Science.gov

Sample records for cold clumpy absorbers

  1. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  2. Cold, clumpy accretion onto an active supermassive black hole.

    PubMed

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it. PMID:27279215

  3. Cold, clumpy accretion onto an active supermassive black hole

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  4. Cold, clumpy accretion onto an active supermassive black hole.

    PubMed

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-08

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  5. CLUMPY STREAMS FROM CLUMPY HALOS: DETECTING MISSING SATELLITES WITH COLD STELLAR STRUCTURES

    SciTech Connect

    Yoon, Joo Heon; Johnston, Kathryn V.; Hogg, David W.

    2011-04-10

    Dynamically cold stellar streams are ideal probes of the gravitational field of the Milky Way. This paper re-examines the question of how such streams might be used to test for the presence of {sup m}issing satellites{sup -}the many thousands of dark-matter subhalos with masses 10{sup 5}-10{sup 7} M{sub sun} which are seen to orbit within Galactic-scale dark-matter halos in simulations of structure formation in {Lambda}CDM cosmologies. Analytical estimates of the frequency and energy scales of stream encounters indicate that these missing satellites should have a negligible effect on hot debris structures, such as the tails from the Sagittarius dwarf galaxy. However, long cold streams, such as the structure known as GD1 or those from the globular cluster Palomar 5 (Pal 5), are expected to suffer many tens of direct impacts from missing satellites during their lifetimes. Numerical experiments confirm that these impacts create gaps in the debris' orbital energy distribution, which will evolve into degree- and sub-degree-scale fluctuations in surface density over the age of the debris. Maps of Pal 5's own stream contain surface density fluctuations on these scales. The presence and frequency of these inhomogeneities suggests the existence of a population of missing satellites in numbers predicted in the standard {Lambda}CDM cosmologies.

  6. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    SciTech Connect

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel E-mail: sari@phys.huji.ac.i

    2009-09-20

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in {approx}<10 dynamical times, or {approx}<0.5 Gyr. The cosmological streams replenish the draining disk and prolong the clumpy phase to several Gigayears in a steady state, with comparable masses in disk, bulge, and dark matter within the disk radius. The clumps form stars in dense subclumps following the overall accretion rate, {approx}100 M{sub sun} yr{sup -1}, and each clump converts into stars in {approx}0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z {approx} 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z {approx} 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  7. Nearby Clumpy, Gas Rich, Star-forming Galaxies: Local Analogs of High-redshift Clumpy Galaxies

    NASA Astrophysics Data System (ADS)

    Garland, C. A.; Pisano, D. J.; Mac Low, M.-M.; Kreckel, K.; Rabidoux, K.; Guzmán, R.

    2015-07-01

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%) (2) clumpy spirals (∼40%) and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  8. NEARBY CLUMPY, GAS RICH, STAR-FORMING GALAXIES: LOCAL ANALOGS OF HIGH-REDSHIFT CLUMPY GALAXIES

    SciTech Connect

    Garland, C. A.; Pisano, D. J.; Rabidoux, K.; Low, M.-M. Mac; Kreckel, K.; Guzmán, R. E-mail: djpisano@mail.wvu.edu E-mail: mordecai@amnh.org E-mail: guzman@astro.ufl.edu

    2015-07-10

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%); (2) clumpy spirals (∼40%); and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  9. On the relation between phase path, group path and attenuation in a cold absorbing plasma

    NASA Technical Reports Server (NTRS)

    Bennett, J. A.; Dyson, P. L.

    1978-01-01

    Consideration is given to a cold absorbing plasma in which the collision frequency is zero. Expressions are developed which relate the attenuation and the group and phase refractive indices. It is found that because the expressions for the group and phase refractive indices and the imaginary part of the refractive index are closely related in form, the attenuation is related to the difference between the group and phase paths. Numerical calculations have derived approximations which significantly increase the range of known approximations of this type.

  10. High-redshift clumpy discs and bulges in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Dekel, Avishai; Bournaud, Frederic

    2010-06-01

    We analyse the first cosmological simulations that recover the fragmentation of high-redshift galactic discs driven by cold streams. The fragmentation is recovered owing to an AMR resolution better than 70pc with cooling below 104K. We study three typical star-forming galaxies in haloes of ~5 × 1011Msolar at z ~= 2.3 when they were not undergoing a major merger. The steady gas supply by cold streams leads to gravitationally unstable, turbulent discs, which fragment into giant clumps and transient features on a dynamical time-scale. The disc clumps are not associated with dark-matter haloes. The clumpy discs are self-regulated by gravity in a marginally unstable state. Clump migration and angular-momentum transfer on an orbital time-scale help the growth of a central bulge with a mass comparable to the disc. The continuous gas input keeps the system of clumpy disc and bulge in a near steady state for several Gyr. The average star formation rate, much of which occurs in the clumps, follows the gas accretion rate of ~45Msolaryr-1. The simulated galaxies resemble in many ways the observed star-forming galaxies at high redshift. Their properties are consistent with the simple theoretical framework presented in Dekel, Sari & Ceverino. In particular, a two-component analysis reveals that the simulated discs are indeed marginally unstable, and the time evolution confirms the robustness of the clumpy configuration in a cosmological steady state. By z ~ 1, the simulated systems are stabilized by a dominant stellar spheroid, demonstrating the process of `morphological quenching' of star formation. We demonstrate that the disc fragmentation is not a numerical artefact once the Jeans length is kept larger than nearly seven resolution elements, i.e. beyond the standard Truelove criterion.

  11. Clumpy and Extended Starbursts in the Brightest Unlensed Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Iono, Daisuke; Yun, Min S.; Aretxaga, Itziar; Hatsukade, Bunyo; Hughes, David; Ikarashi, Soh; Izumi, Takuma; Kawabe, Ryohei; Kohno, Kotaro; Lee, Minju; Matsuda, Yuichi; Nakanishi, Kouichiro; Saito, Toshiki; Tamura, Yoichi; Ueda, Junko; Umehata, Hideki; Wilson, Grant; Michiyama, Tomonari; Ando, Misaki

    2016-09-01

    The central structure in three of the brightest unlensed z = 3-4 submillimeter galaxies is investigated through 0.″015-0.″05 (120-360 pc) 860 μm continuum images obtained using the Atacama Large Millimeter/submillimeter Array (ALMA). The distribution in the central kiloparsec in AzTEC1 and AzTEC8 is extremely complex, and they are composed of multiple ˜200 pc clumps. AzTEC4 consists of two sources that are separated by ˜1.5 kpc, indicating a mid-stage merger. The peak star formation rate densities in the central clumps are ˜300-3000 M ⊙ yr-1 kpc-2, suggesting regions with extreme star formation near the Eddington limit. By comparing the flux obtained by ALMA and Submillimeter Array, we find that 68%-90% of the emission is extended (≳1 kpc) in AzTEC4 and 8. For AzTEC1, we identify at least 11 additional compact (˜200 pc) clumps in the extended 3-4 kpc region. Overall, the data presented here suggest that the luminosity surface densities observed at ≲150 pc scales are roughly similar to that observed in local ULIRGs, as in the eastern nucleus of Arp 220. Between 10% and 30% of the 860 μm continuum is concentrated in clumpy structures in the central kiloparsec, while the remaining flux is distributed over ≳1 kpc regions, some of which could also be clumpy. These sources can be explained by a rapid inflow of gas such as a merger of gas-rich galaxies, surrounded by extended and clumpy starbursts. However, the cold mode accretion model is not ruled out.

  12. Cold tests of HOM absorber material for the ARIEL eLINAC at TRIUMF

    NASA Astrophysics Data System (ADS)

    Kolb, P.; Laxdal, R. E.; Zvyagintsev, V.; Chao, Y. C.; Amini, B.

    2014-01-01

    At TRIUMF development of a 50 MeV electron accelerator is well under way. Five 1.3 GHz, superconducting 9-cell cavities will accelerate 10 mA electrons to a production target to produce rare isotopes. Each cavity will provide 10 MV accelerating voltage. Plans to upgrade the accelerator in the future to a small ring with ERL capabilities requires that the shunt impedance of the dipole higher order modes to be less than 10 MΩ . The design of the accelerator incorporates beam line absorbers to reduce the shunt impedance of potentially dangerous dipole modes. The performance of the absorber is dependant on its electrical conductivity at the operational temperature. Measurements of the electrical conductivity in RF fields of a sample of the proposed beam line absorber material at room temperature and at its operational temperature will be presented for frequencies between 1.3 and 2.4 GHz.

  13. Extinction and dust properties in a clumpy medium

    NASA Astrophysics Data System (ADS)

    Scicluna, P.; Siebenmorgen, R.

    2015-12-01

    The dust content of the universe is primarily explored via its interaction with stellar photons, which are absorbed or scattered by the dust, producing the effect known as interstellar extinction. However, owing to the physical extension of the observing beam, real observations may detect a significant number of dust-scattered photons. This may result in a change in the observed (or effective) extinction with a dependence on the spatial distribution of the dust and the spatial resolution of the instrument. We investigate the influence of clumpy dust distributions on the effective extinction toward both embedded sources and those seen through the diffuse interstellar medium (ISM). We use a Monte Carlo radiative transfer code to examine the effective extinction for various geometries. By varying the number, optical depth and volume-filling factor of clumps inside the model for spherical shells and the diffuse interstellar medium (ISM), we explore the evolution of the extinction curve and effective optical depth. Depending on the number of scattering events in the beam, the extinction curve is observed to steepen in homogeneous media and flatten in clumpy media. As a result, clumpy dust distributions are able to reproduce extinction curves with arbitrary RV,eff, the effective ratio of total-to-selective extinction. The flattening is also able to "wash out" the 2175 Å bump and results in a shift of the peak to shorter wavelengths. The mean RV,eff of a shell is shown to correlate with the optical depth of an individual clump and the wavelength at which a clump becomes optically thick. Similar behaviour is seen for edge-on discs or tori. However, at grazing inclinations the combination of extinction and strong forward scattering results in chaotic behaviour. Caution is therefore advised when attempting to measure extinction in AGN tori for example or toward SNIa or GRB afterglows. In face-on discs, the shape of the scattered continuum is observed to change significantly

  14. Magnetic diffusion in clumpy molecular clouds

    NASA Astrophysics Data System (ADS)

    Elmegreen, B. G.; Combes, F.

    1992-06-01

    Magnetic diffusion in a clumpy cloud is slower than in a uniform cloud with the same average density and field strength, by the square root of the clump filling factor, f. This implies that giant molecular clouds can maintain their supporting magnetic fields for at least 6/sq rt f free fall times, while allowing a moderate rate of star formation in the dense cores. The f dependence also implies that clouds or cloud cores larger than a thermal Jeans mass will lose their flux more slowly compared to the free-fall time than smaller cores because the larger regions have supersonic virialized motions, and this inevitably leads to small scale clumpy structure by nonlinear effects. Thus star formation may proceed rapidly via diffusion in uniform cores that have primarily thermal motions (large f), while the surrounding clumpy cloud can be supported by the field for a relatively long time (small f). The slower magnetic diffusion rate for clumpy clouds compared to uniform clouds also affects the local heating rate for neutral gas in a shock, giving more of a J-type than C-type structure by shortening the magnetic precursor and causing clump collisions at speeds exceeding the internal Alfven speed.

  15. Numerical simulations of shocks encountering clumpy regions

    NASA Astrophysics Data System (ADS)

    Alūzas, R.; Pittard, J. M.; Hartquist, T. W.; Falle, S. A. E. G.; Langton, R.

    2012-09-01

    We present numerical simulations of the adiabatic interaction of a shock with a clumpy region containing many individual clouds. Our work incorporates a sub-grid turbulence model which for the first time makes this investigation feasible. We vary the Mach number of the shock, the density contrast of the clouds and the ratio of total cloud mass to intercloud mass within the clumpy region. Cloud material becomes incorporated into the flow. This 'mass loading' reduces the Mach number of the shock and leads to the formation of a dense shell. In cases in which the mass loading is sufficient the flow slows enough that the shock degenerates into a wave. The interaction evolves through up to four stages: initially the shock decelerates; then its speed is nearly constant; next the shock accelerates as it leaves the clumpy region; finally, it moves at a constant speed close to its initial speed. Turbulence is generated in the post-shock flow as the shock sweeps through the clumpy region. Clouds exposed to turbulence can be destroyed more rapidly than a similar cloud in an 'isolated' environment. The lifetime of a downstream cloud decreases with increasing cloud-to-intercloud mass ratio. We briefly discuss the significance of these results for starburst superwinds and galaxy evolution.

  16. A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW-REDSHIFT C IV ABSORBERS: A CASE WITH COLD-ACCRETION CHARACTERISTICS

    SciTech Connect

    Burchett, Joseph N.; Tripp, Todd M.; Werk, Jessica K.; Prochaska, J. Xavier; Ford, Amanda Brady; Davé, Romeel

    2013-12-20

    Studies of QSO absorber-galaxy connections are often hindered by inadequate information on whether faint/dwarf galaxies are located near the QSO sight lines. To investigate the contribution of faint galaxies to QSO absorber populations, we are conducting a deep galaxy redshift survey near low-z C IV absorbers. Here we report a blindly detected C IV absorption system (z {sub abs} = 0.00348) in the spectrum of PG1148+549 that appears to be associated either with an edge-on dwarf galaxy with an obvious disk (UGC 6894, z {sub gal} = 0.00283) at an impact parameter of ρ = 190 kpc or with a very faint dwarf irregular galaxy at ρ = 23 kpc, which is closer to the sightline but has a larger redshift difference (z {sub gal} = 0.00107, i.e., δv = 724 km s{sup –1}). We consider various gas/galaxy associations, including infall and outflows. Based on current theoretical models, we conclude that the absorber is most likely tracing (1) the remnants of an outflow from a previous epoch, a so-called {sup a}ncient outflow{sup ,} or (2) intergalactic gas accreting onto UGC 6894, ''cold mode'' accretion. The latter scenario is supported by H I synthesis imaging data that shows the rotation curve of the disk being codirectional with the velocity offset between UGC 6894 and the absorber, which is located almost directly along the major axis of the edge-on disk.

  17. MASSIVE BLACK HOLE PAIRS IN CLUMPY, SELF-GRAVITATING CIRCUMNUCLEAR DISKS: STOCHASTIC ORBITAL DECAY

    SciTech Connect

    Fiacconi, Davide; Mayer, Lucio; Roškar, Rok; Colpi, Monica

    2013-11-01

    We study the dynamics of massive black hole pairs in clumpy gaseous circumnuclear disks. We track the orbital decay of the light, secondary black hole M {sub .2} orbiting around the more massive primary at the center of the disk, using N-body/smoothed particle hydrodynamic simulations. We find that the gravitational interaction of M {sub .2} with massive clumps M {sub cl} erratically perturbs the otherwise smooth orbital decay. In close encounters with massive clumps, gravitational slingshots can kick the secondary black hole out of the disk plane. The black hole moving on an inclined orbit then experiences the weaker dynamical friction of the stellar background, resulting in a longer orbital decay timescale. Interactions between clumps can also favor orbital decay when the black hole is captured by a massive clump that is segregating toward the center of the disk. The stochastic behavior of the black hole orbit emerges mainly when the ratio M {sub .2}/M {sub cl} falls below unity, with decay timescales ranging from ∼1 to ∼50 Myr. This suggests that describing the cold clumpy phase of the interstellar medium in self-consistent simulations of galaxy mergers, albeit so far neglected, is important to predict the black hole dynamics in galaxy merger remnants.

  18. A Deep Search for Faint Galaxies Associated with Very Low-redshift C IV Absorbers: A Case with Cold-accretion Characteristics

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph N.; Tripp, Todd M.; Werk, Jessica K.; Howk, J. Christopher; Prochaska, J. Xavier; Ford, Amanda Brady; Davé, Romeel

    2013-12-01

    Studies of QSO absorber-galaxy connections are often hindered by inadequate information on whether faint/dwarf galaxies are located near the QSO sight lines. To investigate the contribution of faint galaxies to QSO absorber populations, we are conducting a deep galaxy redshift survey near low-z C IV absorbers. Here we report a blindly detected C IV absorption system (z abs = 0.00348) in the spectrum of PG1148+549 that appears to be associated either with an edge-on dwarf galaxy with an obvious disk (UGC 6894, z gal = 0.00283) at an impact parameter of ρ = 190 kpc or with a very faint dwarf irregular galaxy at ρ = 23 kpc, which is closer to the sightline but has a larger redshift difference (z gal = 0.00107, i.e., δv = 724 km s-1). We consider various gas/galaxy associations, including infall and outflows. Based on current theoretical models, we conclude that the absorber is most likely tracing (1) the remnants of an outflow from a previous epoch, a so-called "ancient outflow", or (2) intergalactic gas accreting onto UGC 6894, "cold mode" accretion. The latter scenario is supported by H I synthesis imaging data that shows the rotation curve of the disk being codirectional with the velocity offset between UGC 6894 and the absorber, which is located almost directly along the major axis of the edge-on disk. Based on observations obtained with the NASA/ESA Hubble Space Telescope operated at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also, based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the US, Italy, and Germany. LBT Corporation partners are the University of Arizona, on behalf of the Arizona University System; Instituto Nazionale do Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute of Potsdam, and

  19. Star formation and chemical abundances in clumpy irregular galaxies

    SciTech Connect

    Boesgaard, A.M.; Edwards, S.; Heidmann, J.

    1982-01-15

    Clumpy irregular galaxies consist of several bright clumps which are huge H II complexes (about 100 times brighter and more massive than 30 Doradus) and contain about 10/sup 5/ O and B stars. Image-tube spectrograms with 1--3 A resolution have been obtained of the brightest emission regions of three clumpy galaxies and one candidate clumpy galaxy with the Mauna Kea 2.24 m telescope. The electron temperatures were found to be in the range 7000--9000 K and electron densities a few hundred cm/sup 3/: quite typical for normal H II regions. The abundances of O, N. S in Mrk 432 are comparable to those in Orion, while the three clumpy galaxies are slightly deficient in O and S (by factors of 2 to 4) and N (by factors of 3 to 6). The galaxies appear to be normal (like Sc galaxies) in mass and composition. Supernovae remnants are indicated by the high (S II)/H..cap alpha.. ratio. Possible triggering mechanisms for the exceptional star formation activity are discussed.

  20. Four years of IUE research on clumpy irregular galaxies

    NASA Technical Reports Server (NTRS)

    Benvenuti, P.; Casini, C.; Heidmann, J.

    1982-01-01

    During the first four years of IUE operations seven shifts were used to observe 4 clumpy irregular galaxies: Markarian 7, 8, 297, and 325. All spectra were obtained at low resolution in both short and long wavelength, with exposure time ranging from half to a full shift. The IUE spectra of clumpy irregular galaxies show that the clumps contain a very large number of early O and B type stars, with a large number of supergiants with respect to the main sequence stars. Possibly Wolf-Rayet stars and massive objects of the type of R 136a could also contribute to the clump luminosity. On the average, each clump radiates in the UV 100 times more than 30 Dor. On the other end the liner dimension of a clump is not much larger than the one of 30 Dor.

  1. The dynamical and radiative evolution of clumpy supernova ejecta

    NASA Technical Reports Server (NTRS)

    Anderson, M. C.; Jones, T. W.; Rudnick, L.; Tregillis, I. L.; Kang, Hyesung

    1994-01-01

    Numerical simulations describing the dynamical and radiative evolution of clumpy supernova ejecta are compared with observations of optical and radio emission knots in supernova remnant (SNR) Cassiopeia A. Three major phases are identified in the evolution of clumpy ejecta: a bow-shock phase, an instability phase, and a dispersal phase. The phenomenological and radiative signatures of each phase are discussed and compared with multi-epoch measurements of small-scale features in Cas A. Good correspondence is found between theory and observations. Both support the premise that compact radio emission features are controlled more by magnetic field amplification triggered in the instability phase than by in situ acceleration of new relativistic particles.

  2. Kinematic imprint of clumpy disk formation on halo objects

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2013-02-01

    Context. Clumpy disk galaxies in the distant universe, at redshift of z ≳ 1, have been observed to host several giant clumps in their disks. They are thought to correspond to early formative stages of disk galaxies. On the other hand, halo objects, such as old globular clusters and halo stars, are likely to consist of the oldest stars in a galaxy (age ≳ 10 Gyr), clumpy disk formation can thus be presumed to take place in a pre-existing halo system. Aims: Giant clumps orbit in the same direction in a premature disk and are so massive that they may be expected to interact gravitationally with halo objects and exercise influence on the kinematic state of the halo. Accordingly, I scrutinize the possibility that the clumps leave a kinematic imprint of the clumpy disk formation on a halo system. Methods: I perform a restricted N-body calculation with a toy model to study the kinematic influence on a halo by orbital motions of clumps and the dependence of the results on masses (mass loss), number, and orbital radii of the clumps. Results: I show that halo objects can catch clump motions and acquire disky rotation in a dynamical friction time scale of the clumps, ~0.5 Gyr. The influence of clumps is limited within a region around the disk, while the halo system shows vertical gradients of net rotation velocity and orbital eccentricity. The significance of the kinematic influence strongly depends on the clump masses; the lower limit of postulated clump mass would be ~5 × 108 M⊙. The result also depends on whether the clumps are subjected to rapid mass loss or not, which is an open question under debate in recent studies. The existence of such massive clumps is not unrealistic. I therefore suggest that the imprints of past clumpy disk formation could remain in current galactic halos.

  3. The Properties of Cold Clouds in Cooling Flows

    NASA Astrophysics Data System (ADS)

    Daines, S. J.; Fabian, A. C.; Thomas, P. A.

    1994-06-01

    We discuss the properties of the large masses of cold gas found in the central regions of cooling flow clusters via X-ray absorption, and explore some consequences of inefficient star formation in cooling flows. The X-ray-absorbing cold gas must be in the form of small, cold, pressure-confined clouds, whIch are supported against infall in the cluster potential by the hot, X-ray-emitting gas ad approximately comove with it. Magnetic fields are important in supporting ad containing the clouds. Cold gas deposited at large radii in the cooling flow may simply accumulate and have negligible star formation; the inner regions of the cooling flow accumulate dynamically dominant masses of cold gas on a short time-scale and some gas-removal process must be operating. We show that the constraints placed by observational detections and limits of H I ad CO in some flows leave little room there for widespread cold gas in a form which is either atomic or similar to Galactic molecular clouds. Ongoing cluster mergers, or stirring produced by a intermittent central radio source, disrupt accumulated cold clouds in the core of a flow and release enough kinetic or thermal energy via cloud collisions or mixing layers to power transiently the optical emission-line nebulosity around central cluster galaxies. The large masses of disordered clumpy, turbulent atomic gas observed near the centre of the Perseus cluster via 21-cm absorption have probably been stirred up by such an event in the past few billion years.

  4. Supersonic flow through clumpy environments: simulations and experiments

    NASA Astrophysics Data System (ADS)

    Douglas, M. R.; Wilde, B. H.; Blue, B. E.; Hansen, J. F.; Foster, J. M.; Rosen, P. A.; Williams, R. J. R.; Hartigan, P.; Frank, A.

    2009-11-01

    Over the past decade, high resolution images of a number of Herbig-Haro objects using the Hubble Space Telescope have revealed complex, chaotic, evolving morphologies of bow shocks, knots, and filamentary structure. Such morphologies are likely a consequence of internal and terminal working surfaces moving into a medium that is highly inhomogeneous. To investigate how inhomogeneities play a role in shaping the morphology of such objects, laboratory experiments have been proposed to examine bow shock evolution as it propagates through a clumpy environment and subsequent development of small scale structure after shock passage. The experiments will be carried out at the Omega Laser Facility utilizing an existing platform which launches a near planar shock into an RF (C15H12O4) cylinder. Two types of downstream targets will be embedded in the RF cylinder: a clumpy target consisting of a 1mm-diameter RF foam sphere containing ˜ 47 randomly distributed 127-μm diameter ruby microspheres, and a 1 mm-diameter sphere target of ``uniformly'' mixed RF foam with sapphire nanopowder. Calculations pertaining to the experimental configuration will be presented and compared to experimental data, if available.

  5. Low Angular Momentum in Clumpy, Turbulent Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Obreschkow, Danail; Glazebrook, Karl; Bassett, Robert; Fisher, David B.; Abraham, Roberto G.; Wisnioski, Emily; Green, Andrew W.; McGregor, Peter J.; Damjanov, Ivana; Popping, Attila; Jørgensen, Inger

    2015-12-01

    We measure the stellar specific angular momentum {j}s={J}s/{M}s in four nearby (z ≈ 0.1) disk galaxies that have stellar masses {M}s near the break {M}s* of the galaxy mass function but look like typical star-forming disks at z ≈ 2 in terms of their low stability (Q ≈ 1), clumpiness, high ionized gas dispersion (40-50 {km} {{{s}}}-1), high molecular gas fraction (20%-30%), and rapid star formation (˜ 20{M}⊙ {{yr}}-1). Combining high-resolution (Keck-OSIRIS) and large-radius (Gemini-GMOS) spectroscopic maps, only available at low z, we discover that these targets have ˜ 3 times less stellar angular momentum than typical local spiral galaxies of equal stellar mass and bulge fraction. Theoretical considerations show that this deficiency in angular momentum is the main cause of their low stability, while the high gas fraction plays a complementary role. Interestingly, the low {j}s values of our targets are similar to those expected in the {M}s* population at higher z from the approximate theoretical scaling {j}s\\propto {(1+z)}-1/2 at fixed {M}s. This suggests that a change in angular momentum, driven by cosmic expansion, is the main cause for the remarkable difference between clumpy {M}s* disks at high z (which likely evolve into early-type galaxies) and mass-matched local spirals.

  6. Absorbing Outflows in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  7. Probing the clumpy winds of giant stars with high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  8. Chondrule formation by clumpy accretion onto the solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Graham, J. A.

    1993-01-01

    Chondrule textures and compositions appear to require rapid heating of precursor grain aggregates to temperatures in the range 1500 K to 2100 K, cooling times on the order of hours, and episodic and variable intensity events in order to produce chondrule rims and chemically distinct groups. Nebula shock waves have been proposed by Hood and Horanyi as a physical mechanism that may be capable of meeting the meteoritical constraints. Motivated by astronomical observations of the close environments of young stars, we suggest that the source of the nebula shock waves may be clumpy accretion onto the solar nebula - that is, episodic impacts onto the nebula by discrete cloud clumps with masses of at least 10(exp 22) g. If the cloud clumps are massive enough (10(exp 26) g), the resulting shockwave may be able to propagate to the midplane and process precursor aggregates residing in a dust sub-disk.

  9. Observations of chemical differentiation in clumpy molecular clouds.

    PubMed

    Buckle, Jane V; Rodgers, Steven D; Wirström, Eva S; Charnley, Steven B; Markwick-Kemper, Andrew J; Butner, Harold M; Takakuwa, Shigehisa

    2006-01-01

    We have extensively mapped a sample of dense molecular clouds (L1512, TMC-1C, L1262, Per7, L1389, L1251E) in lines of HC3N, CH3OH, SO and C18O. We demonstrate that a high degree of chemical differentiation is present in all of the observed clouds. We analyse the molecular maps for each cloud, demonstrating a systematic chemical differentiation across the sample, which we relate to the evolutionary state of the cloud. We relate our observations to the cloud physical, kinematical and evolutionary properties, and also compare them to the predictions of simple chemical models. The implications of this work for understanding the origin of the clumpy structures and chemical differentiation observed in dense clouds are discussed.

  10. First X-ray Statistical Tests for Clumpy-Torus Models: Constraints from RXTEmonitoring of Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Markowitz, Alex; Krumpe, Mirko; Nikutta, R.

    2016-06-01

    In two papers (Markowitz, Krumpe, & Nikutta 2014, and Nikutta et al., in prep.), we derive the first X-ray statistical constraints for clumpy-torus models in Seyfert AGN by quantifying multi-timescale variability in line of-sight X-ray absorbing gas as a function of optical classification.We systematically search for discrete absorption events in the vast archive of RXTE monitoring of 55 nearby type Is and Compton-thin type IIs. We are sensitive to discrete absorption events due to clouds of full-covering, neutral/mildly ionized gas transiting the line of sight. Our results apply to both dusty and non-dusty clumpy media, and probe model parameter space complementary to that for eclipses observed with XMM-Newton, Suzaku, and Chandra.We detect twelve eclipse events in eight Seyferts, roughly tripling the number previously published from this archive. Event durations span hours to years. Most of our detected clouds are Compton-thin, and most clouds' distances from the black hole are inferred to be commensurate with the outer portions of the BLR or the inner regions of infrared-emitting dusty tori.We present the density profiles of the highest-quality eclipse events; the column density profile for an eclipsing cloud in NGC 3783 is doubly spiked, possibly indicating a cloud that is being tidallysheared. We discuss implications for cloud distributions in the context of clumpy-torus models. We calculate eclipse probabilities for orientation-dependent Type I/II unification schemes.We present constraints on cloud sizes, stability, and radial distribution. We infer that clouds' small angular sizes as seen from the SMBH imply 107 clouds required across the BLR + torus. Cloud size is roughly proportional to distance from the black hole, hinting at the formation processes (e.g., disk fragmentation). All observed clouds are sub-critical with respect to tidal disruption; self-gravity alone cannot contain them. External forces, such as magnetic fields or ambient pressure, are

  11. MIXING OF CLUMPY SUPERNOVA EJECTA INTO MOLECULAR CLOUDS

    SciTech Connect

    Pan Liubin; Desch, Steven J.; Scannapieco, Evan; Timmes, F. X.

    2012-09-01

    Several lines of evidence, from isotopic analyses of meteorites to studies of the Sun's elemental and isotopic composition, indicate that the solar system was contaminated early in its evolution by ejecta from a nearby supernova. Previous models have invoked supernova material being injected into an extant protoplanetary disk, or isotropically expanding ejecta sweeping over a distant (>10 pc) cloud core, simultaneously enriching it and triggering its collapse. Here, we consider a new astrophysical setting: the injection of clumpy supernova ejecta, as observed in the Cassiopeia A supernova remnant, into the molecular gas at the periphery of an H II region created by the supernova's progenitor star. To track these interactions, we have conducted a suite of high-resolution (1500{sup 3} effective) three-dimensional numerical hydrodynamic simulations that follow the evolution of individual clumps as they move into molecular gas. Even at these high resolutions, our simulations do not quite achieve numerical convergence, due to the challenge of properly resolving the small-scale mixing of ejecta and molecular gas, although they do allow some robust conclusions to be drawn. Isotropically exploding ejecta do not penetrate into the molecular cloud or mix with it, but, if cooling is properly accounted for, clumpy ejecta penetrate to distances {approx}10{sup 18} cm and mix effectively with large regions of star-forming molecular gas. In fact, the {approx}2 M{sub Sun} of high-metallicity ejecta from a single core-collapse supernova is likely to mix with {approx}2 Multiplication-Sign 10{sup 4} M{sub Sun} of molecular gas material as it is collapsing. Thus, all stars forming late ( Almost-Equal-To 5 Myr) in the evolution of an H II region may be contaminated by supernova ejecta at the level {approx}10{sup -4}. This level of contamination is consistent with the abundances of short-lived radionuclides and possibly some stable isotopic shifts in the early solar system and is

  12. First X-ray Statistical Tests for Clumpy Torii Models: Constraints from RXTE monitoring of Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2015-09-01

    We summarize two papers providing the first X-ray-derived statistical constraints for both clumpy-torus model parameters and cloud ensemble properties. In Markowitz, Krumpe, & Nikutta (2014), we explored multi-timescale variability in line-of-sight X-ray absorbing gas as a function of optical classification. We examined 55 Seyferts monitored with the Rossi X-ray Timing Explorer, and found in 8 objects a total of 12 eclipses, with durations between hours and years. Most clouds are commensurate with the outer portions of the BLR, or the inner regions of infrared-emitting dusty tori. The detection of eclipses in type Is disfavors sharp-edged tori. We provide probabilities to observe a source undergoing an absorption event for both type Is and IIs, yielding constraints in [N_0, sigma, i] parameter space. In Nikutta et al., in prep., we infer that the small cloud angular sizes, as seen from the SMBH, imply the presence of >10^7 clouds in BLR+torus to explain observed covering factors. Cloud size is roughly proportional to distance from the SMBH, hinting at the formation processes (e.g. disk fragmentation). All observed clouds are sub-critical with respect to tidal disruption; self-gravity alone cannot contain them. External forces (e.g. magnetic fields, ambient pressure) are needed to contain them, or otherwise the clouds must be short-lived. Finally, we infer that the radial cloud density distribution behaves as 1/r^{0.7}, compatible with VLTI observations. Our results span both dusty and non-dusty clumpy media, and probe model parameter space complementary to that for short-term eclipses observed with XMM-Newton, Suzaku, and Chandra.

