon atoms.

    PubMed

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  15. Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, D. H.; Mittal, S.; Dagenais, M.; Rolston, S. L.

    2013-04-01

    An integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a one dimensional optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps.

  16. Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas.

    PubMed

    Hansen, A K; Versolato, O O; Kłosowski, L; Kristensen, S B; Gingell, A; Schwarz, M; Windberger, A; Ullrich, J; López-Urrutia, J R Crespo; Drewsen, M

    2014-04-03

    The preparation of cold molecules is of great importance in many contexts, such as fundamental physics investigations, high-resolution spectroscopy of complex molecules, cold chemistry and astrochemistry. One versatile and widely applied method to cool molecules is helium buffer-gas cooling in either a supersonic beam expansion or a cryogenic trap environment. Another more recent method applicable to trapped molecular ions relies on sympathetic translational cooling, through collisional interactions with co-trapped, laser-cooled atomic ions, into spatially ordered structures called Coulomb crystals, combined with laser-controlled internal-state preparation. Here we present experimental results on helium buffer-gas cooling of the rotational degrees of freedom of MgH(+) molecular ions, which have been trapped and sympathetically cooled in a cryogenic linear radio-frequency quadrupole trap. With helium collision rates of only about ten per second--that is, four to five orders of magnitude lower than in typical buffer-gas cooling settings--we have cooled a single molecular ion to a rotational temperature of 7.5(+0.9)(-0.7) kelvin, the lowest such temperature so far measured. In addition, by varying the shape of, or the number of atomic and molecular ions in, larger Coulomb crystals, or both, we have tuned the effective rotational temperature from about 7 kelvin to about 60 kelvin by changing the translational micromotion energy of the ions. The extremely low helium collision rate may allow for sympathetic sideband cooling of single molecular ions, and eventually make quantum-logic spectroscopy of buffer-gas-cooled molecular ions feasible. Furthermore, application of the present cooling scheme to complex molecular ions should enable single- or few-state manipulations of individual molecules of biological interest.

  17. Quantum incommensurate skyrmion crystals and commensurate to in-commensurate transitions in cold atoms and materials with spin-orbit couplings in a Zeeman field

    NASA Astrophysics Data System (ADS)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-08-01

    In this work, we study strongly interacting spinor atoms in a lattice subject to a two dimensional (2d) anisotropic Rashba type of spin orbital coupling (SOC) and an Zeeman field. We find the interplay between the Zeeman field and the SOC provides a new platform to host rich and novel classes of quantum commensurate and in-commensurate phases, excitations and phase transitions. These commensurate phases include two collinear states at low and high Zeeman field, two co-planar canted states at mirror reflected SOC parameters respectively. Most importantly, there are non-coplanar incommensurate Skyrmion (IC-SkX) crystal phases surrounded by the four commensurate phases. New excitation spectra above all the five phases, especially on the IC-SKX phase are computed. Three different classes of quantum commensurate to in-commensurate transitions from the IC-SKX to its four neighboring commensurate phases are identified. Finite temperature behaviors and transitions are discussed. The critical temperatures of all the phases can be raised above that reachable by current cold atom cooling techniques simply by tuning the number of atoms N per site. In view of recent impressive experimental advances in generating 2d SOC for cold atoms in optical lattices, these new many-body phenomena can be explored in the current and near future cold atom experiments. Applications to various materials such as MnSi, {Fe}}0.5 {Co}}0.5Si, especially the complex incommensurate magnetic ordering in Li2IrO3 are given.

  18. Plenoptic Imaging of a Three Dimensional Cold Atom Cloud

    NASA Astrophysics Data System (ADS)

    Lott, Gordon

    2017-04-01

    A plenoptic imaging system is capable of sampling the rays of light in a volume, both spatially and angularly, providing information about the three dimensional (3D) volume being imaged. The extraction of the 3D structure of a cold atom cloud is demonstrated, using a single plenoptic camera and a single image. The reconstruction is tested against a reference image and the results discussed along with the capabilities and limitations of the imaging system. This capability is useful when the 3D distribution of the atoms is desired, such as determining the shape of an atom trap, particularly when there is limited optical access. Gratefully acknowledge support from AFRL.

  19. Single-shot imaging of trapped Fermi gas

    NASA Astrophysics Data System (ADS)

    Gajda, Mariusz; Mostowski, Jan; Sowiński, Tomasz; Załuska-Kotur, Magdalena

    2016-07-01

    Recently developed techniques allow for simultaneous measurements of the positions of all ultra-cold atoms in a trap with high resolution. Each such single-shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single-shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single-shot measurements in the case of cloud of ultra-cold noninteracting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms.

  20. Trapping hydrogen atoms from a neon-gas matrix: a theoretical simulation.

    PubMed

    Bovino, S; Zhang, P; Kharchenko, V; Dalgarno, A

    2009-08-07

    Hydrogen is of critical importance in atomic and molecular physics and the development of a simple and efficient technique for trapping cold and ultracold hydrogen atoms would be a significant advance. In this study we simulate a recently proposed trap-loading mechanism for trapping hydrogen atoms released from a neon matrix. Accurate ab initio quantum calculations are reported of the neon-hydrogen interaction potential and the energy- and angular-dependent elastic scattering cross sections that control the energy transfer of initially cold atoms are obtained. They are then used to construct the Boltzmann kinetic equation, describing the energy relaxation process. Numerical solutions of the Boltzmann equation predict the time evolution of the hydrogen energy distribution function. Based on the simulations we discuss the prospects of the technique.

  1. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    DOE PAGES

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at μg/ √Hz and μrad/s/ √Hz levels, making thismore » a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less

  2. Building Complex Kondo Impurities by Manipulating Entangled Spin Chains.

    PubMed

    Choi, Deung-Jang; Robles, Roberto; Yan, Shichao; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Gauyacq, Jean-Pierre; Lorente, Nicolás; Ternes, Markus; Loth, Sebastian

    2017-10-11

    The creation of molecule-like structures in which magnetic atoms interact controllably is full of potential for the study of complex or strongly correlated systems. Here, we create spin chains in which a strongly correlated Kondo state emerges from magnetic coupling of transition-metal atoms. We build chains up to ten atoms in length by placing Fe and Mn atoms on a Cu 2 N surface with a scanning tunneling microscope. The atoms couple antiferromagnetically via superexchange interaction through the nitrogen atom network of the surface. The emergent Kondo resonance is spatially distributed along the chain. Its strength can be controlled by mixing atoms of different transition metal elements and manipulating their spatial distribution. We show that the Kondo screening of the full chain by the electrons of the nonmagnetic substrate depends on the interatomic entanglement of the spins in the chain, demonstrating the prerequisites to build and probe spatially extended strongly correlated nanostructures.

  3. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    PubMed Central

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  4. Precision Spectroscopy on Single Cold Trapped Molecular Nitrogen Ions

    NASA Astrophysics Data System (ADS)

    Hegi, Gregor; Najafian, Kaveh; Germann, Matthias; Sergachev, Ilia; Willitsch, Stefan

    2016-06-01

    The ability to precisely control and manipulate single cold trapped particles has enabled spectroscopic studies on narrow transitions of ions at unprecedented levels of precision. This has opened up a wide range of applications, from tests of fundamental physical concepts, e.g., possible time-variations of fundamental constants, to new and improved frequency standards. So far most of these experiments have concentrated on atomic ions. Recently, however, attention has also been focused on molecular species, and molecular nitrogen ions have been identified as promising candidates for testing a possible time-variation of the proton/electron mass ratio. Here, we report progress towards precision-spectroscopic studies on dipole-forbidden vibrational transitions in single trapped N2+ ions. Our approach relies on the state-selective generation of single N2+ ions, subsequent infrared excitation using high intensity, narrow-band quantum-cascade lasers and a quantum-logic scheme for non-destructive state readout. We also characterize processes limiting the state lifetimes in our experiment, which impair the measurement fidelity. P. O. Schmidt et. al., Science 309 (2005), 749. M. Kajita et. al., Phys. Rev. A 89 (2014), 032509 M. Germann , X. Tong, S. Willitsch, Nature Physics 10 (2014), 820. X. Tong, A. Winney, S. Willitsch, Phys. Rev. Lett. 105 (2010), 143001

  5. 77 FR 42483 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... creating artificial nanoscale structures on an atom-by- atom basis using nascent atom manipulation techniques. The instrument will be used to investigate the amount of force required to move one atom on a materials surface while simultaneously measuring local electronic structural changes during atom movement...

  6. Electromagnetically Induced Absorption (EIA) and a ``Twist'' on Nonlinear Magneto-optical Rotation (NMOR) with Cold Atoms

    NASA Astrophysics Data System (ADS)

    Kunz, Paul; Meyer, David; Quraishi, Qudsia

    2015-05-01

    Within the class of nonlinear optical effects that exhibit sub-natural linewidth features, electromagnetically induced transparency (EIT) and nonlinear magneto-optical rotation (NMOR) stand out as having made dramatic impacts on various applications including atomic clocks, magnetometry, and single photon storage. A related effect, known as electromagnetically induced absorption (EIA), has received less attention in the literature. Here, we report on the first observation of EIA in cold atoms using the Hanle configuration, where a single laser beam is used to both pump and probe the atoms while sweeping a magnetic field through zero along the beam direction. We find that, associated with the EIA peak, a ``twist'' appears in the corresponding NMOR signal. A similar twist has been previously noted by Budker et al., in the context of warm vapor optical magnetometry, and was ascribed to optical pumping through nearby hyperfine levels. By studying this feature through numerical simulations and cold atom experiments, thus rendering the hyperfine levels well resolved, we enhance the understanding of the optical pumping mechanism behind it, and elucidate its relation to EIA. Finally, we demonstrate a useful application of these studies through a simple and rapid method for nulling background magnetic fields within our atom chip apparatus.

  7. Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows

    NASA Astrophysics Data System (ADS)

    Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.

  8. Photonic quantum state transfer between a cold atomic gas and a crystal.

    PubMed

    Maring, Nicolas; Farrera, Pau; Kutluer, Kutlu; Mazzera, Margherita; Heinze, Georg; de Riedmatten, Hugues

    2017-11-22

    Interfacing fundamentally different quantum systems is key to building future hybrid quantum networks. Such heterogeneous networks offer capabilities superior to those of their homogeneous counterparts, as they merge the individual advantages of disparate quantum nodes in a single network architecture. However, few investigations of optical hybrid interconnections have been carried out, owing to fundamental and technological challenges such as wavelength and bandwidth matching of the interfacing photons. Here we report optical quantum interconnection of two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be transferred faithfully between a cold atomic ensemble and a rare-earth-doped crystal by means of a single photon at 1,552  nanometre telecommunication wavelength, using cascaded quantum frequency conversion. We demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred to the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85 per cent. Our results open up the prospect of optically connecting quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks.

  9. Reply to ``Comment on `Quantum time-of-flight distribution for cold trapped atoms' ''

    NASA Astrophysics Data System (ADS)

    Ali, Md. Manirul; Home, Dipankar; Majumdar, A. S.; Pan, Alok K.

    2008-02-01

    In their comment Gomes [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali , Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.

  10. Reply to 'Comment on 'Quantum time-of-flight distribution for cold trapped atoms''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Md. Manirul; Home, Dipankar; Pan, Alok K.

    2008-02-15

    In their comment Gomes et al. [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali et al., Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.

  11. A proposed atom interferometry determination of G at 10-5 using a cold atomic fountain

    NASA Astrophysics Data System (ADS)

    Rosi, G.

    2018-02-01

    In precision metrology, the determination of the Newtonian gravity constant G represents a real problem, since its history is plagued by huge unknown discrepancies between a large number of independent experiments. In this paper, we propose a novel experimental setup for measuring G with a relative accuracy of 10-5 , using a standard cold atomic fountain and matter wave interferometry. We discuss in detail the major sources of systematic errors, and provide the expected statistical uncertainty. The feasibility of determining G at the 10-6 level is also discussed.

  12. Two-Photon Excitation of Launched Cold Atoms in Flight

    NASA Astrophysics Data System (ADS)

    Goodsell, Anne; Gonzalez, Rene; Alejandro, Eduardo; Erwin, Emma

    2017-04-01

    We demonstrate two-photon bi-chromatic excitation of cold rubidium atoms in flight, using the pathway 5S1 / 2 -> 5P3 / 2 -> 5D5 / 2 with two resonant photons. In our experiment, atoms are laser-cooled in a magneto-optical trap and launched upward in discrete clouds with a controllable vertical speed of 7.1 +/-0.6 m/s and a velocity spread that is less than 10% of the launch speed. Outside the cooling beams, as high as 14 mm above the original center of the trap, the launched cold atoms are illuminated simultaneously by spatially-localized horizontal excitation beams at 780 nm (5S1 / 2 -> 5P3 / 2) and 776 nm (5P3 / 2 -> 5D5 / 2). We monitor transmission of the 780-nm beam over a range of intensities of 780-nm and 776-nm light. As the center of the moving cloud passes the excitation beams, we observe as much as 97.9 +/-1.2% transmission when the rate of two-photon absorption is high and the 5S1 / 2 and 5P3 / 2 states are depopulated, compared to 87.6 +/-0.9% transmission if only the 780-nm beam is present. This demonstrates two-photon excitation of a launched cold-atom source with controllable launch velocity and narrow velocity spread, as a foundation for three-photon excitation to Rydberg states. Research supported by Middlebury College Bicentennial Fund, Palen Fund, and Gladstone Award.

  13. Manipulating Si(100) at 5 K using qPlus frequency modulated atomic force microscopy: Role of defects and dynamics in the mechanical switching of atoms

    NASA Astrophysics Data System (ADS)

    Sweetman, A.; Jarvis, S.; Danza, R.; Bamidele, J.; Kantorovich, L.; Moriarty, P.

    2011-08-01

    We use small-amplitude qPlus frequency modulated atomic force microscopy (FM-AFM), at 5 K, to investigate the atomic-scale mechanical stability of the Si(100) surface. By operating at zero applied bias the effect of tunneling electrons is eliminated, demonstrating that surface manipulation can be performed by solely mechanical means. Striking differences in surface response are observed between different regions of the surface, most likely due to variations in strain associated with the presence of surface defects. We investigate the variation in local energy surface by ab initio simulation, and comment on the dynamics observed during force spectroscopy.

  14. Self-organization in cold atomic gases: a synchronization perspective.

    PubMed

    Tesio, E; Robb, G R M; Oppo, G-L; Gomes, P M; Ackemann, T; Labeyrie, G; Kaiser, R; Firth, W J

    2014-10-28

    We study non-equilibrium spatial self-organization in cold atomic gases, where long-range spatial order spontaneously emerges from fluctuations in the plane transverse to the propagation axis of a single optical beam. The self-organization process can be interpreted as a synchronization transition in a fully connected network of fictitious oscillators, and described in terms of the Kuramoto model. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  16. Single and pair-wise manipulation of atoms in a 3D optical lattice

    NASA Astrophysics Data System (ADS)

    Corcovilos, Theodore; Wang, Yang; Weiss, David

    2013-05-01

    We describe the hardware used in a quantum computing experiment using individual Cs atoms in a 5 μm -spaced 3D optical lattice as qubits. Far-off-resonance addressing beams can be steered to any site in the array using MEMS mirrors within 10 μs , allowing the translation of individual atoms between lattice sites, for example to remove vacancies in the atom array, and the manipulation of single atoms for single qubit gates in < 100 μs . Two-qubit gates on adjacent atoms can be performed via the Rydberg blockade mechanism using a second MEMS system and high-NA imaging objective. The lasers for the Rydberg excitation are built using a new extended cavity diode laser design utilizing an interference filter as the frequency selecting element following Baillard, et al. (Opt. Comm. 266: 609 (2009)), but using commercially available components. We gratefully acknowledge funding from ARO and DARPA.

  17. Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient

    PubMed Central

    Zhao, N.; Zhong, Y.; Huang, M.L.; Ma, H.T.; Dong, W.

    2015-01-01

    The growth behavior of intermetallic compounds (IMCs) at the liquid-solid interfaces in Cu/Sn/Cu interconnects during reflow at 250 °C and 280 °C on a hot plate was investigated. Being different from the symmetrical growth during isothermal aging, the interfacial IMCs showed clearly asymmetrical growth during reflow, i.e., the growth of Cu6Sn5 IMC at the cold end was significantly enhanced while that of Cu3Sn IMC was hindered especially at the hot end. It was found that the temperature gradient had caused the mass migration of Cu atoms from the hot end toward the cold end, resulting in sufficient Cu atomic flux for interfacial reaction at the cold end while inadequate Cu atomic flux at the hot end. The growth mechanism was considered as reaction/thermomigration-controlled at the cold end and grain boundary diffusion/thermomigration-controlled at the hot end. A growth model was established to explain the growth kinetics of the Cu6Sn5 IMC at both cold and hot ends. The molar heat of transport of Cu atoms in molten Sn was calculated as + 11.12 kJ/mol at 250 °C and + 14.65 kJ/mol at 280 °C. The corresponding driving force of thermomigration in molten Sn was estimated as 4.82 × 10−19 N and 6.80 × 10−19 N. PMID:26311323

  18. Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Dong, Lin

    Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have become an emergent field of theoretical and experimental studies. Because of the novel application of two-photon Raman transitions, ultra-cold neutral atoms behave like charged particles in magnetic field. The Raman coupling naturally gives rise to an effective spin-orbit interaction which couples the atoms center-of-mass motion to its selected pseudo-spin degrees of freedom. Combined with unprecedented controllability of interactions, geometry, disorder strength, spectroscopy, and high resolution measurement of momentum distribution, etc., we are truly in an exciting era of fulfilling and going beyond Richard Feynman's vision. of realizing quantum simulators to better understand the quantum mechanical nature of the universe, manifested immensely in the ultra-cold regimes. In this dissertation, we present a collection of theoretical progresses made by the doctoral candidate and his colleagues and collaborators. From the past few years of work, we mainly address three aspects of the synthetic spin-orbit and light field induced coupling in ultracold quantum gases: a) The ground-state physics of singleparticle system, two-body bound states, and many-body systems, all of which are subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The symmetry breaking, topological phase transition and quench dynamics, which are conveniently offered by the realized experimental setup; c) The proposal and implications of light field induced dynamical spin-orbit coupling for atoms inside optical cavity. Our work represents an important advancement of theoretical understanding to the active research frontier of ultra-cold atom physics with spin-orbit coupling.

  19. Correlation between Geometrically Induced Oxygen Octahedral Tilts and Multiferroic Behaviors in BiFeO 3 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Su; Kim, Young-Min; Lee, Hyun-Jae

    The equilibrium position of atoms in a unit cell is directly connected to crystal functionalities, e.g., ferroelectricity, ferromagnetism, and piezoelectricity. The artificial tuning of the energy landscape can involve repositioning atoms as well as manipulating the functionalities of perovskites (ABO 3), which are good model systems to test this legacy. Mechanical energy from external sources accommodating various clamping substrates is utilized to perturb the energy state of perovskite materials fabricated on the substrates and consequently change their functionalities; however, this approach yields undesired complex behaviors of perovskite crystals, such as lattice distortion, displacement of B atoms, and/or tilting of oxygenmore » octahedra. Owing to complimentary collaborations between experimental and theoretical studies, the effects of both lattice distortion and displacement of B atoms are well understood so far, which leaves us a simple question: Can we exclusively control the positions of oxygen atoms in perovskites for functionality manipulation? Here the artificial manipulation of oxygen octahedral tilt angles within multiferroic BiFeO 3 thin films using strong oxygen octahedral coupling with bottom SrRuO 3 layers is reported, which opens up new possibilities of oxygen octahedral engineering.« less

  20. Correlation between Geometrically Induced Oxygen Octahedral Tilts and Multiferroic Behaviors in BiFeO 3 Films

    DOE PAGES

    Lee, Sung Su; Kim, Young-Min; Lee, Hyun-Jae; ...

    2018-03-26

    The equilibrium position of atoms in a unit cell is directly connected to crystal functionalities, e.g., ferroelectricity, ferromagnetism, and piezoelectricity. The artificial tuning of the energy landscape can involve repositioning atoms as well as manipulating the functionalities of perovskites (ABO 3), which are good model systems to test this legacy. Mechanical energy from external sources accommodating various clamping substrates is utilized to perturb the energy state of perovskite materials fabricated on the substrates and consequently change their functionalities; however, this approach yields undesired complex behaviors of perovskite crystals, such as lattice distortion, displacement of B atoms, and/or tilting of oxygenmore » octahedra. Owing to complimentary collaborations between experimental and theoretical studies, the effects of both lattice distortion and displacement of B atoms are well understood so far, which leaves us a simple question: Can we exclusively control the positions of oxygen atoms in perovskites for functionality manipulation? Here the artificial manipulation of oxygen octahedral tilt angles within multiferroic BiFeO 3 thin films using strong oxygen octahedral coupling with bottom SrRuO 3 layers is reported, which opens up new possibilities of oxygen octahedral engineering.« less

  1. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback.

    PubMed

    Jesse, Stephen; Hudak, Bethany M; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C; Lupini, Andrew R; Borisevich, Albina Y; Kalinin, Sergei V

    2018-06-22

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  2. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback

    NASA Astrophysics Data System (ADS)

    Jesse, Stephen; Hudak, Bethany M.; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C.; Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.

    2018-06-01

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore’s law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  3. Tunable atom-light beam splitter using electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Zhu, Xinyu; Wen, Rong; Chen, J. F.

    2018-06-01

    With electromagnetically induced transmission (EIT), an optical field can be converted into collective atomic excitation and stored in the atomic medium through switching off the strong-coupling field adiabatically. By varying the power of the coupling pulse, we can control the ratio between the transmitted optical field and the stored atomic mode. We use a cloud of cold 85Rb atoms prepared in magneto-optical trap as the experimental platform. Based on a model of EIT dark-state polariton, we consider the real case where the atomic medium has a finite length. The theoretical calculation gives numerical results that agree well with the experimental data. The results show that the ratio can be changed approximately from 0 to 100%, when the maximum power of the coupling pulse (the pulse length is 100 ns) varies from 0 to 20 mW, in the cold atomic ensemble with an optical depth of 40. This process can be used to achieve an atom-light hybrid beam splitter with tunable splitting ratio and thus find potential application in interferometric measurement and quantum information processing.

  4. Competing bosonic condensates in optical lattice with a mixture of single and pair hoppings

    NASA Astrophysics Data System (ADS)

    Travin, V. M.; Kopeć, T. K.

    2017-01-01

    A system of ultra-cold atoms with single boson and pair tunneling of bosonic atoms is considered in an optical lattice at arbitrary temperature. A mean-field theory was applied to the extended Bose-Hubbard Hamiltonian describing the system in order to investigate the competition between superfluid and pair superfluid as a function of the chemical potential and the temperature. To this end we have applied a method based on the Laplace transform method for the efficient calculation of the statistical sum for the quantum Hamiltonian. These results may be of interest for experiments on cold atom systems in optical lattices.

  5. Cold atoms as a coolant for levitated optomechanical systems

    NASA Astrophysics Data System (ADS)

    Ranjit, Gambhir; Montoya, Cris; Geraci, Andrew A.

    2015-01-01

    Optically trapped dielectric objects are well suited for reaching the quantum regime of their center-of-mass motion in an ultrahigh-vacuum environment. We show that ground-state cooling of an optically trapped nanosphere is achievable when starting at room temperature, by sympathetic cooling of a cold-atomic gas optically coupled to the nanoparticle. Unlike cavity cooling in the resolved-sideband limit, this system requires only a modest cavity finesse and it allows the cooling to be turned off, permitting subsequent observation of strongly coupled dynamics between the atoms and sphere. Nanospheres cooled to their quantum ground state could have applications in quantum information science or in precision sensing.

  6. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  7. The Search for a Cold War Grand Strategy: NSC 68 & 162

    DTIC Science & Technology

    2014-05-22

    Robert Dallek, Harry S. Truman (New York: Times Books, 2008); Ernest R. May, American Cold War Strategy (New York: Bedford Books of St. Martin’s Press...Gave the Soviets the Atomic Bomb (New Haven: Yale University Press, 2009), 119. 32Robert C. Williams , Klaus Fuchs, Atom Spy (Cambridge, MA: Harvard...possibilities, including preemptive buying.”52 Dr. Ernest O. Lawrence was the final consultant engaged by the State-Defense Policy Review Group. The

  8. Subwavelength atom localization via coherent manipulation of the Raman gain process

    NASA Astrophysics Data System (ADS)

    Qamar, Sajid; Mehmood, Asad; Qamar, Shahid

    2009-03-01

    We present a simple scheme of atom localization in a subwavelength domain via manipulation of Raman gain process. We consider a four-level system with a pump and a weak probe field. In addition, we apply a coherent field to control the gain process. The system is similar to the one used by Agarwal and Dasgupta [Phys. Rev. A 70, 023802 (2004)] for the superluminal pulse propagation through Raman gain medium. For atom localization, we consider both pump and control fields to be the standing-wave fields of the cavity. We show that a much precise position of an atom passing through the standing-wave fields can be determined by measuring the gain spectrum of the probe field.

  9. The Carina Nebula and Gum 31 molecular complex - II. The distribution of the atomic gas revealed in unprecedented detail

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Green, Anne J.; Burton, Michael; Brooks, Kate; Breen, Shari L.; Gaensler, B. M.; Contreras, Yanett; Braiding, Catherine; Purcell, Cormac

    2017-12-01

    We report high spatial resolution observations of the H I 21cm line in the Carina Nebula and the Gum 31 region obtained with the Australia Telescope Compact Array. The observations covered ∼12 °^2 centred on l = 287.5°, b = -1°, achieving an angular resolution of ∼35 arcsec. The H I map revealed complex filamentary structures across a wide range of velocities. Several 'bubbles' are clearly identified in the Carina Nebula complex, produced by the impact of the massive star clusters located in this region. An H I absorption profile obtained towards the strong extragalactic radio source PMN J1032-5917 showed the distribution of the cold component of the atomic gas along the Galactic disc, with the Sagittarius-Carina and Perseus spiral arms clearly distinguishable. Preliminary calculations of the optical depth and spin temperatures of the cold atomic gas show that the H I line is opaque (τ ≳ 2) at several velocities in the Sagittarius-Carina spiral arm. The spin temperature is ∼100 K in the regions with the highest optical depth, although this value might be lower for the saturated components. The atomic mass budget of Gum 31 is ∼35 per cent of the total gas mass. H I self-absorption features have molecular counterparts and good spatial correlation with the regions of cold dust as traced by the infrared maps. We suggest that in Gum 31 regions of cold temperature and high density are where the atomic to molecular gas-phase transition is likely to be occurring.

  10. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    PubMed

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  11. Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.

    PubMed

    Araújo, Michelle O; Krešić, Ivor; Kaiser, Robin; Guerin, William

    2016-08-12

    Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.

  12. Beyond mean-field effects in Bloch Oscillations of cold atoms in an optical cavity

    NASA Astrophysics Data System (ADS)

    Venkatesh Balasubramanian, Prasanna; O'Dell, Duncan

    2012-06-01

    In our earlier publication [1] we proposed using Bloch oscillations of cold atoms inside an Fabry-Perot resonator for sensitive measurements of force. The analysis in [1] was performed using a coherent mean-field description for the atoms and the light. In the current work we extend this description substantially by including the effects of fluctuations in both the atomic and light fields. This analysis is used to set realistic limits on the precision to which the force can be measured. We also make contact with the optomechanical description of the combined atom-cavity system which has proved so successful for describing recent pioneering experiments [2].[4pt] [1] B. Prasanna Venkatesh et al, Phys. Rev. A 80, 063834 (2009).[0pt] [2] S. Gupta et al, Phys. Rev. Lett. 99, 213601 (2007); F.Brennecke et al, Science 322, 235 (2008).

  13. High-stability compact atomic clock based on isotropic laser cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esnault, Francois-Xavier; Holleville, David; Rossetto, Nicolas

    2010-09-15

    We present a compact cold-atom clock configuration where isotropic laser cooling, microwave interrogation, and clock signal detection are successively performed inside a spherical microwave cavity. For ground operation, a typical Ramsey fringe width of 20 Hz has been demonstrated, limited by the atom cloud's free fall in the cavity. The isotropic cooling light's disordered properties provide a large and stable number of cold atoms, leading to a high signal-to-noise ratio limited by atomic shot noise. A relative frequency stability of 2.2x10{sup -13{tau}-1/2} has been achieved, averaged down to 4x10{sup -15} after 5x10{sup 3} s of integration. Development of such amore » high-performance compact clock is of major relevance for on-board applications, such as satellite-positioning systems. As a cesium clock, it opens the door to a new generation of compact primary standards and timekeeping devices.« less

  14. Compact Single Site Resolution Cold Atom Experiment for Adiabatic Quantum Computing

    DTIC Science & Technology

    2016-02-03

    goal of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically 1. REPORT DATE (DD-MM-YYYY) 4...of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically separated and optically addressed...Specifically, we will design and construct a set of compact single atom traps with integrated optics, suitable for heralded entanglement and loophole

  15. 2-qubit quantum state transfer in spin chains and cold atoms with weak links

    NASA Astrophysics Data System (ADS)

    Lorenzo, Salvatore; Apollaro, Tony J. G.; Trombettoni, Andrea; Paganelli, Simone

    In this paper we discuss the implementation of 2-qubit quantum state transfer (QST) in inhomogeneous spin chains where the sender and the receiver blocks are coupled through the bulk channel via weak links. The fidelity and the typical timescale of the QST are discussed as a function of the parameters of the weak links. Given the possibility of implementing with cold atoms in optical lattices a variety of condensed matter systems, including spin systems, we also discuss the possible implementation of the discussed 2-qubit QST with cold gases with weak links, together with a discussion of the applications and limitations of the presented results.

  16. Multivessel system for cold-vapor mercury generation. Determination of mercury in hair and fish.

    PubMed

    Boaventura, G R; Barbosa, A C; East, G A

    1997-01-01

    A multivessel system for the determination of mercury (Hg) by cold-vapor atomic absorption spectrometry (CV-AAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed. The performance of the proposed device was tested by determining total Hg in quality-control samples of hair and fishes following acid digestion. Application of the apparatus to the determination of Hg by CV-AAS following alkaline digestion was studied as well. The detection limit obtained for CV-AAS was 0.11 ng/mL and for ICP-AES 1.39 ng/mL. The results show that the system is appropriate to be used in techniques involving cold-vapor generation of Hg.

  17. Microscopy of the interacting Harper-Hofstadter model in the few-body limit

    NASA Astrophysics Data System (ADS)

    Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Borgnia, Dan; Preiss, Philipp; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus

    2017-04-01

    The interplay of magnetic fields and interacting particles can lead to exotic phases of matter exhibiting topological order and high degrees of spatial entanglement. While these phases were discovered in a solid-state setting, recent techniques have enabled the realization of gauge fields in systems of ultracold neutral atoms, offering a new experimental paradigm for studying these novel states of matter. This complementary platform holds promise for exploring exotic physics in fractional quantum Hall systems due to the microscopic manipulation and precision possible in cold atom systems. However, these experiments thus far have mostly explored the regime of weak interactions. Here, we show how strong interactions can modify the propagation of particles in a 2 × N , real-space ladder governed by the Harper-Hofstadter model. We observe inter-particle interactions affect the populating of chiral bands, giving rise to chiral dynamics whose multi-particle correlations indicate both bound and free-particle character. The novel form of interaction-induced chirality observed in these experiments demonstrates the essential ingredients for future investigations of highly entangled topological phases of many-body systems. We are supported by Grants from the National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program, an Army Research Office MURI program, and the NSF GRFP (MNR).

  18. Population kinetics on K alpha lines of partially ionized Cl atoms.

    PubMed

    Kawamura, Tohru; Nishimura, Hiroaki; Koike, Fumihiro; Ochi, Yoshihiro; Matsui, Ryoji; Miao, Wen Yong; Okihara, Shinichiro; Sakabe, Shuji; Uschmann, Ingo; Förster, Eckhart; Mima, Kunioki

    2002-07-01

    A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.

  19. Theory of a Quantum Scanning Microscope for Cold Atoms

    NASA Astrophysics Data System (ADS)

    Yang, D.; Laflamme, C.; Vasilyev, D. V.; Baranov, M. A.; Zoller, P.

    2018-03-01

    We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

  20. Theory of a Quantum Scanning Microscope for Cold Atoms.

    PubMed

    Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P

    2018-03-30

    We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

  1. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  2. When You're Hot, You're Hot! Warm-Cold Effects in First Impressions of Persons and Teaching Effectiveness.

    ERIC Educational Resources Information Center

    Widmeyer, W. Neil; Loy, John W.

