Sample records for cold box mold

  1. 40 CFR 63.7690 - What emissions limitations must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed a flow-weighted average of 20 ppmv. (11) For each triethylamine (TEA) cold box mold or core making... section: (i) You must not discharge emissions of TEA through a conveyance to the atmosphere that exceed 1... reduce emissions of TEA from each TEA cold box mold or core making line by at least 99 percent, as...

  2. Continuous ozone concentrations during cold storage to control postharvest gray mold in grapes, 2011

    USDA-ARS?s Scientific Manuscript database

    Gray mold, caused by B. cinerea, causes severe losses since it spreads easily among berries during cold storage. Currently, it is controlled by fumigation with SO2 or SO2 emitting sheets within boxes. Alternative methods, such as storage in ozone atmospheres, are needed because SO2 is banned in orga...

  3. Improvements in Fabrication of Sand/Binder Cores for Casting

    NASA Technical Reports Server (NTRS)

    Bakhitiyarov, Sayavur I.; Overfelt, Ruel A.; Adanur, Sabit

    2005-01-01

    Three improvements have been devised for the cold-box process, which is a special molding process used to make sand/binder cores for casting hollow metal parts. These improvements are: The use of fiber-reinforced composite binder materials (in contradistinction to the non-fiber-reinforced binders used heretofore), The substitution of a directed-vortex core-blowing subprocess for a prior core-blowing process that involved a movable gassing plate, and The use of filters made from filtration-grade fabrics to prevent clogging of vents. For reasons that exceed the scope of this article, most foundries have adopted the cold-box process for making cores for casting metals. However, this process is not widely known outside the metal-casting industry; therefore, a description of pertinent aspects of the cold-box process is prerequisite to a meaningful description of the aforementioned improvements. In the cold-box process as practiced heretofore, sand is first mixed with a phenolic resin (considered to be part 1 of a three-part binder) and an isocyanate resin (part 2 of the binder). Then by use of compressed air, the mixture is blown into a core box, which is a mold for forming the core. Next, an amine gas (part 3 of the binder) that acts as a catalyst for polymerization of parts 1 and 2 is blown through the core box. Alternatively, a liquid amine that vaporizes during polymerization can be incorporated into the sand/resin mixture. Once polymerization is complete, the amine gas is purged from the core box by use of compressed air. The finished core is then removed from the core box.

  4. Evaluation of alternatives to fungicide to control postharvest gray mold alone or with ozone storage in grapes, 2011

    USDA-ARS?s Scientific Manuscript database

    Gray mold, caused by B. cinerea, causes severe losses since it spreads easily among berries during cold storage. Currently, it is controlled by fumigation with SO2 or SO2 emitting sheets within boxes. Alternative methods, such as storage in ozone atmospheres, are needed because SO2 is banned in orga...

  5. 40 CFR 63.7733 - What procedures must I use to establish operating limits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion device applied to emissions from a scrap preheater or TEA cold box mold or core making line... and record the scrubbing liquid flow rate during each TEA sampling run in intervals of no more than 15...

  6. 40 CFR 63.7743 - How do I demonstrate continuous compliance with the emissions limitations that apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with these requirements. (11) For each TEA cold box mold or core making line at a new or existing iron... emissions limit for PM, total metal HAP, VOHAP, or TEA in § 63.7690(a) and subsequent performance tests at...

  7. 34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  8. Molded polymer solar water heater

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  9. Correlation between strength properties in standard test specimens and molded phenolic parts

    NASA Technical Reports Server (NTRS)

    Turner, P S; Thomason, R H

    1946-01-01

    This report describes an investigation of the tensile, flexural, and impact properties of 10 selected types of phenolic molding materials. The materials were studied to see in what ways and to what extent their properties satisfy some assumptions on which the theory of strength of materials is based: namely, (a) isotropy, (b) linear stress-strain relationship for small strains, and (c) homogeneity. The effect of changing the dimensions of tensile and flexural specimens and the span-depth ratio in flexural tests were studied. The strengths of molded boxes and flexural specimens cut from the boxes were compared with results of tests on standard test specimens molded from the respective materials. The nonuniformity of a material, which is indicated by the coefficient of variation, affects the results of tests made with specimens of different sizes and tests with different methods of loading. The strength values were found to depend on the relationship between size and shape of the molded specimen and size and shape of the fillers. The most significant variations observed within a diversified group of materials were found to depend on the orientation of fibrous fillers. Of secondary importance was the dependence of the variability of test results on the pieces of filler incorporated into the molding powder as well as on the size of the piece. Static breaking strength tests on boxes molded from six representative phenolic materials correlated well with falling-ball impact tests on specimens cut from molded flat sheets. Good correlation was obtained with Izod impact tests on standard test specimens prepared from the molding materials. The static breaking strengths of the boxes do not correlate with the results of tensile or flexural tests on standard specimens.

  10. 31. PETIBONE SAND THROWING MACHINE BOX FLOOR GREY IRON FOUNDRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. PETIBONE SAND THROWING MACHINE BOX FLOOR GREY IRON FOUNDRY FORCES CONDITIONED MOLDING SAND, AT HIGH VELOCITY, INTO MOLDS TOO BIG TO BE MADE ON ONE OF THE CONVEYOR SYSTEMS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  11. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... another during periods of rain or snow. (e) DRI lumps, pellets, or cold-molded briquettes may not be... percent hydrogen, by volume, is maintained throughout the voyage in any hold containing these materials...

  12. Spirit Boxes: Expressions of Culture.

    ERIC Educational Resources Information Center

    DeMuro, Ted

    1984-01-01

    After studying the culture and art of the ancient civilizations of South America, Mesopotamia, Greece, and Egypt, secondary level art students made spirit boxes as expressions of the various cultures. How to make the boxes and how to prepare the face molds are described. (RM)

  13. Effect of ozone on penicillium mold decay and sporulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, P.R. Jr.

    1968-03-01

    Tests were run with ozone in the atmosphere of storage rooms that contained oranges and lemons in open wooden storage boxes and in fiberboard cartons. Excellent control of sporulation and some control of decay by Penicillium molds resulted in the open storage boxes with ozone at the 1.0 ppm level, but little control of sporulation and no control of decay resulted in vented cartons held in this concentration. Ozone gave no control of sporulation or decay in nonvented cartons. 6 references, 3 tables.

  14. 6. Photocopy of photograph Photographer unknown, date unknown DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of photograph Photographer unknown, date unknown DETAIL OF BOTTOM OF DRUM, SHOWING DECORATIVE MOLDING OF DRUM AND ARCHES: NOTE EFFECT OF BOX BEAMS CREATED BY MOLDING - University of Kentucky, Carnegie Library, Lexington, Fayette County, KY

  15. Mold Image Library

    MedlinePlus

    ... condensation because there is a hole in the insulation and it is cold outdoors. Photo courtesy of ... Inside of wall from above, moldy gypsum board, insulation Photo courtesy of Terry Brennan Looking for mold ...

  16. 7 CFR 51.2338 - Standard pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (c) Boxes, flats, lugs, or cartons: (1) Fruit packed in containers with cell compartments, cardboard fillers or molded trays shall be of proper size for the cells, fillers, or molds in which they are packed...” means the greatest dimension measured at right angles to a line from stem to blossom end. (f) In order...

  17. 7 CFR 51.2338 - Standard pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (c) Boxes, flats, lugs, or cartons: (1) Fruit packed in containers with cell compartments, cardboard fillers or molded trays shall be of proper size for the cells, fillers, or molds in which they are packed...” means the greatest dimension measured at right angles to a line from stem to blossom end. (f) In order...

  18. Arts & Crafts for Everyone.

    ERIC Educational Resources Information Center

    Crane, Diane, Ed.

    1982-01-01

    Five different art activities, using different media, are described: (1) "mystery molds," using plaster and discarded packaging materials; (2) "calico cottages," using boxes and fabric; (3) "foam friends," using plastic foam packing pieces; (4) "bauble boxes," using spray can tops and papier mache; and (5) "soft stuff," using old clothing. (CJ)

  19. Producing gapped-ferrite transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1980-01-01

    Improved manufacturing techniques make reproducible gaps and minimize cracking. Molded, unfired transformer cores are cut with thin saw and then fired. Hardened semicircular core sections are bonded together, placed in aluminum core box, and fluidized-coated. After winding is run over box, core is potted. Economical method significantly reduces number of rejects.

  20. Mechanical Design and Analysis of LCLS II 2 K Cold Box

    NASA Astrophysics Data System (ADS)

    Yang, S.; Dixon, K.; Laverdure, N.; Rath, D.; Bevins, M.; Bai, H.; Kaminski, S.; Ravindranath, V.

    2017-12-01

    The mechanical design and analysis of the LCLS II 2 K cold box are presented. Its feature and functionality are discussed. ASME B31.3 was used to design its internal piping, and compliance of the piping code was ensured through flexibility analysis. The 2 K cold box was analyzed using ANSYS 17.2; the requirements of the applicable codes—ASME Section VIII Division 2 and ASCE 7-10—were satisfied. Seismic load was explicitly considered in both analyses.

  1. Commissioning and operational results of helium refrigeration system at JLab for the 12GeV upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.

    The new 4.5 K refrigerator system at the Jefferson Lab (JLab) Central Helium Liquefier (CHL-2) for the 12 GeV upgrade was commissioned in late spring of 2013, following the commissioning of the new compressor system, and has been supporting 12 GeV LINAC commissioning since that time. Six design modes were tested during commissioning, consisting of a maximum capacity, nominal capacity, maximum liquefaction, maximum refrigeration, maximum fill and a stand-by/reduced load condition. The maximum capacity was designed to support a 238 g/s, 30 K and 1.16 bar cold compressor return flow, a 15 g/s, 4.5 K liquefaction load and a 12.6more » kW, 35-55 K shield load. The other modes were selected to ensure proper component sizing and selection to allow the cold box to operate over a wide range of conditions and capacities. The cold box system is comprised of two physically independent cold boxes with interconnecting transfer-lines. The outside (upper) 300-60 K vertical cold box has no turbines and incorporates a liquid nitrogen pre-cooler and 80-K beds. The inside (lower) 60-4.5 K horizontal cold box houses seven turbines that are configured in four expansion stages including one Joule-Thompson expander and a 20-K bed. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will summarize the analysis of the test data obtained over the wide range of operating conditions and capacities which were tested.« less

  2. Asthma and Pregnancy

    MedlinePlus

    ... cause an asthma attack vary from person to person. Common triggers include breathing in cold air, cold/flu viruses, strenuous exercise, chemicals, cigarette smoke, and allergies to dust, animals, pollen, or mold. ...

  3. Commissioning of helium refrigeration system at JLab for 12 GeV upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganni, Venkatarao; Dixon, Kelly D.; Knudsen, Peter N.

    The new 4.5 K refrigerator system added to the Jefferson Lab (JLab) Central Helium Liquefier (CHL) for the 12 GeV upgrade will double its previous capacity. It includes a 4.5 K cold box system and compressor system with associated oil removal and gas management systems. At its maximum capacity condition, this new system supports an additional 238 g/s 30 K 1.16 bar cold compressor return flow, a 15 g/s 4.5 K liquefaction load and a 12.6 kW 35–55 K shield load. Five more design conditions, ranging from liquefaction to refrigeration and a stand-by/reduced load state, were specified for the sizingmore » and selection of its components. The cold box system is comprised of a 300–60 K vertical cold box that incorporates a liquid nitrogen pre-cooler and a 60–4.5 K horizontal cold box housing seven turbines that are configured in four expansion stages including one Joule-Thompson expander. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will briefly review the salient 4.5 K system design features and discuss the recent commissioning results.« less

  4. Liquid nitrogen historical and current usage of the central helium liquefier at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neustadt, Thomas S.; Kim, Sang-Ho; Howell, Matthew P.

    The main cryogenic system for the Spallation Neutron Source (SNS) is comprised of a 4-K cold box, a 2-K cold box, six warm compressors, and ancillary support equipment. This system has been cold and operating with little disruption since 2005. Design and operation of liquid nitrogen (LN2) supplied from a single 20,000-gallon supply Dewar will be discussed. LN2 used to precool the 4-K cold box heat exchanger started to increase around 2011. LN2 Consumption during 2012 and 2013 was almost double the nominal usage rate. Studies of this data, plant parameter changes to respond to this information, and current interpretationsmore » are detailed in this paper. The usage rate of LN2 returned to normal in late 2013 and remained there until recent additional changes. Future study plans to understand potential causes of this including contamination migration within the 4-K cold box will also be addressed.« less

  5. Jewelry boxes contaminated by Aspergillus oryzae: an occupational health risk?

    PubMed

    Bellanger, Anne-Pauline; Roussel, Anaïs; Millon, Laurence; Delaforge, Marcel; Reboux, Gabriel

    2012-01-01

    In 2009, 100,000 jewelry boxes, manufactured in China, were delivered to a jewelry manufacturer in Besançon, France. All the boxes were contaminated by mold. Because the workers refused to handle these jewelry boxes, the company contacted our laboratory to determine how to deal with the problem. Three choices were available: (1) decontaminate the boxes, (2) return the boxes to the Chinese manufacturer, or (3) destroy the entire shipment. Based on microscopic identification, the culture analysis was positive for A. oryzae. This could not be confirmed by molecular techniques because of the genetic proximity of A. oryzae and A. flavus. Because A. flavus can produce aflatoxins, we tested for them using mass spectrometry. Aflatoxins B1, B2, G1, G2, and M1 were not detected; however, given the specifics of this situation, we could not discard the possibility of the presence of other aflatoxins, such as P1, B3, GM2, and ethoxyaflatoxin B2. We concluded that the contamination by A. oryzae was probably due to food products. However, because of the possible presence of aflatoxins, occupational health risks could not be entirely ruled out. The decision was therefore taken to destroy all the jewelry boxes by incineration. To avoid a similar situation we propose: (1) to maintain conditions limiting mold contamination during production (not eating on the work site, efficient ventilation systems); (2) to desiccate the products before sending them; and (3) to closely control the levels of dampness during storage and transport.

  6. Cold isopressing method

    DOEpatents

    Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi

    2003-01-01

    A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.

  7. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald

    2011-01-01

    Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.

  8. Cold air systems: Sleeping giant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCracken, C.D.

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that providedmore » inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.« less

  9. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  10. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

    2001-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  11. Thermo-mechanical Design Methodology for ITER Cryodistribution cold boxes

    NASA Astrophysics Data System (ADS)

    Shukla, Vinit; Patel, Pratik; Das, Jotirmoy; Vaghela, Hitensinh; Bhattacharya, Ritendra; Shah, Nitin; Choukekar, Ketan; Chang, Hyun-Sik; Sarkar, Biswanath

    2017-04-01

    The ITER cryo-distribution (CD) system is in charge of proper distribution of the cryogen at required mass flow rate, pressure and temperature level to the users; namely the superconducting (SC) magnets and cryopumps (CPs). The CD system is also capable to use the magnet structures as a thermal buffer in order to operate the cryo-plant as much as possible at a steady state condition. A typical CD cold box is equipped with mainly liquid helium (LHe) bath, heat exchangers (HX’s), cryogenic valves, filter, heaters, cold circulator, cold compressor and process piping. The various load combinations which are likely to occur during the life cycle of the CD cold boxes are imposed on the representative model and impacts on the system are analyzed. This study shows that break of insulation vacuum during nominal operation (NO) along with seismic event (Seismic Level-2) is the most stringent load combination having maximum stress of 224 MPa. However, NO+SMHV (Séismes Maximaux Historiquement Vraisemblables = Maximum Historically Probable Earthquakes) load combination is having the least safety margin and will lead the basis of the design of the CD system and its sub components. This paper presents and compares the results of different load combinations which are likely to occur on a typical CD cold box.

  12. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat.

    PubMed

    Sasaki, Kentaro; Kuwabara, Chikako; Umeki, Natsuki; Fujioka, Mari; Saburi, Wataru; Matsui, Hirokazu; Abe, Fumitaka; Imai, Ryozo

    2016-06-20

    TAD1 (Triticum aestivum defensin 1) is induced during cold acclimation in winter wheat and encodes a plant defensin with antimicrobial activity. In this study, we demonstrated that recombinant TAD1 protein inhibits hyphal growth of the snow mold fungus, Typhula ishikariensis in vitro. Transgenic wheat plants overexpressing TAD1 were created and tested for resistance against T. ishikariensis. Leaf inoculation assays revealed that overexpression of TAD1 confers resistance against the snow mold. In addition, the TAD1-overexpressors showed resistance against Fusarium graminearum, which causes Fusarium head blight, a devastating disease in wheat and barley. These results indicate that TAD1 is a candidate gene to improve resistance against multiple fungal diseases in cereal crops. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Genetics Home Reference: cold-induced sweating syndrome

    MedlinePlus

    ... Health Conditions Cold-induced sweating syndrome Cold-induced sweating syndrome Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Cold-induced sweating syndrome is characterized by problems with regulating body ...

  14. ZEP520A cold-development technique and tool for ultimate resolution to fabricate 1Xnm bit pattern EB master mold for nano-imprinting lithography for HDD/BPM development

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hideo; Iyama, Hiromasa

    2012-06-01

    Poor solvent developers are effective for resolution enhancement on a polymer-type EB resist such as ZEP520A. Another way is to utilize "cold-development" technique which was accomplished by a dip-development technique usually. We then designed and successfully built a single-wafer spin-development tool for the cold-development down to -10degC in order to dissolve difficulties of the dip-development. The cold-development certainly helped improve ZEP520A resolution and hole CD size uniformity, and achieved 35nm pitch BPM patterns with the standard developer ZED-N50, but not 25nm pitch yet. By employing a poor solvent mixture of iso-Propyl Alcohol (IPA) and Fluoro-Carbon (FC), 25nm pitch BPM patterns were accomplished. However, the cold-development showed almost no improvement on the IPA/FC mixture developer solvent. This paper describes cold-development technique and a tool, as well as its results, for ZEP520A resolution enhancement to fabricate 1Xnm bits (holes) for EB master-mold for Nano-Imprinting Lithography for 1Tbit/inch2 and 25nm pitch Bit Patterned Media development.

  15. The ability of a cold-adapted Rhodotorula mucilaginosa strain from Tibet to control blue mold in pear fruit.

    PubMed

    Hu, Hao; Yan, Fujie; Wilson, Charles; Shen, Qing; Zheng, Xiaodong

    2015-12-01

    Cold-adapted yeasts were isolated from soil samples collected in Tibet and evaluated as potential biocontrol agents against blue mold (Penicillium expansum) of pear fruit in cold storage. YC1, an isolate identified as Rhodotorula mucilaginosa, was found to exhibit the greatest biocontrol activity among the different isolates that were screened. A washed cell suspension of YC1 exhibited the best biocontrol activity among three different preparations that were used in the current study. A concentration of 10(8) cells/ml reduced the incidence of decay to 35 %, compared to the control where decay incidence was 100 %. A higher intracellular level of trehalose and a higher proportion of polyunsaturated acids present in YC1, was associated with increased the tolerance of this strain to low temperatures, relative to the other strains that were evaluated. The increased tolerance to low temperature allowed the YC1 strain of yeast to more effectively compete for nutrients and space in wounded pear fruit that had been inoculated with spores of P. expansum and placed in cold storage. The present study demonstrated the ability to select cold-adapted yeasts from cold climates and use them as biocontrol agents of postharvest diseases of fruit placed in cold storage.

  16. Influence of packaging on the quality of cold-stored grapes packed into boxes for later repacking

    USDA-ARS?s Scientific Manuscript database

    A two-year study was conducted to examine various commercial practices associated with the cold storage of table grapes that are to be later re-packed for final shipment to provide information on the impact on fruit quality. Variables examined included the use of box types with vent areas ranging f...

  17. Sore Throat: Symptoms and Causes

    MedlinePlus

    ... of the mouth, throat and voice box. Allergies. Seasonal allergies or ongoing allergic reactions to dust, molds ... HIV, diabetes, treatment with steroids or chemotherapy drugs, stress, fatigue, and ... when soap and water aren't available. Avoid touching public phones or ...

  18. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    NASA Technical Reports Server (NTRS)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  19. Innovative production of fungal pulp from Trametes versicolor and its application in a fungal paper box containing clove oil.

    PubMed

    Srikaew, Benyapa; Matan, Narumol; Aewsiri, Tanong

    2017-09-01

    The aims of this study were to develop fungal pulp from Trametes versicolor (white-rot fungi) and apply it with clove oil in a paper box to inhibit mold growth on the surface of peanuts. Broken rice media with different sugar solutions (2-10% w w -1 ) were prepared and then inoculated with T. versicolor mycelium at amounts from 0.5 to 1.5% w w -1 . Fungal pulp and commercial paper (50 g) at different ratios (100:0, 70:30, 50:50, 30:70 and 0:100) were mixed and prepared before being placed into a stainless box (5 cm long by 5 cm wide). For the antimicrobial activity against Aspergillus flavus on peanuts, a paper box was incorporated with 2.5, 5 and 7.5% w w -1 of clove oil, eugenol, caryophyllene, and a combination of eugenol and caryophyllene at ratios of 7:1, 4:4, and 1:7. Results indicated that the highest fungal pulp biomass of T. versicolor in broken rice media was found when using 6% sugar with 1% mycelium inoculums. Fungal pulp and commercial paper at the ratio of 70:30 produced the highest value of hardness. The paper box containing clove oil at 7.5% w w -1 inhibited A. flavus on peanuts for at least 28 days while the control had mold growth within 3 days. Combining eugenol and caryophyllene, the main components of clove oil, at the ratio of 7:1 (7.5% w w -1 ) in the paper box should be a key factor to inhibit A. flavus during storage.

  20. Interface conditions of two-shot molded parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisslinger, Thomas, E-mail: thomas.kisslinger@pccl.at; Bruckmoser, Katharina, E-mail: katharina.bruckmoser@unileoben.ac.at; Resch, Katharina, E-mail: katharina.resch@unileoben.ac.at

    2014-05-15

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes,more » a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.« less

  1. Bimolecular fluorescence complementation studies support an in vivo interaction between the F-BOX protein COLD TEMPERATURE GERMINATING10 and PHYTOCHROME INTERACTING FACTOR1

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis thaliana F-BOX protein COLD TEMPERATURE GERMINATING10 (CTG10) was identified from an activation tagged mutant screen as causing seeds to complete germination faster than wild type at 10°C when its expression is increased (Salaita et al. 2005. J. Exp. Bot. 56: 2059). Our unpublished d...

  2. Treatment principles for the management of mold infections.

    PubMed

    Kontoyiannis, Dimitrios P; Lewis, Russell E

    2014-11-06

    Survival rates among immunocompromised patients with invasive mold infections have markedly improved over the last decade with earlier diagnosis and new antifungal treatment options. Yet, increasing antifungal resistance, breakthrough infections with intrinsically resistant fungi, and potentially life-threatening adverse effects and drug interactions are becoming more problematic, especially with prolonged therapy. Evidence-based recommendations for treating invasive aspergillosis and mucormycosis provide excellent guidance on the initial workup and treatment of these molds, but they cannot address all of the key management issues. Herein, we discuss 10 general treatment principles in the management of invasive mold disease in immunocompromised patients and discuss how these principles can be integrated to develop an effective, individualized treatment plan. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  3. Commissioning of cryogenic system for China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  4. A Chitosan Coating Containing Essential Oil from Origanum vulgare L. to Control Postharvest Mold Infections and Keep the Quality of Cherry Tomato Fruit

    PubMed Central

    Barreto, Tainá A.; Andrade, Sonalle C. A.; Maciel, Janeeyre F.; Arcanjo, Narciza M. O.; Madruga, Marta S.; Meireles, Bruno; Cordeiro, Ângela M. T.; Souza, Evandro L.; Magnani, Marciane

    2016-01-01

    The efficacy of an edible chitosan coating (CHI; 4 mg/mL) and Origanum vulgare L. essential oil (OVEO; 1.25 μL/mL) for maintaining the quality of cherry tomato fruit during storage at room (25°C; 12 days) and cold (12°C; 24 days) temperatures was assessed. CHI and OVEO in combination showed in vitro fungicidal effects against R. stolonifer and Aspergillus niger. CHI-OVEO coating reduced the incidence of black mold and soft rot caused by these fungi in artificially contaminated cherry tomato fruit during storage at both temperatures. CHI-OVEO coating delayed the appearance of the first visible signs of black mold and soft rot in artificially contaminated cherry tomato fruit stored at room temperature by 6 days and by more than 9 days in those stored at cold temperature. At the end of storage at room and cold temperature fruit coated with CHI-OVEO showed higher firmness (>2 N/mm) and lower weight loss (>2%) compared to uncoated tomato fruit. CHI-OVEO coating delayed the decrease of lycopene, ascorbic citric acid, glucose and fructose during the storage time assessed at room or cold temperatures. The increase of catechin, myricetin, caffeic and syringic acids was higher (1–9 mg/g) in cherry tomato fruit coated with CHI-OVEO compared to uncoated fruit during the storage at both temperatures studied. CHI-OVEO coating is a feasible treatment for maintaining the storage quality of cherry tomato fruit. PMID:27877156

  5. 40 CFR 63.7744 - How do I demonstrate continuous compliance with the work practice standards that apply to me?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... procedures used by the scrap supplier for either removing accessible mercury switches or for purchasing... chemical composition of all catalyst binder formulations applied in each furan warm box mold or core making...

  6. 40 CFR 63.7744 - How do I demonstrate continuous compliance with the work practice standards that apply to me?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... procedures used by the scrap supplier for either removing accessible mercury switches or for purchasing... chemical composition of all catalyst binder formulations applied in each furan warm box mold or core making...

  7. 40 CFR 63.7744 - How do I demonstrate continuous compliance with the work practice standards that apply to me?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... procedures used by the scrap supplier for either removing accessible mercury switches or for purchasing... chemical composition of all catalyst binder formulations applied in each furan warm box mold or core making...

  8. 40 CFR 63.7744 - How do I demonstrate continuous compliance with the work practice standards that apply to me?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procedures used by the scrap supplier for either removing accessible mercury switches or for purchasing... chemical composition of all catalyst binder formulations applied in each furan warm box mold or core making...

  9. Amphibian embryo and parental defenses and a larval predator reduce egg mortality from water mold.

    PubMed

    Gomez-Mestre, Ivan; Touchon, Justin C; Warkentin, Karen M

    2006-10-01

    Water molds attack aquatic eggs worldwide and have been associated with major mortality events in some cases, but typically only in association with additional stressors. We combined field observations and laboratory experiments to study egg stage defenses against pathogenic water mold in three temperate amphibians. Spotted salamanders (Ambystoma maculatum) wrap their eggs in a protective jelly layer that prevents mold from reaching the embryos. Wood frog (Rana sylvatica) egg masses have less jelly but are laid while ponds are still cold and mold growth is slow. American toad (Bufo americanus) eggs experience the highest infection levels. They are surrounded by thin jelly and are laid when ponds have warmed and mold grows rapidly. Eggs of all three species hatched early when infected, yielding smaller and less developed hatchlings. This response was strongest in B. americanus. Precocious hatching increased vulnerability of wood frog hatchlings to invertebrate predators. Finally, despite being potential toad hatchling predators, R. sylvatica tadpoles can have a positive effect on B. americanus eggs. They eat water mold off infected toad clutches, increasing their hatching success.

  10. Electrical wiring box with structure for fast device mounting

    DOEpatents

    Johnston, Earl S.

    1991-01-08

    An electrical wiring box of molded insulating material is provided with bosses having screw holes for receiving a mounting screw that include two colinear portions of which a first portion proximate the front surface has an internal configuration, such as molded threads, that engage the mounting screw while permitting the mounting screw to be manually inserted therethrough without turning because of flexibility built into the boss structure. A second portion of the screw hole is of greater restriction for securely engaging the screw such as by self tapping. The flexibility of the boss is provided by a first center slot that extends from the screw hole to the boss exterior over a length substantially equal to the first portion of the screw hole. Second and third slots are located respectively on each side of the screw hole and provide projections respectively between the first and second slots and the first and third slots that flex to allow easy screw insertion through the first portion of the screw hole.

  11. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature.

    PubMed

    Liu, Yuelin; Tabata, Daisuke; Imai, Ryozo

    2016-01-01

    DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3), which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C), both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.

  12. MELFI-3 Cold Box inspection

    NASA Image and Video Library

    2015-03-13

    ISS043e000724 (03/13/2015) --- ESA (European Space Agency) astronaut Samantha Cristoforetti, Expedition 43 flight engineer works daily on science and maintenance duties on board the International Space Station. She is inspecting the Minus Eighty-degree Laboratory Freezer called by the shorter title "MELFI-3 Cold Box inspection". Astronauts are trained for long periods at the Johnson Space Center and in Russia before their missions in space begin so that they are fully trained for these complex duties.

  13. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses.

    PubMed

    Song, Jianbo; Mo, Xiaowei; Yang, Haiqi; Yue, Luming; Song, Jun; Mo, Beixin

    2017-01-01

    The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.

  14. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Larchar, Steven W.; Henderson, Gena; Tran, Donald; Barth, Tim

    2012-01-01

    Problem Introduction: 1. Prevent Cold Plate Damage in Space Shuttle. 1a. The number of cold plate problems had increased from an average of 16.5 per/year between 1990 through 2000, to an average of 39.6 per year between 2001through 2005. 1b. Each complete set of 80 cold plates cost approximately $29 million, an average of $362,500 per cold plate. 1c It takes four months to produce a single cold plate. 2. Prevent Cold Plate Damage in Future Space Vehicles.

  15. Frequent exposure to suboptimal temperatures in vaccine cold-chain system in India: results of temperature monitoring in 10 states.

    PubMed

    Murhekar, Manoj V; Dutta, Srihari; Kapoor, Ambujam Nair; Bitragunta, Sailaja; Dodum, Raja; Ghosh, Pramit; Swamy, Karumanagounder Kolanda; Mukhopadhyay, Kalyanranjan; Ningombam, Somorjit; Parmar, Kamlesh; Ravishankar, Devegowda; Singh, Balraj; Singh, Varsha; Sisodiya, Rajesh; Subramanian, Ramaratnam; Takum, Tana

    2013-12-01

    To estimate the proportion of time the vaccines in the cold-chain system in India are exposed to temperatures of < 0 or > 8 °C. In each of 10 states, the largest district and the one most distant from the state capital were selected for study. Four boxes, each containing an electronic temperature recorder and two vials of diphtheria, pertussis and tetanus vaccine, were placed in the state or regional vaccine store for each study state. Two of these boxes were then shipped - one per facility - towards the two most peripheral health facilities where vaccine was stored in each study district. The boxes were shipped, handled and stored as if they were routine vaccine supplies. In state, regional and district vaccine stores and peripheral health facilities, respectively, the temperatures in the boxes exceeded 8 °C for 14.3%, 13.2%, 8.3% and 14.7% of their combined storage times and fell below 0 °C for 1.5%, 0.2%, 0.6% and 10.5% of these times. The boxes also spent about 18% and 7% of their combined times in transit at < 0 and > 8 °C, respectively. In shake tests conducted at the end of the study, two thirds of the vaccine vials in the boxes showed evidence of freezing. While exposure to temperatures above 8 °C occurred at every level of vaccine storage, exposure to subzero temperatures was only frequent during vaccine storage at peripheral facilities and vaccine transportation. Systematic efforts are needed to improve temperature monitoring in the cold-chain system in India.

  16. Slat Heater Boxes for Thermal Vacuum Testing

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene

    2003-01-01

    Slat heater boxes have been invented for controlling the sink temperatures of objects under test in a thermal vacuum chamber, the walls of which are cooled to the temperature of liquid nitrogen. A slat heater box (see Figure 1) includes a framework of struts that support electrically heated slats that are coated with a high-emissivity optically gray paint. The slats can be grouped together into heater zones for the purpose of maintaining an even temperature within each side. The sink temperature of an object under test is defined as the steady-state temperature of the object in the vacuum/ radiative environment during the absence of any internal heat source or sink. The slat heater box makes it possible to closely control the radiation environment to obtain a desired sink temperature. The slat heater box is placed inside the cold thermal vacuum chamber, and the object under test is placed inside (but not in contact with) the slat heater box. The slat heaters occupy about a third of the field of view from any point on the surface of the object under test, the remainder of the field of view being occupied by the cold chamber wall. Thus, the radiation environment is established by the combined effects of the slat heater box and the cold chamber wall. Given (1) the temperature of the chamber wall, (2) the fractions of the field of view occupied by the chamber wall and the slat heater box, and (3) the emissivities of the slats, chamber wall, and the surface of object under test, the slat temperature required to maintain a desired sink temperature can be calculated by solving the equations of gray-body radiation for the steady-state adiabatic case (equal absorption and emission by the object under test). Slat heater boxes offer an important advantage over the infrared lamps that have been previously used to obtain desired sink temperatures: In comparison with an infrared lamp, a slat heater box provides a greater degree of sink temperature uniformity for a test-object surface that includes multiple areas with differing optical properties.

  17. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses

    PubMed Central

    Yang, Haiqi; Yue, Luming; Song, Jun

    2017-01-01

    The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula. PMID:28771553

  18. Clay Portrait Boxes

    ERIC Educational Resources Information Center

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  19. 7 CFR 58.411 - Rindless cheese wrapping area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rindless cheese wrapping area. 58.411 Section 58.411....411 Rindless cheese wrapping area. For rindless cheese a suitable space shall be provided for proper wrapping and boxing of the cheese. The area shall be free from dust, condensation, mold or other conditions...

  20. 7 CFR 58.411 - Rindless cheese wrapping area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Rindless cheese wrapping area. 58.411 Section 58.411....411 Rindless cheese wrapping area. For rindless cheese a suitable space shall be provided for proper wrapping and boxing of the cheese. The area shall be free from dust, condensation, mold or other conditions...

  1. 40 CFR 63.10886 - What are my management practices for binder formulations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false What are my management practices for... What are my management practices for binder formulations? For each furfuryl alcohol warm box mold or... formulation that does not use methanol as a specific ingredient of the catalyst formulation. This requirement...

  2. 40 CFR 63.10886 - What are my management practices for binder formulations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Area Sources Pollution Prevention Management Practices for New and Existing Affected Sources § 63.10886 What are my management practices for binder formulations? For each furfuryl alcohol warm box mold or... does not apply to the resin portion of the binder system. Requirements for New and Existing Affected...

  3. 40 CFR 63.10886 - What are my management practices for binder formulations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Area Sources Pollution Prevention Management Practices for New and Existing Affected Sources § 63.10886 What are my management practices for binder formulations? For each furfuryl alcohol warm box mold or... does not apply to the resin portion of the binder system. Requirements for New and Existing Affected...

  4. 40 CFR 63.10886 - What are my management practices for binder formulations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Area Sources Pollution Prevention Management Practices for New and Existing Affected Sources § 63.10886 What are my management practices for binder formulations? For each furfuryl alcohol warm box mold or... does not apply to the resin portion of the binder system. Requirements for New and Existing Affected...

  5. 40 CFR 63.10886 - What are my management practices for binder formulations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Area Sources Pollution Prevention Management Practices for New and Existing Affected Sources § 63.10886 What are my management practices for binder formulations? For each furfuryl alcohol warm box mold or... does not apply to the resin portion of the binder system. Requirements for New and Existing Affected...

  6. Biocontrol activity of a cold-adapted yeast from Tibet against gray mold in cherry tomato and its action mechanism.

    PubMed

    Hu, Hao; Wisniewski, Michael E; Abdelfattah, Ahmed; Zheng, Xiaodong

    2017-07-01

    Cold-adapted biocontrol yeast was selected from four yeast isolates from Tibet against gray mold of cherry tomato in cold storage. The strain numbered LB2 showed the best biocontrol activity and identified as Cryptococcus laurentii. Competition for nutrient, space, and induced fruit resistance was also its antagonistic mechanism. Compared with C. laurentii from sea-level place, the reason why LB2 had a better biocontrol activity was studied. More trehalose and proline in cell of LB2 made it exhibit a better cellular activity at low temperature, such as higher population dynamics in the wounds of cherry tomato and more biocontrol-related enzyme secretion, chitinase and β-glucanase. The better oxidative stress tolerance was another characteristic of LB2. Maybe because of the ideal culture condition, there was no obvious difference between these two yeasts in the growth in vitro test at low temperature. Although the same phenomenon existed in the low pH stress test, LB2 still had higher cell concentration under this stress. Comparative transcriptomics method was also applied to analyze the cell activity of LB2 and C. laurentii at different temperatures. The results showed that more active response in the intracellular structure and intracellular metabolic process to cold temperature made LB2 had a better activity. The present study indicated a possibility to select cold-adapted biocontrol yeast from Tibet and also showed its primary action mechanism.

  7. Cold-Chain Adaptability During Introduction of Inactivated Polio Vaccine in Bangladesh, 2015.

    PubMed

    Billah, Mallick M; Zaman, K; Estivariz, Concepcion F; Snider, Cynthia J; Anand, Abhijeet; Hampton, Lee M; Bari, Tajul I A; Russell, Kevin L; Chai, Shua J

    2017-07-01

    Introduction of inactivated polio vaccine creates challenges in maintaining the cold chain for vaccine storage and distribution. We evaluated the cold chain in 23 health facilities and 36 outreach vaccination sessions in 8 districts and cities of Bangladesh, using purposive sampling during August-October 2015. We interviewed immunization and cold-chain staff, assessed equipment, and recorded temperatures during vaccine storage and transportation. All health facilities had functioning refrigerators, and 96% had freezers. Temperature monitors were observed in all refrigerators and freezers but in only 14 of 66 vaccine transporters (21%). Recorders detected temperatures >8°C for >60 minutes in 5 of 23 refrigerators (22%), 3 of 6 cold boxes (50%) transporting vaccines from national to subnational depots, and 8 of 48 vaccine carriers (17%) used in outreach vaccination sites. Temperatures <2°C were detected in 4 of 19 cold boxes (21%) transporting vaccine from subnational depots to health facilities and 14 of 48 vaccine carriers (29%). Bangladesh has substantial cold-chain storage and transportation capacity after inactivated polio vaccine introduction, but temperature fluctuations during vaccine transport could cause vaccine potency loss that could go undetected. Bangladesh and other countries should strive to ensure consistent and sufficient cold-chain storage and monitor the cold chain during vaccine transportation at all levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  8. Trapped rubber processing for advanced composites

    NASA Technical Reports Server (NTRS)

    Marra, P. J.

    1976-01-01

    Trapped rubber processing is a molding technique for composites in which precast silicone rubber is placed within a closed cavity where it thermally expands against the composite's surface supported by the vessel walls. The method has been applied by the Douglas Aircraft Company, under contract to NASA-Langley, to the design and fabrication of 10 DC-10 graphite/epoxy upper aft rudder assemblies. A three-bay development tool form mold die has been designed and manufactured, and tooling parameters have been established. Fabrication procedures include graphite layup, assembly of details in the tool, and a cure cycle. The technique has made it possible for the cocured fabrication of complex primary box structures otherwise impracticable via standard composite material processes.

  9. Design of experiment for optimization of plasma-polymerized octafluorocyclobutane coating on very high aspect ratio silicon molds.

    PubMed

    Yeo, L P; Yan, Y H; Lam, Y C; Chan-Park, Mary B

    2006-11-21

    As-fabricated deep reactive ion etched (DRIE) silicon mold with very high aspect ratio (>10) feature patterns is unsuitable for poly(dimethylsiloxane) (PDMS) replication because of the strong interaction between the Si surface and the replica and the corrugated mold sidewalls. The silicon mold can be conveniently passivated via plasma polymerization of octafluorocyclobutane (C4F8), which is also employed in the DRIE process itself, to enable the mold to be used repeatedly. To optimize the passivation conditions, we have undertaken a Box-Behnken experimental design on the basis of three passivation process parameters (plasma power, C4F8 flow rate, and deposition time). The measured responses were fluorinated film thickness, demolding status/success, demolding force, and fluorine/carbon ratio on the fifth replica surface. The optimal passivation process conditions were predicted to be an input power of 195 W, a C4F8 flow rate of 57 sccm, and a deposition time of 364 s; these were verified experimentally to have high accuracy. Demolding success requires medium-deposited film thickness (66-91 nm), and the thickness of the deposited films correlated strongly with deposition time. At moderate to high ranges, increased plasma power or gas flow rate promoted polymerization over reactive etching of the film. It was also found that small quantities of the fluorinated surface were transferred from the Si mold to the PDMS at each replication, entailing progressive wear of the fluorinated layer.

  10. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the concentration of fines (pieces less than 6.35mm in size) in any one location in the cargo hold. (h) Radar and RDF scanners must be protected against the dust generated during cargo transfer operations of...

  11. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the concentration of fines (pieces less than 6.35mm in size) in any one location in the cargo hold. (h) Radar and RDF scanners must be protected against the dust generated during cargo transfer operations of...

  12. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the concentration of fines (pieces less than 6.35mm in size) in any one location in the cargo hold. (h) Radar and RDF scanners must be protected against the dust generated during cargo transfer operations of...

  13. A novel class I Chitinase from Hippophae rhamnoides: Indications for participating in ICE-CBF cold stress signaling pathway.

    PubMed

    Kashyap, Prakriti; Deswal, Renu

    2017-06-01

    Plant chitinases are the members of PR (Pathogenesis related) proteins family and protect plants from biotic and abiotic stress. A novel chitinase HrCHI1 (Accession number JQ289153) of 954bp ORF encoding 317 amino acids protein was cloned, expressed and characterized from seabuckthorn, a cold/freeze tolerant shrub. The 3D structure (predicted with I-TASSER server) showed highest homology with Oryza sativa class I chitinase (PDB 2dkvA). Putative promoter region (obtained by genome walking) showed GCC box, E-boxes, the binding site for bHLH proteins and DRE elements, the CBF (C-repeat binding factor) binding site besides TATA and CAAT boxes. The gel shift assay with the nuclear extract indicated that the HrCHI1 might be participating in CBF/ERF dependent cold stress signaling pathway. The quantitative transcript profiling supported this observation as cold induced expression of HrCBF peaked earlier (at 1h) while HrCHI1 peaked latter (after 3h) indicating HrCHI1 expression might be induced by HrCBF. Further, HrCHI1 expression was methyl jasmonate (MeJa) dependent and salicylic acid (SA) independent. HrCHI1 was expressed in E. coli and purified using chitin affinity chromatography. It showed 512U/mg chitinase hydrolytic activity and resolved as a 34kDa spot with a slightly basic pI (8.5) on a 2-D gel. The E. coli cells containing recombinant chitinase showed higher rate of growth in cold in comparison with the cells containing the empty vector. In conclusion, we have isolated and characterized a cold responsive basic class I chitinase which is regulated by MeJa and seems to be functioning via CBF/ERF dependent cold stress signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  15. KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1

    USDA-ARS?s Scientific Manuscript database

    Seeds employ sensory systems that assess various environmental cues over time to maximize the successful transition from embryo to seedling. Here, we show that the Arabidopsis F-Box protein Cold Temperature-Germinating (CTG)-10, identified by activation tagging, is a positive regulator during this p...