  13. CLUMPY GALAXIES IN CANDELS. I. THE DEFINITION OF UV CLUMPS AND THE FRACTION OF CLUMPY GALAXIES AT 0.5 < z < 3

    SciTech Connect

    Guo, Yicheng; Koo, David C.; Barro, Guillermo; Faber, Sandra M.; Fang, Jerome J.; Bell, Eric F.; Conselice, Christopher J.; Giavalisco, Mauro; Lu, Yu; Mandelker, Nir; Dekel, Avishai; McIntosh, Daniel M.; Primack, Joel R.; Ceverino, Daniel; and others

    2015-02-10

    Although giant clumps of stars are thought to be crucial to galaxy formation and evolution, the most basic demographics of clumps are still uncertain, mainly because the definition of clumps has not been thoroughly discussed. In this paper, we carry out a study of the basic demographics of clumps in star-forming galaxies at 0.5 < z < 3, using our proposed physical definition that UV-bright clumps are discrete star-forming regions that individually contribute more than 8% of the rest-frame UV light of their galaxies. Clumps defined this way are significantly brighter than the H II regions of nearby large spiral galaxies, either individually or blended, when physical spatial resolution and cosmological dimming are considered. Under this definition, we measure the fraction of star-forming galaxies that have at least one off-center clump (f {sub clumpy}) and the contributions of clumps to the rest-frame UV light and star formation rate (SFR) of star-forming galaxies in the CANDELS/GOODS-S and UDS fields, where our mass-complete sample consists of 3239 galaxies with axial ratio q > 0.5. The redshift evolution of f {sub clumpy} changes with the stellar mass (M {sub *}) of the galaxies. Low-mass (log (M {sub *}/M {sub ☉}) < 9.8) galaxies keep an almost constant f {sub clumpy} of ∼60% from z ∼ 3 to z ∼ 0.5. Intermediate-mass and massive galaxies drop their f {sub clumpy} from 55% at z ∼ 3 to 40% and 15%, respectively, at z ∼ 0.5. We find that (1) the trend of disk stabilization predicted by violent disk instability matches the f {sub clumpy} trend of massive galaxies; (2) minor mergers are a viable explanation of the f {sub clumpy} trend of intermediate-mass galaxies at z < 1.5, given a realistic observability timescale; and (3) major mergers are unlikely responsible for the f {sub clumpy} trend in all masses at z < 1.5. The clump contribution to the rest-frame UV light of star-forming galaxies shows a broad peak around galaxies with log (M {sub *}/M {sub

  14. AGN Survey to characterize the clumpy torus using FORCAST

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, Enrique

    2015-10-01

    A geometrically and optically thick torus of gas and dust obscures the black hole and accretion disk in active galactic nuclei (AGN) in some lines of sight. One of the most important question that still remain uncertain is: How do the properties, such as torus geometry and distribution of clumps, of the torus depend on the AGN luminosity and/or activity class? Infrared (IR) observations are essential to these investigations as the torus intercepts and re-radiates (peaking within 30-40 um) a substantial amount of flux from the central engine. Near-IR (NIR) and mid-IR (MIR) observations from the ground have been key to advance our knowledge in this field. However, the atmosphere is opaque to the 30-40 um range and observations are impossible from ground-based telescopes. FORCAST presents a unique opportunity to explore AGN, providing the best angular resolution observations within the 30-40 um range for the current suite of instruments. From our analysis using Cycle 2 observations, we found that FORCAST provides the largest constraining power of the clumpy torus models in the suggested wavelength range. We therefore request an AGN Survey using FORCAST of snapshot imaging observations of a flux-limited (>500 mJy at 37.1 um) sample of 23 Seyfert galaxies with existing high-angular resolution MIR spectra observed on 8-m class telescopes. Using the FORCAST data requested here in combination with already acquired NIR and MIR data, we will have an unprecedentedly homogeneous AGN sample of IR (1-40 um) SED at the largest spatial-resolution, which yield to a better knowledge of the torus structure in the AGN unified model.

  15. An X-Ray Spectral and Temporal Model for Clumpy Tori in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Li, Xiaobo

    2015-08-01

    We recently construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4 (Liu, Y., & Li, X. 2014, ApJ, 787, 52; Liu, Y., & Li, X. 2015, MNRAS, 448, L53) and investigate the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (NH=1023 cm-2), whereas it is much more evident in the high column density case (NH=1025 cm-2). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We have applied it to the NuSTAR spectra of NGC 1068 and found a small number of clouds along the line of sight is preferred. We will also discuss the temporal model for clumpy tori and its application in the reverberation of narrow Fe Kα line.

  16. Clumpy tori around type II active galactic nuclei as revealed by X-ray fluorescent lines

    NASA Astrophysics Data System (ADS)

    Liu, Jiren; Liu, Yuan; Li, Xiaobo; Xu, Weiwei; Gou, Lijun; Cheng, Cheng

    2016-06-01

    The reflection spectrum of a torus around an active galactic nucleus (AGN) is characterized by X-ray fluorescent lines, which are most prominent for type II AGNs. A clumpy torus allows photons reflected from the back-side of the torus to leak through the front regions that are free of obscuration. The observed X-ray fluorescent lines are therefore sensitive to the clumpiness of the torus. We analysed a sample of type II AGNs observed with the Chandra High Energy Transmission Grating Spectrometer (HETGS), and measured the fluxes for the Si Kα and Fe Kα lines. The measured Fe Kα/Si Kα ratios, spanning a range between 5 and 60, are far smaller than the ratios predicted from simulations of smooth tori, indicating that the tori of the studied sources have clumpy distributions rather than smooth ones. We compared the measured Fe Kα/Si Kα ratios with simulation results of clumpy tori. The Circinus galaxy has a Fe Kα/Si Kα ratio of ˜60, which is close to the simulation results for N = 5, where N is the average number of clumps along the line of sight. The Fe Kα/Si Kα ratios of the other sources are all below the simulation results for N = 2. Overall, this shows that the non-Fe fluorescent lines in the soft X-ray band are a potentially powerful probe of the clumpiness of tori around AGNs.

  17. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  18. A study of the clumpiness in the Monoceros R2 molecular cloud

    NASA Astrophysics Data System (ADS)

    1996-04-01

    The study of clumpiness in the Monoceros R2 molecular cloud, and attempts to investigate the use of dust emission as well as gas tracers to study this, are addressed. A progress in developing the technique of dust temperature distribution by inversion of the emitted spectrum using the Mobius theorem is reported.

  19. An X-ray spectral model for clumpy tori in active galactic nuclei

    SciTech Connect

    Liu, Yuan; Li, Xiaobo E-mail: lixb@ihep.ac.cn

    2014-05-20

    We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4, which includes the physical processes of the photoelectric effect, Compton scattering, Rayleigh scattering, γ conversion, fluorescence line, and Auger process. Since the electrons in the torus are expected to be bounded instead of free, the deviation of the scattering cross section from the Klein-Nishina cross section has also been included, which changes the X-ray spectra by up to 25% below 10 keV. We have investigated the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (N {sub H} = 10{sup 23} cm{sup –2}), whereas it is much more evident in the high column density case (N {sub H} = 10{sup 25} cm{sup –2}). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We suggest that the joint fits of the broad band spectral energy distributions of AGNs (from X-ray to infrared) should better constrain the structure of the torus.

  20. VizieR Online Data Catalog: NGC2548 clumpy spatial and kinematic structure (Vicente+, 2016)

    NASA Astrophysics Data System (ADS)

    Vicente, B.; Sanchez, N.; Alfaro, E.

    2016-10-01

    We used precise astrometric data from the Carte du Ciel - San Fernando catalogue to study the clumpy structure in NGC 2548. We have completed our spatial and kinematic information with photometric data from the UCAC4 catalogue. With this, we derived positions and proper motions for each of the detected cores in this cluster. This table contains all the astrometric and photometric data for the 1655 stars toward NGC 2548. (1 data file).

  1. Unbiased constraints on the clumpiness of the Universe from standard candles

    NASA Astrophysics Data System (ADS)

    Li, Zhengxiang; Ding, Xuheng; Zhu, Zong-Hong

    2015-04-01

    We perform unbiased tests for the clumpiness of the Universe by confronting the Zel'dovich-Kantowski-Dyer-Roeder luminosity distance, which describes the effect of local inhomogeneities on the propagation of light with the observational one estimated from measurements of standard candles, i.e., type Ia supernovae (SNe Ia) and gamma-ray bursts (GRBs). Methodologically, we first determine the light-curve fitting parameters which account for distance estimation in SNe Ia observations and the luminosity/energy relations which are responsible for distance estimation of GRBs in the global fit to reconstruct the Hubble diagrams in the context of a clumpy Universe. Subsequently, these Hubble diagrams allow us to achieve unbiased constraints on the matter density parameter Ωm , as well as the clumpiness parameter η which quantifies the fraction of homogeneously distributed matter within a given light cone. At a 1 σ confidence level, the constraints are Ωm=0.34 ±0.02 and η =1.0 0-0.02+0.00 from the joint analysis. The results suggest that the Universe full of Friedman-Lemaître-Robertson-Walker fluid is favored by observations of standard candles with very high statistical significance. On the other hand, they may also indicate that the Zel'dovich-Kantowski-Dyer-Roeder approximation is a sufficiently accurate form to describe the effects of local homogeneity on the expanding Universe.

  2. A Game of Hide and Seek: Expectations of Clumpy Resources Influence Hiding and Searching Patterns

    PubMed Central

    Wilke, Andreas; Minich, Steven; Panis, Megane; Langen, Tom A.; Skufca, Joseph D.; Todd, Peter M.

    2015-01-01

    Resources are often distributed in clumps or patches in space, unless an agent is trying to protect them from discovery and theft using a dispersed distribution. We uncover human expectations of such spatial resource patterns in collaborative and competitive settings via a sequential multi-person game in which participants hid resources for the next participant to seek. When collaborating, resources were mostly hidden in clumpy distributions, but when competing, resources were hidden in more dispersed (random or hyperdispersed) patterns to increase the searching difficulty for the other player. More dispersed resource distributions came at the cost of higher overall hiding (as well as searching) times, decreased payoffs, and an increased difficulty when the hider had to recall earlier hiding locations at the end of the experiment. Participants’ search strategies were also affected by their underlying expectations, using a win-stay lose-shift strategy appropriate for clumpy resources when searching for collaboratively-hidden items, but moving equally far after finding or not finding an item in competitive settings, as appropriate for dispersed resources. Thus participants showed expectations for clumpy versus dispersed spatial resources that matched the distributions commonly found in collaborative versus competitive foraging settings. PMID:26154661

  3. A Game of Hide and Seek: Expectations of Clumpy Resources Influence Hiding and Searching Patterns.

    PubMed

    Wilke, Andreas; Minich, Steven; Panis, Megane; Langen, Tom A; Skufca, Joseph D; Todd, Peter M

    2015-01-01

    Resources are often distributed in clumps or patches in space, unless an agent is trying to protect them from discovery and theft using a dispersed distribution. We uncover human expectations of such spatial resource patterns in collaborative and competitive settings via a sequential multi-person game in which participants hid resources for the next participant to seek. When collaborating, resources were mostly hidden in clumpy distributions, but when competing, resources were hidden in more dispersed (random or hyperdispersed) patterns to increase the searching difficulty for the other player. More dispersed resource distributions came at the cost of higher overall hiding (as well as searching) times, decreased payoffs, and an increased difficulty when the hider had to recall earlier hiding locations at the end of the experiment. Participants' search strategies were also affected by their underlying expectations, using a win-stay lose-shift strategy appropriate for clumpy resources when searching for collaboratively-hidden items, but moving equally far after finding or not finding an item in competitive settings, as appropriate for dispersed resources. Thus participants showed expectations for clumpy versus dispersed spatial resources that matched the distributions commonly found in collaborative versus competitive foraging settings. PMID:26154661

  4. Supermassive black hole pairs in clumpy galaxies at high redshift: delayed binary formation and concurrent mass growth

    NASA Astrophysics Data System (ADS)

    Tamburello, Valentina; Capelo, Pedro R.; Mayer, Lucio; Bellovary, Jillian M.; Wadsley, James W.

    2016-10-01

    Massive gas-rich galaxy discs at z ˜ 1 - 3 host massive star-forming clumps with typical baryonic masses in the range 107 - 108 M⊙ which can affect the orbital decay and concurrent growth of supermassive black hole (BH) pairs. Using a set of high-resolution simulations of isolated clumpy galaxies hosting a pair of unequal-mass BHs, we study the interaction between massive clumps and a BH pair at kpc scales, during the early phase of the orbital decay. We find that both the interaction with massive clumps and the heating of the cold gas layer of the disc by BH feedback tend to delay significantly the orbital decay of the secondary, which in many cases is ejected and then hovers for a whole Gyr around a separation of 1-2 kpc. In the envelope, dynamical friction is weak and there is no contribution of disc torques: these lead to the fastest decay once the orbit of the secondary BH has circularised in the disc midplane. In runs with larger eccentricities the delay is stronger, although there are some exceptions. We also show that, even in discs with very sporadic transient clump formation, a strong spiral pattern affects the decay time-scale for BHs on eccentric orbits. We conclude that, contrary to previous belief, a gas-rich background is not necessarily conducive to a fast BH decay and binary formation, which prompts more extensive investigations aimed at calibrating event-rate forecasts for ongoing and future gravitational-wave searches, such as with Pulsar Timing Arrays and the future evolved Laser Interferometer Space Antenna.

  5. Morphologies of ~190,000 Galaxies at z = 0-10 Revealed with HST Legacy Data. II. Evolution of Clumpy Galaxies

    NASA Astrophysics Data System (ADS)

    Shibuya, Takatoshi; Ouchi, Masami; Kubo, Mariko; Harikane, Yuichi

    2016-04-01

    We investigate the evolution of clumpy galaxies with Hubble Space Telescope (HST) samples of ˜17,000 photo-z and Lyman break galaxies at z ≃ 0-8. We detect clumpy galaxies with off-center clumps in a self-consistent algorithm that is well tested with previous study results, and we measure the number fraction of clumpy galaxies at the rest-frame UV, {f}{{clumpy}}{{UV}}. We identify an evolutionary trend of {f}{{clumpy}}{{UV}} over z ≃ 0-8 for the first time: {f}{{clumpy}}{{UV}} increases from z ≃ 8 to z ≃ 1-3 and subsequently decreases from z ≃ 1 to z ≃ 0, which follows the trend of the Madau-Lilly plot. A low average Sérsic index of n ≃ 1 is found in the underlining components of our clumpy galaxies at z ≃ 0-2, indicating that typical clumpy galaxies have disk-like surface brightness profiles. Our {f}{{clumpy}}{{UV}} values correlate with physical quantities related to star formation activities for star-forming galaxies at z ≃ 0-7. We find that clump colors tend to be red at a small galactocentric distance for massive galaxies with {log}{M}*/{M}⊙ ≳ 11. All of these results are consistent with the picture that a majority of clumps form in the violent disk instability and migrate into the galactic centers.

  6. Cold Sores

    MedlinePlus

    ... delivered directly to your desktop! more... What Are Cold Sores? Article Chapters What Are Cold Sores? Cold ... January 2012 Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores ...

  7. Modeling optical and UV polarization of AGNs. III. From uniform-density to clumpy regions

    NASA Astrophysics Data System (ADS)

    Marin, F.; Goosmann, R. W.; Gaskell, C. M.

    2015-05-01

    Context. A growing body of evidence suggests that some, if not all, scattering regions of active galactic nuclei (AGNs) are clumpy. The inner AGN components cannot be spatially resolved with current instruments and must be studied by numerical simulations of observed spectroscopy and polarization data. Aims: We run radiative transfer models in the optical/UV for a variety of AGN reprocessing regions with different distributions of clumpy scattering media. We obtain geometry-sensitive polarization spectra and images to improve our previous AGN models and their comparison with the observations. Methods: We use the latest public version 1.2 of the Monte Carlo code stokes presented in the first two papers of this series to model AGN reprocessing regions of increasing morphological complexity. We replace previously uniform-density media with up to thousands of constant-density clumps. We couple a continuum source to fragmented equatorial scattering regions, polar outflows, and toroidal obscuring dust regions and investigate a wide range of geometries. We also consider different levels of fragmentation in each scattering region to evaluate the importance of fragmentation for the net polarization of the AGN. Results: In comparison with uniform-density models, equatorial distributions of gas and dust clouds result in grayer spectra and show a decrease in the net polarization percentage at all lines of sight. The resulting polarization position angle depends on the morphology of the clumpy structure, with extended tori favoring parallel polarization while compact tori produce orthogonal polarization position angles. In the case of polar scattering regions, fragmentation increases the net polarization unless the cloud filling factor is small. A complete AGN model constructed from the individual, fragmented regions can produce low polarization percentages (<2%), with a parallel polarization angle for observer inclinations up to 70° for a torus half opening angle of 60°. For

  8. Connection between ambient density fluctuations and clumpy Langmuir waves in type III radio sources

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.; Gurnett, D. A.

    1992-01-01

    A recent stochastic-growth theory of clumpy Langmuir waves in type III sources is shown to imply that the clumps will have the same size distribution as the ambient low-frequency density fluctuations in the solar wind. Spectral analysis of Langmuir-wave time series from the ISEE 3 plasma wave instrument confirms this prediction to within the uncertainties in the spectra. The smallest Langmuir clump size is inferred to be in the range 0.4-30 km in general, and 2-30 km for beam-resonant waves, and it is concluded that the diffusion of waves in the source is anomalous.

  9. Cold Stress

    MedlinePlus

    ... be at risk of cold stress. Extreme cold weather is a dangerous situation that can bring on ... the country. In regions relatively unaccustomed to winter weather, near freezing temperatures are considered factors for cold ...

  10. Common Cold

    MedlinePlus

    ... nose, coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... avoid colds. There is no cure for the common cold. For relief, try Getting plenty of rest Drinking ...

  11. Evolution of the fraction of clumpy galaxies at 0.2 < z < 1.0 in the cosmos field

    SciTech Connect

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.; Kobayashi, M. A. R.; Shioya, Y.; Capak, P.; Ilbert, O.; Koekemoer, A. M.; Salvato, M.; Scoville, N. Z.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M {sub star} > 10{sup 9.5} M {sub ☉} decreases with time from ∼0.35 at 0.8 < z < 1.0 to ∼0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with M {sub star} > 10{sup 10.5} M {sub ☉} at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ∼ 0.9 to z ∼ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.

  12. NGC 2548: clumpy spatial and kinematic structure in an intermediate-age Galactic cluster

    NASA Astrophysics Data System (ADS)

    Vicente, Belén; Sánchez, Néstor; Alfaro, Emilio J.

    2016-09-01

    NGC 2548 is a ˜400-500 Myr old open cluster with evidence of spatial substructures likely caused by its interaction with the Galactic disc. In this work we use precise astrometric data from the Carte du Ciel - San Fernando (CdC-SF) catalogue to study the clumpy structure in this cluster. We confirm the fragmented structure of NGC 2548 but, additionally, the relatively high precision of our kinematic data lead us to the first detection of substructures in the proper motion space of a stellar cluster. There are three spatially separated cores each of which has its own counterpart in the proper motion distribution. The two main cores lie nearly parallel to the Galactic plane whereas the third one is significantly fainter than the others and it moves towards the Galactic plane separating from the rest of the cluster. We derive core positions and proper motions, as well as the stars belonging to each core.

  13. Innermost structure and near-infrared radiation of dusty clumpy tori in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Toshihiro

    2012-12-01

    The dusty clumpy torus surrounds the central black hole (BH) and the accretion disk in active galactic nuclei, and governs the growth of super-massive BHs via gas fueling towards the central engine. Near-infrared (NIR) monitoring observations have revealed that the torus inner radius is determined by the dust sublimation process. However, the observed radii are systematically smaller than the theoretical predictions by a factor of three. We take into account the anisotropic illumination by the central accretion disk to the torus, and calculate the innermost structure of the torus and the NIR time variability. We then show that the anisotropy naturally solves the systematic discrepancy and that the viewing angle is the primary source to produce an object-to-object scatter of the NIR time delay. Dynamics of clumps at the innermost region of the torus will be unveiled via future high- resolution X-ray spectroscopy (e.g., Astro-H)

  14. Sub-millimeter Galaxies: Dusty, Clumpy and Messy Starbursts in the Distant Universe

    NASA Astrophysics Data System (ADS)

    Menéndez-Delmestre, K.; Blain, A. W.; Swinbank, M.; Smail, I.; Ivison, R.; Chapman, S. C.; Gonçalves, T. S.

    2014-10-01

    We present the first spatially-resolved observations of the Hα emission in three z˜2 sub-millimeter selected galaxies (SMGs) using the Keck OH-Suppressing Infrared Imaging Spectrograph (OSIRIS) with Laser Guide Star Adaptive Optics (LGS-AO). With the unprecedent kpc-scale resolution - up to ten times that achieved with previous seeing-limited studies - and the kinematic insight that these observations provide, we unveil a clumpy Hα structure and reveal velocity offsets that suggest these systems are in an advanced merging phase. The spatially-resolved spectral information also allows us to disentangle the Hα emission arising from an active galactic nucleus (AGN) from that associated with star formation.

  15. Clumpy Langmuir waves in type III radio sources - Comparison of stochastic-growth theory with observations

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.; Gurnett, D. A.

    1993-01-01

    Detailed comparisons are made between the Langmuir-wave properties predicted by the recently developed stochastic-growth theory of type III sources and those observed by the plasma wave experiment on ISEE 3, after correcting for the main instrumental and selection effects. Analysis of the observed field-strength distribution confirms the theoretically predicted form and implies that wave growth fluctuates both spatially and temporally in sign and magnitude, leading to an extremely clumpy distribution of fields. A cutoff in the field-strength distribution is seen at a few mV/m, corresponding to saturation via nonlinear effects. Analysis of the size distribution of Langmuir clumps yields results in accord with those obtained in earlier work and with the size distribution of ambient density fluctuations in the solar wind. This confirms that the inhomogeneities in the Langmuir growth rate are determined by the density fluctuations and that these fluctuations persist during type III events.

  16. Cold streams: detectability, relation to structure and characteristics

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias

    2015-02-01

    Cold gas streaming along the dark-matter filaments of the cosmic web is predicted to be the major provider of resources for disc buildup and star formation in massive galaxies in the early universe. We use hydrodynamical simulations to study to what extent these cold streams are traceable in the extended circum-galactic environment of galaxies via Ly alpha emission, Ly alpha absorption and selected low ionisation metal absorption lines. We predict the strength of the absorption signal produced by the streams and find that it is consistent with observations in high redshift galaxies. The characteristics of the Ly alpha emission of our simulated galaxies are similar in luminosity, morphology and extent to the observed Ly alpha blobs, with distinct kinematic features. We analyse the characteristics of the cold streams in simulations and present scaling relations for the amount of infall, its velocity, distribution and its clumpiness and compare our findings with observations.

  17. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  18. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  19. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  20. No more active galactic nuclei in clumpy disks than in smooth galaxies at z ∼ 2 in CANDELS/3D-HST

    SciTech Connect

    Trump, Jonathan R.; Luo, Bin; Brandt, W. N.; Barro, Guillermo; Guo, Yicheng; Koo, David C.; Faber, S. M.; Brammer, Gabriel B.; Ferguson, Henry C.; Grogin, Norman A.; Kartaltepe, Jeyhan; Koekemoer, Anton M.; Bell, Eric F.; Dekel, Avishai; Hopkins, Philip F.; Kocevski, Dale D.; McIntosh, Daniel H.; Momcheva, Ivelina; and others

    2014-10-01

    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3 < z < 2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that despite being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z ∼ 2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z ∼ 2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile, the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z ∼ 1.85—whether violent disk instabilities or secular processes—are as efficient in smooth galaxies as they are in clumpy galaxies.

  1. Common cold

    MedlinePlus

    ... been tried for colds, such as vitamin C, zinc supplements, and echinacea. Talk to your health care ... nih.gov/pubmed/22962927 . Singh M, Das RR. Zinc for the common cold. Cochrane Database of Systematic ...

  2. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  3. Laboratory experiments to study supersonic astrophysical flows interacting with clumpy environments

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Foster, J. M.; Wilde, B. H.; Hartigan, P.; Blue, B. E.; Hansen, J. F.; Sorce, C.; Williams, R. J. R.; Coker, R.; Frank, A.

    2009-08-01

    A wide variety of objects in the universe drive supersonic outflows through the interstellar medium which is often highly clumpy. These inhomogeneities affect the morphology of the shocks that are generated. The hydrodynamics are difficult to model as the problem is inherently 3D and the clumps are subject to a variety of fluid instabilities as they are accelerated and destroyed by the shock. Over the last two years, we have been carrying out experiments at the University of Rochester’s Omega laser to address the interaction of a dense-plasma jet with a localised density perturbation. More recently, we have turned our attention to the interaction of a shock wave with a spherical particle. We use a 1.6-mm diameter, 1.2-mm length Omega hohlraum to drive a composite plastic ablator (which includes bromine to prevent M-band radiation from preheating the experiment). The ablator acts as a “piston” driving a shock into 0.3 g cm-3 foam containing a 0.5-mm diameter sapphire sphere. We radiograph along two orthogonal lines of sight, using nickel or zinc pinhole-apertured X-ray backlighters, to study the subsequent hydrodynamics. We present initial experimental results and two-dimensional simulations of the experiment.

  4. Modelling Absorbent Phenomena of Absorbent Structure

    NASA Astrophysics Data System (ADS)

    Sayeb, S.; Ladhari, N.; Ben Hassen, M.; Sakli, F.

    Absorption, retention and strike through time, as evaluating criteria of absorbent structures quality were studied. Determination of influent parameters on these criteria were realized by using the design method of experimental sets. In this study, the studied parameters are: Super absorbent polymer (SAP)/fluff ratio, compression and the porosity of the non woven used as a cover stock. Absorption capacity and retention are mostly influenced by SAP/fluff ratio. However, strike through time is affected by compression. Thus, a modelling of these characteristics in function of the important parameter was established.

  5. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  6. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  7. Imaging the outward motions of clumpy dust clouds around the red supergiant Antares with VLT/VISIR

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.

    2014-08-01

    Aims: We present a 0."5-resolution 17.7 μm image of the red supergiant Antares. Our aim is to study the structure of the circumstellar envelope in detail. Methods: Antares was observed at 17.7 μm with the VLT mid-infrared instrument VISIR. Taking advantage of the BURST mode, in which a large number of short exposure frames are taken, we obtained a diffraction-limited image with a spatial resolution of 0."5. Results: The VISIR image shows six clumpy dust clouds located at 0."8-1."8 (43-96 R⋆ = 136-306 AU) away from the star. We also detected compact emission within a radius of 0."5 around the star. Comparison of our VISIR image taken in 2010 and the 20.8 μm image taken in 1998 with the Keck Telescope reveals the outward motions of four dust clumps. The proper motions of these dust clumps (with respect to the central star) amount to 0."2-0."6 in 12 years. This translates into expansion velocities (projected onto the plane of the sky) of 13-40 km s-1 with an uncertainty of ± 7 km s-1. The inner compact emission seen in the 2010 VISIR image is presumably newly formed dust, because it is not detected in the image taken in 1998. If we assume that the dust is ejected in 1998, the expansion velocity is estimated to be 34 km s-1, in agreement with the velocity of the outward motions of the clumpy dust clouds. The mass of the dust clouds is estimated to be (3-6) × 10-9 M⊙. These values are lower by a factor of 3-7 than the amount of dust ejected in one year estimated from the (gas+dust) mass-loss rate of 2 × 10-6 M⊙ yr-1, suggesting that the continuous mass loss is superimposed on the clumpy dust cloud ejection. Conclusions: The clumpy dust envelope detected in the 17.7 μm diffraction-limited image is similar to the clumpy or asymmetric circumstellar environment of other red supergiants. The velocities of the dust clumps cannot be explained by a simple accelerating outflow, implying the possible random nature of the dust cloud ejection mechanism. Based on VISIR

  8. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  9. EVIDENCE FOR A CLUMPY, ROTATING GAS DISK IN A SUBMILLIMETER GALAXY AT z = 4

    SciTech Connect

    Hodge, J. A.; Walter, F.; Carilli, C. L.; De Blok, W. J. G.; Riechers, D.; Daddi, E.

    2012-11-20

    We present Karl G. Jansky Very Large Array observations of the CO(2-1) emission in the z = 4.05 submillimeter galaxy (SMG) GN20. These high-resolution data allow us to image the molecular gas at 1.3 kpc resolution just 1.6 Gyr after the big bang. The data reveal a clumpy, extended gas reservoir, 14 {+-} 4 kpc in diameter, in unprecedented detail. A dynamical analysis shows that the data are consistent with a rotating disk of total dynamical mass 5.4 {+-} 2.4 Multiplication-Sign 10{sup 11} M {sub Sun }. We use this dynamical mass estimate to constrain the CO-to-H{sub 2} mass conversion factor ({alpha}{sub CO}), finding {alpha}{sub CO} = 1.1 {+-} 0.6 M {sub Sun }(K km s{sup -1} pc{sup 2}){sup -1}. We identify five distinct molecular gas clumps in the disk of GN20 with masses a few percent of the total gas mass, brightness temperatures of 16-31K, and surface densities of >3200-4500 Multiplication-Sign ({alpha}{sub CO}/0.8) M {sub Sun} pc{sup -2}. Virial mass estimates indicate they could be self-gravitating, and we constrain their CO-to-H{sub 2} mass conversion factor to be <0.2-0.7 M {sub Sun }(K km s{sup -1} pc{sup 2}){sup -1}. A multiwavelength comparison demonstrates that the molecular gas is concentrated in a region of the galaxy that is heavily obscured in the rest-frame UV/optical. We investigate the spatially resolved gas excitation and find that the CO(6-5)/CO(2-1) ratio is constant with radius, consistent with star formation occurring over a large portion of the disk. We discuss the implications of our results in the context of different fueling scenarios for SMGs.

  10. EXTREME GAS FRACTIONS IN CLUMPY, TURBULENT DISK GALAXIES AT z ∼ 0.1

    SciTech Connect

    Fisher, David B.; Glazebrook, Karl; Bassett, Robert; Bolatto, Alberto; Obreschkow, Danail; Cooper, Erin Mentuch; Wisnioski, Emily; Abraham, Roberto G.; Damjanov, Ivana; Green, Andy; McGregor, Peter

    2014-08-01

    In this Letter, we report the discovery of CO fluxes, suggesting very high gas fractions in three disk galaxies seen in the nearby universe (z ∼ 0.1). These galaxies were investigated as part of the DYnamics of Newly Assembled Massive Objects (DYNAMO) survey. High-resolution Hubble Space Telescope imaging of these objects reveals the presence of large star forming clumps in the bodies of the galaxies, while spatially resolved spectroscopy of redshifted Hα reveals the presence of high dispersion rotating disks. The internal dynamical state of these galaxies resembles that of disk systems seen at much higher redshifts (1 < z < 3). Using CO(1-0) observations made with the Plateau de Bure Interferometer, we find gas fractions of 20%-30% and depletion times of t {sub dep} ∼ 0.5 Gyr (assuming a Milky-Way-like α{sub CO}). These properties are unlike those expected for low-redshift galaxies of comparable specific star formation rate, but they are normal for their high-z counterparts. DYNAMO galaxies break the degeneracy between gas fraction and redshift, and we show that the depletion time per specific star formation rate for galaxies is closely tied to gas fraction, independent of redshift. We also show that the gas dynamics of two of our local targets corresponds to those expected from unstable disks, again resembling the dynamics of high-z disks. These results provide evidence that DYNAMO galaxies are local analogs to the clumpy, turbulent disks, which are often found at high redshift.

  11. Wing galaxies: A formation mechanism of the clumpy irregular galaxy Markarian 297

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki; Noguchi, Masafumi

    1990-01-01

    In order to contribute to an understanding of collision-induced starburst activities, the authors present a detailed case study on the starburst galaxy Markarian 297 (= NGC 6052 = Arp 209; hereafter Mrk 297). This galaxy is classified as a clumpy irregular galaxy (CIG) according to its morphological properties (cf. Heidmann, 1987). Two major clumps and many small clumps are observed in the entire region of Mrk 297 (Hecquet, Coupinot, and Maucherat 1987). The overall morphology of Mrk 297 is highly chaotic and thus it seems difficult to determine possible orbits of galaxy-galaxy collision. However, the authors have serendipitously found a possible orbit during a course of numerical simulations for a radial-penetration collision between galaxies. The radial-penetration collision means that an intruder penetrates a target galaxy radially passing by its nucleus. This kind of collision is known to explain a formation mechanism of ripples around disk galaxies (Wallin and Struck-Marcell 1988). Here, the authors show that the radial-penetration collision between galaxies successfully explains both overall morphological and kinematical properties of Mrk 297. The authors made two kinds of numerical simulations for Mrk 297. One is N-body (1x10(exp 4) particles) simulations in which effects of self gravity of the stellar disk are taken into account. These simulations are used to study detailed morphological feature of Mrk 297. The response of gas clouds are also investigated in order to estimate star formation rates in such collisions. The other is test-particle simulations, which are utilized to obtain a rough picture of Mrk 297 and to analyze the velocity field of Mrk 297. The techniques of the numerical simulations are the same as those in Noguchi (1988) and Noguchi and Ishibashi (1986). In the present model, an intruding galaxy with the same mass of a target galaxy moves on a rectilinear orbit which passes the center of the target.

  12. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies

    NASA Technical Reports Server (NTRS)

    Madau, Piero

    1995-01-01

    We assess the effects of the stochastic attenuation produced by intervening QSO absorption systems on the broadband colors of galaxies at cosmological distances. We compute the H I opacity of a clumpy universe as a function of redshift, including scattering in resonant lines, such as Lyman alpha, Lyman beta, Lyman gamma, and higher order members, and Lyman-continuum absorption. Both the numerous, optically thin Lyman-alpha forest clouds and the rarer, optically thick Lyman limit systems are found to contribute to the obscuration of background sources. We study the mean properties of primeval galaxies at high redshift in four broad optical passbands, U(sub n), B, G, and R. Even if young galaxies radiated a significant amount of ionizing photons, the attenuation due to the accumulated photoelectric opacity along the path is so severe that sources beyond z approximately 3 will drop out of the U(sub n) image together. We also show that the observed B-R color of distant galaxies can be much redder than expected from a stellar population. At z approximately 3.5, the blanketing by discrete absorption lines in the Lyman series is so effective that background galaxies appear, on average, 1 mag fainter in B. By z approximately 4, the observed B magnitude increment due to intergalactic absorption exceeds 2 mag. By modeling the intrinsic UV spectral energy distribution of star-forming galaxies with a stellar population synthesis code, we show that the (B-R)(sub AB) approximately 0 criterion for identifying 'flat-spectrum,' metal-producing galaxies is biased against objects at z greater than 3. The continuum blanketing from the Lyman series produces a characteristic staircase profile in the transmitted power. We suggest that this cosmic Lyman decrement might be used as a tool to identify high-z galaxies.

  13. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  14. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  15. Cold injuries.