    1988-01-01

    The warm/cold manipulation's effect on first impressions of persons and teaching ability was studied using 240 university students. The lecturer was perceived as more effective and less unpleasant when students were told in advance that he was a warm person. Neither academic discipline nor sex influenced student perceptions. (SLD)

  3. EPA Method 245.2: Mercury (Automated Cold Vapor Technique)

    EPA Pesticide Factsheets

    Method 245.2 describes procedures for preparation and analysis of drinking water samples for analysis of mercury using acid digestion and cold vapor atomic absorption. Samples are prepared using an acid digestion technique.

  4. Steady-State Solutions Originating from an Enhanced Nonlinear Feedback in a Hybrid Opto-mechanical System

    NASA Astrophysics Data System (ADS)

    Fan, Qiu-Bo; Wang, Yi-Ru; Chen, Jin; Pan, Yue-Wu; Han, Bai-Ping; Fu, Chang-Bao; Sun, Yan

    2017-06-01

    The steady-state properties of a hybrid system are investigated in this paper. Many cold atoms in the four-level tripod configuration are confined in an optical cavity with a movable end mirror. The confined cold atoms are driven with two external classical fields and an internal cavity field. The internal cavity field is excited by an external driving field and shows a radiation pressure upon the movable end mirror. The coupling of atom-light and opto-mechanical interactions is enhanced by embedding a four-level atomic system in a typical opto-mechanical cavity. And an enhanced nonlinear feedback mechanism is offered by the enhanced coupling, which permits the observation of five and three steady-state solutions for relevant variables near two-photon resonance. The enhanced nonlinear feedback mechanism also allows us to observe the obvious difference in the double-EIT phenomenon between the atom-assisted opto-mechanical system and usual atom-field system.

  5. 77 FR 52683 - UChicago Argonne, LLC, Notice of Decision on Applications for Duty-Free Entry of Scientific...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... science. This instrument is specialized for creating artificial nanoscale structures on an atom-by-atom basis using nascent atom manipulation techniques. The instrument will be used to investigate the amount of force required to move one atom on a materials surface while simultaneously measuring local...

  6. Cooperative single-photon subradiant states in a three-dimensional atomic array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2016-11-15

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative schememore » for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.« less

  7. Lasers, Cold Atoms and Atomic Clocks: Realizing the Second Today

    NASA Astrophysics Data System (ADS)

    Calonico, Davide

    2013-09-01

    The time is the physical quantity that mankind could measure with the best accuracy, thanks to the properties of the atomic physics, as the present definition of time is based on atomic energy transitions. This short review gives some basic information on the heart of the measurement of time in the contemporary world, i.e. the atomic clocks, and some trends related.

  8. DARPA looks beyond GPS for positioning, navigating, and timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, David

    Cold-atom interferometry, microelectromechanical systems, signals of opportunity, and atomic clocks are some of the technologies the defense agency is pursuing to provide precise navigation when GPS is unavailable.

  9. Cooperative effects between color centers in diamond: applications to optical tweezers and optomechanics

    NASA Astrophysics Data System (ADS)

    Bradac, Carlo; Prasanna Venkatesh, B.; Besga, Benjamin; Johnsson, Mattias; Brennen, Gavin; Molina-Terriza, Gabriel; Volz, Thomas; Juan, Mathieu L.

    2017-08-01

    Since the early work by Ashkin in 1970,1 optical trapping has become one of the most powerful tools for manipulating small particles, such as micron sized beads2 or single atoms.3 Interestingly, both an atom and a lump of dielectric material can be manipulated through the same mechanism: the interaction energy of a dipole and the electric field of the laser light. In the case of atom trapping, the dominant contribution typically comes from the allowed optical transition closest to the laser wavelength while it is given by the bulk polarisability for mesoscopic particles. This difference lead to two very different contexts of applications: one being the trapping of small objects mainly in biological settings,4 the other one being dipole traps for individual neutral atoms5 in the field of quantum optics. In this context, solid state artificial atoms present the interesting opportunity to combine these two aspects of optical manipulation. We are particularly interested in nanodiamonds as they constitute a bulk dielectric object by themselves, but also contain artificial atoms such as nitrogen-vacancy (NV) or silicon-vacancy (SiV) colour centers. With this system, both regimes of optical trapping can be observed at the same time even at room temperature. In this work, we demonstrate that the resonant force from the optical transition of NV centres at 637 nm can be measured in a nanodiamond trapped in water. This additional contribution to the total force is significant, reaching up to 10%. In addition, due to the very large density of NV centres in a sub-wavelength crystal, collective effects between centres have an important effect on the magnitude of the resonant force.6 The possibility to observe such cooperatively enhanced optical force at room temperature is also theoretically confirmed.7 This approach may enable the study of cooperativity in various nanoscale solid-state systems and the use of atomic physics techniques in the field of nano-manipulation and opto-mechanics.

  10. Lurking systematics in dust-based estimates of galaxy ISM masses

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle

    2018-01-01

    We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. With observations of cold neutral atomic and molecular gas, we calibrate predictive relationships using infrared dust emission and gas depletion time methods. We derive a set of self-consistent predictions of cold gas masses with ~20% scatter, and the greatest accuracy for total cold gas mass. However, significant systematic residuals are found in all calibrations which depend strongly on the molecular-to-atomic hydrogen mass ratio, and they can over/under-predict gas masses by >0.5 dex. Extending these types of indirect predictions to high-z galaxies (e.g., using ALMA observations of dust continuum to determine gas masses) requires implicit assumptions about the conditions in their interstellar medium. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.

  11. Interaction-induced conducting-non-conducting transition of ultra-cold atoms in one-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Chien, Chih-Chun; Gruss, Daniel; Di Ventra, Massimiliano; Zwolak, Michael

    2013-06-01

    The study of time-dependent, many-body transport phenomena is increasingly within reach of ultra-cold atom experiments. We show that the introduction of spatially inhomogeneous interactions, e.g., generated by optically controlled collisions, induce negative differential conductance in the transport of atoms in one-dimensional optical lattices. Specifically, we simulate the dynamics of interacting fermionic atoms via a micro-canonical transport formalism within both a mean-field and a higher-order approximation, as well as with a time-dependent density-matrix renormalization group (DMRG). For weakly repulsive interactions, a quasi-steady-state atomic current develops that is similar to the situation occurring for electronic systems subject to an external voltage bias. At the mean-field level, we find that this atomic current is robust against the details of how the interaction is switched on. Further, a conducting-non-conducting transition exists when the interaction imbalance exceeds some threshold from both our approximate and time-dependent DMRG simulations. This transition is preceded by the atomic equivalent of negative differential conductivity observed in transport across solid-state structures.

  12. Integrated Optical Dipole Trap for Cold Neutral Atoms with an Optical Waveguide Coupler

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, D. H.; Mittal, S.; Meng, Y.; Dagenais, M.; Rolston, S. L.

    2013-05-01

    Using an optical waveguide, an integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a 1D optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps and present current research progress towards a fiber-coupled silicon nitride optical waveguide integrable with atom chips. Work is supported by the ARO Atomtronics MURI. Work is supported by the ARO Atomtronics MURI.

  13. Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2017-04-01

    Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].

  14. Nanotechnology: Fundamental Principles and Applications

    NASA Astrophysics Data System (ADS)

    Ranjit, Koodali T.; Klabunde, Kenneth J.

    Nanotechnology research is based primarily on molecular manufacturing. Although several definitions have been widely used in the past to describe the field of nanotechnology, it is worthwhile to point out that the National Nanotechnology Initiative (NNI), a federal research and development scheme approved by the congress in 2001 defines nanotechnology only if the following three aspects are involved: (1) research and technology development at the atomic, molecular, or macromolecular levels, in the length scale of approximately 1-100 nanometer range, (2) creating and using structures, devices, and systems that have novel properties and functions because of their small and/or intermediate size, and (3) ability to control or manipulate on the atomic scale. Nanotechnology in essence is the technology based on the manipulation of individual atoms and molecules to build complex structures that have atomic specifications.

  15. Topological bound states of a quantum walk with cold atoms

    NASA Astrophysics Data System (ADS)

    Mugel, Samuel; Celi, Alessio; Massignan, Pietro; Asbóth, János K.; Lewenstein, Maciej; Lobo, Carlos

    2016-08-01

    We suggest a method for engineering a quantum walk, with cold atoms as walkers, which presents topologically nontrivial properties. We derive the phase diagram, and show that we are able to produce a boundary between topologically distinct phases using the finite beam width of the applied lasers. A topologically protected bound state can then be observed, which is pinned to the interface and is robust to perturbations. We show that it is possible to identify this bound state by averaging over spin sensitive measures of the atom's position, based on the spin distribution that these states display. Interestingly, there exists a parameter regime in which our system maps on to the Creutz ladder.

  16. Fifteen years of cold matter on the atom chip: promise, realizations, and prospects

    PubMed Central

    Keil, Mark; Amit, Omer; Zhou, Shuyu; Groswasser, David; Japha, Yonathan; Folman, Ron

    2016-01-01

    Here we review the field of atom chips in the context of Bose–Einstein Condensates (BEC) as well as cold matter in general. Twenty years after the first realization of the BEC and 15 years after the realization of the atom chip, the latter has been found to enable extraordinary feats: from producing BECs at a rate of several per second, through the realization of matter-wave interferometry, and all the way to novel probing of surfaces and new forces. In addition, technological applications are also being intensively pursued. This review will describe these developments and more, including new ideas which have not yet been realized. PMID:27499585

  17. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, Suleyman B.; Sordelet, Daniel J.; Lograsso, Barbara K.; Anderson, Iver E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).

  18. Influence of quantum effects on the parameters of a cold cathode with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Kolesnikova, A. S.; Slepchenkov, M. M.

    2016-01-01

    We consider the effect of an external electric field on the parameters of a cold cathode on carbon nanotubes using the quantum-mechanical approach to the description of the interaction of the field with the atomic structure of nanoemitters. It is established for the first time that an increase in the length of the emitting edge of the tube in a field of 10-11 V/nm increases the field emission current of electrons by 3-10%. It is found that in a field of 11 V/nm and higher, atoms of the upper edge of a carbon nanotube are detached with the subsequent destruction of the atomic core.

  19. Theory of a peristaltic pump for fermionic quantum fluids

    NASA Astrophysics Data System (ADS)

    Romeo, F.; Citro, R.

    2018-05-01

    Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.

  20. NASA Tech Briefs, July 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics: Optoelectronic Sensor System for Guidance in Docking; Hybrid Piezoelectric/Fiber-Optic Sensor Sheets; Multisensor Arrays for Greater Reliability and Accuracy; Integrated-Optic Oxygen Sensors; Ka-Band Autonomous Formation Flying Sensor; CMOS VLSI Active-Pixel Sensor for Tracking; Lightweight, Self-Deploying Foam Antenna Structures; Electrically Small Microstrip Quarter-Wave Monopole Antennas; A 2-to-28-MHz Phase-Locked Loop; Portable Electromyograph; Open-Source Software for Modeling of Nanoelectronic Devices; Software for Generating Strip Maps from SAR Data; Calibration Software for use with Jurassicprok; Software for Probabilistic Risk Reduction; Software Processes SAR Motion-Measurement Data; Improved Method of Purifying Carbon Nanotubes; Patterned Growth of Carbon Nanotubes or Nanofibers; Lightweight, Rack-Mountable Composite Cold Plate/Shelves; SiC-Based Miniature High-Temperature Cantilever Anemometer; Inlet Housing for a Partial-Admission Turbine; Lightweight Thermoformed Structural Components and Optics; Growing High-Quality InAs Quantum Dots for Infrared Lasers; Selected Papers on Protoplanetary Disks; Module for Oxygenating Water without Generating Bubbles; Coastal Research Imaging Spectrometer; Rapid Switching and Modulation by use of Coupled VCSELs; Laser-Induced-Fluorescence Photogrammetry and Videogrammetry; Laboratory Apparatus Generates Dual-Species Cold Atomic Beam; Laser Ablation of Materials for Propulsion of Spacecraft; Small Active Radiation Monitor; Hybrid Image-Plane/Stereo Manipulation; Partitioning a Gridded Rectangle into Smaller Rectangles; Digital Radar-Signal Processors Implemented in FPGAs; Part 1 of a Computational Study of a Drop-Laden Mixing Layer; and Some Improvements in Signal-Conditioning Circuits.

  1. Novel Infrared Dynamics of Cold Atoms on Hot Graphene

    NASA Astrophysics Data System (ADS)

    Sengupta, Sanghita; Kotov, Valeri; Clougherty, Dennis

    The low-energy dynamics of cold atoms interacting with macroscopic graphene membranes exhibits severe infrared divergences when treated perturbatively. These infrared problems are even more pronounced at finite temperature due to the (infinitely) many flexural phonons excited in graphene. We have devised a technique to take account (resummation) of such processes in the spirit of the well-known exact solution of the independent boson model. Remarkably, there is also similarity to the infrared problems and their treatment (via the Bloch-Nordsieck scheme) in finite temperature ``hot'' quantum electrodynamics and chromodynamics due to the long-range, unscreened nature of gauge interactions. The method takes into account correctly the strong damping provided by the many emitted phonons at finite temperature. In our case, the inverse membrane size plays the role of an effective low-energy scale, and, unlike the above mentioned field theories, there remains an unusual, highly nontrivial dependence on that scale due to the 2D nature of the problem. We present detailed results for the sticking (atomic damping rate) rate of cold atomic hydrogen as a function of the membrane temperature and size. We find that the rate is very strongly dependent on both quantities.

  2. Observation of the Mott insulator to superfluid crossover of a driven-dissipative Bose-Hubbard system

    PubMed Central

    Tomita, Takafumi; Nakajima, Shuta; Danshita, Ippei; Takasu, Yosuke; Takahashi, Yoshiro

    2017-01-01

    Dissipation is ubiquitous in nature and plays a crucial role in quantum systems such as causing decoherence of quantum states. Recently, much attention has been paid to an intriguing possibility of dissipation as an efficient tool for the preparation and manipulation of quantum states. We report the realization of successful demonstration of a novel role of dissipation in a quantum phase transition using cold atoms. We realize an engineered dissipative Bose-Hubbard system by introducing a controllable strength of two-body inelastic collision via photoassociation for ultracold bosons in a three-dimensional optical lattice. In the dynamics subjected to a slow ramp-down of the optical lattice, we find that strong on-site dissipation favors the Mott insulating state: The melting of the Mott insulator is delayed, and the growth of the phase coherence is suppressed. The controllability of the dissipation is highlighted by quenching the dissipation, providing a novel method for investigating a quantum many-body state and its nonequilibrium dynamics. PMID:29291246

  3. Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials.

    PubMed

    Mitrofanov, Kirill V; Fons, Paul; Makino, Kotaro; Terashima, Ryo; Shimada, Toru; Kolobov, Alexander V; Tominaga, Junji; Bragaglia, Valeria; Giussani, Alessandro; Calarco, Raffaella; Riechert, Henning; Sato, Takahiro; Katayama, Tetsuo; Ogawa, Kanade; Togashi, Tadashi; Yabashi, Makina; Wall, Simon; Brewe, Dale; Hase, Muneaki

    2016-02-12

    Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge2Sb2Te5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structure experiment confirms the existence of an intermediate state with disordered bonds. This newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.

  4. Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials

    DOE PAGES

    Mitrofanov, Kirill V.; Fons, Paul; Makino, Kotaro; ...

    2016-02-12

    Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge 2Sb 2Te 5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structuremore » experiment confirms the existence of an intermediate state with disordered bonds. Furthermore, this newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.« less

  5. 'No one to trust': the cultural embedding of atomism in financial markets.

    PubMed

    Ailon, Galit

    2018-05-13

    The paper ethnographically explores the cultural embedding of atomistic indifference in online, global financial markets: arenas that have been digitally designed according to economic ideals and that demand an extreme form of relational and social dissociation from the partners to exchange and from those affected by the transactions. Its case-study is lay financial-trading in Israel, a country undergoing extensive neoliberalization. The study shows that dissociation is embedded in an economic culture marked by constant, multi-sited declarations that economic-Others are cold, uncaring and manipulative. It takes shape as traders convert the distrust towards Others into distrust towards portions of the Self that represent links to these Others, namely their own social-psychology and social concern. Acting atomistically and selfishly in the market thus entails considerable reflexive work. The paper contributes to an ongoing debate on the moral and cultural embeddedness of markets in general and of the expanding financial markets in particular. © London School of Economics and Political Science 2018.

  6. Quantum computation with cold bosonic atoms in an optical lattice.

    PubMed

    García-Ripoll, Juan José; Cirac, Juan Ignacio

    2003-07-15

    We analyse an implementation of a quantum computer using bosonic atoms in an optical lattice. We show that, even though the number of atoms per site and the tunnelling rate between neighbouring sites is unknown, one may operate a universal set of gates by means of adiabatic passage.

  7. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  8. Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions

    NASA Technical Reports Server (NTRS)

    Shortt, Brian; Chutjian, Ara; Orient, Otto

    2008-01-01

    A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.

  9. Thermonuclear Propaganda: Presentations of Nuclear Strategy in the Early Atomic Age

    DTIC Science & Technology

    2014-06-01

    comics .17 One scholar of atomic culture noted the ambiguity of the duality of the atomic age as a central tenant to building the “most powerful of all...2004). 18 Ferenc Morton Szasz, Atomic Comics : Cartoonists Confront the Nuclear World (Reno, NV: University of Nevada Press, 2012), 135. 19 Ibid...research.archives.gov/description/36952. 28 Osgood, Total Cold War; Szasz, Atomic Comics ; Zeman and Amundson, Atomic Culture, 3-4. 10 the most modern

  10. LOX/Hydrogen Coaxial Injector Atomization Test Program

    NASA Technical Reports Server (NTRS)

    Zaller, M.

    1990-01-01

    Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.

  11. A permanent magnet trap for buffer gas cooled atoms and molecules

    NASA Astrophysics Data System (ADS)

    Nohlmans, D.; Skoff, S. M.; Hendricks, R. J.; Segal, D. M.; Sauer, B. E.; Hinds, E. A.; Tarbutt, M. R.

    2013-05-01

    Cold molecules are set to provide a wealth of new science compared to their atomic counterparts. Here we want to present preliminary results for cooling and trapping atoms/molecules in a permanent magnetic trap. By replacing the conventional buffer gas cell with an arrangement of permanent magnets, we will be able to trap a fraction of the molecules right where they are cooled. For this purpose we have designed a quadrupole trap using NdFeB magnets, which has a trap depth of 0.4 K for molecules with a magnetic moment of 1 μB. Cold helium gas is pulsed into the trap region by a solenoid valve and the atoms/molecules are subsequently ablated into this and cooled via elastic collisions, leaving a fraction of them trapped. This new set-up is currently being tested with lithium atoms as they are easier to make. After having optimised the trapping and detection processes, we will use the same trap for YbF molecules.

  12. Coherent scattering of near-resonant light by a dense, microscopic cloud of cold two-level atoms: Experiment versus theory

    NASA Astrophysics Data System (ADS)

    Jennewein, Stephan; Brossard, Ludovic; Sortais, Yvan R. P.; Browaeys, Antoine; Cheinet, Patrick; Robert, Jacques; Pillet, Pierre

    2018-05-01

    We measure the coherent scattering of low-intensity, near-resonant light by a cloud of laser-cooled two-level rubidium atoms with a size comparable to the wavelength of light. We isolate a two-level atomic structure by applying a 300-G magnetic field. We measure both the temporal and the steady-state coherent optical response of the cloud for various detunings of the laser and for atom numbers ranging from 5 to 100. We compare our results to a microscopic coupled-dipole model and to a multimode, paraxial Maxwell-Bloch model. In the low-intensity regime, both models are in excellent agreement, thus validating the Maxwell-Bloch model. Comparing to the data, the models are found in very good agreement for relatively low densities (n /k3≲0.1 ), while significant deviations start to occur at higher density. This disagreement indicates that light scattering in dense, cold atomic ensembles is still not quantitatively understood, even in pristine experimental conditions.

  13. Challenges and constraints of dynamically emerged source and sink in atomtronic circuits: From closed-system to open-system approaches

    PubMed Central

    Lai, Chen-Yen; Chien, Chih-Chun

    2016-01-01

    While batteries offer electronic source and sink for electronic devices, atomic analogues of source and sink and their theoretical descriptions have been a challenge in cold-atom systems. Here we consider dynamically emerged local potentials as controllable source and sink for bosonic atoms. Although a sink potential can collect bosons in equilibrium and indicate its usefulness in the adiabatic limit, sudden switching of the potential exhibits low effectiveness in pushing bosons into it. This is due to conservation of energy and particle in isolated systems such as cold atoms. By varying the potential depth and interaction strength, the systems can further exhibit averse response, where a deeper emerged potential attracts less bosonic atoms into it. To explore possibilities for improving the effectiveness, we investigate what types of system-environment coupling can help bring bosons into a dynamically emerged sink, and a Lindblad operator corresponding to local cooling is found to serve the purpose. PMID:27849034

  14. Imaging Spatial Correlations of Rydberg Excitations in Cold Atom Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, A.; Sapiro, R. E.; Raithel, G.

    2011-09-02

    We use direct spatial imaging of cold {sup 85}Rb Rydberg atom clouds to measure the Rydberg-Rydberg correlation function. The results are in qualitative agreement with theoretical predictions [F. Robicheaux and J. V. Hernandez, Phys. Rev. A 72, 063403 (2005)]. We determine the blockade radius for states 44D{sub 5/2}, 60D{sub 5/2}, and 70D{sub 5/2} and investigate the dependence of the correlation behavior on excitation conditions and detection delay. Experimental data hint at the existence of long-range order.

  15. Manipulating mesoscopic multipartite entanglement with atom-light interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stasinska, J.; Rodo, C.; Paganelli, S.

    2009-12-15

    Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation, and detection of genuine multipartite entanglement (Greenberger-Horne-Zeilinger and clusterlike states) between mesoscopic atomic ensembles without the need of individual addressing of the samples. Our results extend in a nontrivial way the Einstein-Podolsky-Rosen entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature (London) 413, 400 (2001)]. We find that under realistic conditions, amore » second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.« less

  16. Electronic interaction anisotropy between open-shell lanthanide atoms and helium from cold collision experiment

    NASA Astrophysics Data System (ADS)

    Krems, R. V.; Buchachenko, A. A.

    2005-09-01

    Based on measurements of the Zeeman relaxation in a cold gas of He3 [C. I. Hancox, S. C. Doret, M. I. Hummon, L. Luo, and J. M. Doyle, Nature (London) 431, 281 (2004)], we show that the electronic interaction anisotropy between rare-earth atoms with nonzero electronic orbital angular momenta and helium is extremely small. The interaction of the rare-earth atoms with He gives rise to several adiabatic potentials with different electronic symmetries. It is demonstrated that the energy splitting between these potentials does not exceed 0.09cm-1 at interatomic distances larger than the turning point for collisions at 0.8K, including the region of the van der Waals interaction minima.

  17. Size dependence of single-photon superradiance of cold and dilute atomic ensembles

    NASA Astrophysics Data System (ADS)

    Kuraptsev, A. S.; Sokolov, I. M.

    2017-11-01

    We report a theoretical investigation of angular distribution of a single-photon superradiance from cold and dilute atomic clouds. In the present work we focus our attention on the dependence of superradiance on the size and shape of the cloud. We analyze the dynamics of the afterglow of atomic ensemble excited by pulse radiation. Two theoretical approaches are used. The first is the quantum microscopic approach based on a coupled-dipole model. The second approach is random walk approximation. We show that the results obtained in both approaches coincide with a good accuracy for incoherent fluorescence excited by short resonant pulses. We also show that the superradiance decay rate changes with size differently for radiation emitted into different directions.

  18. Novel ways of creating and detecting topological order with cold atoms and ions

    NASA Astrophysics Data System (ADS)

    Lewenstein, Maciej

    2015-03-01

    In my talk I will focus on novel physics and novel quantum phases that are expected in lattice systems of ultra-cold atoms or ions in synthetic gauge fields, generated via lattice modulations and shaking. I will discuss fractal energy spectra and topological phases in long-range spin chains realized with trapped ions or atoms in nanofibers, and synthetic gauge fields in synthetic dimensions. I will spend large part of the talk discussing the ways to detect topological effects and order, via tomography of band insulators from quench dynamics, or via direct imaging of topological edge states. This work was supported by ERC AdG OSYRIS, EU IP SIQS, EU STREP EQUAM and Spanish Ministry Grant FOQUS.

  19. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  20. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    PubMed

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Storing a single photon as a spin wave entangled with a flying photon in the telecommunication bandwidth

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ding, Dong-Sheng; Shi, Shuai; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2016-02-01

    Quantum memory is an essential building block for quantum communication and scalable linear quantum computation. Storing two-color entangled photons with one photon being at the telecommunication (telecom) wavelength while the other photon is compatible with quantum memory has great advantages toward the realization of the fiber-based long-distance quantum communication with the aid of quantum repeaters. Here, we report an experimental realization of storing a photon entangled with a telecom photon in polarization as an atomic spin wave in a cold atomic ensemble, thus establishing the entanglement between the telecom-band photon and the atomic-ensemble memory in a polarization degree of freedom. The reconstructed density matrix and the violation of the Clauser-Horne-Shimony-Holt inequality clearly show the preservation of quantum entanglement during storage. Our result is very promising for establishing a long-distance quantum network based on cold atomic ensembles.

  2. Experimental realization of narrowband four-photon Greenberger-Horne-Zeilinger state in a single cold atomic ensemble.

    PubMed

    Dong, Ming-Xin; Zhang, Wei; Hou, Zhi-Bo; Yu, Yi-Chen; Shi, Shuai; Ding, Dong-Sheng; Shi, Bao-Sen

    2017-11-15

    Multi-photon entangled states not only play a crucial role in research on quantum physics but also have many applications in quantum information fields such as quantum computation, quantum communication, and quantum metrology. To fully exploit the multi-photon entangled states, it is important to establish the interaction between entangled photons and matter, which requires that photons have narrow bandwidth. Here, we report on the experimental generation of a narrowband four-photon Greenberger-Horne-Zeilinger state with a fidelity of 64.9% through multiplexing two spontaneous four-wave mixings in a cold Rb85 atomic ensemble. The full bandwidth of the generated GHZ state is about 19.5 MHz. Thus, the generated photons can effectively match the atoms, which are very suitable for building a quantum computation and quantum communication network based on atomic ensembles.

  3. Cold atomic hydrogen in the inner galaxy

    NASA Technical Reports Server (NTRS)

    Dickey, J. M.; Garwood, R. W.

    1986-01-01

    The VLA is used to measure 21 cm absorption in directions with the absolute value of b less than 1 deg., the absolute value of 1 less than 25 deg. to probe the cool atomic gas in the inner galaxy. Abundant H I absorption is detected; typical lines are deep and narrow, sometimes blending in velocity with adjacent features. Unlike 21 cm emission not all allowed velocities are covered: large portions of the l-v diagram are optically thin. Although not similar to H I emission, the absorption shows a striking correspondence with CO emission in the inner galaxy: essentially every strong feature detected in one survey is seen in the other. The provisional conclusion is that in the inner galaxy most cool atomic gas is associated with molecular cloud complexes. There are few or no cold atomic clouds devoid of molecules in the inner galaxy, although these are common in the outer galaxy.

  4. Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation.

    PubMed

    Varney, Michael C M; Jenness, Nathan J; Smalyukh, Ivan I

    2014-02-01

    Despite the recent progress in physical control and manipulation of various condensed matter, atomic, and particle systems, including individual atoms and photons, our ability to control topological defects remains limited. Recently, controlled generation, spatial translation, and stretching of topological point and line defects have been achieved using laser tweezers and liquid crystals as model defect-hosting systems. However, many modes of manipulation remain hindered by limitations inherent to optical trapping. To overcome some of these limitations, we integrate holographic optical tweezers with a magnetic manipulation system, which enables fully holonomic manipulation of defects by means of optically and magnetically controllable colloids used as "handles" to transfer forces and torques to various liquid crystal defects. These colloidal handles are magnetically rotated around determined axes and are optically translated along three-dimensional pathways while mechanically attached to defects, which, combined with inducing spatially localized nematic-isotropic phase transitions, allow for geometrically unrestricted control of defects, including previously unrealized modes of noncontact manipulation, such as the twisting of disclination clusters. These manipulation capabilities may allow for probing topological constraints and the nature of defects in unprecedented ways, providing the foundation for a tabletop laboratory to expand our understanding of the role defects play in fields ranging from subatomic particle physics to early-universe cosmology.

  5. Altering gender role expectations: effects on pain tolerance, pain threshold, and pain ratings.

    PubMed

    Robinson, Michael E; Gagnon, Christine M; Riley, Joseph L; Price, Donald D

    2003-06-01

    The literature demonstrating sex differences in pain is sizable. Most explanations for these differences have focused on biologic mechanisms, and only a few studies have examined social learning. The purpose of this study was to examine the contribution of gender-role stereotypes to sex differences in pain. This study used experimental manipulation of gender-role expectations for men and women. One hundred twenty students participated in the cold pressor task. Before the pain task, participants were given 1 of 3 instructional sets: no expectation, 30-second performance expectation, or a 90-second performance expectation. Pain ratings, threshold, and tolerance were recorded. Significant sex differences in the "no expectation" condition for pain tolerance (t = 2.32, df = 38, P <.05) and post-cold pressor pain ratings (t = 2.6, df = 37, P <.05) were found. Women had briefer tolerance times and higher post-cold pressor ratings than men. When given gender-specific tolerance expectations, men and women did not differ in their pain tolerance, pain threshold, or pain ratings. This is the first empirical study to show that manipulation of expectations alters sex differences in laboratory pain.

  6. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  7. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    PubMed

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  8. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOEpatents

    Haney, S.J.; Stulen, R.H.; Toly, N.F.

    1983-05-03

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  9. Organised surfactant assemblies in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Sanz-Medel, Alfredo; Fernandez de la Campa, Maria del Rosario; Gonzalez, Elisa Blanco; Fernandez-Sanchez, Maria Luisa

    1999-02-01

    The use of surfactant-based organised assemblies in analytical atomic spectroscopy is extensively and critically reviewed along three main lines: first, the ability of organised media to enhance detection of atomic spectroscopic methods by favourable manipulation of physical and chemical properties of the sample solution second, the extension of separation mechanisms by resorting to organised media and third a discussion of synergistic combinations of liquid chromatography separations and atomic detectors via the use of vesicular mobile phases. Changes in physical properties of sample solutions aspirated in atomic spectrometry by addition of surfactants can be advantageously used in at least four different ways: (i) to improve nebulisation efficiency; (ii) to enhance wettability of solid surfaces used for atomisation; (iii) to improve compatibility between aqueous and organic phases; and (iv) to achieve good dispersion of small particles in "slurry" techniques. Controversial results and statements published so far are critically discussed. The ability of surfactant-based organised assemblies, such as micelles and vesicles, to organise reactants at the molecular level has also been applied to enhance the characteristics of chemical generation of volalite species of metals and semi-metals (e.g., hydride or ethylide generation of As, Pb, Cd, Se, Sn, and cold vapour Hg generation) used in atomic methods. Enhancements in efficiency/transport of volatile species, increases in the reaction kinetics, stabilisation of some unstable species and changes in the selectivity of the reactions by surfactants are dealt with. Non-chromatographic cloud-point separations to design pre-concentration procedures with subsequent metal determination by atomic methods are addressed along with chromatographic separations of expanded scope by addition of surfactants to the conventional aqueous mobile phases of reversed-phase high-performance liquid chromatography. Finally, the synergistic effect of using vesicles to improve both the separation capabilities of reversed-phase HPLC and the detectability of atomic detectors by on-line vesicular hydride generation is described. In particular, the possible separation mechanisms responsible for micellar and vesicular mobile phases in reversed-phase chromatographies are analysed and compared. The possible effect of modification of stationary phases by monomers of the surfactants should also be taken into account. The application of such on-line couplings to develop new hybrid approaches to tackle modern problems of trace element speciation for As, Hg, Se, and Cd completes this revision of the present interface between analytical atomic spectroscopy and surfactant-based organised assemblies.

  10. Atomic References for Measuring Small Accelerations

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan

    2009-01-01

    Accelerometer systems that would combine the best features of both conventional (e.g., mechanical) accelerometers and atom interferometer accelerometers (AIAs) have been proposed. These systems are intended mainly for use in scientific research aboard spacecraft but may also be useful on Earth in special military, geological, and civil-engineering applications. Conventional accelerometers can be sensitive, can have high dynamic range, and can have high frequency response, but they lack accuracy and long-term stability. AIAs have low frequency response, but they offer high sensitivity, and high accuracy for measuring small accelerations. In a system according to the proposal, a conventional accelerometer would be used to perform short-term measurements of higher-frequency components of acceleration, while an AIA would be used to provide consistent calibration of, and correction of errors in, the measurements of the conventional accelerometer in the lower-frequency range over the long term. A brief description of an AIA is prerequisite to a meaningful description of a system according to the proposal. An AIA includes a retroreflector next to one end of a cell that contains a cold cloud of atoms in an ultrahigh vacuum. The atoms in the cloud are in free fall. The retroreflector is mounted on the object, the acceleration of which is to be measured. Raman laser beams are directed through the cell from the end opposite the retroreflector, then pass back through the cell after striking the retroreflector. The Raman laser beams together with the cold atoms measure the relative acceleration, through the readout of the AIA, between the cold atoms and the retroreflector.

