Sample records for cold flow studies

  1. Temperature and pressure measurements at cold exit of counter-flow vortex tube with flow visualization of reversed flow

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Hazwan bin; Katanoda, Hiroshi; Morita, Hiromitsu

    2015-02-01

    In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube (VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.

  2. Correlation of volumetric flow rate and skin blood flow with cold intolerance in digital replantation

    PubMed Central

    Zhao, Gang; Mi, Jingyi; Rui, Yongjun; Pan, Xiaoyun; Yao, Qun; Qiu, Yang

    2017-01-01

    Abstract Cold intolerance is a common complication of digital replantation. The exact etiology is unclear, but it is considered to be multifactorial, including nonsurgical characteristics, vascular, and neurologic conditions. Blood flow may play a significant role in cold intolerance. This study was designed to evaluate the correlation of digital blood flow, including volumetric flow rate (VFR) and skin blood flow (SkBF), with cold intolerance in replanted fingers. A retrospective study was conducted among patients who underwent digital replantation between 2010 and 2013. Patients were selected into study cohort based on the inclusion criteria. Surgical data was collected on each patient, including age, sex, injury mechanism, amputation level, ischemia time, number of arteries repaired, and whether or not vascular crisis occurred. Patients were included as study cohort with both nerves repaired and without chronic disease. Cold intolerance was defined as a Cold Intolerance Symptom Severity (CISS) score over 30. The arterial flow velocity and caliber were measured by Color Doppler Ultrasound and the digital VFR was calculated. The SkBF was measured by Laser Speckle Imager. Both VFR and SkBF were calculated as a percentage of the contralateral fingers. Comparative study of surgical data and blood flow was performed between the patient with and without cold intolerance. Correlation between VFR and SkBF was also analyzed. A total of 93 patients met inclusion criteria for the study. Approximately, 42 patients were identified as having cold intolerance. Fingers that survived vascular crisis had a higher incidence of cold intolerance with a lower VFR and SkBF. The VFR was higher in 2-artery replantation, but the SkBF and incidence of cold intolerance did not differ significantly. No differences were found in age, sex, injury mechanism, amputation level, or ischemia time. Furthermore, no correlation was found between VFR and SkBF. Cold intolerance of digital replantation is associated with decreased SkBF and VFR in the replanted fingers, which survived vascular crisis. Further work will be focused on how vascular crisis cause the decreasing of SkBF and VFR and the increasing chance of cold intolerance. PMID:29390590

  3. Numerical Study of Unsteady Flow in Centrifugal Cold Compressor

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing

    In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.

  4. Cryotherapy Treatment After Unicompartmental and Total Knee Arthroplasty: A Review.

    PubMed

    Chughtai, Morad; Sodhi, Nipun; Jawad, Michael; Newman, Jared M; Khlopas, Anton; Bhave, Anil; Mont, Michael A

    2017-12-01

    Cryotherapy is widely utilized to enhance recovery after knee surgeries. However, the outcome parameters often vary between studies. Therefore, the purpose of this review is to compare (1) no cryotherapy vs cryotherapy; (2) cold pack cryotherapy vs continuous flow device cryotherapy; (3) various protocols of application of these cryotherapy methods; and (4) cost-benefit analysis in patients who had unicompartmental knee arthroplasty (UKA) or total knee arthroplasty (TKA). A search for "knee" and "cryotherapy" using PubMed, EBSCO Host, and SCOPUS was performed, yielding 187 initial reports. After selecting for RCTs relevant to our study, 16 studies were included. Of the 8 studies that compared the immediate postoperative outcomes between patients who did and did not receive cryotherapy, 5 studies favored cryotherapy (2 cold packs and 3 continuous cold flow devices). Of the 6 studies comparing the use of cold packs and continuous cold flow devices in patients who underwent UKA or TKA, 3 favor the use of continuous flow devices. There was no difference in pain, postoperative opioid consumption, or drain output between 2 different temperature settings of continuous cold flow device. The optimal device to use may be one that offers continuous circulating cold flow, as there were more studies demonstrating better outcomes. In addition, the pain relieving effects of cryotherapy may help minimize pain medication use, such as with opioids, which are associated with numerous potential side effects as well as dependence and addiction. Meta-analysis on the most recent RCTs should be performed next. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Non-stationary Drainage Flows and Cold Pools in Gentle Terrain

    NASA Astrophysics Data System (ADS)

    Mahrt, L.

