Science.gov

Sample records for cold filling pipe

  1. Investigation of cold filling receiver panels and piping in molten-nitrate-salt central-receiver solar power plants

    SciTech Connect

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.

    1994-12-31

    Cold filling refers to flowing a fluid through piping or tubes that are at temperatures below the fluid`s freezing point. Since the piping and areas of the receiver in a molten-nitrate salt central-receiver solar power plant must be electrically heated to maintain their temperatures above the nitrate salt freezing point (430{degrees}F, 221{degrees}C), considerable energy could be used to maintain such temperatures during nightly shut down and bad weather. Experiments and analyses have been conducted to investigate cold filling receiver panels and piping as a way of reducing parasitic electrical power consumption and increasing the availability of the plant. The two major concerns with cold filling are: (1) how far can the molten salt penetrate cold piping before freezing closed and (2) what thermal stresses develop during the associated thermal shock. Cold fill experiments were conducted by flowing molten salt at 550{degrees}F (288{degrees}C) through cold panels, manifolds, and piping to determine the feasibility of cold filling the receiver and piping. The transient thermal responses were measured and heat transfer coefficients were calculated from the data. Nondimensional analysis is presented which quantifies the thermal stresses in a pipe or tube undergoing thermal shock. In addition, penetration distances were calculated to determine the distance salt could flow in cold pipes prior to freezing closed.

  2. Liquid-Filled Piping System Analysis

    1993-07-07

    WHAM6 is used to calculate pressure and velocity transients in liquid-filled piping networks. It can be applied to multiloop complex piping networks consisting of dead ends, elbows, orifices, multiple-branch tees, changes of flow passage cross section, check valves, pumps, pressurizers or tanks, and exit valves or breaks. Hydraulic losses are considered. Transients can be initiated either by closure or opening of one or more exit valves (equivalent to system ruptures) or by a prescribed gasmore » pressure history in a pressurizer tank.« less

  3. INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE CASTING MACHINE (EITHER NO. 2 OR NO. 3) FOR PRODUCTION OF AN 8 INCH FASTTITE PIPE USED FOR GAS AND WATER TRANSMISSION. THIS FRENCH-MADE CASTING MACHINE MAKES 4, 6, 8, 10, AND 12 INCH PIPE. THE MACHINE CAN MAKE 48 EIGHT INCH PIPE AN HOUR AND UP TO 60 FOUR INCH PIPE PER HOUR. - American Cast Iron Pipe Company, Mixer Building, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL

  4. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    SciTech Connect

    Varley, Robert; Halkyard, John; Johnson, Peter; Shi, Shan; Marinho, Thiago

    2014-05-09

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to final design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.

  5. Application of Heat Pipes in Cold Region

    NASA Astrophysics Data System (ADS)

    Mochizuki, Masataka

    Recently, there has been put into practical use of heat pipes as space application, electronics cooling, and waste heat recovery. Especially, the low temperature heat pipe which can be used in below atmospheric temperature are also actively developed and applied in terrestrial field. These are based on utilization of natural energy in cold region. This paper is described about application of snow melting and deicing system on a road and roof, snow damage prevention system for electric pole branch wire, artificial permafrost storage system as a reverse utilization of cold atmosphere, and cryo-anchor applied in Alaska and northern Canada.

  6. EVALUATION OF THE COLD PIPE PRECHARGER

    EPA Science Inventory

    The article gives results of an evaluation of the performance of the cold pipe precharger, taking a more rigorous approach than had been previously taken. The approach required detailed descriptions of electrical characteristics, electro-hydrodynamics, and charging theory. The co...

  7. Acoustic imaging in a water filled metallic pipe

    SciTech Connect

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

  8. Finite element analysis of fluid-filled elastic piping systems

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Marcus, M. S.; Quezon, A. J.

    1983-01-01

    Two finite element procedures are described for predicting the dynamic response of general 3-D fluid-filled elastic piping systems. The first approach, a low frequency procedure, models each straight pipe or elbow as a sequence of beams. The contained fluid is modeled as a separate coincident sequence axial members (rods) which are tied to the pipe in the lateral direction. The model includes the pipe hoop strain correction to the fluid sound speed and the flexibility factor correction to the elbow flexibility. The second modeling approach, an intermediate frequency procedure, follows generally the original Zienkiewicz-Newton scheme for coupled fluid-structure problems except that the velocity potential is used as the fundamental fluid unknown to symmetrize the coefficient matrices. From comparisons of the beam model predictions to both experimental data and the 3-D model, the beam model is validated for frequencies up to about two-thirds of the lowest fluid-filled labor pipe mode. Accurate elbow flexibility factors are seen to be crucial for effective beam modeling of piping systems.

  9. 46 CFR 119.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... metallic sections of the fill pipe separated thereby must be joined by a conductor for protection against... 46 Shipping 4 2010-10-01 2010-10-01 false Fill and sounding pipes for fuel tanks. 119.445 Section... INSTALLATION Specific Machinery Requirements § 119.445 Fill and sounding pipes for fuel tanks. (a) Fill...

  10. 46 CFR 119.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... metallic sections of the fill pipe separated thereby must be joined by a conductor for protection against... 46 Shipping 4 2011-10-01 2011-10-01 false Fill and sounding pipes for fuel tanks. 119.445 Section... INSTALLATION Specific Machinery Requirements § 119.445 Fill and sounding pipes for fuel tanks. (a) Fill...

  11. 46 CFR 98.25-50 - Filling and discharge pipes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Filling and discharge pipes. 98.25-50 Section 98.25-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in...

  12. 46 CFR 98.25-50 - Filling and discharge pipes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Filling and discharge pipes. 98.25-50 Section 98.25-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in...

  13. 46 CFR 98.25-50 - Filling and discharge pipes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Filling and discharge pipes. 98.25-50 Section 98.25-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in...

  14. 46 CFR 182.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... straight line, from the deck connection to the top of the tank. Such pipes must terminate on the weather... 46 Shipping 7 2011-10-01 2011-10-01 false Fill and sounding pipes for fuel tanks. 182.445 Section... pipes for fuel tanks. (a) Fill pipes for fuel tanks must be not less than 40 millimeters (1.5...

  15. Report of ad hoc OTEC cold water pipe committee

    SciTech Connect

    Barr, R.; Giannotti, J.; Deuchler, W.; Scotti, R.; Stadter, J.; Walsh, J. P.; Weiss, R.

    1980-02-01

    Now that the design work on the pilot plant is scheduled to start in the near future, DOE has considered it essential that an overall look be taken at the cold water pipe design process. The VSE Corporation, in its role as a support contractor to DOE, was tasked to organize a small study group to answer the question, Where do we stand on the verification of the computer models of the cold water pipe response by experimental measurements. The committee has studied all the available results of the cold water pipe development program. This report summarizes those results. The development and present capabilities of the computer programs used to calculate the response of a cold water pipe attached to a platform under known at-sea conditions are discussed. The various cold water pipe designs that have been done using the computer programs are summarized. The experiments that have been conducted up to the present time to measure the response of cold water pipes at-sea and in experimental tanks are described. The results of these experiments are presented. The experimental results are compared with the predictions made with the analytical computer programs. Conclusions drawn as a result of this analysis are presented and some recommendations are made. (WHK)

  16. Acoustic Propagation in a Water-Filled Cylindrical Pipe

    SciTech Connect

    Sullivan, E J; Candy, J V

    2003-06-01

    This study was concerned with the physics of the propagation of a tone burst of high frequency sound in a steel water-filled pipe. The choice of the pulse was rather arbitrary, so that this work in no way can be considered as recommending a particular pulse form. However, the MATLAB computer codes developed in this study are general enough to carry out studies of pulses of various forms. Also, it should be pointed out that the codes as written are quite time consuming. A computation of the complete field, including all 5995 modes, requires several hours on a desktop computer. The time required by such computations as these is a direct consequence of the bandwidths, frequencies and sample rates employed. No attempt was made to optimize these codes, and it is assumed that much can be done in this regard.

  17. 46 CFR 98.30-10 - Pipe connections, and filling and discharge openings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tank, the closures specified in 49 CFR 173.32c(g)(2); and (b) For an MPT, the valves and closures... 46 Shipping 4 2010-10-01 2010-10-01 false Pipe connections, and filling and discharge openings. 98... BULK Portable Tanks § 98.30-10 Pipe connections, and filling and discharge openings. No person...

  18. 46 CFR 38.10-5 - Filling and discharge pipes-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Filling and discharge pipes-TB/ALL. 38.10-5 Section 38.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Piping, Valves, Fittings, and Accessory Equipment § 38.10-5 Filling and discharge pipes—TB/ALL. (a) Filling and discharge connections shall be...

  19. 46 CFR 38.10-5 - Filling and discharge pipes-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Filling and discharge pipes-TB/ALL. 38.10-5 Section 38.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Piping, Valves, Fittings, and Accessory Equipment § 38.10-5 Filling and discharge pipes—TB/ALL. (a) Filling and discharge connections shall be...

  20. 46 CFR 38.10-5 - Filling and discharge pipes-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Filling and discharge pipes-TB/ALL. 38.10-5 Section 38.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Piping, Valves, Fittings, and Accessory Equipment § 38.10-5 Filling and discharge pipes—TB/ALL. (a) Filling and discharge connections shall be...

  1. 46 CFR 38.10-5 - Filling and discharge pipes-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Filling and discharge pipes-TB/ALL. 38.10-5 Section 38.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Piping, Valves, Fittings, and Accessory Equipment § 38.10-5 Filling and discharge pipes—TB/ALL. (a) Filling and discharge connections shall be...

  2. Theoretical and Experimental Investigation of Propagation of Guide Waves in Cylindrical Pipe Filled with Fluid

    NASA Astrophysics Data System (ADS)

    Sato, Harumichi; Lebedev, Maxim; Akedo, Jun

    2006-05-01

    Cylindrical pipes are widely used in industries such as nuclear power plants and micro total analysis systems (μTAS). The nondestructive evaluation (NDE) of such pipes is therefore crucial. NDE and ultrasonic flowmeters can be used to characterize pipes filled with fluid. Lafleur and Shields [J. Acoust. Soc. Am. 97 (1995) 1435] and Pan et al. [J. Acoust. Soc. Am. 113 (2003) 3209] theoretically and experimentally investigated a pipe filled with fluid, but they only considered the axi-symmetrical mode. Commonly used ultrasonic transducer or laser ultrasonic methods, however, also generate non-axi-symmetrical mode guide waves. Here, guide waves propagating in a cylindrical pipe filled with fluid were theoretically investigated. The results were used to develop a computer program for calculating the phase velocity of guide waves. The calculation results were then compared with experimental results.

  3. PBF Reactor Building (PER620). Piping in basement fills space. Secondary ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Piping in basement fills space. Secondary coolant flowed through carbon steel pipe; primary coolant, through stainless steel. Photographer: Larry Page. Date: April 30, 1970. INEEL negative no. 70-2080 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  4. Salvage and recovery of the OTEC-1 cold water pipe

    SciTech Connect

    Tracy, D.E.; Vadus, J.R.

    1983-05-01

    During autumn 1982, the National Oceanic and Atmospheric Administration (NOAA) was assisted by the U.S. Navy in recovering the 2,250-foot-long ocean thermal energy conversion (OTEC-1) cold water pipe which was vertically moored in 4,500 feet of water 22 miles off the northwest coast of the island of Hawaii. The pipe recovery was successfully completed on October 9, 1982, in one of the Navy's deepest salvage efforts on record, and will be deployed down the slope at Keahole Point to supply cold water for the Natural Energy Laboratory of Hawaii. The salvage and recovery of such a large flexible object almost 1/2-mile in length, weighing 50 tons in water, from a depth of 4,500 feet, was unique to the Navy's experience. This operation required extensive planning and coordination among numerous Naval and commercial units; shipyard preparation of the ocean heavy lift platform barge; utilization of the deep submersible research vehicle TURTLE; and use of various support vessels and ancillary equipment. It provided an opportunity to test new technology applicable to offshore and deep sea operations and to obtain material specimens for testing of pipe strength degradation due to long-term exposure to sea water.

  5. Experimental investigations on sodium-filled heat pipes

    NASA Technical Reports Server (NTRS)

    Dorner, S.; Reiss, F.; Schretzmann, K.

    1977-01-01

    The possibilities of producing heat pipes and, especially, the necessary capillary structures are discussed. Several types of heat pipes were made from stainless steel and tested at temperatures between 400 and 1055 deg C. The thermal power was determined by a calorimeter. Results indicate: bubble-free evaporation of sodium from rectangular open chennels is possible with a heat flux of more than 1,940 W/sq cm at 1055 C. The temperature drop along the tube could be measured only at low temperatures. A subdivided heat pipe worked against the gravitational field. A heat pipe with a capillary structure made of a rolled screen was supported by rings and bars operated at 250 W/sq cm heat flux in the evaporating region.

  6. A system for magnetostrictive transduction of guided waves in fluid-filled pipes of small diameter.

    PubMed

    Challis, Richard E; Phang, Albert P Y; Lowe, Michael J S; Mather, Melissa L

    2008-09-01

    This paper is concerned with the design of magnetostrictive transducers for the excitation and detection of guided waves in metal pipes of small diameter (mm) and their application to the study of wave propagation in pipes filled with water or supercritical CO(2). Optimized system design is based on a simulation of the overall signal pathway which includes the electric circuit conditions at the transducers, mode excitability, and the wavenumber filtering effect of the spatial distribution of the exciting alternating magnetic field. A prototype system was built, and experimental observations on small diameter pipes indicated good agreement with expected results from simulations. The reassigned spectrogram has been used to compare expectation on the basis of guided wave dispersion curves for fluid-filled pipes with experimental data. PMID:18986895

  7. Simplified dispersion relationships for fluid-dominated axisymmetric wave motion in buried fluid-filled pipes

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Sui, Fusheng; Muggleton, Jennifer M.; Yang, Jun

    2016-08-01

    The dispersion characteristics of axisymmetric (n=0) waves offer a way to gain physical insight into the low-frequency vibrational behaviour of underground pipe systems. Whilst these can be found in the literature, they are generally calculated numerically. Coupled equations of motion for the n=0 waves that propagate in a buried fluid-filled pipe are presented in this paper and, from this, an analytical solution is developed for the fluid-dominated (s=1) wavenumber. The effect of the frictional stress at the pipe-soil interface on the dispersion behaviour of the s=1 wave is characterised by adopting a soil loading matrix. Overall, the fluid loading has a greater effect on the propagation wavespeed compared with the soil loading: for metal pipes, the effect of soil loading is negligible; for plastic pipes, however, simply neglecting the effect of soil loading can lead to a considerable underestimation in the calculation of the wavespeed. The wave attenuation increases significantly at higher frequencies regardless of pipe material resulting from the added damping due to radiation into the soil. Theoretical predictions of the s=1 wavenumber are compared with experimental data measured on an MDPE water pipe. The degree of agreement between prediction and experiment makes clear that, although the wavespeed is only slightly affected by the presence of the frictional stress, the frictional stress at the pipe-soil interface needs to be appropriately taken into account for attenuation predictions.

  8. Performance Study of Solar Heat Pipe with Different Working Fluids and Fill Ratios

    NASA Astrophysics Data System (ADS)

    Harikrishnan, S. S.; Kotebavi, Vinod

    2016-09-01

    This paper elaborates on the testing of solar heat pipes using different working fluids, fill ratios and tilt angles. Methanol, Acetone and water are used as working fluids, with fill ratios 25%, 50%, 75% and 100%. Experiments were carried out at 600 and 350 inclinations. Heat pipe condenser section is placed inside a water basin containing 200ml of water. The evaporator section is exposed to sunlight where the working fluid gets heated and it becomes vapour and moves towards the condenser section. In the condenser section the heat is given to the water in the basin and the vapour becomes liquid and comes back to the evaporator section due to gravitational force. Two modes of experiments are carried out: 1) using a parabolic collector and 2) using heat pipe with evacuated tubes. On comparative study, optimum fill ratio is been found to be 25% in every case and acetone exhibited slightly more efficiency than methanol and water. As far as the heat pipe orientation is concerned, 600 inclination of the heat pipe showed better performance than 350

  9. Concrete filled steel pipe inspection using electro magnetic acoustic transducer (EMAT)

    NASA Astrophysics Data System (ADS)

    Na, Won-Bae; Kundu, Tribikram; Ryu, Yeon-Sun; Kim, Jeong-Tae

    2005-05-01

    Concrete-filled steel pipes are usually exposed in hostile environments such as seawater and deicing materials. The outside corrosion of the steel pipe can reduce the wall thickness and the corrosion-induced delamination of internal concrete can increase internal volume or pressure. In addition, the void that can possibly exist in the pipe reduces the bending resistance. To avoid structural failure due to this type of deterioration, appropriate inspection and repair techniques are to be developed. Guided wave techniques have strong potentials for this kind of inspection because of long-distance inspection capability. Among different transducer-coupling mechanism, electro-magnetic acoustic transducers (EMATs) give relatively consistent results in comparison to piezoelectric transducers since they do not need any couplant. In this study EMATs are used for transmitting and receiving cylindrical guided waves through concrete-filled steel pipes. Through time history curves and wavelet transform, it is shown that EMAT-generated cylindrical guided wave techniques have good potential for the interface inspection of concrete-filled steel pipes.

  10. 46 CFR 182.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 CFR 175.600), will be considered as meeting the requirements of this section. (g) Where a flexible fill pipe section is necessary, suitable flexible tubing or hose having high resistance to salt water... system built in accordance with ABYC H-24 (incorporated by reference; see 46 CFR 175.600), or 33 CFR...

  11. 46 CFR 182.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 CFR 175.600), will be considered as meeting the requirements of this section. (g) Where a flexible fill pipe section is necessary, suitable flexible tubing or hose having high resistance to salt water... system built in accordance with ABYC H-24 (incorporated by reference; see 46 CFR 175.600), or 33 CFR...

  12. Investigation of Loop Heat Pipe Survival and Restart After Extreme Cold Environment Exposure

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Ku, Jentung; Licari, Anthony; Sanzi, James

    2010-01-01

    NASA plans human exploration near the South Pole of the Moon, and other locations where the environment is extremely cold. This paper reports on the heat transfer performance of a loop heat pipe (LHP) exposed to extreme cold under the simulated reduced gravitational environment of the Moon. A common method of spacecraft thermal control is to use a LHP with ammonia working fluid. Typically, a small amount of heat is provided either by electrical heaters or by environmental design, such that the LHP condenser temperature never drops below the freezing point of ammonia. The concern is that a liquid-filled, frozen condenser would not restart, or that a thawing condenser would damage the tubing due to the expansion of ammonia upon thawing. This paper reports the results of an experimental investigation of a novel approach to avoid these problems. The LHP compensation chamber (CC) is conditioned such that all the ammonia liquid is removed from the condenser and the LHP is nonoperating. The condenser temperature is then reduced to below that of the ammonia freezing point. The LHP is then successfully restarted.

  13. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    SciTech Connect

    Dr. Alan Miller; Matthew Ascari

    2011-09-12

    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline between

  14. Analysis of the Velocity Distribution in Partially-Filled Circular Pipe Employing the Principle of Maximum Entropy.

    PubMed

    Jiang, Yulin; Li, Bin; Chen, Jie

    2016-01-01

    The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by pressure. The research findings show that the position of maximum flow is below the water surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is mainly affected by the contractive tube wall and the secondary flow, and the variation of the velocity is relatively small. Literature retrieval results show relatively less research has been shown on the practical expression to describe the velocity distribution of partially-filled circular pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe flow was derived based on the principle of maximum entropy (POME). Different entropies were compared according to fluid knowledge, and non-extensive entropy was chosen. A new cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was derived, and the position of maximum velocity distribution was analyzed. The experimental results show that the estimated velocity values based on the principle of maximum Tsallis wavelet entropy are in good agreement with measured values.

  15. Cold Start of a Radiator Equipped with Titanium-Water Heat Pipes

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Sanzi, James L.; Siamidis, John

    2008-01-01

    Radiator panels utilizing titanium-water heat pipes are being considered for lunar applications. A traditional sandwich structure is envisioned where heat pipes are embedded between two high thermal conductivity face sheets. The heat pipe evaporators are to be thermally connected to the heat source through one or more manifolds containing coolant. Initial radiator operation on the lunar surface would likely follow a cold soak where the water in the heat pipes is purposely frozen. To achieve heat pipe operation, it will be necessary to thaw the heat pipes. One option is to allow the sunlight impinging on the surface at sunrise to achieve this goal. Testing was conducted in a thermal vacuum chamber to simulate the lunar sunrise and additional modeling was conducted to identify steady-state and transient response. It was found that sunlight impinging on the radiator surface at sunrise was insufficient to solely achieve the goal of thawing the water in the heat pipes. However, starting from a frozen condition was accomplished successfully by applying power to the evaporators. Start up in this fashion was demonstrated without evaporator dryout. Concern is raised over thawing thermosyphons, vertical heat pipes operating in a gravity field, with no wick in the condenser section. This paper presents the results of the simulated cold start study and identifies future work to support radiator panels equipped with titanium-water heat pipes.

  16. Backward waves with double zero-group-velocity points in a liquid-filled pipe.

    PubMed

    Cui, Hanyin; Lin, Weijun; Zhang, Hailan; Wang, Xiuming; Trevelyan, Jon

    2016-03-01

    Hollow cylinders often exhibit backward propagation modes whose group and phase velocities have opposite directions, and these exhibit a minimum possible frequency at which the group velocity vanishes at a nonzero wavenumber. These zero-group-velocity (ZGV) points are associated with resonant conditions in the medium. On the basis of ZGV resonances, a non-contact and laser ultrasound technique has been developed to measure elastic constants of hollow pipes. This paper provides a theoretical and numerical investigation of the influence of the contained liquid on backward waves and associated ZGV modes, in order to explore whether this ZGV technique is suitable for in-service non-destructive evaluations of liquid-filled pipes. Dispersion spectra and excitation properties have been analyzed. It is found that the presence of the liquid causes an increased number of backward modes and ZGVs which are highly excitable by a point source. In addition, several guided modes twice undergo a change of sign in the slopes of their dispersion curves, leading to two ZGV points. This phenomenon of double ZGVs in one backward wave, which is caused by strong mode repulsions, has not been found in isotropic hollow cylinders, but it can be observed in a fluid-filled thin-walled pipe. PMID:27036254

  17. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    SciTech Connect

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  18. Steady hydrodynamic loads due to vortex shedding from the OTEC cold water pipe. Final report

    SciTech Connect

    Griffin, O.M.

    1982-01-13

    This report is limited in scope to consideration of the problems caused by vortex shedding from flexible, bluff cylinders in steady current flows, as these problems apply to the OTEC cold water pipe. In particular, the steady deflections caused by the amplified drag forces that accompany vortex-excited oscillations are considered. Emphasis placed upon the discussion of design methods, applications of these methods to practical problems, and comparison with available experimental data. A discussion is given of laboratory and field studies that have been conducted with model OTEC cold water pipes. Various devices that have been developed for the suppression of vortex-excited oscillations also are discussed. A comparison is made of the effectiveness of various suppresion devices and procedures, and practical approaches to implementing their application are presented. The implications of vortex-induced hydrodynamic drag and the suppression of vortex-excited oscillations in OTEC cold water pipe design are discussed briefly.

  19. Simplified Equations of Motion for the RADIAL AXIAL Vibrations of Fluid Filled Pipes

    NASA Astrophysics Data System (ADS)

    Finnveden, S.

    1997-12-01

    The equations of motion for straight fluid filled pipes are greatly simplified. It is found, for frequencies below a third of the ring frequency, that the radial-axial waves in cylinders are as if the circumferential motion were inextensional. This is the fundamental assumption for the analysis. The derivation is also based on the assumption of long axial wavelengths, resulting in the axial inertia of the fluid and the axial flexural stiffness of the pipe wall being negligible. The formulation is restricted to frequencies well below the cut-on of higher order fluid modes. For such frequencies, the compressibility of the fluid is neglected and the internal fluid loading, on the pipe, is approximated as an increase in the radial inertia. Upon this basis, the equations of motion, for each circumferential mode, are similar to those for a Timoshenko beam on a Winkler foundation. Numerical experiments are made, comparing the approximate theory with results from calculations from the Helmholtz equation for the fluid and accurate thin-walled cylinder theory. Criteria of the application of the simplified theory are formulated.

  20. Analysis of the Velocity Distribution in Partially-Filled Circular Pipe Employing the Principle of Maximum Entropy

    PubMed Central

    2016-01-01

    The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by pressure. The research findings show that the position of maximum flow is below the water surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is mainly affected by the contractive tube wall and the secondary flow, and the variation of the velocity is relatively small. Literature retrieval results show relatively less research has been shown on the practical expression to describe the velocity distribution of partially-filled circular pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe flow was derived based on the principle of maximum entropy (POME). Different entropies were compared according to fluid knowledge, and non-extensive entropy was chosen. A new cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was derived, and the position of maximum velocity distribution was analyzed. The experimental results show that the estimated velocity values based on the principle of maximum Tsallis wavelet entropy are in good agreement with measured values. PMID:26986064

  1. Analysis of the Velocity Distribution in Partially-Filled Circular Pipe Employing the Principle of Maximum Entropy.

    PubMed

    Jiang, Yulin; Li, Bin; Chen, Jie

    2016-01-01

    The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by pressure. The research findings show that the position of maximum flow is below the water surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is mainly affected by the contractive tube wall and the secondary flow, and the variation of the velocity is relatively small. Literature retrieval results show relatively less research has been shown on the practical expression to describe the velocity distribution of partially-filled circular pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe flow was derived based on the principle of maximum entropy (POME). Different entropies were compared according to fluid knowledge, and non-extensive entropy was chosen. A new cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was derived, and the position of maximum velocity distribution was analyzed. The experimental results show that the estimated velocity values based on the principle of maximum Tsallis wavelet entropy are in good agreement with measured values. PMID:26986064

  2. OTEC (Ocean Thermal Energy Conversion) Cold Water Pipe At-Sea Test Program. Phase 2: Suspended pipe test

    NASA Astrophysics Data System (ADS)

    McHale, F. A.

    1984-08-01

    An important step in the development of technology for Ocean Thermal Energy Conversion (OTEC) cold water pipes (CWP) is the at-sea testing and subsequent evaluation of a large diameter fiberglass reinforced plastic (FRP) pipe. Focus was on the CWP since it is the most critical element in any OTEC design. The results of the second phase of the CWP At-Sea Test Program are given. During this phase an 8 foot diameter, 400 foot long sandwich wall FRP syntactic foam configuration CWP test article was developed, constructed, deployed and used for data acquisition in the open ocean near Honolulu, Hawaii. This instrumented CWP as suspended from a moored platform for a three week experiment in April-May, 1983. The CWP represented a scaled version of a 40 megawatt size structure, nominally 30 feet in diameter and 3000 feet long.

  3. Experimental investigation of transport of discrete solids with surge flows in a 10.0 cm diameter partially filled pipe

    NASA Astrophysics Data System (ADS)

    Mahajan, B. M.

    1982-01-01

    The transport of discrete solids with surge flows in a partially filled slightly pitched horizontal pipe was investigated. The experimental apparatus, instrumentation, and procedures are described. The experiments were conducted using a cylindrical solid in a 10.0 cm (4 in) diameter pipe. The water surge flows were obtained by discharging different volumes of water into the pipe from a falling head open container which simulated a water closet. Flow induced solid velocities and stream depth histories at various locations along the length of the pipe were measured. The effects of water volume used, pipe slope, and size of the solid on the solid velocities were examined. Solid velocities were compared with the maximum water velocities estimated from the stream depth histories. Also, the distance traversed by the solids in the pipe were measured for those cases in which the solids did not clear the pipe. The solid velocity increased with an increase in water volume used, a decrease in the size of the solid, and an increase in the pipe slope. The solid velocity in the initial reach of the pipe was less than the maximum water velocity; and the solid velocity approaches the maximum water velocity as the solid traveled downstream, except for some experiments with small water volumes.

  4. Heat pumps and heat pipes for applications in cold regions

    NASA Astrophysics Data System (ADS)

    Vasiliev, Leonard L.