  11. Recent progress on the cold atoms clocks at BNM-LPTF

    NASA Astrophysics Data System (ADS)

    Abgrall, M.; Lemonde, P.; Bize, S.; Sortais, Y.; Zhang, S.; Santarelli, G.; Laurent, P.; Clairon, A.; Salomon, C.

    We present recent results on microwave frequency standards using cold atoms. Two cesium fountains have been built and exhibit a frequency accuracy of 1×10-15. Though quite different in their design, both fountains are found to give the same frequency within the error bars of the measurements. One of the fountains is transportable. It was moved to Germany and used as a reference for a phase coherent measurement of the 1S-2S transition of hydrogen with a 2×10-14 accuracy. When using a cryogenic sapphire oscillator as an interrogation oscillator, the frequency stability reaches the fundamental limit set by the quantum projection noise. A short term stability of 4×10-14 τ-1/2 has been obtained. One limitation to the performances of cesium fountains is the frequency shift due to collisions between cold atoms. We show that with rubidium atoms, this effect can be decreased by two orders of magnitude. This feature should allow to vastly improve both the stability and accuracy of microwave fountains. Finally by tracking the frequency between rubidium and cesium fountains, we test the stability of the fine structure constant α with a few 10-15 resolution. We also present the status of the ACES space project.

  12. Brijuni Conference (10th), Imaging in Space and Time. Held in Brijuni, Croatia on 28 August-1 September 2006

    DTIC Science & Technology

    2006-09-01

    Solitons in Photonic Lattices 9.40-10.00 discussion 10.00-10.40 S. Tsai: Imaging the quantum coherence: Readout for superconducting multi-qubit system...dynamics in the few-cycle pulse limit 11.40-11.50 discussion 11.50-12.10 T. Ban: Manipulations of the atom velocity with femtosecond laser frequency comb...Conference X, Brijuni, Croatia, 28.08.-01.09.2006. MANIPULATION OF THE ATOM VELOCITY WITH FEMTOSECOND LASER FREQUENCY COMB Ticijana Ban, D. Aumiler, H

  13. Observation and Manipulation of Polymers by Scanning Tunneling and Atomic Force Microscopy

    DTIC Science & Technology

    1988-07-13

    Observation and Manipulation of Polymers by Scanning Tunneling and Atomic Force Microscooy 12. PERSONAL AUTHOR(S) M.M. Dovek, T.R. Albrecht, S.W.J. Kuan, C.A...COUNT FIELD GOP SU8 -GROUP 19. ABSTRACT (Continue on reverse if ncosay and kIti1I by block numbor) ~AM\\~ v~~\\~A Dhe properties of monolayer films of...organic materi s are importantl i--V~ ety of technologies. We have employed the STM and AFM t study’ LanD~ ..-odgett films of a varie ’ty of polymers

  14. Optical trapping and manipulation of neutral particles using lasers

    PubMed Central

    Ashkin, Arthur

    1997-01-01

    The techniques of optical trapping and manipulation of neutral particles by lasers provide unique means to control the dynamics of small particles. These new experimental methods have played a revolutionary role in areas of the physical and biological sciences. This paper reviews the early developments in the field leading to the demonstration of cooling and trapping of neutral atoms in atomic physics and to the first use of optical tweezers traps in biology. Some further major achievements of these rapidly developing methods also are considered. PMID:9144154

  15. New Experimental Approaches and Theoretical Modeling Methods for Laser Cooling Atoms and Molecules

    DTIC Science & Technology

    2006-07-27

    support of experimental efforts in various laboratories to produce ultracold molecules by laser -induced photoassociation of laser -cooled atoms. We are......temperatures so far have been 25mK [7], rather than tens of µK as one can achieve with laser cooling of atoms. Thus an approach that begins with cold

  16. 2014 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    2015-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  17. Additive manufacturing of magnetic shielding and ultra-high vacuum flange for cold atom sensors.

    PubMed

    Vovrosh, Jamie; Voulazeris, Georgios; Petrov, Plamen G; Zou, Ji; Gaber, Youssef; Benn, Laura; Woolger, David; Attallah, Moataz M; Boyer, Vincent; Bongs, Kai; Holynski, Michael

    2018-01-31

    Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological performance. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique relevant to the manufacture of quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of 5 ± 0.5 × 10 -10 mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.

  18. Dimensional crossover and cold-atom realization of topological Mott insulators

    PubMed Central

    Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.

    2015-01-01

    Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers. PMID:25669431

  19. Self-regulated Gd atom trapping in open Fe nanocorrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, R. X.; Liu, Z.; Miao, B. F.

    2014-07-01

    Utilizing open Fe nanocorrals built by atom manipulation, we demonstrate self-regulated Gd atom trapping in open quantum corrals. The number of Gd atoms trapped is exactly determined by the diameter of the corral. The quantization can be understood as a self-regulating process, arising from the long-range interaction between Gd atoms and the open corral. We illustrate with arrays of open corrals that such atom trapping can suppress unwanted statistical fluctuations. Our approach opens a potential pathway for nanomaterial design and fabrication with atomic-level precision.

  20. Manipulating the magnetoelectric effect: Essence learned from Co4Nb2O9

    NASA Astrophysics Data System (ADS)

    Yanagi, Yuki; Hayami, Satoru; Kusunose, Hiroaki

    2018-01-01

    Recent experiments for linear magnetoelectric (ME) response in honeycomb antiferromagnet Co4Nb2O9 revealed that the electric polarization can be manipulated by the in-plane rotating magnetic field in a systematic way. We propose the minimal model by extracting essential ingredients of Co4Nb2O9 to exhibit such ME response. It is the three-orbital model with x y -type atomic spin-orbit coupling (SOC) on the single-layer honeycomb structure, and it is shown to reproduce qualitatively the observed field-angle dependence of the electric polarization. The obtained results can be understood by the perturbative calculation with respect to the atomic SOC. These findings could be useful to explore further ME materials having similar manipulability of the electric polarization.

  1. Propagation of light through small clouds of cold interacting atoms

    NASA Astrophysics Data System (ADS)

    Jennewein, S.; Sortais, Y. R. P.; Greffet, J.-J.; Browaeys, A.

    2016-11-01

    We demonstrate experimentally that a dense cloud of cold atoms with a size comparable to the wavelength of light can induce large group delays on a laser pulse when the laser is tightly focused on it and is close to an atomic resonance. Delays as large as -10 ns are observed, corresponding to "superluminal" propagation with negative group velocities as low as -300 m /s . Strikingly, this large delay is associated with a moderate extinction owing to the very small size of the dense cloud. It implies that a large phase shift is imprinted on the continuous laser beam. Our system may thus be useful for applications to quantum technologies, such as variable delay line for individual photons or phase imprint between two beams at the single-photon level.

  2. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates.

    PubMed

    Wu, Zhan; Zhang, Long; Sun, Wei; Xu, Xiao-Tian; Wang, Bao-Zong; Ji, Si-Cong; Deng, Youjin; Chen, Shuai; Liu, Xiong-Jun; Pan, Jian-Wei

    2016-10-07

    Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. Copyright © 2016, American Association for the Advancement of Science.

  3. Synchronization of a self-sustained cold-atom oscillator

    NASA Astrophysics Data System (ADS)

    Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.

    2018-04-01

    Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.

  4. Note: Design and implementation of a home-built imaging system with low jitter for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachtel, A. J.; Gillette, M. C.; Clements, E. R.

    A novel home-built system for imaging cold atom samples is presented using a readily available astronomy camera which has the requisite sensitivity but no timing-control. We integrate the camera with LabVIEW achieving fast, low-jitter imaging with a convenient user-defined interface. We show that our system takes precisely timed millisecond exposures and offers significant improvements in terms of system jitter and readout time over previously reported home-built systems. Our system rivals current commercial “black box” systems in performance and user-friendliness.

  5. Feshbach Prize: New Phenomena and New Physics from Strongly-Correlated Quantum Matter

    NASA Astrophysics Data System (ADS)

    Carlson, Joseph A.

    2017-01-01

    Strongly correlated quantum matter is ubiquitous in physics from cold atoms to nuclei to the cold dense matter found in neutron stars. Experiments from table-top to the extremely large scale experiments including FRIB and LIGO will help determine the properties of matter across an incredible scale of distances and energies. Questions to be addressed include the existence of exotic states of matter in cold atoms and nuclei, the response of this correlated matter to external probes, and the behavior of matter in extreme astrophysical environments. A more complete understanding is required, both to understand these diverse phenomena and to employ this understanding to probe for new underlying physics in experiments including neutrinoless double beta decay and accelerator neutrino experiments. I will summarize some aspects of our present understanding and highlight several important prospects for the future.

  6. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot.

    PubMed

    Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo

    2015-07-08

    We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.

  7. Atomic-Scale Factors of Combustion Nanocatalysts

    DTIC Science & Technology

    2014-03-27

    AFRL-OSR-VA-TR-2014-0122 ATOMIC- SCALE PRINCIPLES OF COMBUSTION NANOCATALYSIS Uzi Landman GEORGIA TECH RESEARCH CORPORATION Final Report 05/19/2014...Prescribed by ANSI Std. Z39.18 27-03-2014 Final 01-06-2008 - 31-12-2013 MURI 08) - ATOMIC- SCALE PRINCIPLES OF COMBUSTION NANOCATALYSIS N/A FA9550-08...of predictive capabilities, addressing the creation, characterization, atomic- scale manipulations, and control of nanometer- scale catalytic systems

  8. Welding skate with computerized controls

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  9. Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires

    NASA Astrophysics Data System (ADS)

    Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong

    2018-04-01

    The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.

  10. Technology development for laser-cooled clocks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrow, O.; Carroll, A.; Chattopadhyay, S.

    A cold atom interferometer is being developed using 85Rb atoms towards a search for the dark contents of the vacuum, and as a test stand for inertial sensing applications. Here we outline the current status of the experiment and report the observation of Ramsey interference fringes in the apparatus.

  12. Correlation in photon pairs generated using four-wave mixing in a cold atomic ensemble

    NASA Astrophysics Data System (ADS)

    Ferdinand, Andrew Richard; Manjavacas, Alejandro; Becerra, Francisco Elohim

    2017-04-01

    Spontaneous four-wave mixing (FWM) in atomic ensembles can be used to generate narrowband entangled photon pairs at or near atomic resonances. While extensive research has been done to investigate the quantum correlations in the time and polarization of such photon pairs, the study and control of high dimensional quantum correlations contained in their spatial degrees of freedom has not been fully explored. In our work we experimentally investigate the generation of correlated light from FWM in a cold ensemble of cesium atoms as a function of the frequencies of the pump fields in the FWM process. In addition, we theoretically study the spatial correlations of the photon pairs generated in the FWM process, specifically the joint distribution of their orbital angular momentum (OAM). We investigate the width of the distribution of the OAM modes, known as the spiral bandwidth, and the purity of OAM correlations as a function of the properties of the pump fields, collected photons, and the atomic ensemble. These studies will guide experiments involving high dimensional entanglement of photons generated from this FWM process and OAM-based quantum communication with atomic ensembles. This work is supported by AFORS Grant FA9550-14-1-0300.

  13. Cold Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Raithel, Georg

    2017-04-01

    Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).

  14. Rydberg aggregates

    NASA Astrophysics Data System (ADS)

    Wüster, S.; Rost, J.-M.

    2018-02-01

    We review Rydberg aggregates, assemblies of a few Rydberg atoms exhibiting energy transport through collective eigenstates, considering isolated atoms or assemblies embedded within clouds of cold ground-state atoms. We classify Rydberg aggregates, and provide an overview of their possible applications as quantum simulators for phenomena from chemical or biological physics. Our main focus is on flexible Rydberg aggregates, in which atomic motion is an essential feature. In these, simultaneous control over Rydberg-Rydberg interactions, external trapping and electronic energies, allows Born-Oppenheimer surfaces for the motion of the entire aggregate to be tailored as desired. This is illustrated with theory proposals towards the demonstration of joint motion and excitation transport, conical intersections and non-adiabatic effects. Additional flexibility for quantum simulations is enabled by the use of dressed dipole-dipole interactions or the embedding of the aggregate in a cold gas or Bose-Einstein condensate environment. Finally we provide some guidance regarding the parameter regimes that are most suitable for the realization of either static or flexible Rydberg aggregates based on Li or Rb atoms. The current status of experimental progress towards enabling Rydberg aggregates is also reviewed.

  15. C and RB Fountains:. Recent Results

    NASA Astrophysics Data System (ADS)

    Bize, S.; Sortais, Y.; Abgrall, M.; Zhang, S.; Calonico, D.; Mandache, C.; Lemonde, P.; Laurent, P.; Santarelli, G.; Salomon, C.; Clairon, A.; Luiten, A.; Tobar, M.

    2002-04-01

    We discuss the present performance and limits of our Cs and Rb fountains. The BNM/LPTF operates three cold atom clocks: two Cs fountains and a dual Cs-Rb fountain. By using an ultra-stable cryogenic sapphire oscillator to interrogate the atoms the frequency stability reaches 3.6 × 10-14τ-1/2. The accuracy of our fountains is now near 10-15. We discuss here the problems to be solved to reach a 10-16 accuracy. For instance this implies a continuous monitoring of the collisional frequency shift at the percent level in Cs. In contrast, 87Rb cold atom clocks exhibit a collisional shift ~ 100 times smaller than Cs which should lead to a better ultimate accuracy. Comparing the hyperfine energies of atoms with different atomic numbers Z, one can search for a possible violation of the Einstein Equivalence Principle. When interpreted as a test of the stability of the fine structure constant (α = e2/4πγ0ħc), measurements of the ratio νRb/νCs spread over a two year interval show no change of α at the 7 × 10-15/year level.

  16. Manipulation of ultracold Rb atoms using a single linearly chirped laser pulse.

    PubMed

    Collins, T A; Malinovskaya, S A

    2012-06-15

    At ultracold temperatures, atoms are free from thermal motion, which makes them ideal objects of investigations aiming to advance high-precision spectroscopy, metrology, quantum computation, producing Bose condensates, etc. The quantum state of ultracold atoms may be created and manipulated by making use of quantum control methods employing low-intensity pulses. We theoretically investigate population dynamics of ultracold Rb vapor induced by nanosecond linearly chirped pulses having kW/cm2 beam intensity and show a possibility of controllable population transfer between hyperfine (HpF) levels of 5(2)/S(1/2) state through Raman transitions. Satisfying the one-photon resonance condition with the lowest of the HpF states of 5(2)/P(1/2) or 5(2)/P(3/2) state allows us to enter the adiabatic region of population transfer at very low field intensities, such that corresponding Rabi frequencies are less than or equal to the HpF splitting. This methodology provides a robust way to create a specifically designed superposition state in Rb in the basis of HpF levels and perform state manipulation controllable on the picosecond-to-nanosecond time scale.

  17. xGASS: total cold gas scaling relations and molecular-to-atomic gas ratios of galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Catinella, Barbara; Saintonge, Amélie; Janowiecki, Steven; Cortese, Luca; Davé, Romeel; Lemonias, Jenna J.; Cooper, Andrew P.; Schiminovich, David; Hummels, Cameron B.; Fabello, Silvia; Geréb, Katinka; Kilborn, Virginia; Wang, Jing

    2018-05-01

    We present the extended GALEX Arecibo SDSS Survey (xGASS), a gas fraction-limited census of the atomic hydrogen (H I) gas content of 1179 galaxies selected only by stellar mass (M⋆ = 109-1011.5 M⊙) and redshift (0.01 < z < 0.05). This includes new Arecibo observations of 208 galaxies, for which we release catalogues and H I spectra. In addition to extending the GASS H I scaling relations by one decade in stellar mass, we quantify total (atomic+molecular) cold gas fractions and molecular-to-atomic gas mass ratios, Rmol, for the subset of 477 galaxies observed with the IRAM 30 m telescope. We find that atomic gas fractions keep increasing with decreasing stellar mass, with no sign of a plateau down to log M⋆/M⊙ = 9. Total gas reservoirs remain H I-dominated across our full stellar mass range, hence total gas fraction scaling relations closely resemble atomic ones, but with a scatter that strongly correlates with Rmol, especially at fixed specific star formation rate. On average, Rmol weakly increases with stellar mass and stellar surface density μ⋆, but individual values vary by almost two orders of magnitude at fixed M⋆ or μ⋆. We show that, for galaxies on the star-forming sequence, variations of Rmol are mostly driven by changes of the H I reservoirs, with a clear dependence on μ⋆. Establishing if galaxy mass or structure plays the most important role in regulating the cold gas content of galaxies requires an accurate separation of bulge and disc components for the study of gas scaling relations.

  18. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    PubMed Central

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-01-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a “hairline” solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877

  19. Shock wave loading of a magnetic guide

    NASA Astrophysics Data System (ADS)

    Kindt, L.

    2011-10-01

    The atom laser has long been a holy grail within atom physics and with the creation of an atom laser we hope to bring a similar revolution in to the field of atom optics. With the creation of the Bose-Einstein Condensate (BEC) in 1995 the path to an atom laser was initiated. An atom laser is continues source of BEC. In a Bose condensate all the atoms occupy the same quantum state and can be described by the same wave function and phase. With an atom laser the De Broglie wavelength of atoms can be much smaller than the wavelength of light. Due to the ultimate control over the atoms the atom laser is very interesting for atom optics, lithography, metrology, etching and deposition of atoms on a surface. All previous atom lasers have been created from atoms coupled out from an existing Bose-Einstein Condensate. There are different approaches but common to them all is that the duration of the output of the atom laser is limited by the size of the initial BEC and they all have a low flux. This leaves the quest to build a continuous high flux atom laser. An alternative approach to a continuous BEC beam is to channel a continuous ultra cold atomic beam into a magnetic guide and then cool this beam down to degeneracy. Cooling down a continuous beam of atoms faces three large problems: The collision rate has to be large enough for effective rethermalization, since evaporative cooling in 2D is not as effective as in 3D and a large thermal conductivity due to atoms with a high angular momentum causes heating downstream in the guide. We have built a 4 meter magnetic guide that is placed on a downward slope with a magnetic barrier in the end. In the guide we load packets of ultra cold rubidium atoms with a frequency rate large enough for the packets to merge together to form a continuous atomic beam. The atomic beam is supersonic and when the beam reaches the end barrier it will return and collide with itself. The collisions lowers the velocity of the beam into subsonic velocities and a shock wave is created between the two velocity regions. In order to conserve number of particle, momentum and enthalpy the density of the atomic beam passing through the shock wave must increase. We have build such a shock wave in an atomic beam and observed the density increase due to this. As an extra feature having a subsonic beam on a downward slope adds an extra density increase due to gravitational compression. Loading ultra cold atoms into a 3D trap from the dense subsonic beam overcomes the problem with 2D cooling and thermal conductivity. This was done and evaporative cooling was applied creating an unprecedented large number rubidium BEC.

  20. Identification and Manipulation of Memory Engram Cells.

    PubMed

    Liu, Xu; Ramirez, Steve; Redondo, Roger L; Tonegawa, Susumu

    2014-01-01

    How memories are formed and stored in the brain remains a fascinating question in neuroscience. Here we discuss the memory engram theory, our recent attempt to identify and manipulate memory engram cells in the brain with optogenetics, and how these methods are used to address questions such as how false memory is formed and how the valence of a memory can be changed in the brain. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    DOE PAGES

    Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...

    2016-05-24

    We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less

  2. Atom chips with free-standing two-dimensional electron gases: advantages and challenges

    NASA Astrophysics Data System (ADS)

    Sinuco-León, G. A.; Krüger, P.; Fromhold, T. M.

    2018-03-01

    In this work, we consider the advantages and challenges of using free-standing two-dimensional electron gases (2DEG) as active components in atom chips for manipulating ultracold ensembles of alkali atoms. We calculate trapping parameters achievable with typical high-mobility 2DEGs in an atom chip configuration and identify advantages of this system for trapping atoms at sub-micron distances from the atom chip. We show how the sensitivity of atomic gases to magnetic field inhomogeneity can be exploited for controlling the atoms with quantum electronic devices and, conversely, using the atoms to probe the structural and transport properties of semiconductor devices.

  3. Image routing via atomic spin coherence

    PubMed Central

    Wang, Lei; Sun, Jia-Xiang; Luo, Meng-Xi; Sun, Yuan-Hang; Wang, Xiao-Xiao; Chen, Yi; Kang, Zhi-Hui; Wang, Hai-Hua; Wu, Jin-Hui; Gao, Jin-Yue

    2015-01-01

    Coherent storage of optical image in a coherently-driven medium is a promising method with possible applications in many fields. In this work, we experimentally report a controllable spatial-frequency routing of image via atomic spin coherence in a solid-state medium driven by electromagnetically induced transparency (EIT). Under the EIT-based light-storage regime, a transverse spatial image carried by the probe field is stored into atomic spin coherence. By manipulating the frequency and spatial propagation direction of the read control field, the stored image is transferred into a new spatial-frequency channel. When two read control fields are used to retrieve the stored information, the image information is converted into a superposition of two spatial-frequency modes. Through this technique, the image is manipulated coherently and all-optically in a controlled fashion. PMID:26658846

  4. Cold Rydberg atoms in circular states

    NASA Astrophysics Data System (ADS)

    Anderson, David; Schwarzkopf, Andrew; Raithel, Georg

    2012-06-01

    Circular-state Rydberg atoms are interesting in that they exhibit a unique combination of extraordinary properties; long lifetimes (˜n^5), large magnetic moments (l=|m|=n-1) and no first order Stark shift. Circular states have found applications in cavity quantum electrodynamics and precision measurements [1,2], among other studies. In this work we present the production of circular states in an atom trapping apparatus using an adiabatic state-switching method (the crossed-field method [3]). To date, we have observed lifetimes of adiabatically prepared states of several milliseconds. Their relatively large ionization electric fields have been verified by time-of-flight signatures of ion trajectories. We intend to explore the magnetic trapping of circular state Rydberg atoms, as well as their production and interaction properties in ultra-cold and degenerate samples.[4pt] [1] P. Bertet et al., Phys. Rev. Lett., 88, 14 (2002)[0pt] [2] M. Brune et al., Phys. Rev. Lett., 72, 21 (1994)[0pt] [3] D. Delande and J.C. Gay, Europhys. Lett., 5, 303-308 (1988).

  5. Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.

    2016-09-01

    We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.

  6. Quantum simulation of the Hubbard model with dopant atoms in silicon

    PubMed Central

    Salfi, J.; Mol, J. A.; Rahman, R.; Klimeck, G.; Simmons, M. Y.; Hollenberg, L. C. L.; Rogge, S.

    2016-01-01

    In quantum simulation, many-body phenomena are probed in controllable quantum systems. Recently, simulation of Bose–Hubbard Hamiltonians using cold atoms revealed previously hidden local correlations. However, fermionic many-body Hubbard phenomena such as unconventional superconductivity and spin liquids are more difficult to simulate using cold atoms. To date the required single-site measurements and cooling remain problematic, while only ensemble measurements have been achieved. Here we simulate a two-site Hubbard Hamiltonian at low effective temperatures with single-site resolution using subsurface dopants in silicon. We measure quasi-particle tunnelling maps of spin-resolved states with atomic resolution, finding interference processes from which the entanglement entropy and Hubbard interactions are quantified. Entanglement, determined by spin and orbital degrees of freedom, increases with increasing valence bond length. We find separation-tunable Hubbard interaction strengths that are suitable for simulating strongly correlated phenomena in larger arrays of dopants, establishing dopants as a platform for quantum simulation of the Hubbard model. PMID:27094205

  7. Tracing the atomic nitrogen abundance in star-forming regions with ammonia deuteration

    NASA Astrophysics Data System (ADS)

    Furuya, Kenji; Persson, Magnus V.

    2018-06-01

    Partitioning of elemental nitrogen in star-forming regions is not well constrained. Most nitrogen is expected to be partitioned among atomic nitrogen (N I), molecular nitrogen (N_2), and icy N-bearing molecules, such as NH_3 and N_2. N I is not directly observable in the cold gas. In this paper, we propose an indirect way to constrain the amount of N I in the cold gas of star-forming clouds, via deuteration in ammonia ice, the [ND2H/NH2D]/[NH2D/NH3] ratio. Using gas-ice astrochemical simulations, we show that if atomic nitrogen remains as the primary reservoir of nitrogen during cold ice formation stages, the [ND2H/NH2D]/[NH2D/NH3] ratio is close to the statistical value of 1/3 and lower than unity, whereas if atomic nitrogen is largely converted into N-bearing molecules, the ratio should be larger than unity. Observability of ammonia isotopologues in the inner hot regions around low-mass protostars, where ammonia ice has sublimated, is also discussed. We conclude that the [ND2H/NH2D]/[NH2D/NH3] ratio can be quantified using a combination of Very Large Array and Atacama Large Millimeter/submillimeter Array observations with reasonable integration times, at least towards IRAS 16293-2422, where high molecular column densities are expected.

  8. Two body and multibody interaction in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Han, Jianing; Gallagher, Tom

    2009-05-01

    Cold Rydberg atoms trapped in a Magneto Optical Trap (MOT) are not isolated and they tend to bond through dipole-dipole and multiple-multiple interactions between Rydberg atoms. The dipole-dipole interaction and van der Waals interaction between two atoms have been intensively studied. However, the fact that the dipole-dipole interaction and van der Waals interaction show the same size of broadening, studied by Raithel's group, and there is transition between two molecular states, studied by Farooqi and Overstreet, can not be explained by the two atom picture. The purpose of this paper is to show the multibody nature of a dense cold Rydberg gas by studying the molecular state microwave spectrum. Specifically, single body, two body and three body interaction regions are separated. Moreover, the multibody energy levels for selected geometries are calculated. In addition, multibody blockade will be discussed. [3pt] [1] A. Reinhard, K. C. Younge, T. Cubel Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008).[0pt] [2] S.M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic,Y.P. Zhang, J.R. Ensher, A.S. Estrin, C. Boisseau, R. Cote, E.E. Eyler, and P.L. Gould, Phys. Rev. Lett. 91, 183002 (2003).[0pt] [3] K. Richard Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403 (2007).

  9. Modeling and simulation of viscoelastic biological particles' 3D manipulation using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Habibi Sooha, Y.; Rastegar, Z.

    2018-05-01

    Manipulation of the biological particles by atomic force microscopy is used to transfer these particles inside body's cells, diagnosis and destruction of the cancer cells and drug delivery to damaged cells. According to the impossibility of simultaneous observation of this process, the importance of modeling and simulation can be realized. The contact of the tip with biological particle is important during manipulation, therefore, the first step of the modeling is choosing appropriate contact model. Most of the studies about contact between atomic force microscopy and biological particles, consider the biological particle as an elastic material. This is not an appropriate assumption because biological cells are basically soft and this assumption ignores loading history. In this paper, elastic and viscoelastic JKR theories were used in modeling and simulation of the 3D manipulation for three modes of tip-particle sliding, particle-substrate sliding and particle-substrate rolling. Results showed that critical force and time in motion modes (sliding and rolling) for two elastic and viscoelastic states are very close but these magnitudes were lower in the viscoelastic state. Then, three friction models, Coulomb, LuGre and HK, were used for tip-particle sliding mode in the first phase of manipulation to make results closer to reality. In both Coulomb and LuGre models, critical force and time are very close for elastic and viscoelastic states but in general critical force and time prediction of HK model was higher than LuGre and the LuGre model itself had higher prediction than Coulomb.

  10. Interferometry with non-classical motional states of a Bose-Einstein condensate.

    PubMed

    van Frank, S; Negretti, A; Berrada, T; Bücker, R; Montangero, S; Schaff, J-F; Schumm, T; Calarco, T; Schmiedmayer, J

    2014-05-30

    The Ramsey interferometer is a prime example of precise control at the quantum level. It is usually implemented using internal states of atoms, molecules or ions, for which powerful manipulation procedures are now available. Whether it is possible to control external degrees of freedom of more complex, interacting many-body systems at this level remained an open question. Here we demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose-Einstein condensate in an anharmonic trap. The control sequences used to manipulate the condensate wavefunction are obtained from optimal control theory and are directly optimized to maximize the interferometric contrast. They permit a fast manipulation of the atomic ensemble compared to the intrinsic decay processes and many-body dephasing effects. This allows us to reach an interferometric contrast of 92% in the experimental implementation.

  11. Pattern Formations for Optical Switching Using Cold Atoms as a Nonlinear Medium

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Greenberg, Joel; Gauthier, Daniel

    2011-05-01

    The study of spatio-temporal pattern formation in nonlinear optical systems has both led to an increased understanding of nonlinear dynamics as well as given rise to sensitive new methods for all-optical switching. Whereas the majority of past experiments utilized warm atomic vapors as nonlinear media, we report the first observation of an optical instability leading to pattern formation in a cloud of cold Rubidium atoms. When we shine a pair of counterpropagating pump laser beams along the pencil-shaped cloud's long axis, new beams of light are generated along cones centered on the trap. This generated light produces petal-like patterns in the plane orthogonal to the pump beams that can be used for optical switching. We gratefully acknowledge the financial support of the NSF through Grant #PHY-0855399 and the DARPA Slow Light Program.

  12. Charge transfer in ultracold gases via Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Côté, Robin

    2017-06-01

    We investigate the prospects of using magnetic Feshbach resonance to control charge exchange in ultracold collisions of heteroisotopic combinations of atoms and ions of the same element. The proposed treatment, readily applicable to alkali or alkaline-earth metals, is illustrated on cold collisions of +9Be and 10Be. Feshbach resonances are characterized by quantum scattering calculations in a coupled-channel formalism that includes non-Born-Oppenheimer terms originating from the nuclear kinetic operator. Near a resonance predicted at 322 G, we find the charge exchange rate coefficient to rise from practically zero to values greater than 10-12cm3 /s. Our results suggest controllable charge exchange processes between different isotopes of suitable atom-ion pairs, with potential applications to quantum systems engineered to study charge diffusion in trapped cold atom-ion mixtures and emulate many-body physics.

  13. Teleportation with insurance of an entangled atomic state via cavity decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chimczak, Grzegorz; Tanas, Ryszard; Miranowicz, Adam

    2005-03-01

    We propose a scheme to teleport an entangled state of two {lambda}-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection until quantum information transfer is successful. We also show how to manipulate a state of many {lambda}-type atoms trapped in a cavity.

  14. Resonant Laser Manipulation of an Atomic Beam

    DTIC Science & Technology

    2010-07-01

    similar species such as alkali metals . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...resonant laser-atom interaction with other rarefied and collisional solvers for similar species such as alkali metals . Keywords: atomic beam, cesium...a target flow over length scales which push the limits of physical manufacture. The ability to create masks, beam blocks, controlling electric

  15. Reference system for scanning probe tip fingerprinting

    NASA Astrophysics Data System (ADS)

    Turansky, Robert; Bamidele, Joseph; Sugawara, Yasuhiro; Kantorovitch, Lev; Stich, Ivan

    2012-02-01

    Knowledge of the chemical structure of the tip asperity in Non-Contact Atomic Force Microscopy (NC-AFM) is crucial as controlled manipulation of atoms and/or molecules on surfaces can only be performed if this information is available. However, a simple and robust protocol for ensuring a specific tip termination has not yet been developed. We propose a procedure for chemical tip finger printing and an example of a reference system, the oxygen-terminated Cu(110) surface, that enables one to ensure a specific tip termination with Si, Cu, or O atoms. To follow this up and unambiguously determine tip types, we performed a theoretical DFT study of the line scans with the tip models in question and found that the tip characterization made based on experimental results (Cu/O-terminated tip imaging Cu/O atoms) is in fact incorrect and the opposite is true (Cu/O-terminated tip imaging O/Cu atoms). This protocol allows the tip asperity's chemical structure to be verified and established both before as well as at any stage of the manipulation experiment when numerous tip changes may take place.

  16. 2015 Groundwater Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  17. Lurking systematics in predicting galaxy cold gas masses using dust luminosities and star formation rates

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle J.

    2018-05-01

    We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. We calibrate predictions for cold neutral atomic and molecular gas using infrared dust emission and gas depletion time methods that are self-consistent and have ˜20 per cent accuracy (with the highest accuracy in the prediction of total cold gas mass). However, modest systematic residual dependences are found in all calibrations that depend on the partition between molecular and atomic gas, and can over/underpredict gas masses by up to 0.3 dex. As expected, dust-based estimates are best at predicting the total gas mass while depletion time-based estimates are only able to predict the (star-forming) molecular gas mass. Additionally, we advise caution when applying these predictions to high-z galaxies, as significant (0.5 dex or more) errors can arise when incorrect assumptions are made about the dominant gas phase. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.