    PubMed

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  16. No More Active Galactic Nuclei in Clumpy Disks Than in Smooth Galaxies at z ~ 2 in CANDELS/3D-HST

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Barro, Guillermo; Juneau, Stéphanie; Weiner, Benjamin J.; Luo, Bin; Brammer, Gabriel B.; Bell, Eric F.; Brandt, W. N.; Dekel, Avishai; Guo, Yicheng; Hopkins, Philip F.; Koo, David C.; Kocevski, Dale D.; McIntosh, Daniel H.; Momcheva, Ivelina; Faber, S. M.; Ferguson, Henry C.; Grogin, Norman A.; Kartaltepe, Jeyhan; Koekemoer, Anton M.; Lotz, Jennifer; Maseda, Michael; Mozena, Mark; Nandra, Kirpal; Rosario, David J.; Zeimann, Gregory R.

    2014-10-01

    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3 < z < 2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that despite being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z ~ 2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z ~ 2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile, the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z ~ 1.85—whether violent disk instabilities or secular processes—are as efficient in smooth galaxies as they are in clumpy galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc, under NASA contract NAS 5-26555.

  17. The evidence for clumpy accretion in the Herbig Ae star HR 5999

    NASA Technical Reports Server (NTRS)

    Perez, M. R.; Grady, C. A.; The, P. S.

    1993-01-01

    Analysis of IUE high- and low-dispersion spectra of the young Herbig Ae star HR 5999 (HD 144668) covering 1978-1992 revealed dramatic changes in the Mg II h and k (2795.5, 2802.7 A) emission profiles, changes in the column density and distribution in radial velocity of accreting gas, and flux in the Ly(alpha), O I, and C IV emission lines, which are correlated with the UV excess luminosity. Variability in the spectral type inferred from the UV spectral energy distribution, ranging from A5 IV-III in high state to A7 III in the low state, was also observed. The trend of earlier inferred spectral type with decreasing wavelength and with increasing UV continuum flux has previously been noted as a signature of accretion disks in lower mass pre-main sequence stars (PMS) and in systems undergoing FU Orionis-type outbursts. Our data represent the first detection of similar phenomena in an intermediate mass (M greater than or equal to 2 solar mass) PMS star. Recent IUE spectra show gas accreting toward the star with velocities as high as plus 300 km/s, much as is seen toward beta Pic, and suggest that we also view this system through the debris disk. The absence of UV lines with the rotational broadening expected given the optical data (A7 IV, V sini=180 plus or minus 20 km/s for this system) also suggests that most of the UV light originates in the disk, even in the low continuum state. The dramatic variability in the column density of accreting gas, is consistent with clumpy accretion, such as has been observed toward beta Pic, is a hallmark of accretion onto young stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars with 0.5 Myr less than t(sub age) less than 2.8 Myr. The implications for models of beta Pic and similar systems are briefly discussed.

  18. A total and polarized infrared flux view of the AGN clumpy torus

    NASA Astrophysics Data System (ADS)

    Lopez Rodriguez, Enrique

    2013-12-01

    Magnetohydrodynamical theories consider the torus of Active Galactic Nuclei (AGN) to be part of an outflow wind moving away from the central engine. In this framework, the torus is a particular region of the wind, where dusty and optically thick clouds are formed. The outflows are strongly related to the accretion rate and magnetic field strength, which play an important role in the creation, morphology and evolution of the torus. Through infrared (IR) imaging and polarimetry observations, this dissertation (1) searches for signatures of dusty tori in low-luminosity AGN (LLAGN); (2) explores the role and strength of magnetic field in the torus; and (3) investigates the nucleus of radio-loud AGN. Recent theoretical models predicted that LLAGN do not host a Seyfert-like torus, since low-luminosities (<1042 erg s-1 ) cannot sustain the required outflow rate. High-spatial resolution mid-IR (MIR) imaging and nuclear spectral energy distribution of 22 LLAGN reveals different IR characteristics by dividing the sample in terms of the Eddington ratio. These galaxies show a diversity of nuclear morphologies and have a high MIR/X-ray luminosity ratio compared to higher-luminosity AGN. Star formation, jets and/or truncated accretion disk can explain the MIR excess. Although several models have been made to account for the outflowing dusty winds from the central engine, the magnetic field strength at the position of the torus remains poorly characterized. Through a novel study using near-IR polarimetry, the magnetic field strength in the clumpy torus was estimated. Specifically, if paramagnetic alignment is assumed in the dusty clouds of the torus, the magnetic field strength of the torus of IC5063 is estimated to be in the range of 12--128 mG. Alternatively, Chandrasekhar-Fermi method suggests a lower-limit magnetic field strength of 13 mG. For the archetypical radio-loud AGN, Cygnus A, MIR polarimetry using CanariCam on the 10.4-m Gran Telescopio de Canarias revealed a high

  19. SHOCKED SUPERWINDS FROM THE z {approx} 2 CLUMPY STAR-FORMING GALAXY, ZC406690

    SciTech Connect

    Newman, Sarah F.; Genzel, Reinhard; Shapiro Griffin, Kristen; Davies, Ric; Foerster-Schreiber, Natascha M.; Tacconi, Linda J.; Kurk, Jaron; Wuyts, Stijn; Genel, Shy; Buschkamp, Peter; Eisenhauer, Frank; Lutz, Dieter; Lilly, Simon J.; Carollo, C. Marcella; Renzini, Alvio; Mancini, Chiara; Bouche, Nicolas; Burkert, Andreas; Cresci, Giovanni; Hicks, Erin; and others

    2012-06-20

    We have obtained high-resolution data of the z {approx} 2 ring-like, clumpy star-forming galaxy (SFG) ZC406690 using the VLT/SINFONI with adaptive optics (in K band) and in seeing-limited mode (in H and J bands). Our data include all of the main strong optical emission lines: [O II], [O III], H{alpha}, H{beta}, [N II], and [S II]. We find broad, blueshifted H{alpha} and [O III] emission line wings in the spectra of the galaxy's massive, star-forming clumps ({sigma} {approx} 85 km s{sup -1}) and even broader wings (up to 70% of the total H{alpha} flux, with {sigma} {approx} 290 km s{sup -1}) in regions spatially offset from the clumps by {approx}2 kpc. The broad emission likely originates from large-scale outflows with mass outflow rates from individual clumps that are 1-8 Multiplication-Sign the star formation rate (SFR) of the clumps. Based on emission line ratio diagnostics ([N II]/H{alpha} and [S II]/H{alpha}) and photoionization and shock models, we find that the emission from the clumps is due to a combination of photoionization from the star-forming regions and shocks generated in the outflowing component, with 5%-30% of the emission deriving from shocks. In terms of the ionization parameter (6 Multiplication-Sign 10{sup 7} to 10{sup 8} cm s{sup -1}, based on both the SFR and the O{sub 32} ratio), density (local electron densities of 300-1800 cm{sup -3} in and around the clumps, and ionized gas column densities of 1200-8000 M{sub Sun }pc{sup -2}), and SFR (10-40 M{sub Sun} yr{sup -1}), these clumps more closely resemble nuclear starburst regions of local ultraluminous infrared galaxies and dwarf irregulars than H II regions in local galaxies. However, the star-forming clumps are not located in the nucleus as in local starburst galaxies but instead are situated in a ring several kpc from the center of their high-redshift host galaxy, and have an overall disk-like morphology. The two brightest clumps are quite different in terms of their internal properties

  20. Constraints from Infrared Space Observatory Data on the Velocity Law and Clumpiness of WR 136

    NASA Astrophysics Data System (ADS)

    Ignace, R.; Quigley, M. F.; Cassinelli, J. P.

    2003-10-01

    Observations with the Infrared Space Observatory (ISO) SWS spectrometer are used to constrain the velocity law and wind clumping of the well-studied Wolf-Rayet (W-R) star WR 136 (HD 192163, WN6). Because the free-free continuum opacity in W-R winds increases steadily with wavelength in the IR, each point in the continuous spectrum may be regarded as forming in a pseudophotosphere of larger radius for longer wavelength. Using this idea in combination with an analysis of the Doppler-broadened widths of several He II recombination lines, we can derive information about the velocity law and clumpiness of the stellar wind of WR 136. The observed line emission emerges from the region exterior to the radius of optical depth unity in the free-free opacity, corresponding to v>~0.3v∞ for our shortest-wavelength line. The ISO observations provide the continuum shape, flux level, and seven fairly strong He II emission profiles. Adopting a β-law distribution for the outflow velocity law, we compute the continuous energy distribution and line profiles. We find that there is a broad range of β-values consistent with the continuum data if we also allow the wind temperature to be a free parameter. Interestingly, the continuum data are found to constrain the wind to have fairly low clumping values for the IR-forming region. By using the continuum results in conjunction with line profile modeling, the observational constraints are best satisfied with a clumping factor of Dc=<ρ2>/<ρ>2 of 1-3 and a β-value of 2-3, although higher β-values are not strongly ruled out for a modest wind temperature. The wavelength range of our ISO data allows us to probe only the outer wind acceleration zone, but in combination with radio observations, our finding that the wind clumping is fairly small suggests that the clumping in the wind of WR 136 decreases with increasing radius. Based on observations with ISO, an ESA project with instruments funded by ESA member states (especially the PI

  1. Submillimeter and far infrared line observations of M17 SW: A clumpy molecular cloud penetrated by UV radiation

    NASA Technical Reports Server (NTRS)

    Stutzki, J.; Stacey, G. J.; Genzel, R.; Harris, A. I.; Jaffe, d. T.; Lugten, J. B.

    1987-01-01

    Millimeter, submillimeter, and far infrared spectroscopic observations of the M17 SW star formation region are discussed. The results require the molecular cloud near the interface to be clumpy or filamentary. As a consequence, far ultraviolet radiation from the central OB stellar cluster can penetrate into the dense molecular cloud to a depth of several pc, thus creating bright and extended (CII) emission from the photodissociated surfaces of dense atomic and molecular clumps or sheets. The extended (CII) emission throughout the molecular cloud SW of the M17 complex has a level 20 times higher than expected from a single molecular cloud interface exposed to an ultraviolet radiation field typical of the solar neighborhood. This suggests that the molecular cloud as a whole is penetrated by ultraviolet radiation and has a clumpy or filamentary structure. The number of B stars expected to be embedded in the M17 molecular cloud probably can provide the UV radiation necessary for the extended (CII) emission. Alternatively, the UV radiation could be external, if the interstellar radiation in the vicinity of M17 is higher than in the solar neighborhood.

  2. Evolution of the Fraction of Clumpy Galaxies at 0.2 < z < 1.0 in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.; Kobayashi, M. A. R.; Shioya, Y.; Capak, P.; Ilbert, O.; Koekemoer, A. M.; Salvato, M.; Scoville, N. Z.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M star > 109.5 M ⊙ decreases with time from ~0.35 at 0.8 < z < 1.0 to ~0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with M star > 1010.5 M ⊙ at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ~ 0.9 to z ~ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. Also based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with

  3. Cold intolerance

    MedlinePlus

    Some causes of cold intolerance are: Anemia Anorexia nervosa Blood vessel problems, such as Raynaud phenomenon Chronic severe illness General poor health Underactive thyroid ( hypothyroidism ) Problem with the hypothalamus (a part ...

  4. Unidirectional perfect absorber

    PubMed Central

    Jin, L.; Wang, P.; Song, Z.

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  5. Unidirectional perfect absorber

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  6. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  7. Mechanical energy absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1993-01-01

    An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilized telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.

  8. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-09-12

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  9. Cold Water Vapor in the Barnard 5 Molecular Cloud

    NASA Technical Reports Server (NTRS)

    Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.

    2014-01-01

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  10. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    SciTech Connect

    Wirström, E. S.; Persson, C. M.; Charnley, S. B.; Cordiner, M. A.; Buckle, J. V.; Takakuwa, S.

    2014-06-20

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (∼10 K) water vapor has been detected—L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work—likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  11. Infrared bolometers with silicon nitride micromesh absorbers

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.

    1996-01-01

    Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.

  12. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  13. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  14. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  15. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  16. Starburst galaxies in the COSMOS field: clumpy star-formation at redshift 0 < z < 0.5

    NASA Astrophysics Data System (ADS)

    Hinojosa-Goñi, R.; Muñoz-Tuñón, C.; Méndez-Abreu, J.

    2016-08-01

    Context. At high redshift, starburst galaxies present irregular morphologies with 10-20% of their star formation occurring in giant clumps. These clumpy galaxies are considered the progenitors of local disk galaxies. To understand the properties of starbursts at intermediate and low redshift, it is fundamental to track their evolution and the possible link with the systems at higher z. Aims: We present an extensive, systematic, and multiband search and analysis of the starburst galaxies at redshift (0 < z < 0.5) in the COSMOS field, as well as detailed characteristics of their star-forming clumps by using Hubble Space Telescope/Advance Camera for Surveys (HST/ACS) images. Methods: The starburst galaxies are identified using a tailor-made intermediate-band color excess selection, tracing the simultaneous presence of Hα and [OIII] emission lines in the galaxies. Our methodology uses previous information from the zCOSMOS spectral database to calibrate the color excess as a function of the equivalent width of both spectral lines. This technique allows us to identify 220 starburst galaxies at redshift 0 < z < 0.5 using the SUBARU intermediate-band filters. Combining the high spatial resolution images from the HST/ACS with ground-based multi-wavelength photometry, we identify and parametrize the star-forming clumps in every galaxy. Their principal properties, sizes, masses, and star formation rates are provided. Results: The mass distribution of the starburst galaxies is remarkably similar to that of the whole galaxy sample with a peak around M/M⊙ ~ 2 × 108 and only a few galaxies with M/M⊙ > 1010. We classify galaxies into three main types, depending on their HST morphology: single knot (Sknot), single star-forming knot plus diffuse light (Sknot+diffuse), and multiple star-forming knots (Mknots/clumpy) galaxy. We found a fraction of Mknots/clumpy galaxy fclumpy = 0.24 considering out total sample of starburst galaxies up to z ~ 0.5. The individual star

  17. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  18. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  19. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  20. Metasurface Broadband Solar Absorber

    DOE PAGESBeta

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  1. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  2. Absorbed dose water calorimeter

    SciTech Connect

    Domen, S.R.

    1982-01-26

    An absorbed dose water calorimeter that takes advantage of the low thermal diffusivity of water and the water-imperviousness of polyethylene film. An ultra-small bead thermistor is sandwiched between two thin polyethylene films stretched between insulative supports in a water bath. The polyethylene films insulate the thermistor and its leads, the leads being run out from between the films in insulated sleeving and then to junctions to form a wheatstone bridge circuit. Convection barriers may be provided to reduce the effects of convection from the point of measurement. Controlled heating of different levels in the water bath is accomplished by electrical heater circuits provided for controlling temperature drift and providing adiabatic operation of the calorimeter. The absorbed dose is determined from the known specific heat of water and the measured temperature change.

  3. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  4. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  5. Why Being Cold Might Foster a Cold

    MedlinePlus

    ... medlineplus.gov/news/fullstory_159805.html Why Being Cold Might Foster a Cold Healthy body temperature boosts ability of immune system ... proving Mom right: Your odds of avoiding a cold get better if you bundle up and stay ...

  6. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  7. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  8. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  9. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  10. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  11. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  12. Chilling Out with Colds

    MedlinePlus

    ... most common cold virus, but more than 200 viruses can cause colds. Because there are so many, ... to help you feel better. Take that, cold viruses! continue How Kids Catch Colds Mucus (say: MYOO- ...

  13. Coping with Cold Sores

    MedlinePlus

    ... Here's Help White House Lunch Recipes Coping With Cold Sores KidsHealth > For Kids > Coping With Cold Sores ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  14. The Multi-Layer Variable Absorbers in NGC 1365 Revealed by XMM-Newton and NuSTAR

    NASA Technical Reports Server (NTRS)

    Rivers, E.; Risaliti, G.; Walton, D. J.; Harrison, F.; Arevalo, P.; Baur, F. E.; Boggs, S. E.; Brenneman, L. W.; Brightman, M.; Zhang, W. W.

    2015-01-01

    Between 2012 July and 2013 February, NuSTAR and XMM-Newton performed four long-look joint observations of the type 1.8 Seyfert, NGC 1365. We have analyzed the variable absorption seen in these observations in order to characterize the geometry of the absorbing material. Two of the observations caught NGC 1365 in an unusually low absorption state, revealing complexity in the multi-layer absorber that had previously been hidden. We find the need for three distinct zones of neutral absorption in addition to the two zones of ionized absorption and the Compton-thick torus previously seen in this source. The most prominent absorber is likely associated with broad-line region clouds with column densities of around approximately 10 (sup 23) per square centimeter and a highly clumpy nature as evidenced by an occultation event in 2013 February. We also find evidence of a patchy absorber with a variable column around approximately 10 (sup 22) per square centimeter and a line-of-sight covering fraction of 0.3-0.9, which responds directly to the intrinsic source flux, possibly due to a wind geometry. A full-covering, constant absorber with a low column density of approximately 1 by 10 (sup 22) per square centimeter is also present, though the location of this low density haze is unknown.

  15. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  16. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  17. Absorber coatings' degradation

    SciTech Connect

    Moore, S.W.

    1984-01-01

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

  18. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  19. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  20. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  1. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  2. THE THICK DISKS OF SPIRAL GALAXIES AS RELICS FROM GAS-RICH, TURBULENT, CLUMPY DISKS AT HIGH REDSHIFT

    SciTech Connect

    Bournaud, Frederic; Martig, Marie; Elmegreen, Bruce G.

    2009-12-10

    The formation of thick stellar disks in spiral galaxies is studied. Simulations of gas-rich young galaxies show formation of internal clumps by gravitational instabilities, clump coalescence into a bulge, and disk thickening by strong stellar scattering. The bulge and thick disks of modern galaxies may form this way. Simulations of minor mergers make thick disks too, but there is an important difference. Thick disks made by internal processes have a constant scale height with galactocentric radius, but thick disks made by mergers flare. The difference arises because in the first case, perpendicular forcing and disk-gravity resistance are both proportional to the disk column density, so the resulting scale height is independent of this density. In the case of mergers, perpendicular forcing is independent of the column density and the low-density regions get thicker; the resulting flaring is inconsistent with observations. Late-stage gas accretion and thin-disk growth are shown to preserve the constant scale heights of thick disks formed by internal evolution. These results reinforce the idea that disk galaxies accrete most of their mass smoothly and acquire their structure by internal processes, in particular through turbulent and clumpy phases at high redshift.

  3. The nature of Hα-selected galaxies at z > 2. II. Clumpy galaxies and compact star-forming galaxies

    SciTech Connect

    Tadaki, Ken-ichi; Kodama, Tadayuki; Koyama, Yusei; Tanaka, Ichi; Hayashi, Masao; Shimakawa, Rhythm

    2014-01-01

    We present the morphological properties of Hα-selected galaxies at z > 2 in SXDF-UDS-CANDELS field. With high-resolution optical/near-infrared images obtained by the Hubble Space Telescope, we identify giant clumps within the Hα emitters (HAEs). We find that at least 41% of our sample shows clumpy structures in the underlying disks. The color gradient of clumps is commonly seen in the sense that the clumps near the galactic center tend to be redder than those in the outer regions. The mid-infrared detection in galaxies with red clumps and the spatial distribution of Hα emission suggest that dusty star-formation activity is probably occurring in the nuclear red clumps. A gas supply to a bulge component through clump migration is one of the most potent physical processes for producing such dusty star-forming clumps and forming massive bulges in local early-type galaxies. They would become large quiescent galaxies at later times just by consumption or blowout of remaining gas. Also, while most of the HAEs have extended disks, we observe two massive, compact HAEs whose stellar surface densities are significantly higher. They are likely to be the direct progenitors of massive, compact quiescent galaxies at z = 1.5-2.0. Two evolutionary paths to massive quiescent galaxies are devised to account for both the size growth of quiescent galaxies and their increased number density from z ∼ 2 to z = 0.

  4. Submillimeter and far-infrared line observations of M17 SW - A clumpy molecular cloud penetrated by ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Stutzki, J.; Genzel, R.; Harris, A. I.; Stacey, G. J.; Jaffe, D. T.

    1988-01-01

    Millimeter, submillimeter, and far-IR spectroscopic observations of the M17 SW star formation region are reported. Strong forbidden C II 158 micron and CO J = 7 - 6 line emission arises in an H II region/molecular cloud interface of several pc thickness. Weaker forbidden C II emission appears to be extended over 15 pc throughout the molecular cloud. CO J = 14 - 13 and forbidden O I 145 micron spectra indicate high temperatures and densities for both molecular and atomic gas in the interface. The results require the molecular cloud near the interface to be clumpy or filamentary. The extended forbidden C II emission throughout the molecular cloud has a level around 20 times higher than expected from a single molecular cloud interface exposed to an ultraviolet radiation field typical of the solar neighborhood. The high gas temperature of molecular material in the UV-illuminated interface region suggests that CO self-shielding and heating of CO by photoelectrons are important.

  5. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  6. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  7. Hydraulic shock absorber

    SciTech Connect

    Tanaka, T.

    1987-03-03

    This patent describes a hydraulic shock absorber including a piston reciprocating in a cylinder, a piston upper chamber and a piston lower chamber which are oil-tightly separated by the piston, piston ports formed through the piston in a circle for communicating the piston upper chamber with the piston lower chamber, and return ports formed outside of the piston ports in a circle for communicating the piston upper chamber with the piston lower chamber. It also includes a sheet ring-like non-return valve provided above the piston and fitted to a piston rod, valve holes formed through the non-return valve in opposed relation with the piston ports. A ring-like non-return valve stopper fixed to the piston rod on an upper side of the non-return valve with a small spaced defined between the non-return valve and the non-return valve stopper, and a spring is interposed between the non-return valve and the non-return valve stopper for normally urging the non-return valve to an upper surface of the piston. Movement of the piston to the piston upper chamber allows oil to flow from the piston upper chamber through the piston ports to the piston lower chamber, while the return ports are closed by the non-return valve to generate a vibration damping force by resistance upon pass of the oil through the piston parts. The improvement described here comprises a groove formed in an upper surface of the piston facing the non-return valve and aligned with the valve holes, the groove being in the circle where the piston ports lie and being in communication with the piston ports.

  8. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  9. The broadband dynamic vibration absorber

    NASA Astrophysics Data System (ADS)

    Hunt, J. B.; Nissen, J.-C.

    1982-08-01

    The limited effectiveness of the linear passive dynamic vibration absorber is described. This is followed by an analysis producing the response of a primary system when a non-linear softening Belleville spring is used in the absorber. It is shown that the suppression bandwidth can be doubled by this means.

  10. Cough & Cold Medicine Abuse

    MedlinePlus

    ... I Help a Friend Who Cuts? Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  11. Cold symptoms (image)

    MedlinePlus

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  12. Vitamin C and colds

    MedlinePlus

    Colds and vitamin C ... is that vitamin C can cure the common cold . However, research about this claim is conflicting. Although ... vitamin C may help reduce how long a cold lasts. They do not protect against getting a ...

  13. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  14. Non-linear violent disc instability with high Toomre's Q in high-redshift clumpy disc galaxies

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki; Dekel, Avishai; Mandelker, Nir; Ceverino, Daniel; Bournaud, Frédéric; Primack, Joel

    2016-02-01

    We utilize zoom-in cosmological simulations to study the nature of violent disc instability in clumpy galaxies at high redshift, z = 1-5. Our simulated galaxies are not in the ideal state assumed in Toomre instability, of linear fluctuations in an isolated, uniform, rotating disc. There, instability is characterized by a Q parameter below unity, and lower when the disc is thick. Instead, the high-redshift discs are highly perturbed. Over long periods they consist of non-linear perturbations, compact massive clumps and extended structures, with new clumps forming in interclump regions. This is while the galaxy is subject to frequent external perturbances. We compute the local, two-component Q parameter for gas and stars, smoothed on a ˜1 kpc scale to capture clumps of 108-9 M⊙. The Q < 1 regions are confined to collapsed clumps due to the high surface density there, while the interclump regions show Q significantly higher than unity. Tracing the clumps back to their relatively smooth Lagrangian patches, we find that Q prior to clump formation typically ranges from unity to a few. This is unlike the expectations from standard Toomre instability. We discuss possible mechanisms for high-Q clump formation, e.g. rapid turbulence decay leading to small clumps that grow by mergers, non-axisymmetric instability, or clump formation induced by non-linear perturbations in the disc. Alternatively, the high-Q non-linear VDI may be stimulated by the external perturbations such as mergers and counter-rotating streams. The high Q may represent excessive compressive modes of turbulence, possibly induced by tidal interactions.

  15. Chaotic cold accretion on to black holes in rotating atmospheres

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat< 1. Extended multiphase filaments condense out of the hot phase via thermal instability (TI) and rain toward the black hole, boosting the accretion rate up to 100 times the Bondi rate (Ṁ• ~ Ṁcool). Initially, turbulence broadens the angular momentum distribution of the hot gas, allowing the cold phase to condense with prograde or retrograde motion. Subsequent chaotic collisions between the cold filaments, clouds, and a clumpy variable torus promote the cancellation of angular momentum, leading to high accretion rates. As turbulence weakens (Tat > 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images

  16. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  17. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  18. Cold energy

    SciTech Connect

    Wallace, John P.

    2015-12-04

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  19. Cold energy

    NASA Astrophysics Data System (ADS)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  20. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  1. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  2. Acceleration of thin flyer foils with a 1 MA pulsed power device for shock-wave experiments in clumpy foam targets

    NASA Astrophysics Data System (ADS)

    Neff, Stephan; Ford, Jessica; Martinez, David; Plechaty, Christopher; Wright, Sandra; Presura, Radu

    2007-11-01

    The dynamics of shock waves in clumpy media are important for understanding many astrophysical processes, including the triggering of star formation in interstellar gas clouds by passing shock waves. This phenomena can be studied in the laboratory by launching a flyer plate into a low density foam with clumps. Low density foams offer the advantage of relative low sound speeds (a few hundred meters per second) compared to normal solids, thus reducing the flyer speed required to create shock waves. In first experiments aluminum foils with thicknesses between 20 micrometer and 130 micrometer were accelerated to speeds up to 2.3 km/s. In addition, the impact of the flyers on plexiglas targets was studied. Additional measurements will focus on optimizing the flyer properties (thicker flyers, higher velocities) and on characterizing the flyer in more detail (temperature of the flyer and plasma ablation from the flyer). The results of these measurements will be used to design an experiment studying the dynamics of shock waves in clumpy foams, using the 100 TW laser system Leopard for back-lighting the foam target.

  3. X-Ray Spectral Model of Reprocess by Smooth and Clumpy Molecular Tori in Active Galactic Nuclei with the Framework MONACO

    NASA Astrophysics Data System (ADS)

    Furui, Shun'ya; Fukazawa, Yasushi; Odaka, Hirokazu; Kawaguchi, Toshihiro; Ohno, Masanori; Hayashi, Kazuma

    2016-02-01

    We construct an X-ray spectral model of reprocessing by a torus in an active galactic nucleus (AGN) with the Monte Carlo simulation framework MONACO. Two torus geometries of smooth and clumpy cases are considered and compared. In order to reproduce a Compton shoulder accurately, MONACO includes not only free electron scattering but also bound electron scattering. Raman and Rayleigh scattering are also treated, and scattering cross sections dependent on chemical states of hydrogen and helium are included. Doppler broadening by turbulence velocity can be implemented. Our model gives results consistent with other available models, such as MYTorus, except for differences due to different physical parameters and assumptions. We studied the dependence on torus parameters for a Compton shoulder, and found that a intensity ratio of a Compton shoulder to the line core mainly depends on column density, inclination angle, and metal abundance. For instance, an increase of metal abundance makes a Compton shoulder relatively weak. Also, the shape of a Compton shoulder depends on the column density. Furthermore, these dependences become different between smooth and clumpy cases. Then, we discuss the possibility of ASTRO-H/SXS spectroscopy of Compton shoulders in AGN reflection spectra.

  4. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  5. Mushroom plasmonic metamaterial infrared absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  6. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  7. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  8. Nonventing, Regenerable, Lightweight Heat Absorber

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    A lightweight, regenerable heat absorber (RHA), developed for rejecting metabolic heat from a space suit, may also be useful on Earth for short-term cooling of heavy protective garments. Unlike prior space-suit-cooling systems, a system that includes this RHA does not vent water. The closed system contains water reservoirs, tubes through which water is circulated to absorb heat, an evaporator, and an absorber/radiator. The radiator includes a solution of LiCl contained in a porous material in titanium tubes. The evaporator cools water that circulates through a liquid-cooled garment. Water vapor produced in the evaporator enters the radiator tubes where it is absorbed into the LiCl solution, releasing heat. Much of the heat of absorption is rejected to the environment via the radiator. After use, the RHA is regenerated by heating it to a temperature of 100 C for about 2 hours to drive the absorbed water back to the evaporator. A system including a prototype of the RHA was found to be capable of maintaining a temperature of 20 C while removing heat at a rate of 200 W for 6 hours.

  9. Heating Saturn's Clumpy Rings

    NASA Astrophysics Data System (ADS)

    Turner, Neal J.; Morishima, Ryuji; Spilker, Linda J.

    2015-11-01

    We model Cassini CIRS data using a Monte Carlo radiative transfer -- thermal balance technique first developed for protostellar disks, with the goals of:1. Exploring whether the A- and B-ring temperatures' variation with viewing angle is consistent with the wake structures suggested by the observed azimuthal asymmetry in optical depth, by analytic arguments, and by numerical N-body modeling.2. Better constraining the shape, size, spacing and optical depths of substructure in the A-ring, using the unexpectedly high temperatures observed at equinox. If the wake features have high enough contrast, Saturn-shine may penetrate the gaps between the wakes and heat thering particles both top and bottom.3. Determining how much of the heating of the A- and B-rings' unlit sides is due to radiative transport and how much is due to particle motions, especially vertical motions. This will help in constraining the rings' surface densities and masses.

  10. Ultrasensitive cold-electron bolometer

    NASA Astrophysics Data System (ADS)

    Agulo, Ian Jasper Ayagan

    2007-08-01

    The Cold-Electron Bolometer (CEB) is an ultrasensitive device designed for the detection of cosmic microwave background radiation. The key to its sensitivity is the electron cooling of the absorber by the superconductor-insulator-normal metal (SIN) tunnel junction. At a voltage near and below the superconducting gap, the electrons in the absorber are cooled well below the phonon temperature of the normal metal. This translates to the enhanced sensitivity of the CEB. This thesis describes the work we have done on the optimization of electron cooling of the normal metal absorber, and our measurement of the sensitivity of the CEB. We have optimized the electron cooling of the absorber by SIN tunnel junctions. The best electron cooling was achieved when normal metal traps were added in proximity to the superconducting electrodes in addition to the advanced geometry of the superconducting electrodes. With these modifications, we have decreased the electron temperature by 198 mK. With just the advanced geometry, the electron temperature drop was 129 mK. With just a simple geometry, the drop in temperature was 56 mK. The noise equivalent power (NEP) of the CEB was also measured at 100 mK to be at the level of 10 -18 W/Hz 1/2 at 1 kHz. The NEP was obtained by measuring the noise of the CEB, and then dividing that by its power responsivity, dV/dP. The main limitation in our measurements was the noise component from the amplifier. Finally, we have made measurements on the temperature sensitivity of the SIN tunnel junctions. We have compared the sensitivity between single and ten SIN junctions in series and found that it increases proportionally to the number of junctions. The best temperature responsivity obtained for 10 junctions was approximately 15 mV/mK. Using such thermometer, we have been able to measure the temperature stability of the Oxford Instruments cryogenfree refrigerator to be ±250 mK for a period of 8 hours. The resolution of the thermometer was measured to

  11. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  12. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  13. Waveform-Dependent Absorbing Metasurfaces

    NASA Astrophysics Data System (ADS)

    Wakatsuchi, Hiroki; Kim, Sanghoon; Rushton, Jeremiah J.; Sievenpiper, Daniel F.

    2013-12-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high-power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high-power pulses but not for high-power continuous waves (CW’s), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e., CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  14. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  15. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking lots of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  16. Cold knife cone biopsy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003910.htm Cold knife cone biopsy To use the sharing features on this page, please enable JavaScript. A cold knife cone biopsy (conization) is surgery to remove ...

  17. Cold Sores (Orofacial Herpes)

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Cold Sores (Orofacial Herpes) Information for adults A A ... face, known as orofacial herpes simplex, herpes labialis, cold sores, or fever blisters, is a common, recurrent ...

  18. Oil and fat absorbing polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  19. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  20. Cold Fronts in Cold Dark Matter Clusters

    NASA Astrophysics Data System (ADS)

    Nagai, Daisuke; Kravtsov, Andrey V.

    2003-04-01

    Recently, high-resolution Chandra observations revealed the existence of very sharp features in the X-ray surface brightness and temperature maps of several clusters. These features, called cold fronts, are characterized by an increase in surface brightness by a factor >~2 over 10-50 kpc accompanied by a drop in temperature of a similar magnitude. The existence of such sharp gradients can be used to put interesting constraints on the physics of the intracluster medium (ICM) if their mechanism and longevity are well understood. Here, we present results of a search for cold fronts in high-resolution simulations of galaxy clusters in cold dark matter models. We show that sharp gradients with properties similar to those of observed cold fronts naturally arise in cluster mergers when the shocks heat gas surrounding the merging subcluster, while its dense core remains relatively cold. The compression induced by supersonic motions and shock heating during the merger enhance the amplitude of gas density and temperature gradients across the front. Our results indicate that cold fronts are nonequilibrium transient phenomena and can be observed for a period of less than a billion years. We show that the velocity and density fields of gas surrounding the cold front can be very irregular, which would complicate analyses aiming to put constraints on the physical conditions of the ICM in the vicinity of the front.

  1. Cough and Cold Medicine Abuse

    MedlinePlus

    ... and Cold Medicine Abuse DrugFacts: Cough and Cold Medicine Abuse Email Facebook Twitter Revised May 2014 Some ... diverted for abuse. How Are Cough and Cold Medicines Abused? Cough and cold medicines are usually consumed ...