  16. Molds in floor dust and building-related symptoms among adolescent school children: a problem for boys only?

    PubMed

    Meyer, H W; Würtz, H; Suadicani, P; Valbjørn, O; Sigsgaard, T; Gyntelberg, F

    2005-01-01

    In this stratified cross-sectional study in eight 'wet' and seven 'dry' schools, 1024 adolescent school children reported potentially building-related symptoms (BRS) in self-administrated questionnaires. From their classrooms dust samples were collected from floors, ventilation ducts, and air; settled dust was collected in cardboard boxes over a period of 5 months. Measurements of temperature, relative humidity and CO2 were performed. BRS were strongly associated with personal factors like recent airway infections, hay fever, asthma and psycho-social work load, but also to molds in floor dust and presence of mechanical ventilation. The association between molds in floor dust and BRS has in stratified analyses shown a strong association among adolescent school boys, and no association among adolescent school girls using multivariable analyses controlling for relevant confounders. In contrast to the menstruating school girls, the symptoms among the small group of not yet menstruating girls were associated with the levels of molds in floor dust. Their symptom prevalences were very similar to those of the boys. This finding makes us suggest a new hypothesis: The higher endogenous estrogen levels of sexually matured adolescent females seems to protect them from the effects of molds in dust, despite their overall higher symptom prevalence. In this cross-sectional epidemiological study of adolescent school children we found independent significant positive associations between building-related symptoms and viable molds in floor dust in boys and non-menstruating girls. In contrast, no such associations were seen among menstruating girls. The identification of these two susceptible groups adds further support the relevance of minimizing sources of dust and mold exposure.

  17. Processing of sintered alpha SiC

    NASA Technical Reports Server (NTRS)

    Storm, R. S.

    1984-01-01

    Processing methods of sintered alpha SiC for engine applications are developed in a cost effective manner, using a submicron sized powder blended with sintering aids (boron and carbon). The processes for forming a green powder compact, such as dry pressing, cold isostatic pressing and green machining, slip casting, aqueous extrusion, plastic extrusion, and injection molding, are described. Dry pressing is the simplest route to component fabrication, and is carried out at approximately 10,000 psi pressure, while in the cold isostatic method the pressure could go as high as 20,000 psi. Surfactants are added to control settling rates and casting characteristics in the slip casting. The aqueous extrusion process is accomplished by a hydraulic ram forcing the aqueous mixture through a die. The plastic forming processes of extrusion and injection molding offer the potential of greater diversity in shape capacity. The physical properties of sintered alpha SiC (hardness, Young's modulus, shear modulus, and thermal diffusivity) are extensively tested. Corrosion resistance test results of silicon carbide are included.

  18. Effect of gas release in hot molding on flexural strength of composite friction brake

    NASA Astrophysics Data System (ADS)

    Rusdja, Andy Permana; Surojo, Eko; Muhayat, Nurul; Raharjo, Wijang Wisnu

    2018-02-01

    Composite friction brake is a vital part of braking system which serves to reduce the speed of vehicle. To fulfill the requirement of brake performance, composite friction brake must have friction and mechanical characteristic as required. The characteristics of composite friction brake are affected by brake material formulation and manufacturing parameter. In the beginning of hot molding, intermittent hot pressing was carried out to release the gases that consist of ammonia gas and water vapor. In composite friction brake, phenolic resin containing hexamethylenetetramine (HMTA) is often used as a binder. During hot molding, the reaction of phenolic resin and HMTA forms ammonia gas. Hot molding also generates water vapor because raw materials absorb moisture from environment when they are placed in storage. The gas release in hot molding is supposed affecting mechanical properties because it avoid entrapped gas in composite, so that this research investigated effect of gas release on flexural strength. Manufacturing of composite specimen was carried out as follow: mixing of raw materials, cold molding, and hot molding. In this research, duration of intermittent hot pressing and number of gas release were varied. The flexural strength of specimen was measured using three point bending test. The results showed that flexural strength specimens that were manufactured without gas release, using 4 times gas release with intermittent hot pressing for 5 and 10 seconds were not remarkably different. Conversely, hot molding using 4 times gas release with intermittent hot pressing for 15 seconds decreased flexural strength of composite. Hot molding using 2, 4, and 8 times gas release with intermittent hot pressing for 10 seconds also had no effect on increasing flexural strength. Increasing of flexural strength of composite was obtained only by using 6 times gas release with intermittent hot pressing for 10 seconds.

  19. Prediction on flexural strength of encased composite beam with cold-formed steel section

    NASA Astrophysics Data System (ADS)

    Khadavi, Tahir, M. M.

    2017-11-01

    A flexural strength of composite beam designed as boxed shaped section comprised of lipped C-channel of cold-formed steel (CFS) facing each other with reinforcement bars is proposed in this paper. The boxed shaped is kept restrained in position by a profiled metal decking installed on top of the beam to form a slab system. This profiled decking slab is cast by using self-compacting concrete where the concrete is in compression when load is applied to the beam. Reinforcement bars are used as shear connector between slab and CFS as beam. A numerical analysis method proposed by EC4 is used to predict the flexural strength of the proposed composite beam. It was assumed that elasto-plastic behaviour is developed in the cross -sectional of the proposed beam. The calculated predicted flexural strength of the proposed beam shows reasonable flexural strength for cold-formed composite beam.

  20. Internal Body Temperatures of an Overwintering Adult Terrapene carolina (Eastern Box Turtle)

    DOE PAGES

    Burke, Russell L.; Calle, Paul P.; Figueras, Miranda P.; ...

    2016-09-01

    Terrapene carolina (Eastern Box Turtle) is the only turtle species in which adults are known to be tolerant of freezing. We report the first systematically collected data on internal body temperatures of an overwintering Eastern Box Turtle. Despite nearby air temperatures as low as -21.8 °C, this turtle probably supercooled rather than froze. Snow cover, thermal inertia, and the insulating effects of its refugium’s substrate may have protected this turtle from the very cold conditions.

  1. A Hair & a Fungus: Showing Kids the Size of a Microbe

    ERIC Educational Resources Information Center

    Richter, Dana L.

    2013-01-01

    A simple method is presented to show kids the size of a microbe--a fungus hypha--compared to a human hair. Common household items are used to make sterile medium on a stove or hotplate, which is dispensed in the cells of a weekly plastic pill box. Mold fungi can be easily and safely grown on the medium from the classroom environment. A microscope…

  2. Electrostatic Discharge Training Manual

    DTIC Science & Technology

    1980-09-01

    CAN BE MOLDED INTO FORMED SHAPES. FIBERBOARD, MELAMINE LAMINATES AND OTHER MATERIALS (LAMINATED OR HOMOGENEOUS) CAN BE CONSTRUCTED INTO BOXES AND...COVERED WITH, ESD PROTECTIVE MATERIALS SUCH AS METAL, MIL-B-81705 TYPE II, MIL-P- 82646 (REFERENCES 17, 16), MELAMINE LAMINATES OR OTHER ESD PROTECTIVE...CONDUCTANCE IN AVALANCHE MICROWAVE OSCILLATORS", IEEE TRANSACTIONS ON ELECTRON DEVICES, ED-i5, JUNE 1968. 32. HOLM, R., ELECTRIC CONTACTS HANDBOOK, BERLIN

  3. Shelf life and microbial profile of peeled onions

    USDA-ARS?s Scientific Manuscript database

    The increased usage of peeled onions over the past ten years by food service operations and fast-food restaurants has been plagued by black mold decay during cold-chain storage. This study examined the epiphytic microbiological distribution on onions and what effects various processing steps have on...

  4. Effect of parameters on picosecond laser ablation of Cr12MoV cold work mold steel

    NASA Astrophysics Data System (ADS)

    Wu, Baoye; Liu, Peng; Zhang, Fei; Duan, Jun; Wang, Xizhao; Zeng, Xiaoyan

    2018-01-01

    Cr12MoV cold work mold steel, which is a difficult-to-machining material, is widely used in the mold and dye industry. A picosecond pulse Nd:YVO4 laser at 1064 nm was used to conduct the study. Effects of operation parameters (i.e., laser fluence, scanning speed, hatched space and number of scans) were studied on ablation depth and quality of Cr12MoV at the repetition rate of 20 MHz. The experimental results reveal that all the four parameters affect the ablation depth significantly. While the surface roughness depends mainly on laser fluence or scanning speed and secondarily on hatched space or number of scans. For laser fluence and scanning speed, three distinct surface morphologies were observed experiencing transition from flat (Ra < 1.40 μm) to bumpy (Ra = 1.40 - 2.40 μm) eventually to rough (Ra > 2.40 μm). However, for hatched space and number of scan, there is a small bumpy and rough zone or even no rough zone. Mechanisms including heat accumulation, plasma shielding and combustion reaction effects are proposed based on the ablation depth and processing morphology. By appropriate management of the laser fluence and scanning speed, high ablation depth with low surface roughness can be obtained at small hatched space and high number of scans.

  5. Evaluation of antifungal activity of carbonate and bicarbonate salts alone or in combination with biocontrol agents in control of citrus green mold.

    PubMed

    Zamani, M; Sharifi Tehrani, A; Ali Abadi, A Alizadeh

    2007-01-01

    The aim of this research was to determine if the attacks of green mold on orange could be reduced by edible salts alone or in combination with biocontrol agent. For this purpose toxicity to Pantoea digitatum and practical use of sodium carbonate (SC), sodium bicarbonate (SBC) and potassium carbonate, and potassium bicarbonate alone or in combination with antagonistic bacteria (Pseudomonas fluorescens isolate PN, Bacillus subtilis isolate VHN, Pantoea agglomerans isolate CA) to control green mold were determined. All were fungistatic. SC and SBC were equal and superior to the other salts for control of green mold on oranges inoculated 6h before treatment and were chosen for subsequent trails under cold storage conditions. The biocontrol agents were found completely tolerant to 3% sodium bicarbonate and sodium carbonate at room temperature; although their culturability was reduced by > 1000-fold after 60 min in 1% other salt solutions. Satisfactory results were also obtained with the combined treatment for control of green mold. A significant increase in biocontrol activity of all isolate was observed when combined with sodium carbonate and sodium bicarbonate. The treatments comprising CA combined with SB was as effective as fungicide treatment. Thus, use of sodium bicarbonate treatment at 3% followed by the antagonist P. agglomerans CA could be an alternative to chemical fungicides for control of green mold on oranges.

  6. CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.).

    PubMed

    Min, Hye Jo; Jung, Ye Jin; Kang, Bin Goo; Kim, Woo Taek

    2016-03-01

    Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature (4°C) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

  7. Status of the ITER Cryodistribution

    NASA Astrophysics Data System (ADS)

    Chang, H.-S.; Vaghela, H.; Patel, P.; Rizzato, A.; Cursan, M.; Henry, D.; Forgeas, A.; Grillot, D.; Sarkar, B.; Muralidhara, S.; Das, J.; Shukla, V.; Adler, E.

    2017-12-01

    Since the conceptual design of the ITER Cryodistribution many modifications have been applied due to both system optimization and improved knowledge of the clients’ requirements. Process optimizations in the Cryoplant resulted in component simplifications whereas increased heat load in some of the superconducting magnet systems required more complicated process configuration but also the removal of a cold box was possible due to component arrangement standardization. Another cold box, planned for redundancy, has been removed due to the Tokamak in-Cryostat piping layout modification. In this proceeding we will summarize the present design status and component configuration of the ITER Cryodistribution with all changes implemented which aim at process optimization and simplification as well as operational reliability, stability and flexibility.

  8. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding

    NASA Astrophysics Data System (ADS)

    Berger, G. R.; Pacher, G. A.; Pichler, A.; Friesenbichler, W.; Gruber, D. P.

    2014-05-01

    Dynamic mold surface temperature control was examined for its influence on the warpage. A test mold, featuring two different rapid heat cycle molding (RHCM) technologies was used to manufacture complex plate-shaped parts having different ribs, varying thin-wall regions, and both, circular and rectangular cut-outs. The mold's nozzle side is equipped with the areal heating and cooling technology BFMOLD®, where the heating/cooling channels are replaced by a ball-filled slot near the cavity surface flooded through with hot and cold water sequentially. Two local electrical ceramic heating elements are installed into the mold's ejection side. Based on a 23 full-factorial design of experiments (DoE) plan, varying nozzle temperature (Tnozzle), rapid heat cycle molding temperature (TRHCM) and holding pressure (pn), specimens of POM were manufactured systematically. Five specimens were examined per DoE run. The resulting warpage was measured at 6 surface line scans per part using the non-contact confocal topography system FRT MicroProf®. Two warpage parameters were calculated, the curvature of a 2nd order approximation a, and the vertical deflection at the profile center d. Both, the influence strength and the acting direction of the process parameters and their interactions on a and d were calculated by statistical analysis. Linear mathematical process models were determined for a and d to predict the warpage as a function of the process parameter settings. Finally, an optimum process setting was predicted, based on the process models and Microsoft Excel GRG solver. Clear and significant influences of TRHCM, pn, Tnozzle, and the interaction of TRHCM and pn were determined. While TRHCM was dominant close to the gate, pn became more effective as the flow length increased.

  9. The Built Environment of Cold War Era Servicewomen

    DTIC Science & Technology

    2006-08-01

    60 Figure 51. WAVES at work on engine maintenance, Naval Air Station Banana River, FL, 30 August 1944...Naval Air Station Banana River, FL, 30 Aug. 1944 (NARA, RG 80-G Box 758, 244458... Banana River, FL, 30 August 1944 (NARA, RG 80-G Box 758, 244460). ERDC/CERL M-06-2 61 Figure 52. WAVES packing parachutes, Naval Air Station

  10. Changes in pectin methyl esterase activity with different packaging materials and stages of fruit harvesting during cold storage of pear cv. Punjab beauty.

    PubMed

    Kaur, Kirandeep; Dhillon, W S; Mahajan, B V C

    2014-10-01

    Pear cv. Punjab Beauty has become quite popular in Punjab. Excessive softening during cold storage leading to low shelf life is the major factor limiting its wider adoption. Studies were, therefore, conducted to determine the firmness and pectin methyl esterase (PME) activity at 4 harvest dates (2nd, 3rd and 4th week of July, and 1st week of August). Various packaging materials i.e. corrugated fiber board boxes and crates with high and low density polyethylene liners, corrugated fiber board boxes, crates and wooden boxes were also evaluated for their role in extending the shelf life of fruits. The enzyme activity and fruit firmness was evaluated periodically after 30, 45, 60 and 75 days of storage at 0-1 °C and 90-95 % RH. The firmness of the fruits decreased with the increase in storage intervals but the enzyme activity increased with the storage period up to 60 days and declined thereafter. Ripening-related changes in all the harvests were characterized mainly by an increase in the solubilization of pectin with a concomitant decrease in the degree of firmness. There was a continuous increase in enzyme activity with the advancement in harvesting dates and then fell sharply in the advanced ripening stages. Highest pectin methyl esterase activity was in fruits packed in crates followed by wooden boxes and corrugated fiber board boxes while the lowest was recorded in fruits packed in corrugated fiber board boxes with high density polyethylene liners. Therefore, high density polyethylene lined CFB boxes proved to be most effective in preventing the loss in firmness.

  11. Cold-development tool and technique for the ultimate resolution of ZEP520A to fabricate an EB master mold for nano-imprint lithography for 1Tbit/inch2 BPM development

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hideo; Iyama, Hiromasa; Kagatsume, Takeshi; Watanabe, Tsuyoshi

    2012-11-01

    Cold-development is well-known for resolution enhancement on ZEP520A. Dipping a wafer in a developer solvent chilled by a freezer, such a typical method had been employed. But, it is obvious that the dip-development method has several inferiorities such as developer temperature instability, temperature inconsistency between developer and a wafer, water-condensation on drying. We then built a single wafer spin-develop tool, and established a process sequence, to solve those difficulties. And, we tried to see their effect down to -10degC over various developers. In specific, we tried to make hole patterns in hexagonal closest packing in 40nm, 35nm, 30nm, 25nm pitch, and examined holes pattern quality and resolution limit by varying setting temperature from room temperature to -10degC in the cold-development, as well as varying developer chemistry from the standard developer ZED N-50 (n-amyl acetate, 100%) to MiBK and IPA mixture which was a rinsing solvent mixture originally. We also examined the other developer (poor solvent mixture) we designed, N-50 and fluorocarbon (FC) mixture, MiBK and FC mixture, and IPA+FC mixture. This paper describes cold-development tool and technique, and its results down to minus (-) 10degC, for ZEP520A resolution enhancement to obtain 1Xnm bits (holes) in 25nm pitch to fabricate an EB master mold for Nano-Imprinting Lithography for 1Tbit/in2 bit patterned media (BPM) in HDD development and production.

  12. Oscillation-Mark Formation and Liquid-Slag Consumption in Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Meng, Xiangning; Wang, Ning; Zhu, Miaoyong

    2017-04-01

    Traditional understanding on the complex multiphysics phenomenon of the meniscus in the oscillating mold for continuously cast steel, including oscillation-mark formation and liquid-slag consumption, has never considered the shape influence of the flux channel between the mold wall and the solidifying shell surface. Based on the reciprocating oscillation of mold, this study was carried out to calculate theoretically the periodic pressure and the liquid-slag layer thickness in the flux channel for the upper and the lower meniscus that possess different shapes in combination with a transient equilibrium profile of the flux channel as well as the sinusoidal and the nonsinusoidal oscillation modes of mold. The effect of flux channel shape on the multiphysics phenomenon in the meniscus was determined by the physical oscillation simulation by using an experimental cold model mold. The results show that the shape difference between the upper and the lower meniscus leads to the opposite direction of pressure in the flux channel. The pressure in the opposite direction plays a respective role in oscillation-mark formation and liquid-slag consumption in an oscillation cycle of mold, and thus, it makes a new mechanism for explaining the multiphysics phenomenon in the meniscus. The oscillation mark is initially formed by the rapid increase of positive channel pressure in the upper meniscus, and most of the liquid slag is infiltrated into the flux channel by the negative channel pressure in the lower meniscus from the end of a positive strip time to the beginning of the next positive strip time, including the negative strip time in between. Furthermore, the physical characteristics of the lubrication behavior in the meniscus are summarized, including liquid-slag infiltration, solidifying shell deformation, and the thickness change of the liquid-slag layer.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Russell L.; Calle, Paul P.; Figueras, Miranda P.

    Terrapene carolina (Eastern Box Turtle) is the only turtle species in which adults are known to be tolerant of freezing. We report the first systematically collected data on internal body temperatures of an overwintering Eastern Box Turtle. Despite nearby air temperatures as low as -21.8 °C, this turtle probably supercooled rather than froze. Snow cover, thermal inertia, and the insulating effects of its refugium’s substrate may have protected this turtle from the very cold conditions.

  14. Application of low concentrations of ozone during the cold storage of table grapes

    USDA-ARS?s Scientific Manuscript database

    The control of postharvest decay of table grapes, caused by Botrytis cinerea and other pathogens, by ozone was evaluated in chambers and commercial storage facilities. Ozone at 0.100 µL/L or higher inhibited the spread of gray mold among stored grapes. Ozone diffusion into many types of commercial p...

  15. Microbiological testing of raw, boxed beef in the context of hazard analysis critical control point at a high-line-speed abattoir.

    PubMed

    Jericho, K W; Kozub, G C; Gannon, V P; Taylor, C M

    2000-12-01

    The efficacy of cold storage of raw, bagged, boxed beef was assessed microbiologically at a high-line-speed abattoir (270 carcasses per h). At the time of this study, plant management was in the process of creating a hazard analysis critical control point plan for all processes. Aerobic bacteria, coliforms, and type 1 Escherichia coli were enumerated (5 by 5-cm excision samples, hydrophobic grid membrane filter technology) before and after cold storage of this final product produced at six fabrication tables. In addition, the temperature-function integration technique (TFIT) was used to calculate the potential number of generations of E. coli during the first 24 or 48 h of storage of the boxed beef. Based on the temperature histories (total of 60 boxes, resulting from 12 product cuts, five boxes from each of two fabrication tables on each of 6 sampling days, and six types of fabrication tables), TFIT did not predict any growth of E. coli (with or without lag) for the test period. This was verified by E. coli mean log10 values of 0.65 to 0.42 cm2 (P > 0.05) determined by culture before and after the cooling process, respectively. Counts of aerobic bacteria and coliforms were significantly reduced (P < 0.001 and P < 0.05, respectively) during the initial period of the cooling process. There were significant microbiological differences (P < 0.05) between table-cut units.

  16. Conceptual Design and Analysis of Cold Mass Support of the CS3U Feeder for the ITER

    NASA Astrophysics Data System (ADS)

    Zhu, Yinfeng; Song, Yuntao; Zhang, Yuanbin; Wang, Zhongwei

    2013-06-01

    In the International Thermonuclear Experimental Reactor (ITER) project, the feeders are one of the most important and critical systems. To convey the power supply and the coolant for the central solenoid (CS) magnet, 6 sets of CS feeders are employed, which consist mainly of an in-cryostat feeder (ICF), a cryostat feed-through (CFT), an S-bend box (SBB), and a coil terminal box (CTB). To compensate the displacements of the internal components of the CS feeders during operation, sliding cold mass supports consisting of a sled plate, a cylindrical support, a thermal shield, and an external ring are developed. To check the strength of the developed cold mass supports of the CS3U feeder, electromagnetic analysis of the two superconducting busbars is performed by using the CATIA V5 and ANSYS codes based on parametric technology. Furthermore, the thermal-structural coupling analysis is performed based on the obtained results, except for the stress concentration, and the max. stress intensity is lower than the allowable stress of the selected material. It is found that the conceptual design of the cold mass support can satisfy the required functions under the worst case of normal working conditions. All these performed activities will provide a firm technical basis for the engineering design and development of cold mass supports.

  17. [Effect of erythropoietin on blood oxygen transport in rats during cold exposure and subsequent rewarming].

    PubMed

    Zinchuk, V V; Glutkin, S V

    2010-07-01

    Effect of erythropoietin (EPO) preparation (epocrine) on the blood oxygen transport in rats exposed to cold (120 min in a water-cooled box at 19 degrees C) and then rewarmed (next 120 min at a mean heating rate of 0.06 degrees C/min) has been studied. The administration of EPO reduced the body temperature fall at the end of cold exposure and enhanced its rise during the rewarming stage. The effect of EPO in tested rats is associated with a decrease in the hemoglobin affinity to oxygen, which increases the oxygen supply of tissues and improves the organism adaptability to cold.

  18. MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple.

    PubMed

    An, Jian-Ping; Yao, Ji-Fang; Wang, Xiao-Na; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-11-01

    Cold stress is a major external stimulator that affects crop quality and productivity. The CBF cold regulatory pathway has been regarded as a master regulator in the response to cold stress. In this study, we found that the apple bZIP transcription factor, MdHY5, was responsive to cold treatment both at the transcriptional and at the post-translational levels. Moreover, overexpression of MdHY5 enhanced cold tolerance in apple calli and Arabidopsis. Subsequently, EMSA assay and transient expression assay demonstrated that MdHY5 positively regulated the transcript of MdCBF1 by binding to G-Box motif of its promoter. Furthermore, MdHY5 also regulated the expression of CBF-independent cold-regulated genes. Taken together, our data suggest that MdHY5 positively modulates plant cold tolerance through CBF-dependent and CBF-independent pathways, providing a deeper understanding of MdHY5-regulated cold tolerance in apple. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Filling box stratification fed by a gravity current

    NASA Astrophysics Data System (ADS)

    Hogg, Charlie; Huppert, Herbert; Imberger, Jorg

    2012-11-01

    Fluids in confined basins can be stratified by the filling box mechanism. The source of dense fluid in geophysical applications, such as a cold river entering a warmer lake, can be a gravity current running over a shallow slope. Filling box models are often, however, based on the dynamics of vertically falling, unconfined, plumes which entrain fluid by a different mechanism to gravity currents on shallow slopes. Laboratory tank experiments of a filling box fed by a gravity current running over a shallow slope were carried out using a dye attenuation technique to investigate the development of the stratification of the ambient. These results demonstrate the differences in the stratification generated by a gravity current compared to that generated by a plume and demonstrate the nature of entrainment into gravity currents on shallow slopes.

  20. A high reliability module with thermoelectric device by molding technology for M2M wireless sensor network

    NASA Astrophysics Data System (ADS)

    Nakagawa, K.; Tanaka, T.; Suzuki, T.

    2015-10-01

    This paper presents the fabrication of a new energy harvesting module that uses a thermoelectric device (TED) by using molding technology. Through molding technology, the TED and circuit board can be properly protected and a heat-radiating fin structure can be simultaneously constructed. The output voltage per heater temperature of the TED module at 20 °C ambient temperature is 8 mV K-1, similar to the result with the aluminum heat sink which is almost the same fin size as the TED module. The accelerated environmental tests are performed on a damp heat test, which is an aging test under high temperature and high humidity, highly accelerated temperature, and humidity stress test (HAST) for the purpose of evaluating the electrical reliability in harsh environments, cold test and thermal cycle test to evaluate degrading characteristics by cycling through two temperatures. All test results indicate that the TED and circuit board can be properly protected from harsh temperature and humidity by using molding technology because the output voltage of after-tested modules is reduced by less than 5%. This study presents a novel fabrication method for a high reliability TED-installed module appropriate for Machine to Machine wireless sensor networks.

  1. Microbiological quality assessment and validation of antimicrobials against unstressed or cold-stress adapted Salmonella and surrogate Enterococcus faecium on broiler carcasses and wings.

    PubMed

    Lemonakis, Lacey; Li, KaWang; Adler, Jeremy M; Shen, Cangliang

    2017-09-01

    This study aims to evaluate the microbiological quality and efficacy of antimicrobials to inactivate unstressed or cold-stress adapted Salmonella and Enterococcus on broiler carcasses and wings processed at a small USDA-inspected slaughter facility in West Virginia. The first part of the study included 42 carcasses that were pre- and secondarily-enriched in bacterial media followed by streak-plating onto XLT-4 and HardyCHROM™-agar Salmonella and confirmation using an API20E-kit. The aerobic plate counts (APC), Escherichia coli (ECC), total coliforms (TCC), and yeast/molds were analyzed on petri-films. The second part of the study included fresh broiler carcasses and wings that were inoculated with unstressed and cold-stress-adapted (4 °C, 7-day) Salmonella Typhimurium and Tennessee, and Enterococcus faecium ATCC 8459 (5.5 to 6.0 log10CFU/mL) and later dipped into peroxyacetic acid (PAA; 1,000 ppm), lactic acid (LA; 5%), lactic and citric acid blend (LCA; 2.5%), and sodium hypochlorite (SH; 70 ppm) for 30 s without (carcasses) or with 2-min drainage (wings). The surviving bacteria were recovered onto non-selective and selective agar to analyze the total microbial population, Salmonella and Enterococcus. APC, TCC, and Yeast/Molds were 2.62, 1.08, and 2.37 log10CFU/mL on broiler carcasses, respectively. A total of 30 and 40% of the carcasses tested positive for Salmonella spp. and E. coli (0.48 to 1.70 log10CFU/mL), respectively. For carcasses, antimicrobial reductions of cold-stress-adapted cells of Salmonella and Enterococcus were greater (P < 0.05) than the unstressed cells. For wings, cold-stress-adapted Salmonella were more (P < 0.05) sensitive to antimicrobials than unstressed cells; however, unstressed and cold-stress-adapted Enterococcus behaved similarly (P > 0.05). The reduction of Salmonella and Enterococcus on carcasses and wings increased in the order of SH ≤ LCA < LA < PAA and irrespective of unstressed or cold-stress-adapted cells. Applying post-chilling antimicrobial dipping treatments could be an intervention approach to control Salmonella on locally processed broilers. In addition, Enterococcus faecium could be a Salmonella surrogate for in-plant validation studies. © 2017 Poultry Science Association Inc.

  2. Molybdenum-99 Isotope Production Preparation at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, S.D.; Longley, S.W.; McDonald, M.J.

    `Q&c M. J. McDonald, S. D. Carson, S. W. Longley, E. J. Parma, M. E. Vern `~ I@ .,., Sandia National Laboratories*, P. .0. Box 5800, Albuquerque, NM, 8 W? 1$ tl?;:q `f. (3 . 8 /'~ Abstract This report was prepared as an account of work sponsored byanagency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its usemore » would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. loading on the Cintichem targets. These tests were designed to gain process knowledge prior to processing an irradiated target. The chemical separation tests were performed in a fime hood During cold testing, several tests were performed on individual components of the process to complete, a series of `hot' tests was designed to process irradiated targets. These were designed to optimize the process, identify problems prior to processing higher inventory targets, and to the shielded containment box (SCB). Table 1 is a summary of the tests performed prior to the Test Target Power Post irradiation Total inventory 99M0 inventory (kW)/ Irradiation decay (hrs) (TBq*) /decay (TBq)/decay Time (hrs) inventory (TBq) inventory(TBq) in the processing boxes as color comparisons. Product quality control testing was conducted for all the tests and the results were compared to The production process generates a high activity acidic liquid waste. Several waste stabilization processing box. The cement, in addition to stabilizing the waste, neutralized the waste resulting The processing hardware and fixtures were developed in parallel to the cold tests and tested in a that expected during processing. During processing, precautions will be taken to minimize the Island incident. The facility consisted of shielded glove boxes, unshielded glove box lines and the the facility for production operations; the glove box lines and shielded glove boxes, all the new configuration will have six windows, four extraction boxes and a waste packaging box on the shielding. The walls and windows of the processing boxes will have the equivalent 150 of the purification box will be considerably less than the processing boxes with dose being from only `gMo. The increased wall thickness will reduce the dose levels to boxes will have under the box transport systems to move material into and out of the boxes. prior to FDA requiring process validation and, consequently, had not pertlormed a process« less

  3. Gating geometry studies of thin-walled 17-4PH investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, M.C.; Zanner, F.J.

    1992-11-01

    The ability to design gating systems that reliably feed and support investment castings is often the result of ``cut-and-try`` methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less

  4. Gating geometry studies of thin-walled 17-4PH investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, M.C.; Zanner, F.J.

    1992-01-01

    The ability to design gating systems that reliably feed and support investment castings is often the result of cut-and-try'' methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less

  5. Using ATP-driven bioluminescence assay to monitor microbial safety in a contemporary human cadaver laboratory.

    PubMed

    Benninger, Brion; Maier, Thomas

    2015-03-01

    The objective of this study was to utilize a cost-effective method for assessing the levels of bacterial, yeast, and mold activity during a human dissection laboratory course. Nowadays, compliance with safety regulations is policed by institutions at higher standards than ever before. Fear of acquiring an unknown infection is one of the top concerns of professional healthcare students, and it provokes anti-laboratory anxiety. Human cadavers are not routinely tested for bacteria and viruses prior to embalming. Human anatomy dissecting rooms that house embalmed cadavers are normally cleaned after the dissected cadavers have been removed. There is no evidence that investigators have ever assessed bacterial and fungal activities using adenosine triphosphate (ATP)-driven bioluminescence assays. A literature search was conducted on texts, journals, and websites regarding bacterial, yeast, and mold activities in an active cadaver laboratory. Midway into a clinical anatomy course, ATP bioluminescence assays were used to swab various sites within the dissection room, including entrance and exiting door handles, water taps, cadaver tables, counter tops, imaging material, X-ray box switches, and the cadaver surfaces. The results demonstrated very low activities on cadaver tables, washing up areas, and exiting door handles. There was low activity on counter tops and X-ray boxes. There was medium activity on the entrance door handles. These findings suggest an inexpensive and accurate method for monitoring safety compliance and microbial activity. Students can feel confident and safe in the environment in which they work. © 2014 Wiley Periodicals, Inc.

  6. Simulation and Analysis of One-time Forming Process of Automobile Steering Ball Head

    NASA Astrophysics Data System (ADS)

    Shi, Peicheng; Zhang, Xujun; Xu, Zengwei; Zhang, Rongyun

    2018-03-01

    Aiming at the problems such as large machining allowance, low production efficiency and material waste during die forging of ball pin, the cold extrusion process of ball head was studied and the analog simulation of the forming process was carried out by using the finite element analysis software DEFORM-3D. Through the analysis of the equivalent stress strain, velocity vector field and load-displacement curve, the flow regularity of the metal during the cold extrusion process of ball pin was clarified, and possible defects during the molding were predicted. The results showed that this process could solve the forming problem of ball pin and provide theoretical basis for actual production of enterprises.

  7. The 400W at 1.8K Test Facility at CEA-Grenoble

    NASA Astrophysics Data System (ADS)

    Roussel, P.; Girard, A.; Jager, B.; Rousset, B.; Bonnay, P.; Millet, F.; Gully, P.

    2006-04-01

    A new test facility with a cooling capacity respectively of 400W at 1.8K or 800W at 4.5K, is now under nominal operation in SBT (Low Temperature Department) at CEA Grenoble. It has been recently used for thermohydraulic studies of two phase superfluid helium in autumn 2004. In the near future, this test bench will allow: - to test industrial components at 1.8K (magnets, cavities of accelerators) - to continue the present studies on thermohydraulics of two phase superfluid helium - to develop and simulate new cooling loops for ITER Cryogenics, and other applications such as high Reynolds number flows This new facility consists of a cold box connected to a warm compressor station (one subatmospheric oil ring pump in series with two screw compressors). The cold box, designed by AIR LIQUIDE, comprises two centrifugal cold compressors, a cold turbine, a wet piston expander, counter flow heat exchangers and two phase separators at 4.5K and 1.8K. The new facility uses a Programmable Logic Controller (PLC) connected to a bus for the measurements. The design is modular and will allow the use of saturated fluid flow (two phase flow at 1.8K or 4.5K) or single phase fluid forced flow. Experimental results and cooling capacity in different operation modes are detailed.

  8. Thermohaline circulation: a missing equation and its climate-change implications

    NASA Astrophysics Data System (ADS)

    Ou, Hsien-Wang

    2018-01-01

    We formulate a box model of coupled ocean-atmosphere to examine the differential fields interactive with the thermohaline circulation (THC) and their response to global warming. We discern a robust convective bound on the atmospheric heat transport, which would divide the climate regime into warm and cold branches; but unlike the saline mode of previous box models, the cold state, if allowed, has the same-signed—though weaker—density contrast and THC as the present climate, which may explain its emergence from coupled general circulation models. We underscore the nondeterminacy of the THC due to random eddy shedding and apply the fluctuation theorem to constrain the shedding rate, thus closing the problem. The derivation reveals an ocean propelled toward the maximum entropy production (MEP) on millennial timescale (termed "MEP-adjustment"), the long timescale arising from the compounding effect of microscopic fluctuations in the shedding rate and their slight probability bias. Global warming may induce hysteresis between the two branches, like that seen in GCMs, but the cold transition is far more sensitive to the moistening than the heating effects as the latter would be countered by the hydrological feedback. The uni- or bi-modality of the current state—hence whether the THC may recover after the cold transition—depends on the global-mean convective flux and may not be easily assessed due to its observed uncertainty.

  9. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins.

    PubMed

    Chaikam, Vijay; Karlson, Dale T

    2010-01-01

    The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs. [BMB reports 2010; 43(1): 1-8].

  10. Fungi in Ontario maple syrup & some factors that determine the presence of mold damage.

    PubMed

    Frasz, Samantha L; Miller, J David

    2015-08-17

    Maple syrup is a high value artisanal product produced mainly in Canada and a number of States primarily in the northeast USA. Mold growth (Wallemia sebi) on commercial product was first reported in syrup in 1908. Since then, few data have been published. We conducted a systematic examination for fungi in maple syrup from 68 producers from all of the syrup-producing areas of Ontario, Canada. The mean pH of the samples was pH 6.82, sugar content averaged 68.0±0.89 °Brix and aw averaged 0.841±0.011. Some 23 species of fungi were isolated based on morphology and molecular techniques. The most common fungus in the maple syrup samples was Eurotium herbariorum, followed by Penicillium chrysogenum, Aspergillus penicillioides, Aspergillus restrictus, Aspergillus versicolor and two species of Wallemia. Cladosporium cladosporioides was also common but only recovered when fungi known from high sugar substrates were also present in the mold damaged sample. The rarely reported yeast Citeromyces matrinsis was found in samples from three producers. There appear to be three potential causes for mold damage observed. High aw was associated with about one third of the mold damage. Independently, cold packing (bottling at ~25 °C) was a risk factor. However, syrup of good quality and quite low aw values was contaminated. We hypothesize that sanitation in the bottling line and other aspects of the bottling process may be partial explanations. Clarifying this requires further study. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Premature melt solidification during mold filling and its influence on the as-cast structure

    NASA Astrophysics Data System (ADS)

    Wu, M.; Ahmadein, M.; Ludwig, A.

    2018-03-01

    Premature melt solidification is the solidification of a melt during mold filling. In this study, a numerical model is used to analyze the influence of the pouring process on the premature solidification. The numerical model considers three phases, namely, air, melt, and equiaxed crystals. The crystals are assumed to have originated from the heterogeneous nucleation in the undercooled melt resulting from the first contact of the melt with the cold mold during pouring. The transport of the crystals by the melt flow, in accordance with the socalled "big bang" theory, is considered. The crystals are assumed globular in morphology and capable of growing according to the local constitutional undercooling. These crystals can also be remelted by mixing with the superheated melt. As the modeling results, the evolutionary trends of the number density of the crystals and the volume fraction of the solid crystals in the melt during pouring are presented. The calculated number density of the crystals and the volume fraction of the solid crystals in the melt at the end of pouring are used as the initial conditions for the subsequent solidification simulation of the evolution of the as-cast structure. A five-phase volume-average model for mixed columnar-equiaxed solidification is used for the solidification simulation. An improved agreement between the simulation and experimental results is achieved by considering the effect of premature melt solidification during mold filling. Finally, the influences of pouring parameters, namely, pouring temperature, initial mold temperature, and pouring rate, on the premature melt solidification are discussed.

  12. Bibliography on Cold Regions Science and Technology. Volume 44, Part 1, 1990

    DTIC Science & Technology

    1990-12-01

    Design criteria. Ice mechanics, composition. 44-975 44.985 44-966 Theoretical and experimental analyses of glacial Primary production, chlorophyll...44-1209 New methods and materials for molding and casting Murrell, S.A.F., Rist, M.A. - Experimental methodologies to support aircraft icing ice...Safety Dynamic loads, Moisture, Design , Thermocouples, Leavesley, G.H., Hydrological sciences journal, Dec. Bitumens, Experimentation . 1989, 34(6), p.6 17

  13. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.).

    PubMed

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-02-10

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.

  14. A Novel F-Box Protein CaF-Box Is Involved in Responses to Plant Hormones and Abiotic Stress in Pepper (Capsicum annuum L.)

    PubMed Central

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-01-01

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants. PMID:24518684

  15. An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip

    2012-07-01

    To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.

  16. Prenatal exposure to ambient temperature variation increases the risk of common cold in children.

    PubMed

    Lu, Chan; Miao, Yufeng; Zeng, Ji; Jiang, Wei; Shen, Yong-Ming; Deng, Qihong

    2018-06-15

    Common cold is a frequent upper respiratory tract infection, but the role of ambient temperature in the infection is unclear. We investigated the role of prenatal exposure to diurnal temperature variation (DTV), the difference between the daily maximal and minimal temperatures, in the risk of common cold in children. We conducted a cohort study of 2598 preschool children in Changsha, China. Occurrence of common cold during the past year was surveyed using questionnaire. We then estimated each child's prenatal exposure to DTV during pregnancy. Multivariate logistic regression model was used to examine the association between occurrence of common cold and prenatal exposure to DTV in terms of odds ratios (OR) and 95% confidence interval (CI). About 45% children have common cold (≥3 times) during the past year. We found that common cold in children was associated with maternal DTV exposure during pregnancy, particularly during the first trimester with adjusted OR (95% CI) = 1.27 (1.10-1.46). Male and atopic children were more susceptible to the effect of DTV during pregnancy. The risk of common cold due to DTV is higher in children living in the suburban areas and the bigger houses and in those exposed to environmental tobacco smoke, mold/dampness, new furniture and redecoration. We observed that the risk of common cold in children has been increased in recent years due to increasing DTV. Common cold in children was associated with maternal exposure to temperature variation during pregnancy, suggesting that the risk of common cold may originate in pregnancy. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife.

    PubMed

    Griffiths, Stephen R; Rowland, Jessica A; Briscoe, Natalie J; Lentini, Pia E; Handasyde, Kathrine A; Lumsden, Linda F; Robert, Kylie A

    2017-01-01

    Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons.

  18. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife

    PubMed Central

    Rowland, Jessica A.; Briscoe, Natalie J.; Lentini, Pia E.; Handasyde, Kathrine A.; Lumsden, Linda F.; Robert, Kylie A.

    2017-01-01

    Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons. PMID:28472147

  19. Promoter analysis of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum.

    PubMed

    Takaoka, N; Fukuzawa, M; Saito, T; Sakaitani, T; Ochiai, H

    1999-10-28

    We cloned a genomic fragment of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum by inverse PCR. Primer extension analysis identified a major transcription start site 65 bp upstream of the translation start codon. The promoter region of the gp64 gene contains sequences homologous to a TATA box at position -47 to -37 and to an initiator (Inr, PyPyCAPyPyPyPy) at position -3 to +5 from the transcription start site. Successively truncated segments of the promoter were tested for their ability to drive expression of the beta-galactosidase reporter gene in transformed cells; also the difference in activity between growth conditions was compared. The results indicated that there are two positive vegetative regulatory elements extending between -187 and -62 bp from the transcription start site of the gp64 promoter; also their activity was two to three times higher in the cells grown with bacteria in shaken suspension than in the cells grown in an axenic medium.

  20. Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.

    2017-02-01

    Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure - Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure - Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.

  1. Guide-substrate base-pairing requirement for box H/ACA RNA-guided RNA pseudouridylation.

    PubMed

    De Zoysa, Meemanage D; Wu, Guowei; Katz, Raviv; Yu, Yi-Tao

    2018-06-05

    Box H/ACA RNAs are a group of small RNAs found in abundance in eukaryotes (as well as in archaea). Although their sequences differ, eukaryotic box H/ACA RNAs all share the same unique hairpin-hinge-hairpin-tail structure. Almost all of them function as guides that primarily direct pseudouridylation of rRNAs and spliceosomal snRNAs at specific sites. Although box H/ACA RNA-guided pseudouridylation has been extensively studied, the detailed rules governing this reaction, especially those concerning the guide RNA-substrate RNA base-pairing interactions that determine the specificity and efficiency of pseudouridylation, are still not exactly clear. This is particularly relevant given that the lengths of the guide sequences involved in base-pairing vary from one box H/ACA RNA to another. Here, we carry out a detailed investigation into guide-substrate base-pairing interactions, and identify the minimum number of base-pairs (8), required for RNA-guided pseudouridylation. In addition, we find that the pseudouridylation pocket, present in each hairpin of box H/ACA RNA, exhibits flexibility in fitting slightly different substrate sequences. Our results are consistent across three independent pseudouridylation pockets tested, suggesting that our findings are generally applicable to box H/ACA RNA-guided RNA pseudouridylation. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallin, Simon B.; Boudreaux, Philip R.; Kehrer, Manfred

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions.more » In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.« less

  3. Temperature characteristics of winter roost-sites for birds and mammals: tree cavities and anthropogenic alternatives

    NASA Astrophysics Data System (ADS)

    Grüebler, Martin U.; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat

    2014-07-01

    The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.