  18. Manipulating Neutral Atoms in Chip-Based Magnetic Traps

    NASA Technical Reports Server (NTRS)

    Aveline, David; Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Yu, Nan; Kohel, James

    2009-01-01

    Several techniques for manipulating neutral atoms (more precisely, ultracold clouds of neutral atoms) in chip-based magnetic traps and atomic waveguides have been demonstrated. Such traps and waveguides are promising components of future quantum sensors that would offer sensitivities much greater than those of conventional sensors. Potential applications include gyroscopy and basic research in physical phenomena that involve gravitational and/or electromagnetic fields. The developed techniques make it possible to control atoms with greater versatility and dexterity than were previously possible and, hence, can be expected to contribute to the value of chip-based magnetic traps and atomic waveguides. The basic principle of these techniques is to control gradient magnetic fields with suitable timing so as to alter a trap to exert position-, velocity-, and/or time-dependent forces on atoms in the trap to obtain desired effects. The trap magnetic fields are generated by controlled electric currents flowing in both macroscopic off-chip electromagnet coils and microscopic wires on the surface of the chip. The methods are best explained in terms of examples. Rather than simply allowing atoms to expand freely into an atomic waveguide, one can give them a controllable push by switching on an externally generated or a chip-based gradient magnetic field. This push can increase the speed of the atoms, typically from about 5 to about 20 cm/s. Applying a non-linear magnetic-field gradient exerts different forces on atoms in different positions a phenomenon that one can exploit by introducing a delay between releasing atoms into the waveguide and turning on the magnetic field.

  19. Cold chemistry with ionic partners: quantum features of HeH+(1Σ) with H(1S) at ultralow energies.

    PubMed

    Bovino, S; Tacconi, M; Gianturco, F A

    2011-07-28

    Quantum reactive calculations are presented for an ion-atom reaction involving the HeH(+)cation and its destruction via a barrierless interaction with H atoms. The range of collision energies considered is that of a cold trap regime (around and below millikelvin) where the ionic partner could be spatially confined. Specific resonant features caused by the interplay of the strong ionic interaction with the very slow partners' dynamics are found and analyzed. Indications are also given on the consequences of the abstraction mechanism that acts for this reaction at low energies. © 2011 American Chemical Society

  20. Optical binding with cold atoms

    NASA Astrophysics Data System (ADS)

    Máximo, C. E.; Bachelard, R.; Kaiser, R.

    2018-04-01

    Optical binding is a form of light-mediated forces between elements of matter which emerge in response to the collective scattering of light. Such a phenomenon has been studied mainly in the context of the equilibrium stability of dielectric sphere arrays which move amid dissipative media. In this article, we demonstrate that optically bounded states of a pair of cold atoms can exist, in the absence of nonradiative damping. We study the scaling laws for the unstable-stable phase transition at negative detuning and the unstable-metastable one for positive detuning. In addition, we show that angular momentum can lead to dynamical stabilization with infinite-range scaling.

  1. Light storage in a cold atomic ensemble with a high optical depth

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyoon; Chough, Young-Tak; Kim, Yoon-Ho

    2017-06-01

    A quantum memory with a high storage efficiency and a long coherence time is an essential element in quantum information applications. Here, we report our recent development of an optical quantum memory with a rubidium-87 cold atom ensemble. By increasing the optical depth of the medium, we have achieved a storage efficiency of 65% and a coherence time of 51 μs for a weak laser pulse. The result of a numerical analysis based on the Maxwell-Bloch equations agrees well with the experimental results. Our result paves the way toward an efficient optical quantum memory and may find applications in photonic quantum information processing.

  2. Arbitrarily shaped high-coherence electron bunches from cold atoms

    NASA Astrophysics Data System (ADS)

    McCulloch, A. J.; Sheludko, D. V.; Saliba, S. D.; Bell, S. C.; Junker, M.; Nugent, K. A.; Scholten, R. E.

    2011-10-01

    Ultrafast electron diffractive imaging of nanoscale objects such as biological molecules and defects in solid-state devices provides crucial information on structure and dynamic processes: for example, determination of the form and function of membrane proteins, vital for many key goals in modern biological science, including rational drug design. High brightness and high coherence are required to achieve the necessary spatial and temporal resolution, but have been limited by the thermal nature of conventional electron sources and by divergence due to repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that, if the electrons are shaped into ellipsoidal bunches with uniform density, the Coulomb explosion can be reversed using conventional optics, to deliver the maximum possible brightness at the target. Here we demonstrate arbitrary and real-time control of the shape of cold electron bunches extracted from laser-cooled atoms. The ability to dynamically shape the electron source itself and to observe this shape in the propagated electron bunch provides a remarkable experimental demonstration of the intrinsically high spatial coherence of a cold-atom electron source, and the potential for alleviation of electron-source brightness limitations due to Coulomb explosion.

  3. Quantum storage of orbital angular momentum entanglement in cold atomic ensembles

    NASA Astrophysics Data System (ADS)

    Shi, Bao-Sen; Ding, Dong-Sheng; Zhang, Wei

    2018-02-01

    Electromagnetic waves have both spin momentum and orbital angular momentum (OAM). Light carrying OAM has broad applications in micro-particle manipulation, high-precision optical metrology, and potential high-capacity optical communications. In the concept of quantum information, a photon encoded with information in its OAM degree of freedom enables quantum networks to carry much more information and increase their channel capacity greatly compared with those of current technology because of the inherent infinite dimensions for OAM. Quantum memories are indispensable to construct quantum networks. Storing OAM states has attracted considerable attention recently, and many important advances in this direction have been achieved during the past few years. Here we review recent experimental realizations of quantum memories using OAM states, including OAM qubits and qutrits at true single photon level, OAM states entangled in a two-dimensional or a high-dimensional space, hyperentanglement and hybrid entanglement consisting of OAM and other degree of freedom in a physical system. We believe that all achievements described here are very helpful to study quantum information encoded in a high-dimensional space.

  4. Responses to preoptic temperature manipulation in the awake and hibernating marmot

    NASA Technical Reports Server (NTRS)

    South, F. E.; Hartner, W. C.; Luecke, R. H.

    1975-01-01

    Responses of normothermic and hibernating marmots to manipulations of the preoptic-hypothalamic temperature (T-PO) were experimentally investigated. An exponential increase in open-loop gain (OLG) occurred with decreases in temperature; it is concluded that this response can be explained by recruitment of cold-sensitive neurons brought about by low-temperature inactivation of inhibitory neurons. Marmots not only seek out the hibernating state, but also utilize all the thermoregulatory means they possess to remain in it for a given period of time.

  5. Imaging and manipulation of adatoms on an alumina surface by noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Simon, G. H.; Heyde, M.; Freund, H.-J.

    2012-02-01

    Noncontact atomic force microscopy (NC-AFM) has been performed on an aluminum oxide film grown on NiAl(110) in ultrahigh vacuum (UHV) at low temperature (5 K). Results reproduce the topography of the structural model, unlike scanning tunnelling microscopy (STM) images. Equipped with this extraordinary contrast the network of extended defects, which stems from domain boundaries intersecting the film surface, can be analysed in atomic detail. The knowledge of occurring surface structures opens up the opportunity to determine adsorption sites of individual adsorbates on the alumina film. The level of difficulty for such imaging depends on the imaging characteristics of the substrate and the interaction which can be maintained above the adsorbate. Positions of single adsorbed gold atoms within the unit cell have been determined despite their easy removal at slightly higher interaction strength. Preliminary manipulation experiments indicate a pick-up process for the vanishing of the gold adatoms from the film surface.

  6. Remote state preparation through hyperentangled atomic states

    NASA Astrophysics Data System (ADS)

    Nawaz, Mehwish; ul-Islam, Rameez-; Ikram, Manzoor

    2018-04-01

    Hyperentangled states have enhanced channel capacity in quantum processing and have yielded` evident increased communication speed in quantum informatics as a consequence of excessively high information content coded over each quantum entity. In the present article, we intend to demonstrate this fact by utilizing atomic states simultaneously entangled both in internal as well as external degrees of freedom, i.e. the de Broglie motion for remote state preparation (RSP). The results clearly demonstrate that we can efficiently communicate two bit information while manipulating only a single quantum subsystem. The states are prepared and manipulated using atomic Bragg diffraction as well as Ramsey interferometry, both of which are now considered as standard, state of the art tools based on cavity quantum electrodynamics. Since atomic Bragg diffraction is a large interaction time regime and produces spatially well separated, decoherence resistant outputs, the schematics presented here for the RSP offer important perspectives on efficient detection as well as unambiguous information coding and readout. The article summarizes the experimental feasibility of the proposal, culminating with a brief discussion.

  7. Note: A 3D-printed alkali metal dispenser

    NASA Astrophysics Data System (ADS)

    Norrgard, E. B.; Barker, D. S.; Fedchak, J. A.; Klimov, N.; Scherschligt, J.; Eckel, S.

    2018-05-01

    We demonstrate and characterize a source of Li atoms made from direct metal laser sintered titanium. The source's outgassing rate is measured to be 5(2) × 10-7 Pa L s-1 at a temperature T = 330 °C, which optimizes the number of atoms loaded into a magneto-optical trap. The source loads ≈107 7Li atoms in the trap in ≈1 s. The loaded source weighs 700 mg and is suitable for a number of deployable sensors based on cold atoms.

  8. Coherent Spectroscopy of Ultra-Cold Mercury for the UV to VUV

    DTIC Science & Technology

    2015-11-20

    AFRL-AFOSR-VA-TR-2015-0388 COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV R Jason Jones ARIZONA UNIV BOARD OF REGENTS TUCSON Final...TITLE AND SUBTITLE COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0563 5c. PROGRAM...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A 13. SUPPLEMENTARY NOTES 14. ABSTRACT Narrow UV transitions in atomic Hg can be utilized

  9. Dna Sequencing

    DOEpatents

    Hetrick, Robert Eugene; Hilbert, Harold Sean; Parsons, Michael Howard; Stockhausen, William Francis

    1997-10-07

    A fuel injection system used in the intake air passageway of an internal combustion engine has a strategy for reducing cold start hydrocarbon emissions. The fuel injector has an actuator which allows the fuel spray pattern to be varied from one which is widely dispersed and atomized to one which is only weakly dispersed. A strategy for varying the spray pattern during the engine warm-up period after cold start is disclosed. The strategy increases evaporation within the passageway so that cold start overfuelling and attendant hydrocarbon emissions are reduced.

  10. Thin Metallic Films from Solvated Metal Atoms.

    DTIC Science & Technology

    1987-07-14

    platinium , and especially indium are discussed. N, ; ,, -- !, : N) By Dist , , . N S f1 -- ~~r, 821-19 C[ Thin metallic films from solvated metal atoms...metallic films. Cold, palladium, platinium , and especially indium are discussed. 1- INTRQDUCTION In the field of chemistry an active and broad area of

  11. Cold Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  12. Silicon as a model ion trap: Time domain measurements of donor Rydberg states

    PubMed Central

    Vinh, N. Q.; Greenland, P. T.; Litvinenko, K.; Redlich, B.; van der Meer, A. F. G.; Lynch, S. A.; Warner, M.; Stoneham, A. M.; Aeppli, G.; Paul, D. J.; Pidgeon, C. R.; Murdin, B. N.

    2008-01-01

    One of the great successes of quantum physics is the description of the long-lived Rydberg states of atoms and ions. The Bohr model is equally applicable to donor impurity atoms in semiconductor physics, where the conduction band corresponds to the vacuum, and the loosely bound electron orbiting a singly charged core has a hydrogen-like spectrum according to the usual Bohr–Sommerfeld formula, shifted to the far-infrared because of the small effective mass and high dielectric constant. Manipulation of Rydberg states in free atoms and ions by single and multiphoton processes has been tremendously productive since the development of pulsed visible laser spectroscopy. The analogous manipulations have not been conducted for donor impurities in silicon. Here, we use the FELIX pulsed free electron laser to perform time-domain measurements of the Rydberg state dynamics in phosphorus- and arsenic-doped silicon and we have obtained lifetimes consistent with frequency domain linewidths for isotopically purified silicon. This implies that the dominant decoherence mechanism for excited Rydberg states is lifetime broadening, just as for atoms in ion traps. The experiments are important because they represent a step toward coherent control and manipulation of atomic-like quantum levels in the most common semiconductor and complement magnetic resonance experiments in the literature, which show extraordinarily long spin lattice relaxation times—key to many well known schemes for quantum computing qubits—for the same impurities. Our results, taken together with the magnetic resonance data and progress in precise placement of single impurities, suggest that doped silicon, the basis for modern microelectronics, is also a model ion trap.

  13. Rapid prototyping of versatile atom chips for atom interferometry applications.

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Squires, Matthew; Olson, Spencer; Kroese, Bethany; Imhof, Eric; Kohn, Rudolph; Stuhl, Benjamin; Schramm, Stacy; Stickney, James

    2016-05-01

    We present recent advances in the manipulation of ultracold atoms with ex-vacuo atom chips (i.e. atom chips that are not inside to the UHV chamber). Details will be presented of an experimental system that allows direct bonded copper (DBC) atom chips to be removed and replaced in minutes, requiring minimal re-optimization of parameters. This system has been used to create Bose-Einstein condensates, as well as magnetic waveguides with precisely tunable axial parameters, allowing double wells, pure harmonic confinement, and modified harmonic traps. We investigate the effects of higher order magnetic field contributions to the waveguide, and the implications for confined atom interferometry.

  14. Spectrum of spin waves in cold polarized gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  15. Measuring the mechanical properties of molecular conformers

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  16. Optical atomic phase reference and timing.

    PubMed

    Hollberg, L; Cornell, E H; Abdelrahmann, A

    2017-08-06

    Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity. On the other hand, the dynamics of gravity, evidenced by the recent spectacular results in experimental detection of gravity waves by the LIGO Scientific Collaboration, shows dramatically that there is new physics to be seen and understood in space-time science. Those systems require strain measurements at less than or equal to 10 -20 As we discuss here, cold atom optical frequency references are still many orders of magnitude away from the frequency stability that should be achievable with narrow-linewidth quantum transitions and large numbers of very cold atoms, and they may be able to achieve levels of phase stability, Δ Φ / Φ total  ≤ 10 -20 , that could make an important impact in gravity wave science.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).

  17. Lineshapes of Dipole-Dipole Resonances in a Cold Rydberg Gas

    NASA Astrophysics Data System (ADS)

    Richards, B. G.; Jones, R. R.

    2015-05-01

    We have examined the lineshapes associated with Stark tuned, dipole-dipole resonances involving Rydberg atoms in a cold gas. Rb atoms in a MOT are laser excited from the 5 p level to 32p3 / 2 in the presence of a weak electric field. A fast rising electric field pulse Stark tunes the total energy of two 32 p atom pairs so it is (nearly) degenerate with that of the 32s1 / 2+33s1 / 2 states. Because of the dipole-dipole coupling, atom pairs separated by a distance R, develop 32s1 / 2+33s1 / 2 character. The maximum probability for finding atoms in s-states depends on the detuning from degeneracy and on the dipole-dipole coupling. We obtain the ``resonance'' lineshape by measuring, via state-selective field ionization, the s-state population as a function of the tuning field. The resonance width decreases with density due to R-3 dependence of the dipole-dipole coupling. In principle, the lineshape provides information about the distribution of Rydberg atom spacings in the sample. For equally spaced atoms, the lineshape should be Lorentzian while for a random nearest neighbor distribution it appears as a cusp. At low densities nearly Gaussian lineshapes are observed with widths that are too large to be the result of inhomogeneous electric or magnetic fields. Supported by the NSF.

  18. Geometric Electron Models.

    ERIC Educational Resources Information Center

    Nika, G. Gerald; Parameswaran, R.

    1997-01-01

    Describes a visual approach for explaining the filling of electrons in the shells, subshells, and orbitals of the chemical elements. Enables students to apply the principles of atomic electron configuration while using manipulatives to model the building up of electron configurations as the atomic numbers of elements increase on the periodic…

  19. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment.

    PubMed

    Korayem, Moharam Habibnejad; Hoshiar, Ali Kafash; Ghofrani, Maedeh

    2017-08-01

    With the expansion of nanotechnology, robots based on atomic force microscope (AFM) have been widely used as effective tools for displacing nanoparticles and constructing nanostructures. One of the most limiting factors in AFM-based manipulation procedures is the inability of simultaneously observing the controlled pushing and displacing of nanoparticles while performing the operation. To deal with this limitation, a virtual reality environment has been used in this paper for observing the manipulation operation. In the simulations performed in this paper, first, the images acquired by the atomic force microscope have been processed and the positions and dimensions of nanoparticles have been determined. Then, by dynamically modelling the transfer of nanoparticles and simulating the critical force-time diagrams, a controlled displacement of nanoparticles has been accomplished. The simulations have been further developed for the use of rectangular, V-shape and dagger-shape cantilevers. The established virtual reality environment has made it possible to simulate the manipulation of biological particles in a liquid medium. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Two-body loss rates for reactive collisions of cold atoms

    NASA Astrophysics Data System (ADS)

    Cop, C.; Walser, R.

    2018-01-01

    We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.

  1. Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space

    NASA Astrophysics Data System (ADS)

    Xiaojun, Jiang; Haichao, Zhang; Yuzhu, Wang

    2016-03-01

    We report the experimental investigation of electromagnetically induced transparency (EIT) in a Zeeman-sublevels Λ-type system of cold 87Rb atoms in free space. We use the Zeeman substates of the hyperfine energy states 52S1/2, F = 2 and 52P3/2, F‧ = 2 of 87Rb D2 line to form a Λ-type EIT scheme. The EIT signal is obtained by scanning the probe light over 1 MHz in 4 ms with an 80 MHz arbitrary waveform generator. More than 97% transparency and 100 kHz EIT window are observed. This EIT scheme is suited for an application of pulsed coherent storage atom clock (Yan B, et al. 2009 Phys. Rev. A 79 063820). Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).

  2. Phase control of squeezed state in double electromagnetically induced transparency system with a loop-transition structure

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Zhou, Yusheng; Wang, Yong; Ling, Qiang; Chen, Bing; Dou, Yan; Zhang, Wei; Gao, Weiqing; Guo, Zhiqiang; Zhang, Junxiang

    2018-03-01

    We theoretically study the squeezed probe light passing through a double electromagnetically induced transparency (DEIT) system, in which a microwave field and two coupling lights drive a loop transition. It is shown that the output squeezing can be maintained in both two transparency windows of DEIT, and it can also be manipulated by the relative phase of the three driving fields. The influence of the intensity of applied fields and the optical depth of atoms on the squeezing is also investigated. This study offers possibilities to manipulate the squeezing propagation in atomic media by the phase of electromagnetic fields.

  3. Mechanical behavior of nanocrystalline NaCl islands on Cu(111).

    PubMed

    Bombis, Ch; Ample, F; Mielke, J; Mannsberger, M; Villagómez, C J; Roth, Ch; Joachim, C; Grill, L

    2010-05-07

    The mechanical response of ultrathin NaCl crystallites of nanometer dimensions upon manipulation with the tip of a scanning tunneling microscope (STM) is investigated, expanding STM manipulation to various nanostructuring modes of inorganic materials as cutting, moving, and cracking. In the light of theoretical calculations, our results reveal that atomic-scale NaCl islands can behave elastically and follow a classical Hooke's law. When the elastic limit of the nanocrystallites is reached, the STM tip induces atomic dislocations and consequently the regime of plastic deformation is entered. Our methodology is paving the way to understand the mechanical behavior and properties of other nanoscale materials.

  4. Coherent single-atom superradiance

    NASA Astrophysics Data System (ADS)

    Kim, Junki; Yang, Daeho; Oh, Seung-hoon; An, Kyungwon

    2018-02-01

    Superradiance is a quantum phenomenon emerging in macroscopic systems whereby correlated single atoms cooperatively emit photons. Demonstration of controlled collective atom-field interactions has resulted from the ability to directly imprint correlations with an atomic ensemble. Here we report cavity-mediated coherent single-atom superradiance: Single atoms with predefined correlation traverse a high–quality factor cavity one by one, emitting photons cooperatively with the N atoms that have already gone through the cavity (N represents the number of atoms). Enhanced collective photoemission of N-squared dependence was observed even when the intracavity atom number was less than unity. The correlation among single atoms was achieved by nanometer-precision position control and phase-aligned state manipulation of atoms by using a nanohole-array aperture. Our results demonstrate a platform for phase-controlled atom-field interactions.

  5. Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube

    DOE PAGES

    Bondarev, I. V.

    2015-01-01

    Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation.

  6. Toggling Bistable Atoms via Mechanical Switching of Bond Angle

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A.; Kantorovich, Lev; Moriarty, Philip

    2011-04-01

    We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom—an important consideration for future atomic scale fabrication strategies.

  7. Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips.

    PubMed

    Tewari, Sumit; Bastiaans, Koen M; Allan, Milan P; van Ruitenbeek, Jan M

    2017-01-01

    Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.

  8. The coherence effect: Blending cold and hot cognitions.

    PubMed

    Simon, Dan; Stenstrom, Douglas M; Read, Stephen J

    2015-09-01

    Previous research has shown that making complex judgments and decisions entails a mental reconstruction of the task in a way that increases the state of coherence between the emerging conclusion and its underlying attributes: The attributes that support the conclusion grow stronger, whereas the attributes that support the losing option weaken. This coherence effect is understood to occur bidirectionally, in that conclusions follow from the decision-maker's evaluation of the attributes, while the evaluations of the attributes shift to cohere with the emerging conclusion. The current studies were designed to extend the coherence effect to encompass cognitions that could be considered "hot," such as valence evaluations, motivation toward outcomes of events, liking and disliking of actors, and emotions toward actors. Study 1 found that evaluations of a complex social relationship were accompanied not only by supportive interpretations of the ambiguous facts, but also by concordant hot cognitions. Studies 2 through 4 included manipulations to demonstrate the spreading of coherence from cold to hot cognitions and in the opposite direction. We observed these effects following a manipulation of the facts (Study 2), a manipulation of participants' emotions toward the actor (Study 3), and a manipulation of participants' motivation toward the outcome of the case (Study 4). These results support the proposition that complex judgments and decisions are performed by coherence-based reasoning: a holistic, connectionist process that maximizes coherence among and between the myriad of factors involved in the tasks and the hot cognitive reactions to them. (c) 2015 APA, all rights reserved).

  9. First Measurement of the Atomic Electric Dipole Moment of (225)Ra.

    PubMed

    Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T

    2015-06-12

    The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22)  e cm (95% confidence).

  10. Combining single-molecule manipulation and single-molecule detection.

    PubMed

    Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J

    2014-10-01

    Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Enhancement of collective atomic recoil lasing due to pump phase modulation

    NASA Astrophysics Data System (ADS)

    Robb, G. R. M.; Burgess, R. T. L.; Firth, W. J.

    2008-10-01

    We investigate the effect of a phase-modulated pump beam on collective backscattering [also termed collective atomic recoil lasing (CARL)] by a cold, collisionless atomic gas. We show using a numerical analysis that different regimes can be identified in which the atomic dynamics evolves in a qualitatively different manner during the light-atom interaction, depending on the magnitude of the pump modulation frequency. Our results also demonstrate that phase-modulating the pump field can substantially enhance the backscattered field intensity relative to the case of a monochromatic pump which has been used in CARL experiments to date.

  12. Characterizations of SiN and AlN microfabricated waveguides for evanescent-field atom-trap applications

    NASA Astrophysics Data System (ADS)

    Lee, Jongmin; Eichenfield, Matt; Douglas, Erica; Mudrick, John; Biedermann, Grant; Jau, Yuan-Yu

    2017-04-01

    Trapping neutral atoms in the evanescent fields generated by microfabricated nano-waveguides will provide a new platform for neutral atom quantum controls via strong atom-photon interactions. At Sandia National Labs, we are aiming at developing the related technology that can enable the efficient optical coupling to the waveguide at multiple wavelengths, fabrication nano-waveguides to handle required optical power, more robust waveguide structure, and the new fabrication geometry to facilitate the cold-atom experiments. We will report our latest results on the related subjects. Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.

  13. Dipolar and spinor bosonic systems

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.

    2018-05-01

    The main properties and methods of describing dipolar and spinor atomic systems, composed of bosonic atoms or molecules, are reviewed. The general approach for the correct treatment of Bose-condensed atomic systems with nonlocal interaction potentials is explained. The approach is applied to Bose-condensed systems with dipolar interaction potentials. The properties of systems with spinor interaction potentials are described. Trapped atoms and atoms in optical lattices are considered. Effective spin Hamiltonians for atoms in optical lattices are derived. The possibility of spintronics with cold atom is emphasized. The present review differs from the previous review articles by concentrating on a thorough presentation of basic theoretical points, helping the reader to better follow mathematical details and to make clearer physical conclusions.

  14. Nonclassical storage and retrieval of a multiphoton pulse in cold Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Tian, Xue-Dong; Liu, Yi-Mou; Bao, Qian-Qian; Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.

    2018-04-01

    We investigate the storage and retrieval of a multiphoton probe field in cold Rydberg atoms with an effective method based on the superatom model. This probe field is found greatly attenuated in light intensity and two-photon correlation yet suffering little temporal broadening as a result of the partial dipole blockade of Rydberg excitation. In particular, the output field energy exhibits an intriguing saturation effect against the input field energy accompanied by an inhomogeneous nonclassical antibunching feature as a manifestation of the dynamic cooperative optical nonlinearity. Our numerical results are qualitatively consistent with those in a recent experiment and could be extended to pursue quantum information applications of nonclassical light fields.

  15. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    PubMed

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  16. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki, E-mail: toshiaki.tanigaki.mv@hitachi.com

    2015-02-16

    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.

  17. First uncertainty evaluation of the FoCS-2 primary frequency standard

    NASA Astrophysics Data System (ADS)

    Jallageas, A.; Devenoges, L.; Petersen, M.; Morel, J.; Bernier, L. G.; Schenker, D.; Thomann, P.; Südmeyer, T.

    2018-06-01

    We report the uncertainty evaluation of the Swiss continuous primary frequency standard FoCS-2 (Fontaine Continue Suisse). Unlike other primary frequency standards which are working with clouds of cold atoms, this fountain uses a continuous beam of cold caesium atoms bringing a series of metrological advantages and specific techniques for the evaluation of the uncertainty budget. Recent improvements of FoCS-2 have made possible the evaluation of the frequency shifts and of their uncertainties in the order of . When operating in an optimal regime a relative frequency instability of is obtained. The relative standard uncertainty reported in this article, , is strongly dominated by the statistics of the frequency measurements.

  18. Observation of optically induced feshbach resonances in collisions of cold atoms

    PubMed

    Fatemi; Jones; Lett

    2000-11-20

    We have observed optically induced Feshbach resonances in a cold ( <1 mK) sodium vapor. The optical coupling of the ground and excited-state potentials changes the scattering properties of an ultracold gas in much the same way as recently observed magnetically induced Feshbach resonances, but allows for some experimental conveniences associated with using lasers. The scattering properties can be varied by changing either the intensity or the detuning of a laser tuned near a photoassociation transition to a molecular state in the dimer. In principle this method allows the scattering length of any atomic species to be altered. A simple model is used to fit the dispersive resonance line shapes.

  19. Fabrication and electric measurements of nanostructures inside transmission electron microscope.

    PubMed

    Chen, Qing; Peng, Lian-Mao

    2011-06-01

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Modeling Strongly Correlated Fermi Systems Using Ultra-Cold Atoms

    DTIC Science & Technology

    2008-06-28

    the two-dimensional Hubbard model on a square lattice ( a model which is purported to describe the high-temperature superconducting cuprates...beams and (2) stroboscopically alternating the beams very rapidly (~100 kHz) such that the beams were never on simultaneously ( the atoms experience a ...gases relies on (1) using a large-volume, magnetic trap to compress the atomic gas to a volume that can be captured by an optical trap

  1. Three Dimensional Imaging of Cold Atoms in a Magneto Optical Trap with a Light Field Microscope

    DTIC Science & Technology

    2017-09-14

    dimensional (3D) volume of the atoms is reconstructed using a modeled point spread function (PSF), taking into consideration the low magnification (1.25...axis fluorescence image. Optical axis separation between two atom clouds is measured to a 100µm accuracy in a 3mm deep volume , with a 16µm in-focus...79 vi Page 4.5 Phase Term Effects on the 3D Volume

  2. Subpicosecond X rotations of atomic clock states

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2018-05-01

    We demonstrate subpicosecond-timescale population transfer between the pair of hyperfine ground states of atomic rubidium using a single laser-pulse. Our scheme utilizes the geometric and dynamic phases induced during Rabi oscillation through the fine-structure excited state to construct an X rotation gate for the hyperfine-state qubit system. The experiment performed with a femtosecond laser and cold rubidium atoms, in a magnetooptical trap, shows over 98% maximal population transfer between the clock states.

  3. Development of a Strontium Magneto-Optical Trap for Probing Casimir-Polder Potentials

    NASA Astrophysics Data System (ADS)

    Martin, Paul J.

    In recent years, cold atoms have been the centerpiece of many remarkably sensitive measurements, and much effort has been made to devise miniaturized quantum sensors and quantum information processing devices. At small distances, however, mechanical effects of the quantum vacuum begin to significantly impact the behavior of the cold-atom systems. A better understanding of how surface composition and geometry affect Casimir and Casimir-Polder potentials would benefit future engineering of small-scale devices. Unfortunately, theoretical solutions are limited and the number of experimental techniques that can accurately detect such short-range forces is relatively small. We believe the exemplary properties of atomic strontium--which have enabled unprecedented frequency metrology in optical lattice clocks--make it an ideal candidate for probing slight spectroscopic perturbations caused by vacuum fluctuations. To that end, we have constructed a magneto-optical trap for strontium to enable future study of atom-surface potentials, and the apparatus and proposed detection scheme are discussed herein. Of special note is a passively stable external-cavity diode laser we developed that is both affordable and competitive with high-end commercial options.

  4. Ion-neutral chemistry at ultralow energies:Dynamics of reactive collisions between laser-cooled Ca+ or Ba+ ions and Rb atoms in an ion-atom hybrid trap

    NASA Astrophysics Data System (ADS)

    Dulieu, O.; Hall, F. H. J.; Eberle, P.; Hegi, G.; Raoult, M.; Aymar, M.; Willitsch, S.

    2013-05-01

    Cold chemical reactions between laser-cooled Ca+ or Ba+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the collision energy range Ecoll /kB = 20 mK-20 K. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes including the radiative formation of CaRb+ and BaRb+ molecular ions has been analyzed using accurate potential energy curves and quantum-scattering calculations for the radiative channels. It is shown that the energy dependence of the reaction rates is governed by long-range interactions, while its magnitude is determined by short-range non-adiabatic and radiative couplings. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral collisions. This work was supported by the Swiss National Science Foundation and the COST Action ''Ion Traps for Tomorrow's Applications''.

  5. Can Winter-Active Bumblebees Survive the Cold? Assessing the Cold Tolerance of Bombus terrestris audax and the Effects of Pollen Feeding

    PubMed Central

    Owen, Emily L.; Bale, Jeffrey S.; Hayward, Scott A. L.

    2013-01-01

    There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036

  6. Inertial quantum sensors using light and matter

    NASA Astrophysics Data System (ADS)

    Barrett, B.; Bertoldi, A.; Bouyer, P.

    2016-05-01

    The past few decades have seen dramatic progress in our ability to manipulate and coherently control matter-waves. Although the duality between particles and waves has been well tested since de Broglie introduced the matter-wave analog of the optical wavelength in 1924, manipulating atoms with a level of coherence that enables one to use these properties for precision measurements has only become possible with our ability to produce atomic samples exhibiting temperatures of only a few millionths of a degree above absolute zero. Since the initial experiments a few decades ago, the field of atom optics has developed in many ways, with both fundamental and applied significance. The exquisite control of matter waves offers the prospect of a new generation of force sensors exhibiting unprecedented sensitivity and accuracy, for applications from navigation and geophysics to tests of general relativity. Thanks to the latest developments in this field, the first commercial products using this quantum technology are now available. In the future, our ability to create large coherent ensembles of atoms will allow us an even more precise control of the matter-wave and the ability to create highly entangled states for non-classical atom interferometry.

  7. Tailoring Dirac Fermions in Molecular Graphene

    NASA Astrophysics Data System (ADS)

    Gomes, Kenjiro K.; Mar, Warren; Ko, Wonhee; Camp, Charlie D.; Rastawicki, Dominik K.; Guinea, Francisco; Manoharan, Hari C.