  2. Digital Alloy Absorber for Photodetectors

    NASA Technical Reports Server (NTRS)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  3. Dusty Structure Around Type-I Active Galactic Nuclei: Clumpy Torus Narrow-line Region and Near-nucleus Hot Dust

    NASA Astrophysics Data System (ADS)

    Mor, Rivay; Netzer, Hagai; Elitzur, Moshe

    2009-11-01

    We fitted Spitzer/IRS ~ 2-35 μm spectra of 26 luminous quasi-stellar objects in an attempt to define the main emission components. Our model has three major components: a clumpy torus, dusty narrow-line region (NLR) clouds, and a blackbody-like dust. The models utilize the clumpy torus of Nenkova et al. and are the first to allow its consistent check in type-I active galactic nuclei (AGNs). Single torus models and combined torus-NLR models fail to fit the spectra of most sources, but three-component models adequately fit the spectra of all sources. We present torus inclination, cloud distribution, covering factor, and torus mass for all sources and compare them with bolometric luminosity, black hole mass, and accretion rate. The torus mass is found to be correlated with the bolometric luminosity of the sources. Torus-covering factor may also be (anti-)correlated, if some possibly anomalous points are omitted. We find that a substantial amount of the ~2-7 μm radiation originates from a hot dust component, which is likely situated in the innermost part of the torus. The luminosity radiated by this component and its covering factor are comparable to those of the torus. We quantify the emission by the NLR clouds and estimate their distance from the center. The distances are ~700 times larger than the dust sublimation radius, and the NLR-covering factor is about 0.07. The total covering factor by all components is in good agreement with the known AGN type-I:type-II ratio.

  4. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  5. Light-absorbing impurities in Arctic snow

    NASA Astrophysics Data System (ADS)

    Doherty, S. J.; Warren, S. G.; Grenfell, T. C.; Clarke, A. D.; Brandt, R. E.

    2010-12-01

    Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983-1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 1998 and 2005-2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland Ice Sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study. The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC), the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. This is done using BC calibration standards having a mass absorption efficiency of 6.0 m2 g-1 at 550 nm and by making an assumption that the absorption Angstrom exponent for BC is 1.0 and for non-BC light-absorbing aerosol is 5.0. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow): Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, subarctic Canada 14

  6. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  7. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  8. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    PubMed Central

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  9. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.

    PubMed

    Zhu, Linxiao; Raman, Aaswath P; Fan, Shanhui

    2015-10-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities.

  10. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.

    PubMed

    Zhu, Linxiao; Raman, Aaswath P; Fan, Shanhui

    2015-10-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  11. Improving the laboratory monitoring of absorbent oil

    SciTech Connect

    V.S. Shved; S.S. Sychev; I.V. Safina; S.A. Klykov

    2009-05-15

    The performance of absorbent coal tar oil is analyzed as a function of the constituent and group composition. The qualitative and quantitative composition of the oil that ensures the required absorbent properties is determined. Operative monitoring may be based on absorbent characteristics that permit regulation of the beginning and end of regeneration.

  12. Porcelain enamel neutron absorbing material

    SciTech Connect

    Iverson, Daniel C.

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  13. Porcelain enamel neutron absorbing material

    SciTech Connect

    Iverson, Daniel C.

    1990-02-06

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  14. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  15. The thermal instability of the warm absorber in NGC 3783

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Holczer, T.; Mouchet, M.; Dumont, A.-M.; Behar, E.; Godet, O.; Gonçalves, A. C.; Kaspi, S.

    2016-05-01

    confirm that the X-ray outflow of NGC 3783 can be described as an RPC medium in pressure equilibrium. The observed AMD agrees with a uniformly hot or a uniformly cold thermal state. The measured ionic column densities suggest that the wind tends to the uniformly cold thermal state. The occurrence of thermal instability in the warm absorber model may depend on the computational method and the spatial scale on which the radiative transfer is solved.

  16. Cold stress and the cold pressor test.

    PubMed

    Silverthorn, Dee U; Michael, Joel

    2013-03-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This activity is easily adapted to an inquiry format that asks students to go to the scientific literature to learn about the test and then design a protocol for carrying out the test in classmates. The data collected are ideal for teaching graphical presentation of data and statistical analysis.

  17. The Double Absorbing Boundary method

    NASA Astrophysics Data System (ADS)

    Hagstrom, Thomas; Givoli, Dan; Rabinovich, Daniel; Bielak, Jacobo

    2014-02-01

    A new approach is devised for solving wave problems in unbounded domains. It has common features to each of two types of existing techniques: local high-order Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML). However, it is different from both and enjoys relative advantages with respect to both. The new method, called the Double Absorbing Boundary (DAB) method, is based on truncating the unbounded domain to produce a finite computational domain Ω, and on applying a local high-order ABC on two parallel artificial boundaries, which are a small distance apart, and thus form a thin non-reflecting layer. Auxiliary variables are defined on the two boundaries and inside the layer bounded by them, and participate in the numerical scheme. The DAB method is first introduced in general terms, using the 2D scalar time-dependent wave equation as a model. Then it is applied to the 1D Klein-Gordon equation, using finite difference discretization in space and time, and to the 2D wave equation in a wave guide, using finite element discretization in space and dissipative time stepping. The computational aspects of the method are discussed, and numerical experiments demonstrate its performance.

  18. A polarization-independent broadband terahertz absorber

    SciTech Connect

    Shi, Cheng; Zang, XiaoFei E-mail: ymzhu@usst.edu.cn; Wang, YiQiao; Chen, Lin; Cai, Bin; Zhu, YiMing E-mail: ymzhu@usst.edu.cn

    2014-07-21

    A highly efficient broadband terahertz absorber is designed, fabricated, and experimentally as well as theoretically evaluated. The absorber comprises a heavily doped silicon substrate and a well-designed two-dimensional grating. Due to the destructive interference of waves and diffraction, the absorber can achieve over 95% absorption in a broad frequency range from 1 to 2 THz and for angles of incidence from 0° to 60°. Such a terahertz absorber is also polarization-independent due to its symmetrical structure. This omnidirectional and broadband absorber have potential applications in anti-reflection coatings, imaging systems, and so on.

  19. Cold Sores (HSV-1)

    MedlinePlus

    ... Help a Friend Who Cuts? Cold Sores (HSV-1) KidsHealth > For Teens > Cold Sores (HSV-1) Print A A A Text Size What's in ... person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don't just show ...

  20. Hot and cold fusion

    SciTech Connect

    Not Available

    1990-08-01

    This article presents an overview of research in cold fusion research and development in cold fusion at the Tokomak Fusion Test Reactor at the Princeton Plasma Physics Lab, and at the inertial containment facility at Lawrence Livermore National Lab. is described.

  1. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  2. Clumpy dust clouds and extended atmosphere of the AGB star W Hydrae revealed with VLT/SPHERE-ZIMPOL and VLTI/AMBER

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Weigelt, G.; Hofmann, K.-H.

    2016-05-01

    Context. Dust formation is thought to play an important role in the mass loss from stars at the asymptotic giant branch (AGB); however, where and how dust forms is still open to debate. Aims: We present visible polarimetric imaging observations of the well-studied AGB star W Hya taken with VLT/SPHERE-ZIMPOL as well as high spectral resolution long-baseline interferometric observations taken with the AMBER instrument at the Very Large Telescope Interferometer (VLTI). Our goal is to spatially resolve the dust and molecule formation region within a few stellar radii. Methods: We observed W Hya with VLT/SPHERE-ZIMPOL at three wavelengths in the continuum (645, 748, and 820 nm), in the Hα line at 656.3 nm, and in the TiO band at 717 nm. The VLTI/AMBER observations were carried out in the wavelength region of the CO first overtone lines near 2.3 μm with a spectral resolution of 12000. Results: Taking advantage of the polarimetric imaging capability of SPHERE-ZIMPOL combined with the superb adaptive optics performance, we succeeded in spatially resolving three clumpy dust clouds located at ~50 mas (~2 R⋆) from the central star, revealing dust formation very close to the star. The AMBER data in the individual CO lines suggest a molecular outer atmosphere extending to ~3 R⋆. Furthermore, the SPHERE-ZIMPOL image taken over the Hα line shows emission with a radius of up to ~160 mas (~7 R⋆). We found that dust, molecular gas, and Hα-emitting hot gas coexist within 2-3 R⋆. Our modeling suggests that the observed polarized intensity maps can reasonably be explained by large (0.4-0.5 μm) grains of Al2O3, Mg2SiO4, or MgSiO3 in an optically thin shell (τ550nm = 0.1 ± 0.02) with an inner and outer boundary radius of 1.9-2.0 R⋆ and 3 ± 0.5R⋆, respectively. The observed clumpy structure can be reproduced by a density enhancement of a factor of 4 ± 1. Conclusions: The grain size derived from our modeling of the SPHERE-ZIMPOL polarimetric images is consistent with

  3. Shock absorber for an oil well pumping unit

    SciTech Connect

    Clayton, D.H. Jr.

    1984-05-01

    A shock absorber is disclosed for the pumping unit of an oil well, adapted to be placed between the walking beam and a string of sucker rods in the borehole. The shock absorber has a tubular body of steel (or an equivalent structural material) having a closed top and an open bottom. A circular top on the tubular body has a central opening through which the polished rod is adapted to pass; and a rod clamp is affixed to the polished rod-above the tubular body. A plurality of elastomeric discs, typically four or five, are positioned in a stack within the tubular body; and each disc has an external diameter which is slightly less than the internal diameter of the tubular body. The plurality of elastomeric discs rest on top of a rigid circular plate having an OD smaller than the ID of the tubular body; and the circular plate, in turn, rests on top of a rigid spool. The spool has a central opening which is significantly larger than the diameter of the polished rod, so that there is no risk of establishing rubbing contact between the spool and the carefully machined and highly polished rod. The spool rests upon and bears against the top of the hanger bar, such that upwardly directed vertical loads on the hanger bar are passed first to the spool, then to the circular plate, and then to the elastomeric discs-which constitute the vibration damping and shock insulating elements of the shock absorber. Because of the closed top and open bottom, no water can accumulate within the shock absorber; and there is no possibility of the device ''freezing up'' in very cold weather.

  4. Reprint of : Thermoelectricity without absorbing energy from the heat sources

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.; Sánchez, Rafael; Haupt, Federica; Splettstoesser, Janine

    2016-08-01

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  5. Thermoelectricity without absorbing energy from the heat sources

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.; Sánchez, Rafael; Haupt, Federica; Splettstoesser, Janine

    2016-01-01

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  6. RESOLVING THE CLUMPY STRUCTURE OF THE OUTFLOW WINDS IN THE GRAVITATIONALLY LENSED QUASAR SDSS J1029+2623

    SciTech Connect

    Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Gandhi, Poshak; Horiuchi, Takashi; Koyamada, Suzuka; Okamoto, Rina

    2014-10-20

    We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/High Dispersion Spectrograph, we performed high-resolution (R ∼ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at z {sub em} ∼ 2.197) whose image separation angle, θ ∼ 22.''5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in images A and B discovered by Misawa et al. has remained unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, Δt ∼ 744 days, but rather due to differences along the sightlines. We also discovered a time variation of C IV absorption strength in both images A and B due to a change in the ionization condition. If a typical absorber's size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars.

  7. The small covering factor of cold accretion streams

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Kereš, Dušan

    2011-03-01

    Theoretical models of galaxy formation predict that galaxies acquire most of their baryons via cold mode accretion. Observations of high-redshift galaxies, while showing ubiquitous outflows, have so far not revealed convincing traces of the predicted cold streams, which has been interpreted as a challenge for the current models. Using high-resolution, zoom-in smooth particle hydrodynamics simulations of Lyman break galaxy (LBG) haloes combined with ionizing radiative transfer, we quantify the covering factor of the cold streams at z= 2-4. We focus specifically on Lyman limit systems (LLSs) and damped Lyα absorbers (DLAs), which can be probed by absorption spectroscopy using a background galaxy or quasar sightline, and which are closely related to low-ionization metal absorbers. We show that the covering factor of these systems is relatively small and decreases with time. At z= 2, the covering factor of DLAs within the virial radius of the simulated galaxies is ˜3 per cent (˜1 per cent within twice this projected distance), and arises principally from the galaxy itself. The corresponding values for LLSs are ˜10 and 4 per cent. Because of their small covering factor compared to the order unity covering fraction expected for galactic winds, the cold streams are naturally dominated by outflows in stacked spectra. We conclude that the existing observations are consistent with the predictions of cold mode accretion, and outline promising kinematic and chemical diagnostics to separate out the signatures of galactic accretion and feedback.

  8. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  9. The cold reading technique.

    PubMed

    Dutton, D L

    1988-04-15

    For many people, belief in the paranormal derives from personal experience of face-to-face interviews with astrologers, palm readers, aura and Tarot readers, and spirit mediums. These encounters typically involve cold reading, a process in which a reader makes calculated guesses about a client's background and problems and, depending on the reaction, elaborates a reading which seems to the client so uniquely appropriate that it carries with it the illusion of having been produced by paranormal means. The cold reading process is shown to depend initially on the Barnum effect, the tendency for people to embrace generalized personality descriptions as idiosyncratically their own. Psychological research into the Barnum effect is critically reviewed, and uses of the effect by a professional magician are described. This is followed by detailed analysis of the cold reading performances of a spirit medium. Future research should investigate the degree to which cold readers may have convinced themselves that they actually possess psychic or paranormal abilities.

  10. Cold wave lotion poisoning

    MedlinePlus

    Thioglycolate poisoning ... Below are symptoms of cold wave lotion poisoning in different parts of the body. EYES, EARS, NOSE, AND THROAT Mouth irritation Burning and redness of the eyes Possibly serious damage to ...

  11. Colds and flus - antibiotics

    MedlinePlus

    Fashner J, Ericson K, Werner S. Treatment of the common cold in children and adults. Am Fam Physician. 2012; ... gov/pubmed/22962927 . Melio FR, Berge LR. Upper respiratory tract infections. In: Marx JA, Hockberger RS, Walls RM, et ...

  12. TPX/TFTR Neutral Beam energy absorbers

    SciTech Connect

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-11-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET.

  13. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  14. Advanced Reflector and Absorber Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of advanced reflector and absorber materials: evaluating performance, determining degradation rates and lifetime, and developing new coatings.

  15. Device for absorbing mechanical shock

    DOEpatents

    Newlon, Charles E.

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  16. Device for absorbing mechanical shock

    DOEpatents

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  17. Boron-copper neutron absorbing material and method of preparation

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry

    1991-01-01

    A composite, copper clad neutron absorbing material is comprised of copper powder and boron powder enriched with boron 10. The boron 10 content can reach over 30 percent by volume, permitting a very high level of neutron absorption. The copper clad product is also capable of being reduced to a thickness of 0.05 to 0.06 inches and curved to a radius of 2 to 3 inches, and can resist temperatures of 900.degree. C. A method of preparing the material includes the steps of compacting a boron-copper powder mixture and placing it in a copper cladding, restraining the clad assembly in a steel frame while it is hot rolled at 900.degree. C. with cross rolling, and removing the steel frame and further rolling the clad assembly at 650.degree. C. An additional sheet of copper can be soldered onto the clad assembly so that the finished sheet can be cold formed into curved shapes.

  18. Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Laha, S.; Guainazzi, M.; Dewangan, G.; Chakravorty, S.; Kembhavi, A.

    2014-07-01

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. We could put a strict lower limit on the detection fraction of 50%. We find a gap in the distribution of the ionisation parameter in the range 0.5absorber flow is probably constituted by a clumpy distribution of discrete clouds. The distribution of the WA column densities for the sources with broad Fe K-alpha lines are similar to those sources which do not have broadened emission lines. Therefore the detected broad Fe K lines are bonafide and not artefacts of ionised absorption in the soft X-rays. The WA parameters show no correlation among themselves, except for one case. The shallow slope of the logξ versus logv_{out} linear regression (0.12± 0.03) is inconsistent with the scaling laws predicted by radiation or magneto-hydrodynamic-driven winds. Our results suggest also that WA and Ultra Fast Outflows (UFOs) do not represent extreme manifestation of the same astrophysical system.

  19. Cold Hardening in Citrus Stems

    PubMed Central

    Yelenosky, George

    1975-01-01

    Stem cold hardening developed to different levels in citrus types tested in controlled environments. Exotherms indicated ice spread was more uniform and rapid in unhardened than in cold-hardened stems. All attempts to inhibit the functioning of citrus leaves resulted in less cold hardening in the stems. Citrus leaves contribute a major portion of cold hardening in the wood. PMID:16659340

  20. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    Designed to help teachers deal with students in a cold environment, this article explains cold physiology and fundamental laws of heat; describes 14 common cold injuries and their current treatment; and lists a number of useful teaching techniques for cold environments. (SB)

  1. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Instructors who teach outdoors in an environment so cold as to cause injury must satisfy program objectives while avoiding cold injury to themselves and students, help students focus on learning instead of discomfort, and alleviate some students' intense fear of the cold. Dealing with the cold successfully requires a thorough knowledge of:…

  2. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  3. Comments on liquid hydrogen absorbers for MICE

    SciTech Connect

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  4. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  5. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  6. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  7. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  8. Structured Metal Film as Perfect Absorber

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  9. Progress toward cold antihydrogen

    SciTech Connect

    Gabrielse, G.; Estrada, J.; Peil, S.; Roach, T.; Tan, J. N.; Yesley, P.

    1999-12-10

    The production and study of cold antihydrogen will require the manipulation of dense and cold, single component plasmas of antiprotons and positrons. The undertaking will build upon the experience of the nonneutral plasma physics community. Annihilations of the antimatter particles in the plasmas can be imaged, offering unique diagnostic opportunities not available to this community when electrons and protons are used. The techniques developed by our TRAP collaboration to capture and cool antiprotons will certainly be used by our expanded ATRAP collaboration, and by the competing ATHENA Collaboration, both working at the nearly completed AD facility of CERN. We recently demonstrated a new techniques for accumulating cold positrons directly into a cryogenic vacuum system. The closest we have come to low energy antihydrogen so far is to confine cold positrons and cold antiprotons within the same trap structure and vacuum container. Finally, we mention that stored electrons have been cooled to 70 mK, the first time that elementary particles have been cooled below 4 K. In such an apparatus it should be possible to study highly magnetized plasmas of electrons or positrons at this new low temperature.

  10. Cold sea survival.

    NASA Technical Reports Server (NTRS)

    Veghte, J. H.

    1972-01-01

    Two prototype three-man life rafts were evaluated during the winter months in Arctic waters off Kodiak Island, Alaska, to assess potential survival problems and determine tolerance limits. Each raft incorporated thermal characteristics specifically designed for cold water. Water and air temperatures varied from 0 to +2 C and -5 to +4 C respectively. All subjects were removed upon reaching subjective tolerance. The results showed that none of the clothing assemblies was adequate to maintain a person in comfort even with dry boarding. No significant biochemical shifts in the blood or urine were found. The TUL raft was found to be superior in its thermal characteristics and afforded better subject protection. General tolerance for cold water immersion, wet and dry, and cold water raft exposures are depicted graphically, based on previously reported data.

  11. Assessment of cold stress.

    PubMed

    Holmér, I

    1991-01-01

    Cold stress may be present in terms of a risk for skin surface cooling (wind chill), extremity cooling and whole body cooling. Measures of cold stress differ for the various situations. The most common approach, however, has been to apply more or less complex formulas for heat balance calculations. The combined effect of several climatic factors (air temperature, mean radiant temperature, humidity and air velocity) and the activity level determines the cooling power of the environment. The cooling power can be easily converted into a required insulation value, that applies both to parts of the body and to the body as a whole. The value provides information about cold stress in two ways; (a) by specifying necessary behavioural adjustments in terms of required activity level and clothing insulation level, and (b) by quantifying the thermal imbalance and tolerance time, when protection worn does not provide sufficient insulation.

  12. Cold asymmetrical fermion superfluids

    SciTech Connect

    Caldas, Heron

    2003-12-19

    The recent experimental advances in cold atomic traps have induced a great amount of interest in fields from condensed matter to particle physics, including approaches and prospects from the theoretical point of view. In this work we investigate the general properties and the ground state of an asymmetrical dilute gas of cold fermionic atoms, formed by two particle species having different densities. We have show in a recent paper, that a mixed phase composed of normal and superfluid components is the energetically favored ground state of such a cold fermionic system. Here we extend the analysis and verify that in fact, the mixed phase is the preferred ground state of an asymmetrical superfluid in various situations. We predict that the mixed phase can serve as a way of detecting superfluidity and estimating the magnitude of the gap parameter in asymmetrical fermionic systems.

  13. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  14. Ultraviolet absorbance screening for DNAPL site compliance

    SciTech Connect

    Misquitta, N.; Foster, D.; Coll, F.; Brourman, M.

    1997-12-31

    The UV Absorbance Effectiveness Demonstration was developed to evaluate the feasibility of using UV absorbance as a surrogate for oil & grease methods of measuring the concentration of coal tar-related constituents in groundwater. Since the current oil & grease method via Freon{reg_sign} extraction is being phased out, a new alternative oil & grease method using a hexane extraction will be introduced in the near future. A secondary objective of this evaluation was to compare the two oil & grease methods, as they relate to facility groundwater, in order to demonstrate the overall robustness of UV absorbance as a surrogate for oil & grease analysis, regardless of the method of extraction.

  15. Bond integrity of microwave absorbers for CEBAF

    SciTech Connect

    A. Ananda; Y. Verma; B.T. Smith; P.H. Johnson; I.E. Campisi; K.E. Finger

    1992-10-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) uses superconducting niobium cavities. Specially developed microwave absorbing ceramics are used in the cavities to absorb the higher order mode power. The ceramic absorbers are brazed to copper mounts. The structural integrity and the thermal contact of the braze joints are essential. The ultrasonic reflection signal from the various bonds is evaluated to locate voids and partial braze surfaces. The acoustic wave properties of the four components of the structure are used as input to an ultrasonic transmission line model which is compared to the experimental data. There is good correlation between the ultrasonic reflection data and destructive testing of the bonds.

  16. The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback

    NASA Astrophysics Data System (ADS)

    Werner, N.; Oonk, J. B. R.; Sun, M.; Nulsen, P. E. J.; Allen, S. W.; Canning, R. E. A.; Simionescu, A.; Hoffer, A.; Connor, T.; Donahue, M.; Edge, A. C.; Fabian, A. C.; von der Linden, A.; Reynolds, C. S.; Ruszkowski, M.

    2014-04-01

    The nature and origin of the cold interstellar medium (ISM) in early-type galaxies are still a matter of debate, and understanding the role of this component in galaxy evolution and in fuelling the central supermassive black holes requires more observational constraints. Here, we present a multiwavelength study of the ISM in eight nearby, X-ray and optically bright, giant elliptical galaxies, all central dominant members of relatively low-mass groups. Using far-infrared spectral imaging with the Herschel Photodetector Array Camera & Spectrometer, we map the emission of cold gas in the cooling lines of [C II]λ157 μm, [O I] λ63 μm and [O Ib] λ145 μm. Additionally, we present Hα+[N II] imaging of warm ionized gas with the Southern Astrophysical Research (SOAR) telescope, and a study of the thermodynamic structure of the hot X-ray emitting plasma with Chandra. All systems with extended Hα emission in our sample (6/8 galaxies) display significant [C II] line emission indicating the presence of reservoirs of cold gas. This emission is cospatial with the optical Hα+[N II] emitting nebulae and the lowest entropy soft X-ray emitting plasma. The entropy profiles of the hot galactic atmospheres show a clear dichotomy, with the systems displaying extended emission-line nebulae having lower entropies beyond r ≳ 1 kpc than the cold-gas-poor systems. We show that while the hot atmospheres of the cold-gas-poor galaxies are thermally stable outside of their innermost cores, the atmospheres of the cold-gas-rich systems are prone to cooling instabilities. This provides considerable weight to the argument that cold gas in giant ellipticals is produced chiefly by cooling from the hot phase. We show that cooling instabilities may develop more easily in rotating systems and discuss an alternative condition for thermal instability for this case. The hot atmospheres of cold-gas-rich galaxies display disturbed morphologies indicating that the accretion of clumpy multiphase gas in

  17. Expert Cold Structure Development

    NASA Astrophysics Data System (ADS)

    Atkins, T.; Demuysere, P.

    2011-05-01

    The EXPERT Program is funded by ESA. The objective of the EXPERT mission is to perform a sub-orbital flight during which measurements of critical aero- thermodynamic phenomena will be obtained by using state-of-the-art instrumentation. As part of the EXPERT Flight Segment, the responsibility of the Cold Structure Development Design, Manufacturing and Validation was committed to the Belgian industrial team SONACA/SABCA. The EXPERT Cold Structure includes the Launcher Adapter, the Bottom Panel, the Upper Panel, two Cross Panels and the Parachute Bay. An additional Launcher Adapter was manufactured for the separation tests. The selected assembly definition and manufacturing technologies ( machined parts and sandwich panels) were dictated classically by the mass and stiffness, but also by the CoG location and the sensitive separation interface. Used as support for the various on-board equipment, the Cold Structure is fixed to but thermally uncoupled from the PM 1000 thermal shield. It is protect on its bottom panel by a thermal blanket. As it is a protoflight, analysis was the main tool for the verification. Low level stiffness and modal analysis tests have also been performed on the Cold Structure equipped with its ballast. It allowed to complete its qualification and to prepare SONACA/SABCA support for the system dynamic tests foreseen in 2011. The structure was finally coated with a thermal control black painting and delivered on time to Thales Alenia Space-Italy end of March 201.

  18. Teaching "In Cold Blood."

    ERIC Educational Resources Information Center

    Berbrich, Joan D.

    1967-01-01

    The Truman Capote nonfiction novel, "In Cold Blood," which reflects for adolescents the immediacy of the real world, illuminates (1) social issues--capital punishment, environmental influence, and the gap between the "haves" and "have-nots," (2) moral issues--the complexity of man's nature, the responsibility of one man for another, and the place…

  19. Recent Cold War Studies

    ERIC Educational Resources Information Center

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become…

  20. Cold War Propaganda.

    ERIC Educational Resources Information Center

    Bennett, Paul W.

    1988-01-01

    Briefly discusses the development of Cold War propaganda in the United States, Canada, and the USSR after 1947. Presents two movie reviews and a Canadian magazine advertisement of the period which illustrate the harshness of propaganda used by both sides in the immediate postwar years. (GEA)

  1. Cold Facts about Viruses.

    ERIC Educational Resources Information Center

    Pea, Celeste; Sterling, Donna R.

    2002-01-01

    Provides ways for students to demonstrate their understanding of scientific concepts and skills. Describes a mini-unit around the cold in which students can relate humans to viruses. Includes activities and a modified simulation that provides questions to guide students. Discusses ways that allows students to apply prior knowledge, take ownership…

  2. Cold spray nozzle design

    DOEpatents

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  3. Neutron absorbing coating for nuclear criticality control

    DOEpatents

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  4. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  5. Attenuation of external Bremsstrahlung in metallic absorbers

    SciTech Connect

    Dhaliwal, A.S.; Powar, M.S.; Singh, M. )

    1990-12-01

    In this paper attenuation of bremsstrahlung from {sup 147}Pm and {sup 170}Tm beta emitters has been studied in aluminum, copper, tin, and lead metallic absorbers. Bremsstrahlung spectra and mass attenuation coefficients for monoenergetic gamma rays are used to calculate theoretical attenuation curves. Magnetic deflection and beta stopping techniques are used to measure the integral bremsstrahlung intensities above 30 keV in different target thicknesses. Comparison of measured and calculated attenuation curves shows a good agreement for various absorbers, thus providing a test of this technique, which may be useful in understanding bremsstrahlung intensity buildup and in the design of optimum shielding for bremsstrahlung sources. It is found that the absorption of bremsstrahlung in metallic absorbers does not obey an exponential law and that absorbers act as energy filters.

  6. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  7. Porous absorber for solar air heaters

    SciTech Connect

    Finch, J.A.

    1980-09-10

    A general discussion of the factors affecting solar collector performance is presented. Bench scale tests done to try to determine the heat transfer characteristics of various screen materials are explained. The design, performance, and evaluation of a crude collector with a simple screen stack absorber is treated. The more sophisticated absorber concept, and its first experimental approximation is examined. A short summary of future plans for the collector concept is included. (MHR)

  8. Taming electromagnetic metamaterials for isotropic perfect absorbers

    NASA Astrophysics Data System (ADS)

    Anh, Doan Tung; Viet, Do Thanh; Trang, Pham Thi; Thang, Nguyen Manh; Quy, Ho Quang; Hieu, Nguyen Van; Lam, Vu Dinh; Tung, Nguyen Thanh

    2015-07-01

    Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.

  9. Structured metal film as a perfect absorber.

    PubMed

    Xiong, Xiang; Jiang, Shang-Chi; Hu, Yu-Hui; Peng, Ru-Wen; Wang, Mu

    2013-08-01

    A new type of absorber, a four-tined fish-spear-like resonator (FFR), constructed by the two-photon polymerization process, is reported. An absorbance of more than 90% is experimentally realized and the resonance occurs in the space between the tines. Since a continuous layer of metallic thin film covers the structure, it is perfectly thermo- and electroconductive, which is the mostly desired feature for many applications. PMID:23661582

  10. Perfect terahertz absorber using fishnet based metafilm

    SciTech Connect

    Azad, Abul Kalam; Shchegolkov, Dmitry Yu; Chen, Houtong; Taylor, Antoinette; Smirnova, E I; O' Hara, John F

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  11. Radar Absorbing Materials for Cube Stealth Satellite

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Pastore, R.; Vricella, A.; Marchetti, M.

    A Cube Stealth Satellite is proposed for potential applications in defense system. Particularly, the faces of the satellite exposed to the Earth are made of nanostructured materials able to absorb radar surveillance electromagnetic waves, conferring stealth capability to the cube satellite. Microwave absorbing and shielding material tiles are proposed using composite materials consisting in epoxy-resin and carbon nanotubes filler. The electric permittivity of the composite nanostructured materials is measured and discussed. Such data are used by the modeling algorithm to design the microwave absorbing and the shielding faces of the cube satellite. The electromagnetic modeling takes into account for several incidence angles (0-80°), extended frequency band (2-18 GHz), and for the minimization of the electromagnetic reflection coefficient. The evolutionary algorithm used for microwave layered microwave absorber modeling is the recently developed Winning Particle Optimization. The mathematical model of the absorbing structure is finally experimentally validated by comparing the electromagnetic simulation to the measurement of the manufactured radar absorber tile. Nanostructured composite materials manufacturing process and electromagnetic reflection measurements methods are described. Finally, a finite element method analysis of the electromagnetic scattering by cube stealth satellite is performed.

  12. Prescription Drugs and Cold Medicines

    MedlinePlus

    ... Abuse » Prescription Drugs & Cold Medicines Prescription Drugs & Cold Medicines Email Facebook Twitter What is Prescription Drug Abuse: ... treatment of addiction. Read more Safe Disposal of Medicines Disposal of Unused Medicines: What You Should Know ( ...

  13. Thermoregulatory modeling for cold stress.

    PubMed

    Xu, Xiaojiang; Tikuisis, Peter

    2014-07-01

    Modeling for cold stress has generated a rich history of innovation, has exerted a catalytic influence on cold physiology research, and continues to impact human activity in cold environments. This overview begins with a brief summation of cold thermoregulatory model development followed by key principles that will continue to guide current and future model development. Different representations of the human body are discussed relative to the level of detail and prediction accuracy required. In addition to predictions of shivering and vasomotor responses to cold exposure, algorithms are presented for thermoregulatory mechanisms. Various avenues of heat exchange between the human body and a cold environment are reviewed. Applications of cold thermoregulatory modeling range from investigative interpretation of physiological observations to forecasting skin freezing times and hypothermia survival times. While these advances have been remarkable, the future of cold stress modeling is still faced with significant challenges that are summarized at the end of this overview. PMID:24944030

  14. Thermoregulatory modeling for cold stress.

    PubMed

    Xu, Xiaojiang; Tikuisis, Peter

    2014-07-01

    Modeling for cold stress has generated a rich history of innovation, has exerted a catalytic influence on cold physiology research, and continues to impact human activity in cold environments. This overview begins with a brief summation of cold thermoregulatory model development followed by key principles that will continue to guide current and future model development. Different representations of the human body are discussed relative to the level of detail and prediction accuracy required. In addition to predictions of shivering and vasomotor responses to cold exposure, algorithms are presented for thermoregulatory mechanisms. Various avenues of heat exchange between the human body and a cold environment are reviewed. Applications of cold thermoregulatory modeling range from investigative interpretation of physiological observations to forecasting skin freezing times and hypothermia survival times. While these advances have been remarkable, the future of cold stress modeling is still faced with significant challenges that are summarized at the end of this overview.

  15. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  16. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  17. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  18. Remedies for Common Cold Symptoms

    PubMed Central

    Miller, Penny F.