    2015-12-01

    Previous studies have concentrated on organized topography with well-defined slopes or valleys in an effort to understand the flow dynamics. However, most of the Earth's land surface consists of gentle terrain that is quasi three dimensional. Different scenarios are briefly classified. A network of measurements are analyzed to examine shallow cold pools and drainage flow down the valley which develop for weak ambient wind and relatively clear skies. However, transient modes constantly modulate or intermittently eliminate the cold pool, which makes extraction and analysis of the horizontal structure of the cold pool difficult with traditional analysis methods. Singular value decomposition successfully isolates the effects of large-scale flow from local down-valley cold air drainage within the cold pool in spite of the intermittent nature of this local flow. The traditional concept of a cold pool must be generalized to include cold pool intermittency, complex variation of temperature related to some three-dimensionality and a diffuse cold pool top. Different types of cold pools are classified in terms of the stratification and gradient of potential temperature along the slope. The strength of the cold pool is related to a forcing temperature scale proportional to the net radiative cooling divided by the wind speed above the valley. The scatter is large partly due to nonstationarity of the marginal cold pool in this shallow valley

  6. Continuous-flow cold therapy for outpatient anterior cruciate ligament reconstruction.

    PubMed

    Barber, F A; McGuire, D A; Click, S

    1998-03-01

    This prospective, randomized study evaluated continuous-flow cold therapy for postoperative pain in outpatient arthroscopic anterior cruciate ligament (ACL) reconstructions. In group 1, cold therapy was constant for 3 days then as needed in days 4 through 7. Group 2 had no cold therapy. Evaluations and diaries were kept at 1, 2, and 8 hours after surgery, and then daily. Pain was assessed using the VAS and Likert scales. There were 51 cold and 49 noncold patients included. Continuous passive movement (CPM) use averaged 54 hours for cold and 41 hours for noncold groups (P=.003). Prone hangs were done for 192 minutes in the cold group and 151 minutes in the noncold group. Motion at 1 week averaged 5/88 for the cold group and 5/79 the noncold group. The noncold group average visual analog scale (VAS) pain and Likert pain scores were always greater than the cold group. The noncold group average Vicodin use (Knoll, Mt. Olive, NJ) was always greater than the cold group use (P=.001). Continuous-flow cold therapy lowered VAS and Likert scores, reduced Vicodin use, increased prone hangs, CPM, and knee flexion. Continuous-flow cold therapy is safe and effective for outpatient ACL reconstruction reducing pain medication requirements.

  7. 2-D and 3-D mixing flow analyses of a scramjet-afterbody configuration

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Eleshaky, Mohamed E.; Engelund, Walter C.

    1989-01-01

    A cold simulant gas study of propulsion/airframe integration for a hypersonic vehicle powered by a scramjet engine is presented. The specific heat ratio of the hot exhaust gases are matched by utilizing a cold mixture of argon and Freon-12. Solutions are obtained for a hypersonic corner flow and a supersonic rectangular flow in order to provide the upstream boundary conditions. The computational test examples also provide a comparison of this flow with that of air as the expanding supersonic jet, where the specific heats are assumed to be constant. It is shown that the three-dimensional computational fluid capabilities developed for these types of flow may be utilized to augment the conventional wind tunnel studies of scramjet afterbody flows using cold simulant exhaust gases, which in turn can help in the design of a scramjet internal-external nozzle.