    Advanced active carbon fibre/NH3 heat pumps with dual sources of energy (solar/gas) were developed for providing space heating, cooling and sanitary hot water for buildings. The next heat pump generation will include a combination of chemicals with an active carbon fibre to increase the NH3 absorption. Combination of heat pipes and heat pumps solves the problem of heating the ground and air in green houses using the heat of the ground, hot ground waters, solar energy and gas flames with heat storage.

  5. Long term performance of polyethylene pipe under high fill. Part 1. Technical report, June 1989-November 1992

    SciTech Connect

    Webb, N.H.; Selig, E.T.

    1994-12-01

    The aim of this study is to improve the knowledge base for the design of non-pressure high density polyethylene (HDPE) pipes under high earth loads. Laboratory tests were performed on HDPE pipe sections to obtain property information. The tests involved the diametrical compression (ring bending) of pipe sections both at various deformation rates to evaluate the effect on pipe stiffness, and also at fixed vertical deflection to evaluate the load relaxation with time. The performance of an HDPE pipe under high fill was monitored during fill construction and for three years after completion of construction. No wall crushing, structural buckling or excess deflection occurred. However, circumferential cracking of the unlined sections at the couplings, and buckling of the liner in the lined sections were observed. Laboratory studies of these two effects will be described in a subsequent technical report. Finite element analysis of the field installation was carried out. The analysis showed that the pipe can sustain circumferential stresses that are much higher than those proposed by current design (1992) procedures.

  6. OTEC cold water pipe design for problems caused by vortex-excited oscillations

    SciTech Connect

    Griffin, O. M.

    1980-03-14

    Vortex-excited oscillations of marine structures result in reduced fatigue life, large hydrodynamic forces and induced stresses, and sometimes lead to structural damage and to diestructive failures. The cold water pipe of an OTEC plant is nominally a bluff, flexible cylinder with a large aspect ratio (L/D = length/diameter), and is likely to be susceptible to resonant vortex-excited oscillations. The objective of this report is to survey recent results pertaining to the vortex-excited oscillations of structures in general and to consider the application of these findings to the design of the OTEC cold water pipe. Practical design calculations are given as examples throughout the various sections of the report. This report is limited in scope to the problems of vortex shedding from bluff, flexible structures in steady currents and the resulting vortex-excited oscillations. The effects of flow non-uniformities, surface roughness of the cylinder, and inclination to the incident flow are considered in addition to the case of a smooth cyliner in a uniform stream. Emphasis is placed upon design procedures, hydrodynamic coefficients applicable in practice, and the specification of structural response parameters relevant to the OTEC cold water pipe. There are important problems associated with in shedding of vortices from cylinders in waves and from the combined action of waves and currents, but these complex fluid/structure interactions are not considered in this report.

  7. Acoustic attenuation, phase and group velocities in liquid-filled pipes III: nonaxisymmetric propagation and circumferential modes in lossless conditions.

    PubMed

    Baik, Kyungmin; Jiang, Jian; Leighton, Timothy G

    2013-03-01

    Equations for the nonaxisymmetric modes that are axially and circumferentially propagating in a liquid-filled tube with elastic walls surrounded by air/vacuum are presented using exact elasticity theory. Dispersion curves for the axially propagating modes are obtained and verified through comparison with measurements. The resulting theory is applied to the circumferential modes, and the pressures and the stresses in the liquid-filled pipe are calculated under external forced oscillation by an acoustic source. This provides the theoretical foundation for the narrow band acoustic bubble detector that was subsequently deployed at the Target Test Facility (TTF) of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), TN.

  8. Acoustic attenuation, phase and group velocities in liquid-filled pipes II: simulation for Spallation Neutron Sources and planetary exploration.

    PubMed

    Jiang, Jian; Baik, Kyungmin; Leighton, Timothy G

    2011-08-01

    This paper uses a finite element method (FEM) to compare predictions of the attenuation and sound speeds of acoustic modes in a fluid-filled pipe with those of the analytical model presented in the first paper in this series. It explains why, when the predictions of the earlier paper were compared with experimental data from a water-filled PMMA pipe, the uncertainties and agreement for attenuation data were worse than those for sound speed data. Having validated the FEM approach in this way, the versatility of FEM is thereafter demonstrated by modeling two practical applications which are beyond the analysis of the earlier paper. These applications model propagation in the mercury-filled steel pipework of the Spallation Neutron Source at the Oak Ridge National Laboratory (Tennessee), and in a long-standing design for acoustic sensors for use on planetary probes. The results show that strong coupling between the fluid and the solid walls means that erroneous interpretations are made of the data if they assume that the sound speed and attenuation in the fluid in the pipe are the same as those that would be measured in an infinite volume of identical fluid, assumptions which are common when such data have previously been interpreted. PMID:21877784

  9. OTEC (Ocean Thermal Energy Conversion) Cold Water Pipe At-Sea Test Program Data Analysis Project: Pipe, platform and environmental parameters data reduction and analysis

    NASA Astrophysics Data System (ADS)

    Vega, L. A.; Nilhous, G. C.

    1985-08-01

    An assessment of computer models developed to analyze the structural response of cold water pipes (CWPs) is discussed. The principal aim of the data interpretation phase of the study was to determine the causal relationship between the environment and the barge/CWP response to provide the information required to assess the CWP computer models.

  10. OTEC (Ocean Thermal Energy Conversion) CWP (Cold Water Pipe) Laboratory Test Program. Materials Project Test Report

    SciTech Connect

    Not Available

    1981-04-01

    Fiberglass sandwich wall structures emerged as leading candidates for the OTEC cold water pipe because of their high strength to weight ratio, their flexibility in selecting directional properties, their resistance to electrochemical interaction, their ease of deployment and their relative low cost. A review of the literature established reasonable confidence that FRP laminates could meet the OTEC requirements; however, little information was available on the performance of core materials suitable for OTEC applications. Syntactic foam cores of various composition and density were developed and tested for mechanical properties and seawater absorption.

  11. Effect of spreader size on microleakage of roots filled with cold lateral compaction technique

    PubMed Central

    Turk, Tugba; Piskin, Beyser; Orucoglu, Hasan; Aydin, Berdan

    2015-01-01

    Objectives: To evaluate the effect of spreader size on apical leakage of maxillary incisor teeth. Materials and Methods: A total of 75 permanent human teeth with no carious and no fracture or crack were used for this study. After removing the crown from the cementoenamel junction and the standardization of the root lengths, the specimens were randomly divided into five groups: Group 1 - Roots were not instrumented. Group 2 - Root canals were enlarged using the step-back technique to a #40 file and filled using cold lateral compaction (CLC) of gutta-percha (GP). Group 3 - During the filling procedure, the first spreader used was size 40. Group 4 - The first spreader used was size 35. Group 5 - The initial spreader used was size 25. The amount of leakage through the filled root canals was evaluated by computerized fluid filtration model. Statistical analyzes were done using Kruskal–Wallis test and Mann–Whitney test (P < 0.05). Results: There were statistically significant differences among the groups (P < 0.05). While the uninstrumented group (Group 1) had no leakage, instrumented but not filled roots (Group 2) demonstrated the highest leakage values. There were no differences between Group 3 and 4. Group 5 showed significantly less leakage than Group 3 and 4. Conclusion: Spreader size used during CLC of GP appeared to be a significant factor on apical leakage of roots. Using smaller size spreader during CLC may provide relatively less leakage. PMID:26430366

  12. 46 CFR 119.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the tank. Such pipes must terminate on the weather deck and must be fitted with shutoff valves..., suitable flexible tubing or hose having high resistance to salt water, petroleum oils, heat and...

  13. 46 CFR 119.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the tank. Such pipes must terminate on the weather deck and must be fitted with shutoff valves..., suitable flexible tubing or hose having high resistance to salt water, petroleum oils, heat and...

  14. 46 CFR 119.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the tank. Such pipes must terminate on the weather deck and must be fitted with shutoff valves..., suitable flexible tubing or hose having high resistance to salt water, petroleum oils, heat and...

  15. Numerical simulation of filling a magnetic flux tube with a cold plasma: Anomalous plasma effects

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Leung, W. C.

    1995-01-01

    Large-scale models of plasmaspheric refilling have revealed that during the early stage of the refilling counterstreaming ion beams are a common feature. However, the instability of such ion beams and its effect on refilling remain unexplored. In order to learn the basic effects of ion beam instabilities on refilling, we have performed numerical simulations of the refilling of an artificial magnetic flux tube. (The shape and size of the tube are assumed so that the essential features of the refilling problem are kept in the simulation and at the same time the small scale processes driven by the ion beams are sufficiently resolved.) We have also studied the effect of commonly found equatorially trapped warm and/or hot plasma on the filling of a flux tube with a cold plasma. Three types of simulation runs have been performed.

  16. Indicators for microbiologically induced corrosion of copper pipes in a cold-water plumbing system.

    PubMed

    Arens, P; Tuschewitzki, G J; Wollmann, M; Follner, H; Jacobi, H

    1995-01-01

    Corrosion damage in the copper cold-water plumbing system of a large building was investigated. An unusual combination of corrosion patterns was found on the inner copper pipe surfaces that were in contact with water. Damage was in the form of shallow cavities, a surface cover or pinprick-like pits. The corrosion system was influenced by thermal treatment and also by cefoxitin dosing. The latter fact in particular is a clear indication of microbiological involvement in this corrosive action. Different parameters, to be measured in standing water (24-h stagnation), are considered typical for this type of corrosion: the detection of Sphingomonas spec. and other species in whose cell wall regions copper can accumulate, a copper content of more than 2 mg/l, oxygen consumption of more than 4 mg/l and an increase in pH. With the help of these indicators, it is possible to recognize microbiologically induced corrosion in copper plumbing systems before pipe perforation occur. PMID:7727024

  17. Effect of filling ratio and orientation on the thermal performance of closed loop pulsating heat pipe using ethanol

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Chowdhury, Mehrin; Islam, Nawshad Arslan; Mufti, Sayed Muhammad; Ali, Mohammad

    2016-07-01

    Pulsating heat pipe (PHP) is a new, promising yet ambiguous technology for effective heat transfer of microelectronic devices where heat is carried by the vapor plugs and liquid slugs of the working fluid. The aim of this research paper is to better understand the operation of PHP through experimental investigations and obtain comparative results for different parameters. A series of experiments are conducted on a closed loop PHP (CLPHP) with 8 loops made of copper capillary tube of 2 mm inner diameter. Ethanol is taken as the working fluid. The operating characteristics are studied for the variation of heat input, filling ratio (FR) and orientation. The filling ratios are 40%, 50%, 60% and 70% based on its total volume. The orientations are 0° (vertical), 30°, 45° and 60°. The results clearly demonstrate the effect of filling ratio and inclination angle on the performance, operational stability and heat transfer capability of ethanol as working fluid of CLPHP. Important insight of the operational characteristics of CLPHP is obtained and optimum performance of CLPHP using ethanol is thus identified. Ethanol works best at 50-60%FR at wide range of heat inputs. At very low heat inputs, 40%FR can be used for attaining a good performance. Filling ratio below 40%FR is not suitable for using in CLPHP as it gives a low performance. The optimum performance of the device can be obtained at vertical position.

  18. 46 CFR 182.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... system built in accordance with ABYC H-24 (incorporated by reference; see 46 CFR 175.600), or 33 CFR 183... 46 CFR 175.600), will be considered as meeting the requirements of this section. (g) Where a flexible..., petroleum oils, heat and vibration, may be used. Such hose must overlap metallic pipe ends at the least...

  19. 46 CFR 182.445 - Fill and sounding pipes for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system built in accordance with ABYC H-24 (incorporated by reference; see 46 CFR 175.600), or 33 CFR 183... 46 CFR 175.600), will be considered as meeting the requirements of this section. (g) Where a flexible..., petroleum oils, heat and vibration, may be used. Such hose must overlap metallic pipe ends at the least...

  20. 46 CFR 98.30-13 - Pipe connections, and filling and discharge openings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 CFR 178.275. (2) For an MPT, the valves and closures specified in §§ 64.33 through 64.41 of this chapter. (3) For an IBC, the closures specified in 49 CFR 178.705. (b) A manifold cannot be used when... onboard a vessel, unless each filling and discharge opening in the tank bottom is equipped with...

  1. Technology development plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Riggins, Michael

    1989-04-01

    An overview is given of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high quality sediment samples for laboratory dynamic testing, and to perform deep penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35 deg and in water depths to 1300 m.

  2. De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.).

    PubMed

    Sinha, Somya; Raxwal, Vivek K; Joshi, Bharat; Jagannath, Arun; Katiyar-Agarwal, Surekha; Goel, Shailendra; Kumar, Amar; Agarwal, Manu

    2015-01-01

    Low temperature is a major abiotic stress that impedes plant growth and development. Brassica juncea is an economically important oil seed crop and is sensitive to freezing stress during pod filling subsequently leading to abortion of seeds. To understand the cold stress mediated global perturbations in gene expression, whole transcriptome of B. juncea siliques that were exposed to sub-optimal temperature was sequenced. Manually self-pollinated siliques at different stages of development were subjected to either short (6 h) or long (12 h) durations of chilling stress followed by construction of RNA-seq libraries and deep sequencing using Illumina's NGS platform. De-novo assembly of B. juncea transcriptome resulted in 133,641 transcripts, whose combined length was 117 Mb and N50 value was 1428 bp. We identified 13,342 differentially regulated transcripts by pair-wise comparison of 18 transcriptome libraries. Hierarchical clustering along with Spearman correlation analysis identified that the differentially expressed genes segregated in two major clusters representing early (5-15 DAP) and late stages (20-30 DAP) of silique development. Further analysis led to the discovery of sub-clusters having similar patterns of gene expression. Two of the sub-clusters (one each from the early and late stages) comprised of genes that were inducible by both the durations of cold stress. Comparison of transcripts from these clusters led to identification of 283 transcripts that were commonly induced by cold stress, and were referred to as "core cold-inducible" transcripts. Additionally, we found that 689 and 100 transcripts were specifically up-regulated by cold stress in early and late stages, respectively. We further explored the expression patterns of gene families encoding for transcription factors (TFs), transcription regulators (TRs) and kinases, and found that cold stress induced protein kinases only during early silique development. We validated the digital gene expression

  3. De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.)

    PubMed Central

    Sinha, Somya; Raxwal, Vivek K.; Joshi, Bharat; Jagannath, Arun; Katiyar-Agarwal, Surekha; Goel, Shailendra; Kumar, Amar; Agarwal, Manu

    2015-01-01

    Low temperature is a major abiotic stress that impedes plant growth and development. Brassica juncea is an economically important oil seed crop and is sensitive to freezing stress during pod filling subsequently leading to abortion of seeds. To understand the cold stress mediated global perturbations in gene expression, whole transcriptome of B. juncea siliques that were exposed to sub-optimal temperature was sequenced. Manually self-pollinated siliques at different stages of development were subjected to either short (6 h) or long (12 h) durations of chilling stress followed by construction of RNA-seq libraries and deep sequencing using Illumina's NGS platform. De-novo assembly of B. juncea transcriptome resulted in 133,641 transcripts, whose combined length was 117 Mb and N50 value was 1428 bp. We identified 13,342 differentially regulated transcripts by pair-wise comparison of 18 transcriptome libraries. Hierarchical clustering along with Spearman correlation analysis identified that the differentially expressed genes segregated in two major clusters representing early (5–15 DAP) and late stages (20–30 DAP) of silique development. Further analysis led to the discovery of sub-clusters having similar patterns of gene expression. Two of the sub-clusters (one each from the early and late stages) comprised of genes that were inducible by both the durations of cold stress. Comparison of transcripts from these clusters led to identification of 283 transcripts that were commonly induced by cold stress, and were referred to as “core cold-inducible” transcripts. Additionally, we found that 689 and 100 transcripts were specifically up-regulated by cold stress in early and late stages, respectively. We further explored the expression patterns of gene families encoding for transcription factors (TFs), transcription regulators (TRs) and kinases, and found that cold stress induced protein kinases only during early silique development. We validated the digital gene

  4. Theoretical distribution of gutta-percha within root canals filled using cold lateral compaction based on numeric calculus.

    PubMed

    Min, Yi; Song, Ying; Gao, Yuan; Dummer, Paul M H

    2016-08-01

    This study aimed to present a new method based on numeric calculus to provide data on the theoretical volume ratio of voids when using the cold lateral compaction technique in canals with various diameters and tapers. Twenty-one simulated mathematical root canal models were created with different tapers and sizes of apical diameter, and were filled with defined sizes of standardized accessory gutta-percha cones. The areas of each master and accessory gutta-percha cone as well as the depth of their insertion into the canals were determined mathematically in Microsoft Excel. When the first accessory gutta-percha cone had been positioned, the residual area of void was measured. The areas of the residual voids were then measured repeatedly upon insertion of additional accessary cones until no more could be inserted in the canal. The volume ratio of voids was calculated through measurement of the volume of the root canal and mass of gutta-percha cones. The theoretical volume ratio of voids was influenced by the taper of canal, the size of apical preparation and the size of accessory gutta-percha cones. Greater apical preparation size and larger taper together with the use of smaller accessory cones reduced the volume ratio of voids in the apical third. The mathematical model provided a precise method to determine the theoretical volume ratio of voids in root-filled canals when using cold lateral compaction.

  5. Theoretical distribution of gutta-percha within root canals filled using cold lateral compaction based on numeric calculus.

    PubMed

    Min, Yi; Song, Ying; Gao, Yuan; Dummer, Paul M H

    2016-08-01

    This study aimed to present a new method based on numeric calculus to provide data on the theoretical volume ratio of voids when using the cold lateral compaction technique in canals with various diameters and tapers. Twenty-one simulated mathematical root canal models were created with different tapers and sizes of apical diameter, and were filled with defined sizes of standardized accessory gutta-percha cones. The areas of each master and accessory gutta-percha cone as well as the depth of their insertion into the canals were determined mathematically in Microsoft Excel. When the first accessory gutta-percha cone had been positioned, the residual area of void was measured. The areas of the residual voids were then measured repeatedly upon insertion of additional accessary cones until no more could be inserted in the canal. The volume ratio of voids was calculated through measurement of the volume of the root canal and mass of gutta-percha cones. The theoretical volume ratio of voids was influenced by the taper of canal, the size of apical preparation and the size of accessory gutta-percha cones. Greater apical preparation size and larger taper together with the use of smaller accessory cones reduced the volume ratio of voids in the apical third. The mathematical model provided a precise method to determine the theoretical volume ratio of voids in root-filled canals when using cold lateral compaction. PMID:27465338

  6. Effect of using acetone and distilled water on the performance of open loop pulsating heat pipe (OLPHP) with different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Afrose, Tonima; Tahmina, Halima Khatun; Rinky, Rumana Parvin; Ali, Mohammad

    2016-07-01

    Pulsating heat pipe (PHP) is a new innovation in the modern era of miniaturizes thermal management system for its higher heating and cooling capacity. The objective of this experiment is to observe the performance of open loop pulsating heat pipe using two fluids at different filling ratios. This OLPHP is a copper capillary tube of 2.5mm outer diameter and 2mm inner diameter. It consists of 8 loops where the evaporative section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is conducted with distilled water and acetone at 40%, 50%, 60%, and 70% filling ratios where 0° (vertical) is considered as definite angle of inclination. Distilled water and acetone are selected as working fluids considering their different latent heat of vaporization and surface tension. It is found that acetone shows lower thermal resistance than water at all heat inputs. Best performance of acetone is attained at 70% filling ratio. Water displays better heat transfer capability at 50% filling ratio.

  7. A COMPARISON OF RESIDENTIAL COPPER PIPES CARRYING HOT AND COLD WATER

    EPA Science Inventory

    Each year, the U.S. EPA examines numerous lead, iron, and copper pipes pulled from active use in homes and drinking water distribution systems throughout the United States. The intent of the work is to better understand factors that influence the release of metals into drinking ...

  8. Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad

    2016-07-01

    This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.

  9. Development of Flow and Heat Transfer During Filling a Pipeline with Water at the Pipe Wall Temperature Below the Freezing Point

    NASA Astrophysics Data System (ADS)

    Kitanin, É. L.; Smirnov, Yu. A.; Lebedev, M. E.

    2016-07-01

    The paper presents the technique of computing flow and heat transfer of water in a pipeline whose initial temperature is lower than the freezing point of water. A feature of the method is the possibility of calculating the process from the moment of pouring water into a pipe on the inner surface of whose wall a layer of ice is being formed. The system of equations describing the process involves nonstationary energy equations for the water flow, ice layer, and for the pipe wall. It is solved for each section of the pipeline passed by water in a small time interval in the process of filling the pipe and further flow. The Beginning computer program has been created and implemented in the Visual Basic language for numerical analysis of the process. The calculations made with the aid of this program allow one to estimate the possibility of appearance of an ice plug in the pipeline at the given temperature, water flow rate, pipeline diameter, and conditions of external heat transfer of water flow in the pipeline.

  10. Experimental investigation on thermal performance of a closed loop pulsating heat pipe (CLPHP) using methanol and distilled water at different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Swarna, Anindita Dhar; Ahmed, Syed Nasif Uddin; Perven, Sanjida; Ali, Mohammad

    2016-07-01

    Pulsating Heat Pipes, the new two-phase heat transfer devices, with no counter current flow between liquid and vapor have become a modern topic for research in the field of thermal management. This paper focuses on the performance of methanol and distilled water as working fluid in a closed loop pulsating heat pipe (CLPHP). This performances are compared in terms of thermal resistance, heat transfer co-efficient, and evaporator and condenser wall temperature with variable heat inputs. Methanol and Distilled water are selected for their lower surface tension, dynamic viscosity and sensible heat. A closed loop PHP made of copper with 2mm ID and 2.5mm OD having total 8 loops are supplied with power input varied from 10W to 60W. During the experiment the PHP is kept vertical, while the filling ratio (FR) is increased gradually from 40% to 70% with 10% increment. The optimum filling ratio for a minimum thermal resistance is found to be 60% and 40% for distilled water and methanol respectively and methanol is found to be the better working fluid compared to distilled water in terms of its lower thermal resistance and higher heat transfer coefficient.

  11. Contemporary formulation and distribution practices for cold-filled acid products: Australian industry survey and modeling of published pathogen inactivation data.

    PubMed

    Chapman, B; Scurrah, K J; Ross, T

    2010-05-01

    A survey of 12 Australian manufacturers indicated that mild-tasting acids and preservatives are used to partially replace acetic acid in cold-filled acid dressings and sauces. In contrast to traditional ambient temperature distribution practices, some manufacturers indicated that they supply the food service sector with cold-filled acid products prechilled for incorporation into ready-to-eat foods. The Comité des Industries des Mayonnaises et Sauces Condimentaires de la Communauté Economique Européenne (CIMSCEE) Code, a formulation guideline used by the industry to predict the safety of cold-filled acid formulations with respect to Salmonella enterica and Escherichia coli, does not extend to the use of acids and preservatives other than acetic acid nor does it consider the effects of chill distribution. We found insufficient data in the published literature to comprehensively model the response of S. enterica and E. coli to all of the predictor variables (i.e., pH, acetic acid, NaCl, sugars, other acids, preservatives, and storage temperature) of relevance for contemporary cold-filled acid products in Australia. In particular, we noted a lack of inactivation data for S. enterica at aqueous-phase NaCl concentrations of >3% (wt/wt). However, our simple models clearly identified pH and 1/absolute temperature of storage as the most important variables generally determining inactivation. To develop robust models to predict the effect of contemporary formulation and storage variables on product safety, additional empirical data are required. Until such models are available, our results support challenge testing of cold-filled acid products to ascertain their safety, as suggested by the CIMSCEE, but suggest consideration of challenging with both E. coli and S. enterica at incubation temperatures relevant to intended product distribution temperatures. PMID:20501041

  12. Contemporary formulation and distribution practices for cold-filled acid products: Australian industry survey and modeling of published pathogen inactivation data.

    PubMed

    Chapman, B; Scurrah, K J; Ross, T

    2010-05-01

    A survey of 12 Australian manufacturers indicated that mild-tasting acids and preservatives are used to partially replace acetic acid in cold-filled acid dressings and sauces. In contrast to traditional ambient temperature distribution practices, some manufacturers indicated that they supply the food service sector with cold-filled acid products prechilled for incorporation into ready-to-eat foods. The Comité des Industries des Mayonnaises et Sauces Condimentaires de la Communauté Economique Européenne (CIMSCEE) Code, a formulation guideline used by the industry to predict the safety of cold-filled acid formulations with respect to Salmonella enterica and Escherichia coli, does not extend to the use of acids and preservatives other than acetic acid nor does it consider the effects of chill distribution. We found insufficient data in the published literature to comprehensively model the response of S. enterica and E. coli to all of the predictor variables (i.e., pH, acetic acid, NaCl, sugars, other acids, preservatives, and storage temperature) of relevance for contemporary cold-filled acid products in Australia. In particular, we noted a lack of inactivation data for S. enterica at aqueous-phase NaCl concentrations of >3% (wt/wt). However, our simple models clearly identified pH and 1/absolute temperature of storage as the most important variables generally determining inactivation. To develop robust models to predict the effect of contemporary formulation and storage variables on product safety, additional empirical data are required. Until such models are available, our results support challenge testing of cold-filled acid products to ascertain their safety, as suggested by the CIMSCEE, but suggest consideration of challenging with both E. coli and S. enterica at incubation temperatures relevant to intended product distribution temperatures.

  13. Fluid flow and heat transfer in polygonal micro heat pipes

    NASA Astrophysics Data System (ADS)

    Rao, Sai; Wong, Harris

    2015-11-01

    Micro heat pipes have been used to cool microelectronic devices, but their heat transfer coefficients are low compared with those of conventional heat pipes. We model heat and mass transfer in triangular, square, hexagonal, and rectangular micro heat pipes under small imposed temperature differences. A micro heat pipe is a closed microchannel filled with a wetting liquid and a long vapor bubble. When a temperature difference is applied across a micro heat pipe, the equilibrium vapor pressure at the hot end is higher than that at the cold end, and the difference drives a vapor flow. As the vapor moves, the vapor pressure at the hot end drops below the saturation pressure. This pressure drop induces continuous evaporation from the interface. Two dimensionless numbers emerge from the momentum and energy equations: the heat-pipe number H, and the evaporation exponent S. When H >> 1 and S >> 1, vapor-flow heat transfer dominates and a thermal boundary layer appears at the hot end, the thickness of which scales as L/S, where L is the half-length of the pipe. A similar boundary layer exists at the cold end. Outside the boundary layers, the temperature is uniform. We also find a dimensionless optimal pipe length Sm =Sm(H) for maximum evaporative heat transfer. Thus, our model suggests that micro heat pipes should be designed with H >> 1 and S =Sm. We calculate H and S for four published micro-heat-pipe experiments, and find encouraging support for our design criterion.

  14. Technology Development Plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes: Final subcontract report

    SciTech Connect

    Valent, P.J.; Riggins, M.

    1989-04-01

    This report provides an overview of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high-quality sediment samples for laboratory dynamic testing, and to perform deep-penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor-resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35/degree/ and in water depths to 1300 m. 74 refs., 19 figs., 6 tabs.

  15. Assessment of US shipbuilding current capability to build a commercial OTEC platform and a cold water pipe

    SciTech Connect

    Komelasky, M. C.