    1991-01-01

    Individuals suffering from intolerable symptoms of the common cold can now be advised of safe and effective products for symptomatic relief. This article describes and discusses four categories of drugs used to treat the common cold. To simplify the product selection process for family physicians, suggestions are included for possible ingredients for treatments of specific cold symptoms. PMID:21234087

  19. When blood runs cold: cold agglutinins and cardiac surgery.

    PubMed

    Findlater, Rhonda R; Schnell-Hoehn, Karen N

    2011-01-01

    Cold agglutinins are particular cold-reactive antibodies that react with red blood cells when the blood temperature drops below normal body temperature causing increased blood viscosity and red blood cell clumping. Most individuals with cold agglutinins are not aware of their presence, as these antibodies have little effect on daily living, often necessitating no treatment. However, when those with cold agglutinins are exposed to hypothermic situations or undergo procedures such as cardiopulmonary bypass with hypothermia during cardiac surgery, lethal complications of hemolysis, microvascular occlusion and organ failure can occur. By identifying those suspected of possessing cold agglutinins through a comprehensive nursing assessment and patient history, cold agglutinin screening can be performed prior to surgery to determine a diagnosis of cold agglutinin disease. With a confirmed diagnosis of cold agglutinin disease, the plan of care can be focused on measures to maintain the patient's blood temperature above the thermal amplitude throughout their hospitalization including the use of normothermic cardiopulmonary bypass with warm myocardial preservation techniques to prevent these fatal complications. Using a case report approach, the authors review the mechanism, clinical manifestations, detection and nursing management of a patient with cold agglutinins undergoing scheduled cardiac surgery. Cold agglutinin disease is rare. However, the risk to patients warrants an increased awareness of cold agglutinins and screening for those who are suspected of carrying these antibodies. PMID:21630629

  20. On the definition of absorbed dose

    NASA Astrophysics Data System (ADS)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  1. Ionization processes in a local analogue of distant clumpy galaxies: VLT MUSE IFU spectroscopy and FORS deep images of the TDG NGC 5291N

    NASA Astrophysics Data System (ADS)

    Fensch, J.; Duc, P.-A.; Weilbacher, P. M.; Boquien, M.; Zackrisson, E.

    2016-01-01

    Context. We present Integral Field Unit (IFU) observations with MUSE and deep imaging with FORS of a dwarf galaxy recently formed within the giant collisional HI ring surrounding NGC 5291. This Tidal Dwarf Galaxy (TDG) -like object has the characteristics of typical z = 1-2 gas-rich spiral galaxies: a high gas fraction, a rather turbulent clumpy interstellar medium, the absence of an old stellar population, and a moderate metallicity and star formation efficiency. Aims: The MUSE spectra allow us to determine the physical conditions within the various complex substructures revealed by the deep optical images and to scrutinize the ionization processes at play in this specific medium at unprecedented spatial resolution. Methods: Starburst age, extinction, and metallicity maps of the TDG and the surrounding regions were determined using the strong emission lines Hβ, [OIII], [OI], [NII], Hα, and [SII] combined with empirical diagnostics. Different ionization mechanisms were distinguished using BPT-like diagrams and shock plus photoionization models. Results: In general, the physical conditions within the star-forming regions are homogeneous, in particular with a uniform half-solar oxygen abundance. On small scales, the derived extinction map shows narrow dust lanes. Regions with atypically strong [OI] emission line immediately surround the TDG. The [OI]/ Hα ratio cannot be easily accounted for by the photoionization by young stars or shock models. At greater distances from the main star-foming clumps, a faint diffuse blue continuum emission is observed, both with the deep FORS images and the MUSE data. It does not have a clear counterpart in the UV regime probed by GALEX. A stacked spectrum towards this region does not exhibit any emission line, excluding faint levels of star formation, or stellar absorption lines that might have revealed the presence of old stars. Several hypotheses are discussed for the origin of these intriguing features. Based on observations

  2. WISPy cold dark matter

    NASA Astrophysics Data System (ADS)

    Arias, Paola; Cadamuro, Davide; Goodsell, Mark; Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas

    2012-06-01

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches — exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques — can probe large parts of this parameter space in the foreseeable future.

  3. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  4. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  5. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  6. Method of absorbance correction in a spectroscopic heating value sensor

    SciTech Connect

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  7. Cold denaturation of encapsulated ubiquitin.

    PubMed

    Pometun, Maxim S; Peterson, Ronald W; Babu, Charles R; Wand, A Joshua

    2006-08-23

    Theoretical considerations suggest that protein cold denaturation can potentially provide a means to explore the cooperative substructure of proteins. Protein cold denaturation is generally predicted to occur well below the freezing point of water. Here NMR spectroscopy of ubiquitin encapsulated in reverse micelles dissolved in low viscosity alkanes is used to follow cold-induced unfolding to temperatures below -25 degrees C. Comparison of cold-induced structural transitions in a variety of reverse micelle-buffer systems indicate that protein-surfactant interactions are negligible and allow the direct observation of the multistate cold-induced unfolding of the protein.

  8. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon

    2010-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  9. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon E.; Melendez, David T.

    2011-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  10. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  11. Calcium influx into corn roots as a result of cold shock

    SciTech Connect

    Zocchi, G.; Hanson, J.B.

    1982-01-01

    Corn roots or washed corn root tissue exposed to cold shock absorb 20 to 24% more /sup 45/Ca/sup 2 +/ into a nonexchangeable phase than control roots. Addition to fusicoccin largely prevents this additional calcium influx. The results are discussed in relation to injury-induced changes in membrane permeability of root cell memebranes.

  12. Calcium influx into corn roots as a result of cold shock

    SciTech Connect

    Zocchi, G.; Hanson, J.B.

    1982-07-01

    Corn roots or washed corn root tissue exposed to cold shock absorb 20 to 24% more /sup 45/Ca/sup 2 +/ into a nonexchangeable phase than control roots. Addition to fusicoccin largely prevents this additional calcium influx. The results are discussed in relation to injury-induced changes in membrane permeability of root cell membranes.

  13. Ultrathin flexible dual band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming

    2015-09-01

    We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 μm, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.

  14. Ultraviolet radiation absorbing compounds in marine organisms

    SciTech Connect

    Chalker, B.E.; Dunlap, W.C. )

    1990-01-09

    Studies on the biological effects of solar ultraviolet radiations are becoming increasingly common, in part due to recent interest in the Antarctic ozone hole and in the perceived potential for global climate change. Marine organisms possess many strategies for ameliorating the potentially damaging effects of UV-B (280-320 nm) and the shorter wavelengths of UV-A (320-400nm). One mechanism is the synthesis of bioaccumulation of ultraviolet radiation absorbing compounds. Several investigators have noted the presence of absorbing compounds in spectrophotometer scans of extracts from a variety of marine organisms, particularly algae and coelenterates containing endosymbiotic algae. The absorbing compounds are often mycosporine-like amino acids. Thirteen mycosporine-like amino acids have already been described, and several others have recently been detected. Although, the mycosporine-like amino acids are widely distributed. these compounds are by no means the only type of UV-B absorbing compounds which has been identified. Coumarins from green algae, quinones from sponges, and indoles from a variety of sources are laternative examples which are documented in the natural products literature. When the biological impact of solar ultraviolet radiation is assessed, adequate attention must be devoted to the process of photoadaptation, including the accumulation of ultraviolet radiation absorbing compounds.

  15. Oxygen absorbers in food preservation: a review.

    PubMed

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world. PMID:25829570

  16. An extremely wideband and lightweight metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Pei, Zhibin; Pang, Yongqiang; Wang, Jiafu; Zhang, Anxue; Qu, Shaobo

    2015-06-01

    This paper presents a three-dimensional microwave metamaterial absorber based on the stand-up resistive film patch array. The absorber has wideband absorption, lightweight, and polarization-independent properties. Our design comes from the array of unidirectional stand-up resistive film patches backed by a metallic plane, which can excite multiple standing wave modes. By rolling the resistive film patches as a square enclosure, we obtain the polarization-independent property. Due to the multiple standing wave modes, the most incident energy is dissipated by the resistive film patches, and thus, the ultra-wideband absorption can be achieved by overlapping all the absorption modes at different frequencies. Both the simulated and experimental results show that the absorber possesses a fractional bandwidth of 148.2% with the absorption above 90% in the frequency range from 3.9 to 26.2 GHz. Moreover, the proposed absorber is extremely lightweight. The areal density of the fabricated sample is about 0.062 g/cm2, which is approximately equivalent to that of eight stacked standard A4 office papers. It is expected that our proposed absorber may find potential applications such as electromagnetic interference and stealth technologies.

  17. Ultra-broadband infrared metasurface absorber.

    PubMed

    Guo, Wenliang; Liu, Yuexia; Han, Tiancheng

    2016-09-01

    By using sub-wavelength resonators, metamaterial absorber shows great potential in many scientific and technical applications due to its perfect absorption characteristics. For most practical applications, the absorption bandwidth is one of the most important performance metrics. In this paper, we demonstrate the design of an ultra-broadband infrared absorber based on metasurface. Compared with the prior work [Opt. Express22(S7), A1713-A1724 (2014)], the proposed absorber shows more than twice the absorption bandwidth. The simulated total absorption exceeds 90% from 7.8 to 12.1 um and the full width at half maximum is 50% (from 7.5 to 12.5 μm), which is achieved by using a single layer of metasurface. Further study demonstrates that the absorption bandwidth can be greatly expanded by using two layers of metasurface, i.e. dual-layered absorber. The total absorption of the dual-layered absorber exceeds 80% from 5.2 to 13.7 um and the full width at half maximum is 95% (from 5.1 to 14.1 μm), much greater than those previously reported for infrared spectrum. The absorption decreases with fluctuations as the incident angle increases but remains quasi-constant up to relatively large angles. PMID:27607662

  18. Solar absorber material reflectivity measurements at temperature

    SciTech Connect

    Bonometti, J.A.; Hawk, C.W.

    1999-07-01

    Assessment of absorber shell material properties at high operating temperatures is essential to the full understanding of the solar energy absorption process in a solar thermal rocket. A review of these properties, their application and a new experimental methodology to measure them at high temperatures is presented. The direct application for the research is absorber cavity development for a Solar Thermal Upper Stage (STUS). High temperature measurements, greater than 1,000 Kelvin, are difficult to obtain for incident radiation upon a solid surface that forms an absorber cavity in a solar thermal engine. The basic material properties determine the amount of solar energy that is absorbed, transmitted or reflected and are dependent upon the material's temperature. This investigation developed a new approach to evaluate the material properties (i.e., reflectivity, absorptive) of the absorber wall and experimentally determined them for rhenium and niobium sample coupons. The secular reflectivity was measured both at room temperature and at temperatures near 1,000 Kelvin over a range of angles from 0 to 90 degrees. The same experimental measurements were used to calculate the total reflectivity of the sample by integrating the recorded intensities over a hemisphere. The test methodology used the incident solar energy as the heating source while directly measuring the reflected light (an integrated value over all visible wavelengths). Temperature dependence on total reflectivity was found to follow an inverse power function of the material's temperature.

  19. Oxygen absorbers in food preservation: a review.

    PubMed

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world.

  20. Constraining the Properties of Cold Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Spraggs, Mary Elizabeth; Gibson, Steven J.

    2016-01-01

    Since the interstellar medium (ISM) plays an integral role in star formation and galactic structure, it is important to understand the evolution of clouds over time, including the processes of cooling and condensation that lead to the formation of new stars. This work aims to constrain and better understand the physical properties of the cold ISM by utilizing large surveys of neutral atomic hydrogen (HI) 21cm spectral line emission and absorption, carbon monoxide (CO) 2.6mm line emission, and multi-band infrared dust thermal continuum emission. We identify areas where the gas may be cooling and forming molecules using HI self-absorption (HISA), in which cold foreground HI absorbs radiation from warmer background HI emission.We are developing an algorithm that uses total gas column densities inferred from Planck and other FIR/sub-mm data in parallel with CO and HISA spectral line data to determine the gas temperature, density, molecular abundance, and other properties as functions of position. We can then map these properties to study their variation throughout an individual cloud as well as any dependencies on location or environment within the Galaxy.Funding for this work was provided by the National Science Foundation, the NASA Kentucky Space Grant Consortium, the WKU Ogden College of Science and Engineering, and the Carol Martin Gatton Academy for Mathematics and Science in Kentucky.

  1. Circular polarization sensitive absorbers based on graphene

    PubMed Central

    Yang, Kunpeng; Wang, Min; Pu, Mingbo; Wu, Xiaoyu; Gao, Hui; Hu, Chenggang; Luo, Xiangang

    2016-01-01

    It is well known that the polarization of a linearly polarized (LP) light would rotate after passing through a single layer graphene under the bias of a perpendicular magnetostatic field. Here we show that a corresponding phase shift could be expected for circularly polarized (CP) light, which can be engineered to design the circular polarization sensitive devices. We theoretically validate that an ultrathin graphene-based absorber with the thickness about λ/76 can be obtained, which shows efficient absorption >90% within incident angles of ±80°. The angle-independent phase shift produced by the graphene is responsible for the nearly omnidirectional absorber. Furthermore, a broadband absorber in frequencies ranging from 2.343 to 5.885 THz with absorption over 90% is designed by engineering the dispersion of graphene. PMID:27034257

  2. Ferrite HOM Absorber for the RHIC ERL

    SciTech Connect

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  3. Absorber Materials at Room and Cryogenic Temperatures

    SciTech Connect

    F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

    2011-09-01

    We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

  4. Optical analysis of solar energy tubular absorbers.

    PubMed

    Saltiel, C; Sokolov, M

    1982-11-15

    The energy absorbed by a solar energy tubular receiver element for a single incident ray is derived. Two types of receiver elements were analyzed: (1) an inner tube with an absorbing coating surrounded by a semitransparent cover tube, and (2) a semitransparent inner tube filled with an absorbing fluid surrounded by a semitransparent cover tube. The formation of ray cascades in the semitransparent tubes is considered. A numerical simulation to investigate the influence of the angle of incidence, sizing, thickness, and coefficient of extinction of the tubes was performed. A comparison was made between receiver elements with and without cover tubes. Ray tracing analyses in which rays were followed within the tubular receiver element as well as throughout the rest of the collector were performed for parabolic and circular trough concentrating collectors.

  5. Absorber topography dependence of phase edge effects

    NASA Astrophysics Data System (ADS)

    Shanker, Aamod; Sczyrba, Martin; Connolly, Brid; Waller, Laura; Neureuther, Andy

    2015-10-01

    Mask topography contributes to phase at the wafer plane, even for OMOG binary masks currently in use at the 22nm node in deep UV (193nm) lithography. Here, numerical experiments with rigorous FDTD simulation are used to study the impact of mask 3D effects on aerial imaging, by varying the height of the absorber stack and its sidewall angle. Using a thin mask boundary layer model to fit to rigorous simulations it is seen that increasing the absorber thickness, and hence the phase through the middle of a feature (bulk phase) monotonically changes the wafer-plane phase. Absorber height also influences best focus, revealed by an up/down shift in the Bossung plot (linewidth vs. defocus). Bossung plot tilt, however, responsible for process window variability at the wafer, is insensitive to changes in the absorber height (and hence also the bulk phase). It is seen to depend instead on EM edge diffraction from the thick mask edge (edge phase), but stays constant for variations in mask thickness within a 10% range. Both bulk phase and edge phase are also independent of sidewall angle fluctuation, which is seen to linearly affect the CD at the wafer, but does not alter wafer phase or the defocus process window. Notably, as mask topography varies, the effect of edge phase can be replicated by a thin mask model with 8nm wide boundary layers, irrespective of absorber height or sidewall angle. The conclusions are validated with measurements on phase shifting masks having different topographic parameters, confirming the strong dependence of phase variations at the wafer on bulk phase of the mask absorber.

  6. Precise dispersion equations of absorbing filter glasses

    NASA Astrophysics Data System (ADS)

    Reichel, S.; Biertümpfel, Ralf

    2014-05-01

    The refractive indices versus wavelength of optical transparent glasses are measured at a few wavelengths only. In order to calculate the refractive index at any wavelength, a so-called Sellmeier series is used as an approximation of the wavelength dependent refractive index. Such a Sellmeier representation assumes an absorbing free (= loss less) material. In optical transparent glasses this assumption is valid since the absorption of such transparent glasses is very low. However, optical filter glasses have often a rather high absorbance in certain regions of the spectrum. The exact description of the wavelength dependent function of the refractive index is essential for an optimized design for sophisticated optical applications. Digital cameras use an IR cut filter to ensure good color rendition and image quality. In order to reduce ghost images by reflections and to be nearly angle independent absorbing filter glass is used, e.g. blue glass BG60 from SCHOTT. Nowadays digital cameras improve their performance and so the IR cut filter needs to be improved and thus the accurate knowledge of the refractive index (dispersion) of the used glasses must be known. But absorbing filter glass is not loss less as needed for a Sellmeier representation. In addition it is very difficult to measure it in the absorption region of the filter glass. We have focused a lot of effort on measuring the refractive index at specific wavelength for absorbing filter glass - even in the absorption region. It will be described how to do such a measurement. In addition we estimate the use of a Sellmeier representation for filter glasses. It turns out that in most cases a Sellmeier representation can be used even for absorbing filter glasses. Finally Sellmeier coefficients for the approximation of the refractive index will be given for different filter glasses.

  7. Engineering reverse saturable absorbers for desired wavelengths

    NASA Astrophysics Data System (ADS)

    Band, Yehuda B.; Scharf, Benjamin

    1986-06-01

    A variety of applications exist for reverse saturable absorbers (RSAs) in laser science (RSAs are substances whose excited-state absorption cross section is larger than their ground-state absorption cross section at a given wavelength and possess a number of other properties). We propose an approach to designing RSAs at a desired wavelength by construction of dimers of dye molecules which absorb near the wavelength of interest. The dimer ground-state absorption is to a state in which the excitation is spread over both monomeric units and the excited-state absorption commences from this state to the doubly excited electronic state in which both monomeric units are excited.

  8. Spin Particle in an Absorbing Environment

    NASA Astrophysics Data System (ADS)

    Amooshahi, M.

    2015-10-01

    The quantum dynamics of a localized spin Particle interacting with an absorbing environment is investigated. The quantum Langevin-Schrödinger equation for spin is obtained. The susceptibility function of the environment is calculated in terms of the coupling function of the spin and the environment. it is shown that the susceptibility function satisfies the Kramers-Kronig relations. Spontaneous emission and the shift frequency of the spin is obtained in terms of the imaginary part of the susceptibility function in frequency domain. Some transition probabilities between the spin states are calculated when the absorbing environment is in the thermal state.

  9. OSCEE fan exhaust bulk absorber treatment evaluation

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Samanich, N. E.

    1980-01-01

    The acoustic suppression capability of bulk absorber material designed for use in the fan exhaust duct walls of the quiet clean short haul experiment engine (OCSEE UTW) was evaluated. The acoustic suppression to the original design for the engine fan duct which consisted of phased single degree-of-freedom wall treatment was tested with a splitter and also with the splitter removed. Peak suppression was about as predicted with the bulk absorber configuration, however, the broadband characteristics were not attained. Post test inspection revealed surface oil contamination on the bulk material which could have caused the loss in bandwidth suppression.

  10. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.

    2005-11-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.

  11. Experimental hypothermia and cold perception.

    PubMed

    Hoffman, R G; Pozos, R S

    1989-10-01

    Twelve subjects clothed in flotation suits were immersed in 10 degrees C cold water and their surface temperatures at the back and groin, as well as core temperatures, were continuously monitored. Subjects were unable to reliably assess how cold they were, with the highest correlation observed between perceived temperature and actual temperature reaching only 0.51. This was felt to be partially due to the uneven distribution of surface temperatures seen in this experiment and in most cold water immersions. Rapid cooling in cold water also produced the perceptual phenomenon of "overshooting" previously observed in cold air studies, characterized by sudden temperature drops being perceived as cold sensations of greater magnitude. The results suggest that subjects who are rapidly cooled in water may have considerable difficulty separating feelings of cold from feelings of pain and discomfort, which can have serious implications in survival situations and highlights the subjective and highly variable nature of cold perception. Perceived cold sensation may be a very poor, and possibly dangerous, predictor in cold water immersion situations.

  12. The Isis cold moderators

    SciTech Connect

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  13. The Cooling of a Liquid Absorber using a Small Cooler

    SciTech Connect

    Baynham, D.E.; Bradshaw, T.W.; Green, M.A.; Ishimoto, S.; Liggins, N.

    2005-08-24

    This report discusses the use of small cryogenic coolers for cooling the Muon Ionization Cooling Experiment (MICE) liquid cryogen absorbers. Since the absorber must be able contain liquid helium as well liquid hydrogen, the characteristics of the available 4.2 K coolers are used here. The issues associated with connecting two-stage coolers to liquid absorbers are discussed. The projected heat flows into an absorber and the cool-down of the absorbers using the cooler are presented. The warm-up of the absorber is discussed. Special hydrogen safety issues that may result from the use of a cooler on the absorbers are also discussed.

  14. Integrated tuned vibration absorbers: a theoretical study.

    PubMed

    Gardonio, Paolo; Zilletti, Michele

    2013-11-01

    This article presents a simulation study on two integrated tuned vibration absorbers (TVAs) designed to control the global flexural vibration of lightly damped thin structures subject to broad frequency band disturbances. The first one consists of a single axial switching TVA composed by a seismic mass mounted on variable axial spring and damper elements so that the characteristic damping and natural frequency of the absorber can be switched iteratively to control the resonant response of three flexural modes of the hosting structure. The second one consists of a single three-axes TVA composed by a seismic mass mounted on axial and rotational springs and dampers, which are arranged in such a way that the suspended mass is characterized by uncoupled heave and pitch-rolling vibrations. In this case the three damping and natural frequency parameters of the absorber are tuned separately to control three flexural modes of the hosting structure. The simulation study shows that the proposed single-unit absorbers produce, respectively, 5.3 and 8.7 dB reductions of the global flexural vibration of a rectangular plate between 20 and 120 Hz.

  15. Tunable metamaterial dual-band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Luo, C. Y.; Li, Z. Z.; Guo, Z. H.; Yue, J.; Luo, Q.; Yao, G.; Ji, J.; Rao, Y. K.; Li, R. K.; Li, D.; Wang, H. X.; Yao, J. Q.; Ling, F. R.

    2015-11-01

    We report a design of a temperature controlled tunable dual band terahertz absorber. The compact single unit cell consists of two nested closed square ring resonators and a layer metallic separated by a substrate strontium titanate (STO) dielectric layer. It is found that the absorber has two distinctive absorption peaks at frequencies 0.096 THz and 0.137 THz, whose peaks are attained 97% and 75%. Cooling the absorber from 400 K to 250 K causes about 25% and 27% shift compared to the resonance frequency of room temperature, when we cooling the temperature to 150 K, we could attained both the two tunabilities exceeding 53%. The frequency tunability is owing to the variation of the dielectric constant of the low-temperature co-fired ceramic (LTCC) substrate. The mechanism of the dual band absorber is attributed to the overlapping of dual resonance frequencies, and could be demonstrated by the distributions of the electric field. The method opens up avenues for designing tunable terahertz devices in detection, imaging, and stealth technology.

  16. Composition for absorbing hydrogen from gas mixtures

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Lee, Myung W.

    1999-01-01

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  17. Moving core beam energy absorber and converter

    DOEpatents

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  18. Optimization of ramified absorber networks doing desalination.

    PubMed

    Singleton, Martin S; Heiss, Gregor; Hübler, Alfred

    2011-01-01

    An iterated function system is used to generate fractal-like ramified graph networks of absorbers, which are optimized for desalination performance. The diffusion equation is solved for the boundary case of constant pressure difference at the absorbers and a constant ambient salt concentration far from the absorbers, while constraining both the total length of the network and the total area of the absorbers to be constant as functions of generation G. A linearized form of the solution was put in dimensionless form which depends only on a dimensionless membrane resistance, a dimensionless inverse svelteness ratio, and G. For each of the first nine generations G=2,…,10, the optimal graph shapes were obtained. Total water production rate increases parabolically as a function of generation, with a maximum at G=7. Total water production rate is shown to be approximately linearly related to the power consumed, for a fixed generation. Branching ratios which are optimal for desalination asymptote decreasingly to r=0.510 for large G, while branching angles which are optimal for desalination asymptote decreasingly to 1.17 radians. Asymmetric graphs were found to be less efficient for desalination than symmetric graphs. The geometry which is optimal for desalination does not depend strongly on the dimensionless parameters, but the optimal water production does. The optimal generation was found to increase with the inverse svelteness ratio.

  19. Estimating the radiation absorbed by a human

    NASA Astrophysics Data System (ADS)

    Kenny, Natasha A.; Warland, Jon S.; Brown, Robert D.; Gillespie, Terry G.

    2008-07-01

    The complexities of the interactions between long- and short-wave radiation fluxes and the human body make it inherently difficult to estimate precisely the total radiation absorbed ( R) by a human in an outdoor environment. The purpose of this project was to assess and compare three methods to estimate the radiation absorbed by a human in an outdoor environment, and to compare the impact of applying various skin and clothing albedos ( α h ) on R. Field tests were conducted under both clear and overcast skies to evaluate the performance of applying a cylindrical radiation thermometer (CRT), net radiometer, and a theoretical estimation model to predict R. Three albedos were evaluated: light ( α h = 0.57), medium ( α h = 0.37), and dark ( α h = 0.21). During the sampling periods, the range of error between the methods used to estimate the radiation absorbed by a cylindrical body under clear and overcast skies ranged from 3 to 8%. Clothing and skin albedo had a substantial impact on R, with the mean change in R between the darkest and lightest albedos ranging from 115 to 157 W m - 2 over the sampling period. Radiation is one of the most important variables to consider in outdoor thermal comfort research, as R is often the largest contributor to the human energy balance equation. The methods outlined and assessed in this study can be conveniently applied to provide reliable estimates of the radiation absorbed by a human in an outdoor environment.

  20. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  1. Shock absorber protects motive components against overloads

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Shock absorber with an output shaft, hollow gear, and a pair of springs forming a resilient driving connection between shaft and gear, operates when abnormally high torques are applied. This simple durable frictional device is valuable in rotating mechanisms subject to sudden overloads.

  2. Absorbed fractions for electrons in ellipsoidal volumes.

    PubMed

    Amato, E; Lizio, D; Baldari, S

    2011-01-21

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as (90)Y and to (131)I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  3. Debuncher Microwave Absorber Tests of January 1992

    SciTech Connect

    Fullett, Ken

    1992-01-01

    This paper describes the tests performed on the microwave absorbers placed in the Debuncher to replace the existing microwave cutoffs. The purpose of the microwave cutoffs is to reduce the transmission of microwave energy through the beam pipe. The old microwave cutoffs consisted of a stainless steel beam pipe of approximately 2.8 inches inside diameter into which a glass tube with an inside diameter of 1.835 inches was placed. The glass tube was coated with a thin coat of microwave absorbing material on its outside. Three of these cutoffs were installed in the Debuncher at locations D6Q5, D1Q7, and D4Q10 (see Figure 1). However, the glass tube was removed from the cutoff at D4Q10 leaving only the metal beam pipe. Please note that there was not an old style microwave cutoff installed at location D2Q09. It was felt that the glass tube cutoff was an aperture restriction in the Debuncher with its small (1.8 inch) inside diameter. It was decided that new cutoffs would be needed that would increase the aperture. The new microwave absorbers consist of a four inch stainless steel beam pipe into which eleven dielectric cores are inserted separated by aluminum spacers. The spacing allows adjustment of the frequency response of the absorber assembly. The inside diameter is 3 inches thus providing an increase of 1.2 inches over the old cutoffs. The new absorbers will be installed at four locations as shown in Figure 1.

  4. Absorbed fractions for electrons in ellipsoidal volumes

    NASA Astrophysics Data System (ADS)

    Amato, E.; Lizio, D.; Baldari, S.

    2011-01-01

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as 90Y and to 131I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  5. Extended Lyα emission from a damped Lyα absorber at z = 3.115

    SciTech Connect

    Kashikawa, Nobunari; Misawa, Toru; Minowa, Yosuke; Hattori, Takashi; Okoshi, Katsuya; Toshikawa, Jun; Ishikawa, Shogo; Onoue, Masafusa

    2014-01-10

    We searched for star formation activity associated with high-z damped Lyα systems (DLAs) with the Subaru telescope. We used a set of narrow-band (NB) filters whose central wavelengths correspond to the redshifted Lyα emission lines of targeted DLA absorbers at 3 < z < 4.5. We detected one apparent NB-excess object located 3.80 arcsec (∼28 h{sub 70}{sup −1} kpc) away from the quasar SDSS J031036.84+005521.7. Follow-up spectroscopy revealed an asymmetric Lyα emission at z {sub em} = 3.115 ± 0.003, which perfectly matches the sub-DLA trough at z {sub abs} = 3.1150 with logN(H I)/cm{sup –2} = 20.05. The Lyα luminosity is estimated to be L {sub Lyα} = 1.07 × 10{sup 42} erg s{sup –1}, which corresponds to a star formation rate of 0.97 M {sub ☉} yr{sup –1}. Interestingly, the detected Lyα emission is spatially extended with a sharp peak. The large extent of the Lyα emission is remarkably one-sided toward the quasar line-of-sight and is redshifted. The observed spatially asymmetric surface brightness profile can be qualitatively explained by a model of a DLA host galaxy, assuming a galactic outflow and a clumpy distribution of H I clouds in the circumgalactic medium. This large Lyα extension, which is similar to those found in Rauch et al., could be the result of complicated anisotropic radiative transfer through the surrounding neutral gas embedded in the DLA.

  6. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    SciTech Connect

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  7. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  8. Cold isopressing method

    DOEpatents

    Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi

    2003-01-01

    A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.

  9. Experiments in cold fusion

    SciTech Connect

    Palmer, E.P.

    1986-03-28

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models.

  10. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  11. A Cold and Wet Mars

    NASA Astrophysics Data System (ADS)

    Fairén, A. G.; Davila, A. F.; Duport, L. G.; Uceda, E. R.; Lim, D. S.; Amils, R.; McKay, C. P.

    2008-03-01

    Here we consider the hypothesis that cold and hypersaline liquid solutions have been stable on the surface of Mars under subzero mean temperatures and for relatively extended periods of time, completing a hydrogeological cycle in a water-enriched but cold planet.

  12. A sound absorbing metasurface with coupled resonators

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-08-01

    An impedance matched surface is able, in principle, to totally absorb the incident sound and yield no reflection, and this is desired in many acoustic applications. Here we demonstrate a design of impedance matched sound absorbing surface with a simple construction. By coupling different resonators and generating a hybrid resonance mode, we designed and fabricated a metasurface that is impedance-matched to airborne sound at tunable frequencies with subwavelength scale unit cells. With careful design of the coupled resonators, over 99% energy absorption at central frequency of 511 Hz with a 50% absorption bandwidth of 140 Hz is achieved experimentally. The proposed design can be easily fabricated, and is mechanically stable. The proposed metasurface can be used in many sound absorption applications such as loudspeaker design and architectural acoustics.

  13. Absorbing Software Testing into the Scrum Method

    NASA Astrophysics Data System (ADS)

    Tuomikoski, Janne; Tervonen, Ilkka

    In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.

  14. Investigations on Absorber Materials at Cryogenic Temperatures

    SciTech Connect

    Marhauser, Frank; Elliott, Thomas; Rimmer, Robert

    2009-05-01

    In the framework of the 12 GeV upgrade project for the Continuous Electron Beam Accelerator Facility (CEBAF) improvements are being made to refurbish cryomodules housing Thomas Jefferson National Accelerator Facility's (JLab) original 5-cell cavities. Recently we have started to look into a possible simplification of the existing Higher Order Mode (HOM) absorber design combined with the aim to find alternative material candidates. The absorbers are implemented in two HOM-waveguides immersed in the helium bath and operate at 2 K temperature. We have built a cryogenic setup to perform measurements on sample load materials to investigate their lossy characteristics and variations from room temperature down to 2 K. Initial results are presented in this paper.

  15. Mechanically stretchable and tunable metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Zhang, Fuli; Feng, Shuqi; Qiu, Kepeng; Liu, Zijun; Fan, Yuancheng; Zhang, Weihong; Zhao, Qian; Zhou, Ji

    2015-03-01

    In this letter, we present experimental demonstration of a mechanically stretchable and tunable metamaterial absorber composed of dielectric resonator stacked on a thin conductive rubber layer. A near unity absorption is observed due to strong local field confinement around magnetic Mie resonance of dielectric resonator. Furthermore, the interspacing between unit cells is modulated dynamically under uniaxial stress. Owing to the decreases of longitudinal coupling between neighboring unit cells, the resonant absorption peak is reversibly tuned by 410 MHz, as the stain varies up to 180% along H field direction. On the contrary, the resonant absorption state is nearly independent on strain variation when external stress is applied along E field direction, due to the weak transverse interplaying. The mechanically tunable metamaterial absorber featured by flexibility paves a way forwards for actual application.

  16. Imaging highly absorbing nanoparticles using photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  17. Disposable Diaper Absorbency: Improvements via Advanced Designs.

    PubMed

    Helmes, C Tucker; O'Connor, Robert; Sawyer, Larry; Young, Sharon

    2014-06-24

    Absorbency effectiveness in diapers has improved significantly in recent years with the advent of new ingredient combinations and advanced design features. With these features, many leading products maintain their dryness performance overnight. Considering the importance of holding liquid away from the skin, ongoing research in diaper construction focuses on strategies to increase the effectiveness to capture liquid and help avoid rewetting of infant skin. The layout and design of a disposable diaper allows for distribution of absorbency features where they can provide the optimal benefit. Clinical evidence indicates materials can keep moisture away from the skin in the diapered area, helping maintain proper skin hydration, minimizing irritation, and contributing to reduced rates of diaper rash.

  18. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  19. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  20. Development and application of rotary shock absorber

    SciTech Connect

    Yamamoto, Kozo; Yamada, Toshihiro; Fukuyama, Katsura

    1995-12-31

    In recent years, rear suspension systems with a single shock absorber unit placed behind the engine, have been used primarily in the middle and large classes of motorcycles. Some features such as the longer rear wheel travel, progressive response characteristics and mass concentration at the center part of motorcycle are effective in improving maneuverability of the motorcycle. In the 1980s, the systems were introduced first in the off-road motorcycles and then in the on-road motorcycles. Performance of the systems are excellent, but there are demands for further improvement of suspension characteristics and space utility at the center part of motorcycle. For this purpose, the authors have developed a prototype of a rotary shock absorber and studied the applicability to modern motorcycles.

  1. Impedance matched thin metamaterials make metals absorbing

    PubMed Central

    Mattiucci, N.; Bloemer, M. J.; Aközbek, N.; D'Aguanno, G.

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  2. Disposable Diaper Absorbency: Improvements via Advanced Designs.