  8. Thermal imaging for cold air flow visualisation and analysis

    NASA Astrophysics Data System (ADS)

    Grudzielanek, M.; Pflitsch, A.; Cermak, J.

    2012-04-01

    In this work we present first applications of a thermal imaging system for animated visualization and analysis of cold air flow in field studies. The development of mobile thermal imaging systems advanced very fast in the last decades. The surface temperature of objects, which is detected with long-wave infrared radiation, affords conclusions in different problems of research. Modern thermal imaging systems allow infrared picture-sequences and a following data analysis; the systems are not exclusive imaging methods like in the past. Thus, the monitoring and analysing of dynamic processes became possible. We measured the cold air flow on a sloping grassland area with standard methods (sonic anemometers and temperature loggers) plus a thermal imaging system measuring in the range from 7.5 to 14µm. To analyse the cold air with the thermal measurements, we collected the surface infrared temperatures at a projection screen, which was located in cold air flow direction, opposite the infrared (IR) camera. The intention of using a thermal imaging system for our work was: 1. to get a general idea of practicability in our problem, 2. to assess the value of the extensive and more detailed data sets and 3. to optimise visualisation. The results were very promising. Through the possibility of generating time-lapse movies of the image sequences in time scaling, processes of cold air flow, like flow waves, turbulence and general flow speed, can be directly identified. Vertical temperature gradients and near-ground inversions can be visualised very well. Time-lapse movies will be presented. The extensive data collection permits a higher spatial resolution of the data than standard methods, so that cold air flow attributes can be explored in much more detail. Time series are extracted from the IR data series, analysed statistically, and compared to data obtained using traditional systems. Finally, we assess the usefulness of the additional measurement of cold air flow with thermal imaging systems.

  9. Common cold decreases lung function in infants with recurrent wheezing.

    PubMed

    Mallol, J; Aguirre, V; Wandalsen, G

    2010-01-01

    Common acute viral respiratory infections (colds) are the most frequent cause of exacerbations in infants with recurrent wheezing (RW). However, there is no quantitative information about the effect of colds on the lung function of infants with RW. This study was undertaken to determine the effect of common cold on forced expiratory parameters measured from raised lung volume in infants with RW. Spirometric lung function (expiratory flows from raised lung volume) was randomly assessed in 28 infants with RW while they had a common cold and when asymptomatic. It was found that during colds there was a significant decrease in all forced expiratory parameters and this was much more evident for flows (FEF(50%), FEF(75%) and FEF(25-75%)) which were definitively abnormal (less than -1.65 z-score) in the majority of infants. There was not association between family asthma, tobacco exposure, and other factors, with the extent of lung function decrease during colds. Tobacco during pregnancy but not a history of family asthma was significantly associated to lower expiratory flows; however, the association was significant only when infants were asymptomatic. This study shows that common colds cause a marked reduction of lung function in infants with RW. 2009 SEICAP. Published by Elsevier Espana. All rights reserved.

  10. Effect of Air Swirler Configuration on Lean Direct Injector Flow Structure and Combustion Performance with a 7-Point Lean Direct Injector Array

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2017-01-01

    Studies of various injector configurations in a 7-point Lean Direct Injector (LDI) array are reported for both non-reacting (cold) flow and for Jet-A/air reacting flows. For cold flow, central recirculation zone (CRZ) formation is investigated and for reacting flows, combustor operability and dynamics are of interest. 2D Particle Image Velocimetry (PIV) measurements are described for the cold flow experiments and flame chemiluminescence imaging and dynamic pressure results are discussed for the reacting flow cases. PIV results indicate that for this configuration the close spacing between swirler elements leads to strong interaction that affects whether a CRZ forms, and pilot recess and counter-swirl helps to isolate swirlers from one another. Dynamics results focus on features identified near 500-Hz.

  11. Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner.