    1980-03-01

    Lowry and Hoffman Associates Inc. (LHA) performed for ORI an analysis of the shipbuilding requirements for constructing an OTEC plant, and the available shipyard assets which could fulfill these requirements. In addition, several shipyards were queried concerning their attitudes towards OTEC. In assessing the shipbuilding requirements for an OTEC plant, four different platform configurations were studied and four different designs of the cold water pipe (CWP) were examined. The platforms were: a concrete ship design proposed by Lockheed; concrete spar designs with internal heat exchangers (IHE) (Rosenblatt) and external heat exchangers (XHE) (Lockheed); and a steel ship design proposed by Gibbs and Cox. The types of materials examined for CWP construction were: steel, fiber reinforced plastic (FPR), elastomer, and concrete. The report is organized io three major discussion areas. All the construction requirements are synthesized for the four platforms and CWPs, and general comments are made concerning their availability in the US. Specific shipbuilders facilities are reviewed for their applicability to building an OTEC plant, an assessment of the shipyards general interest in the OTEC program is presented providing an insight into their nearterm commercial outlook. The method of determining this interest will depend largely on a risk analysis of the OTEC system. Also included are factors which may comprise this analysis, and a methodology to ascertain the risk. In the appendices, various shipyard specifications are presented, shipyard assessment matrices are given, graphs of various shipyard economic outlooks are provided, and definitions of the risk factors are listed. (WHK)

  16. Environmental design criteria for the 1/3 scale OTEC (Ocean Thermal Energy Conversion) cold water pipe At-Sea Test Site off Honolulu, Hawaii

    SciTech Connect

    Not Available

    1982-01-01

    A fully instrumented At-Sea Test of a 1/3 scale OTEC cold water pipe (CWP) will be carried out. The future prototype for this 1/3 scale model is envisioned to be the OTEC Pilot Plant design in the 10 to 40 megawatt-electric size range with an estimated CWP diameter of about 30 ft and an overall vertical length of about 3000 ft. Thus the 1/3 scale CWP consists of a pipe about 10 ft in diameter and 1000 ft long. The selected At-Sea Test site is located at 21/sup 0/15.5'N latitude and 157/sup 0/54.6'W longitude off Honolulu, Hawaii. In order to expedite development of the design of the 1/3 scale At-Sea Test CWP/Platform/Mooring System the report provides environmental design criteria data at the proposed At-Sea Test site evaluated from available historic data.

  17. Heat pipes and use of heat pipes in furnace exhaust

    DOEpatents

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  18. Numerical study of forced convection flow and heat transfer of a nanofluid flowing inside a straight circular pipe filled with a saturated porous medium

    NASA Astrophysics Data System (ADS)

    Baqaie Saryazdi, A.; Talebi, F.; Armaghani, T.; Pop, I.

    2016-04-01

    In this paper, the problem of developing forced convection flow of a nanofluid in a constant-wall-temperature circular tube filled with a porous medium is considered. The flow is steady and Brinkman-Forchheimer-extended Darcy equation model is employed. The thermal-equilibrium model is assumed between nanofluid and solid phase. It is also assumed that nanoparticles are distributed non-uniformly inside the pipe, hence the particles volume fraction equation is also coupled with the governing equations. A numerical study has been performed using the Finite-Volume method to analyze heat transfer coefficient of Al2O3 -water nanofluid. The effects of nanoparticles volume fraction and porosity on fluid flow and heat transfer of nanofluids are studied. The results show that the Nusselt number is increased with increasing particles volume fraction. Moreover, the wall shear stresses are increased. Finally, the effect of porosity on particle volume fraction distribution is studied and discussed in detail. We are confident that the reported results are new and original.

  19. OTEC (Ocean Thermal Energy Conversion) Cold Water Pipe At-Sea Test Program Data Analysis Project: Users guide for the NOAA/ROTECF and NOAA/TRW computer models

    NASA Astrophysics Data System (ADS)

    Vega, L. A.; Nihous, G. C.

    1985-06-01

    Additional guidelines for the use of the Cold-Water-Pipe computer models NOAA/TRW and NOAA/ROTECF are provided. The primary intent is to correct and upgrade the user manuals with errata sheets and to provide an updated listing of the source codes. It is recommended that users be familiar with the hydrodynamic and structural aspects of floating vessels and the representation of ocean thermal energy conversion pipes as beams of equivalent structural properties.

  20. Decontaminating Aluminum/Ammonia Heat Pipes

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1985-01-01

    Internal gas slugs reduced or eliminated. Manufacturing method increases efficiency of aluminum heat pipes in which ammonia is working fluid by insuring pipe filled with nearly pure charge of ammonia. In new process heat pipe initially closed with stainless-steel valve instead of weld so pipe put through several cycles of filling, purging, and accelerated aging.

  1. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  2. NOAA OTEC CWP (National Oceanic and Atmospheric Administration Ocean Thermal Energy Conversion Cold Water Pipe) at-sea test. Volume 3, part 1: Tabulation of the power spectra for selected channels

    NASA Astrophysics Data System (ADS)

    1983-11-01

    Data collected during the Ocean Thermal Energy Conversion (OTEC) Cold Water Pipe At-Sea Test was analyzed. Data presented included: (1)sensor factors and off sets and the data processing algorithms used to convert the recorded sensor measurements from electrical units to engineering units; (2) plots of the power spectra estimates obtained from a fast Fourier transform (FFT) analysis of selected channels; (3) plots of selected sensor measurements as a function of time; and (4) plots of bending strain along the pipe. The mean, root-mean-square (RMS) maximum, and minimum values at each depth are shown in each plot.

  3. NOAA OTEC CWP (National Oceanic and Atmospheric Administration Ocean Thermal Energy Conversion Cold Water Pipe) at-sea test. Volume 3: Additional tabulation of the power spectra, part 2

    NASA Astrophysics Data System (ADS)

    1983-12-01

    Data collected during the Ocean Thermal Energy Conversion (OTEC) Cold Water Pipe At Sea Test are analyzed. Also included are the following ittems: (1) sensor factors and offsets, and the data processing algorithms used to convert the recorded sensor measurements from electrical to engineering units; (2) plots of the power spectra estimates obtained from a fast fourier transform (FFT) analysis of selected channels; (3) plots of selected sensor measurements as a function of time; and (4) plots of bending strain along the pipe using statistics and values presented.

  4. A regression model for the temporal development of soil pipes and associated gullies in the alluvial-fill valley of the Rio Puerco, central New Mexico

    NASA Astrophysics Data System (ADS)

    Condit, C. D.; Elston, W. E.

    1984-04-01

    On Mars, the association of gullied escarpments and chaotic terrain is evidence for failure and scarp retreat of poorly consolidated materials. Some martian gullies have no surface outlets and may have drained through subterranean channels. Similar features, though on a much smaller scale, can be seen in alluvium along terrestrial river banks in semiarid regions, such as the Rio Puerco Valley of central New Mexico. Many of the escarpments along the Rio Puerco are developing through formation of collapse gullies, which drain through soil pipes. Gully development can be monitored on aerial photographs taken in 1935, 1962, and 1980. A regression model was developed to quantify gully evolution over a known time span. Soil pipes and their associated collapse gullies make recognizable signatures on the air photos. The areal extent of this signature can be normalized to the scarp length of each pipe-gully system, which makes comparisons between systems possible.

  5. Design of a Hydrogen Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Liu, Yumeng; Deng, Haoren; Pfotenhauer, John; Gan, Zhihua

    In order to enhance the application of a cryocooler that provides cooling capacity at the cold head location, and effectively spread that cooling over an extended region, one requires an efficient heat transfer method. The pulsating heat pipe affords a highly effective heat transfer component that has been extensively researched at room temperature, but is recently being investigated for cryogenic applications. This paper describes the design. The experimental setup is designed to characterize the thermal performance of the PHP as a function of the applied heat, number of turns, filling ratio, inclination angle, and length of adiabatic section.

  6. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  7. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  8. External artery heat pipe

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor); Ernst, Donald M. (Inventor); Shaubach, Robert M. (Inventor)

    1989-01-01

    An improved heat pipe with an external artery. The longitudinal slot in the heat pipe wall which interconnects the heat pipe vapor space with the external artery is completely filled with sintered wick material and the wall of the external artery is also covered with sintered wick material. This added wick structure assures that the external artery will continue to feed liquid to the heat pipe evaporator even if a vapor bubble forms within and would otherwise block the liquid transport function of the external artery.

  9. Practical Usage of Effect of Cold Weldability of Metals in Joint of Plastically Deformable Gasket and Flanges of Detachable Joint of Fuel Pipe-Line

    NASA Astrophysics Data System (ADS)

    Danchenko, V. G.

    2002-01-01

    The performed investigations of the character of changing the leakage of control gas through flange connections in the process of drawing- up the bolts in to calculation moment and subsequent lowering of bolt loading to zero have shown the following. Gradual reduction of leakage through a gasket occurs in the process of increasing the tightening torque up to its complete absence. But there is no leakage through the unloaded gasket after untwisting all nuts and removal of fastening bolts from flanges. The performed analysis has shown that this effect is caused by cold weldability of the gasket with flanges; this is a result of flowing of its material into microrough holes of contact surfaces of flanges at plastic deformation with formation of strong and dense contact. Some technological methods of formation of undetachable joint have been developed for practical application of this effect. According to one of those methods, drawing- up the gasket is performed with the help of flanges preliminarily. Those bolts are substituted by less strong standard bolts for drawing- up by less moment after achievement of stress needed. Method of pressurization of the joint is more effective when technological detachable flanges and bolts are used for reduction of the gasket up to its plastic state. Those flanges and bolts are removed after drawing- up; after that standard flanges are loaded by the moment used for reception of effort only from pressure of operational medium in the pipe- line (Qoper.m.) because drawing- up of the gasket by effort (Qeff.) that provides its plastic state, is already achieved. Then we exclude the first component (Qeff.) in dependence which is known from technical literature: Qdraw. = Qeff . + Qoper .m. = qFgas. + PFpip. (1), and the final formula for calculation of the effort of drawing- up the joint (in which drawing- up the gasket with provision of cold weldability is carried out preliminarily before drawing- up the standard bolts) is expressed in

  10. Thermal destratification in an insulated vessel filled with water

    NASA Astrophysics Data System (ADS)

    Kupiec, Krzysztof; Neupauer, Krzysztof; Larwa, Barbara

    2016-02-01

    Measurements of the water temperature in the vertical tube with the insulation, which was initially filled in the upper half of the hot water and the bottom half—with cold water were carried out. A mathematical model, which takes into account the simultaneous temperature equalization in the pipe and heat losses to the environment, was developed. Heat losses through side wall of the tank can be described by expression characterizing an internal heat source. Comparison the calculation results with the measurements showed the model quality correctness.

  11. Thermal laminarization of a stratified pipe flow

    SciTech Connect

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    The present work constitutes a new program that grew out of a scoping assessment by ANL to determine the propensity for pipe stratification to occur in the reactor outlet nozzles and hot-leg piping of a generic LMFBR during events producing reverse pipe flow. This paper focuses on the role that thermal buoyancy plays relative to being able to laminarize a turbulent stratified shear zone in a horizontal pipe. The preceeding can influence the behavior of a pipe stratified-backflow-recirculation zone (cold plenum water down into the hot pipe flow) which developes as the result of a temperature difference between the pipe flow and the plenum.

  12. Electrohydrodynamic heat pipes.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1973-01-01

    An electrohydrodynamic heat pipe of radical design is proposed which substitutes polarization electrohydrodynamic force effects for capillarity in collecting, guiding, and pumping a condensate liquid phase. The discussed device is restricted to the use of dielectric liquids as working fluids. Because of the relatively poor thermal transport properties of these liquids, capillary heat pipes using these liquids have not been high performance devices. The employment of the electrohydrodynamic concept should enhance this performance and help fill the performance gap that exists in the temperature range from 250 F to 750 F for 'conventional' capillary heat pipes.

  13. OTEC (Ocean Thermal Energy Conversion) cold water pipe at-sea test program data analysis project. Comparisons between measured and predicted barge and pipe response: Evaluation of the NOAA/ROTECF and NOAA/TRW computer models

    NASA Astrophysics Data System (ADS)

    Vega, L. A.; Nihous, G. C.

    1985-10-01

    The simulation of the at-sea test conditions with computer models is considered. The NOAA/ROTECF model simulates a coupled barge/pipe system driven by waves and currents in the frequency domain (standard-deviation parameters are considered). The NOAA/TRW model simulates a pipe driven by user-specified barge motions, waves, and currents in the time domain (parameters as a function of time are considered).

  14. Combustion heated cold sealed TEC

    SciTech Connect

    Yarygin, V.I.; Klepikov, V.V.; Meleta, Y.A.; Mikheyev, A.S.; Yarygin, D.V.; Wolff, L.R.

    1997-12-31

    The development of a thermionic domestic boiler system using natural gas, which as performed under an ECS-project in 1992 to 1994 by a Russian-Dutch team of researchers, will be continued again. Thanks to financial support on the part of the Netherlands Organization for Scientific Research (NWO), the major effort in 1997 to 1999 will be focused on the development, manufacture and testing of an improved, easier to fabricate, more repairable and less expensive combustion heated TEC with a longer life-time. The achievement of the aim of this project will make it possible to expand the field of the terrestrial thermionics application and to embark on the commercialization stage. This report discusses the concept of the combustion heated Cold Seal TEC. A Cold Seal TEC will be developed and tested, in which the rubber O-ring seal will electrically insulate the hot shell from the collector heat pipe. The Cold Seal TEC will use a noble gas + cesium as the working medium (the idea of such a TEC was first proposed in 1973 by Professor Musa from Romania). In its cold state, the cesium will short circuit the emitter and the collector. During operation, the interelectrode space will be filled with cesium vapor. The upper part of a Cold Seal TEC will be filled with a noble gas. This noble gas will prevent the O-ring seal from being attacked by the cesium. The TEC output characteristics will be considerably improved by using electrode materials that were developed earlier in the course of an ECS-project for the development of low temperature TEC electrodes.

  15. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  16. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (b) The net cross sectional area of the vent pipe for a gasoline fuel tank must not be less than that... thickness, 20 gauge), except that, where the tank is filled under pressure, the net cross sectional area of the vent pipe must be not less than that of the fill pipe. (c) The minimum net cross sectional area...

  17. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (b) The net cross sectional area of the vent pipe for a gasoline fuel tank must not be less than that... thickness, 20 gauge), except that, where the tank is filled under pressure, the net cross sectional area of the vent pipe must be not less than that of the fill pipe. (c) The minimum net cross sectional area...

  18. Apparatus and Method for Thermal Performance Testing of Pipelines and Piping Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Nagy, Zeltan F. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2004-01-01

    A test apparatus and method of its use for evaluating various performance aspects of a piping segment locates a piping segment between two cold boxes. A first cold box conditions test fluid before providing the fluid into the piping segment- The first and second cold boxes both significantly reduce, if not eliminate, any heat transfer from the ends of the piping so that accurate measurements of heat leak rates from the sides of the piping segment may be determined.

  19. Heat transfer in pipes

    NASA Technical Reports Server (NTRS)

    Burbach, T.

    1985-01-01

    The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.

  20. Pipe support

    DOEpatents

    Pollono, Louis P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems. A section of the pipe to be supported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe.

  1. Pipe Dreams.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Discusses the importance of attention to plumbing in college facilities, offering examples from various campuses. Addresses preventive maintenance, technology, and piping materials, including the debate between cast iron and PVC for drain pipes. (EV)

  2. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics. PMID:24067709

  3. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  4. Computational model of miniature pulsating heat pipes.

    SciTech Connect

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  5. The Effect of Filler-Polymer Interactions on Cold-Crystallization Kinetics in Crosslinked, Silica Filled PDMS/PDPS Copolymer Melts.

    SciTech Connect

    Chien, A; DeTeresa, S; Thompson, L; Cohenour, R; Balazs, B; Maxwell, R S

    2006-04-21

    Crystallization in a series of variable crosslink density poly(dimethyl-diphenyl) siloxanes random block copolymers reinforced through a mixture of precipitated and fumed silica fillers has been studied by Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), and X-ray Diffraction (XRD). The silicone composite studied was composed of 94.6 mol% Dimethoylsiloxane, 5.1 mol% diphenylsiloxane, and 0.3 mol% methyl-vinyl siloxane (which formed crosslinking after a peroxide cure). The polymer was filled with a mixture of 21.6 wt. % fumed silica and 4.0 wt. % precipitated silica previously treated with 6.8 wt. % ethoxy-endblocked siloxane processing aid. The base composite was characterized by a molecular weight between crosslinks in the polymer network of {approx}24 kDa and an overall molecular weight (including the influence of the silica fillers) between crosslinks of {approx}11 kDa. Molecular weight between crosslinks and filler-polymer interaction strength were then modified by exposure to {gamma}-irradiation in either air or vacuum. The unirradiated material exhibited crystallization at -80 C as measured by DSC with a 16% crystallization as measured by XRD. Isothermal DMA experiments illustrated that crystallization at -85 C occurred over a 1.8 hour period in silica-filled systems and 2.2-2.6 hours in unfilled systems. The onset of crystallization typically occurred after a 30-minute incubation/nucleation period. The crystallization kinetics were dependent on crosslink density. Changes in molecular weight of a factor of two did not, however, change the amount of crystallization. Irradiation in vacuum resulted in faster overall crystallization rates compared to air irradiation for the same crosslink density, likely due to a reduction in the interaction between the polymer chains and the silica filler surface. Modulated differential scanning calorimetry contrasted the crystallization and melting behavior of pure PDMS versus the PDMS/PDPS base

  6. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  7. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  8. Development and test of a cryogenic pulsating heat pipe and a pre-cooling system

    NASA Astrophysics Data System (ADS)

    Bonnet, Fabien; Gully, Philippe; Nikolayev, Vadim

    2012-06-01

    The needs of thermal links in cryogenic applications are increasing, especially because of the use of cryocoolers which offer a reduced size cold finger. The Pulsating Heat Pipe (PHP) is a passive two-phase high performance thermal link. Like the conventional heat pipe, it features a closed tube filled with a two-phase fluid able to transfer heat from its hot part (evaporator) to the cold part (condenser). A general problem for any two-phase cryogenic thermal link is the pre-cooling of the evaporator to ensure the presence of liquid inside the evaporator to start the flow motion. In conventional heat pipes, this problem is by passed by the wick but in the case of PHPs it has to be specially addressed. We have designed, manufactured and tested a helium PHP associated to a novel pre-cooling system. The cool down time of the PHP evaporator is reduced significantly. The maximum transferred power of the PHP is 145 mW with a cold source at 4.2 K.

  9. Flow conditions of fresh mortar and concrete in different pipes

    SciTech Connect

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-11-15

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  10. Pipe connector

    DOEpatents

    Sullivan, Thomas E.; Pardini, John A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.

  11. Superfluid Helium Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, P.

    This paper reports on the development and the thermal tests of three superfluid helium heat pipes. Two of them are designed to provide a large transport capacity (4 mW at 1.7 K). They feature a copper braid located inside a 6 mm outer diameter stainless tube fitted with copper ends for mechanical anchoring. The other heat pipe has no copper braid and is designed to get much smaller heat transport capacity (0.5 mW) and to explore lower temperature (0.7 - 1 K). The copper braid and the tube wall is the support of the Rollin superfluid helium film in which the heat is transferred. The low filling pressure makes the technology very simple with the possibility to easily bend the tube. We present the design and discuss the thermal performance of the heat pipes tested in the 0.7 to 2.0 K temperature range. The long heat pipe (1.2 m with copper braid) and the short one (0.25 m with copper braid) have similar thermal performance in the range 0.7 - 2.0 K. At 1.7 K the long heat pipe, 120 g in weight, reaches a heat transfer capacity of 6.2 mW and a thermal conductance of 600 mW/K for 4 mW transferred power. Due to the pressure drop of the vapor flow and Kapitza thermal resistance, the conductance of the third heat pipe dramatically decreases when the temperature decreases. A 3.8 mW/K is obtained at 0.7 K for 0.5 mW transferred power.

  12. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  13. Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection

    SciTech Connect

    Ortiz, M.G.; Ghan, L.S.

    1991-12-01

    Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA`s), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of liquid may then be accelerated towards each other or against the piping structure. The possibility of this phenomenon is of concern to us because it may become a dominant phenomenon and change the character of the transient. In performing the code scaling, applicability, and uncertainty study (CSAU) on a SBLOCA scenario, we had to examine the possibility that the transient being analyzed could experience water-hammer and thus depart from the scope of the study. Two criteria for water-hammer initiation were investigated and tested using a RELAP5/MOD3 simulation of the transient. Our results indicated a very low likelihood of occurrence of the phenomenon. 8 refs., 6 figs.

  14. Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection

    SciTech Connect

    Ortiz, M.G.; Ghan, L.S.

    1991-01-01

    Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA's), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of liquid may then be accelerated towards each other or against the piping structure. The possibility of this phenomenon is of concern to us because it may become a dominant phenomenon and change the character of the transient. In performing the code scaling, applicability, and uncertainty study (CSAU) on a SBLOCA scenario, we had to examine the possibility that the transient being analyzed could experience water-hammer and thus depart from the scope of the study. Two criteria for water-hammer initiation were investigated and tested using a RELAP5/MOD3 simulation of the transient. Our results indicated a very low likelihood of occurrence of the phenomenon. 8 refs., 6 figs.

  15. Apparatus and method for detecting leaks in piping

    DOEpatents

    Trapp, D.J.

    1994-12-27

    A method and device are disclosed for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe. 2 figures.

  16. Apparatus and method for detecting leaks in piping

    DOEpatents

    Trapp, Donald J.

    1994-01-01

    A method and device for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe.

  17. Heat pipe thermal conditioning panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Loose, J. D.; Mccoy, K. E.

    1974-01-01

    Thermal control of electronic hardware and experiments on future space vehicles is critical to proper functioning and long life. Thermal conditioning panels (cold plates) are a baseline control technique in current conceptual studies. Heat generating components mounted on the panels are typically cooled by fluid flowing through integral channels within the panel. However, replacing the pumped fluid coolant loop within the panel with heat pipes offers attractive advantages in weight, reliability, and installation. This report describes the development and fabrication of two large 0.76 x 0.76 m heat pipe thermal conditioning panels to verify performance and establish the design concept.

  18. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  19. 23. CORE WORKER OPERATING A COREBLOWER THAT PNEUMATICALLY FILLED CORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CORE WORKER OPERATING A CORE-BLOWER THAT PNEUMATICALLY FILLED CORE BOXES WITH RESIGN IMPREGNATED SAND AND CREATED A CORE THAT THEN REQUIRED BAKING, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  20. 20. INTERIOR VIEW WITH IRON POURERS FILLING COMPLETED MOLDS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. INTERIOR VIEW WITH IRON POURERS FILLING COMPLETED MOLDS ON GREY IRON UNIT NO. 1 MOLD CONVEYOR. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  1. 19. INTERIOR VIEW WITH IRON POURERS FILLING COMPLETED MOLDS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR VIEW WITH IRON POURERS FILLING COMPLETED MOLDS ON GREY IRON UNIT NO. 1 MOLD CONVEYOR. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  2. Piping Connector

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A complex of high pressure piping at Stennis Space Center carries rocket propellants and other fluids/gases through the Center's Component Test Facility. Conventional clamped connectors tend to leak when propellant lines are chilled to extremely low temperatures. Reflange, Inc. customized an existing piping connector to include a secondary seal more tolerant of severe thermal gradients for Stennis. The T-Con connector solved the problem, and the company is now marketing a commercial version that permits testing, monitoring or collecting any emissions that may escape the primary seal during severe thermal transition.

  3. Pipe gripper

    DOEpatents

    Moyers, S.M.

    1975-12-16

    A device for gripping the exterior surface of a pipe or rod is described which has a plurality of wedges, each having a concave face which engages the outer surface of the pipe and each having a smooth face opposing the concave face. The wedges are seated on and their grooved concave faces are maintained in circular alignment by tapered axial segments of an opening extending through a wedge-seating member. The wedges are allowed to slide across the tapered axial segments so that such a sliding movement acts to vary the diameter of the circular alignment.

  4. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  5. Moving-Gradient Furnace With Constant-Temperature Cold Zone

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J.; Shaubach, Robert M.

    1993-01-01

    Outer heat pipe helps in controlling temperature of cold zone of furnace. Part of heat-pipe furnace that includes cold zone surrounded by another heat pipe equipped with heater at one end and water cooling coil at other end. Temperature of heat pipe maintained at desired constant value by controlling water cooling. Serves as constant-temperature heat source or heat sink, as needed, for gradient of temperature as gradient region moved along furnace. Proposed moving-gradient heat-pipe furnace used in terrestrial or spaceborne experiments on directional solidification in growth of crystals.

  6. High temperature heat pipe research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Tower, L. K.; Kaufman, W. B.

    1978-01-01

    In the course of studies of thermionic power plants for space applications, high-temperature refractory metal heat pipes have been designed and built for alkali metal working fluids. Fabrication of tungsten wire-reinforced tantalum pipes by chemical vapor deposition is discussed; the development of reinforced pipes with integral arteries produced by chemical vapor deposition is also mentioned. The feasibility of using lithium, sodium, potassium, cesium or mercury as the working fluid in the heat pipes is also reviewed. Operation of a lithium-filled heat pipe of about 3-kW capacity for several thousand hours is reported.

  7. Filling agents.

    PubMed

    Glavas, Ioannis P

    2005-06-01

    Injectable fillers have become an important component of minimally invasive facial rejuvenation modalities. Their ease of use, effectiveness, low morbidity, and fast results with minimal downtime are factors that have made them popular among patients. Soft tissue augmentation has evolved to a unique combination of medicine and art. A wide selection of available agents and new products, each one with unique properties, may be used alone or in combination. The physician acquires the tools to rebalance facial characteristics not only by filling wrinkles but also by having the ability to shape the face and restore bony contours and lines. Careful selection of candidates, realistic expectations, and an understanding of the limitations of fillers are crucial for a successful result.

  8. Cold Sores

    MedlinePlus

    ... delivered directly to your desktop! more... What Are Cold Sores? Article Chapters What Are Cold Sores? Cold ... January 2012 Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores ...

  9. Buried pipe design

    SciTech Connect

    Mosler, A.P.

    1990-01-01

    This book covers basic information on proper, cost-effective design of buried-pipe systems for underground fluid transportation. Examines various pipe products available. Discusses soil engineering and piping mechanics. Specific topics include pipe-wall stresses and strains; design bases; rigid- and flexible-pipe analysis; soil pressure; and longitudinal, wheel, expansive-soil, and frost loading.

  10. Heat pipe technology for advanced rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.

    1971-01-01

    The application of heat pipe technology to the design of rocket engine thrust chambers is discussed. Subjects presented are: (1) evaporator wick development, (2) specific heat pipe designs and test results, (3) injector design, fabrication, and cold flow testing, and (4) preliminary thrust chamber design.

  11. 9. VIEW OF DAM FROM LEFT SIDE. PUMPCRETE PIPE LINES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF DAM FROM LEFT SIDE. PUMPCRETE PIPE LINES ARE CARRIED ON WALKWAY. UPSTREAM PARTS OF BUTTRESSES ARE FOG-SPRAYED TO PERMIT PROMPT FILLING OF CONTRACTION JOINTS. July 30, 1938 - Bartlett Dam, Verde River, Phoenix, Maricopa County, AZ

  12. MALLEABLE CHARGE BUCKET, SITTING ON A ROTATING TRACK, IS FILLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MALLEABLE CHARGE BUCKET, SITTING ON A ROTATING TRACK, IS FILLED WITH IRON, COKE AND LIMESTONE FROM A SKIP HOIST LOADED IN THE YARD BELOW. THE FILLED CHARGE BUCKET TIPS, TOPPLING ITS LOAD INTO EITHER OF THE TWO MALLEABLE CUPOLAS IN THE MALLEABLE FOUNDRY. - Stockham Pipe & Fittings Company, Malleable Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  13. Space shuttle orbiter heat pipe applications. Volume 1: Synopsis

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Prager, R. C.

    1972-01-01

    An investigation was made to formulate and evaluate heat pipe applications for the space shuttle orbiter. Of the twenty-seven specific applications which were identified, a joint evaluation resulted in the selection of five of the most promising ones for prototype development. The formulation process is described, along with the applications which evolved. The bulk of the discussion deals with the top five applications: (1) heat pipe augmented cold rail; (2) avionics heat pipe circuit; (3) heat pipe/phase change material modular sink; (4) air-to-heat-pipe heat exchanger; and (5) heat pipe radiator for compartment temperature control. The philosophy, physical design details, and performance data are presented for each concept along with a comparison to the baseline design where applicable. A sixth application, heat pipe space radiator for waste heat rejection, was also recommended for prototype development.