  4. Improving the cold chain for vaccines.

    PubMed

    Lloyd, J S

    1977-01-01

    The cold chain may be defined as a system for transporting and storing vaccines at very low temperataures, particularly in tropical countries. In Ghana, efforts are being made, with the assistance of the World Health Organization (WHO) to develop and test a new cold chain technology. Emphasis is on local production in order to meet the needs of the countrywide immunization program, and, if possible, of similar programs in other West African nations. Focus in this discussion is on the losses resulting from mishandling of vaccines during storage and in transit through various stages in the cold chain as well as the problems, requirements, and proposed solutions. In most countries with immunization programs, breakdowns in refrigeration during the transport and storage of vaccines in remote rural areas or at the regional and national central stores have led to great losses of vaccine. The losses are often caused by inappropriate management and technology. The most promising recent development in the area of storage is an enzyme-based time/temperature indicator contained in a paper tab which is attached to the vaccine packet. In order to reduce to a minimum the handling of vaccines at the national central store it is proposed that the ministry of health submit details of regional requirements in their requisition to the manufacturer. Then the manufacturer can make presealed packages which are dispatched by air to the national central store and from there to the regions, while they are still sealed. Insulated boxes for this purpose have been tested in Sweden and been shown to maintain deep-freezing temperatures for 5 days. Road communications to the regional centers are good in Ghana and the 5-day cold boxes give adequate safety margins. The plan for the immunization program in Ghana is to employ a combination of teams from both fixed and mobile centers. 3 contacts, 3 months apart, will be made by the fixed teams; mobile teams will make 2 contacts, 2 months apart. Mobile teams operating in the south of Ghana, where the road communications are good, will be able to perform a large number of immunizations each day, using a vehicle borne cold box. Vaccine samples, selected in the field, need to be transported under closely controlled refrigeration over considerable distances to reach the national laboratories or even European laboratories for assay. The development and testing of most of the devices described will be done at the Technology Consultancy Center, Kumasi University of Science and Technology, in Ghana.

  5. Upgrade to the Birmingham Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Wilson, J.; Baca, M.

    2015-10-01

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 1015 (1 MeV neutron equivalent (neq)) cm-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of -50 °C in 30 min and aims to maintain sub-0 °C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and performance of the new cooling system.

  6. Effects of playing video games on pain response during a cold pressor task.

    PubMed

    Raudenbush, Bryan; Koon, Jerrod; Cessna, Trevor; McCombs, Kristin

    2009-04-01

    Two studies assessed whether playing video games would significantly distract participants from painful stimulation via a cold pressor test. In Study 1, participants (8 men, 22 women, M age = 18.5 yr., SD = 1.3) in an action-oriented game condition tolerated pain for a longer time period and reported lower pain intensity ratings than those in a nonaction-oriented game or a nongame control condition. No differences were found on scores of aggressiveness, competitiveness, or prior video game experience, suggesting that these factors play little role. In Study 2, participants (14 men, 13 women, M age = 19.7 yr., SD = 1.3) engaged in six video game conditions (action, fighting, puzzle, sports, arcade, and boxing) and a nongame control condition. Video game play produced an increase in pulse, which was greatest during the action, fighting, sports, and boxing games. Pain tolerance was greatest during the sports and fighting games. Thus, certain games produce greater distraction, which may have implications for the medical field as an adjunct to pain management.

  7. Installation and pre-commissioning of the cryogenic system of JT-60SA tokamak

    NASA Astrophysics Data System (ADS)

    Hoa, C.; Michel, F.; Roussel, P.; Fejoz, P.; Girard, S.; Goncalves, R.; Lamaison, V.; Natsume, K.; Kizu, K.; Koide, Y.; Yoshida, K.; Cardella, A.; Portone, A.; Verrecchia, M.; Wanner, M.; Beauvisage, J.; Bertholat, F.; Gaillard, G.; Heloin, V.; Langevin, B.; Legrand, J.; Maire, S.; Perrier, J. M.; Pudys, V.

    2017-02-01

    The cryogenic system for the superconducting tokamak JT-60SA is currently being commissioned in Naka, Japan and shall be ready for operation in summer 2016. This contribution is part of the Broader Approach agreement between Japan and Europe. With an equivalent refrigeration capacity of about 9.5 kW at 4.5 K the cryogenic system will supply cryo-pump panels at 3.7 K, superconducting magnets and their structures at 4.4 K, high temperature superconducting current leads at 50 K and thermal shields between 80 K and 100 K. The system has been specifically designed to handle large pulse loads at 4.4 K during plasma operation. The mechanical and electrical assembly of the cryogenic system has been achieved within six months by October 2015. The main contractor Air Liquide Advanced Technology (AL-aT) have supplied eight parallel working screw compressors with a common oil removal and dryer system, a Refrigeration Cold Box and an Auxiliary Cold box with cold rotating machines. F4E has provided six GHe storage vessels and QST has provided the complete infrastructure and the facilities for the utilities. The paper gives an overview of the main design features, the infrastructure and the status of installation and pre-commissioning.

  8. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat

    PubMed Central

    Xiao, Jun; Xu, Shujuan; Li, Chunhua; Xu, Yunyuan; Xing, Lijing; Niu, Yuda; Huan, Qing; Tang, Yimiao; Zhao, Changping; Wagner, Doris; Gao, Caixia; Chong, Kang

    2014-01-01

    Vernalization, sensing of prolonged cold, is important for seasonal flowering in eudicots and monocots. While vernalization silences a repressor (FLC, MADS-box transcription factor) in eudicots, it induces an activator (TaVRN1, an AP1 clade MADS-box transcription factor) in monocots. The mechanism for TaVRN1 induction during vernalization is not well understood. Here we reveal a novel mechanism for controlling TaVRN1 mRNA accumulation in response to prolonged cold sensing in wheat. The carbohydrate-binding protein VER2, a jacalin lectin, promotes TaVRN1 upregulation by physically interacting with the RNA-binding protein TaGRP2. TaGRP2 binds to TaVRN1 pre-mRNA and inhibits TaVRN1 mRNA accumulation. The physical interaction between VER2 and TaGRP2 is controlled by TaGRP2 O-GlcNAc modification, which gradually increases during vernalization. The interaction between VER2 and O-GlcNAc-TaGRP2 reduces TaGRP2 protein accumulation in the nucleus and/or promotes TaGRP2 dissociation from TaVRN1, leading to TaVRN1 mRNA accumulation. Our data reveal a new mechanism for sensing prolonged cold in temperate cereals. PMID:25091017

  9. The Hall D solenoid helium refrigeration system at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields withmore » liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.« less

  10. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    NASA Astrophysics Data System (ADS)

    Silva, Aline; Lozano, Jaime A.; Machado, Ricardo; Escobar, Jairo A.; Wendhausen, Paulo A. P.

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V.

  11. 78 FR 42929 - Foreign-Trade Zone (FTZ) 41-Milwaukee, Wisconsin, Notification of Proposed Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... rubber articles, cartons, bags, corrugated boxes with fillers, instruction sheets, range hood filters, bathroom mirrors, filters for whole house ventilation systems, cold- rolled steel for manufacturing, flat..., damper or filter springs for grille, stainless steel kitchen backsplashes, brackets, aluminum stainless...

  12. Titanium reinforced boron-polyimide composite

    NASA Technical Reports Server (NTRS)

    Clark, G. A.; Clayton, K. I.

    1969-01-01

    Processing techniques for boron polyimide prepreg were developed whereby composites could be molded under vacuum bag pressure only. A post-cure cycle was developed which resulted in no loss in room temperature mechanical properties of the composite at any time during up to 16 hours at 650 F. A design utilizing laminated titanium foil was developed to achieve a smooth transition of load from the titanium attachment points into the boron-reinforced body of the structure. The box beam test article was subjected to combined bending and torsional loads while exposed to 650 F. Loads were applied incrementally until failure occurred at 83% design limit load.

  13. Modeling the growth of Listeria monocytogenes in mold-ripened cheeses.

    PubMed

    Lobacz, Adriana; Kowalik, Jaroslaw; Tarczynska, Anna

    2013-06-01

    This study presents possible applications of predictive microbiology to model the safety of mold-ripened cheeses with respect to bacteria of the species Listeria monocytogenes during (1) the ripening of Camembert cheese, (2) cold storage of Camembert cheese at temperatures ranging from 3 to 15°C, and (3) cold storage of blue cheese at temperatures ranging from 3 to 15°C. The primary models used in this study, such as the Baranyi model and modified Gompertz function, were fitted to growth curves. The Baranyi model yielded the most accurate goodness of fit and the growth rates generated by this model were used for secondary modeling (Ratkowsky simple square root and polynomial models). The polynomial model more accurately predicted the influence of temperature on the growth rate, reaching the adjusted coefficients of multiple determination 0.97 and 0.92 for Camembert and blue cheese, respectively. The observed growth rates of L. monocytogenes in mold-ripened cheeses were compared with simulations run with the Pathogen Modeling Program (PMP 7.0, USDA, Wyndmoor, PA) and ComBase Predictor (Institute of Food Research, Norwich, UK). However, the latter predictions proved to be consistently overestimated and contained a significant error level. In addition, a validation process using independent data generated in dairy products from the ComBase database (www.combase.cc) was performed. In conclusion, it was found that L. monocytogenes grows much faster in Camembert than in blue cheese. Both the Baranyi and Gompertz models described this phenomenon accurately, although the Baranyi model contained a smaller error. Secondary modeling and further validation of the generated models highlighted the issue of usability and applicability of predictive models in the food processing industry by elaborating models targeted at a specific product or a group of similar products. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Microbiological quality of air in free-range and box-stall stable horse keeping systems.

    PubMed

    Wolny-Koładka, Katarzyna

    2018-04-07

    The aim of this study was to assess the microbiological quality of air in three horse riding centers differing in the horse keeping systems. The air samples were collected in one facility with free-range horse keeping system and two with box stalls of different sizes. The samples were collected over a period of 3 years (2015-2017), four times per year (spring, summer, autumn, winter) to assess the effect of seasonal changes. The prevalence of aerobic mesophilic bacteria, mold fungi, actinomycetes, Staphylococcus spp., and Escherichia coli was determined by the air collision method on Petri dishes with appropriate microbiological media. At the same time, air temperature, relative humidity, and particulate matter concentration (PM 10 , PM 2.5 ) were measured. It was found that the horse keeping system affects the occurrence of the examined airborne microorganisms. Over the 3-year period of study, higher temperature and humidity, as well as particulate matter concentration-which notoriously exceeded limit values-were observed in the facilities with the box-stall system. The air sampled from the largest horse riding center, with the largest number of horses and the box-stall system of horse keeping, was also characterized by the heaviest microbiological contamination. Among others, bacteria from the following genera: Staphylococcus spp., Streptococcus spp., Bacillus spp., and E. coli and fungi from the genera Aspergillus, Fusarium, Mucor, Rhizopus, Penicillium, Trichothecium, Cladosporium, and Alternaria were identified in the analyzed samples.

  15. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    PubMed

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L.

    PubMed

    Liu, Chenlin; Huang, Xiaohang

    2015-09-01

    DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

  17. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    PubMed

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  18. Suppression of grp78 core promoter element-mediated stress induction by the dbpA and dbpB (YB-1) cold shock domain proteins.

    PubMed Central

    Li, W W; Hsiung, Y; Wong, V; Galvin, K; Zhou, Y; Shi, Y; Lee, A S

    1997-01-01

    The highly conserved grp78 core promoter element plays an important role in the induction of grp78 under diverse stress signals. Previous studies have established a functional region in the 3' half of the core (stress-inducible change region [SICR]) which exhibits stress-inducible changes in stressed nuclei. The human transcription factor YY1 is shown to bind the SICR and transactivate the core element under stress conditions. Here we report that expression library screening with the core element has identified two new core binding proteins, YB-1 and dbpA. Both proteins belong to the Y-box family of proteins characterized by an evolutionarily conserved DNA binding motif, the cold shock domain (CSD). In contrast to YY1, which binds only double-stranded SICR, the Y-box/CSD proteins much prefer the lower strand of the SICR. The Y-box proteins can repress the inducibility of the grp78 core element mediated by treatment of cells with A23187, thapsigargin, and tunicamycin. In gel shift assays, YY1 binding to the core element is inhibited by either YB-1 or dbpA. A yeast interaction trap screen using LexA-YY1 as a bait and a HeLa cell cDNA-acid patch fusion library identified YB-1 as a YY1-interacting protein. In cotransfection experiments, the Y-box proteins antagonize the YY1-mediated enhancement of transcription directed by the grp78 core in stressed cells. Thus, the CSD proteins may be part of the stress signal transduction mechanism in the mammalian system. PMID:8972186

  19. The Formation of Novel Thermoplastic Composites from Liquid Crystalline Polymers and Their Blends

    DTIC Science & Technology

    1991-07-01

    melting point of the Vectra. This is due to the long relaxation time of the LCPs ccjzIed with the much higher viscosity of the matrix polymer. Ultem...the LCP reinforcing characteristics i.e. orientation and morphology can be retained upon post-processing provided that the melting point of the LCP is...isothermal compression molding and involves deforming the composites in a cold press after heating the blends at temperatures below the melting point of

  20. Comparison of environmental and egg microbiology associated with conventional and free-range laying hen management.

    PubMed

    Jones, D R; Anderson, K E; Musgrove, M T

    2011-09-01

    Eggs from alternative production practices are a growing niche in the market. Meeting consumer requests for greater diversity in retail egg options has resulted in some unique challenges such as understanding the food safety implications of eggs from alternative production practices. A study was conducted to determine what, if any, differences exist between nest run conventional cage-produced eggs and free range-produced eggs. A sister flock of brown egg layers was maintained in conventional cage and free-range production with egg and environmental sampling every 6 wk from 20 to 79 wk of age. Aerobic, coliform, and yeast and mold populations were monitored. Environmental microbial levels were not always indicative of egg contamination levels. When significant differences (P < 0.05 and P < 0.0001, dependent on season) were observed among treatments for coliforms, shell contamination levels of free-range nest box eggs and free-range floor eggs were always greater than those of conventional cage eggs, which remained low throughout the study (0.42-0.02 log cfu/mL). Shell yeast and mold levels were significantly greater in free-range floor eggs than in free-range nest box eggs and conventional cage eggs throughout the entire study. Egg contents contamination levels were extremely low for all monitored populations and treatments. Season of the year played a role in both environmental and egg microbial levels. Winter had the lowest levels of all populations monitored for all treatments, except for aerobic free-range floor egg shell emulsions, which were increased (3.6 log cfu/mL). Understanding the differences in microbial populations present on conventional cage-produced and free range-produced eggs can lead to the development of effective cleaning procedures, enhancing food safety.

  1. Hot Runner Mold Design of Fan Diverter Parts

    NASA Astrophysics Data System (ADS)

    Juan, D. J.; Cheng, Y. L.

    2017-09-01

    In this study, we discuss the case of plastic parts for the production of fan steering gear shaft parts injection molding, and use POM plastic steel to produce plastic parts from traditional cold runners. Because of the parts have a hole, which need side slide. The runner produce more waste after plastic parts injection make the runner waste account for the cost is relatively high, the cost of stock preparation is relatively increased when the product quantity demanded is great. After the crushing treatment of the waste, the backfill will affect the quality, and in the crushing process, the volume generated will make the operator to withstand up to 130 dB of noise. The actual test results show that the production cycle reduce 6.25%, while the production yield increase by about 5% and material costs reduced by 2% . It can be recovered within a year, not to mention the increase of the quality and reduction the noise on the staff of the benefit is impossible to estimate.

  2. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    PubMed

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  3. Process optimization of ultrasound-assisted alcoholic-alkaline treatment for granular cold water swelling starches.

    PubMed

    Zhu, Bo; Liu, Jianli; Gao, Weidong

    2017-09-01

    This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.

  4. Barriers, invasion, and conservation of native salmonids in coldwater streams [Box 18.2

    Treesearch

    Bruce Rieman; Michael Young; Kurt Fausch; Jason Dunham; Douglas Peterson

    2010-01-01

    Habitat loss and fragmentation are threats to persistence of many native fish populations. Invading nonnative species that may restrict or displace native species are also important. These two issues are particularly relevant for native salmonids that are often limited to remnant habitats in cold, headwater streams. On the surface, reversing threats to native fishes...

  5. Process control strategy for ITER central solenoid operation

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Takami, S.; Iwamoto, A.; Chang, H.-S.; Forgeas, A.; Chalifour, M.

    2016-12-01

    ITER Central Solenoid (CS) pulse operation induces significant flow disturbance in the forced-flow Supercritical Helium (SHe) cooling circuit, which could impact primarily on the operation of cold circulator (SHe centrifugal pump) in Auxiliary Cold Box (ACB). Numerical studies using Venecia®, SUPERMAGNET and 4C have identified reverse flow at the CS module inlet due to the substantial thermal energy deposition at the inner-most winding. To assess the reliable operation of ACB-CS (dedicated ACB for CS), the process analyses have been conducted with a dynamic process simulation model developed by Cryogenic Process REal-time SimulaTor (C-PREST). As implementing process control of hydrodynamic instability, several strategies have been applied to evaluate their feasibility. The paper discusses control strategy to protect the centrifugal type cold circulator/compressor operations and its impact on the CS cooling.

  6. Insulation Testing Using Cryostat Apparatus with Sleeve

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.

    1999-01-01

    The method and equipment of testing continuously rolled insulation materials is presented in this paper. Testing of blanket and molded products is also facilitated. Materials are installed around a cylindrical copper sleeve using a wrapping machine. The sleeve is slid onto the vertical cold mass of the cryostat. The gap between the cold mass and the sleeve measures less than 1 mm. The cryostat apparatus is a liquid nitrogen boiloff calorimeter system that enables direct measurement of the apparent thermal conductivity (k-value) of the insulation system at any vacuum level between 5 x 10(exp -5) and 760 torr. Sensors are placed between layers of the insulation to provide complete temperature-thickness profiles. The temperatures of the cold mass (maintained at 77.8 kelvin (K)), the sleeve (cold boundary temperature (CBT)), the insulation outer surface (warm boundary temperature (WBT)), and the vacuum can (maintained at 313 K by a thermal shroud) are measured. Plots of CBT, WBT, and layer temperature profiles as functions of vacuum level show the transitions between the three dominant heat transfer modes. For this cryostat apparatus, the measureable heat gain is from 0.2 to 20 watts. The steady-state measurement of k-value is made when all temperatures and the boiloff rate are stable.

  7. Thermo-mechanical simulation of liquid-supported stretch blow molding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmer, J.; Stommel, M.

    2015-05-22

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way,more » a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.« less

  8. Up-going Red Water in the Ice at the Bottom of the World: Picture Taking Boxes and Listening Boxes Tell Us How and Why

    NASA Astrophysics Data System (ADS)

    Carr, C. G.; Pettit, E. C.

    2017-12-01

    Blood Falls is a place where red water comes out from under ice to the top of the ice and makes a strange red water fall. This ice is part of the big ice at the bottom of the world. The red water only comes out at some times and not every year, but it always comes out at the same place. The red water is important because it has tiny tiny not-animal life that tells us how life could be on other worlds. Knowing about the ice and red water is important because this ice is cold, colder than other ice in other places, and we want to know how water can get through. We didn't know why the red water comes up from under the ice when it does or how. We wanted to understand how the ice breaks and we watched the ice by taking pictures all year to see when the red water comes out. We found out that in the cold part of one year, the red water came out even though the air was not warm enough for water to be water! We think the red water comes out because the red water is blocked under the heavy ice and gets pushed tight. In the cold part of the year, cracks break down from the air into the ice and other cracks break up from under the ice because the red water is so pushed. The cracks from the top and bottom of the ice join, and the red water comes out. We used listening boxes that can feel how the ground moves to understand that the ice is breaking at the bottom and we can see that it breaks at the top of the ice. The red water can stay water and not ice inside the big ice because the red water has tiny pieces of the same stuff that can turn ice into water on the roads. If the ice breaks in the cold time, no water can get in from the top of the ice, so the red water under the ice stays clean from the air water. If the ice breaks in the warm time of year, water could get in from the top of the ice and make the red water under the ice not clean from the air. Since we saw in our pictures that the red water came out in the cold time of year, this means the red water could stay clean from the air. Maybe we can use this to tell us how life on other worlds could stay clean and safe under ice. It can also tell us how water can get through very cold ice.

  9. Study of Shell-Mold Thermal Resistance: Laboratory Measurements, Estimation from Compact Strip Production Plant Data, and Observation of Simulated Flux-Mold Interface

    NASA Astrophysics Data System (ADS)

    González de la C., J. Manuel; Flores F., Tania M.; Castillejos E., A. Humberto

    2016-08-01

    The slag film that forms between the shell and mold in steel continuous casting is key in regulating the heat transfer between them. Generally, the mechanisms proposed are related to the phenomena associated with the formation of crystals in the solid layer of the film, such as the appearance of internal pores and surface roughness, which decrease phononic conduction through the layer and interfacial gap with the mold, respectively, and the emergence of crystals themselves, which reduce the transmissivity of infrared radiation across the layer. Due to the importance of the solid layer, this study investigates experimentally the effective thermal resistance, R T, between a hot Inconel surface and a cold Cu surface separated by an initially glassy slag disk, made from powders for casting low and medium-carbon steels, denoted as A and B, respectively. In the tests, an initially mirror-polished disk is sandwiched for 10,800 seconds while the Inconel temperature, away from the disk face, is maintained steady at a value, T c, between 973 K and 1423 K (700 °C and 1150 °C)-below the liquidus temperature of the slags. The disks have a thickness, d t, between ~0.7 and 3.2 mm. Over the range of conditions studied, mold slag B shows R T 33 pct larger than slag A, and microscopic observation of disks hints that the greater resistance arises from the larger porosity developed in B. This finding is supported by high-temperature confocal laser scanning microscope observations of the evolution of the surface of slag parallelepipeds encased between Pt sheets, which reveal that during devitrification the film surface moves outward not inward, contrary with what is widely claimed. This behavior would favor contact of the slag with the mold for both kinds of powders. However, in the case of slag A, the crystalline grains growing at or near the surface pack closely together, leaving only few and small empty spaces. In slag B, crystalline grains pack loosely and many and large empty spaces arise in and below the surface. Estimation from plant data shows R T values smaller than measured ones, suggesting that the process film slag thickness must be considerably thinner than those of laboratory disks. However, the difference in thermal resistance of both powders, averaged over the mold length, is close to the dissimilarity found in laboratory.

  10. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    NASA Technical Reports Server (NTRS)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  11. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription.

    PubMed

    Rauen, Thomas; Frye, Bjoern C; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R

    2016-09-16

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3' enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3' adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  13. Pipeline design and thermal stress analysis of a 10kW@20K helium refrigerator

    NASA Astrophysics Data System (ADS)

    Xu, D.; Gong, L. H.; Xu, P.; Liu, H. M.; Li, L. F.; Xu, X. D.

    2014-01-01

    This paper is based on the devices and pipeline in the horizontal cryogenic cold-box of a 10kW@20K helium refrigerator developed by Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. Four devices, six valves, supporting components and pipe lines are positioned in the cold-box. At operating state, the temperature of these devices and pipeline is far below the room temperature, and the lowest temperature is 14K. Due to different material and temperature, the shrinkage of devices and pipes is different. Finite element analysis software SOLIDWORKS SIMULATION was used to numerically simulate the thermal stress and deformation. The results show that the thermal stress of pipe A is a little large. So we should change the pipe route or use a bellows expansion joint. Bellows expansion joints should also be used in the pipes connected to three of the six valves to protect them by decreasing the deformation. At last, the effect of diameter, thickness and bend radius on the thermal stress was analyzed. The results show that the thermal stress of the pipes increases with the increase of the diameter and the decrease of the bend radius.

  14. Final Report: MaRSPlus Sensor System Electrical Cable Management and Distributed Motor Control Computer Interface

    NASA Technical Reports Server (NTRS)

    Reil, Robin

    2011-01-01

    The success of JPL's Next Generation Imaging Spectrometer (NGIS) in Earth remote sensing has inspired a follow-on instrument project, the MaRSPlus Sensor System (MSS). One of JPL's responsibilities in the MSS project involves updating the documentation from the previous JPL airborne imagers to provide all the information necessary for an outside customer to operate the instrument independently. As part of this documentation update, I created detailed electrical cabling diagrams to provide JPL technicians with clear and concise build instructions and a database to track the status of cables from order to build to delivery. Simultaneously, a distributed motor control system is being developed for potential use on the proposed 2018 Mars rover mission. This system would significantly reduce the mass necessary for rover motor control, making more mass space available to other important spacecraft systems. The current stage of the project consists of a desktop computer talking to a single "cold box" unit containing the electronics to drive a motor. In order to test the electronics, I developed a graphical user interface (GUI) using MATLAB to allow a user to send simple commands to the cold box and display the responses received in a user-friendly format.

  15. PROTON HEATING BY PICK-UP ION DRIVEN CYCLOTRON WAVES IN THE OUTER HELIOSPHERE: HYBRID EXPANDING BOX SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz

    Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton–electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that timemore » owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.« less

  16. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B

    DOE PAGES

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; ...

    2015-12-28

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a yeast one-hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein–DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressormore » activity observed in the transactivation assays using Arabidopsis protoplasts. Additionally, we showed that OsPIF14 is indeed a phytochrome interacting factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. Our results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Finally, although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses.« less

  17. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of Phytochrome B

    PubMed Central

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; Borba, Ana Rita; Lourenço, Tiago; Abreu, Isabel A.; Ouwerkerk, Pieter B.F.; Quail, Peter H.; Oliveira, M. Margarida; Saibo, Nelson J. M.

    2016-01-01

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a Yeast one Hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein-DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressor activity observed in the transactivation assays using Arabidopsis protoplasts. In addition, we showed that OsPIF14 is indeed a Phytochrome Interacting Factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. All together, these results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses. PMID:26732823

  18. Characterization of the mammalian DEAD-box protein DDX5 reveals functional conservation with S. cerevisiae ortholog Dbp2 in transcriptional control and glucose metabolism.

    PubMed

    Xing, Zheng; Wang, Siwen; Tran, Elizabeth J

    2017-07-01

    DEAD-box proteins are a class of nonprocessive RNA helicases that dynamically modulate the structure of RNA and ribonucleoprotein complexes (RNPs). However, the precise roles of individual members are not well understood. Work from our laboratory revealed that the DEAD-box protein Dbp2 in Saccharomyces cerevisiae is an active RNA helicase in vitro that functions in transcription by promoting mRNP assembly, repressing cryptic transcription initiation, and regulating long noncoding RNA activity. Interestingly, Dbp2 is also linked to glucose sensing and hexose transporter gene expression. DDX5 is the mammalian ortholog of Dbp2 that has been implicated in cancer and metabolic syndrome, suggesting that the role of Dbp2 and DDX5 in glucose metabolic regulation is conserved. Herein, we present a refined biochemical and biological comparison of yeast Dbp2 and human DDX5 enzymes. We find that human DDX5 possesses a 10-fold higher unwinding activity than Dbp2, which is partially due to the presence of a mammalian/avian specific C-terminal extension. Interestingly, ectopic expression of DDX5 rescues the cold sensitivity, cryptic initiation defects, and impaired glucose import in dbp2 Δ cells, suggesting functional conservation. Consistently, we show that DDX5 promotes glucose uptake and glycolysis in mouse AML12 hepatocyte cells, suggesting that mammalian DDX5 and S. cerevisiae Dbp2 share conserved roles in cellular metabolism. © 2017 Xing et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Design, manufacturing and testing of a portable vaccine carrier box employing thermoelectric module and heat pipe.

    PubMed

    Putra, N

    2009-01-01

    Vaccination is a highly effective method and a cheap tool for preventing certain infectious diseases. Routine immunization programs protect most of the world's children from diseases that claim millions of lives each year. There are many practical problems impeding vaccine delivery, especially to maintain the cold chain system, which is the means for storing and transporting vaccines in a potent state from the manufacturer to the person being immunized at a temperature of 2-8 degrees C. The development of the solid state thermoelectric cooling system has permitted newly developed packages that are capable of meeting many requirements and applications where environmental concern, size, weight, performance and noise are an issue. This paper describes the development of a vaccine carrier box. A combination of a thermoelectric module and a heat pipe is used for the cooling system. The position of the heat pipe as a heat sink on the hot side of the thermoelectric module will enhance the thermoelectric performance. The minimum temperature in the cabin of the vaccine carrier box reached -10 degrees C, which indicates that the design of the vaccine carrier box can maintain the vaccine at desired temperatures.

  20. Isolation and characterization of a water stress-specific genomic gene, pwsi 18, from rice.

    PubMed

    Joshee, N; Kisaka, H; Kitagawa, Y

    1998-01-01

    One of the water stress-specific cDNA clones of rice characterised previously, wsi18, was selected for further study. The wsi18 gene can be induced by water stress conditions such as mannitol, NaCl, and dryness, but not by ABA, cold, or heat. A genomic clone for wsi18, pwsi18, contained about 1.7 kbp of the 5' upstream sequence, two introns, and the full coding sequence. The 5'-upstream sequence of pwsi18 contained putative cis-acting elements, namely an ABA-responsive element (ABRE), three G-boxes, three E-boxes, a MEF-2 sequence, four direct and two inverted repeats, and four sequences similar to DRE, which is involved in the dehydration response of Arabidopsis genes. The gusA reporter gene under the control of the pwsi18 promoter showed transient expression in response to water stress. Deletion of the downstream DRE-like sequence between the distal G-boxes-2 and -3 resulted in rather low GUS expression.

  1. Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit.

    PubMed

    Luo, Dong-Lan; Ba, Liang-Jie; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-05-10

    Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.

  2. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Le Naour, Claire; Bernard, Frédéric

    2017-11-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances. CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU : Cold Acquisition Unit).

  3. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Bernard, Frédéric

    2004-06-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances . CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU: Cold Acquisition Unit).

  4. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats.

    PubMed

    Mizunoya, Wataru; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2014-03-01

    The aim of this study was to examine the effects of cold exposure on rat skeletal muscle fiber type, according to myosin heavy chain (MyHC) isoform and metabolism-related factors. Male Wistar rats (7 weeks old) were housed individually at 4 ± 2°C as a cold-exposed group or at room temperature (22 ± 2°C) as a control group for 4 weeks. We found that cold exposure significantly increased the slow-type MyHC1 content in the soleus muscle (a typical slow-type fiber), while the intermediate-type MyHC2A content was significantly decreased. In contrast to soleus, MyHC composition of extensor digitorum longus (EDL, a typical fast-type fiber) and gastrocnemius (a mix of slow-type and fast-type fibers) muscle did not change from cold exposure. Cold exposure increased mRNA expression of mitochondrial uncoupling protein 3 (UCP3) in both the soleus and EDL. Cold exposure also increased mRNA expression of myoglobin, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and forkhead box O1 (FOXO1) in the soleus. Upregulation of UCP3 and PGC1α proteins were observed with Western blotting in the gastrocnemius. Thus, cold exposure increased metabolism-related factors in all muscle types that were tested, but MyHC isoforms changed only in the soleus. © 2013 Japanese Society of Animal Science.

  5. Chloroplast- or Mitochondria-Targeted DEAD-Box RNA Helicases Play Essential Roles in Organellar RNA Metabolism and Abiotic Stress Responses

    PubMed Central

    Nawaz, Ghazala; Kang, Hunseung

    2017-01-01

    The yields and productivity of crops are greatly diminished by various abiotic stresses, including drought, cold, heat, and high salinity. Chloroplasts and mitochondria are cellular organelles that can sense diverse environmental stimuli and alter gene expression to cope with adverse environmental stresses. Organellar gene expression is mainly regulated at posttranscriptional levels, including RNA processing, intron splicing, RNA editing, RNA turnover, and translational control, during which a variety of nucleus-encoded RNA-binding proteins (RBPs) are targeted to chloroplasts or mitochondria where they play essential roles in organellar RNA metabolism. DEAD-box RNA helicases (RHs) are enzymes that can alter RNA structures and affect RNA metabolism in all living organisms. Although a number of DEAD-box RHs have been found to play important roles in RNA metabolism in the nucleus and cytoplasm, our understanding on the roles of DEAD-box RHs in the regulation of RNA metabolism in chloroplasts and mitochondria is only at the beginning. Considering that organellar RNA metabolism and gene expression are tightly regulated by anterograde signaling from the nucleus, it is imperative to determine the functions of nucleus-encoded organellar RBPs. In this review, we summarize the emerging roles of nucleus-encoded chloroplast- or mitochondria-targeted DEAD-box RHs in organellar RNA metabolism and plant response to diverse abiotic stresses. PMID:28596782

  6. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauen, Thomas; Frye, Bjoern C.; Pneumology, University Medical Center, University of Freiburg, Freiburg

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3′ enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3′ adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPOmore » production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. - Highlights: • Hypoxia drives nuclear translocation of cold shock protein YB-1. • YB-1 physically interacts with hypoxia-inducible factor (HIF)-1α. • YB-1 binds to the hypoxia-responsive element (HRE) within the erythropoietin (EPO) 3′ enhancer. • YB-1 trans-regulates transcription of hypoxia-dependent genes such as EPO and VEGF.« less

  7. Performance evaluation approach for the supercritical helium cold circulators of ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaghela, H.; Sarkar, B.; Bhattacharya, R.

    2014-01-29

    The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe coldmore » circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.« less

  8. Study of Hygrothermal Processes in External Walls with Internal Insulation

    NASA Astrophysics Data System (ADS)

    Biseniece, Edite; Freimanis, Ritvars; Purvins, Reinis; Gravelsins, Armands; Pumpurs, Aivars; Blumberga, Andra

    2018-03-01

    Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel) in a cold climate (average 4000 heating degree days). We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  9. Survival of foodborne pathogens on commercially packed table grapes under simulated refrigerated transit conditions.

    PubMed

    Carter, Michelle Qiu; Feng, Doris; Chapman, Mary H; Gabler, Franka

    2018-06-01

    We examined the survival of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica Thompson inoculated on commercially packed table grapes under simulated refrigerated transit conditions (1.1 ± 0.5 °C; 90% RH). Grapes were placed in perforated polyethylene cluster bags, within a commercial expanded polystyrene box equipped with either a SO 2 -generating pad; a perforated polyethylene box liner; a SO 2 -generating pad and a box liner; or none of them. L. monocytogenes was most sensitive to SO 2 -generating pad. SO 2 -generating pad or SO 2 -generating pad with box liner inactivated this pathogen completely on day 12 following the inoculation. S. enterica Thompson displayed a similar cold sensitivity as L. monocytogenes, but was more resistant to SO 2 -generating pad than L. monocytogenes. While SO 2 -generating pad eliminated S. enterica Thompson on day 20, a combination of box liner with SO 2 -generating pad inactivated this pathogen completely on day 13. E. coli O157:H7 had the highest tolerance to transit temperature and to SO 2 -generating pad; SO 2 -generating pad inactivated this pathogen completely on Day 20. Our data suggest that use of SO 2 -generating pad combined with box liner is effective in reducing foodborne pathogens L. monocytogenes and S. enterica Thompson, while the use of SO 2 -generating pad alone was more effective on E. coli O157:H7. Published by Elsevier Ltd.

  10. Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection.

    PubMed

    Qi, Shize; Liu, Xuezhu; Ford, Sean; Barrows, James; Thomas, Gloria; Kelly, Kevin; McCandless, Andrew; Lian, Kun; Goettert, Jost; Soper, Steven A

    2002-05-01

    High-aspect-ratio microstructures have been prepared using hot-embossing techniques in poly(methyl methacrylate) (PMMA) from Ni-based molding dies prepared using LIGA (Lithographie, Galvanoformung, Abformung). Due to the small amount of mask undercutting associated with X-ray lithography and the high energy X-ray beam used during photoresist patterning, deep structures with sharp and smooth sidewalls have been prepared. The Ni-electroforms produced devices with minimal replication errors using hot-embossing at a turn around time of approximately 5 min per device. In addition, several different polymers (with different glass transition temperatures) could be effectively molded with these Ni-electroforms and many devices (>300) molded with the same master without any noticeable degradation. The PMMA devices consisted of deep and narrow channels for insertion of a capillary for the automated electrokinetic loading of sample into the microfluidic device and also, a pair of optical fibers for shuttling laser light to the detection zone and collecting the resulting emission for fluorescence analysis. Electrophoretic separations of double-stranded DNA ladders Phi X174 digested with Hae III) were performed with fluorescence detection accomplished using near-IR excitation. It was found that the narrow width of the channels did not contribute significantly to electrophoretic zone broadening and the plate numbers generated in the extended length separation channel allowed sorting of the 271/281 base pair fragments associated with this sizing ladder when electrophoresed in methylcellulose entangled polymer solutions. The dual fiber detector produced sub-attomole detection limits with the entire detector, including laser source, electronics and photon transducer, situated in a single box measuring 3'' x 10" x 14".

  11. Potential of the volatile-producing fungus Muscodor albus for control of building molds.

    PubMed

    Mercier, Julien; Jiménez, Jorge I

    2007-03-01

    The possibility of using the volatile-producing fungus Muscodor albus for biofumigation against building molds was investigated. Several species of Aspergillus and Penicillium as well as fungi belonging to nine other genera were inhibited or killed in vitro by volatiles produced by potato dextrose agar or rye grain cultures of M. albus. Trichoderma viride was the only fungus that was not inhibited by M. albus volatiles. To test biofumigation as a preventative treatment against fungal colonization of building material, dry pieces of gypsum drywall were fumigated with grain cultures of M. albus in closed boxes. After a simulated water damage and incubation under saturated humidity for 2 weeks, untreated drywall developed natural fungal populations of about 10(5)-10(6) cfu/cm2, while drywall fumigated with M. albus culture (20 g/11 L) had nondetectable fungal populations. To test for curative ability, moist pieces of drywall heavily colonized with Cladosporium cladosporioides, Aspergillus niger, or Stachybotrys chartarum were fumigated for 48 h with grain cultures of M. albus. Cladosporium cladosporioides was eliminated within 48 h, while A. niger and S. chartarum were usually more resistant. However, a longer curative fumigation of 96 h was effective in reducing A. niger or naturally occurring mold populations by about 5 log values. The production of volatile organic compounds from 20 g of rye grain culture in 11 L containers was monitored by solid-phase micro extraction and gas chromatography. Concentrations of isobutyric acid, the most abundant volatile, increased gradually in the headspace until it reached 25 microg/L (m/v) within 96 h. The second and third most abundant compounds, 2-methyl-1-butanol and isobutanol, peaked at about 10 and 5 microg/L (m/v), respectively, within the first 24 h and declined gradually afterwards.

  12. The effect of filler content and processing variables on dimensional accuracy of experimental composite inlay material.

    PubMed

    Razak, A A; Harrison, A

    1997-04-01

    Dimensional accuracy of a composite inlay restoration is important to ensure an accurate fit and to minimize cementation stresses. A method was developed to measure dimensional accuracy and stability of a composite inlay. A standard Class II (MOD) inlay cavity stainless steel mold was made with six circular indentations placed on the occlusal floor of the cavity and four indentations on each gingival floor to act as datum points in the measurement of linear polymerization shrinkage. The inlay restorations were prepared from an inlay-onlay composite material of different filler contents (50%, 65%, and 79% by weight). For each filler content group, three curing methods were used: light curing only, light curing and heat curing at 100 degrees C for 5 minutes, and light curing and heat curing at 100 degrees C for 5 minutes and then storage in distilled water for 7 days. The accuracy of the MOD inlays was determined by measuring the shrinkage of the restoration on the occlusal floor areas and the gingival seats. The results demonstrated an inverse linear relationship between filler content and polymerization shrinkage. There was a tendency for the light-curing and heat-curing method to show an increase in polymerization shrinkage. An expansion was recorded between the mesial and distal boxes when the specimens were soaked in water for 7 days. This study suggested that the inlay mold limits the physical shrinkage that can occur between the mesial and distal axial walls of the inlay restoration because the inlay cannot shrink to a smaller dimension than the mold. Water sorption then causes hygroscopic expansion, which enlarges the distance between the mesial and distal walls.

  13. Thermal Infrared Sensor (TIRS) Instrument Thermal Subsystem Design and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Otero, Veronica; Mosier, Carol; Neuberger, David

    2013-01-01

    The Thermal Infrared Sensor (TIRS) is one of two instruments on the Landsat Data Continuity Mission (LDCM), which is scheduled to launch in February of 2013. The TIRS instrument was officially added to the mission later in the flow, which led to a highly aggressive schedule that became one of the main drivers during instrument development. The thermal subsystem design of the TIRS Sensor Unit is comprised of five thermal zones which range in temperature from less than 43 Kelvin to 330 Kelvin. Most zones are proportional heater controlled, and all are within a volume of 35 cu.ft. A two-stage cryocooler is used to cool the "cold stage" including three QWIP detectors to less than 43 Kelvin, and cool the "warm stage" to 105 Kelvin. The excess power dissipation from the cryocooler is rejected via ammonia transport heat pipes to a dedicated Cryocooler Radiator with embedded ammonia heat pipes. The cryogenic subsystem includes a series of shells used to radiatively and conductively isolate the cold stage from the warmer surroundings. The Optical System (telescope) is passively cooled to 180-190 Kelvin using a "thermal link" (comprised of a Flexible Conductive Thermal Strap and an APG Bar) which couples the telescope stage to a dedicated radiator with embedded ethane heat pipes. The Scene Select Mechanism, which is responsible for moving the Scene Select Mirror to three distinct positions (including Nadir, Space, and On-board Black Body Calibrator pointing), runs nominally at 278 Kelvin and is thermally isolated from the cryogenic thermal zones. The On-board Black Body Calibrator requires a dedicated radiator which allows for a temperature range of 260-330 Kelvin at the Source. The detectors are powered by the FPE Box, which is mounted to the nadir external surface of the composite honeycomb structure. There are two additional electronics boxes which are wet-mounted directly to the spacecraft shear panel, the Main Electronics Box and Cryocooler Electronics Box; thermal control of these boxes is the responsibility of Orbital Sciences Corporation, the spacecraft developer. The TIRS thermal subsystem design was successfully verified during months of testing campaign, from component & subsystem level to two instrument-level thermal vacuum tests. The Instrument, despite an aggressive schedule, was delivered to the spacecraft vendor in February of 2012 and is currently undergoing the final stages of spacecraft environmental testing in preparation for launch.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a yeast one-hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein–DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressormore » activity observed in the transactivation assays using Arabidopsis protoplasts. Additionally, we showed that OsPIF14 is indeed a phytochrome interacting factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. Our results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Finally, although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses.« less

  15. Isolation and Functional Characterization of a Floral Repressor, BcMAF1, From Pak-choi (Brassica rapa ssp. Chinensis).

    PubMed

    Huang, Feiyi; Liu, Tongkun; Hou, Xilin

    2018-01-01

    MADS-box genes form a large gene family in plants and are involved in multiple biological processes, such as flowering. However, the regulation mechanism of MADS-box genes in flowering remains unresolved, especially under short-term cold conditions. In the present study, we isolated BcMAF1 , a Pak-choi ( Brassica rapa ssp. Chinensis ) MADS AFFECTING FLOWERING ( MAF ), as a floral repressor and functionally characterized BcMAF1 in Arabidopsis and Pak-choi. Subcellular localization and sequence analysis indicated that BcMAF1 was a nuclear protein and contained a conserved MADS-box domain. Expression analysis revealed that BcMAF1 had higher expression levels in leaves, stems, and petals, and could be induced by short-term cold conditions in Pak-choi. Overexpressing BcMAF1 in Arabidopsis showed that BcMAF1 had a negative function in regulating flowering, which was further confirmed by silencing endogenous BcMAF1 in Pak-choi. In addition, qPCR results showed that AtAP3 expression was reduced and AtMAF2 expression was induced in BcMAF1 -overexpressing Arabidopsis . Meanwhile, BcAP3 transcript was up-regulated and BcMAF2 transcript was down-regulated in BcMAF1 -silencing Pak-choi. Yeast one-hybrid and dual luciferase transient assays showed that BcMAF1 could bind to the promoters of BcAP3 and BcMAF2 . These results indicated that BcAP3 and BcMAF2 might be the targets of BcMAF1. Taken together, our results suggested that BcMAF1 could negatively regulate flowering by directly activating BcMAF2 and repressing BcAP3 .