    2012-02-01

    The dynamics of electrons in solids is tied to the band structure created by a periodic atomic potential. The design of artificial lattices, assembled through atomic manipulation, opens the door to engineer electronic band structure and to create novel quantum states. We present scanning tunneling spectroscopic measurements of a nanoassembled honeycomb lattice displaying a Dirac fermion band structure. The artificial lattice is created by atomic manipulation of single CO molecules with the scanning tunneling microscope on the surface of Cu(111). The periodic potential generated by the assembled CO molecules reshapes the band structure of the two-dimensional electron gas, present as a surface state of Cu(111), into a ``molecular graphene'' system. We create local defects in the lattice to observe the quasiparticle interference patterns that unveil the underlying band structure. We present direct comparison between the tunneling data, first-principles calculations of the band structure, and tight-binding models.

  8. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires.

    PubMed

    Qin, Shengyong; Kim, Tae-Hwan; Wang, Zhouhang; Li, An-Ping

    2012-06-01

    The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.

  9. Influence of disorder on electromagnetically induced transparency in chiral waveguide quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Mirza, Imran M.; Schotland, John C.

    2018-05-01

    We study single photon transport in a one-dimensional disordered lattice of three-level atoms coupled to an optical waveguide. In particular, we study atoms of \\Lambda-type that are capable of exhibiting electromagnetically induced transparency (EIT) and separately consider disorder in the atomic positions and transition frequencies. We mainly address the question of how preferential emission into waveguide modes (chirality) can influence the formation of spatially localized states. Our work has relevance to experimental studies of cold atoms coupled to nanoscale waveguides and has possible applications to quantum communications.

  10. Cold Atom Interferometers Used In Space (CAIUS) for Measuring the Earth's Gravity Field

    NASA Astrophysics Data System (ADS)

    Carraz, O.; Luca, M.; Siemes, C.; Haagmans, R.; Silvestrin, P.

    2016-12-01

    In the past decades, it has been shown that atomic quantum sensors are a newly emerging technology that can be used for measuring the Earth's gravity field. There are two ways of making use of that technology: One is a gravity gradiometer concept and the other is in a low-low satellite-to-satellite ranging concept. Whereas classical accelerometers typically suffer from high noise at low frequencies, Cold Atom Interferometers are highly accurate over the entire frequency range. We recently proposed a concept using cold atom interferometers for measuring all diagonal elements of the gravity gradient tensor and the full spacecraft angular velocity in order to achieve better performance than the GOCE gradiometer over a larger part of the spectrum, with the ultimate goals of determining the fine structures in the gravity field better than today. This concept relies on a high common mode rejection, which relaxes the drag free control compare to GOCE mission, and benefits from a long interaction time with the free falling clouds of atoms due to the micro gravity environment in space as opposed to the 1-g environment on-ground. Other concept is also being studied in the frame of NGGM, which relies on the hybridization between quantum and classical techniques to improve the performance of accelerometers. This could be achieved as it is realized in frequency measurements where quartz oscillators are phase locked on atomic or optical clocks. This technique could correct the spectrally colored noise of the electrostatic accelerometers in the lower frequencies. In both cases, estimation of the Earth gravity field model from the instruments has to be evaluated taking into account different system parameters such as attitude control, altitude of the satellite, time duration of the mission, etc. Miniaturization, lower consumptions and upgrading Technical Readiness Level are the key engineering challenges that have to be faced for these space quantum technologie.

  11. Determination of Mercury in Aqueous and Geologic Materials by Continuous Flow-Cold Vapor-Atomic Fluorescence Spectrometry (CVAFS)

    USGS Publications Warehouse

    Hageman, Philip L.

    2007-01-01

    New methods for the determination of total mercury in geologic materials and dissolved mercury in aqueous samples have been developed that will replace the methods currently (2006) in use. The new methods eliminate the use of sodium dichromate (Na2Cr2O7 ?2H2O) as an oxidizer and preservative and significantly lower the detection limit for geologic and aqueous samples. The new methods also update instrumentation from the traditional use of cold vapor-atomic absorption spectrometry to cold vapor-atomic fluorescence spectrometry. At the same time, the new digestion procedures for geologic materials use the same size test tubes, and the same aluminum heating block and hot plate as required by the current methods. New procedures for collecting and processing of aqueous samples use the same procedures that are currently (2006) in use except that the samples are now preserved with concentrated hydrochloric acid/bromine monochloride instead of sodium dichromate/nitric acid. Both the 'old' and new methods have the same analyst productivity rates. These similarities should permit easy migration to the new methods. Analysis of geologic and aqueous reference standards using the new methods show that these procedures provide mercury recoveries that are as good as or better than the previously used methods.

  12. Evaluation of the memory effect on gold-coated silica adsorption tubes used for the analysis of gaseous mercury by cold vapor atomic absorption spectrometry.

    PubMed

    Rahman, Mohammad Mahmudur; Brown, Richard J C; Kim, Ki-Hyun; Yoon, Hye-On; Phan, Nhu-Thuc

    2013-01-01

    In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hg(o)), the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS). Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS). The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species.

  13. Evaluation of the Memory Effect on Gold-Coated Silica Adsorption Tubes Used for the Analysis of Gaseous Mercury by Cold Vapor Atomic Absorption Spectrometry

    PubMed Central

    Rahman, Mohammad Mahmudur; Brown, Richard J. C.; Yoon, Hye-On; Phan, Nhu-Thuc

    2013-01-01

    In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hgo), the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS). Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS). The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species. PMID:23589708

  14. Underground atom gradiometer array for mass distribution monitoring and advanced geodesy

    NASA Astrophysics Data System (ADS)

    Canuel, B.

    2015-12-01

    After more than 20 years of fundamental research, atom interferometers have reached sensitivity and accuracy levels competing with or beating inertial sensors based on different technologies. Atom interferometers offer interesting applications in geophysics (gravimetry, gradiometry, Earth rotation rate measurements), inertial sensing (submarine or aircraft autonomous positioning), metrology (new definition of the kilogram) and fundamental physics (tests of the standard model, tests of general relativity). Atom interferometers already contributed significantly to fundamental physics by, for example, providing stringent constraints on quantum-electrodynamics through measurements of the hyperfine structure constant, testing the Equivalence Principle with cold atoms, or providing new measurements for the Newtonian gravitational constant. Cold atom sensors have moreover been established as key instruments in metrology for the new definition of the kilogram or through international comparisons of gravimeters. The field of atom interferometry (AI) is now entering a new phase where very high sensitivity levels must be demonstrated, in order to enlarge the potential applications outside atomic physics laboratories. These applications range from gravitational wave (GW) detection in the [0.1-10 Hz] frequency band to next generation ground and space-based Earth gravity field studies to precision gyroscopes and accelerometers. The Matter-wave laser Interferometric Gravitation Antenna (MIGA) presented here is a large-scale matter-wave sensor which will open new applications in geoscience and fundamental physics. The MIGA consortium gathers 18 expert French laboratories and companies in atomic physics, metrology, optics, geosciences and gravitational physics, with the aim to build a large-scale underground atom-interferometer instrument by 2018 and operate it till at least 2023. In this paper, we present the main objectives of the project, the status of the construction of the instrument and the motivation for the applications of MIGA in geosciences

  15. Exploiting Universality in Atoms with Large Scattering Lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braaten, Eric

    2012-05-31

    The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.

  16. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Dokos, Adam G. (Inventor); Fesmire, James E. (Inventor)

    2014-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  17. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)

    2016-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  18. Gene Regulation and Signal Transduction in the ICE-CBF-COR Signaling Pathway during Cold Stress in Plants.

    PubMed

    Wang, Da-Zhi; Jin, Ya-Nan; Ding, Xi-Han; Wang, Wen-Jia; Zhai, Shan-Shan; Bai, Li-Ping; Guo, Zhi-Fu

    2017-10-01

    Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.

  19. Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da; Fang, Te-Hua; Wu, Chung-Chin

    2016-03-01

    The size effect on the cold-welding mechanism and mechanical properties of Au nanowires (NWs) in head-to-head contact are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. The results are discussed in terms of atomic trajectories, slip vectors, stress, radial distribution function, and weld strength ratio. Simulation results show that during the cold-welding process, a few disordered atoms/defects in the jointing area rearrange themselves and transform into a face-centered cubic crystalline structure. With an increase in contact between the two NWs, dislocations gradually form on the (111) slip plane and then on a twin plane, leading to an increase in the lateral deformation of 4-nm-wide NWs. The effect of structural instability increases with decreasing NW width, making the alignment of the two NWs more difficult. The elongation ability of the welded NWs increases with increasing NW width. Smaller NWs have better weld strength.

  20. Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions

    PubMed Central

    Wineland, D. J.; Monroe, C.; Itano, W. M.; Leibfried, D.; King, B. E.; Meekhof, D. M.

    1998-01-01

    Methods for, and limitations to, the generation of entangled states of trapped atomic ions are examined. As much as possible, state manipulations are described in terms of quantum logic operations since the conditional dynamics implicit in quantum logic is central to the creation of entanglement. Keeping with current interest, some experimental issues in the proposal for trappedion quantum computation by J. I. Cirac and P. Zoller (University of Innsbruck) are discussed. Several possible decoherence mechanisms are examined and what may be the more important of these are identified. Some potential applications for entangled states of trapped-ions which lie outside the immediate realm of quantum computation are also discussed. PMID:28009379

  1. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  2. Coffee Cup Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.

    2010-01-01

    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  3. [The essence of Professor Wu Lian-Zhong's acupuncture manipulation].

    PubMed

    Liu, Jing; Guo, Yi; Wu, Lian-Zhong

    2014-05-01

    The painless needle insertion technique, summarized by Professor WU Lian-zhong during his decades of acupuncture clinical practice is introduced in this article, which is characterized as soft, flexible, fast, plucking and activating antipathogenic qi. The Sancai (three layers) lifting and thrusting manipulation technique is adopted by Professor WU for getting the qi sensation. And features of 10 kinds of needling sensation such as soreness, numbness, heaviness, distension, pain, cold, hot, radiation, jumping and contracture are summarized. Finger force, amplitude, speed and time length are also taken as the basis of reinforcing and reducing manipulations. Moreover, examples are also given to explain the needling technique on some specific points which further embodies Professor WU's unique experiences and understandings on acupuncture.

  4. Infrared problem in quantum acoustodynamics

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.; Sengupta, Sanghita

    2017-05-01

    Quantum electrodynamics (QED) provides a highly accurate description of phenomena involving the interaction of atoms with light. We argue that the quantum theory describing the interaction of cold atoms with a vibrating membrane—quantum acoustodynamics (QAD)—shares many issues and features with QED. Specifically, the adsorption of an atom on a vibrating membrane can be viewed as the counterpart to QED radiative electron capture. A calculation of the adsorption rate to lowest order in the atom-phonon coupling is finite; however, higher-order contributions suffer from an infrared problem mimicking the case of radiative capture in QED. Terms in the perturbation series for the adsorption rate diverge as a result of massless particles in the model (flexural phonons of the membrane in QAD and photons in QED). We treat this infrared problem in QAD explicitly to obtain finite results by regularizing with a low-frequency cutoff that corresponds to the inverse size of the membrane. Using a coherent-state basis for the soft-phonon final state, we then sum the dominant contributions to derive a new formula for the multiphonon adsorption rate of atoms on the membrane that gives results that are finite, nonperturbative in the atom-phonon coupling, and consistent with the Kinoshita-Lee-Nauenberg theorem. For micromembranes, we predict a reduction with increasing membrane size for the low-energy adsorption rate. We discuss the relevance of this to the adsorption of a cold gas of atomic hydrogen on suspended graphene.

  5. First Measurement of the Atomic Electric Dipole Moment of Ra 225

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, R. H.; Dietrich, M. R.; Kalita, M. R.

    The radioactive radium-225 (Ra-225) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, Ra-225 is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of Ra-225 atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of vertical bar d(Ra-225)vertical bar < 5.0 x 10(-22) e cm (95% confidence).

  6. Cost-Effective Systems for Atomic Layer Deposition

    ERIC Educational Resources Information Center

    Lubitz, Michael; Medina, Phillip A., IV; Antic, Aleks; Rosin, Joseph T.; Fahlman, Bradley D.

    2014-01-01

    Herein, we describe the design and testing of two different home-built atomic layer deposition (ALD) systems for the growth of thin films with sub-monolayer control over film thickness. The first reactor is a horizontally aligned hot-walled reactor with a vacuum purging system. The second reactor is a vertically aligned cold-walled reactor with a…

  7. Single-atom trapping and transport in DMD-controlled optical tweezers

    NASA Astrophysics Data System (ADS)

    Stuart, Dustin; Kuhn, Axel

    2018-02-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas instruments digital micro-mirror device as a holographic amplitude modulator with a frame rate of 20 000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25 μm with laser cooling and 4 μm without. We discuss the limitations of the technique and the scope for technical improvements.

  8. Hyperfine state entanglement of spinor BEC and scattering atom

    NASA Astrophysics Data System (ADS)

    Li, Zhibing; Bao, Chengguang; Zheng, Wei

    2018-05-01

    Condensate of spin-1 atoms frozen in a unique spatial mode may possess large internal degrees of freedom. The scattering amplitudes of polarized cold atoms scattered by the condensate are obtained with the method of fractional parentage coefficients that treats the spin degrees of freedom rigorously. Channels with scattering cross sections enhanced by the square of the atom number of the condensate are found. Entanglement between the condensate and the propagating atom can be established by scattering. Entanglement entropy is analytically obtained for arbitrary initial states. Our results also give a hint for the establishment of quantum thermal ensembles in the hyperfine space of spin states.

  9. Superfluid qubit systems with ring shaped optical lattices

    PubMed Central

    Amico, Luigi; Aghamalyan, Davit; Auksztol, Filip; Crepaz, Herbert; Dumke, Rainer; Kwek, Leong Chuan

    2014-01-01

    We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide an implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n ~ 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit. PMID:24599096

  10. Electrical control of charged carriers and excitons in atomically thin materials

    NASA Astrophysics Data System (ADS)

    Wang, Ke; De Greve, Kristiaan; Jauregui, Luis A.; Sushko, Andrey; High, Alexander; Zhou, You; Scuri, Giovanni; Taniguchi, Takashi; Watanabe, Kenji; Lukin, Mikhail D.; Park, Hongkun; Kim, Philip

    2018-02-01

    Electrical confinement and manipulation of charge carriers in semiconducting nanostructures are essential for realizing functional quantum electronic devices1-3. The unique band structure4-7 of atomically thin transition metal dichalcogenides (TMDs) offers a new route towards realizing novel 2D quantum electronic devices, such as valleytronic devices and valley-spin qubits8. 2D TMDs also provide a platform for novel quantum optoelectronic devices9-11 due to their large exciton binding energy12,13. However, controlled confinement and manipulation of electronic and excitonic excitations in TMD nanostructures have been technically challenging due to the prevailing disorder in the material, preventing accurate experimental control of local confinement and tunnel couplings14-16. Here we demonstrate a novel method for creating high-quality heterostructures composed of atomically thin materials that allows for efficient electrical control of excitations. Specifically, we demonstrate quantum transport in the gate-defined, quantum-confined region, observing spin-valley locked quantized conductance in quantum point contacts. We also realize gate-controlled Coulomb blockade associated with confinement of electrons and demonstrate electrical control over charged excitons with tunable local confinement potentials and tunnel couplings. Our work provides a basis for novel quantum opto-electronic devices based on manipulation of charged carriers and excitons.

  11. Probing the Structure and Dynamics of Interfacial Water with Scanning Tunneling Microscopy and Spectroscopy.

    PubMed

    Guo, Jing; You, Sifan; Wang, Zhichang; Peng, Jinbo; Ma, Runze; Jiang, Ying

    2018-05-27

    Water/solid interfaces are ubiquitous and play a key role in many environmental, biophysical, and technological processes. Resolving the internal structure and probing the hydrogen-bond (H-bond) dynamics of the water molecules adsorbed on solid surfaces are fundamental issues of water science, which remains a great challenge owing to the light mass and small size of hydrogen. Scanning tunneling microscopy (STM) is a promising tool for attacking these problems, thanks to its capabilities of sub-Ångström spatial resolution, single-bond vibrational sensitivity, and atomic/molecular manipulation. The designed experimental system consists of a Cl-terminated tip and a sample fabricated by dosing water molecules in situ onto the Au(111)-supported NaCl(001) surfaces. The insulating NaCl films electronically decouple the water from the metal substrates, so the intrinsic frontier orbitals of water molecules are preserved. The Cl-tip facilitates the manipulation of the single water molecules, as well as gating the orbitals of water to the proximity of Fermi level (EF) via tip-water coupling. This paper outlines the detailed methods of submolecular resolution imaging, molecular/atomic manipulation, and single-bond vibrational spectroscopy of interfacial water. These studies open up a new route for investigating the H-bonded systems at the atomic scale.

  12. Spectral asymmetry of atoms in the van der Waals potential of an optical nanofiber

    NASA Astrophysics Data System (ADS)

    Patterson, B. D.; Solano, P.; Julienne, P. S.; Orozco, L. A.; Rolston, S. L.

    2018-03-01

    We measure the modification of the transmission spectra of cold 87Rb atoms in the proximity of an optical nanofiber (ONF). Van der Waals interactions between the atoms an the ONF surface decrease the resonance frequency of atoms closer to the surface. An asymmetric spectra of the atoms holds information of their spatial distribution around the ONF. We use a far-detuned laser beam coupled to the ONF to thermally excite atoms at the ONF surface. We study the change of transmission spectrum of these atoms as a function of heating laser power. A semiclassical phenomenological model for the thermal excitation of atoms in the atom-surface van der Waals bound states is in good agreement with the measurements. This result suggests that van der Waals potentials could be used to trap and probe atoms at few nanometers from a dielectric surface, a key tool for hybrid photonic-atomic quantum systems.

  13. Mass, radius and composition of the outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Schaffner-Bielich, Jürgen

    2008-01-01

    The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick and Sutherland, which was extended by including higher order corrections of the atomic binding, screening, exchange and zero-point energy. The most recent experimental nuclear data from the atomic mass table of Audi, Wapstra and Thibault from 2003 are used. Extrapolation to the drip line is utilized by various state-of-the-art theoretical nuclear models (finite range droplet, relativistic nuclear field and non-relativistic Skyrme Hartree Fock parameterizations). The different nuclear models are compared with respect to the mass and radius of the outer crust for different neutron star configurations and the nuclear compositions of the outer crust.

  14. Horizon in random matrix theory, the Hawking radiation, and flow of cold atoms.

    PubMed

    Franchini, Fabio; Kravtsov, Vladimir E

    2009-10-16

    We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connection between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.

  15. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    PubMed

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  16. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  17. Quantum tunneling of oxygen atoms on very cold surfaces.

    PubMed

    Minissale, M; Congiu, E; Baouche, S; Chaabouni, H; Moudens, A; Dulieu, F; Accolla, M; Cazaux, S; Manicó, G; Pirronello, V

    2013-08-02

    Any evolving system can change state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the chemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at submonolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.

  18. Direct evidence of three-body interactions in a cold {sup 85}Rb Rydberg gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Jianing

    2010-11-15

    Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A.more » S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett. 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.« less

  19. The ATLAS3D project - XXVII. Cold gas and the colours and ages of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Young, Lisa M.; Scott, Nicholas; Serra, Paolo; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Weijmans, Anne-Marie

    2014-11-01

    We present a study of the cold gas contents of the ATLAS3D early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M⊙, derived from dynamical models) are found to have H I masses up to M(H I)/M* ˜ 0.06 and H2 masses up to M(H2)/M* ˜ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M⊙, where such signatures are found in ˜50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.

  20. Collisional Cooling of Light Ions by Cotrapped Heavy Atoms.

    PubMed

    Dutta, Sourav; Sawant, Rahul; Rangwala, S A

    2017-03-17

    We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.

  1. Manipulation of domain-wall solitons in bi- and trilayer graphene

    NASA Astrophysics Data System (ADS)

    Jiang, Lili; Wang, Sheng; Shi, Zhiwen; Jin, Chenhao; Utama, M. Iqbal Bakti; Zhao, Sihan; Shen, Yuen-Ron; Gao, Hong-Jun; Zhang, Guangyu; Wang, Feng

    2018-01-01

    Topological dislocations and stacking faults greatly affect the performance of functional crystalline materials1-3. Layer-stacking domain walls (DWs) in graphene alter its electronic properties and give rise to fascinating new physics such as quantum valley Hall edge states4-10. Extensive efforts have been dedicated to the engineering of dislocations to obtain materials with advanced properties. However, the manipulation of individual dislocations to precisely control the local structure and local properties of bulk material remains an outstanding challenge. Here we report the manipulation of individual layer-stacking DWs in bi- and trilayer graphene by means of a local mechanical force exerted by an atomic force microscope tip. We demonstrate experimentally the capability to move, erase and split individual DWs as well as annihilate or create closed-loop DWs. We further show that the DW motion is highly anisotropic, offering a simple approach to create solitons with designed atomic structures. Most artificially created DW structures are found to be stable at room temperature.

  2. Attractive interaction between Mn atoms on the GaAs(110) surface observed by scanning tunneling microscopy.

    PubMed

    Taninaka, Atsushi; Yoshida, Shoji; Kanazawa, Ken; Hayaki, Eiko; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-06-16

    Scanning tunneling microscopy/spectroscopy (STM/STS) was carried out to investigate the structures of Mn atoms deposited on a GaAs(110) surface at room temperature to directly observe the characteristics of interactions between Mn atoms in GaAs. Mn atoms were paired with a probability higher than the random distribution, indicating an attractive interaction between them. In fact, re-pairing of unpaired Mn atoms was observed during STS measurement. The pair initially had a new structure, which was transformed during STS measurement into one of those formed by atom manipulation at 4 K. Mn atoms in pairs and trimers were aligned in the <110> direction, which is theoretically predicted to produce a high Curie temperature.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Hua; Zhang, Jialin, E-mail: jialinzhang@hunnu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn

    We study the geometric phase of a uniformly accelerated two-level atom coupled with vacuum fluctuations of electromagnetic fields in the presence of a perfectly reflecting plane. We find that the geometric phase difference between the accelerated and inertial atoms which can be observed by atom interferometry crucially depends on the polarizability of the atom and the distance to the boundary and it can be dramatically manipulated with anisotropically polarizable atoms. In particular, extremely close to the boundary, the phase difference can be increased by two times as compared to the case without any boundary. So, the detectability of the effectsmore » associated with acceleration using an atom interferometer can be significantly increased by the presence of a boundary using atoms with anisotropic polarizability.« less

  4. Optical storage with electromagnetically induced transparency in cold atoms at a high optical depth

    NASA Astrophysics Data System (ADS)

    Zhang, Shanchao; Zhou, Shuyu; Liu, Chang; Chen, J. F.; Wen, Jianming; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang

    2012-06-01

    We report experimental demonstration of efficient optical storage with electromagnetically induced transparency (EIT) in a dense cold ^85Rb atomic ensemble trapped in a two-dimensional magneto-optical trap. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency for coherent optical pulses has a saturation value of 50% as OD > 50. Our result is consistent with that obtained from hot vapor cell experiments which suggest that a four-wave mixing nonlinear process degrades the EIT storage coherence and efficiency. We apply this EIT quantum memory for narrow-band single photons with controllable waveforms, and obtain an optimal storage efficiency of 49±3% for single-photon wave packets. This is the highest single-photon storage efficiency reported up to today and brings the EIT atomic quantum memory close to practical application because an efficiency of above 50% is necessary to operate the memory within non-cloning regime and beat the classical limit.

  5. Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases

    NASA Astrophysics Data System (ADS)

    Ding, Yijue

    This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.

  6. SHORT COMMUNICATION: Comparison between two mobile absolute gravimeters: optical versus atomic interferometers

    NASA Astrophysics Data System (ADS)

    Merlet, S.; Bodart, Q.; Malossi, N.; Landragin, A.; Pereira Dos Santos, F.; Gitlein, O.; Timmen, L.

    2010-08-01

    We report a comparison between two absolute gravimeters: the LNE-SYRTE cold atom gravimeter and FG5#220 of Leibniz Universität of Hannover. They rely on different principles of operation: atomic and optical interferometry. Both are movable which enabled them to participate in the last International Comparison of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral comparison took place in the LNE watt balance laboratory and showed an agreement of (4.3 ± 6.4) µGal.

  7. Tunneling of Two Interacting Fermions

    NASA Astrophysics Data System (ADS)

    Ishmukhamedov, Ilyas; Ishmukhamedov, Altay

    2018-04-01

    We consider two interacting atoms subject to a one-dimensional anharmonic trap and magnetic field gradient. This system has been recently investigated by the Heidelberg group in the experiment on two 6Li atoms. In the present paper the tunneling of two cold 6Li atoms, initially prepared in the center-of-mass and relative motion excited state, is explored and full time-dependent simulation of the tunneling dynamics is performed. The dynamics is analyzed for the interatomic coupling strength ranging from strong attraction to strong repulsion.

  8. A quantum trampoline for ultra-cold atoms

    NASA Astrophysics Data System (ADS)

    Robert-de-Saint-Vincent, M.; Brantut, J.-P.; Bordé, Ch. J.; Aspect, A.; Bourdel, T.; Bouyer, P.

    2010-01-01

    We have observed the interferometric suspension of a free-falling Bose-Einstein condensate periodically submitted to multiple-order diffraction by a vertical 1D standing wave. This scheme permits simultaneously the compensation of gravity and coherent splitting/recombination of the matter waves. It results in high-contrast interference in the number of atoms detected at constant height. For long suspension times, multiple-wave interference is revealed through a sharpening of the fringes. We characterize our atom interferometer and use it to measure the acceleration of gravity.

  9. Matterwave interferometric velocimetry of cold Rb atoms

    NASA Astrophysics Data System (ADS)

    Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim

    2018-03-01

    We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 ?K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.

  10. Matterwave interferometric velocimetry of cold Rb atoms

    NASA Astrophysics Data System (ADS)

    Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim

    2018-02-01

    We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 $\\mu$K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.

  11. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  12. Trapped atoms along nanophotonic resonators

    NASA Astrophysics Data System (ADS)

    Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung

    2017-04-01

    Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.

  13. Chaotic quantum ratchets and filters with cold atoms in optical lattices: Properties of Floquet states

    NASA Astrophysics Data System (ADS)

    Hur, Gwang-Ok

    The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with < p > as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific < p > close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are investigated for one particular system, the double-delta kicked rotor. We computed Nearest Neighbour Spacing (NNS) distributions as well as the number variances (E2 statistics). We find that even in regimes where the corresponding classical dynamics are fully chaotic, the statistics are, unex pectedly, intermediate between fully chaotic (GOE) and fully regular (Pois- son). It is argued that they are analogous to the critical statistics seen in the Anderson metal-insulator transition.

  14. Psychopathy and Indirect Aggression: The Roles of Cortisol, Sex, and Type of Psychopathy

    ERIC Educational Resources Information Center

    Vaillancourt, Tracy; Sunderani, Shafik

    2011-01-01

    Salivary cortisol was examined in relation to indirect aggression and primary psychopathy (i.e., cold affect and interpersonal manipulation) and secondary psychopathy (i.e., criminal tendencies and erratic lifestyle) in a sample of 154 undergraduate students. Results revealed that although psychopathy and indirect aggression were strongly…

  15. Spin-orbit coupling manipulating composite topological spin textures in atomic-molecular Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Fei; Juzeliūnas, Gediminas; Liu, W. M.

    2017-02-01

    Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. In this study, we find a way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin-dependent photoassociation and Raman coupling, which can control the formation and distribution of a different type of topological excitation—carbon-dioxide-like skyrmion. This skyrmion is formed by two half-skyrmions of molecular BECs coupling with one skyrmion of atomic BECs, where the two half-skyrmions locate at both sides of one skyrmion. Carbon-dioxide-like skyrmion can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments. Furthermore, we find that SOC can effectively change the occurrence of the Chern number in k space, which causes the creation of topological spin textures from some separated carbon-dioxide-like monomers each with topological charge -2 to a polymer chain of the skyrmions. This work helps in creating dual SOC atomic-molecular BECs and opens avenues to manipulate topological excitations.

  16. After Crossroads: The Fate of the Atomic Bomb Target Fleet

    NASA Astrophysics Data System (ADS)

    Delgado, James P.

    2016-04-01

    The atomic tests at Bikini Atoll left a submerged archaeological legacy in the form of sixty-one shipwrecks at or near Bikini, Kwajalein, the California coast, and in two other lesser cases off Oahu and the coast of Washington State. Together they comprise a unique maritime cultural landscape of the Cold War, and the naval aspects of that conflict.

  17. Effects of various conditions in cold-welding of copper nanowires: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhou, Hongjian; Wu, Wen-ping; Wu, Runni; Hu, Guoming; Xia, Re

    2017-11-01

    Cold-welding possesses such desirable environment as low temperature and low applied stress, thus becoming the prime candidate for nanojointing and nanoassembly techniques. To explore the welding mechanism of nanoscale structures, here, molecular dynamics was performed on copper nanowires under different welding conditions and various original characteristics to obtain an atomic-level depiction of their cold-welding behavior. By analyzing the mechanical properties of as-welded nanowires, the relations between welding quality and welding variables are revealed and identified. This comparison study will be of great importance to future mechanical processing and structural assembly of metallic nanowires.

  18. Hong-Ou-Mandel Interference Between Triggered And Heralded Single Photons From Separate Atomic Systems

    NASA Astrophysics Data System (ADS)

    Cere, Alessandro; Leong, Victor; Kaur Gulati, Gurpreet; Srivathsan, Bharath; Kosen, Sandoko; Kurtsiefer, Christian

    2015-05-01

    The realization of quantum networks and long distance quantum communication rely on the capability of generating entanglement between separated nodes. We demonstrate the compatibility of two different sources of single photons: a single atom and four-wave mixing in a cold cloud of atoms. The four-wave mixing process in a cloud of cold 87Rb generates photon pairs. The cascade level scheme used ensures the generation of heralded single photons with exponentially decaying temporal envelope. The temporal shape of the heralding photons matches the shape of photons emitted by spontaneous decay but for the shorter coherence time A single 87Rb atom is trapped in an far-off-resonance optical dipole trap and can be excited with high probability using a short (~3 ns) intense pulse of resonant light, emitting a single photon by spontaneous decay. A large numerical aperture lens collects ~4% of the total fluorescence. The heralded and the triggered photons are launched into a Houng-Ou-Mandel interferometer: a symmetrical beam-splitter with outputs connected to single photon detectors. Scanning the relative delay between the two sources we observe the HOM dip with a maximum visibility of 70 +/-4%.

  19. A compact micro-wave synthesizer for transportable cold-atom interferometers

    NASA Astrophysics Data System (ADS)

    Lautier, J.; Lours, M.; Landragin, A.

    2014-06-01

    We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of 87Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de métrologie et d'essais-Systémes de référence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of -65 dB rad2 Hz-1 at 10 Hz offset frequency and a white phase noise level in the order of -120 dB rad2 Hz-1 for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.

  20. Engineering frequency-dependent superfluidity in Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Arzamasovs, Maksims; Liu, Bo

    2018-04-01

    Unconventional superconductivity and superfluidity are among the most exciting and fascinating quantum phenomena in condensed-matter physics. Usually such states are characterized by nontrivial spin or spatial symmetry of the pairing order parameter, such as "spin triplet" or "p wave." However, besides spin and spatial dependence the order parameter may have unconventional frequency dependence which is also permitted by Fermi-Dirac statistics. Odd-frequency fermionic pairing is an exciting paradigm when discussing exotic superfluidity or superconductivity and is yet to be realized in experiments. In this paper we propose a symmetry-based method of controlling frequency dependence of the pairing order parameter via manipulating the inversion symmetry of the system. First, a toy model is introduced to illustrate that frequency dependence of the order parameter can be achieved through our proposed approach. Second, by taking advantage of recent rapid developments in producing spin-orbit-coupled dispersions in ultracold gases, we propose a Bose-Fermi mixture to realize such frequency-dependent superfluid. The key idea is introducing the frequency-dependent attraction between fermions mediated by Bogoliubov phonons with asymmetric dispersion. Our proposal should pave an alternative way for exploring frequency-dependent superfluids with cold atoms.

  1. AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam

    NASA Astrophysics Data System (ADS)

    Doser, M.; Aghion, S.; Amsler, C.; Bonomi, G.; Brusa, R. S.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Evans, C.; Fanì, M.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Khalidova, O.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Marton, J.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Prelz, F.; Prevedelli, M.; Rienaecker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sandaker, H.; Santoro, R.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.