    PubMed

    Fernandes, Elizabeth S; Russell, Fiona A; Alawi, Khadija M; Sand, Claire; Liang, Lihuan; Salamon, Robin; Bodkin, Jennifer V; Aubdool, Aisah A; Arno, Matthew; Gentry, Clive; Smillie, Sarah-Jane; Bevan, Stuart; Keeble, Julie E; Malcangio, Marzia; Brain, Susan D

    2016-01-11

    The effect of cold temperature on arthritis symptoms is unclear. The aim of this study was to investigate how environmental cold affects pain and blood flow in mono-arthritic mice, and examine a role for transient receptor potential ankyrin 1 (TRPA1), a ligand-gated cation channel that can act as a cold sensor. Mono-arthritis was induced by unilateral intra-articular injection of complete Freund's adjuvant (CFA) in CD1 mice, and in mice either lacking TRPA1 (TRPA1 KO) or respective wildtypes (WT). Two weeks later, nociception and joint blood flow were measured following exposure to 10 °C (1 h) or room temperature (RT). Primary mechanical hyperalgesia in the knee was measured by pressure application apparatus; secondary mechanical hyperalgesia by automated von Frey system; thermal hyperalgesia by Hargreaves technique, and weight bearing by the incapacitance test. Joint blood flow was recorded by full-field laser perfusion imager (FLPI) and using clearance of (99m)Technetium. Blood flow was assessed after pretreatment with antagonists of either TRPA1 (HC-030031), substance P neurokinin 1 (NK1) receptors (SR140333) or calcitonin gene-related peptide (CGRP) (CGRP8-37). TRPA1, TAC-1 and CGRP mRNA levels were examined in dorsal root ganglia, synovial membrane and patellar cartilage samples. Cold exposure caused bilateral primary mechanical hyperalgesia 2 weeks after CFA injection, in a TRPA1-dependent manner. In animals maintained at RT, clearance techniques and FLPI showed that CFA-treated joints exhibited lower blood flow than saline-treated joints. In cold-exposed animals, this reduction in blood flow disappears, and increased blood flow in the CFA-treated joint is observed using FLPI. Cold-induced increased blood flow in CFA-treated joints was blocked by HC-030031 and not observed in TRPA1 KOs. Cold exposure increased TRPA1 mRNA levels in patellar cartilage, whilst reducing it in synovial membranes from CFA-treated joints. We provide evidence that environmental cold exposure enhances pain and increases blood flow in a mono-arthritis model. These changes are dependent on TRPA1. Thus, TRPA1 may act locally within the joint to influence blood flow via sensory nerves, in addition to its established nociceptive actions.

  12. 2. COLD FLOW LABORATORY, VIEW TOWARDS NORTH. Glenn L. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. COLD FLOW LABORATORY, VIEW TOWARDS NORTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Cold Flow Laboratory Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  13. 1. COLD FLOW LABORATORY, VIEW TOWARDS EAST. Glenn L. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. COLD FLOW LABORATORY, VIEW TOWARDS EAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Cold Flow Laboratory Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  14. Stereomicroscopic imaging technique for the quantification of cold flow in drug-in-adhesive type of transdermal drug delivery systems.

    PubMed

    Krishnaiah, Yellela S R; Katragadda, Usha; Khan, Mansoor A

    2014-05-01

    Cold flow is a phenomenon occurring in drug-in-adhesive type of transdermal drug delivery systems (DIA-TDDS) because of the migration of DIA coat beyond the edge. Excessive cold flow can affect their therapeutic effectiveness, make removal of DIA-TDDS difficult from the pouch, and potentially decrease available dose if any drug remains adhered to pouch. There are no compendial or noncompendial methods available for quantification of this critical quality attribute. The objective was to develop a method for quantification of cold flow using stereomicroscopic imaging technique. Cold flow was induced by applying 1 kg force on punched-out samples of marketed estradiol DIA-TDDS (model product) stored at 25°C, 32°C, and 40°C/60% relative humidity (RH) for 1, 2, or 3 days. At the end of testing period, dimensional change in the area of DIA-TDDS samples was measured using image analysis software, and expressed as percent of cold flow. The percent of cold flow significantly decreased (p < 0.001) with increase in size of punched-out DIA-TDDS samples and increased (p < 0.001) with increase in cold flow induction temperature and time. This first ever report suggests that dimensional change in the area of punched-out samples stored at 32°C/60%RH for 2 days applied with 1 kg force could be used for quantification of cold flow in DIA-TDDS. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Effect of cold air inhalation and isometric exercise on coronary blood flow and myocardial function in humans