  14. 33 CFR 183.530 - Spud, pipe, and hose fitting configuration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Spud, pipe, and hose fitting....530 Spud, pipe, and hose fitting configuration. Except when used for a tank fill line, each spud, pipe, or hose fitting used with hose clamps must have: (a) A bead; (b) A flare; or (c) A series of...

  15. 33 CFR 183.530 - Spud, pipe, and hose fitting configuration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Spud, pipe, and hose fitting....530 Spud, pipe, and hose fitting configuration. Except when used for a tank fill line, each spud, pipe, or hose fitting used with hose clamps must have: (a) A bead; (b) A flare; or (c) A series of...

  16. 33 CFR 183.530 - Spud, pipe, and hose fitting configuration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Spud, pipe, and hose fitting....530 Spud, pipe, and hose fitting configuration. Except when used for a tank fill line, each spud, pipe, or hose fitting used with hose clamps must have: (a) A bead; (b) A flare; or (c) A series of...

  17. 33 CFR 183.530 - Spud, pipe, and hose fitting configuration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Spud, pipe, and hose fitting....530 Spud, pipe, and hose fitting configuration. Except when used for a tank fill line, each spud, pipe, or hose fitting used with hose clamps must have: (a) A bead; (b) A flare; or (c) A series of...

  18. 33 CFR 183.530 - Spud, pipe, and hose fitting configuration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Spud, pipe, and hose fitting....530 Spud, pipe, and hose fitting configuration. Except when used for a tank fill line, each spud, pipe, or hose fitting used with hose clamps must have: (a) A bead; (b) A flare; or (c) A series of...

  19. Cold Stress

    MedlinePlus

    ... be at risk of cold stress. Extreme cold weather is a dangerous situation that can bring on ... the country. In regions relatively unaccustomed to winter weather, near freezing temperatures are considered factors for cold ...

  20. Common Cold

    MedlinePlus

    ... nose, coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... avoid colds. There is no cure for the common cold. For relief, try Getting plenty of rest Drinking ...

  1. Experimental investigations and applications of cryogenic heat pipes

    NASA Astrophysics Data System (ADS)

    Liu, Enguang; Yang, Fan; Mu, YongBin; Wu, Yinong

    2016-05-01

    In the infrared system, in order to decrease the background radiation and maximize the sensitivity, cooling down the aft-optic components' temperature is a better choice. Some two-phase devices such as grooved heat pipe or loop heat pipe (LHP) were used to link the cold sink and IR aft-optic components. This paper presented the testing results of cryogenic grooved heat pipes which were used in some infrared test systems in the temperature range of 160~210K with different heat load conditions. Also, some experimental results of cryogenic loop heat pipe were introduced in this paper.

  2. Heat pipes made of roll bond panels

    NASA Astrophysics Data System (ADS)

    Moeller, M.; Heil, K.

    1983-06-01

    The use of large surfaced aluminum roll bond panels with an integral flow system as heat pipes is studied. With a suitable flow system e.g., parallel passages with a cross-connection, one single filling procedure is required for the operating medium. Adequate materials for the manufacture of heat pipes are Al 99,3; AlMn1, 5 and AlMn1, 5Sil,5. Peel, creep and burst tests as well as corrosion tests were made on specimens and structural elements of these materials. Results show that the use of such panels for heat pipe manufacturing is appropriate for limited maximum temperature applications. Prototypes of heat pipes and their characteristic features are described in view of their use as absorbers in solar collectors. Good heat exchange performances obtained.

  3. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  4. A pipe cleaning machine: ERIP recommendation No. 571

    SciTech Connect

    Bratcher, H. Jr.; Hinick, M.B.; Balsam, J.W.

    1992-06-12

    The subject invention, ``A Pipe Cleaning Machine,`` known as ``Buffy,`` is a device that strips pipeline of its coating down to the metal. The apparatus consists of a series of motor-driven metal brushes mounted on a ring structure that fits the around the pipe`s circumference. Once stripped, the pipeline may or may not be abrasive-blasted, but is then coated and wrapped, and the trench is back-filled. Present models of the Buffy can be used on pipe up to 36`` in diameter. One of the device`s unique features is its ability to operate while the pipeline remains in service.

  5. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-04-05

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  6. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-08-09

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  7. Micro heat pipe panels and method for producing same

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Peterson, George P. (Inventor); Rummler, Donald R. (Inventor)

    1996-01-01

    Flat or curved micro heat pipe panels are fabricated by arranging essentially parallel filaments in the shape of the desired panel. The configuration of the filaments corresponds to the desired configuration of the tubes that will constitute the heat pipes. A thermally conductive material is then deposited on and around the filaments to fill in the desired shape of the panel. The filaments are then removed, leaving tubular passageways of the desired configuration and surface texture in the material. The tubes are then filled with a working fluid and sealed. Composite micro heat pipe laminates are formed by layering individual micro heat pipe panels and bonding them to each other to form a single structure. The layering sequence of the micro heat pipe panels can be tailored to transport heat preferentially in specific directions as desired for a particular application.

  8. Performance of a heat pipe solar collector

    SciTech Connect

    Ismail, K.A.R.; Abogderah, M.M.

    1998-02-01

    This paper presents a comparative study between theoretical predictions and experimental results of a flat-plate solar collector with heat pipes. The theoretical model for the heat pipe solar collector is based upon the method by Duffie and Beckman (1980), modified to use heat pipes for energy transport. The methanol filled heat pipes are self-contained devices whose evaporators are inserted under pressure in the flat plate of the solar collector and the heat exchange is carried out at their condensers. The evaporators contain a wick of one mesh layer to ensure a better distribution of the working fluid. The condensers are wickless and inclined 15 deg more than the inclination of the evaporators to facilitate the return of the condensate to the evaporators. The time constant of the heat pipe solar collector was calculated and found to be about 23 minutes. Also presented in this paper are comparative experimental results of the proposed solar collector and a conventional commercial solar collector. The two collectors were tested simultaneously. The instantaneous efficiencies of the heat pipe solar collector are lower than the conventional collector in the morning and higher when the heat pipes reach their operating temperatures.

  9. On the formation, growth, and shapes of solution pipes - insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Szymczak, Piotr; Tredak, Hanna; Upadhyay, Virat; Kondratiuk, Paweł; Ladd, Anthony J. C.

    2015-04-01

    Cylindrical, vertical structures called solution pipes are a characteristic feature of epikarst, encountered in different parts of the world, both in relatively cold areas such as England and Poland (where their formation is linked to glacial processes) [1] and in coastal areas in tropical or subtropical climate (Bermuda, Australia, South Africa, Caribbean, Mediterranean) [2,3]. They are invariably associated with weakly cemented, porous limestones and relatively high groundwater fluxes. Many of them develop under the colluvial sandy cover and contain the fill of clayey silt. Although it is widely accepted that they are solutional in origin, the exact mechanism by which the flow becomes focused is still under debate. The hypotheses include the concentration of acidified water around stems and roots of plants, or the presence of pre-existing fractures or steeply dipping bedding planes, which would determine the points of entry for the focused groundwater flows. However, there are field sites where neither of this mechanisms was apparently at play and yet the pipes are formed in large quantities [1]. In this communication we show that the systems of solution pipes can develop spontaneously in nearly uniform matrix due to the reactive-infiltration instability: a homogeneous porous matrix is unstable with respect to small variations in local permeability; regions of high permeability dissolve faster because of enhanced transport of reactants, which leads to increased rippling of the front. This leads to the formation of a system of solution pipes which then advance into the matrix. We study this process numerically, by a combination of 2d- and 3d-simulations, solving the coupled flow and transport equations at the Darcy scale. The relative simplicity of this system (pipes developing in a uniform porous matrix, without any pre-existing structure) makes it very attractive from the modeling standpoint. We quantify the factors which control the pipe diameters and the

  10. Effect of Geopolymer filler in Glass Reinforced Epoxy (GRE) Pipe for Piping Application: Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Firdaus Abu Hashim, Mohammad; Bakri Abdullah, Mohd Mustafa Al; Mohd Ruzaidi Ghazali, Che; Hussin, Kamarudin; Binhussain, Mohammed

    2016-06-01

    The present work is aimed to carry out the effect of geopolymer material which is fly ash as filler in the glass reinforced epoxy pipe on the micro structure of fly ash geopolymer, compression properties, and bulk density using the filament winding method. Conventional glass reinforced epoxy pipes has its own disadvantages such as high corrosion resistance at acidic environment and low strength which can be replaced by the composite pipes. Geopolymer is a type of amorphous alumino-silicate and can be synthesized by geopolymerization process. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentage geopolymer filler which is fly ash with 4 Molarity were prepared. Morphology of the raw material fly ash and fly ash based-geopolymer surface was characterized using scanning electron microscopy. It was found that the additions of fly ash at the beginning with 10 wt% are showing higher compressive strength than glass reinforced epoxy pipe without fly ash geopolymer filler. The compressive test of these series of samples was determined using Instron Universal Testing under compression mode. It was found that compressive strength for samples fly ash based-geopolymer filler are higher as compared to glass reinforced epoxy pipe without geopolymer filler. However, the compressive strength of glass reinforced epoxy pipe with fly ash geopolymer filler continues to decline when added to 20 wt% - 40 wt% of geopolymer filler loading. The results showed that the mixing of geopolymer materials in epoxy system can be obtained in this study.

  11. Transient response of a high-capacity heat pipe for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Ambrose, J. H.; Holmes, H. R.

    1991-01-01

    High-capacity heat pipe radiator panels have been proposed as the primary means of heat rejection for Space Station Freedom. In this system, the heat pipe would interface with the thermal bus condensers. Changes in system heat load can produce large temperature and heat load variations in individual heat pipes. Heat pipes could be required to start from an initially cold state, with heat loads temporarily exceeding their low-temperature transport capacity. The present research was motivated by the need for accurate prediction of such transient operating conditions. In this work, the cold startup of a 6.7-meter long high-capacity heat pipe is investigated experimentally and analytically. A transient thermohydraulic model of the heat pipe was developed which allows simulation of partially-primed operation. The results of cold startup tests using both constant temperature and constant heat flux evaporator boundary conditions are shown to be in good agreement with predicted transient response.

  12. Insulated pipe clamp design

    SciTech Connect

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized.

  13. Impact of working fluids on gravitational heat pipe performance

    NASA Astrophysics Data System (ADS)

    Jobb, Marián; Kosa, Ľuboš; Nosek, Radovan; Malcho, Milan

    2016-06-01

    Performance heat pipes depends on several parameters. This article deals with the performance of heat pipes, depending on the working fluid and operating temperature. There is described the essential function of the heat pipe manufacturing process. Stainless heat pipes were made of material AISI 304 and filled with a distilled water and solution of distilled water with silver nitrate, up to 20% of the heat pipe inner volume. Measurements were carried at an operating temperature of 40 °C to 90 °C. The performance was measured on the experimental device. Presented results show the progress of individual measurements and the effect of operating parameters and working fluid on the performance of heat pipes.

  14. Reusable pipe flange covers

    DOEpatents

    Holden, James Elliott; Perez, Julieta

    2001-01-01

    A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.

  15. Forming method of micro heat pipe with compound structure of sintered wick on grooved substrate

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Li, Mingjian; Li, Ming; Wu, Ruchen; Wan, Yingsi; Cheng, Tian

    2016-03-01

    Micro heat pipes (MHPs) with excellent heat transfer performance have been the ideal radiating components to meet increasingly higher requirements posed by high heat-flux products. Based on MHPs' working principle, this study deduced capillary limit of a novel MHP with compound structure of sintered wick on grooved substrate, and probed into its forming mechanism: first, high-speed oil-filled spinning was applied to fabricating micro grooves, with optimal spinning and drawing speeds determined; then a mini-type vibration machine was used to help fill copper powders fast and uniformly, with appropriate sintering temperature and time fixed; the manufacturing method that integrates vacuum-pumping-cold-welding with secondary-degassing-cold-welding to increase vacuumizing efficiency. The results of experiments on its heat transfer performance show that the MHPs with sintered-wick-on-grooved-substrate structure fabricated through the proposed forming method can not only acquire much better heat transfer performance, but have advantages such as higher productivity and lower cost.

  16. Reconfigurable manufacturing execution system for pipe cutting

    NASA Astrophysics Data System (ADS)

    Yin, Y. H.; Xie, J. Y.

    2011-08-01

    This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.

  17. Common cold

    MedlinePlus

    ... been tried for colds, such as vitamin C, zinc supplements, and echinacea. Talk to your health care ... nih.gov/pubmed/22962927 . Singh M, Das RR. Zinc for the common cold. Cochrane Database of Systematic ...

  18. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  19. Microstructural characterization of pipe bomb fragments

    SciTech Connect

    Gregory, Otto; Oxley, Jimmie; Smith, James; Platek, Michael; Ghonem, Hamouda; Bernier, Evan; Downey, Markus; Cumminskey, Christopher

    2010-03-15

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of the smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.

  20. Pipe-to-pipe impact program

    SciTech Connect

    Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.

    1984-06-01

    This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984.

  1. Heat pipes. [technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and use of heat pipes are described, including space requirements and contributions. Controllable heat pipes, and designs for automatically maintaining a selected constant temperature, are discussed which would add to the versatility and usefulness of heat pipes in industrial processing, manufacture of integrated circuits, and in temperature stabilization of electronics.

  2. Startup analysis for a high temperature gas loaded heat pipe

    NASA Technical Reports Server (NTRS)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  3. BNL piping research

    SciTech Connect

    Bezler, P.; Subudhi, M.; Wang, Y.K.; Shteyngart, S.

    1985-01-01

    Brookhaven National Laboratory (BNL) has assisted in the development of methods to evaluate the analysis methods used by industry to qualify nuclear power piping. Through FY 1985 these efforts were conducted under the Mechanical Piping Benchmarks project while current and future efforts will be performed under the Combination Procedures for piping project. Under these projects BNL has developed analytical benchmark problems for piping systems evaluated using uniform or independent support motion response spectrum methods, investigated the adequacy and limitations of linear piping analysis methods by comparison to test results and evaluated and developed criteria for new and alternate methods of analysis. A summary description of the status of these efforts is provided.

  4. Pipe Line Control

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The array of tanks, pipes and valves in the photo below is a petroleum tank farm in Georgia, part of a petrochemical pipe line system that moves refined petroleum products from Texas and Louisiana to the mid-Eastern seaboard. The same pipes handle a number of different products, such as gasoline, kerosene, jet fuel or fuel oil. The fluids are temporarily stored in tanks, pumped into the pipes in turn and routed to other way stations along the pipe line. The complex job of controlling, measuring and monitoring fuel flow is accomplished automatically by a computerized control and communications system which incorporates multiple space technologies.

  5. Experimental study on the start up performance of flat plate pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Hu, Chaofa; Jia, Li

    2011-06-01

    An experimental system of flat plate pulsating heat pipe was established and experimental research was carried out in this system to know the mechanism of heat transfer, start-up and operating characteristics. The factors, such as filling rate, heating power, heating method etc, which have great influence on the thermal performance of the plate pulsating heat pipe were discussed. The results indicate that heating power and filling rate are the important factors for the start-up of the plate pulsating heat pipe. The different start-up power is needed with different filling rate, and the start-up of the heat pipe in case of bottom heated is much easier than that of top heated. Increasing the heating power and enlarging the heating area can make the start-up easier. Heating power can also affect the start-up time of heat pipe under the condition of bottom heated, while it does not have some influence to the heat pipe of top heated. The thermal resistance of plate pulsating heat pipe is related with the heating power, and the higher the heating power is, the smaller the thermal resistance is. But the best filling rate which the heat pipe needs is different with different heating methods, and the performance of the heat pipe in the case of bottom heated is better than the others.

  6. Impedance modelling of pipes

    NASA Astrophysics Data System (ADS)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  7. Evaluation of liquid behavior in a Variable Conductance Heat Pipe by neutron radiography

    NASA Astrophysics Data System (ADS)

    Sugimoto, K.; Asano, H.; Murakawa, H.; Takenaka, N.; Nagayasu, T.; Ipposhi, S.

    2011-09-01

    A Variable Conductance Heat Pipe (VCHP) is used as a cooling device for electrical equipments. The condensation area is passively controlled by the non-condensable gas volume in the VCHP depending on the heat load. The VCHP has often a bent pipe between the evaporation and condensation area. The heat pipe performance depends much on the bent pipe shape and configuration because a liquid plug is formed in the bent pipe and disturbs the refrigerant circulation. However, the mechanism has not been clarified well. The neutron radiography system at the JRR-3 in Japan Atomic Energy Agency (JAEA) was used to visualize the refrigerant behavior in the VCHP. Effects of the thin plate inserted in the pipe, refrigerant filling ratios and heat pipe configuration were examined on the heat pipe performance. The liquid plug was formed at the bend and caused to decrease the performance. It was confirmed that the thin plate insert was effective to disturb the liquid plug formation.

  8. 46 CFR 98.25-50 - Filling and discharge pipes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following: (1) Combination back pressure check valve and excess flow valve; (2) One double or two single... back pressure check valve or an internal excess flow valve. (b) All other liquid and vapor connections... pressure gages described in § 98.25-40(e) and (f) shall be equipped with automatic excess flow valves;...

  9. 46 CFR 98.25-50 - Filling and discharge pipes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... following: (1) Combination back pressure check valve and excess flow valve; (2) One double or two single... back pressure check valve or an internal excess flow valve. (b) All other liquid and vapor connections... pressure gages described in § 98.25-40(e) and (f) shall be equipped with automatic excess flow valves;...

  10. 18. INTERIOR VIEW WITH IRON POURERS FILLING COMPLETED MOLDS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTERIOR VIEW WITH IRON POURERS FILLING COMPLETED MOLDS ON GREY IRON UNIT NO. 1 MOLD CONVEYOR WITH MOLTEN IRON FROM MOBILE LADLES AS THEY STAND ON WHAT USED TO BE A PLATFORM MOVING AT THE SAME RATE OF SPEED AS THE CONVEYOR. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  11. MOBILE LADLES, ATTACHED TO OVERHEAD RAILS, ARE FILLED AT EITHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MOBILE LADLES, ATTACHED TO OVERHEAD RAILS, ARE FILLED AT EITHER THE MALLEABLE FOUNDRY BULL LADLE OR ELECTRIC FURNACE BEFORE THEY TRANSPORT MOLTEN IRON TO MOLDS PREPARED BY DISAMATIC MOLDMAKING MACHINE OR ON ONE OF THE CONVEYORS. - Stockham Pipe & Fittings Company, Malleable Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  12. 17. CUPOLA TENDERS FILLED THE LARGE LADLES WORKERS USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. CUPOLA TENDERS FILLED THE LARGE LADLES WORKERS USED TO POUR MOLDS ON THE CONVEYORS FROM BULL LADLES THAT WERE USED TO STORE BATCH QUANTITIES OF IRON TAPPED FROM THE CUPOLA, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  13. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting by: (1) A swaged sleeve; (2) A sleeve and threaded insert; or (3) Two adjacent metallic hose clamps that do not depend solely on the spring tension of the clamps for compressive force. (c) Each...

  14. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting by: (1) A swaged sleeve; (2) A sleeve and threaded insert; or (3) Two adjacent metallic hose clamps that do not depend solely on the spring tension of the clamps for compressive force. (c) Each...

  15. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting by: (1) A swaged sleeve; (2) A sleeve and threaded insert; or (3) Two adjacent metallic hose clamps that do not depend solely on the spring tension of the clamps for compressive force. (c) Each...

  16. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting by: (1) A swaged sleeve; (2) A sleeve and threaded insert; or (3) Two adjacent metallic hose clamps that do not depend solely on the spring tension of the clamps for compressive force. (c) Each...

  17. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting by: (1) A swaged sleeve; (2) A sleeve and threaded insert; or (3) Two adjacent metallic hose clamps that do not depend solely on the spring tension of the clamps for compressive force. (c) Each...

  18. 65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL MAST IN LOWER LEFT CORNER; PIPES TO LAUNCHER IN UPPER LEFT CORNER; PIPES TO FLAME BUCKET IN LOWER RIGHT CORNER OF PHOTOGRAPH. POTABLE WATER PIPING IN UPPER RIGHT CORNER OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. A very light and thin liquid hydrogen/deuterium heat pipe target for COSY experiments

    NASA Astrophysics Data System (ADS)

    Abdel-Bary, M.; Abdel-Samad, S.; Kilian, K.

    2005-07-01

    A liquid hydrogen/deuterium heat pipe (HP) target is used at the COSY external experiments TOF, GEM and MOMO. The target liquid is produced at a cooled condenser and guided through a central tube assisted by gravitation into the target cell. An aluminum condenser is used instead of copper, which requires less material, improves conductivities and provides shorter cooling down time. Residual condenser temperature fluctuations in the order of ≈0.4 K are reduced by using thermal resistances between the cooling machine and the condenser of the heat pipe combined with a controlled heating power. A new design with only a 7-mm-diameter HP has been developed. The diameter of the condenser part remains at 16 mm to provide enough condensation area. The small amount of material ensures short cooling down times. A cold gas deuterium HP target has been designed and developed which allows protons with energy ⩽1 MeV to be measured. A 7-mm-diameter HP is used to fill a cooling jacket around the D 2 gas cell with LH 2. The D 2 gas is stabilized at 200 mbar to allow for thin windows. Its density is increased by factor 15 compared to room temperature.

  20. Deployable Heat Pipe Radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    A 1.2- by 1.8-m variable conductance heat pipe radiator was designed, built, and tested. The radiator has deployment capability and can passively control Freon-21 fluid loop temperatures under varying loads and environments. It consists of six grooved variable conductance heat pipes attached to a 0.032-in. aluminum panel. Heat is supplied to the radiator via a fluid header or a single-fluid flexible heat pipe header. The heat pipe header is an artery design that has a flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 watts were successfully tested. Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied by 7 F. An alternate control system was also investigated which used a variable conductance heat pipe header attached to the heat pipe radiator panel.

  1. Cold injuries.

    PubMed

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  2. Dehumidifying Heat Pipe

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K.

    1993-01-01

    U-shaped heat pipe partly dehumidifies air leaving air conditioner. Fits readily in air-handling unit of conditioner. Evaporator and condenser sections of heat pipe consist of finned tubes in comb pattern. Each tube sealed at one end and joined to manifold at other. Sections connected by single pipe carrying vapor to condenser manifold and liquid to evaporator manifold. Simple on/off or proportional valve used to control flow of working fluid. Valve actuated by temperature/humidity sensor.

  3. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M.

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  4. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  5. Introduction to Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  6. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1972-01-01

    The OAO-C spacecraft has three circular heat pipes, each of a different internal design, located in the space between the spacecraft structural tube and the experiment tube, which are designed to isothermalize the structure. Two of the pipes are used to transport high heat loads, and the third is for low heat loads. The test problems deal with the charging of the pipes, modifications, the mobile tilt table, the position indicator, and the heat input mechanisms. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.

  7. Internal pipe attachment mechanism

    DOEpatents

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  8. Internal pipe attachment mechanism

    DOEpatents

    Bast, Richard M.; Chesnut, Dwayne A.; Henning, Carl D.; Lennon, Joseph P.; Pastrnak, John W.; Smith, Joseph A.

    1994-01-01

    An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.

  9. Heat Pipe Materials Compatibility

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  10. Pipe crawler apparatus

    DOEpatents

    Hovis, Gregory L.; Erickson, Scott A.; Blackmon, Bruce L.

    2002-01-01

    A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.

  11. Experimental research on heat transfer of pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Li, Jia; Yan, Li

    2008-06-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  12. Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    This elemental space radiator heat pipe is designed to operate in the 700 to 875 K temperature range. It consists of a C-C (carbon-carbon) shell made from poly-acrylonitride fibers that are woven in an angle interlock pattern and densified with pitch at high process temperature with integrally woven fins. The fins are 2.5 cm long and 1 mm thick, and provide an extended radiating surface at the colder condenser section of the heat pipe. The weave pattern features a continuous fiber bath from the inner tube surface to the outside edges of the fins to maximize the thermal conductance, and to thus minimize the temperature drop at the condenser end. The heat pipe and radiator element together are less than one-third the mass of conventional heat pipes of the same heat rejection surface area. To prevent the molten potassium working fluid from eroding the C C heat pipe wall, the shell is lined with a thin-walled, metallic tube liner (Nb-1 wt.% Zr), which is an integral part of a hermetic metal subassembly which is furnace-brazed to the inner surface of the C-C tube. The hermetic metal liner subassembly includes end caps and fill tubes fabricated from the same Nb-1Zr alloy. A combination of laser and electron beam methods is used to weld the end caps and fill tubes. A tungsten/inert gas weld seals the fill tubes after cleaning and charging the heat pipes with potassium. The external section of this liner, which was formed by a "Uniscan" rolling process, transitions to a larger wall thickness. This section, which protrudes beyond the C-C shell, constitutes the "evaporator" part of the heat pipe, while the section inside the shell constitutes the condenser of the heat pipe (see figure).

  13. Fast reactor power plant design having heat pipe heat exchanger

    DOEpatents

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  14. Fast reactor power plant design having heat pipe heat exchanger

    DOEpatents

    Huebotter, Paul R.; McLennan, George A.

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  15. Slurry fired heater cold-flow modelling

    SciTech Connect

    Moujaes, S.F.

    1983-07-01

    This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

  16. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    SciTech Connect

    Morris, J. F.

    1985-03-19

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  17. Pressurized gas filled tendons

    SciTech Connect

    Silcox, W. H.

    1985-06-04

    Pressurized gas filled tubular tendons provide a means for detecting leaks therein. Filling the tendon with a gaseous fluid provides increased buoyancy and reduces the weight supported by the buoyant structure. The use of a corrosion inhibiting gaseous fluid reduces the corrosion of the interior tendon wall.

  18. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  19. These Pipes Are "Happening"

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2010-01-01

    The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…

  20. Unstable heat pipes

    SciTech Connect

    McGuinness, M.J.; Pruess, K.

    1987-10-01

    Heat pipes are an important feature of models of vapor-dominated geothermal reservoirs. Numerical experiments reveal that a vapor-dominated heat pipe is unstable if pressure is controlled at shallow levels. This instability is discussed in physical terms, and some implications for geothermal reservoirs are considered. 9 refs., 10 figs.

  1. Cold intolerance

    MedlinePlus

    Some causes of cold intolerance are: Anemia Anorexia nervosa Blood vessel problems, such as Raynaud phenomenon Chronic severe illness General poor health Underactive thyroid ( hypothyroidism ) Problem with the hypothalamus (a part ...

  2. Mountain Plains Learning Experience Guide: Plumbing. Course: Supply Piping Systems.

    ERIC Educational Resources Information Center

    Arneson, R.; And Others

    One of three individualized courses included in a plumbing curriculum, this course covers installing, servicing, and repairing supply lines and fixtures commonly found in residential/commercial structures. The course is comprised of four units: (1) Pipe and Fittings, (2) Cold Water Supply, (3) Hot Water Supply, and (4) Fixtures. Each unit begins…

  3. Extendable pipe crawler

    DOEpatents

    Hapstack, Mark

    1991-01-01

    A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by "inchworm"-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward.

  4. Extendable pipe crawler

    DOEpatents

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.

  5. Modelling the mass migration phenomena in partially frozen heat pipes

    SciTech Connect

    Keddy, M.D.; Merrigan, M.A.; Critchley, E.

    1993-11-01

    Liquid metal heat pipes operated at power throughputs well below their design point and with sink temperatures below the freezing temperature of the working fluid may fail as a result of the working fluid migrating to a cold region within the pipe, freezing there, and not returning to the evaporator section. Eventually, sufficient working fluid inventory may be lost to the cold region to cause a local dry-out condition in the evaporator. A joint experimental and analytical effort by the Air Force Phillips Laboratory and Los Alamos National Laboratory is underway to investigate this phenomena. This paper presents an analytical model developed to describes this phenomena. The model provides for analytic determination of heat pipe temperature profiles, freeze-front locations and mass migration rates.

  6. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Pipelines must have manual shutoff valves installed at the surface filling point, and at the underground... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel fuel piping systems. 75.1905-1 Section... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment §...