  16. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development.

    PubMed

    Park, Myoung-Ryoul; Yun, Kil-Young; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Wijaya, Edward; Bajic, Vladimir B; Yun, Song-Joong; De Los Reyes, Benildo G

    2010-12-01

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  17. Inactivation of Escherichia coli O157:H7 and Aerobic Microorganisms in Romaine Lettuce Packaged in a Commercial Polyethylene Terephthalate Container Using Atmospheric Cold Plasma.

    PubMed

    Min, Sea C; Roh, Si Hyeon; Boyd, Glenn; Sites, Joseph E; Uknalis, Joseph; Fan, Xuetong; Niemira, Brendan A

    2017-01-01

    The effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7 and aerobic microorganisms in romaine lettuce packaged in a conventional commercial plastic container were evaluated during storage at 4°C for 7 days. Effects investigated included the color, carbon dioxide (CO 2 ) generation, weight loss, and surface morphology of the lettuce during storage. Romaine lettuce pieces, with or without inoculation with a cocktail of three strains of E. coli O157:H7 (~6 log CFU/g of lettuce), were packaged in a polyethylene terephthalate commercial clamshell container and treated at 34.8 kV at 1.1 kHz for 5 min by using a DACP treatment system equipped with a pin-type high-voltage electrode. Romaine lettuce samples were analyzed for inactivation of E. coli O157:H7, total mesophilic aerobes, and yeasts and molds, color, CO 2 generation, weight loss, and surface morphology during storage at 4°C for 7 days. The DACP treatment reduced the initial counts of E. coli O157:H7 and total aerobic microorganisms by ~1 log CFU/g, with negligible temperature change from 24.5 ± 1.4°C to 26.6 ± 1.7°C. The reductions in the numbers of E. coli O157:H7, total mesophilic aerobes, and yeasts and molds during storage were 0.8 to 1.5, 0.7 to 1.9, and 0.9 to 1.7 log CFU/g, respectively. DACP treatment, however, did not significantly affect the color, CO 2 generation, weight, and surface morphology of lettuce during storage (P > 0.05). Some mesophilic aerobic bacteria were sublethally injured by DACP treatment. The results from this study demonstrate the potential of applying DACP as a postpackaging treatment to decontaminate lettuce contained in conventional plastic packages without altering color and leaf respiration during posttreatment cold storage.

  18. Innovations in cold chain equipment for immunization supply chains.

    PubMed

    Robertson, Joanie; Franzel, Lauren; Maire, Denis

    2017-04-19

    Since 2010, numerous new technologies have entered the immunization cold chain equipment market. The World Health Organization (WHO) Immunization Devices Programme-Performance, Quality and Safety (PQS)-has played a key role in bringing these to market. In this article, the authors explore the emergence of new cold chain equipment technologies from 2004 to 2016 and the role of PQS in this evolution. This review focuses on three major vaccine cold chain technology innovations-solar direct-drive refrigerators, long-term passive cold boxes, and equipment with user-independent freeze prevention. For the review, we used online data from WHO PQS, a literature search, and unpublished research reports. Timelines with key milestones in the emergence of the three focus technologies show delays of between one and three years between earliest field trials and publication of WHO specifications; procurement builds after the WHO prequalification of initial devices. The timelines show the role of PQS as both gatekeeper and enabler for cold chain equipment technologies. The use of target product profiles by PQS has increased its ability to signal preferred attributes and to engage with manufacturers during the product-development stage. Procurement data show how demand for solar direct-drive refrigerators increased over time. Gavi, the Vaccine Alliance, is employing demand-generation strategies to try to drive procurement of technologies with favorable technical attributes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Cryogenic system configuration for the International Linear Collider (ILC) at mountainous site

    NASA Astrophysics Data System (ADS)

    Nakai, H.; Okamura, T.; Delikaris, D.; Peterson, T.; Yamamoto, A.

    2017-02-01

    The International Linear Collider (ILC) plans to make use of ten cryoplants for its main linacs, each providing 19 kW at 4.5 K equivalent and among of it 3.6 kW at 2 K. Each cryoplant will consist of various cryogenic components such as a 4.5 K refrigerator cold box, a 2 K refrigerator cold box, and helium compressors and so on. In the technical design report (TDR) of the ILC, due to the mountainous topology, almost all cryogenic components would be installed in underground cryogenic caverns next to the main linac tunnels and only cooling towers on surface area. However, we would like to find a more effective and sophisticated configuration of the cryoplant components (cryogenic configuration). Under several constraints of technical, geographical, and environmental points of view, the cryogenic configuration should be considered carefully to satisfy such various conditions. After discussions on this topic conducted at various workshops and conferences, an updated cryogenic configuration is suggested. The proposed updated configuration may affect the total construction cost of the ILC and the entire structure of the ILC conventional facilities. The updated cryogenic configuration is presented and the on-going discussions with the conventional facilities and siting (CFS) colleagues for further improvement of the cryogenic configuration is introduced.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Yang, Z.; Dong, P.

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H{sup -}) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H{sup -} beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H{sup -} beam current of aboutmore » 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.« less

  1. Structural basis for corepressor assembly by the orphan nuclear receptor TLX.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H Eric

    2015-02-15

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX-Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. © 2015 Zhi et al.; Published by Cold Spring Harbor Laboratory Press.

  2. A chloroplast-targeted cabbage DEAD-box RNA helicase BrRH22 confers abiotic stress tolerance to transgenic Arabidopsis plants by affecting translation of chloroplast transcripts.

    PubMed

    Nawaz, Ghazala; Lee, Kwanuk; Park, Su Jung; Kim, Yeon-Ok; Kang, Hunseung

    2018-06-01

    Although the roles of many DEAD-box RNA helicases (RHs) have been determined in the nucleus as well as in cytoplasm during stress responses, the importance of chloroplast-targeted DEAD-box RHs in stress response remains largely unknown. In this study, we determined the function of BrRH22, a chloroplast-targeted DEAD-box RH in cabbage (Brassica rapa), in abiotic stress responses. The expression of BrRH22 was markedly increased by drought, heat, salt, or cold stress and by ABA treatment, but was largely decreased by UV stress. Expression of BrRH22 in Arabidopsis enhanced germination and plantlet growth under high salinity or drought stress. BrRH22-expressing plants displayed a higher cotyledon greening and better plantlet growth upon ABA treatment due to decreases in the levels of ABI3, ABI4, and ABI5. Further, BrRH22 affected translation of several chloroplast transcripts under stress. Notably, BrRH22 had RNA chaperone function. These results altogether suggest that chloroplast-transported BrRH22 contributes positively to the response of transgenic Arabidopsis to abiotic stress by affecting translation of chloroplast genes via its RNA chaperone activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. A Velocity Distribution Model for Steady State Heat Transfer

    NASA Technical Reports Server (NTRS)

    Hall, Eric B.

    1996-01-01

    Consider a box that is filled with an ideal gas and that is aligned along Cartesian coordinates (x, y, z) having until length in the 'y' direction and unspecified length in the 'x' and 'z' directions. Heat is applied uniformly over the 'hot' end of the box (y = 1) and is removed uniformly over the 'cold' end (y = O) at a constant rate such that the ends of the box are maintained at temperatures T(sub 0) at y = O and T(sub 1) at y = 1. Let U, V, and W denote the respective velocity components of a molecule inside the box selected at some random time and at some location (x, y, z). If T(sub 0) = T(sub 1), then U, Y, and W are mutually independent and Gaussian, each with mean zero and variance RT(sub 0), where R is the gas constant. When T(sub 0) does not equal T(sub 1) the velocity components are not independent and are not Gaussian. Our objective is to characterize the joint distribution of the velocity components U, Y, and W as a function of y, and, in particular, to characterize the distribution of V given y. It is hoped that this research will lead to an increased physical understanding of the nature of turbulence.

  4. Polyethylene-Carbon Nanotube Composite Film Deposited by Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Ata, Nobuhisa; Ohtake, Naoto; Akasaka, Hiroki

    2017-10-01

    Carbon nanotubes (CNTs) are high-performance materials because of their superior electrical conductivity, thermal conductivity, and self-lubrication, and they have been studied for application to polymer composite materials as fillers. However, the methods of fabricating polymer composites with CNTs, such as injection molding, are too complicated for industrial applications. We propose a simple cold spray (CS) technique to obtain a polymer composite of polyethylene (PE) and CNTs. The composite films were deposited by CS on polypropylene and nano-porous structured aluminum substrates. The maximum thickness of the composite film was approximately 1 mm. Peaks at G and D bands were observed in the Raman spectra of the films. Scanning electron microscopy images of the film surface revealed that PE particles were melted by the acceleration gas and CNTs were attached with melted PE. The PE particles solidified after contact with the substrate. These results indicate that PE-CNT composite films were successfully deposited on polypropylene and nano-porous structured aluminum substrates by CS.

  5. A Basic Helix-Loop-Helix Transcription Factor, PtrbHLH, of Poncirus trifoliata Confers Cold Tolerance and Modulates Peroxidase-Mediated Scavenging of Hydrogen Peroxide1[C][W

    PubMed Central

    Huang, Xiao-San; Wang, Wei; Zhang, Qian; Liu, Ji-Hong

    2013-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in a variety of physiological processes. However, plant bHLHs functioning in cold tolerance and the underlying mechanisms remain poorly understood. Here, we report the identification and functional characterization of PtrbHLH isolated from trifoliate orange (Poncirus trifoliata). The transcript levels of PtrbHLH were up-regulated under various abiotic stresses, particularly cold. PtrbHLH was localized in the nucleus with transactivation activity. Overexpression of PtrbHLH in tobacco (Nicotiana tabacum) or lemon (Citrus limon) conferred enhanced tolerance to cold under chilling or freezing temperatures, whereas down-regulation of PtrbHLH in trifoliate orange by RNA interference (RNAi) resulted in elevated cold sensitivity. A range of stress-responsive genes was up-regulated or down-regulated in the transgenic lemon. Of special note, several peroxidase (POD) genes were induced after cold treatment. Compared with the wild type, POD activity was increased in the overexpression plants but decreased in the RNAi plants, which was inversely correlated with the hydrogen peroxide (H2O2) levels in the tested lines. Treatment of the transgenic tobacco plants with POD inhibitors elevated the H2O2 levels and greatly compromised their cold tolerance, while exogenous replenishment of POD enhanced cold tolerance of the RNAi line. In addition, transgenic tobacco and lemon plants were more tolerant to oxidative stresses. Yeast one-hybrid assay and transient expression analysis demonstrated that PtrbHLH could bind to the E-box elements in the promoter region of a POD gene. Taken together, these results demonstrate that PtrbHLH plays an important role in cold tolerance, at least in part, by positively regulating POD-mediated reactive oxygen species removal. PMID:23624854

  6. TRF2 and the evolution of the bilateria.

    PubMed

    Duttke, Sascha H C; Doolittle, Russell F; Wang, Yuan-Liang; Kadonaga, James T

    2014-10-01

    The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as "system factors" that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria. © 2014 Duttke et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Helium refrigeration system for hydrogen liquefaction applications

    NASA Astrophysics Data System (ADS)

    Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.

    2017-02-01

    Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.

  8. 2D modeling of electromagnetic waves in cold plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crombé, K.; Van Eester, D.; Koch, R.

    2014-02-12

    The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was feltmore » as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.« less

  9. DNA methylation and small interference RNAs participate in the regulation of MADS-box genes involved in dormancy in sweet cherry (Prunus avium L.).

    PubMed

    Rothkegel, Karin; Sánchez, Evelyn; Montes, Christian; Greve, Macarena; Tapia, Sebastián; Bravo, Soraya; Prieto, Humberto; Almeida, Andréa Miyasaka

    2017-12-01

    Epigenetic modifications can yield information about connections between genotype, phenotype variation and environmental conditions. Bud dormancy release in temperate perennial fruit trees depends on internal and environmental signals such as cold accumulation and photoperiod. Previous investigations have noted the participation of epigenetic mechanisms in the control of this physiological process. We examined whether epigenetic modifications were modulated in MADS-box genes, potential candidates for the regulation of bud dormancy and flowering in sweet cherry (Prunus avium L.). We identified and cloned two MADS-box genes homologous to the already-characterized dormancy regulators DORMANCY-ASSOCIATED MADS-box (DAM3 and DAM5) from Prunus persica (L.) Batsch. Bisulfite sequencing of the identified genes (PavMADS1 and PavMADS2), Methylated DNA Immunoprecipitation and small RNA deep sequencing were performed to analyze the presence of DNA methylations that could be guided by non-coding RNAs in the floral buds exposed to differential chilling hours. The results obtained reveal an increase in the level of DNA methylation and abundance of matching small interference RNAs (siRNAs) in the promoter of PavMADS1 when the chilling requirement is complete. For the first intron and 5' UTR of PavMADS1, de novo DNA methylation could be associated with the increase in the abundance of 24-nt siRNA matching the promoter area. Also, in the second large intron of PavMADS1, maintenance DNA methylation in all cytosine contexts is associated with the presence of homologous siRNAs in that zone. For PavMADS2, only maintenance methylation was present in the CG context, and no matching siRNAs were detected. Silencing of PavMADS1 and PavMADS2 coincided with an increase in Flowering Locus T expression during dormancy. In conclusion, DNA methylations and siRNAs appear to be involved in the silencing of PavMADS1 during cold accumulation and dormancy release in sweet cherry. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Modeling of Quasi-Four-Phase Flow in Continuous Casting Mold Using Hybrid Eulerian and Lagrangian Approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Sun, Zhenbang; Li, Baokuan

    2017-04-01

    Lagrangian tracking model combined with Eulerian multi-phase model is employed to predict the time-dependent argon-steel-slag-air quasi-four-phase flow inside a slab continuous casting mold. The Eulerian approach is used for the description of three phases (molten steel, liquid slag, and air at the top of liquid slag layer). The dispersed argon bubble injected from the SEN is treated in the Lagrangian way. The complex interfacial momentum transfers between various phases are considered. Validation is supported by the measurement data of cold model experiments and industrial practice. Close agreements were achieved for the gas volume fraction, liquid flow pattern, level fluctuation, and exposed slag eye phenomena. Many known phenomena and new predictions were successfully reproduced using this model. The vortex slag entrapment phenomenon at the slag-steel interface was obtained using this model, some small slag drops are sucked deep into the liquid pool of molten steel. Varying gas flow rates have a large effect on the steel flow pattern in the upper recirculation zone. Three typical flow patterns inside the mold with different argon gas flow rates have been obtained: double roll, three roll, and single roll. Effects of argon gas flow rate, casting speed, and slag layer thickness on the exposed slag eye and level fluctuation at the slag-steel interface were studied. A dimensionless value of H ave/ h was proposed to describe the time-averaged level fluctuation of slag-steel interface. The exposed slag eye near the SEN would be formed when the value of H ave/ h is larger than 0.4.

  11. SlDEAD31, a Putative DEAD-Box RNA Helicase Gene, Regulates Salt and Drought Tolerance and Stress-Related Genes in Tomato.

    PubMed

    Zhu, Mingku; Chen, Guoping; Dong, Tingting; Wang, Lingling; Zhang, Jianling; Zhao, Zhiping; Hu, Zongli

    2015-01-01

    The DEAD-box RNA helicases are involved in almost every aspect of RNA metabolism, associated with diverse cellular functions including plant growth and development, and their importance in response to biotic and abiotic stresses is only beginning to emerge. However, none of DEAD-box genes was well characterized in tomato so far. In this study, we reported on the identification and characterization of two putative DEAD-box RNA helicase genes, SlDEAD30 and SlDEAD31 from tomato, which were classified into stress-related DEAD-box proteins by phylogenetic analysis. Expression analysis indicated that SlDEAD30 was highly expressed in roots and mature leaves, while SlDEAD31 was constantly expressed in various tissues. Furthermore, the expression of both genes was induced mainly in roots under NaCl stress, and SlDEAD31 mRNA was also increased by heat, cold, and dehydration. In stress assays, transgenic tomato plants overexpressing SlDEAD31 exhibited dramatically enhanced salt tolerance and slightly improved drought resistance, which were simultaneously demonstrated by significantly enhanced expression of multiple biotic and abiotic stress-related genes, higher survival rate, relative water content (RWC) and chlorophyll content, and lower water loss rate and malondialdehyde (MDA) production compared to wild-type plants. Collectively, these results provide a preliminary characterization of SlDEAD30 and SlDEAD31 genes in tomato, and suggest that stress-responsive SlDEAD31 is essential for salt and drought tolerance and stress-related gene regulation in plants.

  12. The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot.

    PubMed

    Sardana, Richa; Liu, Xin; Granneman, Sander; Zhu, Jieyi; Gill, Michael; Papoulas, Ophelia; Marcotte, Edward M; Tollervey, David; Correll, Carl C; Johnson, Arlen W

    2015-02-01

    In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins.

  13. The DEAH-box Helicase Dhr1 Dissociates U3 from the Pre-rRNA to Promote Formation of the Central Pseudoknot

    PubMed Central

    Granneman, Sander; Zhu, Jieyi; Gill, Michael; Papoulas, Ophelia; Marcotte, Edward M.; Tollervey, David; Correll, Carl C.; Johnson, Arlen W.

    2015-01-01

    In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins. PMID:25710520

  14. United States Foreign Policy in the Middle East After the Cold War

    DTIC Science & Technology

    2003-06-06

    region. Jerry L . Mraz summarizes the advantages and disadvantages of dual containment in his research paper in 1997.81 The advantages are that it...College Lecture, December 21, 1948, Kennan Papers, Box 17, quoted in Gaddis, John L . (1982) Strategies of containment. A critical Appraisal of Post war...Publishers, 1999), xi; quoted in Sami G. Hajjar, U.S. Military Presence in the Gulf: Challenges and Prospects (Carlisle: U.S. Army War College

  15. Development of mechanical structure for the compact space IR camera MIRIS

    NASA Astrophysics Data System (ADS)

    Moon, Bongkon; Jeong, Woong-Seob; Cha, Sang-Mok; Park, Youngsik; Ree, Chang-Hee; Lee, Dae-Hee; Park, Sung-Joon; Nam, Uk-Won; Park, Jang-Hyun; Ka, Nung Hyun; Lee, Mi Hyun; Lee, Duk-Hang; Pyo, Jeonghyun; Rhee, Seung-Woo; Park, Jong-Oh; Lee, Hyung-Mok; Matsumoto, Toshio; Yang, Sun Choel; Han, Wonyong

    2010-07-01

    MIRIS is a compact near-infrared camera with a wide field of view of 3.67°×3.67° in the Korea Science and Technology Satellite 3 (STSAT-3). MIRIS will be launched warm and cool the telescope optics below 200K by pointing to the deep space on Sun-synchronous orbit. In order to realize the passive cooling, the mechanical structure was designed to consider thermal analysis results on orbit. Structural analysis was also conducted to ensure safety and stability in launching environments. To achieve structural and thermal requirements, we fabricated the thermal shielding parts such as Glass Fiber Reinforced Plastic (GFRP) pipe supports, a Winston cone baffle, aluminum-shield plates, a sunshade, a radiator and 30 layers of Multi Layer Insulation (MLI). These structures prevent the heat load from the spacecraft and the earth effectively, and maintain the temperature of the telescope optics within operating range. A micro cooler was installed in a cold box including a PICNIC detector and a filter-wheel, and cooled the detector down to a operating temperature range. We tested the passive cooling in the simulated space environment and confirmed that the required temperature of telescope can be achieved. Driving mechanism of the filter-wheel and the cold box structure were also developed for the compact space IR camera. Finally, we present the assembly procedures and the test result for the mechanical parts of MIRIS.

  16. R&D of high reliable refrigeration system for superconducting generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoya, T.; Shindo, S.; Yaguchi, H.

    1996-12-31

    Super-GM carries out R&D of 70 MW class superconducting generators (model machines), refrigeration system and superconducting wires to apply superconducting technology to electric power apparatuses. The helium refrigeration system for keeping field windings of superconducting generator (SCG) in cryogenic environment must meet the requirement of high reliability for uninterrupted long term operation of the SCG. In FY 1992, a high reliable conventional refrigeration system for the model machines was integrated by combining components such as compressor unit, higher temperature cold box and lower temperature cold box which were manufactured utilizing various fundamental technologies developed in early stage of the projectmore » since 1988. Since FY 1993, its performance tests have been carried out. It has been confirmed that its performance was fulfilled the development target of liquefaction capacity of 100 L/h and impurity removal in the helium gas to < 0.1 ppm. Furthermore, its operation method and performance were clarified to all different modes as how to control liquefaction rate and how to supply liquid helium from a dewar to the model machine. In addition, the authors have made performance tests and system performance analysis of oil free screw type and turbo type compressors which greatly improve reliability of conventional refrigeration systems. The operation performance and operational control method of the compressors has been clarified through the tests and analysis.« less

  17. Wintertime ozone and nitrogen oxide photochemistry and nighttime chemistry in a Western oil and gas basin

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Edwards, P. M.; Patel, S.; Dube, W. P.; Williams, E. J.; Roberts, J. M.; McLaren, R.; Kercher, J. P.; Gilman, J. B.; Lerner, B. M.; Warneke, C.; Geiger, F.; De Gouw, J. A.; Tsai, C.; Stutz, J.; Young, C. J.; Washenfelder, R. A.; Parrish, D. D.

    2012-12-01

    Oil and gas development in mountain basins of the Western United States has led to frequent exceedences of National Ambient Air Quality Standards for ozone during the winter season. The Uintah Basin Winter Ozone Study took place during February and March 2012 in northeast Utah with the goal of providing detailed chemical and meteorological data to understand this phenomenon. Although snow and cold pool stagnation conditions that lead to winter ozone buildup were not encountered during the study period, the detailed measurements did provide a unique data set to understand the chemistry of key air pollutants in a desert environment during winter. This presentation will examine both the photochemistry and the nighttime chemistry of nitrogen oxides, ozone and VOCs, with the goal of understanding the observed photochemistry and its relationship to nighttime chemistry through a set of box models. The photochemical box model is based on the master chemical mechanism (MCM), a detailed model for VOC degradation and ozone production. The presentation will examine the sensitivity of ozone photochemistry to different parameters, including pollutant concentrations likely to be characteristic of cold pool conditions, and the strength of radical sources derived from heterogeneous chemical reactions. The goal of the analysis will be to identify the factors most likely to be responsible for the higher ozone events that have been observed during colder years with less detailed chemical measurements.

  18. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome.

    PubMed

    Liu, Xin; Li, Rong; Dai, Yaqing; Chen, Xuesen; Wang, Xiaoyun

    2018-04-01

    The B-box proteins (BBXs) are a family of zinc finger proteins containing one/two B-box domain(s). Compared with intensive studies of animal BBXs, investigations of the plant BBX family are limited, though some specific plant BBXs have been demonstrated to act as transcription factors in the regulation of flowering and photomorphogenesis. In this study, using a global search of the apple (Malus domestica Borkh.) genome, a total of 64 members of BBX (MdBBX) were identified. All the MdBBXs were divided into five groups based on the phylogenetic relationship, numbers of B-boxes contained and whether there was with an additional CCT domain. According to the characteristics of organ-specific expression, MdBBXs were divided into three groups based on the microarray information. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of most MdBBXs. Twelve MdBBX members from different groups were randomly selected and exposed to abiotic stresses. Their expressions were up-regulated to some extent in the roots and leaves. Six among 12 MdBBXs were sensitive to osmotic pressure, salt, cold stress and exogenous abscisic acid treatment, with their expressions enhanced more than 20-fold. Our results suggested that MdBBXs may take part in response to abiotic stress.

  19. Mechanism of selective recruitment of RNA polymerases II and III to snRNA gene promoters.

    PubMed

    Dergai, Oleksandr; Cousin, Pascal; Gouge, Jerome; Satia, Karishma; Praz, Viviane; Kuhlman, Tracy; Lhôte, Philippe; Vannini, Alessandro; Hernandez, Nouria

    2018-05-01

    RNA polymerase II (Pol II) small nuclear RNA (snRNA) promoters and type 3 Pol III promoters have highly similar structures; both contain an interchangeable enhancer and "proximal sequence element" (PSE), which recruits the SNAP complex (SNAPc). The main distinguishing feature is the presence, in the type 3 promoters only, of a TATA box, which determines Pol III specificity. To understand the mechanism by which the absence or presence of a TATA box results in specific Pol recruitment, we examined how SNAPc and general transcription factors required for Pol II or Pol III transcription of SNAPc-dependent genes (i.e., TATA-box-binding protein [TBP], TFIIB, and TFIIA for Pol II transcription and TBP and BRF2 for Pol III transcription) assemble to ensure specific Pol recruitment. TFIIB and BRF2 could each, in a mutually exclusive fashion, be recruited to SNAPc. In contrast, TBP-TFIIB and TBP-BRF2 complexes were not recruited unless a TATA box was present, which allowed selective and efficient recruitment of the TBP-BRF2 complex. Thus, TBP both prevented BRF2 recruitment to Pol II promoters and enhanced BRF2 recruitment to Pol III promoters. On Pol II promoters, TBP recruitment was separate from TFIIB recruitment and enhanced by TFIIA. Our results provide a model for specific Pol recruitment at SNAPc-dependent promoters. © 2018 Dergai et al.; Published by Cold Spring Harbor Laboratory Press.

  20. DEFTEST. Defence Technological and Scientific Thesaurus. Volume 2. M - Z

    DTIC Science & Technology

    1988-05-01

    Alanio Elecricci propardse Elsoelo geitiwie I’, pro per",e WPOntadsed i de d51 ga maenerot ; or"mrepI Pd ad es M41gnel Rp hseorrredm Meld.~oh &ew 0"qn...POW mo 0 IiF ~ M~ Mdii -T Pwe 8"swe DT me dpsu PWOPSad ffiff H T COld M Asdm’(illleb) T i ote WaDie Skt Tem msp Theotdad dtudlyFoundry NW MIf -=Wr Pro ...Pr’w s mw dwoe uwm mooning qwy Wad" ia " odil thWa n" Mi bfrtig penwulw mold cmstfg N tsesMWprmtP Pro lop"~ di Rol NTal Copd wOrr Saud angs l w mmitl

  1. Fabrication of a Bronze Age Sword using Ancient Techniques

    NASA Astrophysics Data System (ADS)

    Sapiro, David; Webler, Bryan

    2016-12-01

    A khopesh was cast and forged for the TMS 2016 Bladesmithing Symposium. The khopesh was the first sword style, originating during the Bronze Age in the Near East. The manufacturing process used in this study closely followed Bronze Age techniques to determine the plausibility of open mold casting coupled with cold work and annealing cycles. Forging and annealing cycles substantially increased blade strength and diminished intergranular δ-phase inclusions. While a functional blade was not completed due to casting defects, the process gives valuable insight into the effort required to fabricate a khopesh during the Bronze Age. Forging and annealing cycles following casting were necessary to produce the mechanical properties desired in a sword.

  2. First operational experience with the HIE-Isolde helium cryogenic system including several RF cryo-modules

    NASA Astrophysics Data System (ADS)

    Guillotin, N.; Dupont, T.; Gayet, Ph; Pirotte, O.

    2017-12-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) upgrade project at CERN includes the deployment of new superconducting accelerating structures operated at 4.5 K (ultimately of six cryo-modules) installed in series, and the refurbishing of the helium cryo-plant previously used to cool the ALEPH magnet during the operation of the LEP accelerator from 1989 to 2000. The helium refrigerator is connected to a new cryogenic distribution line, supplying a 2000-liter storage dewar and six interconnecting valve boxes (i.e jumper boxes), one for each cryo-module. After a first operation period with one cryo-module during six months in 2015, a second cryo-module has been installed and operated during 2016. The operation of the cryo-plant with these two cryo-modules has required significant technical enhancements and tunings for the compressor station, the cold-box and the cryogenic distribution system in order to reach nominal and stable operational conditions. The present paper describes the commissioning results and the lessons learnt during the operation campaign of 2016 together with the preliminary experience acquired during the 2017 operation phase with a third cryo-module.

  3. Distribution of cold adaptation proteins in microbial mats in Lake Joyce, Antarctica: Analysis of metagenomic data by using two bioinformatics tools.

    PubMed

    Koo, Hyunmin; Hakim, Joseph A; Fisher, Phillip R E; Grueneberg, Alexander; Andersen, Dale T; Bej, Asim K

    2016-01-01

    In this study, we report the distribution and abundance of cold-adaptation proteins in microbial mat communities in the perennially ice-covered Lake Joyce, located in the McMurdo Dry Valleys, Antarctica. We have used MG-RAST and R code bioinformatics tools on Illumina HiSeq2000 shotgun metagenomic data and compared the filtering efficacy of these two methods on cold-adaptation proteins. Overall, the abundance of cold-shock DEAD-box protein A (CSDA), antifreeze proteins (AFPs), fatty acid desaturase (FAD), trehalose synthase (TS), and cold-shock family of proteins (CSPs) were present in all mat samples at high, moderate, or low levels, whereas the ice nucleation protein (INP) was present only in the ice and bulbous mat samples at insignificant levels. Considering the near homogeneous temperature profile of Lake Joyce (0.08-0.29 °C), the distribution and abundance of these proteins across various mat samples predictively correlated with known functional attributes necessary for microbial communities to thrive in this ecosystem. The comparison of the MG-RAST and the R code methods showed dissimilar occurrences of the cold-adaptation protein sequences, though with insignificant ANOSIM (R = 0.357; p-value = 0.012), ADONIS (R(2) = 0.274; p-value = 0.03) and STAMP (p-values = 0.521-0.984) statistical analyses. Furthermore, filtering targeted sequences using the R code accounted for taxonomic groups by avoiding sequence redundancies, whereas the MG-RAST provided total counts resulting in a higher sequence output. The results from this study revealed for the first time the distribution of cold-adaptation proteins in six different types of microbial mats in Lake Joyce, while suggesting a simpler and more manageable user-defined method of R code, as compared to a web-based MG-RAST pipeline.

  4. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  5. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  6. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  7. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  8. Keeping warm with fur in cold water: entrainment of air in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, Pierre-Thomas; Clanet, Christophe; Hosoi, Anette

    2015-11-01

    Instead of relying on a thick layer of body fat for insulation as many aquatic mammals do, fur seals and otters trap air in their dense fur for insulation in cold water. Using a combination of model experiments and theory, we rationalize this mechanism of air trapping underwater for thermoregulation. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS. Modeling the hairy texture as a network of capillary tubes, the imbibition speed of water into the hairs is obtained through a balance of hydrostatic pressure and viscous stress. In this scenario, the bending of the hairs and capillary forces are negligible. The maximum diving depth that can be achieved before the hairs are wetted to the roots is predicted from a comparison of the diving speed and imbibition speed. The amount of air that is entrained in hairy surfaces is greater than what is expected for classic Landau-Levich-Derjaguin plate plunging. A phase diagram with the parameters from experiments and biological data allows a comparison of the model system and animals.

  9. Prevention of Freezing and other Cold Weather Problems at Wastewater Treatment Facilities.

    DTIC Science & Technology

    1985-07-01

    an Archimedes screw conveyor is used to lift grit out of the sub- merged hopper. Initially, the conveyor was exposed and froze completely every...particular facility includes two primary clarifiers (in paral- lel), Archimedes screw pumps to lift wastewater to the top of the trickling filter...gal. of oil each and it takes much time to drain these gear boxes. At the headworks, an Archimedes screw is used to [if t the grit out of a submerged

  10. The medicines refrigerator and the importance of the cold chain in the safe storage of medicines.

    PubMed

    Hatchett, Richard

    2017-10-04

    The medicines refrigerator is a common piece of equipment found in clinical areas. It is used to ensure specific medicines are safely stored within a narrow temperature range in line with manufacturers' instructions; this is usually between +2˚C and +8˚C, and ideally +5˚C. Drugs stored in the medicines refrigerator include: vaccines; insulin; chemotherapy drugs; topical preparations, such as some types of eye drops; and other treatments such as glucagon, which is used to manage severe hypoglycaemia. This article reviews the function of the medicines refrigerator and the checks required by healthcare practitioners to ensure that medicines remain safely stored and their effectiveness is maintained. It also outlines the medicines refrigeration procedure known as the 'cold chain', which includes the use of cold boxes or vaccine carriers to maintain the required temperature of medicines during transport from the manufacturer to user, or between healthcare departments. ©2012 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  11. Optimization of Pumpkin Oil Recovery by Using Aqueous Enzymatic Extraction and Comparison of the Quality of the Obtained Oil with the Quality of Cold-Pressed Oil

    PubMed Central

    Roszkowska, Beata; Czaplicki, Sylwester; Tańska, Małgorzata

    2016-01-01

    Summary The study was carried out to optimize pumpkin oil recovery in the process of aqueous extraction preceded by enzymatic maceration of seeds, as well as to compare the quality of the obtained oil to the quality of cold-pressed pumpkin seed oil. Hydrated pulp of hulless pumpkin seeds was macerated using a 2% (by mass) cocktail of commercial pectinolytic, cellulolytic and proteolytic preparations (Rohapect® UF, Rohament® CL and Colorase® 7089). The optimization procedure utilized response surface methodology based on Box- -Behnken plan of experiment. The optimized variables of enzymatic pretreatment were pH, temperature and maceration time. The results showed that the pH value, temperature and maceration time of 4.7, 54 °C and 15.4 h, respectively, were conducive to maximize the oil yield up to 72.64%. Among these variables, the impact of pH was crucial (above 73% of determined variation) for oil recovery results. The oil obtained by aqueous enzymatic extraction was richer in sterols, squalene and tocopherols, and only slightly less abundant in carotenoids than the cold-pressed one. However, it had a lower oxidative stability, with induction period shortened by approx. 30% in relation to the cold-pressed oil. PMID:28115898

  12. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance

    PubMed Central

    Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated japonica ssp. as indicated by the up/downregulation of various stress-responsive pathways identified from gene expression analysis. The cold-stress response is described in relation to the stress signaling pathways, showing complex adaptive mechanisms in different genotypes. PMID:26230579

  13. Observation of the sweating in lipstick by scanning electron microscopy.

    PubMed

    Seo, S Y; Lee, I S; Shin, H Y; Choi, K Y; Kang, S H; Ahn, H J

    1999-06-01

    The relationship between the wax matrix in lipstick and sweating has been investigated by observing the change of size and shape of the wax matrix due to sweating by Scanning Electron Microscopy (SEM). For observation by SEM, a lipstick sample was frozen in liquid nitrogen. The oil in the lipstick was then extracted in cold isopropanol (-70 degrees C) for 1-3 days. After the isopropanol was evaporated, the sample was sputtered with gold and examined by SEM. The change of wax matrix underneath the surface from fine, uniform structure to coarse, nonuniform structure resulted from the caking of surrounding wax matrix. The oil underneath the surface migrated to the surface of lipstick with sweating; consequently the wax matrix in that region was rearranged into the coarse matrix. In case of flamed lipstick, sweating was delayed and the wax matrix was much coarser than that of the unflamed one. The larger wax matrix at the surface region was good for including oil. The effect of molding temperature on sweating was also studied. As the molding temperature rose, sweating was greatly reduced and the size of the wax matrix increased. It was found that sweating was influenced by the compatibility of wax and oil. A formula consisting of wax and oil that have good compatibility has a tendency to reduce sweating and increase the size of the wax matrix. When pigments were added to wax and oil, the size of the wax matrix was changed, but in all cases sweating was increased due to the weakening of the binding force between wax and oil. On observing the thick membrane of wax at the surface of lipstick a month after molding it was also found that sweating was influenced by ageing. In conclusion, the structure of the wax matrix at the surface region of lipstick was changed with the process of flaming, molding temperature, compatibility of wax and oil, addition of pigment, and ageing. In most cases, as the size of the wax matrix was increased, sweating was reduced and delayed.

  14. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.

  15. Preservation of ancient ice at Pavonis and Arsia Mons: Tropical mountain glacier deposits on Mars

    NASA Astrophysics Data System (ADS)

    Head, James W.; Weiss, David K.

    2014-11-01

    Large tropical mountain glacier (TMG) deposits on the northwest flanks of the Tharsis Montes and Olympus Mons volcanoes are interpreted to be the record of ancient climates characteristic of Mars several hundred million years ago when planetary spin-axis obliquity was ~45°. During this era, polar volatiles (predominantly H2O) were mobilized and transferred equatorward, undergoing adiabatic cooling on the Tharsis volcano flanks, and precipitating snow and ice to form cold-based tropical mountain glaciers up to several kilometers in thickness. Subsequent climate change resulted in retreat, sublimation and collapse of the tropical mountain glaciers, leaving the three typical facies observed today: (1) concentric ridges, the ridged facies, interpreted as drop moraines; (2) knobby facies, interpreted as debris-dominated sublimation residue; and (3) the smooth facies, interpreted as remnant alpine glacial deposits. Ring-mold craters (RMCs) are distinctive features formed by impacts into debris-covered ice. We describe a set of relatively fresh ring-mold craters superposed on the Arsia and Pavonis Mons TMG deposits; we interpret these to indicate that the impact events penetrated a veneer of sublimation lag and excavated buried remnant glacial ice, despite the lack of detection of buried ice by orbital radar instruments. The diameter distribution of the RMCs suggest that the remnant ice lies at a depth of at least 16 m. The TMG deposit ages suggest that these ice deposits date from a period in the range of 125-220 million years before the present; the remnant ice may thus preserve records of the ancient atmospheric gas content and microbiota, as is common in terrestrial glacial ice. Preservation of this ice and the lack of any associated fluvial features suggest that the post-glacial climate has been cold, and related surface temperatures have not been sufficient to bring the buried deposits to the melting point of water.

  16. Fabrication of low-cost beta-type Ti-Mn alloys for biomedical applications by metal injection molding process and their mechanical properties.

    PubMed

    Santos, Pedro Fernandes; Niinomi, Mitsuo; Liu, Huihong; Cho, Ken; Nakai, Masaaki; Itoh, Yoshinori; Narushima, Takayuki; Ikeda, Masahiko

    2016-06-01

    Titanium and its alloys are suitable for biomedical applications owing to their good mechanical properties and biocompatibility. Beta-type Ti-Mn alloys (8-17 mass% Mn) were fabricated by metal injection molding (MIM) as a potential low cost material for use in biomedical applications. The microstructures and mechanical properties of the alloys were evaluated. For up to 13 mass% Mn, the tensile strength (1162-938MPa) and hardness (308-294HV) of the MIM fabricated alloys are comparable to those of Ti-Mn alloys fabricated by cold crucible levitation melting. Ti-9Mn exhibits the best balance of ultimate tensile strength (1046MPa) and elongation (4.7%) among the tested alloys, and has a Young's modulus of 89GPa. The observed low elongation of the alloys is attributed to the combined effects of high oxygen content, with the presence of interconnected pores and titanium carbides, the formation of which is due to carbon pickup during the debinding process. The elongation and tensile strength of the alloys decrease with increasing Mn content. The Ti-Mn alloys show good compressive properties, with Ti-17Mn showing a compressive 0.2% proof stress of 1034MPa, and a compressive strain of 50%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Modular vaccine packaging increases packing efficiency

    PubMed Central

    Norman, Bryan A.; Rajgopal, Jayant; Lim, Jung; Gorham, Katrin; Haidari, Leila; Brown, Shawn T.; Lee, Bruce Y.

    2015-01-01

    Background Within a typical vaccine supply chain, vaccines are packaged into individual cylindrical vials (each containing one or more doses) that are bundled together in rectangular “inner packs” for transport via even larger groupings such as cold boxes and vaccine carriers. The variability of vaccine inner pack and vial size may hinder efficient vaccine distribution because it constrains packing of cold boxes and vaccine carriers to quantities that are often inappropriate or suboptimal in the context of country-specific vaccination guidelines. Methods We developed in Microsoft Excel (Microsoft Corp., Redmond, WA) a spreadsheet model that evaluated the impact of different packing schemes for the Benin routine regimen plus the introduction of the Rotarix vaccine. Specifically, we used the model to compare the current packing scheme to that of a proposed modular packing scheme. Results Conventional packing of a Dometic RCW25 that aims to maximize fully-immunized children (FICs) results in 123 FICs and a packing efficiency of 81.93% compared to a maximum of 155 FICs and 94.1% efficiency for an alternative modular packaging system. Conclusions Our analysis suggests that modular packaging systems could offer significant advantages over conventional vaccine packaging systems with respect to space efficiency and potential FICs, when they are stored in standard vaccine carrying devices. This allows for more vaccines to be stored within the same volume while also simplifying the procedures used by field workers to pack storage devices. Ultimately, modular packaging systems could be a simple way to help increase vaccine coverage worldwide. PMID:25957666

  18. Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine.

    PubMed

    Wu, Jiao; Zhang, Yali; Yin, Ling; Qu, Junjie; Lu, Jiang

    2014-12-01

    Low temperatures cause severe damage to none cold hardy grapevines. A preliminary survey with Solexa sequencing technology was used to analyze gene expression profiles of cold hardy Vitis amurensis 'Zuoshan-1' after cold acclimation at 4 °C for 48 h. A total of 16,750 and 18,068 putative genes were annotated for 4 °C-treated and control library, respectively. Among them, 393 genes were upregulated for at least 20-fold, while 69 genes were downregulated for at least 20-fold under the 4 °C treatment for 48 h. A subset of 101 genes from this survey was investigated further using reverse transcription polymerase chain reaction (RT-PCR). Genes associated with signaling events in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), including generation of calcium signals (CNGC, CMLs), jasmonic acid signal (JAZ1), oxidative burst (Rboh), and phosphorylation (FLS2, BAK, MEKK1, MKKs) cascades, were upregulated after cold acclimation. Disease resistance genes (RPM1, RPS5, RIN4, PBS1) in the process of effector-triggered immunity (ETI) were also upregulated in the current condition. Defense-related genes (WRKYs, PR1, MIN7) involved in both PTI and ETI processes were abundantly expressed after cold acclimation. Our results indicated that plant-pathogen interaction pathways were linked to the cold acclimation in V. amurensis grapevine. Other biotic- and abiotic-related genes, such as defense (protein phosphatase 2C, U-box domain proteins, NCED1, stilbene synthase), transcription (DREBs, MYBs, ERFs, ZFPs), signal transduction (kinase, calcium, and auxin signaling), transport (ATP-binding cassette (ABC) transporters, auxin:hydrogen symporter), and various metabolism, were also abundantly expressed in the cold acclimation of V. Amurensis 'Zuoshan-1' grapevine. This study revealed a series of critical genes and pathways to delineate important biological processes affected by low temperature in 'Zuoshan-1'.