    2018-03-01

    The efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n=1-3 and n=3-15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of ?, radial compression to sub-millimetre radii of mixed ? plasmas in 1 T field, high-efficiency transfer of ? to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen-cooling of antiprotons and formation of a beam of antihydrogen-are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  2. Bose-Einstein Condensate-Hidden Riches for New Forms of Technology and Energy Generation; Potential for Glimpse into Inner Reality

    NASA Astrophysics Data System (ADS)

    Reed, Don

    With the announcement of the recent successful production of a Bose-Einstein condensate (BEC) of photons, a circle has been completed which started in 1925 with the vision of Albert Einstein and Satyendra Nath Bose - a sustained macroscopic condensed state of matter where all atoms are in the same lowest quantum state. The creation of an all-optical BEC, involving a surprisingly straightforward "tabletop" method which bypasses the normally requisite laser/evaporative cooling equipment and ultra-high vacuum chambers necessary for production of the standard delicate atomic BEC, elevates this phenomenon to a new level well beyond its current perception as mere laboratory curiosity. Accordingly, this development certainly heralds eventual incorporation of atomic and photon BECs as standard operating components of energy-efficient mechanical, optical and electrical systems, implying novel ingenious engineering protocols amenable to all the tools of non-linear and quantum optics. Pointing towards such a promising technological future are the suggestion that a photon BEC could serve as a new high-energy ultra-violet (UV) laser photon source, as well as the recent unprecedented implementation of a closed-loop atom circuit (toroidal atomic BEC) demonstrating precise control of superfluid current flow, forecasting the coveted development of an atomic SQUID. Perhaps more significantly, the new highly robust and manageable optical BEC will allow heretofore unfathomable precise probing of the atomic and nano-levels of nature, affording novel high-quality testing procedures of the major foundations of quantum mechanics itself. Such a primary advancement, providing a clearer glimpse into the microscopic realms, may present us as never before with an unprecedented view of the quantum engine that underpins physical reality itself and help place the contextual nature of entanglement and quantum superposition on a firmer foundation. Thus, further progress in achieving mastery over the precise flexible manipulation of BEC states could demonstrate that quantum contextuality might be an unsuspected over-arching archetypal principle in nature, leading to new insight in regards to the interpretation of quantum mechanics as applied to all levels of nature. Moreover, it will be shown that this concealed and hence heretofore unsuspected contextual aspect of natural laws, as exemplified by the dynamics underlying BEC structure, could be brought to bear to account for physical anomalies inexplicable using current paradigms, such as the claimed energy yields from low-energy nuclear reactions (as represented by the so-called process of "cold fusion"), making this phenomenon more tractable and rendered less controversial.

  3. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth.

    PubMed

    Zhang, Shanchao; Chen, J F; Liu, Chang; Zhou, Shuyu; Loy, M M T; Wong, G K L; Du, Shengwang

    2012-07-01

    We describe the apparatus of a dark-line two-dimensional (2D) magneto-optical trap (MOT) of (85)Rb cold atoms with high optical depth (OD). Different from the conventional configuration, two (of three) pairs of trapping laser beams in our 2D MOT setup do not follow the symmetry axes of the quadrupole magnetic field: they are aligned with 45° angles to the longitudinal axis. Two orthogonal repumping laser beams have a dark-line volume in the longitudinal axis at their cross over. With a total trapping laser power of 40 mW and repumping laser power of 18 mW, we obtain an atomic OD up to 160 in an electromagnetically induced transparency (EIT) scheme, which corresponds to an atomic-density-length product NL = 2.05 × 10(15) m(-2). In a closed two-state system, the OD can become as large as more than 600. Our 2D MOT configuration allows full optical access of the atoms in its longitudinal direction without interfering with the trapping and repumping laser beams spatially. Moreover, the zero magnetic field along the longitudinal axis allows the cold atoms maintain a long ground-state coherence time without switching off the MOT magnetic field, which makes it possible to operate the MOT at a high repetition rate and a high duty cycle. Our 2D MOT is ideal for atomic-ensemble-based quantum optics applications, such as EIT, entangled photon pair generation, optical quantum memory, and quantum information processing.

  4. Atomic Manipulation on Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Ternes, Markus; Lutz, Christopher P.; Heinrich, Andreas J.

    Half a century ago, Nobel Laureate Richard Feynman asked in a now-famous lecture what would happen if we could precisely position individual atoms at will [R.P. Feynman, Eng. Sci. 23, 22 (1960)]. This dream became a reality some 30 years later when Eigler and Schweizer were the first to position individual Xe atoms at will with the probe tip of a low-temperature scanning tunneling microscope (STM) on a Ni surface [D.M. Eigler, E.K. Schweizer, Nature 344, 524 (1990)].

  5. Making Mn substitutional impurities in InAs using a scanning tunneling microscope.

    PubMed

    Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A

    2009-12-01

    We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.

  6. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg

    2017-06-01

    We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.

  7. High power laser source for atom cooling based on reliable telecoms technology with all fibre frequency stabilisation

    NASA Astrophysics Data System (ADS)

    Legg, Thomas; Farries, Mark

    2017-02-01

    Cold atom interferometers are emerging as important tools for metrology. Designed into gravimeters they can measure extremely small changes in the local gravitational field strength and be used for underground surveying to detect buried utilities, mineshafts and sinkholes prior to civil works. To create a cold atom interferometer narrow linewidth, frequency stabilised lasers are required to cool the atoms and to setup and measure the atom interferometer. These lasers are commonly either GaAs diodes, Ti Sapphire lasers or frequency doubled InGaAsP diodes and fibre lasers. The InGaAsP DFB lasers are attractive because they are very reliable, mass-produced, frequency controlled by injection current and simply amplified to high powers with fibre amplifiers. In this paper a laser system suitable for Rb atom cooling, based on a 1560nm DFB laser and erbium doped fibre amplifier, is described. The laser output is frequency doubled with fibre coupled periodically poled LiNbO3 to a wavelength of 780nm. The output power exceeds 1 W at 780nm. The laser is stabilised at 1560nm against a fibre Bragg resonator that is passively temperature compensated. Frequency tuning over a range of 1 GHz is achieved by locking the laser to sidebands of the resonator that are generated by a phase modulator. This laser design is attractive for field deployable rugged systems because it uses all fibre coupled components with long term proven reliability.

  8. Analysis of off-axis solenoid fields using the magnetic scalar potential: An application to a Zeeman-slower for cold atoms

    NASA Astrophysics Data System (ADS)

    Muniz, Sérgio R.; Bagnato, Vanderlei S.; Bhattacharya, M.

    2015-06-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here, we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution and is presented through practical examples, including a nonuniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the nontrivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce themes of current modern research.

  9. Horizon in Random Matrix Theory, the Hawking Radiation, and Flow of Cold Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franchini, Fabio; Kravtsov, Vladimir E.

    2009-10-16

    We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connectionmore » between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.« less

  10. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  11. Teleporting a state inside a single bimodal high-Q cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pires, Geisa; Baseia, B.; Avelar, A.T.

    2005-06-15

    We discuss a simplified scheme to teleport a state from one mode to another of the same bimodal cavity, with these two modes having distinct frequencies and orthogonal polarizations. The scheme employs two two-level (Rydberg) atoms plus classical fields (Ramsey zones) and selective atomic state detectors. The result has potential use for the manipulation of quantum information processing.

  12. Automated extraction of single H atoms with STM: tip state dependency

    NASA Astrophysics Data System (ADS)

    Møller, Morten; Jarvis, Samuel P.; Guérinet, Laurent; Sharp, Peter; Woolley, Richard; Rahe, Philipp; Moriarty, Philip

    2017-02-01

    The atomistic structure of the tip apex plays a crucial role in performing reliable atomic-scale surface and adsorbate manipulation using scanning probe techniques. We have developed an automated extraction routine for controlled removal of single hydrogen atoms from the H:Si(100) surface. The set of atomic extraction protocols detect a variety of desorption events during scanning tunneling microscope (STM)-induced modification of the hydrogen-passivated surface. The influence of the tip state on the probability for hydrogen removal was examined by comparing the desorption efficiency for various classifications of STM topographs (rows, dimers, atoms, etc). We find that dimer-row-resolving tip apices extract hydrogen atoms most readily and reliably (and with least spurious desorption), while tip states which provide atomic resolution counter-intuitively have a lower probability for single H atom removal.

  13. Applications of atom interferometry - from ground to space

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Rasel, Ernst Maria; Gaaloul, Naceur; Ertmer, Wolfgang

    2016-07-01

    Atom interferometry is utilized for the measurement of rotations [1], accelerations [2] and for tests of fundamental physics [3]. In these devices, three laser light pulses separated by a free evolution time coherently manipulate the matter waves which resembles the Mach-Zehnder geometry in optics. Atom gravimeters demonstrated an accuracy of few microgal [2,4], and atom gradiometers showed a noise floor of 30 E Hz^{-1/2} [5]. Further enhancements of atom interferometers are anticipated by the integration of novel source concepts providing ultracold atoms, extending the free fall time of the atoms, and enhanced techniques for coherent manipulation. Sources providing Bose-Einstein condensates recently demontrated a flux compatible with precision experiments [6]. All of these aspects are studied in the transportable quantum gravimeter QG-1 and the very long baseline atom interferometry teststand in Hannover [7] with the goal of surpassing the microgal regime. Going beyond ground based setups, the QUANTUS collaboration exploits the unique features of a microgravity environment in drop tower experiments [8] and in a sounding rocket mission. The payloads are compact and robust atom optics experiments based on atom chips [6], enabling technology for transportable sensors on ground as a byproduct. More prominently, they are pathfinders for proposed satellite missions as tests of the universality of free fall [9] and gradiometry based on atom interferometers [10]. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] PRL 114 063002 2015 [2] Nature 400 849 1999 [3] PRL 112 203002 2014 [4] NJP 13 065026 2011 [5] PRA 65 033608 2002 [6] NJP 17 065001 2015 [7] NJP 17 035011 2015 [8] PRL 110 093602 2013 [9] CQG 31 115010 2014 [10] MST 26 139 2014.

  14. Direct evidence of three-body interactions in a cold Rb85 Rydberg gas

    NASA Astrophysics Data System (ADS)

    Han, Jianing

    2010-11-01

    Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.233201 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.91.183002 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.011403 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.

  15. Formation of Low-Energy Antihydrogen

    NASA Astrophysics Data System (ADS)

    Holzscheiter, Michael H.

    1999-02-01

    Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invarianz. We describe our plans to trap antiprotons and positrons in a combined Penning trap and to form a significant number of cold antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen.

  16. Molecular Beam Studies of Volatile Liquids and Fuel Surrogates Using Liquid MICR

    DTIC Science & Technology

    2014-12-23

    Detailed discussions of the microjet technique are carried out in the following publications. Nozzle Liquid Jet Chopper Wheel Cold Collector Cold...process is shown in the picture below; heating and evaporation occur within 1 ms of fuel leaving the fuel injector . This atomization proves is often...liquid jet. This analysis leads to criteria for selecting the temperature and nozzle radius for producing stable jets in vacuum. Figure 4 depicts the

  17. On-chip quantum tomography of mechanical nanoscale oscillators with guided Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Sanz-Mora, A.; Wüster, S.; Rost, J.-M.

    2017-07-01

    Nanomechanical oscillators as well as Rydberg-atomic waveguides hosted on microfabricated chip surfaces hold promise to become pillars of future quantum technologies. In a hybrid platform with both, we show that beams of Rydberg atoms in waveguides can quantum coherently interrogate and manipulate nanomechanical elements, allowing full quantum state tomography. Central to the tomography are quantum nondemolition measurements using the Rydberg atoms as probes. Quantum coherent displacement of the oscillator is also made possible by driving the atoms with external fields while they interact with the oscillator. We numerically demonstrate the feasibility of this fully integrated on-chip control and read-out suite for quantum nanomechanics, taking into account noise and error sources.

  18. Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Setiawan, Widagdo

    Recent advances in using microscopes in ultracold atom experiment have allowed experimenters for the first time to directly observe and manipulate individual atoms in individual lattice sites. This technique enhances our capability to simulate strongly correlated systems such as Mott insulator and high temperature superconductivity. Currently, all ultracold atom experiments with high resolution imaging capability use bosonic atoms. In this thesis, I present our progress towards creating the fermionic version of the microscope experiment which is more suitable for simulating real condensed matter systems. Lithium is ideal due to the existence of both fermionic and bosonic isotopes, its light mass, which means faster experiment time scales that suppresses many sources of technical noise, and also due to the existence of a broad Feshbach resonance, which can be used to tune the inter-particle interaction strength over a wide range from attractive, non-interacting, and repulsive interactions. A high numerical aperture objective will be used to image and manipulate the atoms with single lattice site resolution. This setup should allow us to implement the Hubbard hamiltonian which could describe interesting quantum phases such as antiferromagnetism, d-wave superfluidity, and high temperature superconductivity. I will also discuss the feasibility of the Raman sideband cooling method for cooling the atoms during the imaging process. We have also developed a new electronic control system to control the sequence of the experiment. This electronic system is very scalable in order to keep up with the increasing complexity of atomic physics experiments. Furthermore, the system is also designed to be more precise in order to keep up with the faster time scale of lithium experiment.

  19. Optical ferris wheel for ultracold atoms

    NASA Astrophysics Data System (ADS)

    Franke-Arnold, S.; Leach, J.; Padgett, M. J.; Lembessis, V. E.; Ellinas, D.; Wright, A. J.; Girkin, J. M.; Ohberg, P.; Arnold, A. S.

    2007-07-01

    We propose a versatile optical ring lattice suitable for trapping cold and quantum degenerate atomic samples. We demonstrate the realisation of intensity patterns from pairs of Laguerre-Gauss (exp(iℓө) modes with different ℓ indices. These patterns can be rotated by introducing a frequency shift between the modes. We can generate bright ring lattices for trapping atoms in red-detuned light, and dark ring lattices suitable for trapping atoms with minimal heating in the optical vortices of blue-detuned light. The lattice sites can be joined to form a uniform ring trap, making it ideal for studying persistent currents and the Mott insulator transition in a ring geometry.

  20. Cold atoms in one-dimensional rings: a Luttinger liquid approach to precision measurement

    NASA Astrophysics Data System (ADS)

    Ragole, Stephen; Taylor, Jacob

    Recent experiments have realized ring shaped traps for ultracold atoms. We consider the one-dimensional limit of these ring systems with a moving weak barrier, such as a blue-detuned laser beam. In this limit, we employ Luttinger liquid theory and find an analogy with the superconducting charge qubit. In particular, we find that strongly-interacting atoms in such a system could be used for precision rotation sensing. We compare the performance of this new sensor to the state of the art non-interacting atom interferometry. Funding provided by the Physics Frontier Center at the JQI and by DARPA QUASAR.

  1. Right-Angle Mechanized Electrical Connector

    NASA Technical Reports Server (NTRS)

    Collins, Clint A.; Blackler, David T.

    1996-01-01

    Right-angle electrical connector embedded in mechanism accommodates some initial misalignment and aligns itself. Connection and disconnection effected with relatively small forces and torques and simple movements. Actuated by one gloved hand or by robotic manipulator. Useful in underwater, nuclear, hot, cold, or toxic environments in which connections made or broken by heavily clothed technicians or by robots.

  2. Interactive effects of the affect quality and directional focus of mental imagery on pain analgesia.

    PubMed

    Alden, A L; Dale, J A; DeGood, D E

    2001-06-01

    College students (25 men and 25 women) were randomly assigned (within sex) to each of the 4 factorial groups, based on manipulation of affect quality (positive vs. negative) and directional focus (internal vs. external) of mental imagery, and to a control group receiving no manipulation. Both imagery variables had a significant impact on pain tolerance and ratings during a cold-pressor test with positive affect and external imagery producing greater analgesia than their counterpart conditions. Positive affect imagery combined with external imagery resulted in the lowest reported pain amongst the groups. However, self-reported mood descriptors did not consistently parallel the pain tolerance and rating data. Likewise, although heart rate and skin potential responses increased during the cold pressor for the group as a whole, the only significant difference amongst the experimental groups was the relatively higher skin potential reactivity of the positive affect-external imagery group--possibly reflecting greater task engagement for this group. Seemingly, imagery in this situation operates primarily via cognitive, rather than via physiological mediators of the pain experience.

  3. Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication

    NASA Astrophysics Data System (ADS)

    Decossas, Sébastien; Mazen, Frédéric; Baron, Thierry; Brémond, Georges; Souifi, Abdelkader

    2003-12-01

    An atomic force microscopy (AFM) tip has been used to manipulate silicon nanocrystals deposited by low-pressure chemical vapour deposition on thermally oxidized p-type Si wafer. Three nanomanipulation methods are presented. The first one catches a nanocrystal with the AFM tip and deposits it elsewhere: the tip is used as an electrostatic 'nano-crane'. The second one simultaneously manipulates a set of nanocrystals in order to draw well-defined unidimensional lines: the tip is used as a 'nano-broom'. The third one manipulates individual nanocrystals with a precision of about 10 nm using both oscillating and contact AFM modes. Switching from strong interaction forces (chemical) to weak ones (van der Waals, electrostatic or capillarity) is the basis of these manipulation methods. We have applied the second method to connect two electrodes drawn by e-beam and lift-off with a 70 nm long silicon nanocrystal chain. Current versus voltage characterization of the nanofabricated device shows that the increase in nanocrystal density gives rise to conduction between the connected electrodes. Resonant tunnelling effects resulting from Si nanocrystal (nc-Si) multiple tunnel junctions have been observed at 300 K. We also show that offset charges directly influence the position of the resonant tunnelling peaks. Finally, the possibility of manipulating nc-Si with a diameter of around 5 nm is shown to be a promising way to fabricate single electron devices operating at room temperature and fully compatible with silicon technology.

  4. Deterministic and storable single-photon source based on a quantum memory.

    PubMed

    Chen, Shuai; Chen, Yu-Ao; Strassel, Thorsten; Yuan, Zhen-Sheng; Zhao, Bo; Schmiedmayer, Jörg; Pan, Jian-Wei

    2006-10-27

    A single-photon source is realized with a cold atomic ensemble (87Rb atoms). A single excitation, written in an atomic quantum memory by Raman scattering of a laser pulse, is retrieved deterministically as a single photon at a predetermined time. It is shown that the production rate of single photons can be enhanced considerably by a feedback circuit while the single-photon quality is conserved. Such a single-photon source is well suited for future large-scale realization of quantum communication and linear optical quantum computation.

  5. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  6. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-12-02

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  7. Three Distinct Deformation Behaviors of Cementite Lamellae in a Cold-Drawn Pearlitic Wire

    NASA Astrophysics Data System (ADS)

    Xin, Tuo; Liu, Guiju; Liang, Wenshuang; Cai, Rongsheng; Feng, Honglei; Li, Chen; Li, Jian; Wang, Yiqian

    2018-03-01

    High-resolution transmission electron microscopy is used to investigate the deformation behaviors of cementite lamellae in the heavily cold-drawn piano wires. Three distinct morphologies of cementite are observed, namely, complete lamella, partly-broken lamella and nearly-disappeared lamella. For the complete cementite lamella, it remains a single-crystalline structure. For the partly-broken cementite lamella, polycrystalline structure and neck-down region appear to release the residual strain. The lattice expansion of ferrite takes place in two perpendicular directions indicating that the carbon atoms dissolve from cementite into ferrite lattices. An orientation relationship is found between ferrite and cementite phases in the cold-drawn pearlitic wire.

  8. Aqueous formation and manipulation of the iron-oxo Keggin ion

    NASA Astrophysics Data System (ADS)

    Sadeghi, Omid; Zakharov, Lev N.; Nyman, May

    2015-03-01

    There is emerging evidence that growth of synthetic and natural phases occurs by the aggregation of prenucleation clusters, rather than classical atom-by-atom growth. Ferrihydrite, an iron oxyhydroxide mineral, is the common form of Fe3+ in soils and is also in the ferritin protein. We isolated a 10 angstrom discrete iron-oxo cluster (known as the Keggin ion, Fe13) that has the same structural features as ferrihydrite. The stabilization and manipulation of this highly reactive polyanion in water is controlled exclusively by its counterions. Upon dissolution of Fe13 in water with precipitation of its protecting Bi3+-counterions, it rapidly aggregates to ~22 angstrom spherical ferrihydrite nanoparticles. Fe13 may therefore also be a prenucleation cluster for ferrihydrite formation in natural systems, including by microbial and cellular processes.

  9. Digital lock-in detection of site-specific magnetism in magnetic materials

    DOEpatents

    Haskel, Daniel [Naperville, IL; Lang, Jonathan C [Naperville, IL; Srajer, George [Oak Park, IL

    2008-07-22

    The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

  10. Forming a Bose-Einstein Condensate

    NASA Image and Video Library

    2014-09-26

    This sequence of false-color images shows the formation of a Bose-Einstein condensate in the Cold Atom Laboratory prototype at NASA Jet Propulsion Laboratory as the temperature gets progressively closer to absolute zero.

  11. An ultracold potassium Rydberg source for experiments in quantum optics and many-body physics

    NASA Astrophysics Data System (ADS)

    Conover, Charles; Dupre, Pamela; Tong, Ai Phuong; Sanon, Carlvin; Clarke, Kevin; Doolittle, Brian; Louria, Stephen; Adamson, Philip

    2017-04-01

    We report on the development of an apparatus for the study of quantum dynamics of Rydberg atoms of potassium. Samples of Rydberg atoms at 1 mK and varying density are excited in a magneto-optical trap of 107 K-39 atoms. The atoms are excited to Rydberg states in a steps from 4s to 5p and from 5p to ns and nd states using stabilized external-cavity diode lasers at 405 nm and 980 nm. Selective field ionization and detection with microchannel plates provides a platform for spectroscopic measurements in potassium, exploration of multiphoton processes, and experiments on cold atom collisions. This research was supported by the National Science Foundation under Grant PHY-1126599.

  12. Coherent Radiation in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Sutherland, Robert Tyler

    Over the last century, quantum mechanics has dramatically altered our understanding of light and matter. Impressively, exploring the relationship between the two continues to provide important insights into the physics of many-body systems. In this thesis, we add to this still growing field of study. Specifically, we discuss superradiant line-broadening and cooperative dipole-dipole interactions for cold atom clouds in the linear-optics regime. We then discuss how coherent radiation changes both the photon scattering properties and the excitation distribution of atomic arrays. After that, we explore the nature of superradiance in initially inverted clouds of multi-level atoms. Finally, we explore the physics of clouds with degenerate Zeeman ground states, and show that this creates quantum effects that fundamentally change the photon scattering of atomic ensembles.

  13. Scheme for quantum state manipulation in coupled cavities

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Zhong

    By controlling the parameters of the system, the effective interaction between different atoms is achieved in different cavities. Based on the interaction, scheme to generate three-atom Greenberger-Horne-Zeilinger (GHZ) is proposed in coupled cavities. Spontaneous emission of excited states and decay of cavity modes can be suppressed efficiently. In addition, the scheme is robust against the variation of hopping rate between cavities.

  14. Non-aqueous phase cold vapor generation and determination of trace cadmium by atomic fluorescence spectrometry.

    PubMed

    Lei, Zirong; Chen, Luqiong; Hu, Kan; Yang, Shengchun; Wen, Xiaodong

    2018-06-05

    Cold vapor generation (CVG) of cadmium was firstly accomplished in non-aqueous media by using solid reductant of potassium borohydride (KBH 4 ) as a derivation reagent. The mixture of surfactant Triton X-114 micelle and octanol was innovatively used as the non-aqueous media for the CVG and atomic fluorescence spectrometry (AFS) was used for the elemental determination. The analyte ions were firstly extracted into the non-aqueous media from the bulk aqueous phase of analyte/sample solution via a novelly established ultrasound-assisted rapidly synergistic cloud point extraction (UARS-CPE) process and then directly mixed with the solid redcutant KBH 4 to generate volatile elemental state cadmium in a specially designed reactor, which was then rapidly transported to a commercial atomic fluorescence spectrometer for detection. Under the optimal conditions, the limit of detection (LOD) for cadmium was 0.004 μg L -1 . Compared to conventional hydride generation (HG)-AFS, the efficiency of non-aqueous phase CVG and the analytical performance of the developed system was considerably improved. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Atomic Structure of Au 329(SR) 84 Faradaurate Plasmonic Nanomolecules

    DOE PAGES

    Kumara, Chanaka; Zuo, Xiaobing; Ilavsky, Jan; ...

    2015-04-03

    To design novel nanomaterials, it is important to precisely control the composition, determine the atomic structure, and manipulate the structure to tune the materials property. Here we present a comprehensive characterization of the material whose composition is Au 329(SR) 84 precisely, therefore referred to as a nanomolecule. The size homogeneity was shown by electron microscopy, solution X-ray scattering, and mass spectrometry. We proposed its atomic structure to contain the Au 260 core using experiments and modeling of a total-scattering-based atomic-pair distribution functional analysis. HAADF-STEM images shows fcc-like 2.0 ± 0.1 nm diameter nanomolecules.

  16. Photographs and Pamphlet about Nuclear Fallout. The Constitution Community: Postwar United States (1945 to Early 1970s).

    ERIC Educational Resources Information Center

    Lawlor, John M., Jr.

    In August 1945, the United States unleashed an atomic weapon against the Japanese at Hiroshima and Nagasaki and brought an end to World War II. These bombs killed in two ways -- by the blast's magnitude and resulting firestorm, and by nuclear fallout. After the Soviet Union exploded its first atom bomb in 1949, the Cold War waged between the two…

  17. Majorana edge States in atomic wires coupled by pair hopping.

    PubMed

    Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P

    2013-10-25

    We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.

  18. A characteristic scale for cold gas

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Oh, S. Peng; O'Leary, Ryan; Madigan, Ann-Marie

    2018-02-01

    We find that clouds of optically thin, pressure-confined gas are prone to fragmentation as they cool below ∼106 K. This fragmentation follows the lengthscale ∼cstcool, ultimately reaching very small scales (∼0.1 pc/n), as they reach the temperature ∼104 K at which hydrogen recombines. While this lengthscale depends on the ambient pressure confining the clouds, we find that the column density through an individual fragment Ncloudlet ∼ 1017 cm-2 is essentially independent of environment; this column density represents a characteristic scale for atomic gas at 104 K. We therefore suggest that 'clouds' of cold, atomic gas may, in fact, have the structure of a mist or a fog, composed of tiny fragments dispersed throughout the ambient medium. We show that this scale emerges in hydrodynamic simulations, and that the corresponding increase in the surface area may imply rapid entrainment of cold gas. We also apply it to a number of observational puzzles, including the large covering fraction of diffuse gas in galaxy haloes, the broad-line widths seen in quasar and AGN spectra and the entrainment of cold gas in galactic winds. While our simulations make a number of assumptions and thus have associated uncertainties, we show that this characteristic scale is consistent with a number of observations, across a wide range of astrophysical environments. We discuss future steps for testing, improving and extending our model.

  19. Controlled rephasing of single spin-waves in a quantum memory based on cold atoms

    NASA Astrophysics Data System (ADS)

    Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team

    2015-05-01

    Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.

  20. A compact micro-wave synthesizer for transportable cold-atom interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lautier, J.; Lours, M.; Landragin, A., E-mail: arnaud.landragin@obspm.fr

    2014-06-15

    We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of {sup 87}Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de métrologie et d'essais−Systémes de référence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of −65 dB rad{sup 2} Hz{sup −1} at 10 Hz offset frequency and a white phase noise level in themore » order of −120 dB rad{sup 2} Hz{sup −1} for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.« less

  1. Low-temperature physics: Chaos in the cold

    NASA Astrophysics Data System (ADS)

    Julienne, Paul S.

    2014-03-01

    A marriage between theory and experiment has shown that ultracold erbium atoms trapped with laser light and subjected to a magnetic field undergo collisions that are characterized by quantum chaos. See Letter p.475

  2. Engineering quantum hyperentangled states in atomic systems

    NASA Astrophysics Data System (ADS)

    Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor

    2017-11-01

    Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.

  3. Cooperative single-photon subradiant states in a three-dimensional atomic array

    NASA Astrophysics Data System (ADS)

    Jen, H. H.

    2016-11-01

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing.

  4. Modulational Instability and Quantum Discrete Breather States of Cold Bosonic Atoms in a Zig-Zag Optical Lattice

    NASA Astrophysics Data System (ADS)

    Chang, Xia; Xie, Jiayu; Wu, Tianle; Tang, Bing

    2018-07-01

    A theoretical study on modulational instability and quantum discrete breather states in a system of cold bosonic atoms in zig-zag optical lattices is presented in this work. The time-dependent Hartree approximation is employed to deal with the multiple body problem. By means of a linear stability analysis, we analytically study the modulational instability, and estimate existence conditions of the bright stationary localized solutions for different values of the second-neighbor hopping constant. On the other hand, we get analytical bright stationary localized solutions, and analyze the influence of the second-neighbor hopping on their existence conditions. The predictions of the modulational instability analysis are shown to be reliable. Using these stationary localized single-boson wave functions, the quantum breather states corresponding to the system with different types of nonlinearities are constructed.

  5. Comparison of Adsorbed Mercury Screening Method With Cold-Vapor Atomic Absorption Spectrophotometry for Determination of Mercury in Soil

    NASA Technical Reports Server (NTRS)

    Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.

    2000-01-01

    A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.

  6. Single-photon-level quantum image memory based on cold atomic ensembles

    PubMed Central

    Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2013-01-01

    A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711

  7. Rydberg dressing of atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Macrı, T.; Pohl, T.

    2014-01-01

    We study atoms in optical lattices whose electronic ground state is off-resonantly coupled to a highly excited state with strong binary interactions. We present a time-dependent treatment of the resulting quantum dynamics, which—contrary to recent predictions [36 Li, Ates, and Lesanovsky, Phys. Rev. Lett. 110, 213005 (2013), 10.1103/PhysRevLett.110.213005]—proves that the strong repulsion between the weakly admixed Rydberg states does not lead to atomic trap loss. This finding provides an important basis for creating and manipulating coherent long-range interactions in optical lattice experiments.

  8. Magnetic trapping of cold bromine atoms.

    PubMed

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  9. Measurements of the Activation Energies for Atomic Hydrogen Diffusion on Pure Solid CO

    NASA Astrophysics Data System (ADS)

    Kimura, Y.; Tsuge, M.; Pirronello, V.; Kouchi, A.; Watanabe, N.

    2018-05-01

    The diffusion of hydrogen atoms on dust grains is a key process in the formation of interstellar H2 and some hydrogenated molecules such as formaldehyde and methanol. We investigate the adsorption and diffusion of H atoms on pure solid CO as an analog of dust surfaces observed toward some cold interstellar regions. Using a combination of photostimulated desorption and resonance-enhanced multiphoton ionization methods to detect H atoms directly, the relative adsorption probabilities and diffusion coefficients of the H atoms are measured on pure solid CO at 8, 12, and 15 K. There is little difference between the diffusion coefficients of the hydrogen and deuterium atoms, indicating that the diffusion is limited by thermal hopping. The activation energies controlling the H-atom diffusion depend on the surface temperature, and values of 22, 30, and ∼37 meV were obtained for 8, 12, and 15 K, respectively.

  10. In situ single-atom array synthesis using dynamic holographic optical tweezers

    PubMed Central

    Kim, Hyosub; Lee, Woojun; Lee, Han-gyeol; Jo, Hanlae; Song, Yunheung; Ahn, Jaewook

    2016-01-01

    Establishing a reliable method to form scalable neutral-atom platforms is an essential cornerstone for quantum computation, quantum simulation and quantum many-body physics. Here we demonstrate a real-time transport of single atoms using holographic microtraps controlled by a liquid-crystal spatial light modulator. For this, an analytical design approach to flicker-free microtrap movement is devised and cold rubidium atoms are simultaneously rearranged with 2N motional degrees of freedom, representing unprecedented space controllability. We also accomplish an in situ feedback control for single-atom rearrangements with the high success rate of 99% for up to 10 μm translation. We hope this proof-of-principle demonstration of high-fidelity atom-array preparations will be useful for deterministic loading of N single atoms, especially on arbitrary lattice locations, and also for real-time qubit shuttling in high-dimensional quantum computing architectures. PMID:27796372

  11. Inductively guided circuits for ultracold dressed atoms

    PubMed Central

    Sinuco-León, German A.; Burrows, Kathryn A.; Arnold, Aidan S.; Garraway, Barry M.

    2014-01-01

    Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control. PMID:25348163

  12. Insect capa neuropeptides impact desiccation and cold tolerance

    PubMed Central

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  13. Generation of long-living entanglement between two distant three-level atoms in non-Markovian environments.

    PubMed

    Li, Chuang; Yang, Sen; Song, Jie; Xia, Yan; Ding, Weiqiang

    2017-05-15

    In this paper, a scheme for the generation of long-living entanglement between two distant Λ-type three-level atoms separately trapped in two dissipative cavities is proposed. In this scheme, two dissipative cavities are coupled to their own non-Markovian environments and two three-level atoms are driven by the classical fields. The entangled state between the two atoms is produced by performing Bell state measurement (BSM) on photons leaving the dissipative cavities. Using the time-dependent Schördinger equation, we obtain the analytical results for the evolution of the entanglement. It is revealed that, by manipulating the detunings of classical field, the long-living stationary entanglement between two atoms can be generated in the presence of dissipation.