  7. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Pipelines must have manual shutoff valves installed at the surface filling point, and at the underground... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel fuel piping systems. 75.1905-1 Section... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment §...

  8. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Pipelines must have manual shutoff valves installed at the surface filling point, and at the underground... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel fuel piping systems. 75.1905-1 Section... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment §...

  9. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Pipelines must have manual shutoff valves installed at the surface filling point, and at the underground... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Diesel fuel piping systems. 75.1905-1 Section... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment §...

  10. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Pipelines must have manual shutoff valves installed at the surface filling point, and at the underground... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel fuel piping systems. 75.1905-1 Section... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment §...

  11. Experimental investigation of a manifold heat-pipe heat exchanger

    SciTech Connect

    Konev, S.V.; Wang Tszin` Lyan`; D`yakov, I.I.

    1995-12-01

    Results of experimental investigations of a heat exchanger on a manifold water heat pipe are given. An analysis is made of the temperature distribution along the heat-transfer agent path as a function of the transferred heat power. The influence of the degree of filling with the heat transfer agent on the operating characteristics of the construction is considered.

  12. Establishing low-power operating limits for liquid metal heat pipes

    SciTech Connect

    Secary, J.; Merrigan, M.A.; Keddy, M.D.

    1992-05-01

    Liquid metal heat pipes operated at power throughputs well below their design point for long durations may fail as a result of the working fluid migrating to a cold region within the pipe, freezing there, and hot returning to the evaporator section. Eventually sufficient working fluid inventory may be lost to the cold region to cause a local dry-out condition in the evaporator. A joint experimental and analytical effort between the Air Force Phillips Laboratory and Los Alamos National Laboratory is underway to investigate the phenomena. Experiments include both high temperature liquid metal and low temperature organic heat pipes. To date, a low temperature working fluid has been selected and its performance in a heat pipe validated. Additionally, a low-temperature heat pipe has been fabricated and is presently being tested.

  13. Establishing low-power operating limits for liquid metal heat pipes

    NASA Astrophysics Data System (ADS)

    Secary, J.; Merrigan, M. A.; Keddy, M. D.

    Liquid metal heat pipes operated at power throughputs well below their design point for long durations may fail as a result of the working fluid migrating to a cold region within the pipe, freezing there, and returning hot to the evaporator section. Eventually, sufficient working fluid inventory may be lost to the cold region to cause a local dry-out condition in the evaporator. A joint experimental and analytical effort between the Air Force Phillips Laboratory and Los Alamos National Laboratory is underway to investigate the phenomena. Experiments include both high temperature liquid metal and low temperature organic heat pipes. To date, a low temperature working fluid has been selected and its performance in a heat pipe validated. Additionally, a low-temperature heat pipe has been fabricated and is presently being tested.

  14. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  15. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  16. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  17. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  18. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  19. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  20. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  1. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  2. Experimenting with a "Pipe" Whistle

    ERIC Educational Resources Information Center

    Stafford, Olga

    2012-01-01

    A simple pipe whistle can be made using pieces of PVC pipe. The whistle can be used to measure the resonant frequencies of open or closed pipes. A slightly modified version of the device can be used to also investigate the interesting dependence of the sound frequencies produced on the orifice-to-edge distance. The pipe whistle described here…

  3. An electrohydrodynamic heat pipe.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1972-01-01

    A heat pipe of new design, using an electrode structure to orient and guide the dielectric liquid phase flow, is proposed. Analysis indicates that the operation of the electrohydrodynamic heat pipe is in direct analogy to capillary devices, with the polarization force acting in place of capillarity. Advantages of these new heat pipes include greatly reduced liquid friction, electrohydrodynamically enhanced evaporation and condensation heat transfer, and a possible voltage-controlled on/off feature. Preliminary calculations indicate that relatively high performance devices are possible.

  4. Gas pipe explorer robot

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2004-01-01

    A gas pipe explorer formed of a plurality of connecting elements, and an articulation element between the connected elements. The connected elements include drive capabilities, and the articulation element allows the connected elements to traverse gas pipes of arbitrary shapes and sizes. A sensor may sends the characteristics of the gas pipe, and the communication element may send back those sends characteristics. The communication can be wired, over a tether connecting the device to a remote end. Alternatively, the connection can be wireless, driven by either a generator or a battery.

  5. Getting a prescription filled

    MedlinePlus

    ... to get prescription filled; Pharmacy - mail order; Pharmacy - internet; Types of pharmacies ... stored at certain temperatures at a local pharmacy. INTERNET (ONLINE) PHARMACIES Internet pharmacies can be used for ...

  6. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  7. Arrangement for connecting a fiber-reinforced plastic pipe to a stainless steel flange

    DOEpatents

    Allais, Arnaud; Hoffmann, Ernst

    2008-02-05

    Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).

  8. AutoPIPE Extract Program

    SciTech Connect

    Cline, Barbara E.

    1993-07-02

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straight pipe, branch lines and ring geometries.

  9. AutoPIPE Extract Program

    1993-07-02

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straightmore » pipe, branch lines and ring geometries.« less

  10. Improved Thin, Flexible Heat Pipes

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Gernert, Nelson J.; Sarraf, David B.; Wollen, Peter J.; Surina, Frank C.; Fale, John E.

    2004-01-01

    Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.

  11. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  12. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  13. The pipes of pan.

    PubMed

    Chalif, David J

    2004-12-01

    The pipes of pan is the crowning achievement of Pablo Picasso's neoclassical period of the 1920s. This monumental canvas depicts a mythological Mediterranean scene in which two sculpted classical giants stare out, seemingly across the centuries, toward a distant and lost Arcadia. Picasso was influenced by Greco-Roman art during his travels in Italy, and his neoclassical works typically portray massive, immobile, and pensive figures. Pan and his pipes are taken directly from Greek mythological lore by Picasso and placed directly into 20th century art. He frequently turned to various mythological figures throughout his metamorphosing periods. The Pipes of Pan was also influenced by the painter's infatuation with the beautiful American expatriate Sara Murphy, and the finished masterpiece represents a revision of a previously conceived neoclassical work. The Pipes of Pan now hangs in the Musee Picasso in Paris.

  14. Ceramic heat pipe development

    NASA Astrophysics Data System (ADS)

    Merrigan, M.

    1980-09-01

    Ceramic materials used in conventional brickwork heat exchanger configurations increase allowable temperatures; however, joint leakage problems limit use of these designs. Ceramic tube heat exchanger designs reduce these problems but still require sliding joints and compliant tube end seals. Ceramic heat pipe based recuperator designs eliminate the sealing problems that limited the high temperature heat recovery installations. Heat pipe recuperators offer high corrosion and abrasion resistance, high temperature capability, reduced leakage, element redundancy, and simplified replacement and cleaning. The development of ceramic heat pipe recuperator elements involves the selection and test of materials and fabrication techniques having production potential, evaluation of technology in subscale tests, design and test of components for full scale recuperator applications, and demonstration of heat pipes in subscale and full scale recuperator installation.

  15. Miniature pipe crawler tractor

    SciTech Connect

    McKay, M.D.; Anderson, M.O.; Ferrante, T.A.; Willis, W.D.

    2000-03-14

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  16. Miniature pipe crawler tractor

    DOEpatents

    McKay, Mark D.; Anderson, Matthew O.; Ferrante, Todd A.; Willis, W. David

    2000-01-01

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  17. Experimental investigation on a pulsating heat pipe with hydrogen

    NASA Astrophysics Data System (ADS)

    Deng, H. R.; Liu, Y. M.; Ma, R. F.; Han, D. Y.; Gan, Z. H.; Pfotenhauer, J. M.

    2015-12-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb3Sn and NbTi, MgB2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB2, this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios.

  18. Freezable heat pipe

    DOEpatents

    Ernst, Donald M.; Sanzi, James L.

    1981-02-03

    A heat pipe whose fluid can be repeatedly frozen and thawed without damage to the casing. An additional part is added to a conventional heat pipe. This addition is a simple porous structure, such as a cylinder, self-supporting and free standing, which is dimensioned with its diameter not spanning the inside transverse dimension of the casing, and with its length surpassing the depth of maximum liquid.

  19. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  20. Heat pipe dynamic behavior

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  1. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  2. Analysis of centrifugal convection in rotating pipes

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir; Zimin, Valery; Hussain, Fazle

    2001-08-01

    New exact solutions, obtained for centrifugal convection of a compressible fluid in pipes and annular pipes, explain axially elongated counterflow and energy separation—poorly understood phenomena occurring in vortex devices, e.g., hydrocyclones and Ranque tubes. Centrifugal acceleration (which can be up to 106 times gravity in practical vortex tubes), combined with an axial gradient of temperature (even small), induces an intense flow from the cold end to the hot end along the pipe wall and a backflow near the axis. To account for large density variations in vortex devices, we use the axial temperature gradient as a small parameter instead of the Boussinesq approximation. For weak pipe rotation, the swirl is of solid-body type and solutions are compact: vz/vza=1-4y2+3y4 and (T-Tw)/(Ta-Tw)=(1-y2)3; where y=r/rw, the subscripts w and a denote values of axial velocity vz, temperature T, and radial distance r, at the wall and on the axis. The axial gradient of pressure, being proportional to 3y2-1, has opposite directions near the wall, y=1, and near the axis, y=0; this explains the counterflow. With increasing pipe rotation, the flow starts to converge to the axis. This causes important new effects: (i) the density and swirl velocity maxima occur away from the wall (vortex core formation), (ii) the temperature near the axis becomes lower than near the wall (the Ranque effect), (iii) the axial gradient of temperature drops from the wall to the axis, and (iv) the total axial heat flux (Nu) reaches its maximum Numax≈4000 and then decreases as swirl increases. These features can be exploited for the development of a micro-heat-exchanger, e.g., for cooling computer chips.

  3. Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors

    SciTech Connect

    Popa-Simil, L.

    2012-07-01

    A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

  4. Heat pipe heat rejection system. [for electrical batteries

    NASA Technical Reports Server (NTRS)

    Kroliczek, E. J.

    1976-01-01

    A prototype of a battery heat rejection system was developed which uses heat pipes for more efficient heat removal and for temperature control of the cells. The package consists of five thermal mock-ups of 100 amp-hr prismatic cells. Highly conductive spacers fabricated from honeycomb panels into which heat pipes are embedded transport the heat generated by the cells to the edge of the battery. From there it can be either rejected directly to a cold plate or the heat flow can be controlled by means of two variable conductance heat pipes. The thermal resistance between the interior of the cells and the directly attached cold plate was measured to be 0.08 F/Watt for the 5-cell battery. Compared to a conductive aluminum spacer of equal weight the honeycomb/heat pipe spacer has approximately one-fifth of the thermal resistance. In addition, the honeycomb/heat pipe spacer virtually eliminates temperature gradients along the cells.

  5. Heat Pipe Integrated Microsystems

    SciTech Connect

    Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

    1999-03-30

    The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached to

  6. Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2004-01-01

    A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.

  7. Why Being Cold Might Foster a Cold

    MedlinePlus

    ... medlineplus.gov/news/fullstory_159805.html Why Being Cold Might Foster a Cold Healthy body temperature boosts ability of immune system ... proving Mom right: Your odds of avoiding a cold get better if you bundle up and stay ...

  8. Liquid metal micro heat pipes for space radiator applications

    NASA Technical Reports Server (NTRS)

    Gerner, F. M.; Henderson, H. T.

    1995-01-01

    Micromachining is a chemical means of etching three-dimensional structures, typically in single-crystalline silicon. These techniques are leading toward what is coming to be referred to as MEMS (micro electro mechanical systems), where in addition to the ordinary two dimensional (planar) microelectronics, it is possible to build three-dimensional micromotors, electrically-actuated microvalves, hydraulic systems, and much more on the same microchip. These techniques become possible because of differential etching rates of various crystallographic planes and materials used for semiconductor microfabrication. The University of Cincinnati group in collaboration with NASA Lewis formed micro heat pipes in silicon by the above techniques. Work is ongoing at a modest level, but several essential bonding and packaging techniques have been recently developed. Currently, we have constructed and filled water/silicon micro heat pipes. Preliminary thermal tests of arrays of 125 micro heat pipes etched in a 1 inch x 1 inch x 250 micron silicon wafer have been completed. These pipes are instrumented with extremely small P-N junctions to measure their effective conductivity and their maximum operating power. A relatively simple one-dimensional model has been developed in order to predict micro heat pipes' operating characteristics. This information can be used to optimize micro heat pipe design with respect to length, hydraulic diameter, and number of pipes. Work is progressing on the fabrication of liquid-metal micro heat pipes. In order to be compatible with liquid metal (sodium or potassium), the inside of the micro heat pipes will be coated with a refractory metal (such as tungsten, molybdenum, or titanium).

  9. Loose-fill insulations

    SciTech Connect

    1995-05-01

    Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

  10. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  11. Development of a high capacity variable conductance heat pipe.

    NASA Technical Reports Server (NTRS)

    Kosson, R.; Hembach, R.; Edelstein, F.; Loose, J.

    1973-01-01

    The high-capacity, pressure-primed, tunnel-artery wick concept was used in a gas-controlled variable conductance heat pipe. A variety of techniques were employed to control the size of gas/vapor bubbles trapped within the artery. Successful operation was attained with a nominal 6-foot long, 1-inch diameter cold reservoir VCHP using ammonia working fluid and nitrogen control gas. The pipe contained a heat exchanger to subcool the liquid in the artery. Maximum transport capacity with a 46-inch effective length was 1200 watts level (more than 50,000 watt-inches) and 800 watts at 0.5-inch adverse tilt.

  12. Chilling Out with Colds

    MedlinePlus

    ... most common cold virus, but more than 200 viruses can cause colds. Because there are so many, ... to help you feel better. Take that, cold viruses! continue How Kids Catch Colds Mucus (say: MYOO- ...

  13. Coping with Cold Sores

    MedlinePlus

    ... Here's Help White House Lunch Recipes Coping With Cold Sores KidsHealth > For Kids > Coping With Cold Sores ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  14. Wedgethread pipe connection

    DOEpatents

    Watts, John D.

    2003-06-17

    Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.

  15. Remotely operated pipe connector

    DOEpatents

    Josefiak, Leonard J.; Cramer, Charles E.

    1988-01-01

    An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

  16. Deployment, release and recovery of ocean riser pipes

    DOEpatents

    Person, Abraham; Wetmore, Sherman B.; McNary, James F.

    1980-11-18

    An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.

  17. PBF Cooling Tower detail. Camera facing southwest. Wood fill rises ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower detail. Camera facing southwest. Wood fill rises from foundation piers of cold water basin. Photographer: Kirsh. Date: May 1, 1969. INEEL negative no. 69-2826 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.

    1995-01-01

    A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.

  19. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

    1995-07-18

    A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

  20. Composite drill pipe

    DOEpatents

    Leslie, James C.; Leslie, II, James C.; Heard, James; Truong, Liem , Josephson; Marvin , Neubert; Hans

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  1. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W. Thor; Appel, D. Keith; Park, Larry R.

    1995-01-01

    An inspection rabbit for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON.RTM.). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system.

  2. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W.T.; Appel, D.K.; Park, L.R.

    1995-03-21

    An inspection rabbit is described for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON{trademark}). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system. 6 figures.

  3. Heat Pipe Technology

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  4. The University of Texas Cold Neutron Source

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Ríos-Martínez, Carlos; Wehring, Bernard W.

    1994-12-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50 × 15 mm cross-section, 58Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS.

  5. The cleaning method selected for new PEX pipe installation can affect short-term drinking water quality.

    PubMed

    Kelley, Keven M; Stenson, Alexandra C; Cooley, Racheal; Dey, Rajarashi; Whelton, Andrew J

    2015-12-01

    The influence of four different cleaning methods used for newly installed polyethylene (PEX) pipes on chemical and odor quality was determined. Bench-scale testing of two PEX (type b) pipe brands showed that the California Plumbing Code PEX installation method does not maximize total organic carbon (TOC) removal. TOC concentration and threshold odor number values significantly varied between two pipe brands. Different cleaning methods impacted carbon release, odor, as well the level of drinking water odorant ethyl tert-butyl ether. Both pipes caused odor values up to eight times greater than the US federal drinking water odor limit. Unique to this project was that organic chemicals released by PEX pipe were affected by pipe brand, fill/empty cycle frequency, and the pipe cleaning method selected by the installer.

  6. The cleaning method selected for new PEX pipe installation can affect short-term drinking water quality.

    PubMed

    Kelley, Keven M; Stenson, Alexandra C; Cooley, Racheal; Dey, Rajarashi; Whelton, Andrew J

    2015-12-01

    The influence of four different cleaning methods used for newly installed polyethylene (PEX) pipes on chemical and odor quality was determined. Bench-scale testing of two PEX (type b) pipe brands showed that the California Plumbing Code PEX installation method does not maximize total organic carbon (TOC) removal. TOC concentration and threshold odor number values significantly varied between two pipe brands. Different cleaning methods impacted carbon release, odor, as well the level of drinking water odorant ethyl tert-butyl ether. Both pipes caused odor values up to eight times greater than the US federal drinking water odor limit. Unique to this project was that organic chemicals released by PEX pipe were affected by pipe brand, fill/empty cycle frequency, and the pipe cleaning method selected by the installer. PMID:26608758

  7. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  8. Pipe Drafting with CAD. Teacher Edition.

    ERIC Educational Resources Information Center

    Smithson, Buddy

    This teacher's guide contains nine units of instruction for a course on computer-assisted pipe drafting. The course covers the following topics: introduction to pipe drafting with CAD (computer-assisted design); flow diagrams; pipe and pipe components; valves; piping plans and elevations; isometrics; equipment fabrication drawings; piping design…

  9. The influences of soil and nearby structures on dispersion characteristics of wave propagating along buried plastic pipes

    NASA Astrophysics Data System (ADS)

    Liu, Shuyong; Jiang, J.; Parr, Nicola

    2016-09-01

    Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.

  10. Flat-plate heat pipe

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Fleischman, G. L. (Inventor)

    1977-01-01

    Flat plate (vapor chamber) heat pipes were made by enclosing metal wicking between two capillary grooved flat panels. These heat pipes provide a unique configuration and have good capacity and conductance capabilities in zero gravity. When these flat plate vapor chamber heat pipes are heated or cooled, the surfaces are essentially isothermal, varying only 3 to 5 C over the panel surface.

  11. Reusable high-temperature heat pipes and heat pipe panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Ransone, Philip O. (Inventor)

    1989-01-01

    A reusable, durable heat pipe which is capable of operating at temperatures up to about 3000 F in an oxidizing environment and at temperatures above 3000 F in an inert or vacuum environment is produced by embedding a refractory metal pipe within a carbon-carbon composite structure. A reusable, durable heat pipe panel is made from an array of refractory-metal pipes spaced from each other. The reusable, durable, heat-pipe is employed to fabricate a hypersonic vehicle leading edge and nose cap.

  12. Gas filled panel insulation

    DOEpatents

    Griffith, Brent T.; Arasteh, Dariush K.; Selkowitz, Stephen E.

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  13. Gas filled panel insulation

    DOEpatents

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  14. Life Test Approach for Refractory Metal/Sodium Heat Pipes

    NASA Astrophysics Data System (ADS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    Heat pipe life tests described in the literature have seldom been conducted on a systematic basis. Typically one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. The objective of this work was to establish an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. Approximately 10 years of operational life might be compressed into 3 years of laboratory testing through a combination of increased temperature and mass fluence. To accomplish this goal test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long term corrosion rates. The heat pipes selected for demonstration purposes are fabricated from a Molybdenum-44.5%Rhenium refractory metal alloy and include an internal crescent annular wick design formed by hot isostatic pressing. A processing methodology has been devised that incorporates vacuum distillation filling with an integrated purity sampling technique for the sodium working fluid. Energy is supplied by radio frequency induction coils coupled to the heat pipe evaporator with an input range of 1 to 5 kW per unit while a static gas gap coupled water calorimeter provides condenser cooling for heat pipe temperatures ranging from 1123 to 1323 K. The test chamber's atmosphere would require active purification to maintain low oxygen concentrations at an operating pressure of approximately 75 torr. The test is designed to operate round-the-clock with 6-month non-destructive inspection intervals to identify the onset and level of corrosion. At longer intervals specific heat pipes are destructively evaluated to verify the non-destructive observations. Accomplishments prior to project cancellation included successful demonstration of the heat pipe wick fabrication technique, establishment of all engineering designs

  15. Heat pipes for terrestrial applications in dehumidification systems

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K.

    1988-01-01

    A novel application of heat pipes which greatly enhances dehumidification performance of air-conditioning systems is presented. When an air-to-air heat pipe heat exchanger is placed between the warm return air and cold supply air streams of an air conditioner, heat is efficiently transferred from the return air to the supply air. As the warm return air precools during this process, it moves closer to its dew-point temperature. Therefore, the cooling system works less to remove moisture. This paper discusses the concept, its benefits, the challenges of incorporating heat pipes in an air-conditioning system, and the preliminary results from a field demonstration of an industrial application.

  16. Seasonal factors influencing the failure of buried water reticulation pipes.

    PubMed

    Gould, S J F; Boulaire, F A; Burn, S; Zhao, X L; Kodikara, J K

    2011-01-01

    While the use of environmental factors in the analysis and prediction of failures of buried reticulation pipes in cold environments has been the focus of extensive work, the same cannot be said for failures occurring on pipes in other (non-freezing) environments. A novel analysis of pipe failures in such an environment is the subject of this paper. An exploratory statistical analysis was undertaken, identifying a peak in failure rates during mid to late summer. This peak was found to correspond to a peak in the rate of circumferential failures, whilst the rate of longitudinal failures remained constant. Investigation into the effect of climate on failure rates revealed that the peak in failure rates occurs due to differential soil movement as the result of shrinkage in expansive soils. PMID:22049766

  17. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1973-01-01

    Techniques associated with thermal-vacuum and bench testing, along with flight testing of the OAO-C spacecraft heat pipes are outlined, to show that the processes used in heat transfer design and testing are adequate for good performance evaluations.

  18. Aeronautical tubes and pipes

    NASA Astrophysics Data System (ADS)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  19. Heat Pipes Cool Power Magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I.; Chester, M.; Luedke, E.

    1983-01-01

    Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.

  20. Lifetest investigations with stainless steel/water heat pipes

    NASA Astrophysics Data System (ADS)

    Muenzel, W. D.; Kraehling, H.

    Life tests were conducted on water heat pipes, made from four different alloys of stainless steel, at operation temperatures of 120, 160, 220, and 320 C in a reflux boiler mode for more than 20,000 hr. Other parameters varied during the tests included capillary structure, pretreatment and cleaning of the components, additional oxidation of the inner surface, filling procedures, amoung of liquid change, the number of ventings, and the duration of the reaction runs. The best results were obtained with pipes containing stainless steels with molybdenum alloy additions and with carbon contents of greater than 0.03%; with components which formed a protective surface layer; with the use of double-distilled water that had been ultrasonically degassed; with repeated ventings during the initial reaction run of 500 hr minimum duration; and with the addition of gaseous oxygen into the heat pipe during the reaction run with subsequent venting.

  1. Heat-Pipe Array for Large-Area Cooling

    NASA Technical Reports Server (NTRS)

    Edelstein, F.; Brown, R. F.

    1986-01-01

    High rates of heat transfer anticipated. Prototype evaporative cold plate gathers waste heat from equipment mounted on it. Plate made by welding together flanges of several sections of heat pipe. Since plate separates liquid and vapor phases at inlet and outlet ports, eliminates complexities and uncertainties of two-phase flow in zero gravity. On earth, inlet valve enables plate to operate at relatively-large height differences with other plates in same system.

  2. Cold Vacuum Drying facility sanitary sewage collection system design description (SYS 27)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) sanitary sewage collection system. The sanitary sewage collection system provides collection and storage of effluents and raw sewage from the CVDF to support the cold vacuum drying process. This system is comprised of a sanitary sewage holding tank and pipes for collection and transport of effluents to the sanitary sewage holding tank.

  3. 27. LAEMPE AUTOMATED COLD BOX CORE MAKING MACHINES IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LAEMPE AUTOMATED COLD BOX CORE MAKING MACHINES IN THE GREY IRON FOUNDRY USED PRESSURE TO SET RESINS IN CORE SAND. THE ONLY EFFORT REQUIRED OF WORKERS IS TO CHANGE CORE BOXES AND REMOVE HARDENED CORE. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  4. NORTH PORTAL - DOMESTIC COLD WATER CALCULATION - CHANGE HOUSE FACILITY #5008

    SciTech Connect

    S. Mastilovic

    2000-03-02

    The purpose of this design analysis and calculation is to determine the demand for domestic cold water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (Section 4.4.1) and US Department of Energy Order 6430.1A-1540 (Section 4.4.2).

  5. High temperature superconducting current lead test facility with heat pipe intercepts

    SciTech Connect

    Blumenfeld, P.E.; Prenger, C.; Roth, E.W.; Stewart, J.A.

    1998-12-31

    A high temperature superconducting (HTS) current lead test facility using heat pipe thermal intercepts is under development at the Superconducting Technology Center at Los Alamos National Laboratory. The facility can be configured for tests at currents up to 1,000 A. Mechanical cryocoolers provide refrigeration to the leads. Electrical isolation is maintained by intercepting thermal energy from the leads through cryogenic heat pipes. HST lead warm end temperature is variable from 65 K to over 90 K by controlling heat pipe evaporator temperature. Cold end temperature is variable up to 30 K. Performance predictions in terms of heat pipe evaporator temperature as a function of lead current are presented for the initial facility configuration, which supports testing up to 200 A. Measurements are to include temperature and voltage gradient in the conventional and HTS lead sections, temperature and heat transfer rate in the heat pipes. as well as optimum and off-optimum performance of the conventional lead sections.

  6. Dye filled security seal

    DOEpatents

    Wilson, Dennis C. W.

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  7. Optimal numerical flux of power-law fluids in some partially full pipes

    NASA Astrophysics Data System (ADS)

    Lefton, Lew; Wei, Dongming; Liu, Yu

    2014-07-01

    Consider the steady state pressure driven flow of a power-law fluid in a partially filled straight pipe. It is known that an increase in flux can be achieved for a fixed pressure by partially filling the pipe and having the remaining volume either void or filled with a less viscous, lubricating fluid. If the pipe has circular cross section, the fluid level which maximizes flux is the level which avoids contact with exactly 25% of the boundary. This result can be proved analytically for Newtonian fluids and has been verified numerically for certain non-Newtonian models. This paper provides a generalization of this work numerically to pipes with non-circular cross sections which are partially full with a power-law fluid. A simple and physically plausible geometric condition is presented which can be used to approximate the fluid level that maximizes flux in a wide range of pipe geometries. Additional increases in flux for a given pressure can be obtained by changing the shape of the pipe but leaving the perimeter fixed. This computational analysis of flux as a function of both fluid level and pipe geometry has not been considered to our knowledge. Fluxes are computed using a special discretization scheme, designed to uncover general properties which are only dependent on fluid level and/or pipe cross-sectional geometry. Computations use finite elements and take advantage of the variational structure inherent in the power-law model. A minimization technique for approximating the critical points of the associated non-linear energy functional is used. In particular, the numerical scheme for the non-linear partial differential equation has been proved to be convergent with known error estimates. The numerical results obtained in this work can be useful for designing pipes and canals for transportation of non-Newtonian fluids, such as those in chemical engineering and food processing engineering.

  8. New method for fabrication of superconducting pipes in the Bi-Sr-Ca-Cu-O system

    NASA Astrophysics Data System (ADS)

    Abe, Yoshihiro; Hosono, Hideo; Lee, Won-Hyuk; Hosoe, Masahiro; Nakamura, Koichi; Inukai, Eikichi

    1993-01-01

    Pipes or hollow cylinders in the Bi-Sr-Ca-Cu-O system were found to be fabricated easily by inspiring or sucking the low viscosity melt into a cold silica glass tube. The outer part of the cast rod-like melt solidified, and the inner hot low-viscosity part of the rod melt was expired. The precursor pipes were reheated at 800 C for 50 h in air, resulting in the formation of superconducting (Tc = 87 K) pipes which were of smooth surface without machining and high bending strength (100-150 MPa).