  19. Manufacturing plastic injection optical molds

    NASA Astrophysics Data System (ADS)

    Bourque, David

    2008-08-01

    ABCO Tool & Die, Inc. is a mold manufacturer specializing in the manufacturing of plastic injection molds for molded optical parts. The purpose of this presentation is to explain the concepts and procedures required to build a mold that produces precision optical parts. Optical molds can produce a variety of molded parts ranging from safety eyewear to sophisticated military lens parts, which must meet precise optical specifications. The manufacturing of these molds begins with the design engineering of precision optical components. The mold design and the related optical inserts are determined based upon the specific optical criteria and optical surface geometry. The mold manufacturing techniques will be based upon the optical surface geometry requirements and specific details. Manufacturing processes used will be specific to prescribed geometrical surface requirements of the molded part. The combined efforts result in a robust optical mold which can produce molded parts that meet the most precise optical specifications.

  20. In situ Orbit Extraction from Live, High Precision Collisionless Simulations of Systems Formed by Cold Collapse

    NASA Astrophysics Data System (ADS)

    Noriega-Mendoza, H.; Aguilar, L. A.

    2018-04-01

    We performed high precision, N-body simulations of the cold collapse of initially spherical, collisionless systems using the GYRFALCON code of Dehnen (2000). The collapses produce very prolate spheroidal configurations. After the collapse, the systems are simulated for 85 and 170 half-mass radius dynamical timescales, during which energy conservation is better than 0.005%. We use this period to extract individual particle orbits directly from the simulations. We then use the TAXON code of Carpintero and Aguilar (1998) to classify 1 to 1.5% of the extracted orbits from our final, relaxed configurations: less than 15% are chaotic orbits, 30% are box orbits and 60% are tube orbits (long and short axis). Our goal has been to prove that direct orbit extraction is feasible, and that there is no need to "freeze" the final N-body system configuration to extract a time-independent potential.

  1. Preparation and properties of an internal mold release for rigid urethane foam

    NASA Astrophysics Data System (ADS)

    Paker, B. G.

    1980-08-01

    Most mold release agents used in the molding of rigid polyurethane foam are applied to the internal surfaces of the mold. These materials form a thin layer between the surface of the mold and the foam, allowing for easy release of the molded parts. This type of mold release must be applied prior to each molding operation; and, after repeated use, cleaning of the mold is required. Small amounts of this mold release are transferred to the molded part, resulting in a part with poor surface bondability characteristics. An internal release agent, which can be mixed in a urethane foam resin was investigated. The internal mold release provided good releasability and resulted in urethane foam that has excellent surface bondability. No compatibility problems are expected from the use of this type of release agent.

  2. Technology Solutions Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Ueno and J. Lstiburek

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a "control" vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only hadmore » slight issues, such as rusted fasteners and sheathing grain raise.« less

  3. Effectiveness of ethylene oxide and gamma irradiation on the microbiological population of three types of paprika

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, S.L.; Gimenez, J.L.; Sanchez, F.M.

    The effectiveness of ethylene oxide and the gamma irradiation sterilizing treatments on the microbiological population was studied in three types of Spanish paprika, stored in a cold chamber (4/sup 0/C) and at room temperature (16-38.8/sup 0/C) over an experimental period of 285 days. The controlled microorganisms were: mesophilic aerobes, coliforms, sulfite reducing anaerobes, yeasts, molds, and Salmonella. The presence of aflatoxins was also studied. The results showed that both sterilizing treatments reduced the microbiological population to below the permissible levels recommended by the International Commission on Microbiological Specification for Food. Nevertheless, it was interesting that the gamma irradiation treatment wasmore » more effective.« less

  4. Replication of the nano-scale mold fabricated with focused ion beam

    NASA Astrophysics Data System (ADS)

    Gao, J. X.; Chan-Park, M. B.; Xie, D. Z.; Ngoi, Bryan K. A.

    2004-12-01

    Silicon mold fabricated with Focused Ion Beam lithography (FIB) was used to make silicone elastomer molds. The silicon mold is composed of lattice of holes which the diameter and depth are about 200 nm and 60 nm, respectively. The silicone elastomer material was then used to replicate slavery mold. Our study show the replication process with the elastomer mold had been performed successfully and the diameter of humps on the elastomer mold is near to that of holes on the master mold. But the height of humps in the elastomer mold is only 42 nm and it is different from the depth of holes in the master mold.

  5. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L.

    2007-12-25

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  6. Allergies, asthma, and molds

    MedlinePlus

    Reactive airway - mold; Bronchial asthma - mold; Triggers - mold; Allergic rhinitis - pollen ... Things that make allergies or asthma worse are called triggers. Mold is a common trigger. When your asthma or allergies become worse due to mold, you are ...

  7. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs.

    PubMed

    Cai, Wangting; Yang, Yaling; Wang, Weiwei; Guo, Guangyan; Liu, Wei; Bi, Caili

    2018-03-01

    The basic leucine zipper (bZIP) proteins play important roles against abiotic stress in plants, including cold stress. However, most bZIPs involved in plant freezing tolerance are positive regulators. Only a few bZIPs function negatively in cold stress response. In this study, TabZIP6, a Group C bZIP transcription factor gene from common wheat (Triticum aestivum L.), was cloned and characterized. The transcript of TabZIP6 was strongly induced by cold treatment (4 °C). TabZIP6 is a nuclear-localized protein with transcriptional activation activity. Arabidopsis plants overexpressing TabZIP6 showed decreased tolerance to freezing stress. Microarray as well as quantitative real-time PCR (qRT-PCR) analysis showed that CBFs and some key COR genes, including COR47 and COR15B, were down-regulated by cold treatment in TabZIP6-overexpressing Arabidopsis lines. TabZIP6 was capable of binding to the G-box motif and the CBF1 and CBF3 promoters in yeast cells. A yeast two-hybrid assay revealed that TabZIP6, as well as the other two Group S bZIP proteins involved in cold stress tolerance in wheat, Wlip19 and TaOBF1, can form homodimers by themselves and heterodimers with each other. These results suggest that TabZIP6 may function negatively in the cold stress response by binding to the promoters of CBFs, and thereby decreasing the expression of downstream COR genes in TabZIP6-overexpressing Arabidopsis seedlings. Copyright © 2018. Published by Elsevier Masson SAS.

  8. The reference cube: A new ballistic model to generate staining in firearm barrels.

    PubMed

    Schyma, Christian; Bauer, Kristina; Brünig, Julia

    2017-06-01

    After contact shots to the head biological traces can be found inside firearm barrels. So far silicone coated, gelatin filled box models were used to generate such staining according to the triple contrast method (mixture of acrylic paint, barium sulfate and blood sealed in a thin foil bag). This study was conducted to develop a transparent ballistic model allowing contact shots. Gelatin filled polyethylene bottles with and without a silicone coat were tested in comparison to non-covered gelatin blocks. Finally, thin foil bags of 5 cm × 5 cm dimension were glued on a synthetic absorbent kitchen wipe on top of which 1 L 10% gelatin solution was molded to create blocks of 8.5 cm length. A kitchen wipe with a paint pad on its inside formed the front of the cube. Three contact shots each with a 9 mm Luger pistol and a .38 special revolver were performed on all model variations. The staining was documented by endoscopy and swabs gathered from both ends of the barrel were analyzed by quantitative PCR. Reliable staining was achieved using the front covered gelatin block with comparable results to the silicone coated box model used before. For further research using ballistic models to simulate a human head a symmetric form of the gelatin block such as a cube is recommended.

  9. VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER STATION IN THE CASTING SHOP. (OTHER UNITS MELT BRASS ALLOYS.) THIS IS THE SOUTHERNMOST FURNACE OF THE FOUR PRESENTLY IN SITU. THE CURRENT CASTING SHOP WAS CONSTRUCTED DURING THE EARLY 1970'S, REPLACING THE ORIGINAL PRE-WWI FACILITY. STATIONS #02, 03, AND 04 EACH CONSIST OF A HOLDER FLANKED BY A PAIR OF 800 KW ELECTRIC MELTERS. THE HOLDER IS REHEATED AT 85,000 LBS. SHAKER BOX, LOCATED AT THE REAR OF EACH MELTER SUPPLY THE MIXTURE OF INGREDIENTS REQUIRED FOR EACH PARTICULAR ALLOY. ONE MEMBER OF THE THREE-MAN CASTING TEAMS IS RESPONSIBLE FOR SHAKING METAL INTO THE MELTERS. IN THE LOWER RIGHT ARE SHOWN THE MOLD STORAGE AREA AND THE FURNACE BUILDERS' AREA FOR CHIPPING AND REBRICKING OFF-LINE UNITS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  10. VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER STATION IN THE CASTING SHOP. (OTHER UNITS MELT BRASS ALLOYS.) THIS IS THE SOUTHERNMOST FURNACE OF THE FOUR PRESENTLY IN SITU. THE CURRENT CASTING SHOP WAS CONSTRUCTED DURING THE EARLY 1970'S, REPLACING THE ORIGINAL PRE-WWI FACILITY. STATIONS #02,03, AND 04 EACH CONSIST OF A HOLDER FLANKED BY A PAIR OF 800 KW ELECTRIC MELTERS. THE HOLDER IS RATED AT 85,000 LBS. SHAKER BOXES, LOCATED AT THE REAR OF EACH MELTER SUPPLY THE MIXTURE OF INGREDIENTS REQUIRED FOR EACH PARTICULAR ALLOY. ONE MEMBER OF THE THREE-MAN CASTING TEAMS IS RESPONSIBLE FOR SHAKING METAL INTO THE MELTERS. IN THE LOWER RIGHT ARE SHOWN THE MOLD STORAGE AREA AND THE FURNACE BUILDERS' AREA FOR CHIPPING AND REBRICKING OFF-LINE UNITS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  11. Prompt remediation of water intrusion corrects the resultant mold contamination in a home.

    PubMed

    Rockwell, William

    2005-01-01

    More patients are turning to their allergists with symptoms compatible with allergic rhinitis, allergic sinusitis, and/or bronchial asthma after exposure to mold-contaminated indoor environments. These patients often seek guidance from their allergists in the remediation of the contaminated home or office. The aim of this study was to determine baseline mold spore counts for noncontaminated homes and report a successful mold remediation in one mold-contaminated home. Indoor air quality was tested using volumetric spore counts in 50 homes where homeowners reported no mold-related health problems and in one mold-contaminated home that was remediated. The health of the occupant of the mold-contaminated home also was assessed. Indoor volumetric mold spore counts ranged from 300 to 1200 spores/m3 in the baseline homes. For the successful remediation, the mold counts started at 300 spores/m3, increased to 2800 spores/m3 at the height of the mold contamination, and then fell to 800 spores/m3 after remediation. The occupant's allergic symptoms ceased on complete remediation of the home. Indoor volumetric mold counts taken with the Allergenco MK-3 can reveal a potential indoor mold contamination, with counts above 1000 spores/m3 suggesting indoor mold contamination. Once the presence of indoor mold growth is found, a prompt and thorough remediation can bring mold levels back to near-baseline level and minimize negative health effects for occupants.

  12. Transferability of glass lens molding

    NASA Astrophysics Data System (ADS)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  13. Mold Allergy

    MedlinePlus

    ... Home ▸ Conditions & Treatments ▸ Allergies ▸ Mold Allergy Share | Mold Allergy Overview Symptoms & Diagnosis Treatment & Management Mold Allergy Overview Molds are tiny fungi whose spores float ...

  14. Storage and sterilization techniques: the specific role of the cold chain.

    PubMed

    Guinebault, A

    1986-01-01

    Focus in this discussion is on reasons for the cold chain, management of vaccine supplies (regional storage, peripheral centers, and the clinic), the facilities and their use, monitoring the cold chain, and training participants in the cold chain. To remain active, vaccines must be maintained continuously within a specific temperature range from the moment they are produced until they are injected. This is the meaning of the cold chain. If the cold chain is broken at any point, the vaccines must be destroyed for they will have lost their effectiveness. To function properly, a cold chain requires the combined presence of efficient, reliable equipment, and of qualified, vigilant personnel at all levels. The cold chain is composed of the following elements: a national storage center, near an international airport, with a 1-year supply of vaccines for the entire target population; regional storage centers with a 3-month supply of vaccines for the entire population of the region; peripheral immunization centers scattered throughout the region, managing a supply for about 1 month; clinics, which either perform vaccinations on the spot and/or supply mobile teams, depending on the strategy; and mobile teams, with portable cold boxes, with an autonomy of several days. The main problems occur at the local levels, and more specifically with respect to transportation and the fuel and power supplies, as well as cold packs. At the central level, the 1-year supply of vaccines generally is stored in cold rooms. Personnel in charge of central strorage also are responsible for transportation to and from these cold rooms. Once the space required for storing vaccines is determined, the facilities required at each level may be evaluated. The information essential to the choice must be considered in each case. The main criteria involved are outlined. There are many devices for monitoring the function of the cold chain: indicators, which accompany the vaccines from the central depot to the peripheral centers show any excesses in temperature and their duration; and devices such as thermometers show the present temperature, independently of the "history" of the vaccine. Some devices are available for checking individual elements of the cold chain from time to time. The World Health Organization (WHO) has developed a training strategy aimed at people on all levels: international consultants and decisionmakers involved in programming the Expanded Program on Immunization; technicians in charge of maintenance; and medical personnel.

  15. Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding.

    PubMed

    Graf, Neil J; Bowser, Michael T

    2013-10-07

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.

  16. 53. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL MOLDS IN THE MORAVIAN POTTERY AND TILE WORKS COLLECTION, AND ARE USED TO PRESS TILES. THE FACTORY KEEPS TEN PRODUCTION MOLDS FOR EACH IMAGE. THE ORIGINAL MOLDS ARE NOT USED IN PRODUCTION. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  17. Saliva secretory IgA antibodies against molds and mycotoxins in patients exposed to toxigenic fungi.

    PubMed

    Vojdani, Aristo; Kashanian, Albert; Vojdani, Elroy; Campbell, Andrew W

    2003-11-01

    Upper respiratory exposure to different environmental antigens results first in the activation of mucosal immunity and production of IgA antibodies in different secretions including saliva. Despite this there is no study, which addresses secretory antibodies against molds and mycotoxins. The purpose of this study was to evaluate mold-specific salivary IgA in individuals exposed to molds and mycotoxins in a water-damaged building environment. Saliva IgA antibody levels against seven different molds and two mycotoxins were studied in 40 patients exposed to molds and in 40 control subjects. Mold-exposed patients showed significantly higher levels of salivary IgA antibodies against one or more mold species. A majority of patients with high IgA antibodies against molds exhibited elevation in salivary IgA against mycotoxins, as well. These IgA antibodies against molds and mycotoxins are specific, since using molds and mycotoxins in immune absorption could reduce antibody levels, significantly. Detection of high counts of molds in water-damaged buildings, strongly suggests the existence of a reservoir of mold spores in the environment. This viable microbial activity with specific mold and mycotoxin IgA in saliva may assist in the diagnosis of mold exposure. Whether mold and mycotoxin specific IgA antibodies detected in saliva are indicative of the role of IgA antibodies in the late phase of type-1 hypersensitivity reaction or in type-2 and type-3 delayed sensitivities is a matter that warrants further investigation.

  18. Resin film infusion mold tooling and molding method

    NASA Technical Reports Server (NTRS)

    Burgess, Roger (Inventor); Grossheim, Brian (Inventor); Mouradian, Karbis (Inventor); Thrash, Patrick J. (Inventor)

    1999-01-01

    A mold apparatus and method for resin film infusion molding including an outer mold tool having a facing sheet adapted to support a resin film and preform assembly. The facing sheet includes attachment features extending therefrom. An inner mold tool is positioned on the facing sheet to enclose the resin film and preform assembly for resin film infusion molding. The inner mold tool includes a plurality of mandrels positioned for engagement with the resin film and preform assembly. Each mandrel includes a slot formed therein. A plurality of locating bars cooperate with the slots and with the attachment features for locating the mandrels longitudinally on the outer mold tool.

  19. Improved compression molding process

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1967-01-01

    Modified compression molding process produces plastic molding compounds that are strong, homogeneous, free of residual stresses, and have improved ablative characteristics. The conventional method is modified by applying a vacuum to the mold during the molding cycle, using a volatile sink, and exercising precise control of the mold closure limits.

  20. Causes of strong ocean heating during glacial periods

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2013-12-01

    During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface are taken as constant. Energy income to the interior box from the geothermal heat flux is also taken as constant. Even though energy inputs are taken as constants, the model manages to recreate the glacial-interglacial cycles. In the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior box accumulates heat, while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal convection take place, and the ocean quickly (within 14,600 years) releases the heat. The magnitude and duration of such cycles correspond with magnitudes and durations reconstructed for actual glacial-interglacial cycles. From the proposed mechanism it follows that during the glaciations it is likely that the Arctic Ocean was a big reservoir of isotopically light fresh ice. If in a glacial period, the World Ocean were half filled with warm water from the Red Sea and bioproductivity of the ocean declined because of the slow circulation, then carbon storage within the ocean reservoir would decline by ~2000 Pg (10^15 g) of carbon.

  1. Box-Behnken statistical design to optimize thermal performance of energy storage systems

    NASA Astrophysics Data System (ADS)

    Jalalian, Iman Joz; Mohammadiun, Mohammad; Moqadam, Hamid Hashemi; Mohammadiun, Hamid

    2018-05-01

    Latent heat thermal storage (LHTS) is a technology that can help to reduce energy consumption for cooling applications, where the cold is stored in phase change materials (PCMs). In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing RT25 as phase change material (PCM). Process optimization of the experimental conditions (inlet air temperature and velocity and number of slabs) was carried out by means of Box-Behnken design (BBD) of Response surface methodology (RSM). Two parameters (cooling time and COP value) were chosen to be the responses. Both of the responses were significantly influenced by combined effect of inlet air temperature with velocity and number of slabs. Simultaneous optimization was performed on the basis of the desirability function to determine the optimal conditions for the cooling time and COP value. Maximum cooling time (186 min) and COP value (6.04) were found at optimum process conditions i.e. inlet temperature of (32.5), air velocity of (1.98) and slab number of (7).

  2. Surface (sea floor) and near-surface (box cores) sediment mineralogy in Baffin Bay as a key to sediment provenance and ice sheet variations

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.

    2011-01-01

    To better understand the glacial history of the ice sheets surrounding Baffin Bay and to provide information on sediment pathways, samples from 82 seafloor grabs and core tops, and from seven box cores were subjected to quantitative X-ray diffraction weight percent (wt.%) analysis of the 2000 m) all show an abrupt drop in calcite wt.% (post-5 cal ka BP?) following a major peak in detrital carbonate (mainly dolomite). This dolomite-rich detrital carbonate (DC) event in JR175BC06 is possibly coeval with the Younger Dryas cold event. Four possible glacial-sourced end members were employed in a compositional unmixing algorithm to gain insight into down core changes in sediment provenance at the deep central basin. Estimates of the rates of sediment accumulation in the central basin are only in the range of 2 to 4 cm/cal ka, surprisingly low given the glaciated nature of the surrounding land.

  3. Mold and Health

    EPA Pesticide Factsheets

    Molds have the potential to cause health problems. Molds produce allergens (substances that can cause allergic reactions) and irritants. Inhaling or touching mold or mold spores may cause allergic reactions in sensitive individuals.

  4. Mass mortality of eastern box turtles with upper respiratory disease following atypical cold weather.

    PubMed

    Agha, Mickey; Price, Steven J; Nowakowski, A Justin; Augustine, Ben; Todd, Brian D

    2017-04-20

    Emerging infectious diseases cause population declines in many ectotherms, with outbreaks frequently punctuated by periods of mass mortality. It remains unclear, however, whether thermoregulation by ectotherms and variation in environmental temperature is associated with mortality risk and disease progression, especially in wild populations. Here, we examined environmental and body temperatures of free-ranging eastern box turtles Terrapene carolina during a mass die-off coincident with upper respiratory disease. We recorded deaths of 17 turtles that showed clinical signs of upper respiratory disease among 76 adult turtles encountered in Berea, Kentucky (USA), in 2014. Of the 17 mortalities, 11 occurred approximately 14 d after mean environmental temperature dropped 2.5 SD below the 3 mo mean. Partial genomic sequencing of the major capsid protein from 1 sick turtle identified a ranavirus isolate similar to frog virus 3. Turtles that lacked clinical signs of disease had significantly higher body temperatures (23°C) than sick turtles (21°C) during the mass mortality, but sick turtles that survived and recovered eventually warmed (measured by temperature loggers). Finally, there was a significant negative effect of daily environmental temperature deviation from the 3 mo mean on survival, suggesting that rapid decreases in environmental temperature were correlated with mortality. Our results point to a potential role for environmental temperature variation and body temperature in disease progression and mortality risk of eastern box turtles affected by upper respiratory disease. Given our findings, it is possible that colder or more variable environmental temperatures and an inability to effectively thermoregulate are associated with poorer disease outcomes in eastern box turtles.

  5. MOLD-SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Molds can cause health problems like infections and allergies, destroy crops, and contaminate our food or pharmaceuticals. We can't avoid molds. Molds are essential players in the biological processes on earth, but we can now identify and quantify the molds that will be most pr...

  6. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    EPA Science Inventory

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  7. 92. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL MOLDS IN THE MORAVIAN POTTERY AND TILE WORKS COLLECTION, AND ARE USED TO PRESS TILES. THE FACTORY KEEPS TEN PRODUCTION MOLDS FOR EACH IMAGE. THE ORIGINAL MOLDS ARE NOT USED IN PRODUCTION. SAME VIEW AS PA-107-53. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  8. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L

    2013-12-31

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  9. Curbing indoor mold growth with mold inhibitors

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2004-01-01

    Environmentally acceptable mold inhibitors are needed to curb the growth of mold fungi in woodframe housing when moisture management measures fail. Excess indoor moisture can lead to rapid mold establishment which, in turn, can have deleterious affects on indoor air quality. Compounds with known mold inhibitory properties and low mammalian toxicity, such as food...

  10. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model**

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases. Damp/moldy environments have been associated with asthma exacerbation, but mold's role in allergic asthma induction is less clear. The molds selected for these studies are commonl...

  11. Method to Create Arbitrary Sidewall Geometries in 3-Dimensions Using Liga with a Stochastic Optimization Framework

    NASA Technical Reports Server (NTRS)

    Eyre, Francis B. (Inventor); Fink, Wolfgang (Inventor)

    2011-01-01

    Disclosed herein is a method of making a three dimensional mold comprising the steps of providing a mold substrate; exposing the substrate with an electromagnetic radiation source for a period of time sufficient to render the portion of the mold substrate susceptible to a developer to produce a modified mold substrate; and developing the modified mold with one or more developing reagents to remove the portion of the mold substrate rendered susceptible to the developer from the mold substrate, to produce the mold having a desired mold shape, wherein the electromagnetic radiation source has a fixed position, and wherein during the exposing step, the mold substrate is manipulated according to a manipulation algorithm in one or more dimensions relative to the electromagnetic radiation source; and wherein the manipulation algorithm is determined using stochastic optimization computations.

  12. X-ray clusters in a cold dark matter + lambda universe: A direct, large-scale, high-resolution, hydrodynamic simulation

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1994-01-01

    A new, three-dimensional, shock-capturing, hydrodynamic code is utilized to determine the distribution of hot gas in a cold dark matter (CDM) + lambda model universe. Periodic boundary conditions are assumed: a box with size 85/h Mpc, having cell size 0.31/h Mpc, is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. We adopt omega = 0.45, lambda = 0.55, h identically equal to H/100 km/s/Mpc = 0.6, and then, from the cosmic background explorer (COBE) and light element nucleosynthesis, sigma(sub 8) = 0.77, omega(sub b) = 0.043. We identify the X-ray emitting clusters in the simulation box, compute the luminosity function at several wavelength bands, the temperature function and estimated sizes, as well as the evolution of these quantities with redshift. This open model succeeds in matching local observations of clusters in contrast to the standard omega = 1, CDM model, which fails. It predicts an order of magnitude decline in the number density of bright (h nu = 2-10 keV) clusters from z = 0 to z = 2 in contrast to a slight increase in the number density for standard omega = 1, CDM model. This COBE-normalized CDM + lambda model produces approximately the same number of X-ray clusters having L(sub x) greater than 10(exp 43) erg/s as observed. The background radiation field at 1 keV due to clusters is approximately the observed background which, after correction for numerical effects, again indicates that the model is consistent with observations.

  13. Trigeminal Inflammatory Compression (TIC) Injury Induces Chronic Facial Pain and Susceptibility to Anxiety-Related Behaviors

    PubMed Central

    Lyons, Danielle N.; Kniffin, Tracey C.; Zhang, Liping; Danaher, Robert J.; Miller, Craig S.; Bocanegra, Jose L.; Carlson, Charles R.; Westlund, Karin N.

    2015-01-01

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week 8 post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury which resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model’s chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. PMID:25818051

  14. Mold Testing or Sampling

    EPA Pesticide Factsheets

    In most cases, if visible mold growth is present, sampling is unnecessary. Since no EPA or other federal limits have been set for mold or mold spores, sampling cannot be used to check a building's compliance with federal mold standards.

  15. Method for making an elastomeric member with end pieces

    DOEpatents

    Hoppie, L.O.; McNinch, J.H. Jr.; Nowell, G.C.

    1984-10-23

    A molding process is described for molding an elongated elastomeric member with wire mesh sleeves bonded to the ends. A molding preform of elastomeric material is positioned within a seamless mold cylinder, and the open ends of the wire mesh sleeves are mounted to end plug assemblies slidably received into the mold cylinder and positioned against the ends of the preform. A specialized profile is formed into surfaces of the respective end plug assemblies and by heating of the mold, the ends of the elastomeric preform are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves. Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces there through. The completed elastomeric member is removed from the mold cylinder by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder and removal thereof. 9 figs.

  16. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  17. Exploring the problem of mold growth and the efficacy of various mold inhibitor methods during moisture sorption isotherm measurements.

    PubMed

    Yu, X; Martin, S E; Schmidt, S J

    2008-03-01

    Mold growth is a common problem during the equilibration of food materials at high relative humidity values using the standard saturated salt slurry method. Exposing samples to toluene vapor and mixing samples with mold inhibitor chemicals are suggested methods for preventing mold growth while obtaining isotherms. However, no published research was found that examined the effect of mold growth on isotherm performance or the efficacy of various mold inhibitor methods, including their possible effect on the physicochemical properties of food materials. Therefore, the objectives of this study were to (1) explore the effect of mold growth on isotherm performance in a range of food materials, (2) investigate the effectiveness of 4 mold inhibitor methods, irradiation, 2 chemical inhibitors (potassium sorbate and sodium acetate), and toluene vapor, on mold growth on dent corn starch inoculated with A. niger, and (3) examine the effect of mold inhibitor methods on the physicochemical properties of dent corn starch, including isotherm performance, pasting properties, gelatinization temperature, and enthalpy. Mold growth was found to affect starch isotherm performance by contributing to weight changes during sample equilibration. Among the 4 mold inhibitor methods tested, irradiation and toluene vapor were found to be the most effective for inhibiting growth of A. niger on dent cornstarch. However, both methods exhibited a significant impact on the starches' physiochemical properties, suggesting the need to probe the efficacy of other mold inhibitor methods and explore the use of new rapid isotherm instruments, which hamper mold growth by significantly decreasing measurement time.

  18. Lactobacillus plantarum 29 inhibits Penicillium spp. involved in the spoilage of black truffles (Tuber aestivum).

    PubMed

    Sorrentino, Elena; Reale, Anna; Tremonte, Patrizio; Maiuro, Lucia; Succi, Mariantonietta; Tipaldi, Luca; Di Renzo, Tiziana; Pannella, Gianfranco; Coppola, Raffaele

    2013-08-01

    The effect of an antifungal culture of Lactobacillus plantarum to be used in the storage at refrigeration temperature of fresh black truffles was examined. The strain was selected among 29 lactobacilli isolated from foods and evaluated for their viability and acidification activity at 4 °C, as well as for their inhibitory activity against 11 Penicillium strains isolated from truffles stored at refrigeration temperature. Lb. plantarum 29 showed the ability to hold not only the growth of Penicillium isolated from truffles, but also that of P. digitatum DSM 2750, a green mold involved in the spoilage of truffles. The antifungal activity was observed in vitro and in situ, and the sensory characteristics of truffles were preserved during the cold storage. © 2013 Institute of Food Technologists®

  19. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and... CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites... Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and...

  20. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  1. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  2. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  3. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    NASA Astrophysics Data System (ADS)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-02-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  4. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    NASA Astrophysics Data System (ADS)

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  5. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  6. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  7. Method for encapsulating hazardous wastes using a staged mold

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  8. Environmental Sustainability and Mold Hygiene in Buildings

    PubMed Central

    Ng, Tsz Wai; Lai, Ka Man

    2018-01-01

    Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management. PMID:29617339

  9. Environmental Sustainability and Mold Hygiene in Buildings.

    PubMed

    Wu, Haoxiang; Ng, Tsz Wai; Wong, Jonathan Wc; Lai, Ka Man

    2018-04-04

    Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  10. Description of Aspergillus flavus growth under the influence of different factors (water activity, incubation temperature, protein and fat concentration, pH, and cinnamon essential oil concentration) by kinetic, probability of growth, and time-to-detection models.

    PubMed

    Kosegarten, Carlos E; Ramírez-Corona, Nelly; Mani-López, Emma; Palou, Enrique; López-Malo, Aurelio

    2017-01-02

    A Box-Behnken design was used to determine the effect of protein concentration (0, 5, or 10g of casein/100g), fat (0, 3, or 6g of corn oil/100g), a w (0.900, 0.945, or 0.990), pH (3.5, 5.0, or 6.5), concentration of cinnamon essential oil (CEO, 0, 200, or 400μL/kg) and incubation temperature (15, 25, or 35°C) on the growth of Aspergillus flavus during 50days of incubation. Mold response under the evaluated conditions was modeled by the modified Gompertz equation, logistic regression, and time-to-detection model. The obtained polynomial regression models allow the significant coefficients (p<0.05) for linear, quadratic and interaction effects for the Gompertz equation's parameters to be identified, which adequately described (R 2 >0.967) the studied mold responses. After 50days of incubation, every tested model system was classified according to the observed response as 1 (growth) or 0 (no growth), then a binary logistic regression was utilized to model A. flavus growth interface, allowing to predict the probability of mold growth under selected combinations of tested factors. The time-to-detection model was utilized to estimate the time at which A. flavus visible growth begins. Water activity, temperature, and CEO concentration were the most important factors affecting fungal growth. It was observed that there is a range of possible combinations that may induce growth, such that incubation conditions and the amount of essential oil necessary for fungal growth inhibition strongly depend on protein and fat concentrations as well as on the pH of studied model systems. The probabilistic model and the time-to-detection models constitute another option to determine appropriate storage/processing conditions and accurately predict the probability and/or the time at which A. flavus growth occurs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Method for making an elastomeric member with end pieces

    DOEpatents

    Hoppie, Lyle O.; McNinch, Jr., Joseph H.; Nowell, Gregory C.

    1984-01-01

    A molding process for molding an elongated elastomeric member (60) with wire mesh sleeves (16) bonded to the ends (14). A molding preform (10) of elastomeric material is positioned within a seamless mold cylinder (26), and the open ends of the wire mesh sleeves (16) are mounted to end plug assemblies (30) slidably received into the mold cylinder (26) and positioned against the ends (14) of the preform (10). A specialized profile is formed into surfaces (44) of the respective end plug assemblies (30) and by heating of the mold (26), the ends (14) of the elastomeric preform (10) are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves (16). Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces therethrough. The completed elastomeric member (60) is removed from the mold cylinder (26) by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder (26) and removal thereof.

  12. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Stuart S; Samulski, Edward; Lopez, Renee

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less

  13. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    NASA Astrophysics Data System (ADS)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan; Pranov, Henrik J.; Larsen, Niels B.

    2015-03-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes.

  14. Effect of Cross Sectional Geometry on PDMS Micro Peristaltic Pump Performance: Comparison of SU-8 Replica Molding vs. Micro Injection Molding

    PubMed Central

    Graf, Neil J.

    2013-01-01

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM).1 The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold’s bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold’s bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263

  15. Challenges in mold manufacturing for high precision molded diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas

    2016-09-01

    Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.

  16. Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian K.; Chesser, Phillip C.; Lind, Randall F.

    The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. andmore » the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.« less

  17. Volunteers build Bay St. Louis playground

    NASA Image and Video Library

    2005-12-17

    More than 650 volunteers - many of them employees at NASA's Stennis Space Center - weathered rain and cold to transform Bay St. Louis' old City Park into a playground Dec. 17. Volunteers assembled and erected a slide, swing set, jungle gym, sand box and planter benches in an eight-hour time frame. The playground was the first new structure built in the town devastated by Hurricane Katrina and the first on the Gulf Coast after the storm. The project was financed and led by nonprofit organization KaBOOM!, whose vision is to create a great place to play within walking distance of every child in America.

  18. Volunteers build Bay St. Louis playground

    NASA Technical Reports Server (NTRS)

    2005-01-01

    More than 650 volunteers - many of them employees at NASA's Stennis Space Center - weathered rain and cold to transform Bay St. Louis' old City Park into a playground Dec. 17. Volunteers assembled and erected a slide, swing set, jungle gym, sand box and planter benches in an eight-hour time frame. The playground was the first new structure built in the town devastated by Hurricane Katrina and the first on the Gulf Coast after the storm. The project was financed and led by nonprofit organization KaBOOM!, whose vision is to create a great place to play within walking distance of every child in America.

  19. The IASI cold box subsystem (CBS) a passive cryocooler for cryogenic detectors and optics

    NASA Astrophysics Data System (ADS)

    Bailly, B.; Courteau, P.; Maciaszek, T.

    2017-11-01

    In space, cooling down Infra Red detectors and optics to cryogenic temperature raises always the same issue : what is the best way to manage simultaneously thermal cooling, stability, mechanical discoupling and accurate focal plane components location, in a lightweight and compact solution? The passive cryocooler developed by Alcatel SPace Industries under CNES contract in the frame of the IASI instrument (Infrared Atmospheric Sounding Interferometer), offers an efficient solution for 90K to 100K temperature levels. We intend you to present the architecture and performance validation plan of the CBS.

  20. Conceptual study of the cryostats for the cold powering system for the triplets of the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Ballarino, A.; Giannelli, S.; Jacquemod, A.; Leclercq, Y.; Ortiz Ferrer, C.; Parma, V.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project aiming to upgrade the Large Hadron Collider (LHC) after 2020-2025 in order to increase the integrated luminosity by about one order of magnitude and extend the operational capabilities until 2035. The upgrade of the focusing triplet insertions for the Atlas and CMS experiments foresees using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. The increased radiation levels from the particle debris produced by particle collisions in the experiments require that the power converters are placed in radiation shielded zones located in a service gallery adjacent to the main tunnel. The powering of the magnets from the gallery is achieved by means of MgB2 superconducting cables in a 100-m long flexible cryostat transfer line, actively cooled by 4.5 K to 20 K gaseous helium generated close to the magnets. At the highest temperature end, the helium flow cools the High Temperature Superconducting (HTS) current leads before being recovered at room temperature. At the magnet connection side, a dedicated connection box allows connection to the magnets and a controlled boil-off production of helium for the cooling needs of the powering system. This paper presents the overall concept of the cryostat system from the magnet connection boxes, through the flexible cryostat transfer line, to the connection box of the current leads.

  1. Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana.

    PubMed

    Song, Shun; Xu, Yi; Huang, Dongmei; Miao, Hongxia; Liu, Juhua; Jia, Caihong; Hu, Wei; Valarezo, Ana Valeria; Xu, Biyu; Jin, Zhiqiang

    2018-07-01

    Drought and salt stresses often affect plant growth and crop yields. Identification of promoters involved in drought and salt stress responses is of great significance for genetic improvement of crop resistance. Our previous studies showed that aquaporin can respond to drought and salt stresses, but its promoter has not yet been reported in plants. In the present study, cis-acting elements of MaAQP family member promoters were systematically analyzed in banana. Expression of MaTIP1; 2 was induced by drought and salt stresses but not sensitive to cold stress, waterlogging stress, or mechanical damage, and its promoter contained five stress-related cis-acting elements. The MaTIP1; 2 promoter (841 bp upstream of translation initiation site) from banana (Musa acuminata L. AAA group cv. Brazilian) was isolated through genome walking polymerase chain reaction, and found to contain a TATA Box, CAAT box, ABRE element, CCGTCC box, CGTCA motif, and TCA element. Transformation of the MaTIP1; 2 promoter into Arabidopsis to assess its function indicated that it responds to both drought and salt stress treatments. These results suggest that MaTIP1; 2 utilization may improve drought and salt stresses resistance of the transgenic plants by promoting banana aquaporin expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Nicosulfuron Biodegradation by a Novel Cold-Adapted Strain Oceanisphaera psychrotolerans LAM-WHM-ZC.

    PubMed

    Zhou, Shan; Song, Jinlong; Dong, Weiwei; Mu, Yingchun; Zhang, Qi; Fan, Ziwen; Wang, Yanwei; Kong, Delong; Zhou, Yiqing; Jiang, Xu; Zhao, Bin; Han, Gang; Ruan, Zhiyong

    2017-11-29

    Nicosulfuron is a common environmental pollutant, posing a great threat to aquatic systems and causing significant damage to crops. This study reported a cold-adapted strain Oceanisphaera psychrotolerans LAM-WHM-ZC, which efficiently degrades nicosulfuron over a wide range of temperatures (5 to 40 °C). The Box-Behnken design method was used to optimize the degradation conditions. O. psychrotolerans LAM-WHM-ZC can degrade 92.4% and 74.6% of initially supplemented 100 mg/L nicosulfuron under the optimum and low temperature of 18.1 and 5 °C, respectively, within 7 days. O. psychrotolerans LAM-WHM-ZC was found to be highly efficient in degrading cinosulfuron, chlorsulfuron, rimsulfuron, bensulfuron methyl, and ethametsulfuron methyl. Metabolites from nicosulfuron degradation were identified by UPLC-MS, and a possible degradation pathway was proposed. Furthermore, O. psychrotolerans LAM-WHM-ZC can also degrade nicosulfuron in soil; 78.6% and 67.4% of the initial nicosulfuron supplemented at 50 mg/kg were removed at 18.1 and 5 °C, respectively, within 15 days.

  3. Fabrication of robust tooling for mass production of polymeric microfluidic devices

    NASA Astrophysics Data System (ADS)

    Fu, G.; Tor, S. B.; Loh, N. H.; Hardt, D. E.

    2010-08-01

    Polymer microfluidic devices are gaining popularity for bio-applications. In both commonly used methods for the fabrication of polymer microfluidic devices, i.e. injection molding and hot-embossing, the quality of a mold insert is of high importance. Micro powder injection molding (μPIM) provides a suitable option for metal mold insert fabrication. In this paper, two mold inserts with micro-features of different patterns and sizes were produced using 316L stainless steel powder and an in-house binder system. The mold inserts were successfully used to produce cyclic olefin copolymer (COC, trade name TOPAS) micromixer plates with micro-channels of widths 100 µm and 50 µm. Compared with CNC-machined hot work steel mold inserts, the quality of the micro-channels is better as far as geometrical quality and dimensional tolerance are concerned. However, surface finish and flatness of the μPIM mold inserts are inferior to those of CNC-machined mold inserts.

  4. Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features

    NASA Astrophysics Data System (ADS)

    Park, Keun; Lee, Sang-Ik

    2010-03-01

    High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.

  5. Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al-Si alloy castings made in sand and Fe-Cr slag molds

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, I.; Babu Rao, J.

    2017-07-01

    The microstructure and mechanical properties of as-cast A356 (Al-Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome (Fe-Cr) slag, and a mixture of sand and Fe-Cr. A sodium silicate-CO2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing (SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe-Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe-Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe-Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds.

  6. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner.

    PubMed

    Zhang, Ying; Yu, Hongjun; Yang, Xueyong; Li, Qiang; Ling, Jian; Wang, Hong; Gu, Xingfang; Huang, Sanwen; Jiang, Weijie

    2016-11-01

    Plant WRKY transcription factors are trans-regulatory proteins that are involved in plant immune responses, development and senescence; however, their roles in abiotic stress are still not well understood, especially in the horticultural crop cucumber. In this study, a novel cucumber WRKY gene, CsWRKY46 was cloned and identified, which was up-regulated in response to cold stress and exogenous abscisic acid (ABA) treatment. CsWRKY46 is belonging to group II of the WRKY family, CsWRKY46 was found exclusively in the nucleus, as indicated by a transient expression assay. Yeast one-hybrid assay shown that CsWRKY46 interact with the W-box in the promoter of ABI5. Transgenic Arabidopsis lines over-expressing CsWRKY46, WRK46-OE1 and WRK46-OE5 had higher seedling survival rates upon freezing treatment compared with that of the wild-type. The above over-expression lines also showed much a higher proline accumulation, less electrolyte leakage and lower malondialdehyde (MDA) levels. Furthermore, the CsWRKY46 overexpression lines were hypersensitive to ABA during seed germination, but the seedlings were not. Quantitative RT-PCR analyses revealed that the expression levels of the ABA-responsive transcription factor ABI5 were higher in the WRKY46-OE lines than in wild-type and that the overexpression of CsWRKY46 increased the expression of stress-inducible genes, including RD29A and COR47. Taken together, our results demonstrated that CsWRKY46 from cucumber conferred cold tolerance to transgenic plants and positively regulated the cold signaling pathway in an ABA-dependent manner. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Systemic salt loading decreases body temperature and increases heat-escape/cold-seeking behaviour via the central AT1 and V1 receptors in rats.