  14. Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization

    NASA Astrophysics Data System (ADS)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2018-05-01

    Many efforts have been devoted to the developments of atomic magnetometers for achieving the high sensitivity required in biomagnetic applications. To reach the high sensitivity, many types of atomic magnetometers have been introduced for optimization of the creation and relaxation rates of atomic spin polarization. In this paper, regards to sensitivity optimization techniques in the Mx configuration, we have proposed a novelty approach for synchronization of the spin precession in the Bell-Bloom magnetometers. We have utilized the phenomenological Bloch equations to simulate the spin dynamics when modulation of pumping light and radio frequency magnetic field were both used for atomic spin synchronization. Our results showed that the synchronization process, improved the magnetometer sensitivity respect to the classical configurations.

  15. Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryocrystallography

    NASA Technical Reports Server (NTRS)

    Snell, Eddie

    2003-01-01

    We have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. Cryocooling is a common technique used for structural data collection to reduce radiation damage in intense X-ray beams and decrease the thermal motion of the atoms. From the thermal images it was clear that during cryocooling a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. As an extension to this work, we used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop for automated structural genomics studies. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.

  16. Doping Scheme in Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada

    1997-01-01

    Due to the dramatic reduction in MOS size, there appear many unwanted effects. In these small devices, the number of dopant atoms in the channel is not macroscopic and electrons may suffer significantly different scattering from device to device since the spatial distribution of dopant atoms is no longer regarded as continuous. This prohibits integration, while it is impossible to control such dopant positions within atomic scale. A fundamental solution is to create electronics with simple but atomically precise structures, which could be fabricated with recent atom manipulation technology. All the constituent atoms are placed as planned, and then the device characteristics are deviation-free, which is mandatory for integration. Atomic chain electronics belongs to this category. Foreign atom chains or arrays form devices, and they are placed on the atomically flat substrate surface. We can design the band structure and the resultant Fermi energy of these structures by manipulating the lattice constant. Using the tight-binding theory with universal parameters, it has been predicted that isolated Si chains and arrays are metallic, Mg chains are insulating, and Mg arrays have metallic and insulating phases [1]. The transport properties along a metallic chain have been studied, emphasizing the role of the contact to electrodes [2]. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along die chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of pant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  17. Mach-Zehnder atom interferometer inside an optical fiber

    NASA Astrophysics Data System (ADS)

    Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu

    2017-04-01

    Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.

  18. Experimental realization of real-time feedback-control of single-atom arrays

    NASA Astrophysics Data System (ADS)

    Kim, Hyosub; Lee, Woojun; Ahn, Jaewook

    2016-05-01

    Deterministic loading of neutral atoms on particular locations has remained a challenging problem. Here we show, in a proof-of-principle experimental demonstration, that such deterministic loading can be achieved by rearrangement of atoms. In the experiment, cold rubidium atom were trapped by optical tweezers, which are the hologram images made by a liquid-crystal spatial light modulator (LC-SLM). After the initial occupancy was identified, the hologram was actively controlled to rearrange the captured atoms on to unfilled sites. For this, we developed a new flicker-free hologram algorithm that enables holographic atom translation. Our demonstration show that up to N=9 atoms were simultaneously moved in the 2D plane with the movable degrees of freedom of 2N=18 and the fidelity of 99% for single-atom 5- μm translation. It is hoped that our in situ atom rearrangement becomes useful in scaling quantum computers. Samsung Science and Technology Foundation [SSTF-BA1301-12].

  19. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator.

    PubMed

    Santarelli, G; Audoin, C; Makdissi, A; Laurent, P; Dick, G J; Clairon, A

    1998-01-01

    Atomic frequency standards using trapped ions or cold atoms work intrinsically in a pulsed mode. Theoretically and experimentally, this mode of operation has been shown to lead to a degradation of the frequency stability due to the frequency noise of the interrogation oscillator. In this paper a physical analysis of this effect has been made by evaluating the response of a two-level atom to the interrogation oscillator phase noise in Ramsey and multi-Rabi interrogation schemes using a standard quantum mechanical approach. This response is then used to calculate the degradation of the frequency stability of a pulsed atomic frequency standard such as an atomic fountain or an ion trap standard. Comparison is made to an experimental evaluation of this effect in the LPTF Cs fountain frequency standard, showing excellent agreement.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozhdestvensky, Yu V

    The possibility is studied for obtaining intense cold atomic beams by using the Renyi entropy to optimise the laser cooling process. It is shown in the case of a Gaussian velocity distribution of atoms, the Renyi entropy coincides with the density of particles in the phase space. The optimisation procedure for cooling atoms by resonance optical radiation is described, which is based on the thermodynamic law of increasing the Renyi entropy in time. Our method is compared with the known methods for increasing the laser cooling efficiency such as the tuning of a laser frequency in time and a changemore » of the atomic transition frequency in an inhomogeneous transverse field of a magnetic solenoid. (laser cooling)« less

  1. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Cun; Aoun, Bachir; Cui, Lishan

    Microstructure evolution of a cold-drawn NiTi shape memory alloy wire was investigated by means of in-situ synchrotron high-energy X-ray diffraction during continuous heating. The cold-drawn wire contained amorphous regions and nano-crystalline domains in its microstructure. Pair distribution function analysis revealed that the amorphous regions underwent structural relaxation via atomic rearrangement when heated above 100 °C. The nano-crystalline domains were found to exhibit a strong cold work induced lattice strain anisotropy having a preferential <111> fiber orientation along the wire axial direction. The lattice strain anisotropy systematically decreased upon heating above 200 °C, implying a structural recovery. A broad conical texturemore » was formed in the wire specimen after crystallization similar in detail to the initial <111> texture axial orientation of the nano-crystalline domains produced by the severe cold wire drawing deformation.« less

  3. [Influence of cold spot temperature on 253.7 nm resonance spectra line of electrodeless discharge lamps].

    PubMed

    Dong, Jin-yang; Zhang, Gui-xin; Wang, Chang-quan

    2012-01-01

    As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.

  4. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    NASA Astrophysics Data System (ADS)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  5. Lithogeochemistry of mineralized and altered rock samples from the northern Talkeetna Mountains, south-central Alaska

    USGS Publications Warehouse

    Light, Thomas D.; Schmidt, Jeanine M.

    2011-01-01

    Mineralized and altered rock samples collected from the northern Talkeetna Mountains, Alaska, were analyzed by two different inductively coupled plasma atomic-emission spectrometry (ICP-AES) methods for as many as 44 elements; by fire assay and either direct-coupled plasma (DCP) or atomic absorption spectrophotometry (AAS) for gold (Au); by cold vapor atomic absorption (CVAA) for mercury (Hg); and by irradiated neutron activation analysis (INAA) for tungsten (W). The analytical results showed that some samples contain high values of multiple elements and may be potential indicators of hydrothermal mineralization in the area.

  6. Measurement of magnetic field gradients using Raman spectroscopy in a fountain

    NASA Astrophysics Data System (ADS)

    Srinivasan, Arvind; Zimmermann, Matthias; Efremov, Maxim A.; Davis, Jon P.; Narducci, Frank A.

    2017-02-01

    In many experiments involving cold atoms, it is crucial to know the strength of the magnetic field and/or the magnetic field gradient at the precise location of a measurement. While auxiliary sensors can provide some of this information, the sensors are usually not perfectly co-located with the atoms and so can only provide an approximation to the magnetic field strength. In this article, we describe a technique to measure the magnetic field, based on Raman spectroscopy, using the same atomic fountain source that will be used in future magnetically sensitive measurements.

  7. Strategic Applications of Ultra-Cold Atoms

    DTIC Science & Technology

    2008-03-07

    journals or in conference proceedings (N/A for none) 68.00Number of Papers published in peer-reviewed journals: Wolfgang Ketterle: New Frontiers with...Helmerson, V.S. Bagnato (American Institute of Physics, 2005) pp. 25-29. Wolfgang Ketterle: The Bose-Einstein Condensate- a Superfluid Gas of Coherent Atoms...Vuletic 0.10 No Wolfgang Ketterle 0.10 Yes David Pritchard 0.10 Yes Mara Prentiss 0.10 No 0.80FTE Equivalent: 8Total Number: Names of Under

  8. Efficient multiparticle entanglement via asymmetric Rydberg blockade.

    PubMed

    Saffman, M; Mølmer, K

    2009-06-19

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.

  9. Science Goals of the Primary Atomic Reference Clock in Space (PARCS) Experiment

    NASA Technical Reports Server (NTRS)

    Ashby, N.

    2003-01-01

    The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled Cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. PARCS is a joint project of the National Institute of Standards and Technology (NIST), NASA's Jet Propulsion Laboratory (JPL), and the University of Colorado (CU). This paper concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5x10(exp -14) at one second, and accuracies better than 10(exp -16) are projected.

  10. Controlled manipulation of flexible carbon nanotubes through shape-dependent pushing by atomic force microscopy.

    PubMed

    Yang, Seung-Cheol; Qian, Xiaoping

    2013-09-17

    A systematic approach to manipulating flexible carbon nanotubes (CNTs) has been developed on the basis of atomic force microscope (AFM) based pushing. Pushing CNTs enables efficient transport and precise location of individual CNTs. A key issue for pushing CNTs is preventing defective distortion in repetitive bending and unbending deformation. The approach presented here controls lateral movement of an AFM tip to bend CNTs without permanent distortion. The approach investigates possible defects caused by tensile strain of the outer tube under uniform bending and radial distortion by kinking. Using the continuum beam model and experimental bending tests, dependency of maximum bending strain on the length of bent CNTs and radial distortion on bending angles at a bent point have been demonstrated. Individual CNTs are manipulated by limiting the length of bent CNTs and the bending angle. In our approach, multiwalled CNTs with 5-15 nm diameter subjected to bending deformation produce no outer tube breakage under uniform bending and reversible radial deformation with bending angles less than 110°. The lateral tip movement is determined by a simple geometric model that relies on the shape of multiwalled CNTs. The model effectively controls deforming CNT length and bending angle for given CNT shape. Experimental results demonstrate successful manipulation of randomly dispersed CNTs without visual defects. This approach to pushing can be extended to develop a wide range of CNT based nanodevice applications.

  11. Graphene as a flexible template for controlling magnetic interactions between metal atoms.

    PubMed

    Lee, Sungwoo; Kim, Dongwook; Robertson, Alex W; Yoon, Euijoon; Hong, Suklyun; Ihm, Jisoon; Yu, Jaejun; Warner, Jamie H; Lee, Gun-Do

    2017-03-01

    Metal-doped graphene produces magnetic moments that have potential application in spintronics. Here we use density function theory computational methods to show how the magnetic interaction between metal atoms doped in graphene can be controlled by the degree of flexure in a graphene membrane. Bending graphene by flexing causes the distance between two substitutional Fe atoms covalently bonded in graphene to gradually increase and these results in the magnetic moment disappearing at a critical strain value. At the critical strain, a carbon atom can enter between the two Fe atoms and blocks the interaction between relevant orbitals of Fe atoms to quench the magnetic moment. The control of interactions between doped atoms by exploiting the mechanical flexibility of graphene is a unique approach to manipulating the magnetic properties and opens up new opportunities for mechanical-magnetic 2D device systems.

  12. A kilobyte rewritable atomic memory

    NASA Astrophysics Data System (ADS)

    Kalff, Floris; Rebergen, Marnix; Fahrenfort, Nora; Girovsky, Jan; Toskovic, Ranko; Lado, Jose; FernáNdez-Rossier, JoaquíN.; Otte, Sander

    The ability to manipulate individual atoms by means of scanning tunneling microscopy (STM) opens op opportunities for storage of digital data on the atomic scale. Recent achievements in this direction include data storage based on bits encoded in the charge state, the magnetic state, or the local presence of single atoms or atomic assemblies. However, a key challenge at this stage is the extension of such technologies into large-scale rewritable bit arrays. We demonstrate a digital atomic-scale memory of up to 1 kilobyte (8000 bits) using an array of individual surface vacancies in a chlorine terminated Cu(100) surface. The chlorine vacancies are found to be stable at temperatures up to 77 K. The memory, crafted using scanning tunneling microscopy at low temperature, can be read and re-written automatically by means of atomic-scale markers, and offers an areal density of 502 Terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude.

  13. Scalable quantum information processing with atomic ensembles and flying photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei Feng; Yu Yafei; Feng Mang

    2009-10-15

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could muchmore » relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.« less

  14. AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam.

    PubMed

    Doser, M; Aghion, S; Amsler, C; Bonomi, G; Brusa, R S; Caccia, M; Caravita, R; Castelli, F; Cerchiari, G; Comparat, D; Consolati, G; Demetrio, A; Di Noto, L; Evans, C; Fanì, M; Ferragut, R; Fesel, J; Fontana, A; Gerber, S; Giammarchi, M; Gligorova, A; Guatieri, F; Haider, S; Hinterberger, A; Holmestad, H; Kellerbauer, A; Khalidova, O; Krasnický, D; Lagomarsino, V; Lansonneur, P; Lebrun, P; Malbrunot, C; Mariazzi, S; Marton, J; Matveev, V; Mazzotta, Z; Müller, S R; Nebbia, G; Nedelec, P; Oberthaler, M; Pacifico, N; Pagano, D; Penasa, L; Petracek, V; Prelz, F; Prevedelli, M; Rienaecker, B; Robert, J; Røhne, O M; Rotondi, A; Sandaker, H; Santoro, R; Smestad, L; Sorrentino, F; Testera, G; Tietje, I C; Widmann, E; Yzombard, P; Zimmer, C; Zmeskal, J; Zurlo, N

    2018-03-28

    The efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n =1-3 and n =3-15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of [Formula: see text], radial compression to sub-millimetre radii of mixed [Formula: see text] plasmas in 1 T field, high-efficiency transfer of [Formula: see text] to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen-cooling of antiprotons and formation of a beam of antihydrogen-are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).

  15. Editorial: Focus on Atom Optics and its Applications

    NASA Astrophysics Data System (ADS)

    Schmidt-Kaler, F.; Pfau, T.; Schmelcher, P.; Schleich, W.

    2010-06-01

    Atom optics employs the modern techniques of quantum optics and laser cooling to enable applications which often outperform current standard technologies. Atomic matter wave interferometers allow for ultra-precise sensors; metrology and clocks are pushed to an extraordinary accuracy of 17 digits using single atoms. Miniaturization and integration are driven forward for both atomic clocks and atom optical circuits. With the miniaturization of information-storage and -processing devices, the scale of single atoms is approached in solid state devices, where the laws of quantum physics lead to novel, advantageous features and functionalities. An upcoming branch of atom optics is the control of single atoms, potentially allowing solid state devices to be built atom by atom; some of which would be applicable in future quantum information processing devices. Selective manipulation of individual atoms also enables trace analysis of extremely rare isotopes. Additionally, sources of neutral atoms with high brightness are being developed and, if combined with photo ionization, even novel focused ion beam sources are within reach. Ultracold chemistry is fertilized by atomic techniques, when reactions of chemical constituents are investigated between ions, atoms, molecules, trapped or aligned in designed fields and cooled to ultra-low temperatures such that the reaction kinetics can be studied in a completely state-resolved manner. Focus on Atom Optics and its Applications Contents Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant F Sorrentino, Y-H Lien, G Rosi, L Cacciapuoti, M Prevedelli and G M Tino A single-atom detector integrated on an atom chip: fabrication, characterization and application D Heine, W Rohringer, D Fischer, M Wilzbach, T Raub, S Loziczky, XiYuan Liu, S Groth, B Hessmo and J Schmiedmayer Interaction of a propagating guided matter wave with a localized potential G L Gattobigio, A Couvert, B Georgeot and D Guéry-Odelin Analysis of the entanglement between two individual atoms using global Raman rotations A Gaëtan, C Evellin, J Wolters, P Grangier, T Wilk and A Browaeys Spin polarization transfer in ground and metastable helium atom collisions D Vrinceanu and H R Sadeghpour A fiber Fabry-Perot cavity with high finesse D Hunger, T Steinmetz, Y Colombe, C Deutsch, T W Hänsch and J Reichel Atomic wave packets in amplitude-modulated vertical optical lattices A Alberti, G Ferrari, V V Ivanov, M L Chiofalo and G M Tino Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions Julian Grond, Ulrich Hohenester, Igor Mazets and Jörg Schmiedmayer Storage of protonated water clusters in a biplanar multipole rf trap C Greve, M Kröner, S Trippel, P Woias, R Wester and M Weidemüller Single-atom detection on a chip: from realization to application A Stibor, H Bender, S Kühnhold, J Fortágh, C Zimmermann and A Günther Ultracold atoms as a target: absolute scattering cross-section measurements P Würtz, T Gericke, A Vogler and H Ott Entanglement-assisted atomic clock beyond the projection noise limit Anne Louchet-Chauvet, Jürgen Appel, Jelmer J Renema, Daniel Oblak, Niels Kjaergaard and Eugene S Polzik Towards the realization of atom trap trace analysis for 39Ar J Welte, F Ritterbusch, I Steinke, M Henrich, W Aeschbach-Hertig and M K Oberthaler Resonant superfluidity in an optical lattice I Titvinidze, M Snoek and W Hofstetter Interference of interacting matter waves Mattias Gustavsson, Elmar Haller, Manfred J Mark, Johann G Danzl, Russell Hart, Andrew J Daley and Hanns-Christoph Nägerl Magnetic trapping of NH molecules with 20 s lifetimes E Tsikata, W C Campbell, M T Hummon, H-I Lu and J M Doyle Imprinting patterns of neutral atoms in an optical lattice using magnetic resonance techniques Michal Karski, Leonid Förster, Jai-Min Choi, Andreas Steffen, Noomen Belmechri, Wolfgang Alt, Dieter Meschede and Artur Widera Frequency stability of optical lattice clocks Jérôme Lodewyck, Philip G Westergaard, Arnaud Lecallier, Luca Lorini and Pierre Lemonde Ultracold quantum gases in triangular optical lattices C Becker, P Soltan-Panahi, J Kronjäger, S Dörscher, K Bongs and K Sengstock Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit B Kasch, H Hattermann, D Cano, T E Judd, S Scheel, C Zimmermann, R Kleiner, D Koelle and J Fortágh Focusing a deterministic single-ion beam Wolfgang Schnitzler, Georg Jacob, Robert Fickler, Ferdinand Schmidt-Kaler and Kilian Singer Tuning the structural and dynamical properties of a dipolar Bose-Einstein condensate: ripples and instability islands M Asad-uz-Zaman and D Blume Double-resonance lineshapes in a cell with wall coating and buffer gas Svenja Knappe and Hugh G Robinson Transport and interaction blockade of cold bosonic atoms in a triple-well potential P Schlagheck, F Malet, J C Cremon and S M Reimann Fabrication of a planar micro Penning trap and numerical investigations of versatile ion positioning protocols M Hellwig, A Bautista-Salvador, K Singer, G Werth and F Schmidt-Kaler Laser cooling of a magnetically guided ultracold atom beam A Aghajani-Talesh, M Falkenau, V V Volchkov, L E Trafford, T Pfau and A Griesmaier Creation efficiency of nitrogen-vacancy centres in diamond S Pezzagna, B Naydenov, F Jelezko, J Wrachtrup and J Meijer Top-down pathways to devices with few and single atoms placed to high precision Jessica A Van Donkelaar, Andrew D Greentree, Andrew D C Alves, Lenneke M Jong, Lloyd C L Hollenberg and David N Jamieson Enhanced electric field sensitivity of rf-dressed Rydberg dark states M G Bason, M Tanasittikosol, A Sargsyan, A K Mohapatra, D Sarkisyan, R M Potvliege and C S Adams

  16. ScienceCast 132: The Coolest Spot in the Universe

    NASA Image and Video Library

    2014-01-30

    NASA researchers plan to create the coldest spot in the known Universe--inside the International Space Station. The device, known as the Cold Atom Lab, could discover new forms of matter and novel quantum phenomena.

  17. Reading Suggestions on 1945 for Classroom Instruction

    ERIC Educational Resources Information Center

    Critchfield, James W.

    1970-01-01

    Readings are organized for teachers by these topics: World War II; The Atomic Bomb; The Cold War; American Political Personalities; and, General Events in the United States. A 7-item list is presented for high school students. (DB)

  18. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  19. Unimolecular Logic Gate with Classical Input by Single Gold Atoms.

    PubMed

    Skidin, Dmitry; Faizy, Omid; Krüger, Justus; Eisenhut, Frank; Jancarik, Andrej; Nguyen, Khanh-Hung; Cuniberti, Gianaurelio; Gourdon, Andre; Moresco, Francesca; Joachim, Christian

    2018-02-27

    By a combination of solution and on-surface chemistry, we synthesized an asymmetric starphene molecule with two long anthracenyl input branches and a short naphthyl output branch on the Au(111) surface. Starting from this molecule, we could demonstrate the working principle of a single molecule NAND logic gate by selectively contacting single gold atoms by atomic manipulation to the longer branches of the molecule. The logical input "1" ("0") is defined by the interaction (noninteraction) of a gold atom with one of the input branches. The output is measured by scanning tunneling spectroscopy following the shift in energy of the electronic tunneling resonances at the end of the short branch of the molecule.

  20. Tracing the Fuel for Forming Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-11-01

    Huge reservoirs of cold hydrogen gas the raw fuel for star formation lurk in galaxies throughout the universe. A new study examines whether these reservoirs have always been similar, or whether those in distant galaxies are very different from those in local galaxies today.Left: Optical SLOAN images of the five HIGHz galaxies in this study. Right: ALMA images of the molecular gas in these galaxies. Both images are 30 wide. [Adapted from Cortese et al. 2017]Molecular or Atomic?The formation of stars is a crucial process that determines how galaxies are built and evolve over time. Weve observed that star formation takes place in cold clouds of molecular gas, and that star-formation rates increase in galaxies with a larger surface density of molecular hydrogen so we know that molecular hydrogen feeds the star-forming process.But not all cold gas in the interstellar medium of galaxies exists in molecular form. In the local universe, only around 30% of cold gas is found in molecular form (H2) and able to directly feed star formation; the rest is atomic hydrogen (H I). But is this true of galaxies earlier in the universe as well?Studying Distant GalaxiesCosmological simulations have predicted that earlier in our universes history, the ratio of molecular to atomic hydrogen could be larger i.e., more cold hydrogen may be in a form ready to fuel star formation but this prediction is difficult to test observationally. Currently, radio telescopes are not able to measure the atomic hydrogen in very distant galaxies, such as those at the peak of star formation in the universe, 10 billion years ago.Recently, however, we have measured atomic hydrogen in closer galaxies: those at a redshift of about z 0.20.4, a few billion years ago. One recent study of seven galaxies at this distance, usinga sample from a survey known as COOL BUDHIES, showed that the hydrogen reservoirs of these galaxies are dominated by molecular hydrogen, unlike in the local universe. If this is true of most galaxies at this distance, it would suggest that gas reservoirs have drastically changed in the short time between then and now.But a team of scientists from the International Centre for Radio Astronomy Research in Australia, led by Luca Cortese, has now challenged this conclusion.Top: molecular vs. atomic hydrogen gas in galaxies between z = 0 and z = 1.5. Bottom: the evolution of the molecular-to-atomic mass ratio with redshift. [Adapted from Cortese et al. 2017]Adding to the SampleCortese and collaborators combined observations from the Atacama Large Millimeter/submillimeter Array (ALMA) and Arecibo to estimate the ratio of molecular to atomic hydrogen in five HIGHz-survey massive star-forming galaxies at a redshift of z 0.2. They then combine these results with those of the COOL BUDHIES survey; they argue that, since the two surveys use different selection criteria, the combination of the two samples provides a fairer view of the overall population of star-forming galaxies at z 0.2.Intriguingly, the HIGHz galaxies do not show the molecular-gas dominance that the COOL BUDHIES galaxies do. Cortese and collaborators demonstrate that the addition of the HIGHz galaxies to the sample reveals that the gas reservoirs of star-forming disks 3 billion years ago are, in fact, still the same as what we see today, suggesting that star formation in galaxies at z 0.2 is likely fueled in much the same way as it is today.As telescope capabilities increase, we may be able to explore whether this continues to hold true for more distant galaxies. In the meantime, increasing our sample size within the range that we can observe will help us to further explore how galaxies have formed stars over time.CitationLuca Cortese et al 2017 ApJL 848 L7. doi:10.3847/2041-8213/aa8cc3

  1. Efimov-driven phase transitions of the unitary Bose gas.

    PubMed

    Piatecki, Swann; Krauth, Werner

    2014-03-20

    Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.

  2. Tuning across the BCS-BEC crossover in superconducting Fe1+ySexTe1-x : An angle-resolved photoemission study

    NASA Astrophysics Data System (ADS)

    Rinott, Shahar; Ribak, Amit; Chashka, Khanan; Randeria, Mohit; Kanigel, Amit

    The crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation (BEC) was never realized in quantum materials. It is difficult to realize because, unlike in ultra cold atoms, one cannot tune the pairing interaction. We realize the BCS-BEC crossover in a nearly compensated semimetal Fe1+ySexTe1-x by tuning the Fermi energy ɛF via chemical doping, which permits us to systematically change Δ /ɛF from 0 . 16 to 0 . 50 , where Δ is the superconducting (SC) gap. We use angle-resolved photoemission spectroscopy to measure the Fermi energy, the SC gap and characteristic changes in the SC state electronic dispersion as the system evolves from a BCS to a BEC regime. Our results raise important questions about the crossover in multi-band superconductors which go beyond those addressed in the context of cold atoms.

  3. Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Click, D. R.; Edwards, T. B.; Wiedenman, B. J.

    2013-03-18

    This report contains the results and comparison of data generated from inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch ormore » qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.« less

  4. Ionization Spectroscopic Measurement of nP Rydberg Levels of 87Rb Cold Atoms

    NASA Astrophysics Data System (ADS)

    Li, Yufan; Zaheeruddin, Syed; Zhao, Dongmei; Ma, Xinwen; Yang, Jie

    2018-05-01

    We created an ultracold plasma via the spontaneous ionization of cold dense Rydberg atoms of 87Rb in a magneto-optical trap (MOT), and measured the nS1/2 (n = 50-80), nP1/2 (n = 16-23), nP3/2 (n = 16-98), and nD5/2 (n = 49-96) Rydberg levels by detecting the electrons in the ultracold plasma. By fitting the energy levels of Rydberg states, the first ionization potential of 33690.950(11) cm-1 and the quantum defects of S, P, and D orbitals were obtained. The absolute transition energies of nS1/2 (n = 66-80), nP1/2 (n = 16-23), nP3/2 (n = 16-98), and nD5/2 (n = 58-96) states of 87Rb, as well as the quantum defects for p1/2 and p3/2 series, are given for the first time.

  5. Clean Floquet Time Crystals: Models and Realizations in Cold Atoms

    NASA Astrophysics Data System (ADS)

    Huang, Biao; Wu, Ying-Hai; Liu, W. Vincent

    2018-03-01

    Time crystals, a phase showing spontaneous breaking of time-translation symmetry, has been an intriguing subject for systems far away from equilibrium. Recent experiments found such a phase in both the presence and the absence of localization, while in theories localization by disorder is usually assumed a priori. In this work, we point out that time crystals can generally exist in systems without disorder. A series of clean quasi-one-dimensional models under Floquet driving are proposed to demonstrate this unexpected result in principle. Robust time crystalline orders are found in the strongly interacting regime along with the emergent integrals of motion in the dynamical system, which can be characterized by level statistics and the out-of-time-ordered correlators. We propose two cold atom experimental schemes to realize the clean Floquet time crystals, one by making use of dipolar gases and another by synthetic dimensions.

  6. Mott Time Crystal: Models and Realizations in Cold Atoms

    NASA Astrophysics Data System (ADS)

    Huang, Biao; Wu, Ying-Hai; Liu, W. Vincent

    2017-04-01

    Time crystals, a phase showing spontaneously breaking of time-translation symmetry, has been an intriguing subject for systems far away from equilibrium. Recent experiments found such a phase both in the presence and absence of localization, while in theories localization is usually assumed a priori. In this work, we point out that time crystals can generally exist in systems without disorder and is not in a pre-thermal state. A series of driven interacting ladder models are proposed to demonstrate this unexpected result in principle. Robust time crystalline orders are found in the Mott regime due to the emergent integrals of motion in the dynamical system, which can be characterized by the out-of-time-order correlators (OTOC). We propose two cold atom experimental schemes to realize the Mott time crystals, one by making use of dipolar gases and another by synthetic dimensions. U.S. ARO (W911NF-11-1-0230), AFOSR (FA9550-16-1-0006).

  7. Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor

    NASA Astrophysics Data System (ADS)

    Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.

    2006-04-01

    This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.

  8. First-Principle Investigation on the Bonding Mechanism of the Silicon Particles on the Copper Foil in Cold Spraying

    NASA Astrophysics Data System (ADS)

    Song, Jun; Liu, Juanfang; Chen, Qinghua

    For lithium-ion batteries, the composite silicon-based electrodes can prevent from losing electrical contact and hence retain the capacity over many cycles. To uncover the adhesion mechanism on the interface formed by the copper foil and the thin silicon coatings during the cold gas dynamic spraying (CGDS) at the microscopic level, the first-principle calculations are performed to investigate the interface properties between them. The ideal work of adhesion, fracture toughness and the interface electronic properties are analyzed. It is found that all the atoms on the interface have vertical displacements, and covalent and ionic bonds are formed between the interfacial Cu and Si atoms which increases the bonding strength. However, the ideal work of adhesion on the interface is lower than one of the Cu bulk and Si bulk, so that fracture would be easier to take place on the interface.

  9. Spectroscopy of the three-photon laser excitation of cold Rubidium Rydberg atoms in a magneto-optical trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entin, V. M.; Yakshina, E. A.; Tretyakov, D. B.

    2013-05-15

    The spectra of the three-photon laser excitation 5S{sub 1/2} {yields} 5P{sub 3/2} {yields} 6S{sub 1/2}nP of cold Rb Rydberg atoms in an operating magneto-optical trap based on continuous single-frequency lasers at each stage are studied. These spectra contain two partly overlapping peaks of different amplitudes, which correspond to coherent three-photon excitation and incoherent three-step excitation due to the presence of two different ways of excitation through the dressed states of intermediate levels. A four-level theoretical model based on optical Bloch equations is developed to analyze these spectra. Good agreement between the experimental and calculated data is achieved by introducing additionalmore » decay of optical coherence induced by a finite laser line width and other broadening sources (stray electromagnetic fields, residual Doppler broadening, interatomic interactions) into the model.« less

  10. Designing Ratchets in Ultra-cold Atoms for the Advanced Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Hachtel, Andrew; Gillette, Matthew; Clements, Ethan; Zhong, Shan; Ducay, Rey; Bali, Samir

    2014-05-01

    We propose to perform ratchet experiments in cold Rubidium atoms using state-of-the-art home-built tapered amplifier and imaging systems. Our tapered amplifier system amplifies the output from home-built external cavity tunable diode lasers up to a factor 100 and costs less than 5,000, in contrast to commercial tapered amplifier systems, which cost upward of 20,000. We have developed an imaging system with LabVIEW integration, which allows for approximately 2 millisecond exposures and microsecond control of experimental parameters. Our imaging system also costs less than 5,000 in comparison to commercial options, which cost between 40-50,000. Progress toward implementation of a one-dimensional rocking ratchet is described. We gratefully acknowledge funding from the American Chemical Society Petroleum Research Fund and Miami University. We also acknowledge the Miami University Instrumentation Laboratory for their invaluable contributions.

  11. Optical Measurements of Strong Radio-Frequency Fields Using Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie Anne

    There has recently been an initiative toward establishing atomic measurement standards for field quantities, including radio-frequency, millimeter-wave, and micro-wave electric fields. Current measurement standards are obtained using dipole antennas, which are fundamentally limited in frequency bandwidth (set by the physical size of the antenna) and accuracy (due to the metal perturbing the field during the measurement). Establishing an atomic standard rectifies these problems. My thesis work contributes to an ongoing effort towards establishing the viability of using Rydberg electromagnetically induced transparency (EIT) to perform atom-based measurements of radio-frequency (RF) fields over a wide range of frequencies and field strengths, focusing on strong-field measurements. Rydberg atoms are atoms with an electron excited to a high principal quantum number, resulting in a high sensitivity to an applied field. A model based on Floquet theory is implemented to accurately describe the observed atomic energy level shifts from which information about the field is extracted. Additionally, the effects due to the different electric field domains within the measurement volume are accurately modeled. Absolute atomic measurements of fields up to 296 V/m within a +/-0.35% relative uncertainty are demonstrated. This is the strongest field measured at the time of data publication. Moreover, the uncertainty is over an order of magnitude better than that of current standards. A vacuum chamber setup that I implemented during my graduate studies is presented and its unique components are detailed. In this chamber, cold-atom samples are generated and Rydberg atoms are optically excited within the ground-state sample. The Rydberg ion detection and imaging procedure are discussed, particularly the high magnification that the system provides. By analyzing the position of the ions, the spatial correlation g(2) (r) of Rydberg-atom distributions can be extracted. Aside from ion detection, EIT is implemented in the cold-atom samples. By measuring the timing of the probe photons exiting the EIT medium, the temporal correlation function g(2)(tau) can be extracted, yielding information about the timing between two different arbitrary photons. An experimental goal using this setup is to look at g(2)(tau) in conjunction with g(2)(r) for Rydberg atoms. Progress and preliminary measurements of ion detection and EIT spectra are presented including observed qualitative behaviors.