  9. Fluid Dynamics of Bottle Filling

    NASA Astrophysics Data System (ADS)

    McGough, Patrick; Gao, Haijing; Appathurai, Santosh; Basaran, Osman

    2011-11-01

    Filling of bottles is a widely practiced operation in a large number of industries. Well known examples include filling of ``large'' bottles with shampoos and cleaners in the household products and beauty care industries and filling of ``small'' bottles in the pharmaceutical industry. Some bottle filling operations have recently drawn much attention from the fluid mechanics community because of the occurrence of a multitude of complex flow regimes, transitions, and instabilities such as mounding and coiling that occur as a bottle is filled with a fluid. In this talk, we present a primarily computational study of the fluid dynamical challenges that can arise during the rapid filling of bottles. Given the diversity of fluids used in filling applications, we consider four representative classes of fluids that exhibit Newtonian, shear-thinning, viscoelastic, and yield-stress rheologies. The equations governing the dynamics of bottle filling are solved either in their full 3D but axisymmetric form or using the slender-jet approximation.

  10. Ceramic Wick For Capillary-Pumped Heat Pipe

    NASA Technical Reports Server (NTRS)

    Seidenberg, Benjamin; Swanson, Theodore

    1989-01-01

    Fibrous ceramic wick allows choice of working fluid and high-temperature fabrication and/or operation. Wick material resists degradation at temperatures from -195 to +1,500 degrees C. Liquid refrigerant fills bore of silica/alumina wick. After flowing by capillary action through pores of wick, refrigerant evaporates from finned outer surface of wick and enters heat pipe, flowing toward condenser section.

  11. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    NASA Astrophysics Data System (ADS)

    Morris, J. F.

    1985-03-01

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. If the receiver requires gratr thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparative low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  12. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1985-01-01

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. If the receiver requires gratr thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparative low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  13. Hydrogen Filling Station

    SciTech Connect

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  14. Drill pipe protector development

    SciTech Connect

    Thomerson, C.; Kenne, R.; Wemple, R.P.

    1996-03-01

    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  15. A bubble detection system for propellant filling pipeline.

    PubMed

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-01

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  16. A bubble detection system for propellant filling pipeline

    SciTech Connect

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  17. A bubble detection system for propellant filling pipeline

    NASA Astrophysics Data System (ADS)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-01

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  18. Cough & Cold Medicine Abuse

    MedlinePlus

    ... I Help a Friend Who Cuts? Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  19. Cold symptoms (image)

    MedlinePlus

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  20. Vitamin C and colds

    MedlinePlus

    Colds and vitamin C ... is that vitamin C can cure the common cold . However, research about this claim is conflicting. Although ... vitamin C may help reduce how long a cold lasts. They do not protect against getting a ...

  1. Heat Pipe Systems

    NASA Astrophysics Data System (ADS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  2. Thermal study of interface between the Orbiter cold plate and typical Shuttle spacecraft payload flight electronics

    NASA Technical Reports Server (NTRS)

    Hwangbo, H.; Coyle, M. J.

    1979-01-01

    Spacelab provides a set of Freon line plumbing and cold plates for experiment equipments which are located in the Shuttle pallet and which need active thermal control. The reported study deals with the thermal problem of attaching a Command and Data Handling module with various electronic boxes whose combined footprints on the baseplate are much larger than the cold plate. A description of two modules and the cold plate assembly in the pallet is presented and a thermal model description is provided. The method employed in modeling heat pipes-honey-comb matrix is based upon an effective conductance between the heat pipe vapor and the walls of the heat pipe. The considered thermal models and a computer program are used to perform steady-state thermal analyses. The temperature gradients in the large module baseplate attached to the small cold plate are predicted as a function of the interface plate thickness.

  3. Formation of phreatomagmatic pipes in the Tunguska Basin (Siberia, Russia) during the end-Permian

    NASA Astrophysics Data System (ADS)

    Polozov, Alexander; Svensen, Henrik; Planke, Sverre

    2010-05-01

    We recently proposed that numerous pipes piercing sedimentary rocks of Tunguska Basin triggered the Permian-Triassic mass extinction (Svensen et al., 2009). Large amounts of greenhouse and poisonous gases were released through the pipes and into P-Tr atmosphere, partly formed by heating of petroleum-bearing evaporites. The sub-volcanic part of the Siberian Traps was emplaced in the Tunguska Basin sedimentary sequences, which includes Pre-Cambrian source rocks, Early Cambrian evaporites, and Paleozoic terrigenous and coal-bearing rocks. Spectacular breccia pipes are numerous in the evaporate-parts of the basin, and are filled with volcaniclastic rocks and commercial magnetite mineralization. Although these pipes have been intensively studied in order to understand the iron ore formation, the origin and formation of the pipes is poorly understood. Many researchers emphasize that magma-sediments interaction as a key reason of pipe formation, whereas phreatomagmatic hypothesis are also proposed. In order to improve the understanding of pipe formation and ore-deposition, we have studied a basalt-rich breccia pipe piercing Cambrian evaporates at the Nepa locality in East Siberia. Textural features of the volcanic fragments in the breccias include lapilli, Pele's hear, glassy basalt and dolerite clasts, blocks of tuffs in addition to sedimentary rocks. Calcite and halite are the most common types of cement. We have studied minerals from the breccia cement and from reaction rims around clasts in order to understand the hydrothermal system that developed after the pipe formed. Calcite and dolomite are the dominating carbonates, and two types of anhydrite is present. Biotite, Cl-Fe-bearing amphibole (hastingsite), and Cl-F-apatite are amongst early hydrothermal minerals covering magmatic clast and lapillies. Our new data confirm (i) the phreatomagmatic nature of breccia filling in the Tunguska Basin pipes and (ii) the key role of sedimentary brine and petroleum involved in

  4. Underground pipeline laying using the pipe-in-pipe system

    NASA Astrophysics Data System (ADS)

    Antropova, N.; Krets, V.; Pavlov, M.

    2016-09-01

    The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.

  5. Pipe inspection using the pipe crawler. Innovative technology summary report

    SciTech Connect

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  6. Uranium-bearing breccia pipes of northwestern Arizona - an overview

    SciTech Connect

    Chenoweth, W.L.

    1986-08-01

    During the 1950s and 1960s, the uranium deposits in breccia pipes of the Grand Canyon region were regarded as geologic curiosities. Today this area is the site of numerous exploration projects for ore-bearing pipes. The classic example of the older mines is the Orphan Lode, a patented claim within Grand Canyon National Park. Between 1956 and 1969, this deposit produced 4.26 million lb U/sub 3/O/sub 8/. Exploration since the mid-1970s has developed numerous new deposits in the Grand Canyon region. The Hack 1, 2, and 3, Pigeon, Kanab North, Canyon, and Pinenut deposits are, or will be, mined. The pipes are circular and originated by dissolution of the Mississippian Redwall Limestone and collapse of the overlying strata. Uraninite ore occurs in both the pipe fill and in association with the peripheral shear zone. The principal host rocks are the Coconino Sandstone, Hermit Shale, and Esplanade Sandstone. Although small (3 to 5 million lb U/sub 3/O/sub 8/), the high grade (60 to 70% U/sub 3/O/sub 8/) of the deposits makes the pipes attractive exploration targets.

  7. Guidable pipe plug

    DOEpatents

    Glassell, Richard L.; Babcock, Scott M.; Lewis, Benjamin E.

    2001-01-01

    A plugging device for closing an opening defined by an end of a pipe with sealant comprises a cap, an extension, an inner seal, a guide, and at least one stop. The cap has an inner surface which defines a chamber adapted for retaining the sealant. The chamber is dimensioned slightly larger than the end so as to receive the end. The chamber and end define a gap therebetween. The extension has a distal end and is attached to the inner surface opposite the distal end. The inner seal is attached to the extension and sized larger than the opening. The guide is positioned forward of the inner seal and attached to the distal end. The guide is also dimensioned to be inserted into the opening. The stop is attached to the extender, and when the stop is disposed in the pipe, the stop is movable with respect to the conduit in one direction and also prevents misalignment of the cap with the pipe. A handle can also be included to allow the cap to be positioned robotically.

  8. Pipe damping studies

    SciTech Connect

    Ware, A.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels.

  9. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The annual supplement on heat pipe technology for 1971 is presented. The document contains 101 references with abstracts and 47 patents. The subjects discussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design, development, and fabrication of heat pipes, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  10. Experimenting with a ``Pipe'' Whistle

    NASA Astrophysics Data System (ADS)

    Stafford, Olga

    2012-04-01

    A simple pipe whistle can be made using pieces of PVC pipe. The whistle can be used to measure the resonant frequencies of open or closed pipes. A slightly modified version of the device can be used to also investigate the interesting dependence of the sound frequencies produced on the orifice-to-edge distance. The pipe whistle described here allows students in a physics of music or introductory physics course to study an example of an "edge tone" device that produces discrete sound frequencies. From their textbooks, students likely know about standing waves produced by pipes or strings, as well as the resonant frequencies for open and closed pipes. To go a bit further, they can also learn how the frequency of the sound wave depends on the orifice-to-edge distance of the wind instrument.

  11. Modeling of pulsating heat pipes.

    SciTech Connect

    Givler, Richard C.; Martinez, Mario J.

    2009-08-01

    This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. The physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.

  12. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  13. Cryogenic Heat Pipe Experiment (CRYOHP)

    NASA Astrophysics Data System (ADS)

    McIntosh, Roy

    The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.

  14. Thermostructural applications of heat pipes

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Reeder, J. C.; Sontag, K. E.

    1979-01-01

    The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.

  15. Cryogenic Heat Pipe Experiment (CRYOHP)

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy

    1992-01-01

    The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.

  16. Cold energy

    SciTech Connect

    Wallace, John P.

    2015-12-04

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  17. Cold energy

    NASA Astrophysics Data System (ADS)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  18. Composite heat pipe development status: Development of lightweight prototype carbon-carbon heat pipe with integral fins and metal foil liner

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rovang, Richard D.

    1995-01-01

    This report discusses development and proof-of-concept testing of a new lightweight carbon-carbon (C-C) space radiator heat pipe, carried out under the NASA Civil Space Technology Initiative (CSTI) High Capacity Power Program. The prototype heat pipe, equipped with a niobium-zirconium foil liner, was filled with potassium working fluid and tested for 11 hours, including startup from ambient temperature with the working fluid initially in the frozen state to near 700 K condenser temperature. Steady-state heat pipe input power during testing was facility limited to about 300 watts. Post test inspection showed the heat pipe to be in excellent condition after eight thermal cycles from ambient to steady-state operating temperature. Utilization of other liner materials and working fluids would greatly extend the spectrum of service temperatures for this technology, with potential applications ranging from small spacecraft heat rejection to aircraft and terrestrial uses.

  19. STEALTH modeling of time-dependent flows in piping. Final report

    SciTech Connect

    Cohen, L.M.; Gross, M.B.

    1980-12-01

    This report documents technologies that enable the STEALTH 1D numerical code to simulate the time-dependent flow phenomena that can occur in the piping systems of power plants. Fixed-frame control volumes simulate the presence of piping components; these include models for orifices, area changes, valves, tee junctions, and turbo-machines. The hydro version of the STEALTH code, purged of the physics and numerics associated with solid mechanics, can perform efficient flow simulations. The pipe friction and piping component loss model account for irreversible effects associated with flow in piping systems. Instantaneous stream functions account for transient forces that bear on piping components. The plot overlay option can display several nodal histories on one axis system. In demonstration of these technologies, the appendixes describe one-dimensional, numerical simulations of pipe flows that are generic to power plant systems. These include simulations of a feedwater shutdown event, a pressurizer relief line discharge event, a pump trip (with bypass) event, a three-dimensional blowdown event, and the response of a water-filled, straight pipe to a pressure pulse.

  20. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers.

    PubMed

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-09-01

    Hydrogen sulfide oxidation on sewer pipe surfaces was investigated in a pilot scale experimental setup. The experiments were aimed at replicating conditions in a gravity sewer located immediately downstream of a force main where sulfide related concrete corrosion and odor is often observed. During the experiments, hydrogen sulfide gas was injected intermittently into the headspace of partially filled concrete and plastic (PVC and HDPE) sewer pipes in concentrations of approximately 1,000 ppm(v). Between each injection, the hydrogen sulfide concentration was monitored while it decreased because of adsorption and subsequent oxidation on the pipe surfaces. The experiments showed that the rate of hydrogen sulfide oxidation was approximately two orders of magnitude faster on the concrete pipe surfaces than on the plastic pipe surfaces. Removal of the layer of reaction (corrosion) products from the concrete pipes was found to reduce the rate of hydrogen sulfide oxidation significantly. However, the rate of sulfide oxidation was restored to its background level within 10-20 days. A similar treatment had no observable effect on hydrogen sulfide removal in the plastic pipe reactors. The experimental results were used to model hydrogen sulfide oxidation under field conditions. This showed that the gas-phase hydrogen sulfide concentration in concrete sewers would typically amount to a few percent of the equilibrium concentration calculated from Henry's law. In the plastic pipe sewers, significantly higher concentrations were predicted because of the slower adsorption and oxidation kinetics on such surfaces.

  1. Deployable Pipe-Z

    NASA Astrophysics Data System (ADS)

    Zawidzki, Machi

    2016-10-01

    This paper presents a concept of deployable Pipe-Z (dPZ): a modular structural system which takes advantage of the robustness of rigid-panel mechanism and allows to create free-form links which are also reconfigurable and deployable. The concept presented can be applied for building habitats and infrastructures for human exploration of oceans and outer space. dPZ structures can adapt to changing requirements e.g. mission objectives, crew condition and technological developments. Furthermore, such lightweight and adaptable structural concept can assist in sustainable exploration development. After brief introduction, the concept of Pipe-Z (PZ) is presented. Next, the reconfigurability of PZ is explained and illustrated with continuous and collision-free transition from a PZ forming a Trefoil knot to a Figure-eight knot. The following sections introduce, explain and illustrate the folding mechanism of a single foldable Pipe-Z module (fPZM) and entire dPZ structure. The latter is illustrated with asynchronous (delayed) unfolding of a relatively complex Unknot. Several applications of PZ are suggested, namely for underwater and deep-space and surface habitats, for permanent, but in particular, temporary or emergency passages. As an example, a scenario of a failure of one of the modules of the International Space Station is presented where a rigid structure of 40 fPZMs bypasses the "dead link". A low-fidelity prototype of a 6-module octagonal dPZ is presented; several folding schemes including concentric toric rings are demonstrated. Practical issues of pressurization and packing are briefly discussed.

  2. Heat pipes - Thermal diodes

    NASA Astrophysics Data System (ADS)

    Aptekar, B. F.; Baum, J. M.; Ivanovskii, M. N.; Kolgotin, F. F.; Serbin, V. I.

    The performance concept and peculiarities of the new type of thermal diode with the trap and with the wick breakage are dealt with in the report. The experimental data were obtained and analysed for the working fluid mass and the volume of the liquid in the wick on the forward-mode limiting heat transfer. The flow rate pulsation of the working fluid in the wick was observed visually on the setup with the transparent wall. The quantitative difference on the data on the investigated thermal diode and on the identical heat pipes without the wick breakage is found experimentally concerning the forward-mode limiting heat transfer.

  3. Ceramic heat pipe wick

    NASA Technical Reports Server (NTRS)

    Seidenberg, Benjamin (Inventor); Swanson, Theodore (Inventor)

    1989-01-01

    A wick for use in a capillary loop pump heat pipe is disclosed. The wick material is an essentially uniformly porous, permeable, open-cell, silicon dioxide/aluminum oxide inorganic ceramic foam having a silica fiber ratio, by weight, of about 78 to 22, respectively, a density of 6 lbs/cu ft, and an average pore size of less than 5 microns. A representative material having these characteristics is Lockheed Missile and Space Company, Inc.'s HTP 6-22. This material is fully compatible with the freons and anhydrous ammonia and allows for the use of these very efficient working fluids, and others, in capillary loops.

  4. Removal of Pipe Fouling Inside Pipes Using Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Nakagawa, Noritoshi; Fujihara, Masaya; Wu, Chaoqun; Satonobu, Jun

    Since fouling generated inside pipes of chemistry plant equipment, shortens “its life”, periodical maintenance such as cleaning or replacement is needed. Therefore, the development of a safe and sanitary method of preventing a corrosion and blockage inside pipes is desired. In this study, a vibration system, composed of a bolt-clamped Langevin transducer and a pipe, was employed to experimentally study the possibility of fouling removal. In the experiment, a flexural vibration was excited in a pipe containing fouling using ultrasonic waves. When the pipe was made to vibrate, with calcium carbonate or starch used as the fouling, it was shown that the fouling was diffused into the air, and except at the node of the flexural vibration, the fouling was removed completely. Also, the result showed that a higher input voltage to the transducer was more effective in removing the fouling.

  5. Understanding the Relationship Between Filling Pattern and Part Quality in Die Casting

    SciTech Connect

    Jerald Brevick; R. Allen Miller

    2004-03-15

    The overall objective of this research project was to investigate phenomena involved in the filling of die cavities with molten alloy in the cold chamber die-casting process. It has long been recognized that the filling pattern of molten metal entering a die cavity influences the quality of die-cast parts. Filling pattern may be described as the progression of molten metal filling the die cavity geometry as a function of time. The location, size and geometric configuration of points of metal entry (gates), as well as the geometry of the casting cavity itself, have great influence on filling patterns. Knowledge of the anticipated filling patterns in die-castings is important for designers. Locating gates to avoid undesirable flow patterns that may entrap air in the casting is critical to casting quality - as locating vents to allow air to escape from the cavity (last places to fill). Casting quality attributes that are commonly flow related are non-fills, poor surface finish, internal porosity due to trapped air, cold shuts, cold laps, flow lines, casting skin delamination (flaking), and blistering during thermal treatment.

  6. 40. BUILDING NO. 454, ORDNANCE FACILITY (BAG CHANGE FILLING PLANT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. BUILDING NO. 454, ORDNANCE FACILITY (BAG CHANGE FILLING PLANT), DETAIL SOUTHEAST SIDE OF EXTERIOR ELECTRICAL EQUIPMENT ROOM, SHOWING DOOR TO SEWING ROOM NO. 3, VENTILATOR FAN (OVER DOOR), STEAM LINE (PIPE), SEWING MACHINE MOTOR IN OVERHEAD, ALARM BELL, EXPLOSION-PROOF SWITCH BOXES, GROUNDS ON DOORS, PULL ALARM HANDLE (EXTREME RIGHT; PULLEY CABLE CONDUCTED IN CONDUIT TO SWITCH INSIDE BUILDING. PULLEYS INSIDE ALL ELBOW JOINTS.) - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ

  7. Alternate high capacity heat pipe

    NASA Technical Reports Server (NTRS)

    Voss, F. E.

    1986-01-01

    The performance predictions for a fifty foot heat pipe (4 foot evaporator - 46 foot condensor) are discussed. These performance predictions are supported by experimental data for a four foot heat pipe. Both heat pipes have evaporators with axial groove wick structures and condensers with powder metal external artery wick structures. The predicted performance of a rectangular axial groove/external artery heat pipe operating in space is given. Heat transport versus groove width is plotted for 100, 200 and 300 grooves in the evaporator. The curves show that maximum power is achieved for groove widths from 0.040 to 0.053 as the number of grooves varies from 300 to 100. The corresponding range of maximum power is 3150 to 2400 watts. The relationships between groove width and heat pipe evaporate diameter for 100, 200 and 300 grooves in the evaporator are given. A four foot heat pipe having a three foot condenser and one foot evaporator was built and tested. The evaporator wick structure used axial grooves with rectangular cross sections, and the condenser wick structure used powder metal with an external artery configuration. Fabrication drawings are enclosed. The predicted and measured performance for this heat pipe is shown. The agreement between predicted and measured performance is good and therefore substantiates the predicted performance for a fifty foot heat pipe.

  8. Building a Copper Pipe "Xylophone."

    ERIC Educational Resources Information Center

    Lapp, David R.

    2003-01-01

    Explains how to use the equation for frequency of vibration of a transversely oscillating bar or pipe with both ends free to vibrate to build a simple and inexpensive xylophone from a 3-meter section of copper pipe. The instrument produces a full major scale and can be used to investigate various musical intervals. (Author/NB)

  9. Demonstrating Sound Impulses in Pipes.

    ERIC Educational Resources Information Center

    Raymer, M. G.; Micklavzina, Stan

    1995-01-01

    Describes a simple, direct method to demonstrate the effects of the boundary conditions on sound impulse reflections in pipes. A graphical display of the results can be made using a pipe, cork, small hammer, microphone, and fast recording electronics. Explains the principles involved. (LZ)

  10. Heat Pipe Blocks Return Flow

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1982-01-01

    Metal-foil reed valve in conventional slab-wick heat pipe limits heat flow to one direction only. With sink warmer than source, reed is forced closed and fluid returns to source side through annular transfer wick. When this occurs, wick slab on sink side of valve dries out and heat pipe ceases to conduct heat.

  11. Pipe crawler with stabilizing midsection

    SciTech Connect

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20

    This invention is comprised of a pipe crawler having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ``inch worm`` fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.

  12. Pipe crawler with stabilizing midsection

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe crawler having a midsection that provides the stability and flexibty to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in "inch worm" fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.

  13. Pipe crawler with stabilizing midsection

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-27

    A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.

  14. Vapor spill pipe monitor

    NASA Astrophysics Data System (ADS)

    Bianchini, G. M.; McRae, T. G.

    1983-06-01

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote IR gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote IR sensor which measures the gas composition.

  15. Vapor spill pipe monitor

    DOEpatents

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  16. Vibration analysis methods for piping

    NASA Astrophysics Data System (ADS)

    Gibert, R. J.

    1981-09-01

    Attention is given to flow vibrations in pipe flow induced by singularity points in the piping system. The types of pressure fluctuations induced by flow singularities are examined, including the intense wideband fluctuations immediately downstream of the singularity and the acoustic fluctuations encountered in the remainder of the circuit, and a theory of noise generation by unsteady flow in internal acoustics is developed. The response of the piping systems to the pressure fluctuations thus generated is considered, and the calculation of the modal characteristics of piping containing a dense fluid in order to obtain the system transfer function is discussed. The TEDEL program, which calculates the vibratory response of a structure composed of straight and curved pipes with variable mechanical characteristics forming a three-dimensional network by a finite element method, is then presented, and calculations of fluid-structural coupling in tubular networks are illustrated.

  17. Flexible ultrasonic pipe inspection apparatus

    SciTech Connect

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  18. Prometheus Hot Leg Piping Concept

    SciTech Connect

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-30

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  19. Promethus Hot Leg Piping Concept

    SciTech Connect

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  20. Seismic piping test and analysis

    SciTech Connect

    Not Available

    1980-09-01

    This report presents selected results to date of a dynamic testing and analysis program focusing on a piping system at Consolidated Edison Company of New York's Indian Point-1 Nuclear Generating Station. The goal of this research program is the development of more accurate and realistic models of piping systems subjected to seismic, hydraulic, operating, and other dynamic loads. The program seeks to identify piping system properties significant to dynamic response rather than seeking to simulate any particular form of excitation. The fundamental experimental approach is the excitation of piping/restraint devices/supports by a variety of dynamic test methods and the analysis of the resulting response to identify the characteristic dynamic properties of the system tested. The comparison of the identified dynamic properties to those predicted by alternative analytical approaches will support improvements in methods used in the dynamic analysis of piping, restraint, devices, and supports.

  1. Advances in pipe prover technology

    SciTech Connect

    Jakubenas, P.P.

    1996-09-01

    The petroleum industry has used pipe provers for on line calibration of liquid flow meters for over 30 years. Recently a number of innovations have come to the forefront that enhance the reliability of pipe provers, reduce their size, make them more accurate, and increase their value to the end users. With the widespread use of turbine meters for custody transfer, accurate measurement is more dependent on frequent proving, thus the industry will continue to demand advanced provers and proving techniques. The author will discuss the aforementioned subject with regard to both bidirectional and unidirectional pipe provers. A description of the operational principles of pipe provers and the enhancements that are now available in terms of prover mechanical configuration and electronic instrumentation will be described in detail. In addition, information will be provided concerning integration of pipe provers into measurement systems and design and use of sophisticated computer control systems for automated proving.

  2. Technology for concrete pipe manipulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dan; Lin, Renzhi

    2010-01-01

    The pipe manipulator is a developing mechatronic system to enhance productivity and protects workers from cave-ins in the trench while excavating and laying pipe. The pipe manipulator is for installing concrete pipe into the trench. It is an optical-electro-mechanical system. The mechanism is make up of two parts, the upside and underside. The upside is for lifting the equipment by backhoe and rotating the underside mechanism. It includes rigidity lift beams, holding pad, four-bar linkages, hydraulic cylinder, rotating support, and rotating mechanism. Holding pad will press the bucket back to keep the bucket hooking the pipe man safely and stably. The underside mechanism is for lifting, holding and adjusting the pipe section's stance. The underside mechanism includes support trolley, and lift fork. The support trolley is driven by hydraulic cylinder for moving the fork forward or backward while laying a pipe into trench. The fork is with a self-lock mechanism for preventing the pipe from slide out of the prongs. A new photoelectric locating system is developed for auto-measuring the installing pipe section's stance within the work area. The laser target has been developed as a key part in the photoelectric locating systems. The photoelectric target is a rotating polar coordinate. Photodiodes are used for making the polar radius. There is an angular displacement sensor sitting on the heart-axis of the target for measuring angle of the target rotating. The pipe manipulator can be located by the system, and the locating methods have been presented at last of the paper.

  3. Technology for concrete pipe manipulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dan; Lin, Renzhi

    2009-12-01

    The pipe manipulator is a developing mechatronic system to enhance productivity and protects workers from cave-ins in the trench while excavating and laying pipe. The pipe manipulator is for installing concrete pipe into the trench. It is an optical-electro-mechanical system. The mechanism is make up of two parts, the upside and underside. The upside is for lifting the equipment by backhoe and rotating the underside mechanism. It includes rigidity lift beams, holding pad, four-bar linkages, hydraulic cylinder, rotating support, and rotating mechanism. Holding pad will press the bucket back to keep the bucket hooking the pipe man safely and stably. The underside mechanism is for lifting, holding and adjusting the pipe section's stance. The underside mechanism includes support trolley, and lift fork. The support trolley is driven by hydraulic cylinder for moving the fork forward or backward while laying a pipe into trench. The fork is with a self-lock mechanism for preventing the pipe from slide out of the prongs. A new photoelectric locating system is developed for auto-measuring the installing pipe section's stance within the work area. The laser target has been developed as a key part in the photoelectric locating systems. The photoelectric target is a rotating polar coordinate. Photodiodes are used for making the polar radius. There is an angular displacement sensor sitting on the heart-axis of the target for measuring angle of the target rotating. The pipe manipulator can be located by the system, and the locating methods have been presented at last of the paper.

  4. Investigation of guided waves propagation in pipe buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2014-02-01

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  5. Investigation of guided waves propagation in pipe buried in sand

    SciTech Connect

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    2014-02-18

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  6. Filling an Unvented Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Beck, Phillip; Willen, Gary S.

    1987-01-01

    Slow-cooling technique enables tank lacking top vent to be filled with cryogenic liquid. New technique: pressure buildup prevented through condensation of accumulating gas resulting in condensate being added to bulk liquid. Filling method developed for vibration test on vacuum-insulated spherical tank containing liquid hydrogen.

  7. Generation of slanted gas-filled icicles

    NASA Astrophysics Data System (ADS)

    Wäscher, Thomas

    1991-04-01

    A procedure for the generation of slanted gas-filled icicles by freezing, using a domestic refrigerator, is described. The freezing vessel was a plastic ice-cube tray, which was filled both with tap and deionized water and was frozen successively from the outer to the inner compartments of the tray. Icicles having slanted elevations grew out of the surface of the deionized water of the innermost compartments. The erection angle of the icicles to the horizontal lay between 30° and 60°, for the three longest and thinnest specimens it was almost exactly 30°. All icicles have gas inclusions. Their shape varies between an irregular distribution of circular bubbles and a nearly uninterrupted axial gas channel together with dendrite-like, radially distorted bubbles. If a cold (-18°C) specimen comes into contact with warm and humid room-air, then hoarfrost is observed at the bottom and the top of the icicle, while the area in between remains transparent.