    PubMed

    Helmes, C Tucker; O'Connor, Robert; Sawyer, Larry; Young, Sharon

    2014-06-24

    Absorbency effectiveness in diapers has improved significantly in recent years with the advent of new ingredient combinations and advanced design features. With these features, many leading products maintain their dryness performance overnight. Considering the importance of holding liquid away from the skin, ongoing research in diaper construction focuses on strategies to increase the effectiveness to capture liquid and help avoid rewetting of infant skin. The layout and design of a disposable diaper allows for distribution of absorbency features where they can provide the optimal benefit. Clinical evidence indicates materials can keep moisture away from the skin in the diapered area, helping maintain proper skin hydration, minimizing irritation, and contributing to reduced rates of diaper rash. PMID:24961785

  3. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  4. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  5. Tech Transfer Webinar: Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-06-17

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  6. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  7. Lightweight Energy Absorbers for Blast Containers

    NASA Technical Reports Server (NTRS)

    Balles, Donald L.; Ingram, Thomas M.; Novak, Howard L.; Schricker, Albert F.

    2003-01-01

    Kinetic-energy-absorbing liners made of aluminum foam have been developed to replace solid lead liners in blast containers on the aft skirt of the solid rocket booster of the space shuttle. The blast containers are used to safely trap the debris from small explosions that are initiated at liftoff to sever frangible nuts on hold-down studs that secure the spacecraft to a mobile launch platform until liftoff.

  8. Tech Transfer Webinar: Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  9. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  10. Load limiting energy absorbing lightweight debris catcher

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor); Schneider, William C. (Inventor)

    1991-01-01

    In the representative embodiment of the invention disclosed, a load limiting, energy absorbing net is arranged to overlay a normally-covered vent opening in the rear bulkhead of the space orbiter vehicle. Spatially-disposed flexible retainer straps are extended from the net and respectively secured to bulkhead brackets spaced around the vent opening. The intermediate portions of the straps are doubled over and stitched together in a pattern enabling the doubled-over portions to progressively separate at a predicable load designed to be well below the tensile capability of the straps as the stitches are successively torn apart by the forces imposed on the retainer members whenever the cover plate is explosively separated from the bulkhead and propelled into the net. By arranging these stitches to be successively torn away at a load below the strap strength in response to forces acting on the retainers that are less than the combined strength of the retainers, this tearing action serves as a predictable compact energy absorber for safely halting the cover plate as the retainers are extended as the net is deployed. The invention further includes a block of an energy-absorbing material positioned in the net for receiving loose debris produced by the explosive release of the cover plate.

  11. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  12. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  13. Microscopic modeling of nitride intersubband absorbance

    NASA Astrophysics Data System (ADS)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  14. Wide band cryogenic ultra-high vacuum microwave absorber

    SciTech Connect

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  15. Wide band cryogenic ultra-high vacuum microwave absorber

    SciTech Connect

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  16. Preparation of perlite-based carbon dioxide absorbent.

    PubMed

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  17. View of cold water eddies in Falkland Current off southern Argentina

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A view of cold water eddies in the Falkland Current off the South Atlantic Coast of southern Argentina (47.5S, 64.0W) as seen from the Skylab space station in Earth orbit. This land area (left corner) extends south along the coast from Puerto Deseado (center left border) for about 50 miles. Within the ocean, several light blue areas are visible and represent the occurrence of plankton within the Falkland Current. Over the ocean, the cold water eddies are identified by the circular cloud-free areas within the cloud street pattern and bordered by cumulus cloud buildup (white). The cloud streets indicate the wind is from the southwest and do not form over eddies because energy from the atmosphere is absorbed by the cold ocean water. On the downwind side of the eddies, cumulus clouds tend to form as the cold moist air flows over the warmer water.

  18. Cold-Weather Sports and Your Family

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Cold-Weather Sports and Your Family KidsHealth > For Parents > Cold- ... once the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the air, ...

  19. Highly ionised absorbers at high redshift

    NASA Astrophysics Data System (ADS)

    Bergeron, Jacqueline; Herbert-Fort, Stéphane

    2005-03-01

    We build a sample of O VI absorption systems in the redshift range 2.0 ≲ z ≲ 2.6 using high spectral resolution data of ten quasars from the VLT-UVES large programme. We investigate the existence of a metal-rich O VI population and define observational criteria for this class of absorbers under the assumption of photoionisation. The low temperatures of nearly half of all O VI absorbers, implied by their line widths, are too low for collisional ionisation to be a dominant process. We estimate the oxygen abundance under the assumption of photoionisation; a striking result is the bimodal distribution of [o/h] with median values close to 0.01 and 0.5 solar for the metal-poor and metal-rich populations, respectively. Using the line widths to fix the temperature or assuming a constant, low gas density does not drastically change the metallicities of the metal-rich population. We present the first estimate of the O VI column density distribution. Assuming a single power-law distribution, f(n) ∝ n-α, yields α ˜ 1.7 and a normalisation of f(n) =2.3× 10-13 at log n(O VI) ˜ 13.5, both with a ˜30% uncertainty. The value of α is similar to that found for C IV surveys, whereas the normalisation factor is about ten times higher. We use f(n) to derive the number density per unit z and cosmic density ωb(O VI), selecting a limited column density range not strongly affected by incompleteness or sample variance. Comparing our results with those obtained at z˜0.1 for a similar range of column densities implies some decline of dn/dz with z. The cosmic O VI density derived from f(n), ωb(O VI)≈ (3.5± 3.20.9) × 10-7, is 2.3 times higher than the value estimated using the observed O VI sample (of which the metal-rich population contributes ˜35%), easing the problem of missing metals at high z (˜ 1/4 of the produced metals) but not solving it. We find that the majori ty of the metal-rich absorbers are located within ˜ 450 km s-1 of strong Ly-α lines and show that

  20. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  1. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: Comparison with organic UV absorbers

    NASA Astrophysics Data System (ADS)

    Aloui, F.; Ahajji, A.; Irmouli, Y.; George, B.; Charrier, B.; Merlin, A.

    2007-02-01

    Inorganic UV absorbers which are widely used today were originally designed neither as a UV blocker in coatings applications, nor for wood protection. In recent years however, there has been extensive interest in these compounds, especially with regard to their properties as a UV blocker in coating applications. In this work, we carried out a comparative study to look into some inorganic and organic UV absorbers used in wood coating applications. The aim of this study is to determine the photostabilisation performances of each type of UV absorbers, to seek possible synergies and the influences of different wood species. We have also searched to find eventual correlation between these performances and the influence of UV absorbers on the film properties. Our study has compared the performances of the following UV absorbers: hombitec RM 300, hombitec RM 400 from the Sachtleben Company; transparent yellow and red iron oxides from Sayerlack as inorganic UV absorbers; organic UV absorbers Tinuvin 1130 and Tinuvin 5151 from Ciba Company. The study was carried out on three wood species: Abies grandis, tauari and European oak. The environmental constraints (in particular the limitation of the emission of volatile organic compounds VOCs) directed our choice towards aqueous formulations marketed by the Sayerlack Arch Coatings Company. The results obtained after 800 h of dry ageing showed that the Tinuvins and the hombitecs present better wood photostabilisations. On the other hand in wet ageing, with the hombitec, there are appearances of some cracks and an increase in the roughness of the surface. This phenomenon is absent when the Tinuvins are used. With regard to these results, the thermomechanical analyses relating to the follow-up of the change of the glass transition temperature ( Tg) of the various coating systems, show a different behaviour between the two types of absorbers. However, contrary to organic UV absorbers, inorganic ones tend to increase Tg during ageing

  2. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    ERIC Educational Resources Information Center

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  3. Cold fusion studies

    NASA Astrophysics Data System (ADS)

    Hembree, D. M.; Burchfield, L. A.; Fuller, E. L., Jr.; Perey, F. G.; Mamantov, G.

    1990-06-01

    A series of experiments designed to detect the by-products expected from deuterium fusion occurring in the palladium and titanium cathodes of heavy water, D2O, electrolysis cells is reported. The primary purpose of this account is to outline the integrated experimental design developed to test the cold fusion hypothesis and to report preliminary results that support continuing the investigation. Apparent positive indicators of deuterium fusion were observed, but could not be repeated or proved to originate from the electrochemical cells. In one instance, two large increases in the neutron count rate, the largest of which exceeded the background by 27 standard deviations, were observed. In a separate experiment, one of the calorimetry cells appeared to be producing approximately 18 percent more power that the input value, but thermistor failure prevented an accurate recording of the event as a function of time. In general, the tritium levels in most cells followed the slow enrichment expected from the electrolysis of D2O containing a small amount of tritium. However, after 576 hours of electrolysis, one cell developed a tritium concentration approximately seven times greater than expected level.

  4. Zitterbewegung in Cold Atoms

    NASA Astrophysics Data System (ADS)

    Penteado, Poliana; Egues, J. Carlos

    2013-03-01

    In condensed matter systems, the coupling between spatial and spin degrees of freedom through the spin-orbit (SO) interaction offers the possibility of manipulating the electron spin via its orbital motion. The proposal by Datta and Das of a `spin transistor' for example, highlights the use of the SO interaction to control the electron spin via electrical means. Recently, arrangements of crossed lasers and magnetic fields have been used to trap and cool atoms in optical lattices and also to create light-induced gauge potentials, which mimic the SO interactions in real solids. In this work, we investigate the Zitterbewegung in cold atoms by starting from the effective SO Hamiltonian derived in Ref.. Cross-dressed atoms as effective spins can provide a proper setting in which to observe this effect, as the relevant parameter range of SO strengths may be more easily attainable in this context. We find a variety of peculiar Zitterbewegung orbits in real and pseudo-spin spaces, e.g., cycloids and ellipses - all of which obtained with realistic parameters. This work is supported by FAPESP, CAPES and CNPq.

  5. β-Cyclodextrin-based oil-absorbent microspheres: preparation and high oil absorbency.

    PubMed

    Song, Ci; Ding, Lei; Yao, Fei; Deng, Jianping; Yang, Wantai

    2013-01-01

    This article reports the preparation and evaluation of polymeric microspheres as a new class of oil-absorbent (POAMs). Based on our earlier oil-absorbents, the present microspheres contained β-cyclodextrin (β-CD) moieties as both cross-linking agent and porogen agent, and showed exciting high oil absorbency, fast oil absorption speed and good reusability. Such microspheres were prepared via suspension polymerization with octadecyl acrylate and butyl acrylate as co-monomers, β-CD derivative as cross-linking agent, 2,2'-azoisobutyronitrile as initiator and polyvinylalcohol as stabilizer. Oil absorbency of the POAMs was, for CCl(4), 83.4; CHCl(3), 75.1; xylene, 48.7; toluene, 42.8; gasoline, 30.0; kerosene 27.1; and diesel, 18.2 g/g (oil/POAMs). Saturation oil absorption reached within 3h in CCl(4). The POAMs exhibited high oil retention percentage (>90%), and can be reused for at least 10 times while keeping oil absorbency almost unchanged. PMID:23044125

  6. Versatile cold atom target apparatus

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Hofmann, Christoph S.; Litsch, Dominic; DePaola, Brett D.; Weidemueller, Matthias

    2012-07-15

    We report on a compact and transportable apparatus that consists of a cold atomic target at the center of a high resolution recoil ion momentum spectrometer. Cold rubidium atoms serve as a target which can be operated in three different modes: in continuous mode, consisting of a cold atom beam generated by a two-dimensional magneto-optical trap, in normal mode in which the atoms from the beam are trapped in a three-dimensional magneto-optical trap (3D MOT), and in high density mode in which the 3D MOT is operated in dark spontaneous optical trap configuration. The targets are characterized using photoionization.

  7. Plants in a cold climate.

    PubMed Central

    Smallwood, Maggie; Bowles, Dianna J

    2002-01-01

    Plants are able to survive prolonged exposure to sub-zero temperatures; this ability is enhanced by pre-exposure to low, but above-zero temperatures. This process, known as cold acclimation, is briefly reviewed from the perception of cold, through transduction of the low-temperature signal to functional analysis of cold-induced gene products. The stresses that freezing of apoplastic water imposes on plant cells is considered and what is understood about the mechanisms that plants use to combat those stresses discussed, with particular emphasis on the role of the extracellular matrix. PMID:12171647

  8. Method for absorbing an ion from a fluid

    DOEpatents

    Gao, Huizhen; Wang, Yifeng; Bryan, Charles R.

    2007-07-03

    A method for absorbing an ion from a fluid by using dispersing an organic acid into an anion surfactant solution, mixing in a divalent-metal containing compound and a trivalent-metal containing compound and calcining the resulting solid layered double hydroxide product to form an absorbent material and then contacting the absorbent material with an aqueous solution of cations or anions to be absorbed.

  9. Grover walks on a line with absorbing boundaries

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Wu, Nan; Kuklinski, Parker; Xu, Ping; Hu, Haixing; Song, Fangmin

    2016-09-01

    In this paper, we study Grover walks on a line with one and two absorbing boundaries. In particular, we present some results for the absorbing probabilities in both a semi-finite and finite line. Analytical expressions for these absorbing probabilities are presented by using the combinatorial approach. These results are perfectly matched with numerical simulations. We show that the behavior of Grover walks on a line with absorbing boundaries is strikingly different from that of classical walks and that of Hadamard walks.

  10. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  11. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  12. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  13. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  14. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  15. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  16. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  17. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  18. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  19. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  20. 14 CFR 29.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 29.475 Section... shock absorbers. Unless otherwise prescribed, for each specified landing condition, the tires must be assumed to be in their static position and the shock absorbers to be in their most critical position....

  1. 14 CFR 29.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tires and shock absorbers. 29.475 Section... shock absorbers. Unless otherwise prescribed, for each specified landing condition, the tires must be assumed to be in their static position and the shock absorbers to be in their most critical position....

  2. 21 CFR 878.4755 - Absorbable lung biopsy plug.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Absorbable lung biopsy plug. 878.4755 Section 878...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4755 Absorbable lung biopsy plug. (a) Identification. A preformed (polymerized) absorbable lung biopsy plug is intended to...

  3. About sound mufflers sound-absorbing panels aircraft engine

    NASA Astrophysics Data System (ADS)

    Dudarev, A. S.; Bulbovich, R. V.; Svirshchev, V. I.

    2016-10-01

    The article provides a formula for calculating the frequency of sound absorbed panel with a perforated wall. And although the sound absorbing structure is a set of resonators Helmholtz, not individual resonators should be considered in acoustic calculations, and all the perforated wall panel. The analysis, showing how the parameters affect the size and sound-absorbing structures in the absorption rate.

  4. A novel broadband waterborne acoustic absorber

    NASA Astrophysics Data System (ADS)

    Wang, Changxian; Wen, Weibin; Huang, Yixing; Chen, Mingji; Lei, Hongshuai; Fang, Daining

    2016-07-01

    In this paper, we extended the ray tracing theory in polar coordinate system, and originally proposed the Snell-Descartes law in polar coordinates. Based on these theories, a novel broadband waterborne acoustic absorber device was proposed. This device is designed with gradient-distributing materials along radius, which makes the incidence acoustic wave ray warps. The echo reduction effects of this device were investigated by finite element analysis, and the numerical results show that the reflectivity of acoustic wave for the new device is lower than that of homogenous and Alberich layers in almost all frequency 0-30 kHz at the same loss factor.

  5. Acoustical model of a Shoddy fibre absorber

    NASA Astrophysics Data System (ADS)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  6. DHCAL with minimal absorber: measurements with positrons

    NASA Astrophysics Data System (ADS)

    Freund, B.; Neubüser, C.; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H. L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G. W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.-Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-05-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  7. Measuring the Cold Mask Offset

    NASA Astrophysics Data System (ADS)

    Roye, E.; Krist, J.; Schultz, A. B.; Wiklind, T.

    2003-04-01

    An unexpected increase in measured thermal background during the Cycle 11 early calibration program caused speculation that the cold mask position could have shifted since Cycle 7. To address this concern, a single orbit NICMOS program was executed (Program ID: 9704) to obtain deep PSF images of the star LHS1846 in all three cameras. Analysis of this data using the Phase Retrieval software package revealed a minimal amount of cold mask shift since Cycle 7 and provided new, more accurate cold mask values for the Tiny Tim PSF modeling software. It was concluded that the cold mask position was not the cause of increased thermal background observed during the Cycle 11 early calibration program. Increased thermal background has since been determined to be the result of increased thermal load on the HST aft shroud due to the addition of ACS and NCS during SM3b.

  8. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  9. Biomolecular Effects of Cold Plasma Exposure

    NASA Technical Reports Server (NTRS)

    Mogul, Rakesh; Bolshakov, Alexander A.; Chan, Suzanne L.; Stevens, Ramsey D.; Khare, Bishun N.; Meyyappan, M.; Trent, Jonathan D.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The effects of cold plasma exposure on Deinococcus radiodurans, plasmid DNA and model proteins were assessed using microbiological, spectrometric and biochemical techniques. Exposure of D. radiodurans, an extremely radiation resistant microbe, to O2 plasma (less than or equal to 25 W, approx. 45 mTorr, 90 min) yielded a approx. 99.999 % sterilization and the sterilization rate was increased approx. 10-fold at 100 W and 500 mTorr. AFM images shows that the exposed cells are significantly deformed and possess 50-70 nm concavities. IR analysis indicates the chemical degradation of lipids, proteins and carotenoids of the cell wall and membrane. Intracellular damage was indicated by major absorbance loss at 1245, 1651 and 1538/cm corresponding to degradation of DNA and proteins, respectively. Biochemical experiments demonstrate that plasmas induce strand scissions and crosslinking of plasmid DNA, and reduction of enzyme activity; the degradation is power dependent with total sample loss occurring in 60 s at 200 W and 500 mTorr. Emission spectroscopy shows that D. radiodurans is volatilized into CO2, CO, N2 and H2O confirming the removal of biological matter from contaminated surfaces. The O2 plasma impacts several cellular components predominantly through chemical degradation by atomic oxygen. A CO2, plasma, however, was not effective at degrading D. radiodurans, revealing the importance of plasma composition, which has implications for planetary protection and the contamination of Mars.

  10. Configurable metamaterial absorber with pseudo wideband spectrum.

    PubMed

    Zhu, Weiren; Huang, Yongjun; Rukhlenko, Ivan D; Wen, Guangjun; Premaratne, Malin

    2012-03-12

    Metamaterials attain their behavior due to resonant interactions among their subwavelength components and thus show specific designer features only in a very narrow frequency band. There is no simple way to dynamically increase the operating bandwidth of a narrowband metamaterial, but it may be possible to change its central frequency, shifting the spectral response to a new frequency range. In this paper, we propose and experimentally demonstrate a metamaterial absorber that can shift its central operating frequency by using mechanical means. The shift is achieved by varying the gap between the metamaterial and an auxiliary dielectric slab parallel to its surface. We also show that it is possible to create multiple absorption peaks by adjusting the size and/or shape of the dielectric slab, and to shift them by moving the slab relative to the metamaterial. Specifically, using numerical simulations we design a microwave metamaterial absorber and experimentally demonstrate that its central frequency can be set anywhere in a 1.6 GHz frequency range. The proposed configuration is simple and easy to make, and may be readily extended to THz frequencies.

  11. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  12. Metamaterial perfect absorber based hot electron photodetection.

    PubMed

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  13. Fabrication of THz Sensor with Metamaterial Absorber

    NASA Astrophysics Data System (ADS)

    Gonzalez, Hugo; Alves, Fabio; Karunasiri, Gamani

    The terahertz (THz) portion of the electromagnetic spectrum (0.1-10 THz) has not been fully utilized due to the lack of sensitive detectors. Real-time imaging in this spectral range has been demonstrated using uncooled infrared microbolometer cameras and external illumination provided by quantum cascade laser (QCL) based THz sources. However, the microbolometer pixels in the cameras have not been optimized to achieve high sensitivity in THz frequencies. Recently, we have developed a highly sensitive micromechanical THz sensor employing bi-material effect with an integrated metamaterial absorber tuned to the THz frequency of interest. The use of bi-material structures causes deflection on the sensor to as the absorbed THz radiation increases its temperature, which can be monitored optically by reflecting a light beam. This approach eliminates the integration of readout electronics needed in microbolometers. The absorption of THz by metamaterial can be tailored by controlling geometrical parameters. The sensors can be fabricated using conventional microelectronic materials and incorporated into pixels to form focal plane arrays (FPAs). In this presentation, characterization and readout of a THz sensor with integrated metamaterial structure will be described. Supported by DoD.

  14. Erbium concentration dependent absorbance in tellurite glass

    SciTech Connect

    Sazali, E. S. Rohani, M. S. Sahar, M. R. Arifin, R. Ghoshal, S. K. Hamzah, K.

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  15. Method of designing layered sound absorbing materials

    NASA Astrophysics Data System (ADS)

    Atalla, Youssef; Panneton, Raymond

    2002-11-01

    A widely used model for describing sound propagation in porous materials is the Johnson-Champoux-Allard model. This rigid frame model is based on five geometrical properties of the porous medium: resistivity, porosity, tortuosity, and viscous and thermal characteristic lengths. Using this model and with the knowledge of such properties for different absorbing materials, the design of a multiple layered system can be optimized efficiently and rapidly. The overall impedance of the layered systems can be calculated by the repeated application of single layer impedance equation. The knowledge of the properties of the materials involved in the layered system and their physical meaning, allows to perform by computer a systematic evaluation of potential layer combinations rather than do it experimentally which is time consuming and always not efficient. The final design of layered materials can then be confirmed by suitable measurements. A method of designing the overall acoustic absorption of multiple layered porous materials is presented. Some aspects based on the material properties, for designing a flat layered absorbing system are considered. Good agreement between measured and computed sound absorption coefficients has been obtained for the studied configurations. [Work supported by N.S.E.R.C. Canada, F.C.A.R. Quebec, and Bombardier Aerospace.

  16. A novel structure for tunable terahertz absorber based on graphene.

    PubMed

    Xu, Bing-Zheng; Gu, Chang-Qing; Li, Zhuo; Niu, Zhen-Yi

    2013-10-01

    Graphene can be used as a platform for tunable absorbers for its tunability of conductivity. In this paper, we proposed an "uneven dielectric slab structure" for the terahertz (THz) tunable absorber based on graphene. The absorber consists of graphene-dielectric stacks and an electric conductor layer, which is easy to fabricate in the manufacturing technique. Fine tuning of the absorption resonances can be conveniently achieved by adjusting the bias voltage. Both narrowband and broadband tunable absorbers made of this structure are demonstrated without using a patterned graphene. In addition, this type of graphene-based absorber exhibits stable resonances with a wide range angles of obliquely incident electromagnetic waves. PMID:24104291

  17. Container and method for absorbing and reducing hydrogen concentration

    DOEpatents

    Wicks, George G.; Lee, Myung W.; Heung, Leung K.

    2001-01-01

    A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

  18. Composite neutron absorbing coatings for nuclear criticality control

    DOEpatents

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  19. Determination of decay coefficients for combustors with acoustic absorbers

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.; Espander, W. R.; Baer, M. R.

    1972-01-01

    An analytical technique for the calculation of linear decay coefficients in combustors with acoustic absorbers is presented. Tuned circumferential slot acoustic absorbers were designed for the first three transverse modes of oscillation, and decay coefficients for these absorbers were found as a function of backing distance for seven different chamber configurations. The effectiveness of the absorbers for off-design values of the combustion response and acoustic mode is also investigated. Results indicate that for tuned absorbers the decay coefficient increases approximately as the cube of the backing distance. For most off-design situations the absorber still provides a damping effect. However, if an absorber designed for some higher mode of oscillation is used to damp lower mode oscillations, a driving effect is frequently found.

  20. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  1. Garlic for the common cold.

    PubMed

    Lissiman, Elizabeth; Bhasale, Alice L; Cohen, Marc

    2014-01-01

    Background Garlic is alleged to have antimicrobial and antiviral properties that relieve the common cold, among other beneficial effects. There is widespread usage of garlic supplements. The common cold is associated with significant morbidity and economic consequences. On average, children have six to eight colds per year and adults have two to four.Objectives To determine whether garlic (Allium sativum) is effective for the prevention or treatment of the common cold, when compared to placebo, no treatment or other treatments.Search methods We searched CENTRAL (2014, Issue 7),OLDMEDLINE (1950 to 1965),MEDLINE (January 1966 to July week 5, 2014), EMBASE(1974 to August 2014) and AMED (1985 to August 2014).Selection criteria Randomised controlled trials of common cold prevention and treatment comparing garlic with placebo, no treatment or standard treatment.Data collection and analysis Two review authors independently reviewed and selected trials from searches, assessed and rated study quality and extracted relevant data.Main results In this updated review, we identified eight trials as potentially relevant from our searches. Again, only one trial met the inclusion criteria.This trial randomly assigned 146 participants to either a garlic supplement (with 180 mg of allicin content) or a placebo (once daily)for 12 weeks. The trial reported 24 occurrences of the common cold in the garlic intervention group compared with 65 in the placebo group (P value < 0.001), resulting in fewer days of illness in the garlic group compared with the placebo group (111 versus 366). The number of days to recovery from an occurrence of the common cold was similar in both groups (4.63 versus 5.63). Only one trial met the inclusion criteria, therefore limited conclusions can be drawn. The trial relied on self reported episodes of the common cold but was of reasonable quality in terms of randomisation and allocation concealment. Adverse effects included rash and odour. Authors' conclusions

  2. Garlic for the common cold.

    PubMed

    Lissiman, Elizabeth; Bhasale, Alice L; Cohen, Marc

    2014-11-11

    Background Garlic is alleged to have antimicrobial and antiviral properties that relieve the common cold, among other beneficial effects. There is widespread usage of garlic supplements. The common cold is associated with significant morbidity and economic consequences. On average, children have six to eight colds per year and adults have two to four.Objectives To determine whether garlic (Allium sativum) is effective for the prevention or treatment of the common cold, when compared to placebo, no treatment or other treatments.Search methods We searched CENTRAL (2014, Issue 7),OLDMEDLINE (1950 to 1965),MEDLINE (January 1966 to July week 5, 2014), EMBASE(1974 to August 2014) and AMED (1985 to August 2014).Selection criteria Randomised controlled trials of common cold prevention and treatment comparing garlic with placebo, no treatment or standard treatment.Data collection and analysis Two review authors independently reviewed and selected trials from searches, assessed and rated study quality and extracted relevant data.Main results In this updated review, we identified eight trials as potentially relevant from our searches. Again, only one trial met the inclusion criteria.This trial randomly assigned 146 participants to either a garlic supplement (with 180 mg of allicin content) or a placebo (once daily)for 12 weeks. The trial reported 24 occurrences of the common cold in the garlic intervention group compared with 65 in the placebo group (P value < 0.001), resulting in fewer days of illness in the garlic group compared with the placebo group (111 versus 366). The number of days to recovery from an occurrence of the common cold was similar in both groups (4.63 versus 5.63). Only one trial met the inclusion criteria, therefore limited conclusions can be drawn. The trial relied on self reported episodes of the common cold but was of reasonable quality in terms of randomisation and allocation concealment. Adverse effects included rash and odour. Authors' conclusions

  3. Method of absorbing UF.sub.6 from gaseous mixtures in alkamine absorbents

    DOEpatents

    Lafferty, Robert H.; Smiley, Seymour H.; Radimer, Kenneth J.

    1976-04-06

    A method of recovering uranium hexafluoride from gaseous mixtures employing as an absorbent a liquid composition at least one of the components of which is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2.

  4. Absorbing layers for the Dirac equation

    SciTech Connect

    Pinaud, Olivier

    2015-05-15

    This work is devoted to the construction of perfectly matched layers (PML) for the Dirac equation, that not only arises in relativistic quantum mechanics but also in the dynamics of electrons in graphene or in topological insulators. While the resulting equations are stable at the continuous level, some care is necessary in order to obtain a stable scheme at the discrete level. This is related to the so-called fermion doubling problem. For this matter, we consider the numerical scheme introduced by Hammer et al. [19], and combine it with the discretized PML equations. We state some arguments for the stability of the resulting scheme, and perform simulations in two dimensions. The perfectly matched layers are shown to exhibit, in various configurations, superior absorption than the absorbing potential method and the so-called transport-like boundary conditions.

  5. Porous Carbon Nanoparticle Networks with Tunable Absorbability

    PubMed Central

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-01-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels. PMID:23982181

  6. Electromagnetic radiation absorbers and modulators comprising polyaniline

    DOEpatents

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  7. Quasiperiodicity in lasers with saturable absorbers

    SciTech Connect

    Erneux, T.; Mandel, P.; Magnan, J.F.

    1984-05-01

    In this paper, we consider the mean-field equations for the laser with a saturable absorber (LSA) and concentrate on the low-intensity solutions. We show that the LSA equations may admit two successive bifurcations. The first bifurcation corresponds to the transition from the zero-intensity state to time-periodic intensities and is a Hopf bifurcation. The second bifurcation corresponds to the transition from these time-periodic intensities to quasiperiodic intensities which are characterized by two incommensurable frequencies. In order to describe these transitions, we investigate a particular limit of the parameters and propose a new perturbation method for solving the LSA equations. We give analytical conditions for the existence of both the primary and secondary bifurcations.

  8. Porous carbon nanoparticle networks with tunable absorbability.

    PubMed

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-01-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels. PMID:23982181

  9. Porous Carbon Nanoparticle Networks with Tunable Absorbability

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-08-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels.

  10. Statistics of the doses absorbed by workers

    NASA Astrophysics Data System (ADS)

    Parisi, A.

    1982-10-01

    A statistical analysis of the distribution of the doses by individual workers is presented to assess existing norms. A log-normal distribution is assumed for the individual doses. A reference distribution is introduced, characterized by log-normal distribution of annual doses, average 0,5 rem (10% of the limit) and 0.1% of the individuals that will absorb more than 5 rem. Expressions are given for the probability of finding a dose in a given interval and for the fraction of the collective dose due to doses from a given interval. An example using data from medical professions in the United States shows that the fraction of workers with annual doses larger than 5 rem is not contained within the 0.1% recommended limit, and that the level of risk is not uniform between professions.

  11. Microcellular ceramic foams for radar absorbing structures

    SciTech Connect

    Huling, J.; Phillips, D.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project is to develop a lightweight, semi-structural, radar-absorbing ceramic foam that can be incorporated into aircraft exhaust systems to replace many of the currently used dense ceramic parts and thereby improve the radar cross section. Although the conventional processes for producing ceramic foams have not been able to provide materials that meet the design specifications for high strength at low density, we have developed and demonstrated a novel sol-gel emulsion process for preparing microcellular ceramic foams in which compositional and microstructural control is expected to provide the requisite high-temperature radar-absorption, strength-to-weight ratio, and thermal insulative properties.

  12. Cusps, self-organization, and absorbing states.

    PubMed

    Bonachela, Juan A; Alava, Mikko; Muñoz, Miguel A

    2009-05-01

    Elastic interfaces embedded in (quenched) random media exhibit metastability and stick-slip dynamics. These nontrivial dynamical features have been shown to be associated with cusp singularities of the coarse-grained disorder correlator. Here we show that annealed systems with many absorbing states and a conservation law but no quenched disorder exhibit identical cusps. On the other hand, similar nonconserved systems in the directed percolation class are also shown to exhibit cusps but of a different type. These results are obtained both by a recent method to explicitly measure disorder correlators and by defining an alternative new protocol inspired by self-organized criticality, which opens the door to easily accessible experimental realizations.

  13. Cold and lonely: does social exclusion literally feel cold?

    PubMed

    Zhong, Chen-Bo; Leonardelli, Geoffrey J

    2008-09-01

    Metaphors such as icy stare depict social exclusion using cold-related concepts; they are not to be taken literally and certainly do not imply reduced temperature. Two experiments, however, revealed that social exclusion literally feels cold. Experiment 1 found that participants who recalled a social exclusion experience gave lower estimates of room temperature than did participants who recalled an inclusion experience. In Experiment 2, social exclusion was directly induced through an on-line virtual interaction, and participants who were excluded reported greater desire for warm food and drink than did participants who were included. These findings are consistent with the embodied view of cognition and support the notion that social perception involves physical and perceptual content. The psychological experience of coldness not only aids understanding of social interaction, but also is an integral part of the experience of social exclusion. PMID:18947346

  14. Clearance of absorbed selenium by the liver

    SciTech Connect

    Kato, Tatsuko; Read, R.; Rozga, J.; Burk, R.F. )

    1991-03-11

    The liver plays a central role in the metabolism of selenium. It secretes plasma selenoproteins, contains a major fraction of the glutathione peroxidase in the body, and synthesizes excretory metabolites. The role of the liver in processing newly absorbed selenium was studied. Male chow-fed rats were fasted overnight and given 24 ng of selenium as {sup 75}SeO{sub 3}{sup 2{minus}} by stomach tube. Animals were exsanguinated at 15, 30, 45, 60, 90, 120, and 180 min after dosing. Comparison of {sup 75}Se uptake by liver, kidney, heart, muscle, testis, brain, and spleen indicated an earlier uptake by liver than by any other tissue. At 15 min, {sup 75}Se in the portal vein blood was 2.6 times that in the hepatic vein blood. Gel filtration analysis suggested a loose association of {sup 75}Se with protein in plasma at 15 min, but immunoprecipitation indicated it was largely in the form of selenoprotein P after 30 min. End-to-side portacaval shunts (PCS) were constructed in rats and sham-operated animals were used as controls. When {sup 75}SeO{sub 3}{sup 2{minus}} was given to animals with PCS, uptake of {sup 75}Se by liver did not precede uptake by other tissues. Also no gradient was detected across the lungs or kidney. {sup 75}Se content of the kidney was higher in PCS rats than in sham-operated rats. This is consistent with removal of the first-pass effect of the liver facilitating uptake of {sup 75}Se by systemic tissues. These results suggest that the preferential uptake of absorbed selenium by the liver is due both to its position in the portal circulation and to an intrinsic high uptake capacity.

  15. Light Absorbing Aerosols in Mexico City

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.