    PubMed

    Konishi, Masahiro; Nagashima, Kei; Kanosue, Kazuyuki

    2002-11-15

    Salt loading decreases body core temperature (T(core)) at neutral ambient temperature (26 degrees C) and increases heat-escape/cold-seeking behaviour in desalivated rats. In this study, we tested the hypothesis that brain angiotensin II (AII) and arginine vasopressin (AVP) are associated with these responses. Surgically desalivated rats (n = 28) were administered an injection (S.C., 10 ml kg(-1)) of either normal saline (154 mM, NS) or hypertonic saline (2500 mM, HS) following an intracerebroventricular injection (10 microl kg(-1)) of an AII AT(1)-receptor antagonist (candesartan, 5 microg microl(-1)), an AVP V(1)-receptor antagonist ((beta-mercapto-beta, beta-cyclopenta-methylene propionyl(1), O-Me-Tyr(2), Arg(8))-vasopressin, 0.5 microg microl(-1)), or normal saline (154 mM). Each rat was placed in a behaviour box, first at 26 degrees C for 1 h to allow the measurement of baseline T(core) and movement. The ambient temperature was then elevated to 40 degrees C for the next 2 h, during which time the rat was able to trigger a 0 degrees C air reward for 30 s by moving into a specific area of the box (operant behaviour). The S.C. HS significantly decreased baseline T(core) at 26 degrees C (36.5 +/- 0.1 degrees C) and increased counts of operant behaviour at 40 degrees C (57 +/- 3) compared with results obtained following S.C. NS injection (37.4 +/- 0.1 degrees C and 42 +/- 1, respectively). These responses to s.c. HS were inhibited by the intracerebroventricular injection of AT(1) (37.3 +/- 0.1 degrees C and 43 +/- 2, respectively; P < 0.05) and V(1) antagonists (37.2 +/- 0.2 degrees C and 42 +/- 2, respectively; P < 0.05), although administration of both antagonists with S.C. NS had no effect. These results suggest that brain AII and AVP are involved in the decrease in T(core) observed at neutral ambient temperature and the increase in heat-escape/cold-seeking behaviour in response to osmotic stimulation, via the central AT(1) and V(1) receptors, respectively

  8. A DEAD-box RNA helicase promotes thermodynamic equilibration of kinetically trapped RNA structures in vivo.

    PubMed

    Ruminski, Dana J; Watson, Peter Y; Mahen, Elisabeth M; Fedor, Martha J

    2016-03-01

    RNAs must assemble into specific structures in order to carry out their biological functions, but in vitro RNA folding reactions produce multiple misfolded structures that fail to exchange with functional structures on biological time scales. We used carefully designed self-cleaving mRNAs that assemble through well-defined folding pathways to identify factors that differentiate intracellular and in vitro folding reactions. Our previous work showed that simple base-paired RNA helices form and dissociate with the same rate and equilibrium constants in vivo and in vitro. However, exchange between adjacent secondary structures occurs much faster in vivo, enabling RNAs to quickly adopt structures with the lowest free energy. We have now used this approach to probe the effects of an extensively characterized DEAD-box RNA helicase, Mss116p, on a series of well-defined RNA folding steps in yeast. Mss116p overexpression had no detectable effect on helix formation or dissociation kinetics or on the stability of interdomain tertiary interactions, consistent with previous evidence that intracellular factors do not affect these folding parameters. However, Mss116p overexpression did accelerate exchange between adjacent helices. The nonprocessive nature of RNA duplex unwinding by DEAD-box RNA helicases is consistent with a branch migration mechanism in which Mss116p lowers barriers to exchange between otherwise stable helices by the melting and annealing of one or two base pairs at interhelical junctions. These results suggest that the helicase activity of DEAD-box proteins like Mss116p distinguish intracellular RNA folding pathways from nonproductive RNA folding reactions in vitro and allow RNA structures to overcome kinetic barriers to thermodynamic equilibration in vivo. © 2016 Ruminski et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Environmental Mold and Mycotoxin Exposures Elicit Specific Cytokine and Chemokine Responses

    PubMed Central

    Rosenblum Lichtenstein, Jamie H.; Hsu, Yi-Hsiang; Gavin, Igor M.; Donaghey, Thomas C.; Molina, Ramon M.; Thompson, Khristy J.; Chi, Chih-Lin; Gillis, Bruce S.; Brain, Joseph D.

    2015-01-01

    Background Molds can cause respiratory symptoms and asthma. We sought to use isolated peripheral blood mononuclear cells (PBMCs) to understand changes in cytokine and chemokine levels in response to mold and mycotoxin exposures and to link these levels with respiratory symptoms in humans. We did this by utilizing an ex vivo assay approach to differentiate mold-exposed patients and unexposed controls. While circulating plasma chemokine and cytokine levels from these two groups might be similar, we hypothesized that by challenging their isolated white blood cells with mold or mold extracts, we would see a differential chemokine and cytokine release. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from blood from 33 patients with a history of mold exposures and from 17 controls. Cultured PBMCs were incubated with the most prominent Stachybotrys chartarum mycotoxin, satratoxin G, or with aqueous mold extract, ionomycin, or media, each with or without PMA. Additional PBMCs were exposed to spores of Aspergillus niger, Cladosporium herbarum and Penicillium chrysogenum. After 18 hours, cytokines and chemokines released into the culture medium were measured by multiplex assay. Clinical histories, physical examinations and pulmonary function tests were also conducted. After ex vivo PBMC exposures to molds or mycotoxins, the chemokine and cytokine profiles from patients with a history of mold exposure were significantly different from those of unexposed controls. In contrast, biomarker profiles from cells exposed to media alone showed no difference between the patients and controls. Conclusions These findings demonstrate that chronic mold exposures induced changes in inflammatory and immune system responses to specific mold and mycotoxin challenges. These responses can differentiate mold-exposed patients from unexposed controls. This strategy may be a powerful approach to document immune system responsiveness to molds and other inflammation-inducing environmental agents. PMID:26010737

  10. Development of In-Mold Assembly Methods for Producing Mesoscale Revolute Joints

    DTIC Science & Technology

    2009-01-01

    tolerances available for manufacturing the molds are relatively low. Any inaccuracy in mold First stage part (ABS) Second stage part ( LDPE ) Pins...case, the viscosity of LDPE is also a function of temperature. For each of these cases, they have considered the filling of a thin mold cavity. From...predicting the weld-line strengths of crystalline polymers such as LDPE . 63 3 Issues in In-Mold Assembly at the Mesoscale 3.1 Motivation In-mold

  11. Fabrication of metallic microstructures by micromolding nanoparticles

    DOEpatents

    Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  12. Design and Fabrication of FRP Truck Trailer Side Racks.

    DTIC Science & Technology

    1983-08-01

    0.100 in. All contact surfaces in the mold were sealed with white shellac and finished with five coats of carnauba wax . The completed mold is shown in...Figure 10. 15 II Figure 10. FRP prototype mold. FRP molding procedures were duplicated for each part produced. In general, the waxed mold was coated

  13. ILLUSTRATED HANDBOOK OF SOME COMMON MOLDS.

    ERIC Educational Resources Information Center

    CHANDLER, MARION N.

    THIS DOCUMENT IS A PICTURE GUIDE FOR THE IDENTIFICATION OF TEN COMMON MOLDS. IT IS DESIGNED FOR USE WITH THE ELEMENTARY SCIENCE STUDY UNIT "MICROGARDENING" AND IS SUGGESTED FOR UPPER ELEMENTARY GRADES. INCLUDED FOR EACH MOLD ARE COLOR PHOTOGRAPHS AND PHOTOMICROGRAPHS OF THE INTACT MOLD MASS AND OF THE MOLD'S SPORE PRODUCING STRUCTURES.…

  14. 40 CFR Table 9 to Subpart Wwww of... - Initial Compliance With Work Practice Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compression/injection molding uncover, unwrap or expose only one charge per mold cycle per compression/injection molding machine. For machines with multiple molds, one charge means sufficient material to fill... cycle per compression/injection molding machine, or prior to the loader, hoppers are closed except when...

  15. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  16. Tolerance of Low Temperature and Sterilizing Irradiation in Males of Glossina pallidipes (Diptera: Glossinidae)

    PubMed Central

    Mutika, Gratian Nyambirai; Parker, Andrew Gordon

    2014-01-01

    Abstract Investigations into the possibility of using the chilled adult release system are continuing as an alternative method to the release of sterile tsetse flies, Glossina pallidipes Austen (Diptera: Glossinidae) in cardboard boxes. Exposing tsetse flies to 4°C for 6 h caused negligible mortality. A combination of chilling and irradiation resulted in reduced quantities of seminal contents being transferred to females. Mortality of flies after bulk irradiation was lower when a thermos flask was used than expanded polystyrene. Mortality after removal from cold storage increased with age. Flies that did not have a blood meal for 3 d prior to exposure to cold had a lower overnight survival than flies that were deprived of a blood meal for 1 or 2 d. Exposure of adult male tsetse flies to low temperature should be for as short a duration as is practical, so that the fitness of the released sterile flies is not unduly compromised. It is also necessary to ensure that losses are minimized during bulk irradiation of adult flies. It would be desirable to have minimal losses after the combined effects of irradiation, cold, and transportation, such that a sufficient number of sterile male flies will still be available to successfully compete for mating opportunities with wild females. PMID:25527576

  17. Mold exposure and health effects following hurricanes Katrina and Rita.

    PubMed

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  18. Mold prevention strategies and possible health effects in the aftermath of hurricanes and major floods.

    PubMed

    Brandt, Mary; Brown, Clive; Burkhart, Joe; Burton, Nancy; Cox-Ganser, Jean; Damon, Scott; Falk, Henry; Fridkin, Scott; Garbe, Paul; McGeehin, Mike; Morgan, Juliette; Page, Elena; Rao, Carol; Redd, Stephen; Sinks, Tom; Trout, Douglas; Wallingford, Kenneth; Warnock, David; Weissman, David

    2006-06-09

    Extensive water damage after major hurricanes and floods increases the likelihood of mold contamination in buildings. This report provides information on how to limit exposure to mold and how to identify and prevent mold-related health effects. Where uncertainties in scientific knowledge exist, practical applications designed to be protective of a person's health are presented. Evidence is included about assessing exposure, clean-up and prevention, personal protective equipment, health effects, and public health strategies and recommendations. The recommendations assume that, in the aftermath of major hurricanes or floods, buildings wet for <48 hours will generally support visible and extensive mold growth and should be remediated, and excessive exposure to mold-contaminated materials can cause adverse health effects in susceptible persons regardless of the type of mold or the extent of contamination. For the majority of persons, undisturbed mold is not a substantial health hazard. Mold is a greater hazard for persons with conditions such as impaired host defenses or mold allergies. To prevent exposure that could result in adverse health effects from disturbed mold, persons should 1) avoid areas where mold contamination is obvious; 2) use environmental controls; 3) use personal protective equipment; and 4) keep hands, skin, and clothing clean and free from mold-contaminated dust. Clinical evaluation of suspected mold-related illness should follow conventional clinical guidelines. In addition, in the aftermath of extensive flooding, health-care providers should be watchful for unusual mold-related diseases. The development of a public health surveillance strategy among persons repopulating areas after extensive flooding is recommended to assess potential health effects and the effectiveness of prevention efforts. Such a surveillance program will help CDC and state and local public health officials refine the guidelines for exposure avoidance, personal protection, and clean-up and assist health departments to identify unrecognized hazards.

  19. Interim Report on Mixing During the Casting of LEU-10Mo Plates in the Triple Plate Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikin, Jr., Robert M.

    LEU-10%Mo castings are commonly produced by down blending unalloyed HEU with a DU-12.7%Mo master-alloy. This work uses process modeling to provide insight into the mixing of the unalloyed uranium and U-Mo master alloy during melting and mold filling of a triple plate casting. Two different sets of situations are considered: (1) mixing during mold filling from a compositionally stratified crucible and (2) convective mixing of a compositionally stratified crucible during mold heating. The mold filling simulations are performed on the original Y-12 triple plate mold and the horizontal triple plate mold.

  20. Cryogenic Storage Tank Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    This slide presentation reviews the work in non-destructive evaluation (NDE) of cryogenic storage tanks. Four large cryogenic tanks, constructed in 1965 with perlite insulation in the annular regions, are of concern. The construction of the tanks, two Liquid Oxygen (LOX) and two Liquid Hydrogen (LH2), are described. The loss rate for the LOX tank at Pad A is slightly higher than that for the one at Pad B. The concerns for the LH2 tank at Pad B are that there is a significantly higher boil-off rate than that at Pad A, that there is mold growth, indicative of increased heat flow, that there is a long down-time needed for repairs, and that 3 of 5 full thermal cycles have been used on the Pad B LH2 tank. The advantages and disadvantages of thermal imaging are given. A detailed description of what is visible of the structures in the infra-red is given and views of the thermal images are included. Missing Perlite is given as the probable cause of the cold spot on the Pad B LH2 tank. There is no indications of problematic cold regions on the Pad A LH2 tank, as shown by the thermal images given in the presentation. There is definite indication of a cold region on the Pad A LOX tank. There is however concerns with thermal imaging, as thermal images can be significantly effected by environmental conditions, image differences on similar days but with different wind speeds. Other effects that must be considered include ambient temperature, humidity levels/dew, and cloud reflections

  1. Comparative evaluation of fracture resistance of root canals obturated with four different obturating systems

    PubMed Central

    Punjabi, Mansi; Dewan, Ruchika Gupta; Kochhar, Rohit

    2017-01-01

    Aim and Objectives: The aim of this study is to evaluate and compare the fracture resistance of root canals obturated with four different obturating systems in endodontically treated teeth. Materials and Methods: One hundred and twenty single-rooted teeth were selected and decoronated at cementoenamel junction. Instrumentation of teeth (except control group) was done with Mtwo rotary files up to size 25/0.06 using a step-back technique. All teeth were divided into four experimental groups (n = 25) and two control groups (n = 10). In Group I (negative control), teeth were neither instrumented nor obturated, in Group II (positive control), instrumentation was done, but no obturation was performed, in Group III, obturation was done with cold lateral compaction technique, in Group IV, obturation was done with cold free-flow compaction technique, in Group V, obturation was done with warm vertical compaction technique, and in Group VI, obturation was done with injection-molded thermoplasticized technique. All prepared teeth were embedded in an acrylic resin block, and their fracture strength was measured using Universal Testing Machine. Statistical data were analyzed using one-way analysis of variance and Tukey's honestly significant difference test. Results: Negative control Group I showed highest fracture resistance and positive control Group II had lowest fracture resistance. Among experimental groups, cold free-flow compaction technique with GuttaFlow2 (Group IV) showed higher fracture resistance as compared to the Group III, Group V, and Group VI. Conclusion: GuttaFlow2 has the potential to strengthen the endodontically treated roots to a level that is similar to that of intact teeth. PMID:29430099

  2. Comparative evaluation of fracture resistance of root canals obturated with four different obturating systems.

    PubMed

    Punjabi, Mansi; Dewan, Ruchika Gupta; Kochhar, Rohit

    2017-01-01

    The aim of this study is to evaluate and compare the fracture resistance of root canals obturated with four different obturating systems in endodontically treated teeth. One hundred and twenty single-rooted teeth were selected and decoronated at cementoenamel junction. Instrumentation of teeth (except control group) was done with Mtwo rotary files up to size 25/0.06 using a step-back technique. All teeth were divided into four experimental groups ( n = 25) and two control groups ( n = 10). In Group I (negative control), teeth were neither instrumented nor obturated, in Group II (positive control), instrumentation was done, but no obturation was performed, in Group III, obturation was done with cold lateral compaction technique, in Group IV, obturation was done with cold free-flow compaction technique, in Group V, obturation was done with warm vertical compaction technique, and in Group VI, obturation was done with injection-molded thermoplasticized technique. All prepared teeth were embedded in an acrylic resin block, and their fracture strength was measured using Universal Testing Machine. Statistical data were analyzed using one-way analysis of variance and Tukey's honestly significant difference test. Negative control Group I showed highest fracture resistance and positive control Group II had lowest fracture resistance. Among experimental groups, cold free-flow compaction technique with GuttaFlow2 (Group IV) showed higher fracture resistance as compared to the Group III, Group V, and Group VI. GuttaFlow2 has the potential to strengthen the endodontically treated roots to a level that is similar to that of intact teeth.

  3. Development of processes and techniques for molding thermally stable, fire-retardant, low-smoke-emitting polymeric materials

    NASA Technical Reports Server (NTRS)

    Silverman, B.

    1979-01-01

    All available newly developed nonmetallic thermally stable polymers were examined for the development of processes and techniques by compression molding, injection molding, or thermoforming cabin interior parts. Efforts were directed toward developing molding techniques of new polymers to economically produce usable nonmetallic molded parts. Data on the flame resistant characteristics of the materials were generated from pilot plant batches. Preliminary information on the molding characteristics of the various thermoplastic materials was obtained by producing actual parts.

  4. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  5. Response of microRNAs to cold treatment in the young spikes of common wheat.

    PubMed

    Song, Guoqi; Zhang, Rongzhi; Zhang, Shujuan; Li, Yulian; Gao, Jie; Han, Xiaodong; Chen, Mingli; Wang, Jiao; Li, Wei; Li, Genying

    2017-02-28

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat.

  6. The origins of the vaccine cold chain and a glimpse of the future.

    PubMed

    Lloyd, John; Cheyne, James

    2017-04-19

    International efforts to eradicate smallpox in the 1960s and 1970s provided the foundation for efforts to expand immunization programmes, including work to develop immunization supply chains. The need to create a reliable system to keep vaccines cold during the lengthy journey from the manufacturer to the point of use, even in remote areas, was a crucial concern during the early days of the Expanded Programme on Immunization. The vaccine cold chain was deliberately separated from other medical distribution systems to assure timely access to and control of vaccines and injection materials. The story of the early development of the vaccine cold chain shows how a number of challenges were overcome with technological and human resource solutions. For example, the lack of methods to monitor exposure of vaccines to heat during transport and storage led to many innovations, including temperature-sensitive vaccine vial monitors and better methods to record and communicate temperatures in vaccine stores. The need for appropriate equipment to store and transport vaccines in tropical developing countries led to innovations in refrigeration equipment as well as the introduction and widespread adoption of novel high performance vaccine cold-boxes and carriers. New technologies also helped to make injection safer. Underlying this work on technologies and equipment was a major effort to develop the human resources required to manage and implement the immunization supply chain. This included creating foundational policies and a management infrastructure; providing training for managers, health workers, technicians, and others. The vaccine cold chain has contributed to one of the world's public health success stories and provides three priority lessons for future: the vaccine supply chain needs to be integrated with other public health supplies, re-designed for efficiency and effectiveness and work is needed in the longer term to eliminate the need for refrigeration in the supply chain. Copyright © 2017. Published by Elsevier Ltd.

  7. Toward understanding life under subzero conditions: the significance of exploring psychrophilic "cold-shock" proteins.

    PubMed

    Kuhn, Emanuele

    2012-11-01

    Understanding the behavior of proteins under freezing conditions is vital for detecting and locating extraterrestrial life in cold environments, such as those found on Mars and the icy moons of Jupiter and Saturn. This review highlights the importance of studying psychrophilic "cold-shock" proteins, a topic that has yet to be explored. A strategy for analyzing the psychrophilic RNA helicase protein CsdA (Psyc_1082) from Psychrobacter arcticus 273-4 as a key protein for life under freezing temperatures is proposed. The experimental model presented here was developed based on previous data from investigations of Escherichia coli, P. arcticus 273-4, and RNA helicases. P. arcticus 273-4 is considered a model for life in freezing environments. It is capable of growing in temperatures as cold as -10°C by using physiological strategies to survive not only in freezing temperatures but also under low-water-activity and limited-nutrient-availability conditions. The analyses of its genome, transcriptome, and proteome revealed specific adaptations that allow it to inhabit freezing environments by adopting a slow metabolic strategy rather than a cellular dormancy state. During growth at subzero temperatures, P. arcticus 273-4 genes related to energy metabolism and carbon substrate incorporation are downregulated, and genes for maintenance of membranes, cell walls, and nucleic acid motion are upregulated. At -6°C, P. arcticus 273-4 does not upregulate the expression of either RNA or protein chaperones; however, it upregulates the expression of its cold-shock induced DEAD-box RNA helicase protein A (CsdA - Psyc_1082). CsdA - Psyc_1082 was investigated as a key helper protein for sustaining life in subzero conditions. Proving CsdA - Psyc_1082 to be functional as a key protein for life under freezing temperatures may extend the known minimum growth temperature of a mesophilic cell and provide key information about the mechanisms that underlie cold-induced biological systems in icy worlds.

  8. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model

    EPA Science Inventory

    Introduction/Study Goal Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports and WHO gUidelines concluded that the role of molds in asthma induction is not clear bu...

  9. Mold Allergy: Proper Humidifier Care

    MedlinePlus

    ... Training Home Conditions Allergy Allergy Overview Allergy Allergens Mold Allergy Proper Humidifier Care Proper Humidifier Care Make ... neglected humidifier can be a major source of mold and mold spores. Learn how to keep a ...

  10. Molds

    MedlinePlus

    Molds are fungi that can be found both outdoors and indoors. They grow best in warm, damp and humid conditions. If ... spots in your house, you will probably get mold. Molds can cause health problems. Inhaling or touching ...

  11. Molds in the Environment

    MedlinePlus

    ... visit this page: About CDC.gov . Mold Cleanup & Remediation Homeowner’s and Renter’s Guide to Mold Cleanup After ... Home or Building with Mold Damage Prevention and Remediation Strategies for the Control and Removal of Fungal ...

  12. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    NASA Astrophysics Data System (ADS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-07-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μm and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns.

  13. Study of parameters in precision optical glass molding

    NASA Astrophysics Data System (ADS)

    Ni, Ying; Wang, Qin-hua; Yu, Jing-chi

    2010-10-01

    Precision glass compression molding is an attractive approach to manufacture small precision optics in large volume over traditional manufacturing techniques because of its advantages such as lower cost, faster time to market and being environment friendly. In order to study the relationship between the surface figures of molded lenses and molding process parameters such as temperature, pressure, heating rate, cooling rate and so on, we present some glass compression molding experiments using same low Tg (transition temperature) glass material to produce two different kinds of aspheric lenses by different molding process parameters. Based on results from the experiments, we know the major factors influencing surface figure of molded lenses and the changing range of these parameters. From the knowledge we could easily catch proper molding parameters which are suitable for aspheric lenses with diameter from 10mm to 30mm.

  14. Fabrication of spherical microlens array by combining lapping on silicon wafer and rapid surface molding

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Zhou, Tianfeng; Zhang, Lin; Zhou, Wenchen; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.

    2018-07-01

    Silicon is a promising mold material for compression molding because of its properties of hardness and abrasion resistance. Silicon wafers with carbide-bonded graphene coating and micro-patterns were evaluated as molds for the fabrication of microlens arrays. This study presents an efficient but flexible manufacturing method for microlens arrays that combines a lapping method and a rapid molding procedure. Unlike conventional processes for microstructures on silicon wafers, such as diamond machining and photolithography, this research demonstrates a unique approach by employing precision steel balls and diamond slurries to create microlenses with accurate geometry. The feasibility of this method was demonstrated by the fabrication of several microlens arrays with different aperture sizes and pitches on silicon molds. The geometrical accuracy and surface roughness of the microlens arrays were measured using an optical profiler. The measurement results indicated good agreement with the optical profile of the design. The silicon molds were then used to copy the microstructures onto polymer substrates. The uniformity and quality of the samples molded through rapid surface molding were also assessed and statistically quantified. To further evaluate the optical functionality of the molded microlens arrays, the focal lengths of the microlens arrays were measured using a simple optical setup. The measurements showed that the microlens arrays molded in this research were compatible with conventional manufacturing methods. This research demonstrated an alternative low-cost and efficient method for microstructure fabrication on silicon wafers, together with the follow-up optical molding processes.

  15. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  16. Interpretation of time series (salinity and temperature) layers in North Atlantic from 1950 to 2011

    NASA Astrophysics Data System (ADS)

    Rubchenia, A.; Popov, A.; Fedorova, A.; Lebedev, N.

    2012-04-01

    On the basis of long period data series (1950-2011) form various sources (National Oceanographic Data Center (NOAD) (www.nodc.noaa.gov), WOD09 database and data from ARGO project) 10 boxes in North Atlantic were selected. Location of boxes was determined by circulation pattern in North Atlantic and Euro-Arctic Seas. For further analysis two "seasons" was selected: "cold season" (October-May) and "warm season" (June-September). Data verification was made. Analysis of data series clearly show the "Great Salinity Anomaly" (so-called GSA) in 1960-70th, 1980th and 1990th. Trends of salinity and temperature data series were calculated. Spectral analysis allow us to calculate periodicity from 2 to 22 years. Boxes situated in regions with Arctic waters have singularity showed through domination of high frequency oscillation during propagation to South. In Fram Strait salinity fluctuates with periods 9..11 and 20 years, the same period was calculated using temperature data series. In Denmark Strait there are oscillations of temperature with specific period from 4 to 7 years. Range of variability vary. For salinity it is 0.4..4.6 psu, for temperature it is 0.04..5.5C. In salinity data series from boxes with surface Arctic waters noticed clear minimums connected with GSAs. Trends in Denmark Strait and Fram strait in the end of 2000th are negative at different levels. Since 1975 to 2001 salinity near the southern part of Greenland was increased, since 2001 - decreased. But temperature was raised from 0.04 in 1989 to 5.59 in 2010. Thermohaline characteristics of water masses which has Atlantic origin oscillated with period near 20 years. Salinity near Newfoundland was decreased since 2005. In Farrero-Shetland straits salinity trend is positive since at 100m level, Salinity rising from 1970th to 2006 is about 0.3 psu were noticed. Oscillations with period 2..4 years is weak. But at 800m layer salinity oscillations are different, since 1990 there is not significant oscillations at all. Temperature trend at this level is negative since 1950th. Salinity at 100-300 level at Station M area described with negative trend since 1960 to 1993, in both "seasons". Next, up to 2010 salinity is increasing, but in 2011 salinity dramatically decreased. Main oscillations have periods 2..3 years, 4..5 years and 20 years. At 800m level oscillations are very weak. Temperature is increased since 1995 in surface layer and since 2002 in deeper levels. At all levels temperature dramatically decreased after 2010. In central part of Greenland Sea ("Cupola area") dominated oscillations with period 4 years (1950-60th), 5..7 years (1970th) and 9 years (after 1979). In "cold season" oscillation with 11 years traced. Salinity trend is positive at all levels during last 10-15 years. Salinity and temperature were increased at 800m level up to 2006. It could lead to termination of deep water formation. Since 2006 temperature decreased, especially in "cold season". Salinity trend in West Spitsbergen Current is positive since 1996 at surface and sine 1978 at deeper levels. Temperature was increased since 1965 to 2006 in surface layer, but since 2006 in "warm season" temperature is decreasing at all layers. Main oscillations is 4..5 years, 6..7 years and 9..11 years.

  17. Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses.

    PubMed

    Yang, Zhimin; Chen, Yu; Hu, Baoyun; Tan, Zhiqun; Huang, Bingru

    2015-01-01

    Tall fescue (Festuca arundinacea Schreb.) is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41) was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species.

  18. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors.

    PubMed

    Lyons, D N; Kniffin, T C; Zhang, L P; Danaher, R J; Miller, C S; Bocanegra, J L; Carlson, C R; Westlund, K N

    2015-06-04

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Evaluation of contact heat thermal threshold testing for standardized assessment of cutaneous nociception in horses - comparison of different locations and environmental conditions

    PubMed Central

    2013-01-01

    Background The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse’s general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Results Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). Conclusion The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures. PMID:23298405

  20. Evaluation of contact heat thermal threshold testing for standardized assessment of cutaneous nociception in horses - comparison of different locations and environmental conditions.

    PubMed

    Poller, Christin; Hopster, Klaus; Rohn, Karl; Kästner, Sabine Br

    2013-01-08

    The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse's general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures.

  1. Remelt Ingot Production Technology

    NASA Astrophysics Data System (ADS)

    Grandfield, J. F.

    The technology related to the production of remelt ingots (small ingots, sows and T-Bar) is reviewed. Open mold conveyors, sow casting, wheel and belt casting and VDC and HDC casting are described and compared. Process economics, capacity, product quality and process problems are listed. Trends in casting machine technology such as longer open mold conveyor lines are highlighted. Safety issues related to the operation of these processes are discussed. The advantages and disadvantages of the various machine configurations and options e.g. such as dry filling with the mold out of water and wet filling with the mold in water for open mould conveyors are discussed. The effect of mold design on machine productivity, mold cracking and mold life is also examined.

  2. Transfer molding of PMR-15 polyimide resin

    NASA Technical Reports Server (NTRS)

    Reardon, J. P.; Moyer, D. W.; Nowak, B. E.

    1985-01-01

    Transfer molding is an economically viable method of producing small shapes of PMR-15 polyimide. It is shown that with regard to flexural, compressive, and tribological properties transfer-molded PMR-15 polyimide is essentially equivalent to PMR-15 polyimide produced by the more common method of compression molding. Minor variations in anisotropy are predictable effects of molding design and secondary finishing operations.

  3. Method and composition for molding low-density desiccant syntactic-foam articles

    DOEpatents

    Not Available

    1981-12-07

    These and other objects of the invention are achieved by a process for molding to size a desiccant syntactic foam article having a density of 0.2 to 0.9 g/cc and a moisture capacity of 1 to 12% by weight, comprising the steps of: charging a mold with a powdery mixture of an activated desiccant, microspheres and a thermosetting resin, the amount of the desiccant being sufficient to provide the required moisture capacity, and the amounts of the microspheres and resin being such that the microspheres/desiccant volume fraction exceeds the packing factor by an amount sufficient to substantially avoid shrinkage without causing excessively high molding pressures; covering the mold and heating the covered mold to a temperature and for an amount of time sufficient to melt the resin; and tightly closing the mold and heating the closed mold to a temperature and for an amount of time sufficient to cure the resin, and removing the resultant desiccant syntactic foam article from the mold. In a composition of matter aspect, the present invention provides desiccant syntactic foam articles, and a composition of matter for use in molding the same.

  4. Selection of antifungal protein-producing molds from dry-cured meat products.

    PubMed

    Acosta, Raquel; Rodríguez-Martín, Andrea; Martín, Alberto; Núñez, Félix; Asensio, Miguel A

    2009-09-30

    To control unwanted molds in dry-cured meats it is necessary to allow the fungal development essential for the desired characteristics of the final product. Molds producing antifungal proteins could be useful to prevent hazards due to the growth of mycotoxigenic molds. The objective has been to select Penicillium spp. that produce antifungal proteins against toxigenic molds. To obtain strains adapted to these products, molds were isolated from dry-cured ham. A first screening with 281 isolates by the radial inhibition assay revealed that 166 were active against some of the toxigenic P. echinulatum, P. commune, and Aspergillusniger used as reference molds. The activity of different extracts from cultured medium was evaluated by a microspectroscopic assay. Molds producing active chloroform extracts were eliminated from further consideration. A total of 16 Penicillium isolates were screened for antifungal activity from both cell-free media and the aqueous residues obtained after chloroform extraction. The cell-free media of 10 isolates that produced a strong inhibition of the three reference molds were fractionated by FPLC on a cationic column. For protein purification, the fractions of the three molds that showed high inhibitory activity were further chromatographed on a gel filtration column, and the subfractions containing the highest absorbance peaks were assayed against the most sensitive reference molds. One subfraction each from strains AS51D and RP42C from Penicilliumchrysogenum confirmed the inhibitory activity against the reference molds. SDS-PAGE revealed a single band from each subfraction, with estimated molecular masses of 37kDa for AS51D and 9kDa for RP42C. Although further characterisation is required, both these proteins and the producing strains can be of interest to control unwanted molds on foods.

  5. Antibodies to molds and satratoxin in individuals exposed in water-damaged buildings.

    PubMed

    Vojdani, Aristo; Thrasher, Jack D; Madison, Roberta A; Gray, Michael R; Heuser, Gunnar; Campbell, Andrew W

    2003-07-01

    Immunoglobulin (Ig)A, IgM, and IgG antibodies against Penicillium notatum, Aspergillus niger, Stachybotrys chartarum, and satratoxin H were determined in the blood of 500 healthy blood donor controls, 500 random patients, and 500 patients with known exposure to molds. The patients were referred to the immunological testing laboratory for health reasons other than mold exposure, or for measurement of mold antibody levels. Levels of IgA, IgM, and IgG antibodies against molds were significantly greater in the patients (p < 0.001 for all measurements) than in the controls. However, in mold-exposed patients, levels of these antibodies against satratoxin differed significantly for IgG only (p < 0.001), but not for IgM or IgA. These differences in the levels of mold antibodies among the 3 groups were confirmed by calculation of z score and by Scheffé's significant difference tests. A general linear model was applied in the majority of cases, and 3 different subsets were formed, meaning that the healthy control groups were different from the random patients and from the mold-exposed patients. These findings indicated that mold exposure was more common in patients who were referred for immunological evaluation than it was in healthy blood donors. The detection of antibodies to molds and satratoxin H likely resulted from antigenic stimulation of the immune system and the reaction of serum with specially prepared mold antigens. These antigens, which had high protein content, were developed in this laboratory and used in the enzyme-linked immunosorbent assay (ELISA) procedure. The authors concluded that the antibodies studied are specific to mold antigens and mycotoxins, and therefore could be useful in epidemiological and other studies of humans exposed to molds and mycotoxins.

  6. Mold and Indoor Air Quality in Schools

    MedlinePlus

    ... Centers Mold Contact Us Share Mold and Indoor Air Quality in Schools Mold and Moisture in Schools Webinar ... premier resource on this issue is the Indoor Air Quality Tools for Schools kit. Our schools-related resources ...

  7. Spiral 2 Cryogenic System for The Superconducting LINAC

    NASA Astrophysics Data System (ADS)

    Ghribi, A.; Bernaudin, P.-E.; Bert, Y.; Commeaux, C.; Houeto, M.; Lescalié, G.

    2017-02-01

    SPIRAL 21 is a rare isotope accelerator dedicated to the production of high intensity beams (E = 40 MeV, I = 5 mA). The driver is a linear accelerator (LINAC) that uses bulk Niobium made quarter wave RF cavities. 19 cryomodules inclose one or two cavities respectively for the low and the high energy sections. To supply the 1300 W at 4.2 K required to cool down the LINAC, a cryogenic system has been set up. The heart of the latter is a 3 turbines geared HELIAL®LF (ALAT2) cold box that delivers both the liquid helium for the cavities and the 60 K Helium gaz for the thermal screens. 19 valve-boxes insure cryogenic fluid distribution and management. Key issues like cool down speed or cavity RF frequency stability are closely linked to the cryogenic system management. To overcome these issues, modelling and simulation efforts are being undertaken prior to the first cool down trials. In this paper, we present a status update of the Spiral 2 cryogenic system and the cool down strategy considered for its commissioning.

  8. Direct micropatterning of polymer materials by ice mold

    NASA Astrophysics Data System (ADS)

    Yu, Xinhong; Xing, Rubo; Luan, Shifang; Wang, Zhe; Han, Yanchun

    2006-10-01

    Micropatterning of functional polymer materials by micromolding in capillaries (MIMIC) with ice mold is reported in this paper. Ice mold was selected due to its thaw or sublimation. Thus, the mold can be easily removed. Furthermore, the polymer solution did not react with, swell, or adhere to the ice mold, so the method is suitable for many kinds of materials (such as P3HT, PMMA Alq 3/PVK, PEDOT: PSS, PS, P2VP, etc.). Freestanding polymer microstructures, binary polymer pattern, and microchannels have been fabricated by the use of ice mold freely.

  9. Static Mixer for Heat Transfer Enhancement for Mold Cooling Application

    NASA Astrophysics Data System (ADS)

    Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil

    Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.

  10. Use of acrylic sheet molds for elastomeric products

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Koerner, A. E.; Messineo, S. M.

    1970-01-01

    Molds constructed of acrylic sheet are more easily machined than metal, are transparent to ensure complete filling during injection, and have smooth surfaces free of contamination. Technique eliminates flashing on molded parts and mold release agents.

  11. Interactive Mold House Tour

    EPA Pesticide Factsheets

    Get a quick glimpse of some of the most important ways to protect your home from mold by this interactive tour of the Mold House. Room-by-room, you'll learn about common mold issues and how to address them.

  12. Process for slip casting textured tubular structures

    DOEpatents

    Steinlage, Greg A.; Trumble, Kevin P.; Bowman, Keith J.

    2002-01-01

    A process for centrifugal slip casting a textured hollow tube. A slip made up of a carrier fluid and a suspended powder is introduced into a porous mold which is rotated at a speed sufficient to create a centrifugal force that forces the slip radially outward toward the inner surface of the mold. The suspended powder, which is formed of particles having large dimensional aspect ratios such as particles of superconductive BSCCO, settles in a textured fashion radially outward toward the mold surface. The carrier fluid of the slip passes by capillary action radially outward around the settled particles and into the absorbent mold. A layer of mold release material is preferably centrifugally slip cast to cover the mold inner surface prior to the introduction of the BSCCO slip, and the mold release layer facilitates removal of the BSCCO greenbody from the mold without fracturing.

  13. Direct molding of pavement tiles made of ground tire rubber

    NASA Astrophysics Data System (ADS)

    Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore

    2016-10-01

    Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.

  14. Effect of Reclamation on the Skin Layer of Ductile Iron Cast in Furan Molds

    NASA Astrophysics Data System (ADS)

    Dańko, R.; Holtzer, M.; Górny, M.; Żymankowska-Kumon, S.

    2013-11-01

    The paper presents the results of investigations of the influence of the quality of molding sand with furan resin hardened by paratoluenesulfonic acid, on the formation of microstructure and surface quality of ductile iron castings. Within the studies different molding sands were used: molding sand prepared with fresh sand and molding sands prepared with reclaimed sands of a different purification degree, determined by the ignition loss value. Various concentrations of sulfur and nitrogen in the sand molds as a function of the ignition loss were shown in the paper. A series of experimental melts of ductile iron in molds made of molding sand characterized by different levels of surface-active elements (e.g., sulfur) and different gas evolution rates were performed. It was shown that there exists a significant effect of the quality of the sand on the formation of the graphite degeneration layer.

  15. Differential Acetylation of Histone H3 at the Regulatory Region of OsDREB1b Promoter Facilitates Chromatin Remodelling and Transcription Activation during Cold Stress

    PubMed Central

    Roy, Dipan; Paul, Amit; Roy, Adrita; Ghosh, Ritesh; Ganguly, Payel; Chaudhuri, Shubho

    2014-01-01

    The rice ortholog of DREB1, OsDREB1b, is transcriptionally induced by cold stress and over-expression of OsDREB1b results in increase tolerance towards high salt and freezing stress. This spatio-temporal expression of OsDREB1b is preceded by the change in chromatin structure at the promoter and the upstream region for gene activation. The promoter and the upstream region of OsDREB1b genes appear to be arranged into a nucleosome array. Nucleosome mapping of ∼700bp upstream region of OsDREB1b shows two positioned nucleosomes between −610 to −258 and a weakly positioned nucleosome at the core promoter and the TSS. Upon cold stress, there is a significant change in the nucleosome arrangement at the upstream region with increase in DNaseI hypersensitivity or MNase digestion in the vicinity of cis elements and TATA box at the core promoter. ChIP assays shows hyper-acetylation of histone H3K9 throughout the locus whereas region specific increase was observed in H3K14ac and H3K27ac. Moreover, there is an enrichment of RNA PolII occupancy at the promoter region during transcription activation. There is no significant change in the H3 occupancy in OsDREB1b locus negating the possibility of nucleosome loss during cold stress. Interestingly, cold induced enhanced transcript level of OsDREB1b as well as histone H3 acetylation at the upstream region was found to diminish when stressed plants were returned to normal temperature. The result indicates absolute necessity of changes in chromatin conformation for the transcription up-regulation of OsDREB1b gene in response to cold stress. The combined results show the existence of closed chromatin conformation at the upstream and promoter region of OsDREB1b in the transcription “off” state. During cold stress, changes in region specific histone modification marks promote the alteration of chromatin structure to facilitate the binding of transcription machinery for proper gene expression. PMID:24940877

  16. Biofumigation on Post-Harvest Diseases of Fruits Using a New Volatile-Producing Fungus of Ceratocystis fimbriata

    PubMed Central

    Li, Qian; Wu, Lei; Hao, Jianjun; Luo, Laixin; Cao, Yongsong; Li, Jianqiang

    2015-01-01

    A variety of volatile organic compounds (VOCs) produced by Ceratocystis fimbriata have strong bioactivity against a wide range of fungi, bacteria and oomycetes. Mycelial growth, conidial production, and spore germination of fungi and oomycetes were significantly inhibited after exposure to cultures of C. fimbriata, and colony formation of bacteria was also inhibited. Two post-harvest diseases, peach brown rot caused by Monilinia fructicola and citrus green mold caused by Penicillium digitatum, were controlled during a 4-day storage by enclosing wound-inoculated fruits with 10 standard diameter Petri plate cultures of C. fimbriata in a 15 L box. The fruits were freshly inoculated at onset of storage and the cultures of C. fimbriata were 6 days old. Percentage of control was 92 and 97%, respectively. After exposure to C. fimbriata VOCs, severely misshapen hyphae and conidia of these two post-harvest pathogens were observed by scanning electron microscopy, and their pathogenicity was lost or greatly reduced. PMID:26147922

  17. Method of reusably sealing a silicone rubber vacuum bag to a mold for composite manufacture

    NASA Technical Reports Server (NTRS)

    Steinbach, John (Inventor)

    1989-01-01

    A silicone rubber vacuum bag for use in composite article manufacture is reusably sealed to a mold, without mechanical clamping means. The mold-mating portion of the bag is primed with a silicone rubber adhesive, which is cured thereto, and a layer of semiadhesive sealer is applied between the primed mold-mating portion of the bag and the mold.

  18. 56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS APPROXIMATELY 6,000 PLASTER MOLDS OF VARIOUS TYPES, INCLUDING THE DEEP CAVITY MOLDS IN THE CENTER OF THE PHOTOGRAPH. THESE MOLDS PRODUCED ALLEGORICAL FIGURES TO BE INSTALLED AROUND THE CORNICES OF PUBLIC SCHOOLS. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  19. Evacuated, displacement compression mold. [of tubular bodies from thermosetting plastics

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A process of molding long thin-wall tubular bodies from thermosetting plastic molding compounds is described wherein the tubular body lengths may be several times the diameters. The process is accomplished by loading a predetermined quantity of molding compound into a female mold cavity closed at one end by a force mandrel. After closing the other end of the female mold with a balance mandrel, the loaded cavity is evacuated by applying a vacuum of from one-to-five mm pressure for a period of fifteen-to-thirty minutes. The mold temperature is raised to the minimum temperature at which the resin constituent of the compound will soften or plasticize and a pressure of 2500 psi is applied.

  20. Mathematical modeling of the process of filling a mold during injection molding of ceramic products

    NASA Astrophysics Data System (ADS)

    Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.

    2015-10-01

    Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.

  1. Controlled study of mold growth and cleaning procedure on treated and untreated wet gypsum wallboard in an indoor environment.

    PubMed

    Krause, Michael; Geer, William; Swenson, Lonie; Fallah, Payam; Robbins, Coreen

    2006-08-01

    The basis for some common gypsum wallboard mold remediation practices was examined. The bottom inch of several gypsum wallboard panels was immersed in bottled drinking water; some panels were coated and others were untreated. The panels were examined and tested for a period of 8 weeks. This study investigated: (a) whether mold growth, detectable visually or with tape lift samples, occurs within 1 week on wet gypsum wallboard; (b) the types, timing, and extent of mold growth on wet gypsum wallboard; (c) whether mold growth is present on gypsum wallboard surfaces 6 inches from visible mold growth; (d) whether some commonly used surface treatments affect the timing of occurrence and rate of mold growth; and (e) if moldy but dried gypsum wallboard can be cleaned with simple methods and then sealed with common surface treatments so that residual mold particles are undetectable with typical surface sampling techniques. Mold growth was not detected visually or with tape lift samples after 1 week on any of the wallboard panels, regardless of treatment, well beyond the 24-48 hours often mentioned as the incubation period. Growth was detected at 2 weeks on untreated gypsum. Penicillium, Cladosporium, and Acremonium were early colonizers of untreated panels. Aspergillus, Epicoccum, Alternaria, and Ulocladium appeared later. Stachybotrys was not found. Mold growth was not detected more than 6 inches beyond the margin of visible mold growth, suggesting that recommendations to remove gypsum wallboard more than 1 foot beyond visible mold are excessive. The surface treatments resulted in delayed mold growth and reduced the area of mold growth compared with untreated gypsum wallboard. Results showed that simple cleaning of moldy gypsum wallboard was possible to the extent that mold particles beyond "normal trapping" were not found on tape lift samples. Thus, cleaning is an option in some situations where removal is not feasible or desirable. In cases where conditions are not similar to those of this study, or where large areas may be affected, a sample area could be cleaned and tested to verify that the cleaning technique is sufficient to reduce levels to background or normal trapping. These results are generally in agreement with laboratory studies of mold growth on, and cleaning of, gypsum wallboard.

  2. A programmable nanoreplica molding for the fabrication of nanophotonic devices.

    PubMed

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-03-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.

  3. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    PubMed

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-06-27

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.