  8. 49 CFR 192.203 - Instrument, control, and sampling pipe and components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... not apply to permanently closed systems, such as fluid-filled temperature-responsive devices. (b... must be made of suitable material, be able to withstand the maximum service pressure and temperature of... may not be used for metal temperatures greater than 400 °F (204 °C). (4) Pipe or components that...

  9. Experimental study on heat transfer performance of pulsating heat pipe with refrigerants

    NASA Astrophysics Data System (ADS)

    Wang, Xingyu; Jia, Li

    2016-10-01

    The effects of different refrigerants on heat transfer performance of pulsating heat pipe (PHP) are investigated experimentally. The working temperature of pulsating heat pipe is kept in the range of 20°C-50°C. The startup time of the pulsating heat pipe with refrigerants can be shorter than 4 min, when heating power is in the range of 10W?100W. The startup time decreases with heating power. Thermal resistances of PHP with filling ratio 20.55% were obviously larger than those with other filling ratios. Thermal resistance of the PHP with R134a is much smaller than that with R404A and R600a. It indicates that the heat transfer ability of R134a is better. In addition, a correlation to predict thermal resistance of PHP with refrigerants was suggested.

  10. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    SciTech Connect

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

  11. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.; Basiulis, A.

    1983-01-01

    Integral heat-pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat-load levels. The heat-pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat-pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low-distortion large area structures (e.g., space antennas) and laser mirrors.

  12. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.; Basiulis, A.

    1983-01-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

  13. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    NASA Astrophysics Data System (ADS)

    Smitka, Martin; Kolková, Z.; Nemec, Patrik; Malcho, M.

    2014-03-01

    One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP) is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980's. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT).

  14. Sound Transmission at Pipe Joints.

    NASA Astrophysics Data System (ADS)

    Servis, Dimitris C.

    Available from UMI in association with The British Library. A model was developed using beam and plane wave theory to describe the sound transmission at pipe joints. This approach greatly simplifies the modelling of the pipe joint and the solution is presented in a manner which can be applied in both the Frequency and the Time domain, for the solution of acoustic and fluid dynamics problems related to pipe joint transmission. This form of modelling can be extended to describe a wide range of pipe joints and discontinuities and lend itself to the study of piping networks by incorporating its solution in existing models used to describe the performance of large systems. A variety of experimental techniques have been explored and applied for the measurement of the sound transmission at pipe joints. The model predictions were found to be in good agreement with experimental data and form the basis of a simple and effective method for the study of sound transmission at pipe joints.

  15. Plastic pipe insertion

    SciTech Connect

    Diskin, J.

    1987-05-01

    In March 1987 KPL changed all that when the utility inserted 1,000 ft of 16-in. SDR 15.5 Phillips Driscopipe 8000 pipe with a wall thickness of 1.032-in., into an abandoned 24-in. cast-iron line in downtown Kansas City. This is believed to be the largest diameter insert removal job ever done for gas distribution in the U.S. For KPL it was a natural progression from the smaller sizes used earlier. The procedure is the same, and the operation was quick and comparatively simple. Lower construction costs were the bottom line because with insert renewal there is no need to cut up the streets, a major expense in any urban pipeline work. There are other significant costs savings as well because the insert renewal construction process is faster than other techniques.

  16. Reactor Lithium Heat Pipes for HP-STMCs Space Reactor Power System

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2004-02-01

    Design and performance analysis of the nuclear reactor's lithium heat pipes for a 110-kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The evaporator length of the heat pipes is the same as the active core height (0.45 m) and the C-C finned condenser is of the same length as the STMC panels (1.5 m). The C-C finned condenser section is radiatively coupled to the collector shoes of the STMCs placed on both sides. The lengths of the adiabatic section, the values of the power throughput and the evaporator wall temperature depend on the radial location of the heat pipe in the reactor core and the number and dimensions of the potassium heat pipes in the heat rejection radiator. The reactor heat pipes have a total length that varies from 7.57 to 7.73 m, and a 0.2 mm thick Mo-14%Re wick with an average pore radius of 12 μm. The wick is separated from the Mo-14%Re wall by a 0.5 mm annulus filled with liquid lithium, to raise the prevailing capillary limit. The nominal evaporator (or reactor) temperature varies from 1513 to 1591 K and the thermal power of the reactor is 1.6 MW, which averages 12.7 kW for each of the 126 reactor heat pipes. The power throughput per heat pipe increase to a nominal 15.24 kW at the location of the peak power in the core and to 20.31 kW when an adjacent heat pipe fails. The prevailing capillary limit of the reactor heat pipes is 28.3 kW, providing a design margin >= 28%.

  17. Reactor Lithium Heat Pipes for HP-STMCs Space Reactor Power System

    SciTech Connect

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2004-02-04

    Design and performance analysis of the nuclear reactor's lithium heat pipes for a 110-kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The evaporator length of the heat pipes is the same as the active core height (0.45 m) and the C-C finned condenser is of the same length as the STMC panels (1.5 m). The C-C finned condenser section is radiatively coupled to the collector shoes of the STMCs placed on both sides. The lengths of the adiabatic section, the values of the power throughput and the evaporator wall temperature depend on the radial location of the heat pipe in the reactor core and the number and dimensions of the potassium heat pipes in the heat rejection radiator. The reactor heat pipes have a total length that varies from 7.57 to 7.73 m, and a 0.2 mm thick Mo-14%Re wick with an average pore radius of 12 {mu}m. The wick is separated from the Mo-14%Re wall by a 0.5 mm annulus filled with liquid lithium, to raise the prevailing capillary limit. The nominal evaporator (or reactor) temperature varies from 1513 to 1591 K and the thermal power of the reactor is 1.6 MW, which averages 12.7 kW for each of the 126 reactor heat pipes. The power throughput per heat pipe increase to a nominal 15.24 kW at the location of the peak power in the core and to 20.31 kW when an adjacent heat pipe fails. The prevailing capillary limit of the reactor heat pipes is 28.3 kW, providing a design margin {>=} 28%.

  18. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  19. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  20. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  1. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  2. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  3. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  4. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  5. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  6. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  7. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  8. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  9. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  10. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  11. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  12. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  13. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  14. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  15. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  16. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  17. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  18. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A cumulative bibliography on heat pipe research and development projects is presented. The subjects discussed are: (1) general information, (2) heat pipe applications, (3) heat pipe theory, (4) design and fabrication, (5) testing and operation, (6) subject and author index, and (7) heat pipe related patents.

  19. 49 CFR 195.114 - Used pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Used pipe. 195.114 Section 195.114 Transportation... PIPELINE Design Requirements § 195.114 Used pipe. Any used pipe installed in a pipeline system must comply with § 195.112 (a) and (b) and the following: (a) The pipe must be of a known specification and...

  20. Heat transfer intensification by increasing vapor flow rate in flat heat pipes

    NASA Astrophysics Data System (ADS)

    Sprinceana, Silviu; Mihai, Ioan; Beniuga, Marius; Suciu, Cornel

    2015-02-01

    Flat heat pipes have various technical applications, one of the most important being the cooling of electronic components[9]. Their continuous development is due to the fact that these devices permit heat transfer without external energetic contribution. The practical exploitation of flat heat pipes however is limited by the fact that dissipated power can only reach a few hundred watts. The present paper aims to advance a new method for the intensification of convective heat transfer. A centrifugal mini impeller, driven by a turntable which incorporates four permanent magnets was designed. These magnets are put in motion by another rotor, which in its turn includes two permanent magnets and is driven by a mini electrical motor. Rotation of the centrifugal blades generates speed and pressure increase of the cooling agent brought to vapor state within the flat micro heat pipe. It's well known that the liquid suffers biphasic transformations during heat transfer inside the heat pipe. Over the hotspot (the heat source being the electronic component) generated at one end of the heat pipe, convective heat transfer occurs, leading to sudden vaporization of the liquid. Pressures generated by newly formed vapors push them towards the opposite end of the flat heat pipe, where a finned mini heat sink is usually placed. The mini-heat exchanger is air-cooled, thus creating a cold spot, where vapors condensate. The proposed method contributes to vapor flow intensification by increasing their transport speed and thus leading to more intense cooling of the heat pipe.

  1. Simultaneous fog formation and thermophoretic droplet deposition in a turbulent pipe flow

    SciTech Connect

    Epstein, M.; Hauser, G.M. )

    1991-02-01

    Simultaneous aerosol formation by equilibrium condensation and the migration of the resulting droplets to the cold surface by thermophoresis is studied theoretically for a turbulent pipe flow. The problem is one in which a mixture of a vapor and noncondensable gas flows into a section of pipe where the pipe wall is cooled to below the dew point of the vapor. Because the temperature gradient at the pipe wall decays to zero once the gas travels far enough into the pipe, only some fraction of the droplets formed will deposit on the pipe wall. The equations of energy and diffusion suggest that turbulence leads to a discontinuity in the aerosol (fog) concentration at the boundary between the fog and clear regions. Numerical solutions are obtained for CsOH fog formation and deposition in steam flow, a particular case of current practical interest in water reactor safety. The axial and radial variations of the aerosol and vapor concentrations are displayed graphically, as are the location of the fog boundary as a function of axial distance and the efficiency of deposition as a function of the pipe wall temperature.

  2. Variable conductance heat pipe technology

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Edwards, D. K.; Anderson, W. T.

    1973-01-01

    Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.

  3. Hydrological connectivity of soil pipes

    NASA Astrophysics Data System (ADS)

    Holden, J.

    2003-04-01

    Natural soil pipes are common in many parts of the world and particularly in blanket peat uplands yet there are problems in finding and defining soil pipe networks which are often located deep within the peat. Pipeflow can contribute a large proportion of runoff to the river systems in these upland environments and may significantly influence catchment sediment and solute yield. Ground penetrating radar (GPR) technology has recently been developed for non-destructive identification and mapping of soil pipes in peat catchments. While GPR can identify subsurface cavities, it cannot alone determine hydrological connectivity between one cavity and another. This poster presents results from an experiment to test the ability of GPR to establish hydrological connectivity between pipes through use of a tracer solution. Tracers such as sodium chloride were injected at a constant rate into an open pipe cavity. The GPR was moved across the test area downslope. The resultant radargrams were analysed and significantly increased reflectance was observed from a selection of cavities downslope. It was thus possible to determine hydrological connectivity of soil pipes within a dense pipe network across a hillslope without ground disturbance. In addition, tracers were added to the peat surface upslope of known pipe networks. It was possible to then trace the movement of water across and through the hillslope by using GPR to establish the connectivity of a range of flowpaths. Often pipe networks were supplied with water from overland flow entering through cracks and openings where the soil pipe was near the peat surface. Downslope, pipeflow contributed not only directly to streamflow but also to overland flow and near-surface throughflow on the hillslope. The same water that was within a pipe network at four metres depth could become near-surface throughflow outside of the pipe network a few metres down slope. These data allow the first three-dimensional picture of subsurface

  4. Abrasion protection in process piping

    SciTech Connect

    Accetta, J.

    1996-07-01

    Process piping often is subjected to failure from abrasion or a combination of abrasion and corrosion. Abrasion is a complex phenomenon, with many factors involved to varying degrees. Hard, mineral based alumina ceramic and basalt materials are used to provide protection against abrasion in many piping systems. Successful life extension examples are presented from many different industries. Lined piping components require special attention with regard to operating conditions as well as design and engineering considerations. Economic justification involves direct cost comparisons and avoided costs.

  5. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  6. Feeder pipes - Expression of the uppermost plumbing system in Oligocene methane-seep deposits, Washington State, USA

    NASA Astrophysics Data System (ADS)

    Zwicker, Jennifer; Smrzka, Daniel; Gier, Susanne; Goedert, James; Peckmann, Jörn

    2015-04-01

    Plumbing systems of methane seeps are complex pathways along which hydrocarbon-rich fluids migrate upward through the marine sedimentary column. Seeps commonly maintain fluid flow over long periods of time, providing a steady supply of methane to shallow sediments and the water column. At greater sediment depths, fluid transport is facilitated by faults and conduits, which enable migration of fluids sourced from deep hydrocarbon reservoirs. In the shallow subsurface, plumbing systems may become successively filled by authigenic carbonates, whose precipitation is partly triggered by sulfate-dependent anaerobic oxidation of methane (AOM). To expand our knowledge on the uppermost plumbing network of ancient seeps, this work investigates fluid conduits that were mineralized by a distinct succession of authigenic mineral phases. These mineralized conduits, which occur below an Oligocene seep deposit from the Lincoln Creek Formation in Washington State, are referred to as feeder pipes here. The concentrically-zoned feeder pipes are 2 to 3 cm in diameter. The mineral phase that formed first is matrix micrite, making up the outer part of pipes. Toward the center, pipes are filled by clear, banded and botryoidal aragonite cement, which is intercalated with yellow aragonite cement. The innermost portions of the pipes are filled by either pipe-filling micrite, microspar, or brownish calcite. The observed paragenetic sequences archive successions of various biogeochemical processes. Clear and yellow aragonite cements are distinctly depleted in 13C, revealing that their formation was favored by AOM. In contrast, later phases including brownish calcite and microspar are enriched in 13C, pointing to precipitation from fluids affected by methanogenesis. Their size and morphology indicate that the pipes were initially produced by seep-dwelling, burrowing organisms. The burrows subsequently acted as preferred fluid pathways. Possible producers of the burrows include various bivalves

  7. Hydrogen no-vent fill testing in a 1.2 cubic foot (34 liter) tank

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.; Driscoll, Susan L.

    1991-01-01

    Experimental results of no-vent fill testing with liquid hydrogen in a 1.2 cubic foot (34 liter) stainless steel tank are presented. More than 40 tests were performed with various liquid inlet temperatures, inlet flowrates, initial tank wall temperatures, and liquid injection techniques. Fill levels equal to or exceeding 90 percent by volume were achieved in 40 percent of the tests with the tank pressure limited to a maximum of 30 psia. Three liquid injection techniques were employed; top spray, upward pipe discharge, and bottom diffuser. Effects of each of the varied parameters on the tank pressure history and final fill level are evaluated. The final fill level is found to be indirectly proportional to the initial wall and inlet liquid temperatures and directly proportional to the inlet liquid flowrate. Furthermore, the top spray is the most efficient no-vent fill method of the three configurations examined. The success of this injection method is primarily due to condensation of the ullage vapor onto the incoming liquid droplets. Ullage condensation counteracts the tank pressure rise resulting from energy exchange between the fluid and the warmer tank walls, and ullage compression. Upward pipe discharge from the tank bottom is the next most efficient method. Fluid circulation induced by this fill configuration tends to diminish thermal stratification in the bulk liquid, thus enhancing condensation at the liquid gas interface.

  8. APEX. AutoPIPE Extract Program

    SciTech Connect

    Cline, B.E.

    1992-07-01

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straight pipe, branch lines and ring geometries.

  9. Heat pipe life and processing study

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Luedke, E. E.

    1979-01-01

    The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.

  10. The genesis of solution pipes: Evidence from the Middle-Late Pleistocene Bridgewater Formation calcarenite, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Lipar, Matej; Webb, John A.; White, Susan Q.; Grimes, Ken G.

    2015-10-01

    Solution pipes are abundant in Late Pleistocene aeolian calcarenites at Cape Bridgewater in southwestern Victoria, and were studied using field work, morphometric analysis, thin sections, mineralogical and chemical analyses, and OSL dating. The solution pipes are vertical tubes formed in aeolian limestone with matrix porosity. They are typically 0.1-1 m wide and 1-5 m deep, with rounded terminations and cemented rims up to 10 cm thick. They are overlain by palaeosols and filled mostly with palaeosol material; rhizoliths are commonly present in the solution pipe fills and the surrounding calcarenite. The solution pipes have formed by focused dissolution of aeolianite, relatively quickly after the sand deposition, and concurrently filled with soil as they developed. They most likely formed beneath trees (as a result of focused infiltration due to stemflow) or due to fingered flow (unstable wetting front that breaks into fingers as it moves downwards). Solution pipe formation was strongly dependent on climate; periods of solution pipe formation followed the deposition of aeolianites at the end of interglacials MIS 7, 9 and 11, when the dunes were stabilised by vegetation and there was sufficient rainfall for substantial subsoil dissolution. The cemented rims formed in the following drier glacial climates. Solution pipes are most abundant in the youngest aeolianite, probably reflecting the wetter climate at the end of MIS 7 that allowed a dense forest to cover the dunes. From MIS 5 to MIS 2 no deposition of calcareous sand occurred on Cape Bridgewater, and combined with a very wet interglacial period MIS 5e, resulted in additional karstification, allowing the pipes in the MIS 7 aeolianite to extend deeper and drill down into the underlying member. A well-developed calcrete layer drapes over these solution pipes, and probably formed during the dry, windy climate of the Last Glacial Maximum.

  11. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking lots of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  12. Cold knife cone biopsy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003910.htm Cold knife cone biopsy To use the sharing features on this page, please enable JavaScript. A cold knife cone biopsy (conization) is surgery to remove ...

  13. Cold Sores (Orofacial Herpes)

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Cold Sores (Orofacial Herpes) Information for adults A A ... face, known as orofacial herpes simplex, herpes labialis, cold sores, or fever blisters, is a common, recurrent ...

  14. Field Verification of Structural Performance of Thermoplastic Pipe Under Deep Backfill Conditions

    NASA Astrophysics Data System (ADS)

    Sargand, S.

    2002-05-01

    This report provides information regarding the structural performance of thermoplastic pipes under relatively deep soil cover conditions. The eighteen (12 HDPE, 6 PVC) thermoplastic pipes, with diameter ranging from 30 to 60 in., were instrumented with sensors, embedded with granular backfill in shallow trenches, and subjected to 20-ft or 40-ft high soil fill for about 10 months. Their installation plans involved two types of backfill soil, three relative compactions, and varying bedding thickness to study the effects of these installation parameters on the pipe performance. Once the field performance of each test pipe was presented and discussed, comparative cross examinations of the entire field data were made to identify the effects of various installation parameters on the pipe deformations/deflections and soil pressure against pipe. A comprehensive set of soil testing was performed in the laboratory to characterize each of the three soil types that existed in the field. Results from the shear strength tests were analyzed further to obtain hyperbolic model parameter values for these soils. Three analytical methods (modified Iowa formula, elastic solutions, and finite element) were applied to evaluate their abilities to predict the field performance of the thermoplastic pipes under relatively deep soil cover. In their applications, material properties measured in the laboratory were utilized as much as possible.

  15. Random walk approach for dispersive transport in pipe networks

    NASA Astrophysics Data System (ADS)

    Sämann, Robert; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: particle transport, random walk, pipe, network, HYSTEM-EXTAN, OpenGeoSys After heavy pluvial events in urban areas the available drainage system may be undersized at peak flows (Fuchs, 2013). Consequently, rainwater in the pipe network is likely to spill out through manholes. The presence of hazardous contaminants in the pipe drainage system represents a potential risk to humans especially when the contaminated drainage water reaches the land surface. Real-time forecasting of contaminants in the drainage system needs a quick calculation. Numerical models to predict the fate of contaminants are usually based on finite volume methods. Those are not applicable here because of their volume averaging elements. Thus, a more efficient method is preferable, which is independent from spatial discretization. In the present study, a particle-based method is chosen to calculate transport paths and spatial distribution of contaminants within a pipe network. A random walk method for particles in turbulent flow in partially filled pipes has been developed. Different approaches for in-pipe-mixing and node-mixing with respect to the geometry in a drainage network are shown. A comparison of dispersive behavior and calculation time is given to find the fastest model. The HYSTEM-EXTRAN (itwh, 2002) model is used to provide hydrodynamic conditions in the pipe network according to surface runoff scenarios in order to real-time predict contaminant transport in an urban pipe network system. The newly developed particle-based model will later be coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). References: Fuchs, L. (2013). Gefährdungsanalyse zur Überflutungsvorsorge kommunaler Entwässerungssysteme. Sanierung und Anpassung von Entwässerungssystemen-Alternde Infrastruktur und Klimawandel, Österreichischer Wasser-und Abfallwirtschaftsverband, Wien, ISBN, 978-3. itwh (2002). Modellbeschreibung, Institut für technisch-wissenschaftliche Hydrologie Gmb

  16. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  17. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Daxi; Beach, Duane E.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test Data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range.Fabrication and testing issues are being addressed.

  18. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  19. Light pipes for LED measurements

    NASA Technical Reports Server (NTRS)

    Floyd, S. R.; Thomas, E. F., Jr.

    1976-01-01

    Light pipe directly couples LED optical output to single detector. Small area detector measures total optical output of diode. Technique eliminates thermal measurement problems and channels optical output to remote detector.

  20. Method for casting polyethylene pipe

    NASA Technical Reports Server (NTRS)

    Elam, R. M., Jr.

    1973-01-01

    Short lengths of 7-cm ID polyethylene pipe are cast in a mold which has a core made of room-temperature-vulcanizable (RTV) silicone. Core expands during casting and shrinks on cooling to allow for contraction of the polyethylene.

  1. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  2. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  3. Physics of heat pipe rewetting

    NASA Technical Reports Server (NTRS)

    Chan, S. H.

    1994-01-01

    This is the final report which summarizes the research accomplishments under the project entitled 'Physics of Heat Pipe Rewetting' under NASA Grant No. NAG 9-525, Basic, during the period of April 1, 1991 to January 31, 1994. The objective of the research project was to investigate both analytically and experimentally the rewetting characteristics of the heated, grooved plate. The grooved plate is to simulate the inner surface of the vapor channel in monogroove heat pipes for space station design. In such designs, the inner surface of the vapor channel is threaded with monogrooves. When the heat pipe is thermally overloaded, dryout of the monogroove surface occurs. Such a dryout surface should be promptly rewetted to prevent the failure of the heat pipe operation in the thermal radiator of the space station.

  4. Cold Fronts in Cold Dark Matter Clusters

    NASA Astrophysics Data System (ADS)

    Nagai, Daisuke; Kravtsov, Andrey V.

    2003-04-01

    Recently, high-resolution Chandra observations revealed the existence of very sharp features in the X-ray surface brightness and temperature maps of several clusters. These features, called cold fronts, are characterized by an increase in surface brightness by a factor >~2 over 10-50 kpc accompanied by a drop in temperature of a similar magnitude. The existence of such sharp gradients can be used to put interesting constraints on the physics of the intracluster medium (ICM) if their mechanism and longevity are well understood. Here, we present results of a search for cold fronts in high-resolution simulations of galaxy clusters in cold dark matter models. We show that sharp gradients with properties similar to those of observed cold fronts naturally arise in cluster mergers when the shocks heat gas surrounding the merging subcluster, while its dense core remains relatively cold. The compression induced by supersonic motions and shock heating during the merger enhance the amplitude of gas density and temperature gradients across the front. Our results indicate that cold fronts are nonequilibrium transient phenomena and can be observed for a period of less than a billion years. We show that the velocity and density fields of gas surrounding the cold front can be very irregular, which would complicate analyses aiming to put constraints on the physical conditions of the ICM in the vicinity of the front.

  5. Mapping Temperatures On Heat Pipes

    NASA Technical Reports Server (NTRS)

    Gunnerson, Fred S.; Thorncroft, Glen E.

    1993-01-01

    Paints containing thermochromic liquid crystals (TLC's) used to map temperatures on heat pipes and thermosyphons. Color of thermally sensitive TLC coat changes reversibly upon heating or cooling. Each distinct color indicates particular temperature. Transient and steady-state isotherms become visible as colored bands. Positions and movements of bands yield information about startup transients, steady-state operation, cooler regions containing noncondensible gas, and other phenomena relevant to performance of heat pipe.

  6. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-12-31

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and a uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  7. Heat pipe cooled power magnetics

    NASA Technical Reports Server (NTRS)

    Chester, M. S.

    1979-01-01

    A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.

  8. Pipe weld crown removal device

    DOEpatents

    Sword, Charles K.; Sette, Primo J.

    1992-01-01

    A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

  9. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  10. Automated internal pipe cutting device

    DOEpatents

    Godlewski, William J.; Haffke, Gary S.; Purvis, Dale; Bashar, Ronald W.; Jones, Stewart D.; Moretti, Jr., Henry; Pimentel, James

    2003-01-21

    The invention is a remotely controlled internal pipe cutting device primarily used for cutting pipes where the outside of the pipe is inaccessible at the line where the cut is to be made. The device includes an axial ram within a rotational cylinder which is enclosed in a housing. The housing is adapted for attachment to an open end of the pipe and for supporting the ram and cylinder in cantilever fashion within the pipe. A radially movable cutter, preferably a plasma arc torch, is attached to the distal end of the ram. A drive mechanism, containing motors and mechanical hardware for operating the ram and cylinder, is attached to the proximal end of the housing. The ram and cylinder provide for moving the cutter axially and circumferentially, and a cable assembly attached to a remote motor provide for the movement of the cutter radially, within the pipe. The control system can be adjusted and operated remotely to control the position and movement of the cutter to obtain the desired cut. The control system can also provide automatic standoff control for a plasma arc torch.

  11. Cough and Cold Medicine Abuse

    MedlinePlus

    ... and Cold Medicine Abuse DrugFacts: Cough and Cold Medicine Abuse Email Facebook Twitter Revised May 2014 Some ... diverted for abuse. How Are Cough and Cold Medicines Abused? Cough and cold medicines are usually consumed ...

  12. Organ pipe resonance induced vibration in piping system

    SciTech Connect

    Wang, T.

    1996-12-01

    Acoustic-induced vibration is a fluid-structure interaction phenomenon. The feedback mechanism between the acoustic pressure pulsation and the structure movements determines the excited acoustic modes which, in turn, amplify the structure response when confidence frequency and mode shape matching occurs. The acoustic modes are not determined from the acoustic boundary conditions alone, structure feedback is as responsible for determining the acoustic modes and shaping the resulting forcing functions. Acoustic-induced piping vibration, when excited, does not attenuate much with distance. Pressure pulsation can be transmitted throughout the piping system and its branch connections. It is this property that makes vibration monitoring difficult, because vibration can surface at locations far away from the acoustic source when resonance occurs. For a large piping system with interconnected branches, the monitoring task can be formidable, particularly when there is no indication what the real source is. In organ pipe resonance induced vibration, the initiating acoustic source may be inconspicuous or unavoidable during operation. In these situations, the forcing function approach can offer an optimal tool for vibration assessment. The forcing function approach was used in the evaluation of a standby steam piping vibration problem. Monitoring locations and instrument specifications were determined from the acoustic eigenfunction profiles. Measured data confirmed the presence of coherent vibrations in the large bore piping. The developed forcing function permits design evaluation of the piping system, which leads to remedial actions and enables fatigue life determination, thus providing confidence to system operation. The forcing function approach is shown to be useful in finding potential vibration area and verifying the integrity of weak structure links. Application is to steam lines at BWR plants.

  13. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. NORTH PORTAL - DOMESTIC COLD WATER CALCULATION - CHANGE HOUSE FACILITY #5008

    SciTech Connect

    R. Blackstone

    1996-01-25

    The purpose of this design analysis and calculation is to determine the demand for domestic cold water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculations is based on the Uniform Plumbing Code (UPC), Section 4.4.1. The first step is to determine the maximum pressure drop between the most remote cold water plumbing fixture and the main distribution supply. The developed length of pipe from the supply to the fixture is then determined from the plumbing drawings. The maximum pressure drop is then divided by the developed length which results in the friction loss per 100 feet of pipe. Equivalent fixture units are assigned from the UPC based on the actual fixture count which when totaled determines the water flow rate. The water flow rate and pressure drop are used to determine the pipe size based on a given velocity of flow.

  15. Leaks in pipe networks

    USGS Publications Warehouse

    Pudar, Ranko S.; Liggett, James A.