    2008-12-01

    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  16. Spectroscopy with cold and ultra-cold neutrons

    NASA Astrophysics Data System (ADS)

    Abele, Hartmut; Jenke, Tobias; Konrad, Gertrud

    2015-05-01

    We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10-4 level. The second method that we refer to as gravity resonance spectroscopy (GRS) allows to test Newton's gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  17. Mathematical modeling of cold cap

    SciTech Connect

    Pokorny, Richard; Hrma, Pavel R.

    2012-10-13

    The ultimate goal of studies of cold cap behavior in glass melters is to increase the rate of glass processing in an energy-efficient manner. Regrettably, mathematical models, which are ideal tools for assessing the responses of melters to process parameters, have not paid adequate attention to the cold cap. In this study, we consider a cold cap resting on a pool of molten glass from which it receives a steady heat flux while temperature, velocity, and extent of conversion are functions of the position along the vertical coordinate. A one-dimensional (1D) mathematical model simulates this process by solving the differential equations for mass and energy balances with appropriate boundary conditions and constitutive relationships for material properties. The sensitivity analyses on the effects of incoming heat fluxes to the cold cap through its lower and upper boundaries show that the cold cap thickness increases as the heat flux from above increases, and decreases as the total heat flux increases. We also discuss the effects of foam, originating from batch reactions and from redox reactions in molten glass and argue that models must represent the foam layer to achieve a reliable prediction of the melting rate as a function of feed properties and melter conditions.

  18. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  19. Optical Response of Strained- and Unstrained-Silicon Cold-Electron Bolometers

    NASA Astrophysics Data System (ADS)

    Brien, T. L. R.; Ade, P. A. R.; Barry, P. S.; Dunscombe, C. J.; Leadley, D. R.; Morozov, D. V.; Myronov, M.; Parker, E. H. C.; Prest, M. J.; Prunnila, M.; Sudiwala, R. V.; Whall, T. E.; Mauskopf, P. D.

    2016-07-01

    We describe the optical characterisation of two silicon cold-electron bolometers each consisting of a small (32 × 14 mathrm {\\upmu m}) island of degenerately doped silicon with superconducting aluminium contacts. Radiation is coupled into the silicon absorber with a twin-slot antenna designed to couple to 160-GHz radiation through a silicon lens. The first device has a highly doped silicon absorber, the second has a highly doped strained-silicon absorber. Using a novel method of cross-correlating the outputs from two parallel amplifiers, we measure noise-equivalent powers of 3.0 × 10^{-16} and 6.6 × 10^{-17} mathrm {W Hz^{{-1}/{2}}} for the control and strained device, respectively, when observing radiation from a 77-K source. In the case of the strained device, the noise-equivalent power is limited by the photon noise.

  20. Cold welded laser mirror assembly

    SciTech Connect

    Chaffee, E.G.

    1989-02-07

    A gas laser apparatus is described comprising: (a) a gas laser tube having a bore extending between cathode and anode ends; (b) the laser tube terminating at each end with a bellows assembly operative to extend the length of the tube bore; (c) each bellows assembly comprising: (i) an adjustably positionable metal bellows secured to a selected end of the tube; (ii) a tubular pedestal secured at one end to the bellows to form an extension thereof and at the opposite end providing a mirror mount surface; (iii) a mirror secured to the surface; (iv) a cold weld material located between the mirror and mirror mount surface; and (v) retaining means secured to the pedestal encasing the outer portion of the mirror and operative to apply pressure to the cold weld material to establish a cold weld seal between the mirror and mirror mount surface to retain the mirror on and prevent shifting of the mirror with respect to the mirror mount surface.

  1. COLD-SAT dynamic model

    NASA Technical Reports Server (NTRS)

    Adams, Neil S.; Bollenbacher, Gary

    1992-01-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  2. Antihydrogen Formation using Cold Plasmas

    SciTech Connect

    Madsen, N.; Bowe, P.D.; Hangst, J.S.; Amoretti, M.; Carraro, C.; Macri, M.; Testera, G.; Variola, A.; Amsler, C.; Johnson, I.; Pruys, H.; Regenfus, C.; Bonomi, G.; Bouchta, A.; Doser, M.; Kellerbauer, A.; Landua, R.; Cesar, C.L.; Charlton, M.; Joergensen, L.V.

    2004-10-20

    Antihydrogen, the antimatter counterpart of the hydrogen atom, can be formed by mixing cold samples of antiprotons and positrons. In 2002 the ATHENA collaboration succeeded in the first production of cold antihydrogen. By observing and imaging the annihilation products of the neutral, non-confined, antihydrogen atoms annihilating on the walls of the trap we can observe the production in quasi-real-time and study the dynamics of the formation mechanism. The formation mechanism strongly influences the final state of the formed antihydrogen atoms, important for future spectroscopic comparison with hydrogen. This paper briefly summarizes the current understanding of the antihydrogen formation in ATHENA.

  3. Measurement and Simulation Results of Ti Coated Microwave Absorber

    SciTech Connect

    Sun, Ding; McGinnis, Dave; /Fermilab

    1998-11-01

    When microwave absorbers are put in a waveguide, a layer of resistive coating can change the distribution of the E-M fields and affect the attenuation of the signal within the microwave absorbers. In order to study such effect, microwave absorbers (TT2-111) were coated with titanium thin film. This report is a document on the coating process and measurement results. The measurement results have been used to check the simulation results from commercial software HFSS (High Frequency Structure Simulator.)

  4. Optoacoustic control of laser energy absorbed inside tissue

    NASA Astrophysics Data System (ADS)

    Genina, Elina A.; Lapin, Sergey A.; Petrov, Vladimir V.; Tuchin, Valery V.

    2001-06-01

    Monitoring of laser energy absorbed inside tissue is very impotent for laser thermocoagulation of tumors, laser surgery etc. Experimental results have shown that analysis of optoacoustic signal magnitude induced by short laser pulse inside tissue can give quantitative information about laser fluence absorbed by the tissue. We have investigated some tissue phantoms with absorbing objects inside. The first harmonic (1064 nm) of Q-switched Nd:YAG-laser was used for generation of optoacoustic signals.

  5. Vertical-plane pendulum absorbers for minimizing helicopter vibratory loads

    NASA Technical Reports Server (NTRS)

    Amer, K. B.; Neff, J. R.

    1974-01-01

    The use of pendulum dynamic absorbers mounted on the blade root and operating in the vertical plane to minimize helicopter vibratory loads was discussed. A qualitative description was given of the concept of the dynamic absorbers and some results of analytical studies showing the degree of reduction in vibratory loads attainable are presented. Operational experience of vertical plane dynamic absorbers on the OH-6A helicopter is also discussed.

  6. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.

    PubMed

    Li, Wei; Guler, Urcan; Kinsey, Nathaniel; Naik, Gururaj V; Boltasseva, Alexandra; Guan, Jianguo; Shalaev, Vladimir M; Kildishev, Alexander V

    2014-12-17

    A high-temperature stable broadband plasmonic absorber is designed, fabricated, and optically characterized. A broadband absorber with an average high absorption of 95% and a total thickness of 240 nm is fabricated, using a refractory plasmonic material, titanium nitride. This absorber integrates both the plasmonic resonances and the dielectric-like loss. It opens a path for the interesting applications such as solar thermophotovoltaics and optical circuits.

  7. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    NASA Astrophysics Data System (ADS)

    Hader, J.; Yang, H.-J.; Scheller, M.; Moloney, J. V.; Koch, S. W.

    2016-02-01

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  8. A clumpy stellar wind and luminosity-dependent cyclotron line revealed by the first Suzaku observation of the high-mass X-ray binary 4U 1538–522

    SciTech Connect

    Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex; Fürst, Felix; Pottschmidt, Katja; Wilms, Jörn

    2014-09-01

    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538–522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 ± 0.4 keV and the iron Kα line at 6.426 ± 0.008 keV, as well as placing limits on the strengths of the iron Kβ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curve is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron Kα line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.

  9. Optimal active vibration absorber: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1992-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  10. Decomposition-based recovery of absorbers in turbid media

    SciTech Connect

    Campbell, S. D.; Goodin, I. L.; Grobe, S. D.; Su, Q.; Grobe, R.

    2007-12-15

    We suggest that the concept of the point-spread function traditionally used to predict the blurred image pattern of various light sources embedded inside turbid media can be generalized under certain conditions to predict also the presence and location of spatially localized absorbing inhomogeneities based on shadow point-spread functions associated with each localized absorber in the medium. The combined image obtained from several absorbers can then be decomposed approximately into the arithmetic sums of these individual shadow point-spread functions with suitable weights that can be obtained from multiple-regression analysis. This technique permits the reconstruction of the location of absorbers.

  11. Tunable microwave metamaterial absorbers using varactor-loaded split loops

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfeng; Li, Delong; Yan, Shuang; Cai, Yijun; Huo Liu, Qing; Lin, Timothy

    2015-12-01

    Currently, implementation of active circuit elements within metamaterials is an effective way to make them electrically tunable. We combine varactors with split copper loops in a metamaterial absorber in order to obtain an electrically tunable microwave response. This absorber has a compact planar structure and a simplified back feeding network. Flexible frequency tunability of the microwave reflection in the range of 5-6 GHz is experimentally achieved. The design, simulation, and experimental results are systematically presented. The proposed method is scalable for developing active metamaterial absorbers based on metal loops, and shows a promising potential of active metamaterial absorbers for extensive microwave applications.

  12. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  13. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Larchar, Steven W.; Henderson, Gena; Tran, Donald; Barth, Tim

    2012-01-01

    Problem Introduction: 1. Prevent Cold Plate Damage in Space Shuttle. 1a. The number of cold plate problems had increased from an average of 16.5 per/year between 1990 through 2000, to an average of 39.6 per year between 2001through 2005. 1b. Each complete set of 80 cold plates cost approximately $29 million, an average of $362,500 per cold plate. 1c It takes four months to produce a single cold plate. 2. Prevent Cold Plate Damage in Future Space Vehicles.

  14. Hot Carrier Extraction with Plasmonic Broadband Absorbers.

    PubMed

    Ng, Charlene; Cadusch, Jasper J; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gómez, Daniel E

    2016-04-26

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photocatalysis, photovoltaics, and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multistack layered configuration to achieve broadband, near-unit light absorption, which is spatially localized on the nanoparticle layer. We show that this enhanced light absorbance leads to ∼40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where (i) the photons have energies higher than the Schottky junctions and (ii) the absorption of light is localized on the metal nanoparticles.

  15. Ultrathin microwave absorber based on metamaterial

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2016-11-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8–4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62–4.2 GHz; however, the absorption was slightly lower than 99% in 1.8–2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments.

  16. A variable passive low-frequency absorber

    NASA Astrophysics Data System (ADS)

    Larsen, Niels Werner; Thompson, Eric R.; Gade, Anders Christian

    2005-04-01

    Multi-purpose concert halls face a dilemma. They can host classical music concerts, rock concerts and spoken word performances in a matter of a short period. These different performance types require significantly different acoustic conditions in order to provide the best sound quality to both the performers and the audience. A recommended reverberation time for classical music may be in the range of 1.5-2 s for empty halls, where rock music sounds best with a reverberation time around 0.8-1 s. Modern rhythmic music often contains high levels of sound energy in the low frequency bands but still requires a high definition for good sound quality. Ideally, the absorption of the hall should be adjustable in all frequency bands in order to provide good sound quality for all types of performances. The mid and high frequency absorption is easily regulated, but adjusting the low-frequency absorption has typically been too expensive or requires too much space to be practical for multi-purpose halls. Measurements were made on a variable low-frequency absorber to develop a practical solution to the dilemma. The paper will present the results of the measurements as well as a possible design.

  17. Oil well sucker rod shock absorber

    SciTech Connect

    Knox, F.B.

    1986-02-18

    An oil well sucker rod shock absorber is described which consists of: an outer cylindrical casing defined by a cylindrical wall and having a removable upper plug and lower plug disposed respectively at upper and lower extremities of the casing. The upper plug has an axial bore and the lower plug defines a closed lower end and has an upwardly facing top surface. The plunger rod is connected to the sucker rod and is slidably disposed in the bore of the upper plug. A piston within the cylindrical casing is coupled to the plunger rod and has a downwardly facing bottom surface. Biasing means have a maximum vertical length disposed vertically within the casing and extending between the downwardly facing surface of the piston and the upwardly facing surface of the lower plug means at all times. This allows vertical reciprocal translation of the plunger rod and the piston within the cylindrical casing downwardly against the biasing means. Apertures are disposed through the cylindrical casing along the entire length thereof opposite the length of the biasing means, allowing downhole fluid pressure to be applied to the piston within the cylindrical casing via the apertures to be added to the force of the biasing means, without causing a fluid lock within the cylinder. Slap and wear of the sucker rod resulting therefrom are reduced and damage prevented.

  18. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott

    2011-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  19. Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  20. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  1. Design of a multiband terahertz perfect absorber

    NASA Astrophysics Data System (ADS)

    Dan, Hu; Hong-yan, Wang; Zhen-jie, Tang; Xi-wei, Zhang; Lin, Ju; Hua-ying, Wang

    2016-03-01

    A thin-flexible multiband terahertz metamaterial absorber (MA) has been investigated. Each unit cell of the MA consists of a simple metal structure, which includes the top metal resonator ring and the bottom metallic ground plane, separated by a thin-flexible dielectric spacer. Finite-difference time domain simulation indicates that this MA can achieve over 99% absorption at frequencies of 1.50 THz, 3.33 THz, and 5.40 THz by properly assembling the sandwiched structure. However, because of its asymmetric structure, the MA is polarization-sensitive and can tune the absorptivity of the second absorption peak by changing the incident polarization angle. The effect of the error of the structural parameters on the absorption efficiency is also carefully analyzed in detail to guide the fabrication. Moreover, the proposed MA exhibits high refractive-index sensing sensitivity, which has potential applications in multi-wavelength sensing in the terahertz region. Project supported by the National Natural Science Foundation of China (Grant No. 11504006), the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 15A140002), and the Science and Technology Planning Project of Henan Province, China (Grant No. 142300410366).

  2. Magnetorheological elastomers in tunable vibration absorbers

    NASA Astrophysics Data System (ADS)

    Ginder, John M.; Schlotter, William F.; Nichols, Mark E.

    2001-07-01

    Filling an elastomeric material with magnetizable particles leads to mechanical properties -shear moduli, tensile moduli, and magnetostriction coefficients - that are reversibly and rapidly controllable by an applied magnetic field. The origin of the field dependence of these properties is the existence of field-induced dipole magnetic forces between the particles. These 'smart' composites, which are sometimes termed magnetorheological (MR) elastomers, have been explored for use in a number of components, including automotive suspension bushings. In these and other applications, the tunability of the stiffness can enhance the compliance-control or vibration-transfer performance of the complex mechanical systems in which they are used. In the present study, we have constructed a simple one-degree-of-freedom mass-spring system - an adaptive tuned vibration absorber - that utilizes MR elastomers as variable-spring-rate elements. This device was used not only to explore the performance of such tunable components, but also to extend measurements of the shear moduli of these materials to higher frequencies than has previously been reported. We find that the field-induced increase in moduli of these materials is effective to mechanical frequencies well above 1 kHz, and that the moduli are consistent with the behavior expected for filled elastomers.

  3. Cold plasma decontamination of foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry and fruits and vegetables. This flexible sanitizing method uses electricity and a carrier gas such as air, oxygen, nitrogen or helium; antimicrobi...

  4. The Cold Blooded Killer: Hypothermia.

    ERIC Educational Resources Information Center

    Keller, Rosanne

    Part of a series of home literacy readers with conversational text and sketches, this booklet depicts the subarctic Alaskan environment where cold makes extreme demands on body metabolism. Body temperature must be maintained above 80F (26.7C). A condition of too little body-heat is termed hypo- ('deficit') thermia ('heat'). Hypothermia is the…

  5. Cold War Geopolitics: Embassy Locations.

    ERIC Educational Resources Information Center

    Vogeler, Ingolf

    1995-01-01

    Asserts that the geopolitics of the Cold War can be illustrated by the diplomatic ties among countries, particularly the superpowers and their respective allies. Describes a classroom project in which global patterns of embassy locations are examined and compared. Includes five maps and a chart indicating types of embassy locations. (CFR)

  6. Images of the Cold War.

    ERIC Educational Resources Information Center

    Chomsky, Noam

    1989-01-01

    The conventional U.S. picture traces the Cold War to Soviet violation of wartime agreements, while the U.S.S.R. defends its actions as responses to American violations and foreign adventurism. An understanding of how ideology is shaped by national self-interest will help students see beyond propaganda and myth in interpreting past and current…

  7. Cold fusion; Myth versus reality

    SciTech Connect

    Rabinowitz, M. )

    1990-01-01

    Experiments indicate that several different nuclear reactions are taking place. Some of the experiments point to D-D fusion with a cominant tritium channel as one of the reactions. The article notes a similarity between Prometheus and the discoveries of cold fusion.

  8. "Stone Cold": Worthy of Study?

    ERIC Educational Resources Information Center

    Douthwaite, Alison

    2015-01-01

    This article draws on my experiences of teaching "Stone Cold" to respond to a blog post suggesting that the novel holds little educational value. I argue that the novel's narrative style helps to foster criticality while its subject matter can help students see the relevance of literature to the world around them. Relating this to…

  9. HOM absorbers for ERL cryomodules at BNL

    SciTech Connect

    Hahn,H.; Ben-Zvi, I.; Hammons, L.; Xu, W.

    2009-09-20

    The physics needs and technical requirements for several future accelerator projects at the Relativistic Heavy Ion Collider (RHIC) all involve electron Energy Recovery Linacs (ERL). The required high-current, high-charge operating parameters make effective higher-order-mode (HOM) damping mandatory and the development of HOM dampers for a prototypical five-cell cavity is actively pursued. An experimental five-cell niobium cavity with ferrite dampers has been constructed, and effective HOM damping has been demonstrated at room and superconducting (SC) temperatures. A novel type of ferrite damper around a ceramic break has been developed for the ERL electron gun and prototype tests are also reported. Contemplated future projects are based on assembling a chain of superconducting cavities in a common cryomodule with the dampers placed in the cold space between the cavities, imposing severe longitudinal space constraints. Various damper configurations have been studied by placing them between two five-cell copper cavities. Measured and simulated copper cavity results, external Q-values of possible dampers and fundamental mode losses are presented.

  10. The Icy Cold Heart of Pluto

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.

    2015-11-01

    The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy; familiar examples include the polar caps of Earth and Mars. For planets tilted by more than 45 degrees, however, the poles actually receive more energy than some other latitudes. Pluto, with its current obliquity of 119 degrees, has minima in its average annual insolation at +/- 27 degrees latitude, with ~1.5% more energy flux going to the equator and ~15% more to the poles. Remarkably, the fraction of annual solar energy incident on different latitudes depends only on the obliquity of the planet and not on any of its orbital parameters.Over millions of years, Pluto's obliquity varies sinusoidally from 102-126 degrees, significantly affecting the latitudinal profile of solar energy deposition. Roughly 1Myr ago, the poles received 15% more energy that today while the equator received 13% less. The energy flux to latitudes between 25-35 degrees is far more stable, remaining low over the presumably billions of years since Pluto acquired its current spin properties. Like the poles at Earth, these mid latitudes on Pluto should be favored for the long-term deposition of volatile ices. This is, indeed, the location of the bright icy heart of Pluto, Sputnik Planum.Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal infrared radiation is easily absorbed by icy deposits on Pluto, slowing deposition and facilitating sublimation of volatiles. We argue that the slight but persistent preference for ices to form and survive in the anti-Charon Pluto's heart.

  11. Cold denaturation of monoclonal antibodies

    PubMed Central

    Lazar, Kristi L; Patapoff, Thomas W

    2010-01-01

    The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs. PMID:20093856

  12. Combustion heated cold sealed TEC

    SciTech Connect

    Yarygin, V.I.; Klepikov, V.V.; Meleta, Y.A.; Mikheyev, A.S.; Yarygin, D.V.; Wolff, L.R.

    1997-12-31

    The development of a thermionic domestic boiler system using natural gas, which as performed under an ECS-project in 1992 to 1994 by a Russian-Dutch team of researchers, will be continued again. Thanks to financial support on the part of the Netherlands Organization for Scientific Research (NWO), the major effort in 1997 to 1999 will be focused on the development, manufacture and testing of an improved, easier to fabricate, more repairable and less expensive combustion heated TEC with a longer life-time. The achievement of the aim of this project will make it possible to expand the field of the terrestrial thermionics application and to embark on the commercialization stage. This report discusses the concept of the combustion heated Cold Seal TEC. A Cold Seal TEC will be developed and tested, in which the rubber O-ring seal will electrically insulate the hot shell from the collector heat pipe. The Cold Seal TEC will use a noble gas + cesium as the working medium (the idea of such a TEC was first proposed in 1973 by Professor Musa from Romania). In its cold state, the cesium will short circuit the emitter and the collector. During operation, the interelectrode space will be filled with cesium vapor. The upper part of a Cold Seal TEC will be filled with a noble gas. This noble gas will prevent the O-ring seal from being attacked by the cesium. The TEC output characteristics will be considerably improved by using electrode materials that were developed earlier in the course of an ECS-project for the development of low temperature TEC electrodes.

  13. Vitamin C and the Common Cold Revisited.

    ERIC Educational Resources Information Center

    Travis, H. Richard

    1984-01-01

    Various studies indicate that Vitamin C does not prevent or cure a cold, but it may ameliorate symptoms in some individuals. The development of a balanced life-style is more effective towards cold prevention. (DF)

  14. Helium Find Thaws the Cold Fusion Trail.

    ERIC Educational Resources Information Center

    Pennisi, E.

    1991-01-01

    Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)

  15. Herpes Simplex (Cold Sores and Genital Herpes)

    MedlinePlus

    ... Select a Language: Fact Sheet 508 Herpes Simplex (Cold Sores and Genital Herpes) WHAT IS HERPES? HSV ... virus 1 (HSV1) is the common cause of cold sores (oral herpes) around the mouth. HSV2 normally ...

  16. Tips to Protect Workers in Cold Environments

    MedlinePlus

    ... Anti-Retaliation Tips To Protect Workers In Cold Environments Prolonged exposure to freezing or cold temperatures may ... 321-OSHA. Freedom of Information Act | Privacy & Security Statement | Disclaimers | Important Web Site Notices | International | Contact Us ...

  17. Towards absorbing outer boundaries in general relativity

    NASA Astrophysics Data System (ADS)

    Buchman, Luisa T.; Sarbach, Olivier C. A.

    2006-12-01

    We construct exact solutions to the Bianchi equations on a flat spacetime background. When the constraints are satisfied, these solutions represent in- and outgoing linearized gravitational radiation. We then consider the Bianchi equations on a subset of flat spacetime of the form [0, T] × BR, where BR is a ball of radius R, and analyse different kinds of boundary conditions on ∂BR. Our main results are as follows. (i) We give an explicit analytic example showing that boundary conditions obtained from freezing the incoming characteristic fields to their initial values are not compatible with the constraints. (ii) With the help of the exact solutions constructed, we determine the amount of artificial reflection of gravitational radiation from constraint-preserving boundary conditions which freeze the Weyl scalar Ψ0 to its initial value. For monochromatic radiation with wave number k and arbitrary angular momentum number ell >= 2, the amount of reflection decays as (kR)-4 for large kR. (iii) For each L >= 2, we construct new local constraint-preserving boundary conditions which perfectly absorb linearized radiation with ell <= L. (iv) We generalize our analysis to a weakly curved background of mass M and compute first-order corrections in M/R to the reflection coefficients for quadrupolar odd-parity radiation. For our new boundary condition with L = 2, the reflection coefficient is smaller than that for the freezing Ψ0 boundary condition by a factor of M/R for kR > 1.04. Implications of these results for numerical simulations of binary black holes on finite domains are discussed.

  18. Nylon shock absorber prevents injury to parachute jumpers

    NASA Technical Reports Server (NTRS)

    Mandel, J. A.

    1966-01-01

    Nylon shock absorbers reduce the canopy-opening shock of a parachute to a level that protects the wearer from injury. A shock absorber is mounted on each of the four risers between the shroud lines and the harness. Because of their size and location, they pose no problem in repacking the chute and harness after a jump.

  19. An Absorbing Look at Terry-Cloth Towels

    ERIC Educational Resources Information Center

    Moyer, Richard; Everett, Susan

    2010-01-01

    This article describes a lesson where students explore the absorbency of several towels with different weaves and weights. The lesson follows the 5E learning-cycle model and incorporates engineering in the sense of product testing with a focus on the relationship between the weave of a towel and its absorbency. The National Science Education…

  20. 14 CFR 27.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 27.475 Section... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock... be in their static position and the shock absorbers to be in their most critical position....

  1. 14 CFR 27.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tires and shock absorbers. 27.475 Section... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock... be in their static position and the shock absorbers to be in their most critical position....

  2. Science on a Roll. Part One: Absorbing Inquiry.

    ERIC Educational Resources Information Center

    Brendzel, Sharon

    2002-01-01

    Presents an activity that tests the absorbency of different brands of paper towels. Suggests making this activity into an open-ended inquiry type of activity. Includes sample questions to guide students, topics for class discussion, and sample methods of using the absorbency activity. (KHR)

  3. 21 CFR 880.5300 - Medical absorbent fiber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... and that is used for applying medication to, or absorbing small amounts of body fluids from, a patient's body surface. Absorbent fibers intended solely for cosmetic purposes are not included in...

  4. Physically absorbable reagents-collectors in elementary flotation

    SciTech Connect

    S.A. Kondrat'ev; I.G. Bochkarev

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  5. The cold equation of state of tantalum

    SciTech Connect

    Greeff, Carl W; Rudin, Sven P; Corckett, Scott D; Wills, John M

    2009-01-01

    In high-pressure isentropic compression experiments (ICE), the pressure is dominated by the cold curve. In order to obtain an accurate semi-empirical cold curve for Ta, we calculate the thermal pressure from ab initio phonon and electronic excitation spectra. The cold curve is then inferred from ultrasonic and shock data. Our empirical cold pressure is compared to density functional calculations and found to be closer to GGA results at low pressure and to approach LDA at high pressure.

  6. Cold moderators for pulsed neutron sources

    SciTech Connect

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs.

  7. Broadband terahertz metamaterial absorber based on sectional asymmetric structures.

    PubMed

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-01-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber's working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber's each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging. PMID:27571941

  8. Performance evaluation of CFRP-rubber shock absorbers

    SciTech Connect

    Lamanna, Giuseppe Sepe, Raffaele

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  9. Metamaterial perfect absorber using the magnetic resonance of dielectric inclusions

    NASA Astrophysics Data System (ADS)

    Dung, Nguyen Van; Tung, Bui Son; Khuyen, Bui Xuan; Yoo, Young Joon; Lee, YoungPak; Rhee, Joo Yull; Lam, Vu Dinh

    2016-04-01

    In this report, we introduce a stable metamaterial perfect absorber at GHz frequency based on a novel design of a Mie-type resonance. A single perfect absorption peak is achieved at 9.54 GHz, and the influence of the structural parameters on the absorption behavior is studied; the results were consistent with dielectric-resonator theory. The absorption is demonstrated to be polarizationinsensitive; furthermore, the absorber structure can work for a wide incident angle without any change in the resonance peak. Our absorber structure can also control 47% of the resonance peak's position by changing the temperature of the dielectric layer. Our absorber structure can also be applied as an electromagnetic-wave absorber for wide-incident-angle, thermally-controllable devices.

  10. Theory of patch-antenna metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Bowen, Patrick T.; Baron, Alexandre; Smith, David R.

    2016-06-01

    A metasurface that absorbs waves from all directions of incidence can be achieved if the surface impedance is made to vary as a function of incidence angle in a specific manner. Here we show that a periodic array of planar nanoparticles coupled to a metal film can act as an absorbing metasurface with an angle-dependent impedance. Through a semi-analytical calculation based on coupled-mode theory, we find the perfect absorbing condition is equivalent to balancing the Ohmic and radiative losses of the nanoparticles at normal incidence. Absorption over a wide range of incidence angles can then be obtained by tailoring the scattered far-field pattern of the individual planar nanoparticles such that their radiative losses remain constant. The theory provides a means of understanding the behavior of perfect absorbing structures that have been observed experimentally or numerically, reconciling previously published theories and enabling the optimization of absorbing surfaces.

  11. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    SciTech Connect

    Guddala, Sriram Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-16

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm{sup 2}.

  12. Performance evaluation of CFRP-rubber shock absorbers

    NASA Astrophysics Data System (ADS)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  13. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-01

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.

  14. Vernalizing cold is registered digitally at FLC.

    PubMed

    Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I; Dean, Caroline; Howard, Martin

    2015-03-31

    A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor flowering locus C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure.

  15. Is It a Cold or an Allergy?

    MedlinePlus

    ... C AT I O N S IS IT A Cold OR AN Allergy  ? COLD Common Slight Sometimes Rare or never Usual Common Common Common Rare 3 to 14 days Cold ■■ Antihistamines ■■ Decongestants ■■ Nonsteroidal anti-inflammatory medicines ■■ Wash your ...

  16. Catching a Cold When It's Warm

    MedlinePlus

    ... our exit disclaimer . Subscribe Catching a Cold When It’s Warm What’s the Deal with Summertime Sniffles? Most ... be more unfair than catching a cold when it’s warm? How can cold symptoms arise when it’s ...

  17. 77 FR 43117 - Meeting of the Cold War Advisory Committee for the Cold War Theme Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... National Park Service Meeting of the Cold War Advisory Committee for the Cold War Theme Study AGENCY... with the Federal Advisory Committee Act, 5 U.S.C. Appendix, that the Cold War Advisory Committee for the Cold War Theme Study will conduct a teleconference meeting on August 3, 2012. Members of...

  18. First detection of cold dust in the northern shell of NGC 5128 (Centaurus A)

    NASA Astrophysics Data System (ADS)

    Stickel, M.; van der Hulst, J. M.; van Gorkom, J. H.; Schiminovich, D.; Carilli, C. L.

    2004-02-01

    Deep far-infrared (FIR) imaging data obtained with ISOPHOT at 90 μm, 150 μm, and 200 μm detected the thermal emission from cold dust in the northern shell region of NGC 5128 (Centaurus A), where previously neutral hydrogen and molecular gas has been found. A somewhat extended FIR emission region is present in both the 150 μm and 200 μm map, while only an upper flux limit could be derived from the 90 μm data. The FIR spectral energy distribution can be reconciled with a modified blackbody spectrum with very cold dust color temperatures and emissivity indices in the range 13 K < TDust < 15.5 K and 2 > β > 1, respectively, where the data favor the low temperature end. A representative value for the associated dust mass is MDust ≈ 7×104 M⊙, which together with the HI gas mass gives a gas-to-dust ratio of ≈300, close the average values of normal inactive spiral galaxies. This value, in conjunction with the atomic to molecular gas mass ratio typical for a spiral galaxy, indicates that the interstellar medium (ISM) from the inner part of a captured disk galaxy is likely the origin of the outlying gas and dust. These observations are in agreement with recent theoretical considerations that in galaxy interactions leading to stellar shell structures the less dissipative clumpy component of the ISM from the captured galaxy can lead to gaseous shells. Alternatively, the outlying gas and dust could be a rotating ring structure resulting from an interaction or even late infall of tidal material of a merger in the distant past. With all three components (atomic gas, molecular gas, dust) of the ISM present in the northern shell region, local star formation may account for the chains of young blue stars surrounding the region to the east and north. The dust cloud may also be involved in the disruption of the large scale radio jet before entering the brighter region of the northern radio lobe. Based on observations with ISO, an ESA project with instruments funded by

  19. ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY

    SciTech Connect

    Yeamans, D. R.; Wrights, R. S.

    2002-02-25

    Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

  20. Absorbing WIPP brines : a TRU waste disposal strategy.

    SciTech Connect

    Yeamans, D. R.; Wright, R.

    2002-01-01

    Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

  1. Revealing the Properties of Mg II Absorbing Galaxies at z > 1 with HST WFC3/IR

    NASA Astrophysics Data System (ADS)

    Lundgren, Britt; Brammer, Gabriel, , Dr.; York, Donald G.; Chisholm, John P.; Erb, Dawn; Kulkarni, Varsha P.; Straka, Lorrie; Tremonti, Christina A.; Van Dokkum, Pieter G.; Wake, David

    2015-01-01

    Intervening absorption from Mg II in the spectra of distant quasars is understood to trace the tidal stripping, accretion and outflows of cold, enriched gas in the circumgalactic medium of galaxies, independent of luminosity, to high redshift. Tens of thousands of Mg II absorbers in the range 0.3 < z < 2.2 have been extracted to date from the SDSS spectroscopic quasar sample, but their utility in aiding our understanding of the gaseous processes driving galaxy evolution has been hindered by the observational difficulties of detecting their host galaxies at intermediate and high redshifts and at small angular separations from brighter background quasars. We present first results from an 18-orbit HST Cycle 21 WFC3/IR program, which has obtained direct imaging and grism observations of galaxies in the fields surrounding the 9 quasar sight lines in the SDSS with the highest frequency of uncorrelated foreground Mg II absorption in the range 0.7< z < 2.2. These highly efficient observations include 56 Mg II absorbers, most all of which are matched unambiguously to galaxies in the grism data, thereby doubling the number of spectroscopically confirmed Mg II absorbing galaxies at z > 1. The data further enable precise measurements of the impact parameters, morphologies, inclination angles, star formation rates, and star formation rate surface densities of typical Mg II-selected galaxies, as a function of Mg II absorption strength, which are complete for a large range in projected separations (7-450 kpc) and to low star formation rates (~1.3 Msun/yr).