  4. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offersmore » an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.« less

  5. A programmable nanoreplica molding for the fabrication of nanophotonic devices

    PubMed Central

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-01-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively. PMID:26925828

  6. Effecting aging time of epoxy molding compound to molding process for integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Tachapitunsuk, Jirayu; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about effecting aging time of epoxy molding compound (EMC) that effect to reliability performance of integrated circuit (IC) package in molding process. Molding process is so important of IC packaging process for protecting IC chip (or die) from temperature and humidity environment using encapsulated EMC. For general molding process, EMC are stored in the frozen at 5°C and left at room temperature at 25 °C for aging time on self before molding of die onto lead frame is 24 hours. The aging time effect to reliability performance of IC package due to different temperature and humidity inside the package. In experiment, aging time of EMC were varied from 0 to 24 hours for molding process of SOIC-8L packages. For analysis, these packages were tested by x-ray and scanning acoustic microscope to analyze properties of EMC with an aging time and also analyzed delamination, internal void, and wire sweep inside the packages with different aging time. The results revealed that different aging time of EMC effect to properties and reliability performance of molding process.

  7. Commercial and Residential Water Damage: The Mold Connection.

    ERIC Educational Resources Information Center

    Williams, Del

    2002-01-01

    Describes the problem of toxic mold in residential and commercial property resulting from excess moisture. Includes common sources of unwanted moisture, design and construction flaws, determining the presence of mold, and advice for identifying and hiring reputable mold remediators. (PKP)

  8. Molding process for imidazopyrrolone polymers

    NASA Technical Reports Server (NTRS)

    Johnson, C. L. (Inventor)

    1973-01-01

    A process is described for producing shaped articles of imidazopyrrolone polymers comprising molding imidazopyrrolone polymer molding power under pressure and at a temperature greater than 475 C. Moderate pressures may be employed. Preferably, prior to molding, a preform is prepared by isostatic compression. The preform may be molded at a relatively low initial pressure and temperature; as the temperature is increased to a value greater than 475 C., the pressure is also increased.

  9. Apparatus for injection casting metallic nuclear energy fuel rods

    DOEpatents

    Seidel, Bobby R.; Tracy, Donald B.; Griffiths, Vernon

    1991-01-01

    Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.

  10. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  11. Using Direct Metal Deposition to Fabricate Mold Plates for an Injection Mold Machine Allowing for the Evaluation of Cost Effective Near-Sourcing Opportunities in Larger, High Volume Consumer Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, Chad E; Groh, Bill

    2014-10-31

    ORNL collaborated with Radio Systems Corporation to investigate additive manufacturing (AM) of mold plates for plastic injection molding by direct metal deposition. The team s modelling effort identified a 100% improvement in heat transfer through use of conformal cooling lines that could be built into the mold using a revolutionary design enabled by additive manufacturing. Using the newly installed laser deposition system at the ORNL Manufacturing Demonstration Facility (MDF) a stainless steel mold core was printed.

  12. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    PubMed

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively.

  13. Brightness field distributions of microlens arrays using micro molding.

    PubMed

    Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Yi; Shen, Yung-Kang

    2010-12-20

    This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.

  14. Genomic characterization of recurrent mold infections in thoracic transplant recipients.

    PubMed

    Messina, Julia A; Wolfe, Cameron R; Hemmersbach-Miller, Marion; Milano, Carmelo; Todd, Jamie L; Reynolds, John; Alexander, Barbara D; Schell, Wiley A; Cuomo, Christina A; Perfect, John R

    2018-05-31

    Invasive mold disease in thoracic organ transplant recipients is a well-recognized complication, but the long-term persistence of molds within the human body and evasion of host defenses has not been well-described. We present 2 cases of invasive mold disease (Verruconis gallopava and Aspergillus fumigatus) in thoracic transplant recipients who had the same mold cultured years prior to the invasive disease presentation. The paired isolates from the index and recurrent infections in both patients were compared using whole-genome sequencing to determine if the same strain of mold caused both the index and recurrent infections. In Case 1, the isolates were found to be of the same strain indicating that the initial colonizing isolate identified pre-transplant eventually caused invasive mold disease post-transplant while in Case 2, the 2 isolates were not of the same strain. These results demonstrate the distinct possibility of molds both persisting within the human body for years prior to invasive mold disease or the long-term risk of recurrent, persistent infection with more than one strain. Further studies of long-term molecular epidemiology of IMD and risk factors for mold persistence in transplant recipients are encouraged. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Multiphysics modeling of the steel continuous casting process

    NASA Astrophysics Data System (ADS)

    Hibbeler, Lance C.

    This work develops a macroscale, multiphysics model of the continuous casting of steel. The complete model accounts for the turbulent flow and nonuniform distribution of superheat in the molten steel, the elastic-viscoplastic thermal shrinkage of the solidifying shell, the heat transfer through the shell-mold interface with variable gap size, and the thermal distortion of the mold. These models are coupled together with carefully constructed boundary conditions with the aid of reduced-order models into a single tool to investigate behavior in the mold region, for practical applications such as predicting ideal tapers for a beam-blank mold. The thermal and mechanical behaviors of the mold are explored as part of the overall modeling effort, for funnel molds and for beam-blank molds. These models include high geometric detail and reveal temperature variations on the mold-shell interface that may be responsible for cracks in the shell. Specifically, the funnel mold has a column of mold bolts in the middle of the inside-curve region of the funnel that disturbs the uniformity of the hot face temperatures, which combined with the bending effect of the mold on the shell, can lead to longitudinal facial cracks. The shoulder region of the beam-blank mold shows a local hot spot that can be reduced with additional cooling in this region. The distorted shape of the funnel mold narrow face is validated with recent inclinometer measurements from an operating caster. The calculated hot face temperatures and distorted shapes of the mold are transferred into the multiphysics model of the solidifying shell. The boundary conditions for the first iteration of the multiphysics model come from reduced-order models of the process; one such model is derived in this work for mold heat transfer. The reduced-order model relies on the physics of the solution to the one-dimensional heat-conduction equation to maintain the relationships between inputs and outputs of the model. The geometric parameters in the model are calibrated such that the reduced-order model temperatures match a small, periodic subdomain of the mold. These parameters are demonstrated to be insensitive to the calibration conditions. The thermal behavior of the detailed, three-dimensional mold models used in this work can be approximated closely with a few arithmetic calculations after calibrating the reduced-order model of mold heat transfer. The example application of the model includes the effects of the molten steel jet on the solidification front and the ferrostatic pressure. The model is demonstrated to match measurements of mold heat removal and the thickness of a breakout shell all the way around the perimeter of the mold, and gives insight to the cause of breakouts in a beam-blank caster. This multiphysics modeling approach redefines the state of the art of process modeling for continuous casting, and can be~used in future work to explore the formation and prevention of defects and other practical issues. This work also explores the eigen-problem for an arbitrary 3x3 matrix. An explicit, algebraic formula for the eigenvectors is presented.

  16. Grinding technoloy of aspheric molds for glass-molding; Technical Digest

    NASA Astrophysics Data System (ADS)

    Kojima, Yoichi

    2005-05-01

    We introduce the method of precisely grinding of axis-symmetric aspherical glass-molding dies by using a diamond wheel. Those show how to select vertical-grinding or slant-grinding, how to grind molds with high accuracy and actual grinding results.

  17. Epoxy-resin patterns speed shell-molding of aluminum parts

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Half patterns cast from commercial epoxy resin containing aluminum powder are used for shell-molding of aluminum parts. The half patterns are cast in plastic molds of the original wooden pattern. Ten serviceable sand resin molds are made from each epoxy pattern.

  18. Advances in vaccine stability monitoring technology.

    PubMed

    Zweig, Stephen E

    2006-08-14

    Electronic time-temperature indicator (eTTI) monitors can be programmed to exactly follow the stability characteristics of vaccines with a high degree of realism. The monitors have a visual output, enabling vaccine status to be assessed at a glance, and can also output more detailed statistical data. When packaged with vaccine vials in groups of about 10 vials per box, the eTTI can remain with a vaccine throughout most of the vaccine's lifetime. The monitors can detect essentially all cold-chain breaks, and can detect issues, such as inadvertent freezing, that are presently not detected by other vaccine stability monitors such as Vaccine Vial Monitors (VVM).

  19. Comparison of polyester, film-yarn composite, balloon materials subjected to shear and biaxial loading

    NASA Technical Reports Server (NTRS)

    Niccum, R. J.

    1972-01-01

    A series of candidate materials for use in large balloons was tested and their tensile and shear strength capabilities were compared. The tests were done in a cold box at -68 C (-90 F). Some of these materials were fabricated on a special machine called the flying thread loom. This machine laminates various patterns of polyester yarn to a thin polyester film. The results show that the shear strength of materials changes with the angle selected for the transverse yarns, and substantial increases in biaxial load carrying capabilities, compared to materials formerly used, are possible. The loom capabilities and the test methods are discussed.

  20. Conceptual design of ACB-CP for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Jiang, Yongcheng; Xiong, Lianyou; Peng, Nan; Tang, Jiancheng; Liu, Liqiang; Zhang, Liang

    2012-06-01

    ACB-CP (Auxiliary Cold Box for Cryopumps) is used to supply the cryopumps system with necessary cryogen in ITER (International Thermonuclear Experimental Reactor) cryogenic distribution system. The conceptual design of ACB-CP contains thermo-hydraulic analysis, 3D structure design and strength checking. Through the thermohydraulic analysis, the main specifications of process valves, pressure safety valves, pipes, heat exchangers can be decided. During the 3D structure design process, vacuum requirement, adiabatic requirement, assembly constraints and maintenance requirement have been considered to arrange the pipes, valves and other components. The strength checking has been performed to crosscheck if the 3D design meets the strength requirements for the ACB-CP.

  1. Failure strengths of denture teeth fabricated on injection molded or compression molded denture base resins.

    PubMed

    Robison, Nathan E; Tantbirojn, Daranee; Versluis, Antheunis; Cagna, David R

    2016-08-01

    Denture tooth fracture or debonding remains a common problem in removable prosthodontics. The purpose of this in vitro study was to explore factors determining failure strengths for combinations of different denture tooth designs (shape, materials) and injection or compression molded denture base resins. Three central incisor denture tooth designs were tested: nanohybrid composite (NHC; Ivoclar Phonares II), interpenetrating network (IPN; Dentsply Portrait), and microfiller reinforced polyacrylic (MRP; VITA Physiodens). Denture teeth of each type were processed on an injection molded resin (IvoBase HI; Ivoclar Vivadent AG) or a compression molded resin (Lucitone 199; Dentsply Intl) (n=11 or 12). The denture teeth were loaded at 45 degrees on the incisal edge. The failure load was recorded and analyzed with 2-way ANOVA (α=.05), and the fracture mode was categorized from observed fracture surfaces as cohesive, adhesive, or mixed failure. The following failure loads (mean ±SD) were recorded: NHC/injection molded 280 ±52 N; IPN/injection molded 331 ±41 N; MRP/injection molded 247 ±23 N; NHC/compression molded 204 ±31 N; IPN/compression molded 184 ±17 N; MRP/compression molded 201 ±16 N. Injection molded resin yielded significantly higher failure strength for all denture teeth (P<.001), among which IPN had the highest strength. Failure was predominantly cohesive in the teeth, with the exception of mixed mode for the IPN/compression group. When good bonding was achieved, the strength of the structure (denture tooth/base resin combination) was determined by the strength of the denture teeth, which may be affected by the processing technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Injection molding of iPP samples in controlled conditions and resulting morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessa, Nino, E-mail: ninosessa.ns@gmail.com; De Santis, Felice, E-mail: fedesantis@unisa.it; Pantani, Roberto, E-mail: rpantani@unisa.it

    2015-12-17

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy.

  3. Electron-Beam Vapor Deposition of Mold Inserts Final Report CRADA No. TSB-777-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepp, T.; Feeley, T.

    Lawrence Livermore National Laboratory and H.G.G. Laser Fare, Inc. studied the application of electron-beam vapor deposition technology to the production of mold inserts for use in an injection molding machine by Laser Fare. Laser Fare provided LLNL with the requirements of the mold inserts as well as sample inserts. LLNL replicated the mold insert(s) to Laser Fare for testing by Laser Fare.

  4. Handling and analysis of ices in cryostats and glove boxes in view of cometary samples

    NASA Technical Reports Server (NTRS)

    Roessler, K.; Eich, G.; Heyl, M.; Kochan, H.; Oehler, A.; Patnaik, A.; Schlosser, W.; Schulz, R.

    1989-01-01

    Comet nucleus sample return mission and other return missions from planets and satellites need equipment for handling and analysis of icy samples at low temperatures under vacuum or protective gas. Two methods are reported which were developed for analysis of small icy samples and which are modified for larger samples in cometary matter simulation experiments (KOSI). A conventional optical cryostat system was modified to allow for transport of samples at 5 K, ion beam irradiation, and measurement in an off-line optical spectrophotometer. The new system consists of a removable window plug containing nozzles for condensation of water and volatiles onto a cold finger. This plug can be removed in a vacuum system, changed against another plug (e.g., with other windows (IR, VIS, VUV) or other nozzles). While open, the samples can be treated under vacuum with cooling by manipulators (cut, removal, sample taking, irradiation with light, photons, or ions). After bringing the plug back, the samples can be moved to another site of analysis. For handling the 30 cm diameter mineral-ice samples from the KOSI experiments an 80x80x80 cm glove box made out of plexiglass was used. The samples were kept in a liquid nitrogen bath, which was filled from the outside. A stream a dry N2 and evaporating gas from the bath purified the glove box from impurity gases and, in particular, H2O, which otherwise would condense onto the samples.

  5. Comparison of Fit of Dentures Fabricated by Traditional Techniques Versus CAD/CAM Technology.

    PubMed

    McLaughlin, J Bryan; Ramos, Van; Dickinson, Douglas P

    2017-11-14

    To compare the shrinkage of denture bases fabricated by three methods: CAD/CAM, compression molding, and injection molding. The effect of arch form and palate depth was also tested. Nine titanium casts, representing combinations of tapered, ovoid, and square arch forms and shallow, medium, and deep palate depths, were fabricated using electron beam melting (EBM) technology. For each base fabrication method, three poly(vinyl siloxane) impressions were made from each cast, 27 dentures for each method. Compression-molded dentures were fabricated using Lucitone 199 poly methyl methacrylate (PMMA), and injection molded dentures with Ivobase's Hybrid Pink PMMA. For CAD/CAM, denture bases were designed and milled by Avadent using their Light PMMA. To quantify the space between the denture and the master cast, silicone duplicating material was placed in the intaglio of the dentures, the titanium master cast was seated under pressure, and the silicone was then trimmed and recovered. Three silicone measurements per denture were recorded, for a total of 243 measurements. Each silicone measurement was weighed and adjusted to the surface area of the respective arch, giving an average and standard deviation for each denture. Comparison of manufacturing methods showed a statistically significant difference (p = 0.0001). Using a ratio of the means, compression molding had on average 41% to 47% more space than injection molding and CAD/CAM. Comparison of arch/palate forms showed a statistically significant difference (p = 0.023), with shallow palate forms having more space with compression molding. The ovoid shallow form showed CAD/CAM and compression molding had more space than injection molding. Overall, injection molding and CAD/CAM fabrication methods produced equally well-fitting dentures, with both having a better fit than compression molding. Shallow palates appear to be more affected by shrinkage than medium or deep palates. Shallow ovoid arch forms appear to benefit from the use of injection molding compared to CAD/CAM and compression molding. © 2017 by the American College of Prosthodontists.

  6. Route 20, Autobahn 7, and Slime Mold: Approximating the Longest Roads in USA and Germany With Slime Mold on 3-D Terrains.

    PubMed

    Adamatzky, Andrew I

    2014-01-01

    A cellular slime mould Physarum polycephalum is a monstrously large single cell visible by an unaided eye. The slime mold explores space in parallel, is guided by gradients of chemoattractants, and propagates toward sources of nutrients along nearly shortest paths. The slime mold is a living prototype of amorphous biological computers and robotic devices capable of solving a range of tasks of graph optimization and computational geometry. When presented with a distribution of nutrients, the slime mold spans the sources of nutrients with a network of protoplasmic tubes. This protoplasmic network matches a network of major transport routes of a country when configuration of major urban areas is represented by nutrients. A transport route connecting two cities should ideally be a shortest path, and this is usually the case in computer simulations and laboratory experiments with flat substrates. What searching strategies does the slime mold adopt when exploring 3-D terrains? How are optimal and transport routes approximated by protoplasmic tubes? Do the routes built by the slime mold on 3-D terrain match real-world transport routes? To answer these questions, we conducted pioneer laboratory experiments with Nylon terrains of USA and Germany. We used the slime mold to approximate route 20, the longest road in USA, and autobahn 7, the longest national motorway in Europe. We found that slime mold builds longer transport routes on 3-D terrains, compared to flat substrates yet sufficiently approximates man-made transport routes studied. We demonstrate that nutrients placed in destination sites affect performance of slime mold, and show how the mold navigates around elevations. In cellular automaton models of the slime mold, we have shown variability of the protoplasmic routes might depends on physiological states of the slime mold. Results presented will contribute toward development of novel algorithms for sensorial fusion, information processing, and decision making, and will provide inspirations in design of bioinspired amorphous robotic devices.

  7. RELATIVE MOLDINESS INDEX© AS PREDICTOR OF CHILDHOOD RESPIRATORY ILLNESS

    EPA Science Inventory

    The results of a traditional visual mold inspection were compared to a mold evaluation based on the Relative Moldiness Index (RMI). The RMI is calculated from mold specific quantitative PCR (MSQPCR) measurements of the concentation of 36 species of molds in floor dust samples. ...

  8. Mold-Resistant Construction.

    ERIC Educational Resources Information Center

    Huckabee, Christopher

    2003-01-01

    Asserts that one of the surest ways to prevent indoor air quality and mold issues is to use preventive construction materials, discussing typical resistance to dealing with mold problems (usually budget-related) and describing mold-resistant construction, which uses concrete masonry, brick, and stone and is intended to withstand inevitable…

  9. Differential allergy induction by molds found in water-damaged homes**

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports (NAS, 2004) and World Health Organization guidelines (WHO, 2009) concluded that the role of molds in asthma indu...

  10. Modeling and flow analysis of pure nylon polymer for injection molding process

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  11. Rapid control of mold temperature during injection molding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liparoti, Sara; Titomanlio, Giuseppe; Hunag, Tsang Min

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during themore » entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.« less

  12. Fundamentals of rapid injection molding for microfluidic cell-based assays.

    PubMed

    Lee, Ulri N; Su, Xiaojing; Guckenberger, David J; Dostie, Ashley M; Zhang, Tianzi; Berthier, Erwin; Theberge, Ashleigh B

    2018-01-30

    Microscale cell-based assays have demonstrated unique capabilities in reproducing important cellular behaviors for diagnostics and basic biological research. As these assays move beyond the prototyping stage and into biological and clinical research environments, there is a need to produce microscale culture platforms more rapidly, cost-effectively, and reproducibly. 'Rapid' injection molding is poised to meet this need as it enables some of the benefits of traditional high volume injection molding at a fraction of the cost. However, rapid injection molding has limitations due to the material and methods used for mold fabrication. Here, we characterize advantages and limitations of rapid injection molding for microfluidic device fabrication through measurement of key features for cell culture applications including channel geometry, feature consistency, floor thickness, and surface polishing. We demonstrate phase contrast and fluorescence imaging of cells grown in rapid injection molded devices and provide design recommendations to successfully utilize rapid injection molding methods for microscale cell-based assay development in academic laboratory settings.

  13. Antibodies against molds and mycotoxins following exposure to toxigenic fungi in a water-damaged building.

    PubMed

    Vojdani, Aristo; Campbell, Andrew W; Kashanian, Albert; Vojdani, Elroy

    2003-06-01

    Exposure to molds in water-damaged buildings can cause allergy, asthma, hypersensitivity pneumonitis, mucus membrane irritation, and toxicity--alone or in combination. Despite this, significant emphasis has been placed only on Type I allergy and asthma, but not on the other 3 types of allergies. In this study, we sought to evaluate simultaneous measurements of immunoglobulin (Ig) G, IgM, IgA, and IgE antibodies against the most common molds, and their mycotoxins, cultured from water-damaged buildings. Antibodies against 7 different molds and 2 mycotoxins were determined by enzyme-linked immunosorbent assay (ELISA) in the blood of 40 controls and 40 mold-exposed patients. The IgG antibody levels against all 7 of the molds used, as well as the 2 mycotoxins, were significantly greater in patients than in controls. The IgM antibody levels were significantly different in patients for only 6 of 9 determinations. Regarding IgA determinations, antibodies were elevated significantly against all antigens tested, except Epicoccum. However, the differences in IgE levels in controls and mold-exposed patients were significant only for Aspergillus and satratoxin. These differences implied that, overall, the healthy control group was different from the mold-exposed patients for IgG, IgM, and IgA antibodies, but not for the IgE anti-mold antibody. Most patients with high levels of antibodies against various mold antigens also exhibited elevated antibodies against purified mycotoxins, indicating that the patients had been exposed to mold spores and mycotoxins. Detection of high levels (colony-forming units per cubic meter) of molds--which, in this study, strongly suggested that there existed a reservoir of spores in the building at the time of sampling--along with a significant elevation in IgG, IgM, or IgA antibodies against molds and mycotoxins, could be used in future epidemiologic investigations of fungal exposure. In addition to IgE, measurements of IgG, IgM, and IgA antibodies should be considered in mold-exposed individuals.

  14. Testing single point incremental forming molds for thermoforming operations

    NASA Astrophysics Data System (ADS)

    Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo

    2016-10-01

    Low pressure polymer processing processes as thermoforming or rotational molding use much simpler molds then high pressure processes like injection. However, despite the low forces involved with the process, molds manufacturing for this operations is still a very material, energy and time consuming operation. The goal of the research is to develop and validate a method for manufacturing plastically formed sheets metal molds by single point incremental forming (SPIF) operation for thermoforming operation. Stewart platform based SPIF machines allow the forming of thick metal sheets, granting the required structural stiffness for the mold surface, and keeping the short lead time manufacture and low thermal inertia.

  15. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    NASA Astrophysics Data System (ADS)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  16. Injection molding ceramics to high green densities

    NASA Technical Reports Server (NTRS)

    Mangels, J. A.; Williams, R. M.

    1983-01-01

    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.

  17. Computer-aided injection molding system

    NASA Astrophysics Data System (ADS)

    Wang, K. K.; Shen, S. F.; Cohen, C.; Hieber, C. A.; Isayev, A. I.

    1982-10-01

    Achievements are reported in cavity-filling simulation, modeling viscoelastic effects, measuring and predicting frozen-in birefringence in molded parts, measuring residual stresses and associated mechanical properties of molded parts, and developing an interactive mold-assembly design program and an automatic NC maching data generation and verification program. The Cornell Injection Molding Program (CIMP) consortium is discussed as are computer user manuals that have been published by the consortium. Major tasks which should be addressed in future efforts are listed, including: (1) predict and experimentally determine the post-fillin behavior of thermoplastics; (2) simulate and experimentally investigate the injection molding of thermosets and filled materials; and (3) further investigate residual stresses, orientation and mechanical properties.

  18. VIEW OF INTERIOR OF SOUTHERN DUCTILE CASTING COMPANY, CENTERVILLE FOUNDRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR OF SOUTHERN DUCTILE CASTING COMPANY, CENTERVILLE FOUNDRY SHOWING MOLD MAKING WITH PNEWMATIC JOLT SQUEEZE COPE AND DRAG MOLDING MACHINES THAT INDIVIDUALLY MADE EITHER A COPE OR DRAG AND A SMALL WHEELED MATCHPLATE JOLT-SQUEEZE MACHINE THAT COMPRESSED AN ENTIRE MOLD AT A SINGLE TIME USING A DOUBLE-SIDED PATTERN (MATCHPLATE). ALSO SHOWN ARE RAILED PALLET CAR CONVEYORS THAT CARRIED COMPLETED MOLDS FROM MOLDING MACHINES TO POURING AREAS WHERE WORKERS USED SMALL OVERHEAD CRANE TO LIFT JACKETS AND WEIGHTS ONTO THE MOLDS TO HOLD THEM TOGETHER WHILE POURING. - Southern Ductile Casting Company, Centerville Foundry, 101 Airport Road, Centreville, Bibb County, AL

  19. Pressurized Shell Molds For Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday K.; Lusignea, Richard N.; Cornie, James

    1993-01-01

    Balanced-pressure molds used to make parts in complex shapes from fiber-reinforced metal-matrix composite materials. In single step, molding process makes parts in nearly final shapes; only minor finishing needed. Because molding pressure same on inside and outside, mold does not have to be especially strong and can be made of cheap, nonstructural material like glass or graphite. Fibers do not have to be cut to conform to molds. Method produces parts with high content of continuous fibers. Parts stiff but light in weight, and coefficients of thermal expansion adjusted. Parts resistant to mechanical and thermal fatigue superior to similar parts made by prior fabrication methods.

  20. Design and Checking Analysis of Injection Mold for a Plastic Cup

    NASA Astrophysics Data System (ADS)

    Li, Xuebing

    2018-03-01

    A special injection mold was designed for the structural characteristics of a plastic cup part. The mold was simulated by Moldflow software and verified by calculating the stripping force, the pulling force and the clamping force of the mold so that to determine the appropriate injection parameters. It has been proved that the injection mold is effective and practical in the actual producing and can meet the quality requirements during the course of using it, which solved some problems for injection molding of this kind of parts and can provide some reference for the production of other products in the same industry.

  1. Method for Fabricating Soft Tissue Implants with Microscopic Surface Roughness

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1999-01-01

    A method for fabricating soft tissue implants using a mold. The cavity surface of an initially untextured mold. made of an organic material such as epoxy. is given a thin film coating of material that has pinholes and is resistant to atomic particle bombardment. The mold cavity surface is then subjected to atomic particle bombardment, such as when placed in an isotropic atomic oxygen environment. Microscopic depressions in the mold cavity surface are created at the pinhole sites on the thin film coating. The thin film coating is removed and the mold is then used to cast the soft tissue implant. The thin film coating having pinholes may be created by chilling the mold below the dew point such that water vapor condenses upon it; distributing particles, that can partially dissolve and become attached to the mold cavity surface, onto the mold cavity surface; removing the layer of condensate, such as by evaporation; applying the thin film coating over the entire mold surface; and, finally removing the particles, such as by dissolving or brushing it off. Pinholes are created in the thin film coating at the sites previously occupied by the particles.

  2. Numerical prediction of flow induced fibers orientation in injection molded polymer composites

    NASA Astrophysics Data System (ADS)

    Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.

    2015-12-01

    Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.

  3. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    PubMed Central

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  4. Study on In-mold Punching during PPS/GF Injection Molding

    NASA Astrophysics Data System (ADS)

    Inuzuka, Takayuki; Fujita, Akihiro; Nakai, Asami; Hamada, Hiroyuki

    The influence of the punching condition on strength and the amount of shear droop was investigated to optimize the processing condition for punching in the mold during glass fiber reinforced polyphenylenesulfide (PPS/GF) injection molding. For in-mold punching part during cooling process, the tensile strength was constant because the pressure loss by the punch did not occur. The amount of the shear droop decreased in line with the increase in delay time because the rigidity of injection molded part in the mold increased when the resin was cooled. Moreover, when the resin temperature lowered more than the glass transition temperature, the amount of the shear droop was constant because the rigidity became constant. It is necessary to begin punching when the resin temperature lowers more than the glass transition temperature after holding pressure process is completed, to secure high strength and to assume 0.05 mm or less, at which level the shear droop cannot be visually recognized. The shortest delay time for PPS/GF is 8 sec. The delay time to minimize the amount of the shear droop can be guessed by analyzing the temperature change of the resin in the mold by injection molding CAE.

  5. Thermophilic molds: Biology and applications.

    PubMed

    Singh, Bijender; Poças-Fonseca, Marcio J; Johri, B N; Satyanarayana, Tulasi

    2016-11-01

    Thermophilic molds thrive in a variety of natural habitats including soils, composts, wood chip piles, nesting materials of birds and other animals, municipal refuse and others, and ubiquitous in their distribution. These molds grow in simple media containing carbon and nitrogen sources and mineral salts. Polyamines are synthesized in these molds and the composition of lipids varies considerably, predominantly containing palmitic, oleic and linoleic acids with low levels of lauric, palmiotoleic and stearic acids. Thermophilic molds are capable of efficiently degrading organic materials by secreting thermostable enzymes, which are useful in the bioremediation of industrial wastes and effluents that are rich in oil, heavy metals, anti-nutritional factors such as phytic acid and polysaccharides. Thermophilic molds synthesize several antimicrobial substances and biotechnologically useful miscellaneous enzymes. The analysis of genomes of thermophilic molds reveals high G:C contents, shorter introns and intergenic regions with lesser repetitive sequences, and further confirms their ability to degrade agro-residues efficiently. Genetic engineering has aided in ameliorating the characteristics of the enzymes of thermophilic molds. This review is aimed at focusing on the biology of thermophilic molds with emphasis on recent developments in the analysis of genomes, genetic engineering and potential applications.

  6. Molten metal injector system and method

    DOEpatents

    Meyer, Thomas N.; Kinosz, Michael J.; Bigler, Nicolas; Arnaud, Guy

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  7. Digital Twin concept for smart injection molding

    NASA Astrophysics Data System (ADS)

    Liau, Y.; Lee, H.; Ryu, K.

    2018-03-01

    Injection molding industry has evolved over decades and became the most common method to manufacture plastic parts. Monitoring and improvement in the injection molding industry are usually performed separately in each stage, i.e. mold design, mold making and injection molding process. However, in order to make a breakthrough and survive in the industrial revolution, all the stages in injection molding need to be linked and communicated with each other. Any changes in one stage will cause a certain effect in other stage because there is a correlation between each other. Hence, the simulation should not only based on the input of historical data, but it also needs to include the current condition of equipment and prediction of future events in other stages to make the responsive decision. This can be achieved by implementing the concept of Digital Twin that models the entire process as a virtual model and enables bidirectional control with the physical process. This paper presented types of data and technology required to build the Digital Twin for the injection molding industry. The concept includes Digital Twin of each stage and integration of these Digital Twin model as a thoroughgoing model of the injection molding industry.

  8. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  9. TRUFLO GONDOLA, USED WITH THE HUNTER 10 MOLDING MACHINE, OPERATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRUFLO GONDOLA, USED WITH THE HUNTER 10 MOLDING MACHINE, OPERATES THE SAME AS THE TWO LARGER TRUFLOS USED IN CONJUNCTION WITH THE TWO HUNTER 20S. EACH GONDOLA IS CONNECTED TO THE NEXT AND RIDES ON A SINGLE TRACK RAIL FROM MOLDING MACHINES THROUGH POURING AREAS CARRYING A MOLD AROUND TWICE BEFORE THE MOLD IS PUSHED OFF ONTO A VIBRATING SHAKEOUT CONVEYOR. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  10. Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

    DOE PAGES

    Li, Yang; Chen, Zhangxing; Xu, Hongyi; ...

    2017-01-02

    Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less

  11. Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Chen, Zhangxing; Xu, Hongyi

    Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less

  12. A hybrid optimization approach in non-isothermal glass molding

    NASA Astrophysics Data System (ADS)

    Vu, Anh-Tuan; Kreilkamp, Holger; Krishnamoorthi, Bharathwaj Janaki; Dambon, Olaf; Klocke, Fritz

    2016-10-01

    Intensively growing demands on complex yet low-cost precision glass optics from the today's photonic market motivate the development of an efficient and economically viable manufacturing technology for complex shaped optics. Against the state-of-the-art replication-based methods, Non-isothermal Glass Molding turns out to be a promising innovative technology for cost-efficient manufacturing because of increased mold lifetime, less energy consumption and high throughput from a fast process chain. However, the selection of parameters for the molding process usually requires a huge effort to satisfy precious requirements of the molded optics and to avoid negative effects on the expensive tool molds. Therefore, to reduce experimental work at the beginning, a coupling CFD/FEM numerical modeling was developed to study the molding process. This research focuses on the development of a hybrid optimization approach in Non-isothermal glass molding. To this end, an optimal configuration with two optimization stages for multiple quality characteristics of the glass optics is addressed. The hybrid Back-Propagation Neural Network (BPNN)-Genetic Algorithm (GA) is first carried out to realize the optimal process parameters and the stability of the process. The second stage continues with the optimization of glass preform using those optimal parameters to guarantee the accuracy of the molded optics. Experiments are performed to evaluate the effectiveness and feasibility of the model for the process development in Non-isothermal glass molding.

  13. Effect of mold diameter on the depth of cure of a resin-based composite material.

    PubMed

    Erickson, Robert L; Barkmeier, Wayne W

    2017-02-01

    The purpose of this study was to examine the effect of mold diameter on depth of cure of a resin-based composite material for varying amounts of irradiation. A resin-based composite was light-cured for 10-80 s in stainless-steel molds of either 6 mm or 4 mm in diameter and then dark-stored for 24 h. Specimens were then scraped back and the length of the cured specimens was measured to provide depth of cure (D SB ). Radiant exposure to each of the mold diameters was determined by measuring the power. The D SB values using the 4-mm molds were lower than those of the 6-mm molds. The average difference between the two groups for each irradiation time was 0.45 ± 0.02 mm. A fixed depth of cure required about 39% more irradiation time for the 4-mm mold than for the 6-mm mold but 75% more radiant exposure. The difference in cure depth for a fixed radiant exposure was 0.79 mm. A better comparison of depth of cure is obtained by using identical radiant exposures for different mold diameters. It is believed that greater loss of light by absorption at the stainless-steel cylinder walls for the 4-mm-diameter cylinders accounts for the lower depth of cure when compared with the 6-mm molds. © 2017 Eur J Oral Sci.

  14. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Randommore » orientation of fibers was noted in the composites test bars produced from divergent melt flow.« less

  15. Differentiation of Toxic Molds via Headspace SPME-GC/MS and Canine Detection

    PubMed Central

    Griffith, Robert T.; Jayachandran, Krishnaswamy; Shetty, Kateel G.; Whitstine, William; Furton, Kenneth G.

    2007-01-01

    Indoor mold growth has recently become a concern in the legal world in regards to insurance litigation. Hazardous mold exposure to humans has been linked to many acute and chronic adverse health effects including death. As it grows, mold produces several types of primary and secondary metabolites, including microbial volatile organic compounds (MVOCs). Microbial volatile organic compound emission may be used as a preliminary indication of a mold infestation that is invisible to the unaided eye. The objective of the study is to identify the unique odor signatures of three species of molds, Aspergillus versicolor, Penicillium chrysogenum, and Stachybotrys chartarum by SPME-GC/MS analysis. Determining the compounds that are emitted by the selected species has made it possible to conduct validation studies of canine detection of these mold species through a series of field tests.

  16. Allergy and "toxic mold syndrome".

    PubMed

    Edmondson, David A; Nordness, Mark E; Zacharisen, Michael C; Kurup, Viswanath P; Fink, Jordan N

    2005-02-01

    "Toxic mold syndrome" is a controversial diagnosis associated with exposure to mold-contaminated environments. Molds are known to induce asthma and allergic rhinitis through IgE-mediated mechanisms, to cause hypersensitivity pneumonitis through other immune mechanisms, and to cause life-threatening primary and secondary infections in immunocompromised patients. Mold metabolites may be irritants and may be involved in "sick building syndrome." Patients with environmental mold exposure have presented with atypical constitutional and systemic symptoms, associating those symptoms with the contaminated environment. To characterize the clinical features and possible etiology of symptoms in patients with chief complaints related to mold exposure. Review of patients presenting to an allergy and asthma center with the chief complaint of toxic mold exposure. Symptoms were recorded, and physical examinations, skin prick/puncture tests, and intracutaneous tests were performed. A total of 65 individuals aged 1 1/2 to 52 years were studied. Symptoms included rhinitis (62%), cough (52%), headache (34%), respiratory symptoms (34%), central nervous system symptoms (25%), and fatigue (23%). Physical examination revealed pale nasal mucosa, pharyngeal "cobblestoning," and rhinorrhea. Fifty-three percent (33/62) of the patients had skin reactions to molds. Mold-exposed patients can present with a variety of IgE- and non-IgE-mediated symptoms. Mycotoxins, irritation by spores, or metabolites may be culprits in non-IgE presentations; environmental assays have not been perfected. Symptoms attributable to the toxic effects of molds and not attributable to IgE or other immune mechanisms need further evaluation as to pathogenesis. Allergic, rather than toxic, responses seemed to be the major cause of symptoms in the studied group.

  17. CROSS REACTIVITY IN ALLERGIC ASTHMA-LIKE RESPONSES BETWEEN MOLD AND HOUSE DUST MITE IN MICE

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic asthma. Some mold allergens have been implicated as the causal agent for allergic asthma. Western blot analysis demonstrated IgE-binding cross-reactivity among m...

  18. Bleach Neutralizes Mold Allergens

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic…

  19. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded, extruded, and...

  20. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded...

  1. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded...

  2. MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...

  3. Snow Mold Investigations in Eastern Washington

    Treesearch

    T. H. Filer; A. G. Law

    1961-01-01

    "Snow mold of turf" in the Pacific Northwest must include both Fusarium Patch caused by Calonectria graminicola (Berk and Br.) (conidial stage Fusarium nivale (Fr. ) CES.), and Gray snow mold caused by Typhula itoana Imai, which occur together to give a disease complex. Snow mold of turf is the most...

  4. Study of injection molded microcellular polyamide-6 nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler

    2004-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...

  5. 75 FR 55340 - Recovery Fact Sheet 9580.100, Mold Remediation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ...] Recovery Fact Sheet 9580.100, Mold Remediation AGENCY: Federal Emergency Management Agency, DHS. ACTION... accepting comments on Recovery Fact Sheet RP9580.100, Mold Remediation. DATES: Comments must be received by... 20472-3100. II. Background The Recovery Fact Sheet RP9580.100, Mold Remediation, identifies the expenses...

  6. Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection

    NASA Astrophysics Data System (ADS)

    Mingji, Huang; Geng, Wu; yan, Shan

    2017-11-01

    The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.

  7. Additive Manufacturing of Molds for Fabrication of Insulated Concrete Block

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J.; Lloyd, Peter D.

    ORNL worked with concrete block manufacturer, NRG Insulated Block, to demonstrate additive manufacturing of a multi-component block mold for its line of insulated blocks. Solid models of the mold parts were constructed from existing two-dimensional drawings and the parts were fabricated on a Stratasys Fortus 900 using ULTEM 9085. Block mold parts were delivered to NRG and installed on one of their fabrication lines. While form and fit were acceptable, the molds failed to function during NRG’s testing.

  8. Fuel cell collector plate and method of fabrication

    DOEpatents

    Braun, James C.; Zabriskie, Jr., John E.; Neutzler, Jay K.; Fuchs, Michel; Gustafson, Robert C.

    2001-01-01

    An improved molding composition is provided for compression molding or injection molding a current collector plate for a polymer electrolyte membrane fuel cell. The molding composition is comprised of a polymer resin combined with a low surface area, highly-conductive carbon and/or graphite powder filler. The low viscosity of the thermoplastic resin combined with the reduced filler particle surface area provide a moldable composition which can be fabricated into a current collector plate having improved current collecting capacity vis-a-vis comparable fluoropolymer molding compositions.

  9. Fungal growth and the presence of sterigmatocystin in hard cheese.

    PubMed

    Northolt, M D; van Egmond, H P; Soentoro, P; Deijll, E

    1980-01-01

    Molds isolated from visibly molded cheeses in shops, households, and warehouses have been identified. Mold flora of cheeses in shops and households consisted mainly of Penicillium verrucosum var. cyclopium. On cheeses ripening in warehouses, Penicillium verrucosum var. cyclopium, Aspergillus versicolor, Aspergillus repens, and Enicillium verrucosum var. verrucosum were the dominant mold species. Cheese ripening in warehouses and molded with A. versicolor were examined for sterigmatocystin. Nine of 39 cheese samples contained sterigmatocystin in the surface layer in concentrations ranging from 5 to 600 micrograms/kg.

  10. Improved compression molding technology for continuous fiber reinforced composite laminates. Part 2: AS-4/Polyimidesulfone prepreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored.

  11. From micro- to nano-scale molding of metals : size effect during molding of single crystal Al with rectangular strip punches.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Meng, W. J.; Mei, F.

    2011-02-01

    A single crystal Al specimen was molded at room temperature with long, rectangular, strip diamond punches. Quantitative molding response curves were obtained at a series of punch widths, ranging from 5 {micro}m to 550 nm. A significant size effect was observed, manifesting itself in terms of significantly increasing characteristic molding pressure as the punch width decreases to 1.5 {micro}m and below. A detailed comparison of the present strip punch molding results was made with Berkovich pyramidal indentation on the same single crystal Al specimen. The comparison reveals distinctly different dependence of the characteristic pressure on corresponding characteristic length. The presentmore » results show the feasibility of micro-/nano-scale compression molding as a micro-/nano-fabrication technique, and offer an experimental test case for size-dependent plasticity theories.« less

  12. Creating mold-free buildings: a key to avoiding health effects of indoor molds.

    PubMed

    Small, Bruce M

    2003-08-01

    In view of the high costs of building diagnostics and repair subsequent to water damage--as well as the large medical diagnostic and healthcare costs associated with mold growth in buildings--commitment to a philosophy of proactive preventive maintenance for home, apartment, school, and commercial buildings could result in considerable cost savings and avoidance of major health problems among building occupants. The author identifies common causes of mold growth in buildings and summarizes key building design and construction principles essential for preventing mold contamination indoors. Physicians and healthcare workers must be made aware of conditions within buildings that can give rise to mold growth, and of resulting health problems. Timely advice provided to patients already sensitized by exposure to molds could save these individuals, and their families, from further exposures as a result of inadequate building maintenance or an inappropriate choice of replacement housing.

  13. Cross Section of Legislative Approaches to Reducing Indoor Dampness and Mold

    PubMed Central

    Boese, Gerald W.

    2017-01-01

    Exposure to indoor dampness and mold is associated with numerous adverse respiratory conditions, including asthma. While no quantitative health-based threshold currently exists for mold, the conditions that support excessive dampness and mold are known and preventable; experts agree that controlling these conditions could lead to substantial savings in health care costs and improvement in public health. This article reviews a sample of state and local policies to limit potentially harmful exposures. Adoption of laws to strengthen building codes, specify dampness and mold in habitability laws, regulate mold contractors, and other legislative approaches are discussed, as are key factors supporting successful implementation. Communicating these lessons learned could accelerate the process for other jurisdictions considering similar approaches. Information about effectiveness of legislation as prevention is lacking; thus, evaluation could yield important information to inform the development of model state or local laws that significantly address mold as a public health concern. PMID:27977504

  14. Understanding the impact of molds on indoor air quality and possible links to health effects Indoor Molds - More than Just a Musty Smell

    EPA Science Inventory

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed ...

  15. HOW to Recognize and Control Sooty Molds

    Treesearch

    Kenneth J. Jr. Kessler

    1992-01-01

    Sooty molds are dark fungi that grow on honeydew excreted by sucking insects or on exudates from leaves of certain plants. Typically, sooty mold growths are composed of fungal complexes made up of ascomycetes and fungi imperfecti. Some of the common genera of fungi found in sooty mold complexes are Cladosporium, Aureobasidium, Antennariella, Limacinula, Scorias, and...