    1992-01-01

    Leak detection in water-distribution systems can be accomplished by solving an inverse problem using measurements of pressure and/or flow. The problem is formulated with equivalent orifice areas of possible leaks as the unknowns. Minimization of the difference between measured and calculated heads produces a solution for the areas. The quality of the result depends on number and location of the measurements. A sensitivity matrix is key to deciding where to make measurements. Both location and magnitude of leaks are sensitive to the quantity and quality of pressure measurements and to how well the pipe friction parameters are known. The overdetermined problem (more measurements than suspected leaks) gives the best results, but some information can be derived from the underdetermined problem. The variance of leak areas, based on the quality of system characteristics and pressure data, indicates the likely accuracy of the results. The method will not substitute for more traditional leak surveys but can serve as a guide and supplement.

  16. Piping inspection round robin

    SciTech Connect

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths.

  17. Gas release driven dynamics in research reactors piping

    SciTech Connect

    Kolev, Nikolay Ivanov; Roloff-Bock, Iris; Schlicht, Gerhard

    2006-07-01

    Analysis of the physical and chemical processes of radiolysis gas production, air absorption, diffusion controlled gas release and transport in the coolant cleaning system of the research reactor FRM II, which is now being in routine power operation in Munich, Germany, lead to the following conclusions: 1) The steady state pressure distribution in the siphon pipe allows that the horizontal part of the siphon pipe is filled with air. The air is isolated by about 1 m water column from the main pipe of the coolant cleaning system (CCS). This is a stable steady state. It has two positive impacts on the normal operation of the CCS: (a) there is effectively no bypass flow; (b) The air can not be transported through the pipe and therefore no deterioration of the pump performance is expected from the function of the siphon pipe. 2) Radiolysis gas production for coolant, that initially does not contain dissolved air, does not lead to any problem for the system. The gases are dissolved in the coolant at 2.2 bar and are not released for pressures reduction to about 1 bar, which is the minimum pressure in the CCS. 3) Assuming hypothetically a radiolysis gas production for coolant, which initially does contain dissolved air close to its saturation, leads to gas slug formation and its transport up to the pump. This could reduce the pump head and could lead to distortion of the normal operation. Systematic measurement of the hydrogen in the primary system at 100% power indicated, that this state is not realized in the system. The observed H{sub 2} concentration was between 0.016 e-6 and 0.380 e-6 which is of no concern at all. (authors)

  18. Low-frequency fluid waves in fractures and pipes

    SciTech Connect

    Korneev, Valeri

    2010-09-01

    Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importance of including these wave effects into poroelastic theories.

  19. Effect of temperature and pipe material on biofilm formation and survival of Escherichia coil in used drinking water pipes: a laboratory-based study.

    PubMed

    Silhan, J; Corfitzen, C B; Albrechtsen, H J

    2006-01-01

    Segments of used drinking water pipes of galvanised steel (GS), cross-linked polyethylene (PEX), copper pipes (Cu) or new medium-density polyethylene (PE) were investigated for the formation of biofilm and survival of E. coli in biofilm and in the water phase. Pipes were filled with water and incubated at 15 degrees C or 35 degrees C under static conditions. Biofilm formation was followed during 32, 40 and 56 (58) d. The most dense biofilm was formed on GS, reaching approximately 4.7 x 10(5) CFU/cm2 measured as heterotrophic plate count (HPC), and at the other materials the density reached 3 x 10(3) CFU/cm2 on PE and PEX and 5 x 10(1) and 5 x 10(2) CFU/cm2 on Cu pipes after 58d at 15 degrees C. Biofilm HPC values were higher at 35 degrees C than at 15 degrees C, with only slightly higher values on the metals, but 100-fold higher on PE and PEX. Adenosine triphosphate (ATP) measurements confirmed the general trends observed by HPC. Higher temperature was seen to be an important factor reducing E. coli survival in the water phase in drinking water pipes. At 15 degrees C E. coli survived more than 4 d in GS and Cu pipes and 8 d in PE pipes, but was not detected after 48 h at 35 degrees C. The E. coli survived longer at both temperatures in the glass control bottles than in the drinking water pipes. Despite the obvious biofilm formation, E. coli was not detected in the biofilm at any of the investigated surfaces.

  20. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  1. Investigation of Freeze and Thaw Cycles of a Gas-Charged Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Krimchansky, Alexander

    2012-01-01

    The traditional constant conductance heat pipes (CCHPs) currently used on most spacecraft run the risk of bursting the pipe when the working fluid is frozen and later thawed. One method to avoid pipe bursting is to use a gas-charged heat pipe (GCHP) that can sustain repeated freeze/thaw cycles. The construction of the GCHP is similar to that of the traditional CCHP except that a small amount of non-condensable gas (NCG) is introduced and a small length is added to the CCHP condenser to serve as the NCG reservoir. During the normal operation, the NCG is mostly confined to the reservoir, and the GCHP functions as a passive variable conductance heat pipe (VCHP). When the liquid begins to freeze in the condenser section, the NCG will expand to fill the central core of the heat pipe, and ice will be formed only in the grooves located on the inner surface of the heat pipe in a controlled fashion. The ice will not bridge the diameter of the heat pipe, thus avoiding the risk of pipe bursting during freeze/thaw cycles. A GCHP using ammonia as the working fluid was fabricated and then tested inside a thermal vacuum chamber. The GCHP demonstrated a heat transport capability of more than 200W at 298K as designed. Twenty-seven freeze/thaw cycles were conducted under various conditions where the evaporator temperature ranged from 163K to 253K and the condenser/reservoir temperatures ranged from 123K to 173K. In all tests, the GCHP restarted without any problem with heat loads between 10W and 100W. No performance degradation was noticed after 27 freeze/thaw cycles. The ability of the GCHP to sustain repeated freeze/thaw cycles was thus successfully demonstrated.

  2. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  3. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, John A.; Prenger, Jr., F. Coyne

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  4. Paleovalley fills: Trunk vs. tributary

    USGS Publications Warehouse

    Kvale, E.P.; Archer, A.W.

    2007-01-01

    A late Mississippian-early Pennsylvanian eustatic sea level drop resulted in a complex lowstand drainage network being eroded across the Illinois Basin in the eastern United States. This drainage system was filled during the early part of the Pennsylvanian. Distinct differences can be recognized between the trunk and tributary paleovalley fills. Fills preserved within the trunk systems tend to be fluvially dominated and consist of bed-load deposits of coarse- to medium-grained sandstone and conglomerate. Conversely, the incised valleys of tributary systems tend to be filled with dark mudstone, thinly interbedded sandstones, and mudstones and siltstones. These finer grained facies exhibit marine influences manifested by tidal rhythmites, certain traces fossils, and macro- and microfauna. Examples of tributary and trunk systems, separated by no more than 7 km (4.3 mi) along strike, exhibit these styles of highly contrasting fills. Useful analogs for understanding this Pennsylvanian system include the Quaternary glacial sluiceways present in the lower Ohio, White, and Wabash river valleys of Indiana (United States) and the modern Amazon River (Brazil). Both the Amazon River and the Quaternary rivers of Indiana have (or had) trunk rivers that are (were) dominated by large quantities of bed load relative to their tributaries. The trunk valley systems of these analogs aggraded much more rapidly than their tributary valleys, which evolved into lakes because depositional rates along the trunk are (were) so high that the mouths of the tributaries have been dammed by bed-load deposits. These Holocene systems illustrate that sediment yields can significantly influence the nature of fill successions within incised valleys independent of rates of sea level changes or proximity to highstand coastlines. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  5. Flexible ultrasonic pipe inspection apparatus

    SciTech Connect

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  6. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  7. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, William T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  8. Centrally activated pipe snubbing system

    DOEpatents

    Cawley, William E.

    1985-01-01

    An electromechanical pipe snubbing system and an electromechanical pipe snubber. In the system, each pipe snubber, in a set of pipe snubbers, has an electromechanical mechanism to lock and unlock the snubber. A sensor, such as a seismometer, measures a quantity related to making a snubber locking or unlocking decision. A control device makes an electrical connection between a power supply and each snubber's electromechanical mechanism to simultaneously lock each snubber when the sensor measurement indicates a snubber locking condition. The control device breaks the connection to simultaneously unlock each snubber when the sensor measurement indicates a snubber unlocking condition. In the snubber, one end of the shaft slides within a bore in one end of a housing. The other end of the shaft is rotatably attached to a pipe; the other end of the housing is rotatively attached to a wall. The snubber's electromechanical mechanism locks the slidable end of the shaft to the housing and unlocks that end from the housing. The electromechanical mechanism permits remote testing and lockup status indication for each snubber.

  9. Gas-Filled Capillary Model

    NASA Astrophysics Data System (ADS)

    Steinhauer, L. C.; Kimura, W. D.

    2006-11-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration — Laser Wakefield (STELLA-LW) experiment.

  10. Temporal deterioration in thermal performance of screen mesh wick straight heat pipe using surfactant free aqueous nanofluids

    NASA Astrophysics Data System (ADS)

    Bhullar, Bhupinder Singh; Gangacharyulu, D.; Das, Sarit K.

    2016-04-01

    The study investigates the temporal performance of heat pipe using surfactant free Al2O3/De-ionised water nanofluids. The nanofluids prone to agglomeration and sedimentation with time are expected to influence the performance of heat pipe. Specially fabricated heat pipe is made to accommodate vapor velocity fluctuation through the vapor core and the end cap brazing effects. The heat pipe filled up to 40 % of the evaporator volume is tested at increasing volume concentration (0.005, 0.05, 0.5, 1 vol%) of Al2O3/De-ionised water nanofluid. The thermal performance of heat pipe is tested at three watt loads of heat input (12, 32, 72 W) and after successive durations (0, 3, 6, 9 months) from the date of manufacturing with non operational time span. The results are compared after successive time intervals and with deionised water as working fluid. Despite higher thermal performance of heat pipe observed using nanofluids as working fluids, consistency and reliability in heat pipe operating characteristics has been observed at high watt load heat input of 72 W as compared to low watt heat of 12 W. The thermal performance improvement of heat pipe using the nanofluid resulted due to nano-coating of Al2O3 nanoparticles on the mesh, resulting in localized high vapor pressure caused by the subsequent intermittent accelerated flow, reduction of contact angle and enhancement in boiling limit.

  11. Repair of filament wound composite pipes

    NASA Astrophysics Data System (ADS)

    Amali, Ramin; Arnall, Heather

    2015-07-01

    Filament wound pipes are used in a wide variety of industries, due to the advantages composites have over metal pipes, such as a high strength to weight ratio, and resistance against frost, corrosion and heat. Composite pipes require minimal maintenance to ensure they are safe. Any damage occurring in composite pipes could lead to failure; therefore all damage should be assessed through NDT. If it is decided that the damage makes the pipe unsafe then a decision needs to be made whether to repair or replace the pipe. Repairing a composite pipe can be quicker, easier and cheaper than replacing it and can restore the strength of the pipe effectively. This investigation looks at the repair process and the parameters involved in determining the strength of the pipe following repair through the use of over 150 models in FEA software, Abaqus. Parameters considered include the pipe diameter and thickness, damage removal size and wrap width and thickness. It was found that if the pipe is thin-walled then it can be assumed that the pipe's thickness has no effect on the FOS following repair. Formulas were created to predict the FOS following repair for varying pipe diameters, damage sizes and wrap thickness. Formulas were also created to determine the wrap width required for varying wrap thicknesses and damage sizes.

  12. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  13. Sodium Heat Pipe Module Processing For the SAFE-100 Reactor Concept

    NASA Astrophysics Data System (ADS)

    Martin, James; Salvail, Pat

    2004-02-01

    To support development and hardware-based testing of various space reactor concepts, the Early Flight Fission-Test Facility (EFF-TF) team established a specialized glove box unit with ancillary systems to handle/process alkali metals. Recently, these systems have been commissioned with sodium supporting the fill of stainless steel heat pipe modules for use with a 100 kW thermal heat pipe reactor design. As part of this effort, procedures were developed and refined to govern each segment of the process covering: fill, leak check, vacuum processing, weld closeout, and final ``wet in''. A series of 316 stainless steel modules, used as precursors to the actual 321 stainless steel modules, were filled with 35 +/-1 grams of sodium using a known volume canister to control the dispensed mass. Each module was leak checked to <10-10 std cc/sec helium and vacuum conditioned at 250 °C to assist in the removal of trapped gases. A welding procedure was developed to close out the fill stem preventing external gases from entering the evacuated module. Finally the completed modules were vacuum fired at 750 °C allowing the sodium to fully wet the internal surface and wick structure of the heat pipe module.

  14. Sodium Heat Pipe Module Processing For the SAFE-100 Reactor Concept

    NASA Technical Reports Server (NTRS)

    Martin, James; Salvail, Pat

    2003-01-01

    To support development and hardware-based testing of various space reactor concepts, the Early Flight Fission-Test Facility (EFF-TF) team established a specialized glove box unit with ancillary systems to handle/process alkali metals. Recently, these systems have been commissioned with sodium supporting the fill of stainless steel heat pipe modules for use with a 100 kW thermal heat pipe reactor design. As part of this effort, procedures were developed and refined to govern each segment of the process covering: fill, leak check, vacuum processing, weld closeout, and final "wet in". A series of 316 stainless steel modules, used as precursors to the actual 321 stainless steel modules, were filled with 35 +/- 1 grams of sodium using a known volume canister to control the dispensed mass. Each module was leak checked to less than10(exp -10) std cc/sec helium and vacuum conditioned at 250 C to assist in the removal of trapped gases. A welding procedure was developed to close out the fill stem preventing external gases from entering the evacuated module. Finally the completed modules were vacuum fired at 750 C allowing the sodium to fully wet the internal surface and wick structure of the heat pipe module.

  15. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  16. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  17. Methods of Controlling the Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2008-01-01

    The operating temperature of a loop heat pipe (LHP) is governed by the saturation temperature of its compensation chamber (CC); the latter is in turn determined by the balance among the heat leak from the evaporator to the CC, the amount of subcooling carried by the liquid returning to the CC, and the amount of heat exchanged between the CC and ambient. The LHP operating temperature can be controlled at a desired set point by actively controlling the CC temperature. The most common method is to cold bias the CC and use electric heater power to maintain the CC set point temperature. The required electric heater power can be large when the condenser sink is very cold. Several methods have been developed to reduce the control heater power, including coupling block, heat exchanger and separate subcooler, variable conductance heat pipe, by-pass valve with pressure regulator, secondary evaporator, and thermoelectric converter. The paper discusses the operating principles, advantages and disadvantages of each method.

  18. Heat pipe design handbook, part 1

    NASA Technical Reports Server (NTRS)

    Skrabek, E. A.

    1972-01-01

    The development and characteristics of heat pipes are examined. The subjects discussed are: (1) principles of operation, (2) heat pipe theory, (3) pressure gradient effects, (4) variable conductance, (5) design procedure, and (6) performance limit evaluation.

  19. Flat heat pipe design, construction, and analysis

    SciTech Connect

    Voegler, G.; Boughey, B.; Cerza, M.; Lindler, K.W.

    1999-08-02

    This paper details the design, construction and partial analysis of a low temperature flat heat pipe in order to determine the feasibility of implementing flat heat pipes into thermophotovoltaic (TPV) energy conversion systems.

  20. How is the ocean filled?

    NASA Astrophysics Data System (ADS)

    Gebbie, Geoffrey; Huybers, Peter

    2011-03-01

    The ocean surface rapidly exchanges heat, freshwater, and gases with the atmosphere, but once water sinks into the ocean interior, the inherited properties of seawater are closely conserved. Previous water-mass decompositions have described the oceanic interior as being filled by just a few different property combinations, or water masses. Here we apply a new inversion technique to climatological tracer distributions to find the pathways by which the ocean is filled from over 10,000 surface regions, based on the discretization of the ocean surface at 2° by 2° resolution. The volume of water originating from each surface location is quantified in a global framework, and can be summarized by the estimate that 15% of the surface area fills 85% of the ocean interior volume. Ranked from largest to smallest, the volume contributions scaled by surface area follow a power-law distribution with an exponent of -1.09 ± 0.03 that appears indicative of the advective-diffusive filling characteristics of the ocean circulation, as demonstrated using a simple model. This work quantifies the connection between the surface and interior ocean, allowing insight into ocean composition, atmosphere-ocean interaction, and the transient response of the ocean to a changing climate.

  1. Can-Filled Crash Barrier

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1983-01-01

    Crash barrier composed largely of used aluminum beverage cans protects occupants of cars in collisions with poles or trees. Lightweight, can-filled barrier very effective in softening impact of an automobile in head-on and off-angle collisions. Preliminary results indicate barrier is effective in collisions up to 40 mi/h (64 km/h).

  2. Space-filling polyhedral sorbents

    DOEpatents

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  3. Brain Responses to Filled Gaps

    ERIC Educational Resources Information Center

    Hestvik, Arild; Maxfield, Nathan; Schwartz, Richard G.; Shafer, Valerie

    2007-01-01

    An unresolved issue in the study of sentence comprehension is whether the process of gap-filling is mediated by the construction of empty categories (traces), or whether the parser relates fillers directly to the associated verb's argument structure. We conducted an event-related potentials (ERP) study that used the violation paradigm to examine…

  4. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  5. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  6. FRP and pipe flexibility analysis

    SciTech Connect

    Eisenman, J.D.

    1999-11-01

    Fiberglass Reinforced Plastic (FRP) is an excellent material of construction for piping carrying corrosive media. Since FRP is an anisotropic material additional design detail is required to assure safe and reliable service. For this reason the resin selection, material specification, construction and detailed engineering are critical to the success of the project. This paper moves through this engineering process, including resin systems, fitting construction and pipe flexibility analysis. A comparison of fitting construction methods and discussion of stress/flexibility analysis design approaches will also be provided.

  7. Heat pipe modeling and simulation

    SciTech Connect

    Peterson, G.P.

    1985-01-01

    Presented herein is a parametric study of the defining equations which govern the steady state operational characteristics of the Grumman Monogroove Dual Passage Heat Pipe. These defining equations are combined to develop a mathematical model which describes and predicts the operational and performance capabilities of a specific heat pipe, given the necessary physical characteristics and working fluid. Included is a brief review of the current literature, a discussion of the governing equations, and a description of both the mathematical and computer model. Final results of preliminary test runs of the model are presented and compared with experimental tests performed by Grumman on actual prototypes.

  8. Piping Plover brood foraging ecology on New York barrier islands

    USGS Publications Warehouse

    Elias, S.P.; Fraser, J.D.; Buckley, P.A.

    2000-01-01

    Effective management of piping plover (Charadrius melodus) populations requires knowledge of the habitats that foster successful reproduction. We studied piping plover chick foraging ecology and survival on the central barrier islands of Long Island, New York, 1992 and 1993. Within the 90-km study area, all 1-km beach segments with ephemeral pools or bay tidal flats were used for nesting and brood rearing, whereas <50% of beach segments without these habitats were used. On beach segments with ephemeral pools, broods preferred ephemeral pools to ocean intertidal zone, wrack, backshore, open vegetation, and interdune habitat. Indices of terrestrial arthropod abundance and foraging rates were greater in ephemeral pools than in other habitats. In 1992, chick survival was higher on beach segments with ephemeral pools than on segments without ephemeral pools. On beach segments with bay tidal flats, broods preferred bay tidal flats and wrack to ocean intertidal zone, backshore, and open vegetation habitats. Foraging rates in bay tidal flats were similar to those in ephemeral pools and greater than in open vegetation, wrack, and backshore habitats. On beach segments without ephemeral pools and bay tidal flats, broods preferred wrack to all other habitats, and open vegetation was second most preferred. To assist in the recovery of the piping plover, land-use planners should avoid beach management practices (e.g., beach filling, dune building, renourishment) that typically inhibit natural renewal of ephemeral pools, bay tidal flats, and open vegetation habitats.

  9. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler... 46 Shipping 2 2014-10-01 2014-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to...

  10. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler... 46 Shipping 2 2013-10-01 2013-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to...

  11. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler... 46 Shipping 2 2012-10-01 2012-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to...

  12. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to...

  13. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler... 46 Shipping 2 2011-10-01 2011-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to...

  14. High-Capacity Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  15. Granular flows through vertical pipes controlled by an electric field

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Hou, Meiying; Lu, Kunquan; Jiang, Zehui; Lam, Lui

    2001-12-01

    The flow of granular nickel particles moving down vertical pipes from a hopper in the presence of a local, horizontal ac electric field is studied experimentally. The flow is initiated by opening the bottom outlet of the pipe after the pipe is fully filled with particles from the hopper. The mass of particles flowing out of the pipe is measured as a function of time by an electronic balance. The time dependence of the steady-state flow rate Q, under each fixed voltage V, is obtained. Depending on the magnitude of V, two types of flow behaviors are observed. For low V (pipe above the electrodes, and those by QB coming initially from the hopper. For high V (>=Vc), no interface exists and the whole region between the hopper and the electrodes are densely filled; only one constant flow rate QA2 is observed. (The precise meaning of QA2 and QB are defined in the text.) The steady-state flow rates QA2 and QB measured for each V, are plotted as a function of V. The flow rate QA2 is a monotonically decreasing function of V, which can be approximately fitted by a power law, with an exponent of -0.8, while QB is found to be voltage independent. These features result from a competition between the blocking effect of the electric-field region and the gravity-driven pushing effect from the hopper outlet. The local electric field is able to retard the downward movement of a dense column existing above it, but is ineffective in doing so when the column above is dilute in density.

  16. Cold stress and the cold pressor test.

    PubMed

    Silverthorn, Dee U; Michael, Joel

    2013-03-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This activity is easily adapted to an inquiry format that asks students to go to the scientific literature to learn about the test and then design a protocol for carrying out the test in classmates. The data collected are ideal for teaching graphical presentation of data and statistical analysis.

  17. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  18. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  19. The Heat-Pipe Hypothesis for Early Crustal Development of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Moore, W. B.; Simon, J. I.

    2014-12-01

    Crusts of the terrestrial planets other than Earth are dominated by mafic / ultramafic volcanics, with some contractional tectonics and minor extension. This description may also fit the early Earth. Therefore, a single process may have controlled early crustal development. Here we explore the hypothesis that heat-pipe cooling mode dominates early phases of terrestrial planet evolution. Volcanism is the hallmark of heat-pipe cooling: hot magma moves through the lithosphere in narrow channels, then is deposited and cools at the surface. A heat-pipe planet develops a thick, cold, downward-advecting lithosphere dominated by mafic/ultra-mafic flows. Contractional deformation occurs throughout the lithosphere as the surface is buried and forced toward smaller radii. Geologies of the Solar system's terrestrial planets are consistent with early heat-pipe cooling. Mercury's surface evolution is dominated by low-viscosity volcanism until ~4.1-4.0 Ga, with little activity other than global contraction since. Similar, younger features at Venus are commonly interpreted in terms of catastrophic resurfacing events with ~0.5 billion-year periodicity, but early support of high topography suggests a transition from heat-pipe to rigid-lid tectonics. Thick heat-pipe lithosphere may preserve the crustal dichotomy between Mars' northern and southern hemispheres, and explain the range in trace element abundances and isotopic compositions of Martian meteorites. At the Moon, global serial volcanism can explain refinement of ferroan anorthite rich rocks and coeval production of the "Mg-suite" rocks. The Moon's shape is out of hydrostatic equilibrium; it may represent a fossil preserved by thick early lithosphere. Active development of Jupiter's moon Io, which is warmed by tidal heating, is widely interpreted in terms of heat-pipe cooling. Given its potential ubiquity in the Solar system, heat-pipe cooling may be a universal process experienced by all terrestrial bodies of sufficient size.

  20. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  1. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  2. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  3. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  4. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  5. 46 CFR 56.10-5 - Pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... design limits of stress and temperature indicated in ASME B31.1 (incorporated by reference; see 46 CFR 56...-22 of this chapter.) (c) Nonferrous pipe. (See also § 56.60-20.) (1) Copper and brass pipe for water... temperatures to 406 °F. (2) Copper and brass pipe for air may be used in accordance with the allowable...

  6. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false New pipe. 195.112 Section 195.112 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.112 New pipe. Any new pipe installed in a pipeline system must...

  7. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false New pipe. 195.112 Section 195.112 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.112 New pipe. Any new pipe installed in a pipeline system must...

  8. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  9. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  10. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  11. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  12. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  13. Thermodynamic aspects of heat pipe operation

    NASA Technical Reports Server (NTRS)

    Richter, Robert; Gottschlich, Joseph

    1990-01-01

    An expanded heat pipe operating model is described which includes thermodynamic and heat transfer considerations to reconcile disparities between actual and theoretical heat pipe performances. The analysis shows that thermodynamic considerations can explain the observed heat pipe performance limitations. A full understanding of thermodynamic processes could lead to advanced concepts for thermal transport devices.

  14. 46 CFR 169.652 - Bilge piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is such that ordinary leakage can be removed this way. (b) The bilge pipe on vessels 65 feet in length and under must be not less than one inch nominal pipe size. On vessels greater than 65 but less... area not less than three times the area of the bilge pipe. (d) Each individual bilge suction line...

  15. 46 CFR 169.652 - Bilge piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... is such that ordinary leakage can be removed this way. (b) The bilge pipe on vessels 65 feet in length and under must be not less than one inch nominal pipe size. On vessels greater than 65 but less... area not less than three times the area of the bilge pipe. (d) Each individual bilge suction line...

  16. 46 CFR 169.652 - Bilge piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... is such that ordinary leakage can be removed this way. (b) The bilge pipe on vessels 65 feet in length and under must be not less than one inch nominal pipe size. On vessels greater than 65 but less... area not less than three times the area of the bilge pipe. (d) Each individual bilge suction line...

  17. 46 CFR 108.447 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 108.447 Section 108.447 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.447 Piping. (a) Each pipe,...

  18. 46 CFR 193.15-15 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... carbon dioxide or other inert gas shall be used for this test. (2) The piping from the cylinders to the..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-15 Piping. (a) The piping, valves,...

  19. 46 CFR 193.15-15 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... carbon dioxide or other inert gas shall be used for this test. (2) The piping from the cylinders to the..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-15 Piping. (a) The piping, valves,...

  20. 46 CFR 108.447 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Piping. 108.447 Section 108.447 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.447 Piping. (a) Each pipe,...

  1. 46 CFR 95.17-15 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  2. 46 CFR 76.17-15 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Piping. 76.17-15 Section 76.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  3. 46 CFR 95.17-15 - Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  4. 46 CFR 95.17-15 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  5. 46 CFR 76.17-15 - Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Piping. 76.17-15 Section 76.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  6. 46 CFR 95.17-15 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  7. 46 CFR 76.17-15 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Piping. 76.17-15 Section 76.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  8. 46 CFR 95.17-15 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  9. 46 CFR 76.17-15 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Piping. 76.17-15 Section 76.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  10. 46 CFR 76.17-15 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Piping. 76.17-15 Section 76.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  11. 46 CFR 76.33-15 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Smoke Detecting System, Details § 76.33-15 Piping. (a) Individual pipes shall be not less than 3/4-inch standard pipe... tank and the detecting cabinet so that the line may be shut off when liquids are carried. When...

  12. Bag Test Measures Leakage From Insulated Pipe

    NASA Technical Reports Server (NTRS)

    Schock, Kent D.; Easter, Barry P.

    1994-01-01

    Test quantifies leakage of gas from pipe even though pipe covered with insulation. Involves use of helium analyzer to measure concentration of helium in impermeable bag around pipe. Test administered after standard soap-solution bubble test indicates presence and general class of leakage.

  13. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  14. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  15. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  16. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  17. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  18. Heat pipes and their use in technology

    NASA Technical Reports Server (NTRS)

    Vasilyev, L.

    1977-01-01

    Heat pipes may be employed as temperature regulators, heat diodes, transformers, storage batteries, or utilized for transforming thermal energy into mechanical, electric, or other forms of energy. General concepts were established for the analysis of the transfer process in heat pipes. A system of equations was developed to describe the thermodynamics of steam passage through a cross section of a heat pipe.

  19. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt...

  20. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...