  2. Cold injury in early infancy.

    PubMed

    Cohen, I J

    1977-04-01

    Sixteen cases of neonatal cold injury, five of them fatal, were seen in the winter of 1974-75. The affected infants, who weighed from 2.5 to 3 kg. had developed symptoms when the ambient termperature was below 10 C. Few of them were referred as cases of hypothermia. Refusal to eat was the most common complaint and less often edema and/or apathy. No correlation was found between death and ethnic origin, sex, duration of illness or minimum temperature. Admission weight, however, tended to be lower in the infants who died. The consistent finding of thrombocytopenia and the suspected bleeding phenomena suggested that disseminated intravascular coagulation may have been a factor in the unfavorable outcome of some of the cases. Evidence supporting such a hypothesis and proposals for the prevention. Diagnosis and treatment of neonatal cold injury are presented. PMID:326724

  3. Cold dark matter heats up.

    PubMed

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities.

  4. Ultra-cold molecule production.

    SciTech Connect

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-12-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled.

  5. Microwave absorbance properties of zirconium–manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers

    SciTech Connect

    Khan, Kishwar Rehman, Sarish

    2014-02-01

    Highlights: • Good candidates for EM materials with low reflectivity. • Good candidates for broad bandwidth at microwave frequency. • Microwave absorbing bandwidth was modulated simply by manipulating the Zr–Mn. • Higher the Zr–Mn content, the higher absorption rates for the electromagnetic radiation. • The predicted reflection loss shows that this can be used for thin ferrite absorber. - Abstract: Nanocrystalline Zr–Mn (x) substituted Co ferrite having chemical formula CoFe{sub 2−2x}Zr{sub x}Mn{sub x}O{sub 4} (x = 0.1–0.4) was prepared by co-precipitation technique. Combining properties such as structural, electrical, magnetic and reflection loss characteristics. Crystal structure and surface morphology of the calcined samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). By using two point probe homemade resistivity apparatus to find resistivity of the sample. Electromagnetic (EM) properties are measured through RF impedance/materials analyzer over 1 MHz–3 GHz. The room-temperature dielectric measurements show dispersion behavior with increasing frequency from 100 Hz to 3 MHz. Magnetic properties confirmed relatively strong dependence of saturation magnetization on Zr–Mn composition. Curie temperature is also found to decrease linearly with addition of Zr–Mn. Furthermore, comprehensive analysis of microwave reflection loss (RL) is carried out as a function of substitution, frequency, and thickness. Composition accompanying maximum microwave absorption is suggested.

  6. Medical problems from cold exposure

    SciTech Connect

    Dembert, M.L.

    1982-01-01

    Problems resulting from cold exposure can be successfully treated when a coordinated emergency medical transport system and appropriate equipment are available, as well as medical personnel knowledgeable in the management of frostbite and hypothermia. Clinical suspicion of these disorders is essential. Profoundly hypothermic individuals with no recordable vital signs have been resuscitated after controlled, rapid rewarming measures and the use of emergency life-support systems.

  7. Acclimatization to cold in humans

    NASA Technical Reports Server (NTRS)

    Kaciuba-Uscilko, Hanna; Greenleaf, John E.

    1989-01-01

    This review focuses on the responses and mechanisms of both natural and artificial acclimatization to a cold environment in mammals, with specific reference to human beings. The purpose is to provide basic information for designers of thermal protection systems for astronauts during intra- and extravehicular activities. Hibernation, heat production, heat loss, vascular responses, body insulation, shivering thermogenesis, water immersion, exercise responses, and clinical symptoms and hypothermia in the elderly are discussed.

  8. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  9. A cold and wet Mars

    NASA Astrophysics Data System (ADS)

    Fairén, Alberto G.

    2010-07-01

    Water on Mars has been explained by invoking controversial and mutually exclusive solutions based on warming the atmosphere with greenhouse gases (the "warm and wet" Mars) or on local thermal energy sources acting in a global freezing climate (the "cold and dry" Mars). Both have critical limitations and none has been definitively accepted as a compelling explanation for the presence of liquid water on Mars. Here is considered the hypothesis that cold, saline and acidic liquid solutions have been stable on the sub-zero surface of Mars for relatively extended periods of time, completing a hydrogeological cycle in a water-enriched but cold planet. Computer simulations have been developed to analyze the evaporation processes of a hypothetical martian fluid with a composition resulting from the acid weathering of basalt. This model is based on orbiter- and lander-observed surface mineralogy of Mars, and is consistent with the sequence and time of deposition of the different mineralogical units. The hydrological cycle would have been active only in periods of dense atmosphere, as having a minimum atmospheric pressure is essential for water to flow, and relatively high temperatures (over ˜245 K) are required to trigger evaporation and snowfall; minor episodes of limited liquid water on the surface could have occurred at lower temperatures (over ˜225 K). During times with a thin atmosphere and even lesser temperatures (under ˜225 K), only transient liquid water can potentially exist on most of the martian surface. Assuming that surface temperatures have always been maintained below 273 K, Mars can be considered a "cold and wet" planet for a substantial part of its geological history.

  10. A Cold Strontium Ion Source

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Lyon, Mary; Blaser, Kelvin; Harper, Stuart; Durfee, Dallin

    2010-03-01

    We present a cold ion source for strontium 87. The source is based off of a standard Low-Velocity-Intense-Source (LVIS) for strontium using permanent magnets in place of anti-Helmholtz coils. Atoms from the LVIS are then ionized in a two photon process as they pass a 20kV anode plate. The result is a mono-energetic beam of ions whose velocity is tunable. Applications for the ions include spectroscopy and ion interferometry.

  11. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  12. Mars: Always Cold, Sometimes Wet?

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; McKay, Christoper P.

    2003-01-01

    A synthesis of a diverse suite of observations of H2O-related landforms that are possible Mars analogs from terrestrial polar regions (Devon Island in the Arctic; the Dry Valleys of Antarctica) put into question any requirement for extended episode(s) of warm and wet climate in Mars past. Geologically transient episodes of localized H2O cycling, forced by exogenic impacts, enhanced endogenic heat flow, and/or orbit-driven short-term local environmental change under an otherwise cold, low pressure (=10(exp 2) mbar) global climate, may be sufficient to account for the martian surface's exposed record of aqueous activity. A Mars that was only sometimes locally warm and wet while remaining climatically cold throughout its history is consistent with results (difficulties) encountered in modeling efforts attempting to support warm martian climate hypotheses. Possible analogs from terrestrial cold climate regions for the recent gully features on Mars also illustrate how transient localized aqueous activity might, under specific circumstances, also occur on Mars under the present frigid global climatic regime.

  13. The COLD-SAT program

    NASA Technical Reports Server (NTRS)

    Bailey, William J.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition and Transfer (COLD-SAT) satellite is an experimental spacecraft launched from an expendable launch vehicle which is designed to investigate the systems and technologies required for efficient and reliable management of cryogenic fluid in the reduced-gravity space environment. Future applications such as Space Station, Space Transportation Vehicle (STV), external tank (ET), aft cargo carrier (ACC) propellant scavenging, storage depots, and lunar and interplanetary missions, among others, have provided the impetus to pursue this technology in a timely manner to support the design efforts. A refined conceptual approach has been developed and an overview of the COLD-SAT program is described which includes the following: (1) a definition of the technology needs and the accompanying experimental six-month baseline mission; (2) a description of the experiment subsystem, major features, and rationale for satisfaction of primary and secondary experiment requirements using LH2 as the test fluid; and (3) a presentation of the conceptual design of the COLD-SAT spacecraft subsystems which support the on-orbit experiment with emphasis on those areas which posed the greatest technical challenge.

  14. Axion cold dark matter revisited

    NASA Astrophysics Data System (ADS)

    Visinelli, L.; Gondolo, P.

    2010-01-01

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae [1], and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass ma = (85 ± 3) μeV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for ma < 15 meV provided a specific value of the initial misalignment angle θi is chosen in correspondence to a given value of its mass ma. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle θi.

  15. Micro-Kelvin cold molecules.

    SciTech Connect

    Strecker, Kevin E.; Chandler, David W.

    2009-10-01

    We have developed a novel experimental technique for direct production of cold molecules using a combination of techniques from atomic optical and molecular physics and physical chemistry. The ability to produce samples of cold molecules has application in a broad spectrum of technical fields high-resolution spectroscopy, remote sensing, quantum computing, materials simulation, and understanding fundamental chemical dynamics. Researchers around the world are currently exploring many techniques for producing samples of cold molecules, but to-date these attempts have offered only limited success achieving milli-Kelvin temperatures with low densities. This Laboratory Directed Research and Development project is to develops a new experimental technique for producing micro-Kelvin temperature molecules via collisions with laser cooled samples of trapped atoms. The technique relies on near mass degenerate collisions between the molecule of interest and a laser cooled (micro-Kelvin) atom. A subset of collisions will transfer all (nearly all) of the kinetic energy from the 'hot' molecule, cooling the molecule at the expense of heating the atom. Further collisions with the remaining laser cooled atoms will thermally equilibrate the molecules to the micro-Kelvin temperature of the laser-cooled atoms.

  16. Physiological characteristics of cold acclimatization in man

    NASA Astrophysics Data System (ADS)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Nayar, H. S.

    1981-09-01

    Studies were conducted on 15 healthy young soldiers to evaluate the effect of a cold acclimatization schedule on the thermoregulatory and metabolic activity on exposure to acute cold stress. These men were exposed to cold (10‡C) for 4 h daily wearing only shorts for 21 days, in a cold chamber. They were subjected to a standard cold test at 10 ± 1‡C the day 1, 6, 11 and 21. The subjects were made to relax in a thermoneutral room (26 28‡C) for 1 h and their heart rate, blood pressure, oxygen consumption, oral temperature, mean skin temperature, mean body temperature, peripheral temperatures, and shivering activity were recorded. Then they were exposed to 10‡C and measurements were repeated at 30 min intervals, for 2 h. The cold induced vasodilatation (CIVD), cold pressor response and thermoregulatory efficiency tests were measured initially and at the end of acclimatization schedule. The data show that the procedure resulted in elevated resting metabolism, less fall in body temperature during acute cold stress, reduction in shivering, improvement in CIVD and thermoregulatory efficiency and less rise in BP and HR during cold pressor response. The data suggest the possibility of cold acclimatization in man by repeated exposure to moderately severe cold stress.

  17. Simulation, fabrication and characterization of THz metamaterial absorbers.

    PubMed

    Grant, James P; McCrindle, Iain J H; Cumming, David R S

    2012-12-27

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical(1) and experimental demonstration(2) of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical(3), near IR(4), mid IR(5) , THz(6) , mm-wave(7) , microwave(8) and radio(9) bands. Applications include perfect lenses(10), sensors(11), telecommunications(12), invisibility cloaks(13) and filters(14,15). We have recently developed single band(16), dual band(17) and broadband(18) THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers(19). In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems.

  18. Broadband ultrathin low-profile metamaterial microwave absorber

    NASA Astrophysics Data System (ADS)

    Sood, Deepak; Tripathi, Chandra Charu

    2016-04-01

    In this paper, a single-layer broadband low-profile ultrathin metamaterial microwave absorber is proposed for wide angle of incidence. The proposed absorber provides triple-band absorption under normal incidence of electromagnetic wave with two peaks lying in X-band and one in Ku-band. The unit cell is designed by using parametric optimization in such a way that the three peaks merge together to give broadband absorption. The absorber exhibits full width at half maxima bandwidth (FWHM) of 7.75 GHz from 7.55 to 15.30 GHz for wide angle of incidence up to 60° for both TE and TM polarizations. The mechanism of absorption of the absorber has been analyzed by field and surface current distributions. The proposed absorber has been fabricated and experimentally tested for different angles of incidence and polarization of the incident wave. The absorber is low profile with unit cell dimension of the order of 0.168 λ 0, and it is ultrathin with a thickness of ~ λ 0/17 at the center frequency of 11.43 GHz corresponding to the FWHM absorption bandwidth. This proposed absorber can be used for many potential applications such as stealth technology, cloaking and in antenna systems.

  19. Simulation, Fabrication and Characterization of THz Metamaterial Absorbers

    PubMed Central

    Grant, James P.; McCrindle, Iain J.H.; Cumming, David R.S.

    2012-01-01

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical1 and experimental demonstration2 of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical3, near IR4, mid IR5 , THz6 , mm-wave7 , microwave8 and radio9 bands. Applications include perfect lenses10, sensors11, telecommunications12, invisibility cloaks13 and filters14,15. We have recently developed single band16, dual band17 and broadband18 THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers19. In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems. PMID:23299442

  20. Interaction of inhalational anaesthetics with CO2 absorbents.

    PubMed

    Baum, Jan A; Woehlck, Harvey J

    2003-03-01

    We review the currently available carbon dioxide absorbents: sodium hydroxide lime (=soda lime), barium hydroxide lime, potassium-hydroxide-free soda lime, calcium hydroxide lime and non-caustic lime. In general, all of these carbon dioxide absorbents are liable to react with inhalational anaesthetics. However, there is a decreasing reactivity of the different absorbents with inhalational anaesthetics: barium hydroxide lime > soda lime > potassium-hydroxide-free soda lime > calcium hydroxide lime and non-caustic lime. Gaseous compounds generated by the reaction of the anaesthetics with desiccated absorbents are those that threaten patients. All measures are comprehensively described to--as far as possible--prevent any accidental drying out of the absorbent. Whether or not compound A, a gaseous compound formed by the reaction of sevoflurane with normally hydrated absorbents, is still a matter of concern is discussed. Even after very high loading with this compound, during long-lasting low-flow sevoflurane anaesthesias, no clinical or laboratory signs of renal impairment were observed in any of the surgical patients. Finally, guidelines for the judicious use of different absorbents are given. PMID:12751549

  1. Practical multi-featured perfect absorber utilizing high conductivity silicon

    NASA Astrophysics Data System (ADS)

    Gok, Abdullah; Yilmaz, Mehmet; Bıyıklı, Necmi; Topallı, Kağan; Okyay, Ali K.

    2016-03-01

    We designed all-silicon, multi-featured band-selective perfect absorbing surfaces based on CMOS compatible processes. The center wavelength of the band-selective absorber can be varied between 2 and 22 μm while a bandwidth as high as 2.5 μm is demonstrated. We used a silicon-on-insulator (SOI) wafer which consists of n-type silicon (Si) device layer, silicon dioxide (SiO2) as buried oxide layer, and n-type Si handle layer. The center wavelength and bandwidth can be tuned by adjusting the conductivity of the Si device and handle layers as well as the thicknesses of the device and buried oxide layers. We demonstrate proof-of-concept absorber surfaces experimentally. Such absorber surfaces are easy to microfabricate because the absorbers do not require elaborate microfabrication steps such as patterning. Due to the structural simplicity, low-cost fabrication, wide spectrum range of operation, and band properties of the perfect absorber, the proposed multi-featured perfect absorber surfaces are promising for many applications. These include sensing devices, surface enhanced infrared absorption applications, solar cells, meta-materials, frequency selective sensors and modulators.

  2. Innovative Anti Crash Absorber for a Crashworthy Landing Gear

    NASA Astrophysics Data System (ADS)

    Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano

    2014-06-01

    This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.

  3. Simulation, fabrication and characterization of THz metamaterial absorbers.

    PubMed

    Grant, James P; McCrindle, Iain J H; Cumming, David R S

    2012-01-01

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical(1) and experimental demonstration(2) of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical(3), near IR(4), mid IR(5) , THz(6) , mm-wave(7) , microwave(8) and radio(9) bands. Applications include perfect lenses(10), sensors(11), telecommunications(12), invisibility cloaks(13) and filters(14,15). We have recently developed single band(16), dual band(17) and broadband(18) THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers(19). In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems. PMID:23299442

  4. Thin-film absorber for a solar collector

    SciTech Connect

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  5. Cold Pools in the Columbia Basin

    SciTech Connect

    Whiteman, Charles D.; Zhong, Shiyuan; Shaw, William J.; Hubbe, John M.; Bian, Xindi; Mittelstadt, J.

    2001-01-01

    Persistent midwinter cold air pools produce multi-day periods of cold, dreary weather in valleys and basins. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures below freezing while the air above is warmer, freezing precipitation often occurs with consequent effects on transportation and safety. Forecasting the buildup and breakdown of these cold pools is difficult because the physical mechanisms leading to their formation, maintenance, and destruction have received little study. This paper provides a succinct meteorological definition of a cold pool, develops a climatology of Columbia Basin cold pools, and analyzes remote and in situ temperature and wind sounding data for two winter cold pool episodes that were accompanied by fog and stratus, illustrating many of the physical mechanisms affecting cold pool evolution.

  6. Effects of concentration prior to cold-stabilization on anthocyanin stability in concord grape juice.

    PubMed

    Alongi, Kristin S; Padilla-Zakour, Olga I; Sacks, Gavin L

    2010-11-10

    The color of Concord grape juice produced by concentration before cold-stabilization and detartration (direct-to-concentrate, DTC) was compared to juice produced via cold-stabilization prior to concentration (standard concentrate, SC) and evaluated by several metrics. Using the Boulton copigmentation assay, the majority of the absorbance at 520 nm in bottled SC juice (72%) was due to monomeric anthocyanins. Following reconstitution, DTC juice had a 63% greater absorbance at 520 nm than SC juice. A significant loss of anthocyanins was observed using a paired t test during cold-stabilization of single-strength juice during SC processing (mean loss: 79 mg/L as cyanidin-3-glucoside, 23% of total anthocyanins), while no significant loss of anthocyanins or change in other color metrics was observed during cold-stabilization of DTC concentrate. The concentration of anthocyanins in the SC bitartrate crystals was 0.80% w/w compared to 0.13% w/w in the DTC bitartrate crystals. Between DTC and SC, no difference in copigmentation was observed in cold-stabilized concentrate or reconstituted juice, indicating that the increased stability of anthocyanins could not be credited to greater copigmentation in DTC during detartration. HPLC analyses indicated that anthocyanin species with higher pKh and thus proportionally greater flavylium ion concentration at juice pH are preferentially lost during SC processing. The proportional changes in color metrics during shelf life stability testing (0-16 weeks, 2-30 °C) were not significantly different between SC and DTC juices.

  7. Metamaterial perfect absorber based on artificial dielectric "atoms".

    PubMed

    Liu, Xiaoming; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-09-01

    In this work, we numerically designed and then experimentally verified a metamaterial perfect absorber based on artificial dielectric "atoms". This metamaterial absorber is composed of dielectric ceramic material (SrTiO3) "atoms" embedded in a background matrix on a metal plate. The dielectric "atoms" couple strongly to the incident electric and magnetic fields at the Mie resonance mode, leading to the narrow perfect absorption band with simulated and experimental absorptivities of 99% and 98.5% at 8.96 GHz, respectively. The designed metamaterial perfect absorber is polarization insensitive and can operate in wide angle incidence.

  8. Automated Absorber Attachment for X-ray Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, S.; Allen, Christine; Kilbourne, Caroline; Miller, Timothy M.; Costen, Nick; Schulte, Eric; Moseley, Samuel J.

    2007-01-01

    Our goal is to develop a method for the automated attachment of large numbers of absorber tiles to large format detector arrays. This development includes the fabrication of high quality, closely spaced HgTe absorber tiles that are properly positioned for pick-and-place by our FC150 flip chip bonder. The FC150 also transfers the appropriate minute amount of epoxy to the detectors for permanent attachment of the absorbers. The success of this development will replace an arduous, risky and highly manual task with a reliable, high-precision automated process.

  9. Towards Perfectly Absorbing Boundary Conditions for Euler Equations

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Hu, Fang Q.; Hussaini, M. Yousuff

    1997-01-01

    In this paper, we examine the effectiveness of absorbing layers as non-reflecting computational boundaries for the Euler equations. The absorbing-layer equations are simply obtained by splitting the governing equations in the coordinate directions and introducing absorption coefficients in each split equation. This methodology is similar to that used by Berenger for the numerical solutions of Maxwell's equations. Specifically, we apply this methodology to three physical problems shock-vortex interactions, a plane free shear flow and an axisymmetric jet- with emphasis on acoustic wave propagation. Our numerical results indicate that the use of absorbing layers effectively minimizes numerical reflection in all three problems considered.

  10. HS 1603+3820 and its Warm Absorber

    NASA Astrophysics Data System (ADS)

    Nikołajuk, M.; Różańska, A.; Czerny, B.; Dobrzycki, A.

    2009-07-01

    We use photoionization codes CLOUDY and TITAN to obtain physical conditions in the absorbing medium close to the nucleus of a distant quasar (z = 2.54) HS 1603+3820. We found that the total column density of this Warm Absorber is 2 x 1022 cm-2. Due to the softness of the quasars spectrum the modelling allowed us also to determine uniquely the volume hydrogen density of this warm gas (n = 1010 cm-3) which combined with the other quasar parameters leads to a distance determination to the Warm Absorber from the central source which is ~ 1.5 x 1016 cm.

  11. Ultrabroadband absorber using a deep metallic grating with narrow slits

    NASA Astrophysics Data System (ADS)

    Liao, Yan-Lin; Zhao, Yan

    2015-01-01

    We report an ultrabroadband absorber using a deep metallic grating with narrow slits in the infrared regime. In this absorber, the ultrabroadband electromagnetic wave has been perfectly transmitted through the vacuum-grating interface due to the plasmonic Brewster angle effect, and its energy can attenuate effectively through the slits because of the enhanced electric field inside the slits. In addition, simulation results show that this ultrabroadband absorber works over a narrow angle range which is a very important feature of directional thermal source.

  12. Solar absorber material stability under high solar flux

    NASA Astrophysics Data System (ADS)

    Ignatiev, A.; Zajac, G.; Smith, G. B.

    1982-04-01

    Solar absorbing Black Chrome coatings have been exposed to high temperatures (350-400 C) under high solar fluxes (0.4 to 2.0 MW/sq m) to test for their stability under actual operating conditions. Field tests at the White Sands Solar Furnace have shown higher stability than expected from oven tested samples. Laboratory studies utilizing spectrally selective concentrated solar simulated radiation have indicated that the cause of the higher stability under solar irradiation is photo-stimulated desorption of oxygen bearing species at the absorber surface and resultant reduced oxidation of the absorber.

  13. Metamaterial perfect absorber based on artificial dielectric "atoms".

    PubMed

    Liu, Xiaoming; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-09-01

    In this work, we numerically designed and then experimentally verified a metamaterial perfect absorber based on artificial dielectric "atoms". This metamaterial absorber is composed of dielectric ceramic material (SrTiO3) "atoms" embedded in a background matrix on a metal plate. The dielectric "atoms" couple strongly to the incident electric and magnetic fields at the Mie resonance mode, leading to the narrow perfect absorption band with simulated and experimental absorptivities of 99% and 98.5% at 8.96 GHz, respectively. The designed metamaterial perfect absorber is polarization insensitive and can operate in wide angle incidence. PMID:27607650

  14. Flexible subterahertz metamaterial absorber fabrication using inkjet printing technology

    NASA Astrophysics Data System (ADS)

    Lee, Dongju; Sung, Hyuk-Kee; Lim, Sungjoon

    2016-07-01

    In this study, a flexible metamaterial (MM) absorber was designed at 0.1 THz and fabricated using inkjet printing technology. The unit cell of the MM absorber was designed using a finite element method-based full-wave simulation. The unit cell comprised square rings, and it was printed with silver nanoparticle ink on flexible Kapton polyimide film. The fabrication processes were performed using a material printer. The absorber's reflection coefficient was measured using a vector network analyzer and a WR-10 waveguide. The absorption ratio was 93.5 % at 0.102 THz. Therefore, we demonstrated the possibility of inkjet printing at a subterahertz band.

  15. Fundamental research on oscillating water column wave power absorbers

    SciTech Connect

    Maeda, H.; Kato, W.; Kinoshita, T.; Masuda, K.

    1985-03-01

    An oscillating water column (OWC) wave power absorber is one of the most promising devices, as well as the Salter Duck and the Clam. This paper presents a simple prediction method, in which the equivalent floating body approximation is used, for absorbing wave power characteristics of an oscillating water column device. The effects of the compressibility of air and inertia of an air turbine and electric generator on absorbed wave power are obtained by using the equivalent electric circuit concept. Both the experimental and theoretical studies are carried out in this paper.

  16. Cold Fusion Has Now Come Out of the Cold

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2003-10-01

    The phenomenon called cold fusion or LENR (Low-Energy-Nuclear-Reaction) has now achieved a level of reproducibility and understanding that warrants re-examination of the claims. A summary of what is known and want is being done worldwide to obtain more knowledge will be given. Rather than disappearing as better data are obtained, the effects are becoming more reproducible and of greater magnitude. Justification for this claim can be obtained at www.LENR-CANR.org. The phenomenon is too important to ignore any longer even though it conflicts with conventional theory.

  17. The Cold Mass Support System and the Helium Cooling System for theMICE Focusing Solenoid

    SciTech Connect

    Yang, Stephanie Q.; Green, Michael A.; Lau, Wing W.; Senanayake,Rohan S.; Witte, Holger

    2006-08-10

    The heart of the absorber focus coil (AFC) module for the muon ionization cooling experiment (MICE) is the two-coil superconducting solenoid that surrounds the muon absorber. The superconducting magnet focuses the muons that are cooled using ionization cooling, in order to improve the efficiency of cooling. The coils of the magnet may either be run in the solenoid mode (both coils operate at the same polarity) or the gradient (the coils operate at opposite polarity). The AFC magnet cold mass support system is designed to carry a longitudinal force up to 700 kN. The AFC module will be cooled using three pulse tube coolers that produce 1.5 W of cooling at 4.2 K. One of the coolers will be used to cool the liquid (hydrogen or helium) absorber used for ionization cooling. The other two coolers will cool the superconducting solenoid. This report will describe the MICE AFC magnet. The cold mass supports will be discussed. The reasons for using a pulsed tube cooler to cool this superconducting magnet will also be discussed.

  18. Calculating the Muon Cooling within a MICE Solid and LiquidAbsorber

    SciTech Connect

    Yang, Stephanie Q.; Green, Michael A.; Virostek, Steve P.

    2006-06-10

    The key elements of the Muon Ionization Cooling Experiment (MICE) cooling channel are the absorbers that are a part of the MICE absorber focus coil modules (AFC modules). The boundaries of room temperature solid absorbers are well defined. The density of most solid absorber materials is also well understood. The properties of solid absorber are most certainly understood to 0.3 percent. The MICE liquid absorbers are different in that their dimensions are a function of the absorber temperature and the fluid pressure within the absorber. The second element in the liquid absorber is the variability of the liquid density with temperature and pressure. While one can determine the absorber boundary within 0.3 percent, the determination of the liquid density within 0.3 percent is more difficult (particularly with liquid helium in the absorber). This report presents a method of calculating absorber boundary and the cooling performance of the MICE absorbers as a function of fluid temperature and pressure.

  19. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.

    PubMed

    Williams, Caroline M; McCue, Marshall D; Sunny, Nishanth E; Szejner-Sigal, Andre; Morgan, Theodore J; Allison, David B; Hahn, Daniel A

    2016-09-14

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  20. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.

    PubMed

    Williams, Caroline M; McCue, Marshall D; Sunny, Nishanth E; Szejner-Sigal, Andre; Morgan, Theodore J; Allison, David B; Hahn, Daniel A

    2016-09-14

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories.

  1. Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber.

    PubMed

    Selvakumar, N; Krupanidhi, S B; Barshilia, Harish C

    2014-04-23

    CVD grown CNT thin film with a thickness greater than 10 μm behaves like a near-perfect blackbody absorber (i.e., α/ε = 0.99/0.99). Whereas, for a thickness ≤ 0.4 µm, the CNT based tandem absorber acts as a spectrally selective coating (i.e., α/ε = 0.95/0.20). These selective coatings exhibit thermal stability up to 650 °C in vacuum, which can be used for solar thermal power generation. PMID:24474148

  2. Diagnostic beam absorber in Mu2e beam line

    SciTech Connect

    Rakhno, Igor; /Fermilab

    2011-03-01

    Star density, hadron flux, and residual dose distributions are calculated around the {mu}2e diagnostic beam absorber. Corresponding surface and ground water activation, and air activation are presented as well.

  3. Angular solar absorptance of absorbers used in solar thermal collectors.

    PubMed

    Tesfamichael, T; Wäckelgård, E

    1999-07-01

    The optical characterization of solar absorbers for thermal solar collectors is usually performed by measurement of the spectral reflectance at near-normal angle of incidence and calculation of the solar absorptance from the measured reflectance. The solar absorptance is, however, a function of the angle of incidence of the light impinging on the absorber. The total reflectance of two types of commercial solar-selective absorbers, nickel-pigmented anodized aluminum, and sputtered nickel nickel oxide coated aluminum are measured at angles of incidence from 5 to 80 in the wavelength range 300-2500 nm by use of an integrating sphere. From these measurements the angular integrated solar absorptance is determined. Experimental data are compared with theoretical calculations, and it is found that optical thin-film interference effects can explain the significant difference in solar absorptance at higher angles for the two types of absorbers.

  4. Microwave-absorbing properties of Co-filled carbon nanotubes

    SciTech Connect

    Lin Haiyan; Zhu Hong Guo Hongfan; Yu Liufang

    2008-10-02

    Co-filled carbon nanotubes composites were synthesized via using a simple and efficient wet chemistry solution method. The samples were characterized by transmission electron microscopy. Microwave-absorbing properties were investigated by measuring complex permittivity and complex permeability of the absorber in a frequency range of 2-18 GHz. The reflection loss (R.L.), matching frequency (f{sub m}) and matching thickness (d{sub m}) were calculated using the theory of the absorbing wall. The electromagnetic properties and microwave-absorbing characteristics effects of the modified carbon nanotubes by the encapsulation of metal Co were investigated. A matching thickness is found corresponding to a matching frequency. The maximum reflection loss is about -39.32 dB and the bandwidth corresponding to the reflection loss below -10 dB is 3.47 GHz. With increasing thickness, the maximum reflection loss shifts to lower frequency.

  5. Liquid absorbent solutions for separating nitrogen from natural gas

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  6. Techniques for measuring intercepted and absorbed PAR in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.

    1984-01-01

    The quantity of radiation potentially available for photosynthesis that is captured by the crop is best described as absorbed photosynthetically active radiation (PAR). Absorbed PAR (APAR) is the difference between descending and ascending fluxes. The four components of APAR were measured above and within two planting densities of corn (Zea mays L.) and several methods of measuring and estimating APAR were examined. A line quantum sensor that spatially averages the photosynthetic photon flux density provided a rapid and portable method of measuring APAR. PAR reflectance from the soil (Typic Argiaquoll) surface decreased from 10% to less than 1% of the incoming PAR as the canopy cover increased. PAR reflectance from the canopy decreased to less than 3% at maximum vegetative cover. Intercepted PAR (1 - transmitted PAR) generally overestimated absorbed PAR by less than 4% throughout most of the growing season. Thus intercepted PAR appears to be a reasonable estimate of absorbed PAR.

  7. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    SciTech Connect

    Cai, Yijun; Zhu, Jinfeng; Liu, Qing Huo

    2015-01-26

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  8. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS)

    PubMed Central

    Kim, Kyeongseob; Lee, Dongju; Eom, Seunghyun; Lim, Sungjoon

    2016-01-01

    A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS). To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm) to 6.4 cm. PMID:27077861

  9. [Study on absorbing volatile oil with mesoporous carbon].

    PubMed

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying. PMID:25850263

  10. 21 CFR 878.4840 - Absorbable polydioxanone surgical suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4840 Absorbable... expected to occur, and ophthalmic surgery. It may be coated or uncoated, undyed or dyed, and with...

  11. 21 CFR 878.4840 - Absorbable polydioxanone surgical suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4840 Absorbable... expected to occur, and ophthalmic surgery. It may be coated or uncoated, undyed or dyed, and with...

  12. 21 CFR 878.4840 - Absorbable polydioxanone surgical suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4840 Absorbable... expected to occur, and ophthalmic surgery. It may be coated or uncoated, undyed or dyed, and with...

  13. 21 CFR 878.4840 - Absorbable polydioxanone surgical suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4840 Absorbable... expected to occur, and ophthalmic surgery. It may be coated or uncoated, undyed or dyed, and with...

  14. 21 CFR 878.4840 - Absorbable polydioxanone surgical suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4840 Absorbable... expected to occur, and ophthalmic surgery. It may be coated or uncoated, undyed or dyed, and with...

  15. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    NASA Astrophysics Data System (ADS)

    Cai, Yijun; Zhu, Jinfeng; Liu, Qing Huo

    2015-01-01

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  16. Energy deposition studies for the LBNE beam absorber

    SciTech Connect

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-29

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system – all with corresponding radiation shielding – was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

  17. 48. Bottom of shock absorber, bottom of launch tube, soda ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Bottom of shock absorber, bottom of launch tube, soda bottle liter at right - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  18. Two-dimensional QR-coded metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zhang, Jieqiu; Qu, Shaobo

    2016-01-01

    In this paper, the design of metamaterial absorbers is proposed based on QR coding and topology optimization. Such absorbers look like QR codes and can be recognized by decoding softwares as well as mobile phones. To verify the design, two lightweight wideband absorbers are designed, which can achieve wideband absorption above 90 % in 6.68-19.30 and 7.00-19.70 GHz, respectively. More importantly, polarization-independent absorption over 90 % can be maintained under incident angle within 55°. The QR code absorber not only can achieve wideband absorption, but also can carry information such as texts and Web sites. They are of important values in applications such identification and electromagnetic protection.

  19. Absorbing boundary conditions for second-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Jiang, Hong; Wong, Yau Shu

    1989-01-01

    A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.

  20. Light Absorbing Particle (LAP) Measurements in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Baumgardner, D.; Raga, G. B.; Anderson, B.; Diskin, G.; Sachse, G.; Kok, G.

    2003-01-01

    This viewgraph presentation covers the capabilities and design of the Single Particle Soot Photometer (SP-2), and reviews its role on the Sage III Ozone Loss Validation Experiment (SOLVE II) field campaign during 2003. On SOLVE II the SP-2 was carried into the Arctic onboard a DC-8 aircraft, in order to determine the size distribution of light-absorbing and non light-absorbing particles in the stratosphere. Graphs and tables relate some of the results from SOLVE II.