  16. Mold inhibition on unseasoned southern pine

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2003-01-01

    Concerns about indoor air quality due to mold growth have increased dramatically in the United States. In the absence of moisture management, fungicides need to be developed for indoor use to control mold establishment. An ideal fungicide for prevention of indoor mold growth on wood-based materials needs to specifically prevent spore germination and provide long-term...

  17. DNA-Based Analyses of Molds in Singapore Public Buildings Results in a Proposed Singapore Environmental Relative Moldiness Index

    EPA Science Inventory

    Dust samples (n=75) were collected from shopping malls, hotels and libraries in Singapore and then analyzed using Mold Specific Quantitative Polymerase Chain Reaction(MSQPCR) for the 36 molds that make up the Environmental Relative Moldiness Index (ERMI). Most of these molds (23/...

  18. Diagnosis of mold allergy by RAST and skin prick testing.

    PubMed

    Nordvall, S L; Agrell, B; Malling, H J; Dreborg, S

    1990-11-01

    Sera from 33 patients with mold allergy proven by bronchial provocation were analyzed for specific IgE against six mold species comparing an improved Phadebas RAST with four other techniques. The new method was more sensitive and gave significantly higher IgE antibody concentrations for all tested molds except Cladosporium herbarum.

  19. A rapid colorimetric assay for mold spore germination using XTT tetrazolium salt

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Current laboratory test methods to measure efficacy of new mold inhibitors are time consuming, some require specialized test equipment and ratings are subjective. Rapid, simple quantitative assays to measure the efficacy of mold inhibitors are needed. A quantitative, colorimetric microassay was developed using XTT tetrazolium salt to metabolically assess mold spore...

  20. 40 CFR 63.7710 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gases from mold vents in pouring areas and pouring stations that use a sand mold system. This operation... including quality assurance procedures. (iv) How the bag leak detection system will be maintained including...) Procedures for providing an ignition source to mold vents of sand mold systems in each pouring area and...

  1. Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.

    PubMed

    Lee, Bong Kuk; Yu, Han Young; Kim, Yarkyeon; Yoon, Yong Sun; Jang, Won Ik; Do, Lee-Mi; Park, Ji-Ho; Park, Jaehoon

    2016-03-01

    We report the fabrication of flexible replica molds for transfer printing of Ag ink on a rigid glass substrate. As mold precursors, acrylic mixtures were prepared from silsesquioxane-based materials, silicone acrylate, poly(propylene glycol) diacrylate, 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate, and photoinitiator. By using these materials, the replica molds were fabricated from a silicon master onto a flexible substrate by means of UV-assisted molding process at room temperature. The wettability of Ag ink decreased with increase in the water contact angle of replica molds. On the other hand, the transfer rate of Ag ink onto adhesive-modified substrates increased with increase in the water contact angle of replica molds. Transferred patterns were found to be thermally stable on the photocurable adhesive layer, whereas Ag-ink patterns transferred on non-photocurable adhesives were distorted by thermal treatment. We believe that these characteristics of replica molds and adhesives offer a new strategy for the development of the transfer printing of solution-based ink materials.

  2. Peri-implant bone formation and surface characteristics of rough surface zirconia implants manufactured by powder injection molding technique in rabbit tibiae.

    PubMed

    Park, Young-Seok; Chung, Shin-Hye; Shon, Won-Jun

    2013-05-01

    To evaluate osseointegration in rabbit tibiae and to investigate surface characteristics of novel zirconia implants made by powder injection molding (PIM) technique, using molds with and without roughened inner surfaces. A total of 20 rabbits received three types of external hex implants with identical geometry on the tibiae: machined titanium implants, PIM zirconia implants without mold etching, and PIM zirconia implants with mold etching. Surface characteristics of the three types of implant were evaluated. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined titanium implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined titanium implants (P < 0.001). The PIM zirconia implants using roughened mold showed significantly higher removal torque values than PIM zirconia implants without using roughened mold (P < 0.001). It is concluded that the osseointegration of PIM zirconia implant is promising and PIM using roughened mold etching technique can produce substantially rough surfaces on zirconia implants. © 2012 John Wiley & Sons A/S.

  3. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  4. A would-be nervous system made from a slime mold.

    PubMed

    Adamatzky, Andrew

    2015-01-01

    The slime mold Physarum polycephalum is a huge single cell that has proved to be a fruitful material for designing novel computing architectures. The slime mold is capable of sensing tactile, chemical, and optical stimuli and converting them to characteristic patterns of its electrical potential oscillations. The electrical responses to stimuli may propagate along protoplasmic tubes for distances exceeding tens of centimeters, as impulses in neural pathways do. A slime mold makes decisions about its propagation direction based on information fusion from thousands of spatially extended protoplasmic loci, similarly to a neuron collecting information from its dendritic tree. The analogy is distant yet inspiring. We speculate on whether alternative-would-be-nervous systems can be developed and practically implemented from the slime mold. We uncover analogies between the slime mold and neurons, and demonstrate that the slime mold can play the roles of primitive mechanoreceptors, photoreceptors, and chemoreceptors; we also show how the Physarum neural pathways develop. The results constituted the first step towards experimental laboratory studies of nervous system implementation in slime molds.

  5. Rotational molding of pultruded profiles reinforced polyethylene

    NASA Astrophysics Data System (ADS)

    Greco, Antonio; Maffezzoli, Alfonso; Romano, Giorgio

    2014-05-01

    The aim of this paper is the production of fiber reinforced LLDPE components by rotational molding. To this purpose, a process upgrade was developed, for the incorporation of pultruded tapes in the rotational molding cycle. Pultruded tapes, made of 50% by weight of glass fibers dispersed in a high density polyethylene(HDPE) matrix, were glued on the internal surface of a cubic mold, and rotational molding process was run using the same processing conditions used for conventional LLDPE processing. During processing, melting of LLDPE powders and of HDPE allowed to incorporate the tapes inside rotational molded LLDPE. The glass fiber reinforced prototypes were characterized in terms of mechanical properties. Plate bending tests were performed on the square faces extracted from the rotational molded product. The rotational molding products were also subjected to internal hydrostatic pressure tests up to 10 bar. In any case, no failure of the cubic samples was observed. In both cases, it was found that addition of a single pultruded strips, which corresponds to addition of about 0.6% by weight of glass fibers, involved an increase of the stiffness of the faces by about 25%.

  6. Automatic flow-batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment.

    PubMed

    Domínguez, Marina A; Grünhut, Marcos; Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E

    2012-05-16

    An automatic flow-batch system that includes two borosilicate glass chambers to perform sample digestion and cold vapor atomic absorption spectroscopy determination of mercury in honey samples was designed. The sample digestion was performed by using a low-cost halogen lamp to obtain the optimum temperature. Optimization of the digestion procedure was done using a Box-Behnken experimental design. A linear response was observed from 2.30 to 11.20 μg Hg L(-1). The relative standard deviation was 3.20% (n = 11, 6.81 μg Hg L(-1)), the sample throughput was 4 sample h(-1), and the detection limit was 0.68 μg Hg L(-1). The obtained results with the flow-batch method are in good agreement with those obtained with the reference method. The flow-batch system is simple, allows the use of both chambers simultaneously, is seen as a promising methodology for achieving green chemistry goals, and is a good proposal to improving the quality control of honey.

  7. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  8. The effect of sintering time on recycled magnesia brick from kiln of the cement plant

    NASA Astrophysics Data System (ADS)

    Aji, B. B.; Rosalina, D.; Azhar; Amin, M.

    2018-01-01

    This research aim was to investigate the effect of sintering time on reuse waste of magnesia brick from the rotary kiln of the cement plant. Reuse of the magnesia brick was carried out by mixed the kaolin as the binder. Spent refractory was used as aggregate with the composition of 85% spent refractory and 15% kaolin clay, respectively. The reuse brick then was molded with the size of 5x5x5 cm using hydraulic press under a load of 10 tons in order to forms green body. Green body then dried and sintered at 1200 °C with time variation of 2 hours, 4 hours, 6 hours, 8 hours and 10 hours, respectively. Thus, for comparison reuse brick was tested to its apparent porosity, the bulk density, and Cold Crushing Strength (CCS). The effect of kaolin addition as binder was also discussed.

  9. [Moisture and mold on the inner walls of prefabricated building slabs--investigating a strange cause].

    PubMed

    Kaufhold, T; Fiedler, K; Jung, G; Lindner, M; Gassel, R P

    1997-04-01

    Reasons for indoor-moisture beyond the normal level can be caused by penetrating dampness, condensation-water, and apartment misuse. A fall in the air temperature below the dew point in connection with moulding inside buildings becomes evident mostly at places like badly insulated outer-walls or room-corners. In a number of houses built between 1980 and 1983 in the so called "Plattenbauweise" (prefabricated slabs), exclusively the inner-walls were covered in mould around cracks in the walls. Examinations showed connections between the apartment and the outer-corridor with a slight exchange of air through the cracks. Warm, wet air escaped from the apartment into the outer-corridor, and cold air entered the apartment from the outer-corridor. This temporary fall below the dewpoint caused by suitable variation of temperature probably resulted in the building materials and wallpapers becoming damp, as well as the growth of mould.

  10. Particle Image Velocimetry During Injection Molding

    NASA Astrophysics Data System (ADS)

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  11. Effect of Slag-Steel Reaction on the Initial Solidification of Molten Steel during Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lou, Zhican; Zhang, Haihui

    2018-03-01

    With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.

  12. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  13. Dynamic Feed Control For Injection Molding

    DOEpatents

    Kazmer, David O.

    1996-09-17

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  14. Effect of Slag-Steel Reaction on the Initial Solidification of Molten Steel during Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lou, Zhican; Zhang, Haihui

    2018-06-01

    With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.

  15. Is Mold Toxicity Really a Problem for Our Patients? Part 2—Nonrespiratory Conditions

    PubMed Central

    Pizzorno, Joseph; Shippy, Ann

    2016-01-01

    In my last editorial, I addressed the respiratory effects of mold exposure. The surprising research shows that as many as 50% of residential and work environments have water damage1 and that mold toxicity should be considered in all patients with any chronic respiratory condition. This is especially true in adult-onset asthma, two-thirds of which appears to be caused by toxins released from water-damaged buildings. The carcinogenic effects of food-borne mold contamination are also well documented. Less clear is the role of indoor mold exposure in water-damaged buildings and its relationship to nonrespiratory conditions. As we look at the research on mold toxicity and toxins in general, we propose that the medical community (by all its names) has focused too much on the “yellow canaries” and missed the big picture that toxins have now become a primary driver of disease in the general population, not only among those most susceptible. The mold toxicity conundrum illustrates this issue quite well. As summarized in this editorial, there clearly is a portion of the population, the size of which is currently unknown, who experience neurological and/or immunological damage from mold toxicity. In addition, a substantial portion of the population experiences chronic respiratory problems from mold exposure. This does not mean we should stop paying attention to our more affected patients. Rather, we need to realize that almost everyone is being affected by toxins to some degree: molds, metals, solvents, persistent organic pollutants, etc. PMID:27547160

  16. Is Mold Toxicity Really a Problem for Our Patients? Part 2-Nonrespiratory Conditions.

    PubMed

    Pizzorno, Joseph; Shippy, Ann

    2016-06-01

    In my last editorial, I addressed the respiratory effects of mold exposure. The surprising research shows that as many as 50% of residential and work environments have water damage1 and that mold toxicity should be considered in all patients with any chronic respiratory condition. This is especially true in adult-onset asthma, two-thirds of which appears to be caused by toxins released from water-damaged buildings. The carcinogenic effects of food-borne mold contamination are also well documented. Less clear is the role of indoor mold exposure in water-damaged buildings and its relationship to nonrespiratory conditions. As we look at the research on mold toxicity and toxins in general, we propose that the medical community (by all its names) has focused too much on the "yellow canaries" and missed the big picture that toxins have now become a primary driver of disease in the general population, not only among those most susceptible. The mold toxicity conundrum illustrates this issue quite well. As summarized in this editorial, there clearly is a portion of the population, the size of which is currently unknown, who experience neurological and/or immunological damage from mold toxicity. In addition, a substantial portion of the population experiences chronic respiratory problems from mold exposure. This does not mean we should stop paying attention to our more affected patients. Rather, we need to realize that almost everyone is being affected by toxins to some degree: molds, metals, solvents, persistent organic pollutants, etc.

  17. Atomic layer deposition as pore diameter adjustment tool for nanoporous aluminum oxide injection molding masks.

    PubMed

    Miikkulainen, Ville; Rasilainen, Tiina; Puukilainen, Esa; Suvanto, Mika; Pakkanen, Tapani A

    2008-05-06

    The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.

  18. Mold and Human Health: a Reality Check.

    PubMed

    Borchers, Andrea T; Chang, Christopher; Eric Gershwin, M

    2017-06-01

    There are possibly millions of mold species on earth. The vast majority of these mold spores live in harmony with humans, rarely causing disease. The rare species that does cause disease does so by triggering allergies or asthma, or may be involved in hypersensitivity diseases such as allergic bronchopulmonary aspergillosis or allergic fungal sinusitis. Other hypersensitivity diseases include those related to occupational or domiciliary exposures to certain mold species, as in the case of Pigeon Breeder's disease, Farmer's lung, or humidifier fever. The final proven category of fungal diseases is through infection, as in the case of onchomycosis or coccidiomycosis. These diseases can be treated using anti-fungal agents. Molds and fungi can also be particularly important in infections that occur in immunocompromised patients. Systemic candidiasis does not occur unless the individual is immunodeficient. Previous reports of "toxic mold syndrome" or "toxic black mold" have been shown to be no more than media hype and mass hysteria, partly stemming from the misinterpreted concept of the "sick building syndrome." There is no scientific evidence that exposure to visible black mold in apartments and buildings can lead to the vague and subjective symptoms of memory loss, inability to focus, fatigue, and headaches that were reported by people who erroneously believed that they were suffering from "mycotoxicosis." Similarly, a causal relationship between cases of infant pulmonary hemorrhage and exposure to "black mold" has never been proven. Finally, there is no evidence of a link between autoimmune disease and mold exposure.

  19. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.

    PubMed

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-03-30

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  20. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    PubMed Central

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-01-01

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543

  1. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  2. Mold Flux Crystallization and Mold Thermal Behavior

    NASA Astrophysics Data System (ADS)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  3. Mold growth in on-reserve homes in Canada: the need for research, education, policy, and funding.

    PubMed

    Optis, Michael; Shaw, Karena; Stephenson, Peter; Wild, Peter

    2012-01-01

    The impact of mold growth in homes located on First Nations reserves in Canada is part of a national housing crisis that has not been adequately studied. Nearly half of the homes on reserves contain mold at levels of contamination associated with high rates of respiratory and other illnesses to residents. Mold thrives due to increased moisture levels in building envelopes and interior spaces. Increased moisture stems from several deficiencies in housing conditions, including structural damage to the building envelope, overcrowding and insufficient use of ventilation systems, and other moisture-control strategies. These deficiencies have developed due to a series of historical and socioeconomic factors, including disenfranchisement from traditional territory, environmentally inappropriate construction, high unemployment rates, lack of home ownership, and insufficient federal funding for on-reserve housing and socioeconomic improvements. The successful, long-term reduction of mold growth requires increased activity in several research and policy areas. First, the actual impacts on health need to be studied and associated with comprehensive experimental data on mold growth to understand the unique environmental conditions that permit the germination and growth of toxic mold species. Second, field data documenting the extent of mold growth in on-reserve homes do not exist but are essential in understanding the full extent of the crisis. Third, current government initiatives to educate homeowners in mold remediation and prevention techniques must be long lasting and effective. Finally, and most importantly, the federal government must make a renewed and lasting commitment to improve the socioeconomic conditions on reserves that perpetuate mold growth in homes. Without such improvement, the mold crisis will surely persist and likely worsen.

  4. Antifungal effectiveness of potassium sorbate incorporated in edible coatings against spoilage molds of apples, cucumbers, and tomatoes during refrigerated storage.

    PubMed

    Mehyar, Ghadeer F; Al-Qadiri, Hamzah M; Abu-Blan, Hifzi A; Swanson, Barry G

    2011-04-01

    Predominant spoilage molds of fresh apples, cucumbers, and tomatoes stored at 4 °C were isolated and examined for resistance to potassium sorbate (PS) incorporated in polysaccharide edible coatings. The isolated molds were Penicillium expansum, Cladosporium herbarum, and Aspergillus niger from apples. P. oxalicum and C. cucumerinum were isolated from cucumbers and P. expansium and C. fulvum from tomatoes. Guar gum edible coating incorporated with PS was the most effective mold inhibitor, significantly (P<0.05) reducing the isolated spoilage molds for 20, 15, and 20 d of storage at 4 °C on apples, cucumbers, and tomatoes, respectively. PS incorporated into pea starch edible coating was less effective and selectively inhibited the isolated mold species, causing significant (P<0.05) reduction in mold on apples, cucumbers, and tomatoes counts for 20, 10 to 15, and 15 to 20 d of storage at 4 °C, respectively. The isolated mold species exhibited different resistances to PS incorporated in the edible coatings. The greatest inhibition (2.9 log CFU/g) was obtained with C. herbarum on apples and the smallest (1.1 log CFU/g) was with P. oxalicum on cucumbers and the other isolated mold species exhibited intermediate resistance. The coatings tested, in general, inhibited molds more effectively on apples than on tomatoes and cucumbers. Addition of PS to pea starch and guar gum, edible coatings improved the antifungal activity of PS against isolated spoilage molds on apples, cucumbers, and tomatoes. PS inhibition was most effective against C. herbarum on apples and least effective against P. oxalicum on cucumbers.

  5. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to prevent segregation, and sintering and cristobalite transformation in fused silica compacts.

  6. Brittle Materials Design, High Temperature Gas Turbine

    DTIC Science & Technology

    1975-04-01

    was directed toward fabricating flaw- free one-piece first stage stators using a silicon metal powder injection molding composition yielding reaction...process was used because this composition utilizes thermoset polymers which cannot be handled on available injection molding equipment. Silicon...molded of several compositions incorporating slight variations. Some of the components molded had completely filled the die cavity and appeared

  7. 40 CFR 63.5728 - What standards must I meet for closed molding resin operations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation does not meet the definition of closed molding, then you must comply with the limit for open... molding operation must comply with the limit for open molding resin and gel coat operations specified in § 63.5698. Examples of these operations include gel coat or skin coat layers that are applied before...

  8. Thermoplastics for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Silverman, B.

    1978-01-01

    The goal for this contract is the development of processes and techniques for molding thermally stable, fire retardant, low smoke emitting polymeric materials. Outlined in this presentation are: (1) the typical molding types; (2) a program schedule; (3) physical properties of molding types with the test methods to be used; (4) general properties of injection molding materials; and (5) preliminary materials selection.

  9. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cure 25 lb/ton.4 NA—this is considered to be a closed molding operation. 25 lb/ton.4 Use the... vented during spinning and cure 20 lb/ton.4 NA—this is considered to be a closed molding operation. 20 lb...

  10. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, E.M.; Masso, J.D.

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  11. REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-06-24

    Refractory coating for graphite molds used in the casting of uranium is described. The coating is an alumino-silicate refractory composition which may be used as a mold surface in solid form or as a coating applied to the graphite mold. The composition consists of a mixture of ball clay, kaolin, alumina cement, alumina, water, sodium silicate, and sodium carbonate.

  12. Moldicidal properties of seven essential oils

    Treesearch

    Vina W. Yang; Carol A. Clausen

    2006-01-01

    When wood and wood products are exposed to moisture during storage, construction or while in-service, mold growth can occur in 24 to 48 hours. Mold growth could be suppressed or prevented if wood was treated with an effective mold inhibitor. The objective of this study was to evaluate the mold inhibiting properties of natural plant extracts such as essential oils....

  13. A Mold by Any Other Name: One Librarian's Battle Against a Mold Bloom.

    ERIC Educational Resources Information Center

    Smith, Laura Katz

    1997-01-01

    Describes how library staff at Virginia Polytechnic Institute and State University cleaned up materials after a mold bloom in the rare book room. Includes advice for controlling mold: set up a hygrothermograph, clean dust from books, set up fans, do a "skin" test at regular intervals, keep windows closed, have dehumidifiers available.…

  14. Investigation of the adhesion interface obtained through two-component injection molding

    NASA Astrophysics Data System (ADS)

    Fetecau, Catalin; Stan, Felicia; Dobrea, Daniel

    2011-01-01

    In this paper we study the interface strength obtained through two-component (2C) injection molding of LDPE-HDPE polymers. First, numerical simulation of the over-molding process is carried out using Moldflow technology. Second, butt-joint specimens were produced by over-molding under different process condition, and tested. Two injection sequences were considered, injection of LDPE on HDPE polymer, and HDLE on LDPE, respectively. To investigate the effects of the mold surface roughness on the polymers adhesion at interface, different inserts with different roughness are employed.

  15. Porous media heat transfer for injection molding

    DOEpatents

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  16. [Effects of different excipients on properties of Tongsaimai mixture and pellet molding].

    PubMed

    Wang, Jin; Lv, Zhiyang; Wu, Xiaoyan; Di, Liuqing; Dong, Yu; Cai, Baochang

    2011-01-01

    To study preliminarily on the relationship between properties of the mixture composed of Tongsaimai extract and different excipients and pellet molding. The multivariate regression analysis was used to investigate the correlation of different mixture and pellet molding by measuring the cohesion, liquid-plastic limit of mixture, and the powder properties of pellets. The weighted coefficients of the powder properties were determined by analytic hierarchy process combined with criteria importance through intercriteria correlation. The results showed that liquid-plastic limit seemed to be a major factor, which had positive correlation with pellet molding, while cohesion had negative correlation with pellet molding in the measured range. The physical properties of the mixture has marked influence on pellet molding.

  17. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1997-08-19

    Spacers are disclosed for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate. 3 figs.

  18. Index change of chalcogenide materials from precision glass molding processes

    NASA Astrophysics Data System (ADS)

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  19. Effects of process parameters in plastic, metal, and ceramic injection molding processes

    NASA Astrophysics Data System (ADS)

    Lee, Shi W.; Ahn, Seokyoung; Whang, Chul Jin; Park, Seong Jin; Atre, Sundar V.; Kim, Jookwon; German, Randall M.

    2011-09-01

    Plastic injection molding has been widely used in the past and is a dominant forming approach today. As the customer demands require materials with better engineering properties that were not feasible with polymers, powder injection molding with metal and ceramic powders has received considerable attention in recent decades. To better understand the differences in the plastic injection molding, metal injection molding, and ceramic injection molding, the effects of the core process parameters on the process performances has been studied using the state-of-the-art computer-aided engineering (CAE) design tool, PIMSolver® The design of experiments has been conducted using the Taguchi method to obtain the relative contributions of various process parameters onto the successful operations.

  20. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1997-01-01

    Spacers for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate.

  1. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  2. Cold Trap Dismantling and Sodium Removal at a Fast Breeder Reactor - 12327

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, A.; Petrick, H.; Stutz, U.

    2012-07-01

    The first German prototype Fast Breeder Nuclear Reactor (KNK) is currently being dismantled after being the only operating Fast Breeder-type reactor in Germany. As this reactor type used sodium as a coolant in its primary and secondary circuit, seven cold traps containing various amounts of partially activated sodium needed to be disposed of as part of the dismantling. The resulting combined difficulties of radioactive contamination and high chemical reactivity were handled by treating the cold traps differently depending on their size and the amount of sodium contained inside. Six small cold traps were processed onsite by cutting them up intomore » small parts using a band saw under a protective atmosphere. The sodium was then converted to sodium hydroxide by using water. The remaining large cold trap could not be handled in the same way due to its dimensions (2.9 m x 1.1 m) and the declared amount of sodium inside (1,700 kg). It was therefore manually dismantled inside a large box filled with a protective atmosphere, while the resulting pieces were packaged for later burning in a special facility. The experiences gained by KNK during this process may be advantageous for future dismantling projects in similar sodium-cooled reactors worldwide. The dismantling of a prototype fast breeder reactor provides the challenge not only to dismantle radioactive materials but also to handle sodium-contaminated or sodium-containing components. The treatment of sodium requires additional equipment and installations to ensure a safe handling. Since it is not permitted to bring sodium into a repository, all sodium has to be neutralized either through a controlled reaction with water or by incinerating. The resulting components can be disposed of as normal radioactive waste with no further conditions. The handling of sodium needs skilled and experienced workers to minimize the inherent risks. And the example of the disposal of the large KNK cold trap shows the interaction with others and also foreign decommissioning projects can provide solutions with were unknown before. (authors)« less

  3. 3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation.

    PubMed

    Miller, Sean J; Rothstein, Jeffrey D

    2017-01-01

    Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.

  4. Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner.

    PubMed

    Shorter, Caroline; Crane, Julian; Pierse, Nevil; Barnes, Phillipa; Kang, Janice; Wickens, Kristin; Douwes, Jeroen; Stanley, Thorsten; Täubel, Martin; Hyvärinen, Anne; Howden-Chapman, Philippa

    2018-01-01

    Evidence is accumulating that indoor dampness and mold are associated with the development of asthma. The underlying mechanisms remain unknown. New Zealand has high rates of both asthma and indoor mold and is ideally placed to investigate this. We conducted an incident case-control study involving 150 children with new-onset wheeze, aged between 1 and 7 years, each matched to two control children with no history of wheezing. Each participant's home was assessed for moisture damage, condensation, and mold growth by researchers, an independent building assessor and parents. Repeated measures of temperature and humidity were made, and electrostatic dust cloths were used to collect airborne microbes. Cloths were analyzed using qPCR. Children were skin prick tested for aeroallergens to establish atopy. Strong positive associations were found between observations of visible mold and new-onset wheezing in children (adjusted odds ratios ranged between 1.30 and 3.56; P ≤ .05). Visible mold and mold odor were consistently associated with new-onset wheezing in a dose-dependent manner. Measurements of qPCR microbial levels, temperature, and humidity were not associated with new-onset wheezing. The association between mold and new-onset wheeze was not modified by atopic status, suggesting a non-allergic association. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Severe Sequelae to Mold-Related Illness as Demonstrated in Two Finnish Cohorts.

    PubMed

    Tuuminen, Tamara; Rinne, Kyösti Sakari

    2017-01-01

    The presence of toxic indoor molds with accompanying bacterial growth is clearly detrimental to human health. The pathophysiological and toxicological effects of toxins and structural components of molds and bacteria have been clarified in experiments conducted in tissue culture and animals, and there is convincing epidemiologic evidence; nonetheless their implications for human health are either ignored or denied, at least in Finland. In this communication, we describe two cohorts suffering severe sequelae to mold-related illness. One cohort is a nine-member family with pets that moved into a new house, which soon proved to be infested with pathogenic molds. The other cohort consists of 30 teachers and 50 students from a mold-infested school building. The first cohort experienced a plethora of mucosal irritation, neurological, skin, allergic, and other symptoms, with all family members ultimately developing a multiple chemical syndrome. In the second cohort, we detected a greatly elevated prevalence of autoimmune conditions and malignancies. We claim that mold-related illness exists in multiple facets; if not simply a transient mucosal irritation or even an increased risk of asthma onset or its exacerbation. We propose a scheme to explain the natural course of the mold-related illness. We recommend that future studies should combine data from, e.g., cancer, autoimmune, and endocrine disorder registers and neurological and mental health or neuropsychological registers with mold-exposed individuals being monitored for prolonged follow-up times.

  6. Compound cast product and method for producing a compound cast product

    DOEpatents

    Meyer, Thomas N.; Viswanathan, Srinath

    2002-09-17

    A compound cast product is formed in a casting mold (14) having a mold cavity (16) sized and shaped to form the cast product. A plurality of injectors (24) is supported from a bottom side (26) of the casting mold (14). The injectors (24) are in fluid communication with the mold cavity (16) through the bottom side (26) of the casting mold (14). A molten material holder furnace (12) is located beneath the casting mold (14). The holder furnace (12) defines molten material receiving chambers (36) configured to separately contain supplies of two different molten materials (37, 38). The holder furnace (12) is positioned such that the injectors (24) extend downward into the receiving chamber (36). The receiving chamber (36) is separated into at least two different flow circuits (51, 52). A first molten material (37) is received in a first flow circuit (51), and a second molten material (38) is received into a second flow circuit (52). The first and second molten materials (37, 38) are injected into the mold cavity (16) by the injectors (24) acting against the force of gravity. The injectors (24) are positioned such that the first and second molten materials (37, 38) are injected into different areas of the mold cavity (16). The molten materials (37, 38) are allowed to solidify and the resulting compound cast product is removed from the mold cavity (16).

  7. Additive technology of soluble mold tooling for embedded devices in composite structures: A study on manufactured tolerances

    NASA Astrophysics Data System (ADS)

    Roy, Madhuparna

    Composite textiles have found widespread use and advantages in various industries and applications. The constant demand for high quality products and services requires companies to minimize their manufacturing costs, and delivery time in order to compete in general and niche marketplaces. Advanced manufacturing methods aim to provide economical methods of mold production. Creation of molding and tooling options for advanced composites encompasses a large portion of the fabrication time, making it a costly process and restraining factor. This research discusses a preliminary investigation into the use of soluble polymer compounds and additive manufacturing to fabricate soluble molds. These molds suffer from dimensional errors due to several factors, which have also been characterized. The basic soluble mold of a composite is 3D printed to meet the desired dimensions and geometry of holistic structures or spliced components. The time taken to dissolve the mold depends on the rate of agitation of the solvent. This process is steered towards enabling the implantation of optoelectronic devices within the composite to provide sensing capability for structural health monitoring. The shape deviation of the 3D printed mold is also studied and compared to its original dimensions to optimize the dimensional quality to produce dimensionally accurate parts. Mechanical tests were performed on compact tension (CT) resin samples prepared from these 3D printed molds and revealed crack propagation towards an embedded intact optical fiber.

  8. 40 CFR 63.5810 - What are my options for meeting the standards for open molding and centrifugal casting operations...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section... § 63.5810 What are my options for meeting the standards for open molding and centrifugal casting... (d) of this section to meet the standards for open molding or centrifugal casting operations in Table...

  9. 40 CFR 63.5810 - What are my options for meeting the standards for open molding and centrifugal casting operations...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section... § 63.5810 What are my options for meeting the standards for open molding and centrifugal casting... (d) of this section to meet the standards for open molding or centrifugal casting operations in Table...

  10. 40 CFR 63.5810 - What are my options for meeting the standards for open molding and centrifugal casting operations...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section... Meeting Standards § 63.5810 What are my options for meeting the standards for open molding and centrifugal...) through (d) of this section to meet the standards for open molding or centrifugal casting operations in...

  11. Investigation of Materials Processing Technology

    DTIC Science & Technology

    1993-07-01

    Figure 6: Time-temperature curves of A357 casting in Cu mold ................. 12 Figure 7: Time-temperature curves of 17 -4 casting in ceramic mold...simulation of 17 -4 ................ 17 Figure 12: IHTC from IHEAT simulation of 17 -4 casting ..................... 18 Figure 13: Temperature profiles...mold used for Ti castings .......................... 23 Figure 16: Cooling curves for a Ti casting in ceramic mold .................. 24 Figure 17

  12. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE...

  13. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE...

  14. The Mold that Almost Ate the Principal

    ERIC Educational Resources Information Center

    Barry, Wayne; Bishop, Chuck; Byars, Jennifer

    2006-01-01

    New-building mold was a bane for many home construction companies and new homeowners during the 1990s. It was not unusual to read or watch the news and see the tragedy played out in one's local community. Untold, however, is the story of the toll new-building mold can take on school systems and their principals, especially as these mold problems…

  15. Inhibitory effect of essential oils on decay fungi and mold growth on wood

    Treesearch

    Vina W. Yang; Carol A. Clausen

    2007-01-01

    Structural damage and potential health risks caused by wood decay and mold fungi in residential structures have been a major concern for homeowners, building contractors and insurance companies alike. The combined damage from decay fungi and mold claims exceeds several billion US dollars annually. Protection against decay and mold growth on wood is a critical economic...

  16. Applications of polyamide/cellulose fiber/wollastonite composites for microcellular injection molding

    Treesearch

    Herman Winata; Lih-Sheng Turng; Daniel F. Caulfield; Tom Kuster; Rick Spindler; Rod Jacobson

    2003-01-01

    In this study, a cellulose-fiber-reinforced Polyamide-6 (PA-6) composite, a hybrid composite (PA-6/cellulose/Wollastonite), and the neat PA-6 resin were injection molded into ASTM test–bar samples with conventional and microcellular injection molding. The impact and tensile strengths of molded samples were measured and the Scanning Electron Microscopy (SEM) images were...

  17. [Biological monitoring in the molding of plastics and rubbers].

    PubMed

    Fustinoni, S; Campo, L; Cirla, A M; Cirla, P E; Cutugno, V; Lionetti, C; Martinotti, I; Mossini, E; Foà, V

    2007-01-01

    This survey was carried out in the molding of plastics and rubbers, in the "Professional Cancer Prevention Project" sponsored by the Lombardy region with the objective of developing and implementing protocols for evaluating exposure to carcinogens through the biological monitoring. The realities of molding the thermoplastic polymer ABS, rubber, and thermosetting plastics containing formaldehyde were examined. The carcinogenic substances identified in these processes were: 1,3-butadiene, acrylonitrile and styrene in molding ABS, polycyclic aromatic hydrocarbons (PAH) in molding rubber, and formaldehyde in molding the thermosetting plastics. Only for some of these substances biological indicators are available. The limited exposure to airborne chemicals in molding ABS and the intrinsic characteristics of biological indicators available for 1-3 butadiene have determined the non applicability of biological monitoring to this situation. The absence of a biological indicator of exposure to formaldehyde has made this situation not investigable. Exposure in the rubber molding was studied in 19 subjects applying the determination not metabolized PAH in urine. The levels of these indicators were similar to those measured in other groups of subjects without occupational exposure to PAH, confirming a low airborne contamination in this workplace.

  18. Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance.

    PubMed

    Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N

    2011-03-01

    Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.

  19. Chemorheology of in-mold coating for compression molded SMC applications

    NASA Astrophysics Data System (ADS)

    Ko, Seunghyun; Straus, Elliott J.; Castro, Jose M.

    2015-05-01

    In-mold coating (IMC) is applied to compression molded sheet molding compound (SMC) exterior automotive or truck body panels as an environmentally friendly alternative to make the surface conductive for subsequent electrostatic painting operations. The coating is a thermosetting liquid that when injected onto the surface of the part cures and bonds to provide a smooth conductive surface. In order to optimize the IMC process, it is essential to predict the time available for flow, that is the time before the thermosetting reaction starts (inhibition time) as well as the time when the coating has enough structural integrity so that the mold can be opened without damaging the part surface (cure time). To predict both the inhibition time and the cure time, it is critical to study the chemorheology of IMC. In this paper, we study the chemorheology for a typical commercial IMC system, and show its relevance to both the flow and cure time for the IMC stage during SMC compression molding.

  20. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes.

    PubMed

    Lacombe, Alison; Niemira, Brendan A; Gurtler, Joshua B; Fan, Xuetong; Sites, Joseph; Boyd, Glenn; Chen, Haiqiang

    2015-04-01

    Cold plasma (CP) is a novel nonthermal technology, potentially useful in food processing settings. Berries were treated with atmospheric CP for 0, 15, 30, 45, 60, 90, or 120 s at a working distance of 7.5 cm with a mixture of 4 cubic feet/minute (cfm) of CP jet and 7 cfm of ambient air. Blueberries were sampled for total aerobic plate count (APC) and yeast/molds immediately after treatment and at 1, 2, and 7 days. Blueberries were also analyzed for compression firmness, surface color, and total anthocyanins immediately after each treatment. All treatments with CP significantly (P < 0.05) reduced APC after exposure, with reductions ranging from 0.8 to 1.6 log CFU/g and 1.5 to 2.0 log CFU/g compared to the control after 1 and 7 days, respectively. Treatments longer than 60s resulted in significant reductions in firmness, although it was demonstrated that collisions between the berries and the container contributed significantly to softening. A significant reduction in anthocyanins was observed after 90 s. The surface color measurements were significantly impacted after 120 s for the L* and a* values and 45 s for the b* values. CP can inactivate microorganisms on blueberries and could be optimized to improve the safety and quality of produce. Published by Elsevier Ltd.

  1. Three-dimensional numerical simulation for plastic injection-compression molding

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  2. Bose-Einstein condensation of photons in a 'white-wall' photon box

    NASA Astrophysics Data System (ADS)

    Klärs, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin

    2011-01-01

    Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a "white-wall" photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.

  3. Commissioning the cryogenic system of the first LHC sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millet, F.; Claudet, S.; Ferlin, G.

    2007-12-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioningmore » is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.« less

  4. Process influences and correction possibilities for high precision injection molded freeform optics

    NASA Astrophysics Data System (ADS)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2016-08-01

    Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.

  5. Rapid manufacturing of metallic Molds for parts in Automobile

    NASA Astrophysics Data System (ADS)

    Zhang, Renji; Xu, Da; Liu, Yuan; Yan, Xudong; Yan, Yongnian

    1998-03-01

    The recent research of RPM (Rapid Prototyping Manufacturing) in our lab has been focused on the rapid creation of alloyed cast iron (ACI) molds. There are a lot of machinery parts in an automobile, so a lot of mettallic molds are needed in automobile industry. A new mold manufacturing technology has been proposed. A new large scale RP machine has been set up in our lab now. Then rapid prototypes could be manufactured by means of laminated object manufacturing (LOM) technology. The molds for parts in automobile have been produced by ceramic shell precision casting. An example is a drawing mold for cover parts in automobile. Sufficient precision and surface roughness have been obtained. Itis proved that this is a vew kind of technology. Work supported by the Mational Science Foundation of China.

  6. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, directmore » method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models. Cooling curve information, as well as temperature gradient history both in the solidifying metal and within the mold are invariably required to be validated. This validation depends upon the response of the sensor concerned, but also on its own effect upon the thermal environment. A joint university/industry team has completed an investigation of the invasive effects of thermocouples upon temperature history in permanent molds determining the degree of uncertainty associated with placement and indicating how the time-temperature history may be recovered. In addition to its relevance to the all important study of thermal contact of the casting with metallic molds, the observations also impact the determination of heat flux and interfacial heat transfer coefficients. In these respects the study represents the first of its kind that has tackled the problem in depth for permanent mold castings. An important ramification of this investigation has been the errors likely to be encountered in mold temperature measurement with thin section aluminum castings, especially with respect to the plans for thermocouple placement. A comparison between the degree of uncertainty experienced in sand molds compared with that found in permanent molds reveals that the associated problems have a lesser impact. These conclusions and the related recommendations have been disseminated to industry and the technical community through project reports and publications.« less

  7. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.

    2014-01-01

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.

  8. SNS Central Helium Liquefier spare Carbon Bed installation and commissioning

    NASA Astrophysics Data System (ADS)

    DeGraff, B.; Howell, M.; Kim, S.; Neustadt, T.

    2017-12-01

    The Spallation Neutron Source (SNS) Central Helium Liquefier (CHL) at Oak Ridge National Laboratory (ORNL) has been without major operations downtime since operations were started back in 2006. This system utilizes a vessel filled with activated carbon as the final major component to remove oil vapor from the compressed helium circuit prior to insertion into the system’s cryogenic cold box. The need for a spare carbon bed at SNS due to the variability of carbon media lifetime calculation to adsorption efficiency will be discussed. The fabrication, installation and commissioning of this spare carbon vessel will be presented. The novel plan for connecting the spare carbon vessel piping to the existing infrastructure will be presented.

  9. FRIB cryogenic system status

    NASA Astrophysics Data System (ADS)

    Casagrande, F.; Ganni, V.; Knudsen, P.; Jones, S.; Sidi-Yekhlef, A.; Tatsumoto, H.; Nguyen, C.; Fila, A.; Vargas, G.; Dudley, C.; Joseph, N.; Stanley, S.; Dixon, K.; Norton, R.; Laverdure, N.; Yang, S.

    2017-12-01

    Construction and installation of the FRIB 4.5 K helium refrigeration system is nearing completion, with compressor system commissioning and 4.5 K refrigerator commissioning on schedule to occur in late 2017. The LINAC 4.5 K helium distribution system, all major process equipment, and the cryogenic distribution for the sub-systems have been procured and delivered. The sub-atmospheric cold box fabrication is planned to begin the summer of 2017, which is on schedule for commissioning in the spring of 2018. Commissioning of the support systems, such as the helium gas storage, helium purifier, and oil processor is planned to be complete by the summer of 2017. This paper presents details of the equipment procured, installation status and commissioning plans.

  10. Applying simulation to optimize plastic molded optical parts

    NASA Astrophysics Data System (ADS)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  11. Method for molding ceramic powders

    DOEpatents

    Janney, Mark A.

    1990-01-01

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  12. Method for molding ceramic powders

    DOEpatents

    Janney, M.A.

    1990-01-16

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  13. Conductivity fuel cell collector plate and method of fabrication

    DOEpatents

    Braun, James C.

    2002-01-01

    An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.

  14. Floods and Mold Growth

    EPA Pesticide Factsheets

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  15. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For reference, the conventional AO index is shown by the gray line. (b) a 5-day running mean WP index, (c) area-averaged Surface Air Temperature anomalies in Japan, (d) Air Temperature anomalies, (e) heat flux anomalies, and (f) Sea Surface Temperature anomalies. The boxed area on the Sea of Japan indicates the area in which the (d)-(f) indexes were calculated.

  16. 40 CFR 63.5799 - How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Calculating Organic Hap Emissions Factors for Open Molding and Centrifugal Casting § 63.5799 How do I.../casting operations, or a new facility that does not have any of the following operations: Open molding... coat is applied to an open centrifugal mold using open molding application techniques. Table 1 and the...

  17. 40 CFR 63.5799 - How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Calculating Organic Hap Emissions Factors for Open Molding and Centrifugal Casting § 63.5799 How do I.../casting operations, or a new facility that does not have any of the following operations: Open molding... coat is applied to an open centrifugal mold using open molding application techniques. Table 1 and the...

  18. Multicomponent biocide systems protect wood from decay fungi, mold fungi, and termites for interior applications

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2004-01-01

    Concerns about indoor air quality due to mold growth have increased dramatically in the United States. In the absence of proper moisture management, fungicides need to be developed for indoor use to control mold establishment. An ideal fungicide for prevention of indoor mold growth on wood-based materials needs to specifically prevent spore germination and provide long...

  19. Enabling Learning through the Assessment Process

    DTIC Science & Technology

    2010-04-08

    Software, 47. 32 a specific pattern over time.”98 Johnson provides an example of this when discussing the computer simulation of slime mold growth. He...asserts that since the designers understood the underlying interactions between the individual slime molds , they could increase or decrease the...density of individual mold cells and the aggregating chemical that is required for the molds to group together. Furthermore, Johnson suggests that this

  20. Molded Magnetic Article

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Namkung, Min (Inventor); Wincheski, Russell A. (Inventor); Fulton, James P. (Inventor); Fox, Robert L. (Inventor)

    2000-01-01

    A molded magnetic article and fabrication method are provided. Particles of ferromagnetic material embedded in a polymer binder are molded under heat and pressure into a geometric shape. Each particle is an oblate spheroid having a radius-to-thickness aspect ratio approximately in the range of 15-30. Each oblate spheroid has flattened poles that are substantially in perpendicular alignment to a direction of the molding pressure throughout the geometric shape.

Top