  12. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival

    PubMed Central

    Barwood, Martin J.; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R. D.

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3–5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [fc], respiratory frequency [fR], tidal volume [VT], minute ventilation [E]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the fc component of the CSR in unhabituated participants (CON1; p < 0.05, r = 0.536, r2= 0.190). After habituation immersions (i.e., cohort 2), anxiety rating predicted the fR component of the CSR when anxiety levels were lowered (CON2; p < 0.05, r = 0.566, r2= 0.320) but predicted the fc component of the CSR (p < 0.05, r = 0.518, r2= 0.197) when anxiety was increased suggesting different drivers of the CSR when anxiety levels were manipulated; correlation data supported these relationships. Discussion: Acute anxiety is integral to the CSR before and after habituation. We offer a new integrated model including neuroanatomical, perceptual and attentional components of the CSR to explain these data. PMID:29695988

  13. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival.

    PubMed

    Barwood, Martin J; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R D

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3-5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [ f c ], respiratory frequency [ f R ], tidal volume [ V T ], minute ventilation [ E ]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1 st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the f c component of the CSR in unhabituated participants (CON1; p < 0.05, r = 0.536, r 2 = 0.190). After habituation immersions (i.e., cohort 2), anxiety rating predicted the f R component of the CSR when anxiety levels were lowered (CON2; p < 0.05, r = 0.566, r 2 = 0.320) but predicted the f c component of the CSR ( p < 0.05, r = 0.518, r 2 = 0.197) when anxiety was increased suggesting different drivers of the CSR when anxiety levels were manipulated; correlation data supported these relationships. Discussion: Acute anxiety is integral to the CSR before and after habituation. We offer a new integrated model including neuroanatomical, perceptual and attentional components of the CSR to explain these data.

  14. A kilobyte rewritable atomic memory

    NASA Astrophysics Data System (ADS)

    Kalff, F. E.; Rebergen, M. P.; Fahrenfort, E.; Girovsky, J.; Toskovic, R.; Lado, J. L.; Fernández-Rossier, J.; Otte, A. F.

    2016-11-01

    The advent of devices based on single dopants, such as the single-atom transistor, the single-spin magnetometer and the single-atom memory, has motivated the quest for strategies that permit the control of matter with atomic precision. Manipulation of individual atoms by low-temperature scanning tunnelling microscopy provides ways to store data in atoms, encoded either into their charge state, magnetization state or lattice position. A clear challenge now is the controlled integration of these individual functional atoms into extended, scalable atomic circuits. Here, we present a robust digital atomic-scale memory of up to 1 kilobyte (8,000 bits) using an array of individual surface vacancies in a chlorine-terminated Cu(100) surface. The memory can be read and rewritten automatically by means of atomic-scale markers and offers an areal density of 502 terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude. Furthermore, the chlorine vacancies are found to be stable at temperatures up to 77 K, offering the potential for expanding large-scale atomic assembly towards ambient conditions.

  15. Optical angular momentum and atoms

    PubMed Central

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  16. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  17. A new type of caesium clock: a laser-cooled atomic fountain.

    NASA Astrophysics Data System (ADS)

    Clairon, A.

    1995-05-01

    In recent years, progress has been made in the field of cooling neutral atoms using a laser. An initial application is the construction of a new type of atomic clock. Today it is easy to produce a gas of caesium atoms at a temperature of a few microkelvins, corresponding to a mean square velocity of the order of 1 cm/s; all that is needed is two laser diodes forming an optical soup in a low pressure caesium cell. In the longer term, these cooled atoms will make it possible to build clocks whose performance will be one or two orders of magnitude better than those that exist at present. A prototype caesium clock using cold atoms has been operating for over a year that the LPTF in the Paris observatory. This article describes its design principles and gives a brief presentation of the results obtained so far.

  18. Laser controlled atom source for optical clocks.

    PubMed

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-11-18

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.

  19. Quenches across the self-organization transition in multimode cavities

    NASA Astrophysics Data System (ADS)

    Keller, Tim; Torggler, Valentin; Jäger, Simon B.; Schütz, Stefan; Ritsch, Helmut; Morigi, Giovanna

    2018-02-01

    A cold dilute atomic gas in an optical resonator can be radiatively cooled by coherent scattering processes when the driving laser frequency is tuned close to but below the cavity resonance. When the atoms are sufficiently illuminated, their steady state undergoes a phase transition from a homogeneous distribution to a spatially organized Bragg grating. We characterize the dynamics of this self-ordering process in the semi-classical regime when distinct cavity modes with commensurate wavelengths are quasi-resonantly driven by laser fields via scattering by the atoms. The lasers are simultaneously applied and uniformly illuminate the atoms; their frequencies are chosen so that the atoms are cooled by the radiative processes, and their intensities are either suddenly switched or slowly ramped across the self-ordering transition. Numerical simulations for different ramp protocols predict that the system will exhibit long-lived metastable states, whose occurrence strongly depends on the initial temperature, ramp speed, and the number of atoms.

  20. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    PubMed

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  1. Fast-responding property of electromagnetically induced transparency in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Bai, Zhengyang; Huang, Guoxiang

    2018-04-01

    We investigate the transient optical response property of an electromagnetically induced transparency (EIT) in a cold Rydberg atomic gas. We show that both the transient behavior and the steady-state EIT spectrum of the system depend strongly on Rydberg interaction. Especially, the response speed of the Rydberg-EIT can be five times faster (and even higher) than the conventional EIT without the Rydberg interaction. For comparison, two different theoretical approaches (i.e., two-atom model and many-atom model) are considered, revealing that Rydberg blockade effect plays a significant role for increasing the response speed of the Rydberg-EIT. The fast-responding Rydberg-EIT by using the strong, tunable Rydberg interaction uncovered here is not only helpful for enhancing the understanding of the many-body dynamics of Rydberg atoms but also useful for practical applications in quantum information processing by using Rydberg atoms.

  2. Laser controlled atom source for optical clocks

    PubMed Central

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-01-01

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy. PMID:27857214

  3. Tune-out wavelengths and landscape-modulated polarizabilities of alkali-metal Rydberg atoms in infrared optical lattices

    NASA Astrophysics Data System (ADS)

    Topcu, Turker; Derevianko, Andrei

    2013-11-01

    Intensity-modulated optical lattice potentials can change sign for an alkali-metal Rydberg atom, and the atoms are not always attracted to intensity minima in optical lattices with wavelengths near the CO2 laser band. Here we demonstrate that such IR lattices can be tuned so that the trapping potential experienced by the Rydberg atom can be made to vanish for atoms in “targeted” Rydberg states. Such state-selective trapping of Rydberg atoms can be useful in controlled cold Rydberg collisions, cooling Rydberg states, and species-selective trapping and transport of Rydberg atoms in optical lattices. We tabulate wavelengths at which the trapping potential vanishes for the ns, np, and nd Rydberg states of Na and Rb atoms and discuss advantages of using such optical lattices for state-selective trapping of Rydberg atoms. We also develop exact analytical expressions for the lattice-induced polarizability for the mz=0 Rydberg states and derive an accurate formula predicting tune-out wavelengths at which the optical trapping potential becomes invisible to Rydberg atoms in targeted l=0 states.

  4. Realization of the manipulation of ultracold atoms with a reconfigurable nanomagnetic system of domain walls.

    PubMed

    West, Adam D; Weatherill, Kevin J; Hayward, Thomas J; Fry, Paul W; Schrefl, Thomas; Gibbs, Mike R J; Adams, Charles S; Allwood, Dan A; Hughes, Ifan G

    2012-08-08

    Planar magnetic nanowires have been vital to the development of spintronic technology. They provide an unparalleled combination of magnetic reconfigurability, controllability, and scalability, which has helped to realize such applications as racetrack memory and novel logic gates. Microfabricated atom optics benefit from all of these properties, and we present the first demonstration of the amalgamation of spintronic technology with ultracold atoms. A magnetic interaction is exhibited through the reflection of a cloud of (87)Rb atoms at a temperature of 10 μK, from a 2 mm × 2 mm array of nanomagnetic domain walls. In turn, the incident atoms approach the array at heights of the order of 100 nm and are thus used to probe magnetic fields at this distance.

  5. Non-Hermitian optics in atomic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Ma, Danmeng; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-04-01

    A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Recently, this family of non-Hermitian systems has attracted considerable attention in diverse areas of physics due to their extraordinary properties, especially in optical systems based on solid-state materials, such as coupled gain-loss waveguides and microcavities. Considering the desired refractive index can be effectively manipulated through atomic coherence, it is important to realize such non-Hermitian optical potentials and further investigate their distinct properties in atomic systems. In this paper, we review the recent theoretical and experimental progress of non-Hermitian optics with coherently prepared multi-level atomic configurations. The realizations of (anti-) PT symmetry with different schemes have extensively demonstrated the special optical properties of non-Hermitian optical systems with atomic coherence.

  6. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  7. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.

    PubMed

    Li, Jiaming; de Melo, Leonardo F; Luo, Le

    2017-03-30

    We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.

  8. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  9. An evaluation of a reagentless method for the determination of total mercury in aquatic life

    USGS Publications Warehouse

    Haynes, Sekeenia; Gragg, Richard D.; Johnson, Elijah; Robinson, Larry; Orazio, Carl E.

    2006-01-01

    Multiple treatment (i.e., drying, chemical digestion, and oxidation) steps are often required during preparation of biological matrices for quantitative analysis of mercury; these multiple steps could potentially lead to systematic errors and poor recovery of the analyte. In this study, the Direct Mercury Analyzer (Milestone Inc., Monroe, CT) was utilized to measure total mercury in fish tissue by integrating steps of drying, sample combustion and gold sequestration with successive identification using atomic absorption spectrometry. We also evaluated the differences between the mercury concentrations found in samples that were homogenized and samples with no preparation. These results were confirmed with cold vapor atomic absorbance and fluorescence spectrometric methods of analysis. Finally, total mercury in wild captured largemouth bass (n = 20) were assessed using the Direct Mercury Analyzer to examine internal variability between mercury concentrations in muscle, liver and brain organs. Direct analysis of total mercury measured in muscle tissue was strongly correlated with muscle tissue that was homogenized before analysis (r = 0.81, p < 0.0001). Additionally, results using this integrated method compared favorably (p < 0.05) with conventional cold vapor spectrometry with atomic absorbance and fluorescence detection methods. Mercury concentrations in brain were significantly lower than concentrations in muscle (p < 0.001) and liver (p < 0.05) tissues. This integrated method can measure a wide range of mercury concentrations (0-500 ??g) using small sample sizes. Total mercury measurements in this study are comparative to the methods (cold vapor) commonly used for total mercury analysis and are devoid of laborious sample preparation and expensive hazardous waste. ?? Springer 2006.

  10. Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.

    PubMed

    Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji

    2014-01-01

    The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.

  11. Hydrogen as an atomic beam standard

    NASA Technical Reports Server (NTRS)

    Peters, H. E.

    1972-01-01

    After a preliminary discussion of feasibility, new experimental work with a hydrogen beam is described. A space focused magnetic resonance technique with separated oscillatory fields is used with a monochromatic beam of cold hydrogen atoms which are selected from a higher temperature source. The first resonance curves and other experimental results are presented. These results are interpreted from the point of view of accuracy potential and frequency stability, and are compared with hydrogen maser and cesium beam capabilities.

  12. Unconventional States of Matter with Cold Atoms and Dipolar Molecules

    DTIC Science & Technology

    2014-08-20

    ferromagnetic state. For alkaline-earth fermions, the large SU(2N) symmetry greatly enhances quantum spin fluctuations, which give rises to novel...both bosons and fermions, novel quantum magnetism with large spin SU(2N) al- kaline fermions, novel topological states with synthetic gauge fields...presented in Sect. 1.1. The study of novel quantum magnetism with large spin alkaline earth atoms is presented in Sect. 1.2. In Sect. 1.3, we present our

  13. Prospects for atomic frequency standards

    NASA Technical Reports Server (NTRS)

    Audoin, C.

    1984-01-01

    The potentialities of different atomic frequency standards which are not yet into field operation, for most of them, but for which preliminary data, obtained in laboratory experiments, give confidence that they may improve greatly the present state of the art are described. The review will mainly cover the following devices: (1) cesium beam frequency standards with optical pumping and detection; (2) optically pumped rubidium cells; (3) magnesium beam; (4) cold hydrogen masers; and (5) traps with stored and cooled ions.

  14. Ion-neutral chemistry at ultralow energies: dynamics of reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap†

    NASA Astrophysics Data System (ADS)

    Hall, Felix H. J.; Eberle, Pascal; Hegi, Gregor; Raoult, Maurice; Aymar, Mireille; Dulieu, Olivier; Willitsch, Stefan

    2013-08-01

    Cold chemical reactions between laser-cooled Ca+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the range of collision energies ⟨E coll⟩/k B=20 mK-20 K. The lowest energies were achieved in experiments using single localised Ca+ ions. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes in this system (non-radiative and radiative charge transfer as well as radiative association leading to the formation of CaRb+ molecular ions) have been analysed using high-level quantum-chemical calculations of the potential energy curves of CaRb+ and quantum-scattering calculations for the radiative channels. For the present low-energy scattering experiments, it is shown that the energy dependence of the reaction rate constants is governed by long-range interactions in line with the classical Langevin model, but their magnitude is determined by short-range non-adiabatic and radiative couplings which only weakly depend on the asymptotic energy. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral reactive collisions.

  15. Adiabatic Variational Theory for Cold Atom-Molecule Collisions: Application to a Metastable Helium Atom Colliding with ortho- and para-Hydrogen Molecules.

    PubMed

    Pawlak, Mariusz; Shagam, Yuval; Klein, Ayelet; Narevicius, Edvardas; Moiseyev, Nimrod

    2017-03-16

    We recently developed an adiabatic theory for cold molecular collision experiments. In our previous application of this theory ( Pawlak, M.; et al. J. Chem. Phys. 2015 , 143 , 074114 ), we assumed that during the experiment the collision of an atom with a diatom takes place when the diatom is in the ground rotational state and is located in a plane. In this paper, we present how the variational approach of the adiabatic theory for low-temperature collision experiments can be used for the study a 5D collision between the atom and the diatomic molecule with no limitations on its rotational quantum states and no plane restrictions. Moreover, we show here the dramatic differences in the measured reaction rates of He(2 3 S 1 ) + ortho/para-H 2 → He(1s 2 ) + ortho/para-H 2 + + e - resulting from the anisotropic long-range interactions in the reaction. In collisions of metastable helium with molecular hydrogen in the ground rotational state, the isotropic potential term dominates the dynamics. When the collision is with molecular hydrogen in the first excited rotational state, the nonisotropic interactions play an important role in the dynamics. The agreement of our results with the latest experimental findings ( Klein , A. ; et al. Nat. Phys. 2017 , 13 , 35 - 38 ) is very good.

  16. Coherence properties of nanofiber-trapped cesium atoms.

    PubMed

    Reitz, D; Sayrin, C; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A

    2013-06-14

    We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ∼ 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T(2)(*) = 0.6 ms and an irreversible dephasing time of T(2)(') = 3.7 ms. By modeling the signals, we find that, for our experimental parameters, T(2)(*) and T(2)(') are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.

  17. Efficient acceleration of neutral atoms in laser produced plasma

    DOE PAGES

    Dalui, M.; Trivikram, T. M.; Colgan, James Patrick; ...

    2017-06-20

    Recent advances in high-intensity laser-produced plasmas have demonstrated their potential as compact charge particle accelerators. Unlike conventional accelerators, transient quasi-static charge separation acceleration fields in laser produced plasmas are highly localized and orders of magnitude larger. Manipulating these ion accelerators, to convert the fast ions to neutral atoms with little change in momentum, transform these to a bright source of MeV atoms. The emittance of the neutral atom beam would be similar to that expected for an ion beam. Since intense laser-produced plasmas have been demonstrated to produce high-brightness-low-emittance beams, it is possible to envisage generation of high-flux, low-emittance, highmore » energy neutral atom beams in length scales of less than a millimeter. Here, we show a scheme where more than 80% of the fast ions are reduced to energetic neutral atoms and demonstrate the feasibility of a high energy neutral atom accelerator that could significantly impact applications in neutral atom lithography and diagnostics.« less

  18. A Cold-Pole Enhancement in Mercury’s Sodium Exosphere

    PubMed Central

    Cassidy, Timothy A.; McClintock, William E.; Killen, Rosemary M.; Sarantos, Menelaos; Merkel, Aimee W.; Vervack, Ronald J.; Burger, Matthew H.

    2018-01-01

    The Ultraviolet and Visible Spectrometer (UVVS) component of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft characterized the local-time distribution of the sodium exosphere over the course of its orbital mission. The observations show that the sodium exosphere is enhanced above Mercury’s cold-pole longitudes. Based on previously published sodium exosphere models we infer that these regions act as nightside surface reservoirs, temporary sinks to the exosphere that collect sodium atoms transported anti-sunward. The reservoirs are revealed as exospheric enhancements when they are exposed to sunlight. As in the models the reservoir is depleted as the cold poles rotate from dawn to dusk, but unlike the models the depletion is only partial. The persistence of the reservoir means that it could, over the course of geologically long periods of time, contribute to an increase in the bulk concentration of sodium near the cold-pole longitudes. PMID:29720774

  19. Side-to-Side Cold Welding for Controllable Nanogap Formation from "Dumbbell" Ultrathin Gold Nanorods.

    PubMed

    Dai, Gaole; Wang, Binjun; Xu, Shang; Lu, Yang; Shen, Yajing

    2016-06-01

    Cold welding has been regarded as a promising bottom-up nanofabrication technique because of its ability to join metallic nanostructures at room temperature with low applied stress and without introducing damage. Usually, the cold welding process can be done instantaneously for ultrathin nanowires (diameter <10 nm) in "head-to-head" joining. Here, we demonstrate that "dumbbell" shaped ultrathin gold nanorods can be cold welded in the "side-to-side" mode in a highly controllable manner and can form an extremely small nanogap via a relatively slow welding process (up to tens of minutes, allowing various functional applications). By combining in situ high-resolution transmission electron microscopic analysis and molecular dynamic simulations, we further reveal the underlying mechanism for this "side-to-side" welding process as being dominated by atom kinetics instead of thermodynamics, which provides critical insights into three-dimensional nanosystem integration as well as the building of functional nanodevices.

  20. Complete characterization of the constrained geometry bimolecular reaction O(1D)+N2O-->NO+NO by three-dimensional velocity map imaging

    NASA Astrophysics Data System (ADS)

    Gödecke, Niels; Maul, Christof; Chichinin, Alexey I.; Kauczok, Sebastian; Gericke, Karl-Heinz

    2009-08-01

    The bimolecular reaction O(D1)+N2O→NO+NO was photoinitiated in the (N2O)2 dimer at a wavelength of 193 nm and was investigated by three-dimensional (3D) velocity map imaging. State selective 3D momentum vector distributions were monitored and analyzed. For the first time, kinetic energy resolution and stereodynamic information about the reaction under constrained geometry conditions is available. Directly observable NO products exhibit moderate vibrational excitation and are rotationally and translationally cold. Speed and spatial distributions suggest a pronounced backward scattering of the observed products with respect to the direction of motion of the O(D1) atom. Forward scattered partner products, which are not directly detectable are also translationally cold, but carry very large internal energy as vibration or rotation. The results confirm and extend previous studies on the complex initiated reaction system. The restricted geometry of the van der Waals complex seems to favor an abstraction reaction of the terminal nitrogen atom by the O(D1) atom, which is in striking contrast to the behavior observed for the unrestricted gas phase reaction under bulk conditions.

  1. Infrared emission associated with chemical reactions on Shuttle and SIRTF surfaces

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Tielens, Alexander G. G. M.

    1984-01-01

    The infrared intensities which would be observed by the Shuttle Infrared Telescope Facility (SIRTF), and which are produced by surface chemistry following atmospheric impact on SIRTF and the shuttle are estimated. Three possible sources of reactants are analyzed: (1) direct atmospheric and scattered contaminant fluxes onto the shuttle's surface; (2) direct atmospheric and scattered contaminant fluxes onto the SIRTF sunshade; and (3) scattered fluxes onto the cold SIRTF mirror. The chemical reactions are primarily initiated by the dominent flux of reactive atomic oxygen on the surfaces. Using observations of the optical glow to constrain theoretical parameters, it is estimated for source (1) that the infrared glow on the SIRTF mirror will be comparable to the zodiacal background between 1 and 10 micron wavelengths. It is speculated that oxygen reacts with the atoms and the radicals bound in the organic molecules that reside on the shuttle and the Explorer surfaces. It is concluded that for source (2) that with suitable construction, a warm sunshade will produce insignificant infrared glow. It is noted that the atomic oxygen flux on the cold SIRTF mirror (3) is insufficient to produce significant infrared glow. Infrared absorption by the ice buildup on the mirror is also small.

  2. Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination

    NASA Astrophysics Data System (ADS)

    Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H.

    2016-05-01

    We study three-body recombination of Ba++Rb +Rb in the mK regime where a single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the three-body rate coefficient k3 and compare the results to the theoretical prediction, k3∝Ecol-3 /4, where Ecol is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s -wave regime.

  3. Application of atomic force microscopy as a nanotechnology tool in food science.

    PubMed

    Yang, Hongshun; Wang, Yifen; Lai, Shaojuan; An, Hongjie; Li, Yunfei; Chen, Fusheng

    2007-05-01

    Atomic force microscopy (AFM) provides a method for detecting nanoscale structural information. First, this review explains the fundamentals of AFM, including principle, manipulation, and analysis. Applications of AFM are then reported in food science and technology research, including qualitative macromolecule and polymer imaging, complicated or quantitative structure analysis, molecular interaction, molecular manipulation, surface topography, and nanofood characterization. The results suggested that AFM could bring insightful knowledge on food properties, and the AFM analysis could be used to illustrate some mechanisms of property changes during processing and storage. However, the current difficulty in applying AFM to food research is lacking appropriate methodology for different food systems. Better understanding of AFM technology and developing corresponding methodology for complicated food systems would lead to a more in-depth understanding of food properties at macromolecular levels and enlarge their applications. The AFM results could greatly improve the food processing and storage technologies.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry

    Here in this work we report on terahertz phononic excitations in 2D gold nanoparticle arrays in a water matrix through a series of large-scale molecular dynamics simulations. For the first time, we observe acoustic Dirac-like crossings in H (H 2O) atomic (molecular) networks which emerge due to an intraband phononic scattering. These crossings are the phononic fingerprints of ice-like arrangements of H (H 2O) atomic (molecular) networks at nanometer scale. We reveal how phononic excitations in metallic nanoparticles and the water matrix reciprocally impact on one another providing the mechanism for the THz phononics manipulation via structural engineering. In addition,more » we show that by tuning the arrangement of 2D gold nanoparticle assemblies the Au phononic polarizations experience sub-terahertz hybridization (Kohn anomaly) due to surface electron-phonon relaxation processes. This opens the way for the sound control and manipulation in soft matter metamaterials at nanoscale.« less

  5. Two-probe STM experiments at the atomic level.

    PubMed

    Kolmer, Marek; Olszowski, Piotr; Zuzak, Rafal; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2017-11-08

    Direct characterization of planar atomic or molecular scale devices and circuits on a supporting surface by multi-probe measurements requires unprecedented stability of single atom contacts and manipulation of scanning probes over large, nanometer scale area with atomic precision. In this work, we describe the full methodology behind atomically defined two-probe scanning tunneling microscopy (STM) experiments performed on a model system: dangling bond dimer wire supported on a hydrogenated germanium (0 0 1) surface. We show that 70 nm long atomic wire can be simultaneously approached by two independent STM scanners with exact probe to probe distance reaching down to 30 nm. This allows direct wire characterization by two-probe I-V characteristics at distances below 50 nm. Our technical results presented in this work open a new area for multi-probe research, which can be now performed with precision so far accessible only by single-probe scanning probe microscopy (SPM) experiments.

  6. Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity

    NASA Astrophysics Data System (ADS)

    Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te

    2016-10-01

    Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions.

  7. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  8. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    PubMed

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  9. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime

    NASA Astrophysics Data System (ADS)

    Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.

    2018-04-01

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  10. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.

    PubMed

    Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M

    2018-04-13

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  11. Zeeman relaxation of cold atomic iron and nickel in collisions with He3

    NASA Astrophysics Data System (ADS)

    Johnson, Cort; Newman, Bonna; Brahms, Nathan; Doyle, John M.; Kleppner, Daniel; Greytak, Thomas J.

    2010-06-01

    We have measured the ratio γ of the diffusion cross section to the angular momentum reorientation cross section in the colliding Fe-He3 and Ni-He3 systems. Nickel (Ni) and iron (Fe) atoms are introduced via laser ablation into a cryogenically cooled experimental cell containing cold (<1 K) He3 buffer gas. Elastic collisions rapidly cool the translational temperature of the ablated atoms to the He3 temperature. γ is extracted by measuring the decays of the atomic Zeeman sublevels. For our experimental conditions, thermal energy is comparable to the Zeeman splitting. As a result, thermal excitations between Zeeman sublevels significantly impact the observed decay. To determine γ accurately, we introduce a model of Zeeman-state dynamics that includes thermal excitations. We find γNi-3He=5×103 and γFe-3He⩽3×103 at 0.75 K in a 0.8-T magnetic field. These measurements are interpreted in the context of submerged shell suppression of spin relaxation, as studied previously in transition metals and rare-earth-metal atoms [C. I. Hancox, S. C. Doret, M. T. Hummon, R. V. Krems, and J. M. Doyle, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.013201 94, 013201 (2005); C. I. Hancox, S. C. Doret, M. T. Hummon, L. Luo, and J. M. Doyle, Nature (London)NATUAS0028-083610.1038/nature02938 431, 281 (2004); A. Buchachenko, G. Chaasiski, and M. Szczniak, Eur. Phys. J. DEPJDF61434-606010.1140/epjd/e2006-00263-3 45, 147 (2007)].

  12. Helium cluster isolation spectroscopy

    NASA Astrophysics Data System (ADS)

    Higgins, John Paul

    Clusters of helium, each containing ~103- 104 atoms, are produced in a molecular beam and are doped with alkali metal atoms (Li, Na, and K) and large organic molecules. Electronic spectroscopy in the visible and UV regions of the spectrum is carried out on the dopant species. Since large helium clusters are liquid and attain an equilibrium internal temperature of 0.4 K, they interact weakly with atoms or molecules absorbed on their surface or resident inside the cluster. The spectra that are obtained are characterized by small frequency shifts from the positions of the gas phase transitions, narrow lines, and cold vibrational temperatures. Alkali atoms aggregate on the helium cluster surface to form dimers and trimers. The spectra of singlet alkali dimers exhibit the presence of elementary excitations in the superfluid helium cluster matrix. It is found that preparation of the alkali molecules on the surface of helium clusters leads to the preferential formation of high-spin, van der Waals bound, triplet dimers and quartet trimers. Four bound-bound and two bound-free transitions are observed in the triplet manifold of the alkali dimers. The quartet trimers serve as an ideal system for the study of a simple unimolecular reaction in the cold helium cluster environment. Analysis of the lowest quartet state provides valuable insight into three-body forces in a van der Waals trimer. The wide range of atomic and molecular systems studied in this thesis constitutes a preliminary step in the development of helium cluster isolation spectroscopy, a hybrid technique combining the advantages of high resolution spectroscopy with the synthetic, low temperature environment of matrices.

  13. Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy

    DOEpatents

    Kazmerski, Lawrence L.

    1990-01-01

    A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.

  14. Influence of de qi on the immediate analgesic effect of SP6 acupuncture in patients with primary dysmenorrhoea and cold and dampness stagnation: a multicentre randomised controlled trial.

    PubMed

    Zhao, Min-Yi; Zhang, Peng; Li, Jing; Wang, Lin-Peng; Zhou, Wei; Wang, Yan-Xia; She, Yan-Fen; Ma, Liang-Xiao; Wang, Pei; Hu, Ni-Juan; Lin, Chi; Hu, Shang-Qin; Wu, Gui-Wen; Wang, Ya-Feng; Sun, Jun-Jun; Jiang, Si-Zhu; Zhu, Jiang

    2017-10-01

    The aim of this multicentre randomised controlled trial was to investigate the contribution of de qi to the immediate analgesic effect of acupuncture in patients with primary dysmenorrhoea and the specific traditional Chinese medicine diagnosis cold and dampness stagnation . Eighty-eight patients with primary dysmenorrhoea and cold and dampness stagnation were randomly assigned to de qi (n=43) or no de qi (n=45) groups and underwent 30 min of SP6 acupuncture. The de qi group received deep needling at SP6 with manipulation using thick needles; the no de qi group received shallow needling with no manipulation using thin needles. In both groups the pain scores and actual de qi sensation were evaluated using a visual analogue scale for pain (VAS-P) and the acupuncture de qi clinical assessment scale (ADCAS), respectively. Both groups showed reductions in VAS-P, with no signficant differences between groups. ADCAS scores showed 43/43 and 25/45 patients in de qi and no de qi groups, respectively, actually experienced de qi sensation. Independent of original group allocation, VAS-P reductions associated with actual de qi (n=68) were greater than those without (28.4±18.19 mm vs 14.6±12.28 mm, p=0.008). This study showed no significant difference in VAS-P scores in patients with primary dysmenorrhoea and cold and dampness stagnation immediately after SP6 acupuncture designed to induce or avoid de qi sensation. Both treatments significantly reduced VAS-P relative to baseline. Irrespective of group allocation, patients experiencing actual de qi sensation demonstrated larger reductions in pain score relative to those without, suggesting greater analgesic effects. Chinese Clinical Trial Registry (ChiCTR-TRC-13003086); Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.

    2013-12-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  16. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  17. From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid.

    PubMed

    Hung, Chen-Lung; Gurarie, Victor; Chin, Cheng

    2013-09-13

    Predicting the dynamics of many-body systems far from equilibrium is a challenging theoretical problem. A long-predicted phenomenon in hydrodynamic nonequilibrium systems is the occurrence of Sakharov oscillations, which manifest in the anisotropy of the cosmic microwave background and the large-scale correlations of galaxies. Here, we report the observation of Sakharov oscillations in the density fluctuations of a quenched atomic superfluid through a systematic study in both space and time domains and with tunable interaction strengths. Our work suggests a different approach to the study of nonequilibrium dynamics of quantum many-body systems and the exploration of their analogs in cosmology and astrophysics.

  18. Advances in antihydrogen physics.

    PubMed

    Charlton, Mike; Van der Werf, Dirk Peter

    2015-01-01

    The creation of cold antihydrogen atoms by the controlled combination of positrons and antiprotons has opened up a new window on fundamental physics. More recently, techniques have been developed that allow some antihydrogen atoms to be created at low enough kinetic energies that they can be held inside magnetic minimum neutral atom traps. With confinement times of many minutes possible, it has become feasible to perform experiments to probe the properties of the antiatom for the first time. We review the experimental progress in this area, outline some of the motivation for studying basic aspects of antimatter physics and provide an outlook of where we might expect this field to go in the coming years.

  19. Zoo of Quantum Phases and Excitations of Cold Bosonic Atoms in Optical Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alon, Ofir E.; Streltsov, Alexej I.; Cederbaum, Lorenz S.

    Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to shallow optical lattices are described by a single multiorbital mean-field approach in real space. For weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model. For strongly interacting bosons (i) additional MI phases appear, for which two (or more) atoms residing in each site undergo a Tonks-Girardeau-like transition and localize, and (ii) on-site excitation becomes the excitation lowest in energy. Experimental implications are discussed.

  20. Potential energy surfaces of the low-lying electronic states of the Li + LiCs system

    NASA Astrophysics Data System (ADS)

    Jasik, P.; Kilich, T.; Kozicki, J.; Sienkiewicz, J. E.

    2018-03-01

    Ab initio quantum chemistry calculations are performed for the mixed alkali triatomic system. Global minima of the ground and first excited doublet states of the trimer are found and Born-Oppenheimer potential energy surfaces of the Li atom interacting with the LiCs molecule were calculated for these states. The lithium atom is placed at various distances and bond angles from the lithium-caesium dimer. Three-body nonadditive forces of the Li2Cs molecule in the global minimum are investigated. Dimer-atom interactions are found to be strongly attractive and may be important in the experiments, particularly involving cold alkali polar dimers.

Top