    PubMed Central

    Muller, Matthew D.; Gao, Zhaohui; Drew, Rachel C.; Herr, Michael D.; Leuenberger, Urs A.

    2011-01-01

    The effects of cold air inhalation and isometric exercise on coronary blood flow are currently unknown, despite the fact that both cold air and acute exertion trigger angina in clinical populations. In this study, we used transthoracic Doppler echocardiography to measure coronary blood flow velocity (CBV; left anterior descending coronary artery) and myocardial function during cold air inhalation and handgrip exercise. Ten young healthy subjects underwent the following protocols: 5 min of inhaling cold air (cold air protocol), 5 min of inhaling thermoneutral air (sham protocol), 2 min of isometric handgrip at 30% of maximal voluntary contraction (grip protocol), and 5 min of isometric handgrip at 30% maximal voluntary contraction while breathing cold air (cold + grip protocol). Heart rate, blood pressure, inspired air temperature, CBV, myocardial function (tissue Doppler imaging), O2 saturation, and pulmonary function were measured. The rate-pressure product (RPP) was used as an index of myocardial O2 demand, whereas CBV was used as an index of myocardial O2 supply. Compared with the sham protocol, the cold air protocol caused a significantly higher RPP, but there was a significant reduction in CBV. The cold + grip protocol caused a significantly greater increase in RPP compared with the grip protocol (P = 0.045), but the increase in CBV was significantly less (P = 0.039). However, myocardial function was not impaired during the cold + grip protocol relative to the grip protocol alone. Collectively, these data indicate that there is a supply-demand mismatch in the coronary vascular bed when cold ambient air is breathed during acute exertion but myocardial function is preserved, suggesting an adequate redistribution of blood flow. PMID:21940852

  16. An experimental investigation of a thermoelectric power generation system with different cold-side heat dissipation

    NASA Astrophysics Data System (ADS)

    Li, Y. H.; Wu, Z. H.; Xie, H. Q.; Xing, J. J.; Mao, J. H.; Wang, Y. Y.; Li, Z.

    2018-01-01

    Thermoelectric generation technology has attracted increasing attention because of its promising applications. In this work, the heat transfer characteristics and the performance of a thermoelectric generator (TEG) with different cold-side heat dissipation intensity has been studied. By fixing the hot-side temperature of TEG, the effects of various external conditions including the flow rate and the inlet temperature of the cooling water flowing through the cold-sided heat sink have been investigated detailedly. It was showed that the output power and the efficiency of TEG increased with temperature different enlarged, whereas the efficiency of TEG reduced with flow rate increased. It is proposed that more heat taken by the cooling water is attributed to the efficiency decrease when the flow rate of the cooling water is increased. This study would provide fundamental understanding for the design of more refined thermoelectric generation systems.

  17. Investigation of the effect of a bend in a transfer line that separates a pulse tube cold head and a pressure wave generator

    NASA Astrophysics Data System (ADS)

    Dev, A. A.; Atrey, M. D.; Vanapalli, S.

    2017-02-01

    A transfer line between a pulse tube cold head and a pressure wave generator is usually required to isolate the cold head from the vibrations of the compressor. Although it is a common practice to use a thin and narrow straight tube, a bent tube would allow design flexibility and easy mounting of the cold head, such as in a split Stirling type pulse tube cryocooler. In this paper, we report a preliminary investigation on the effect of the bending of the tube on the flow transfer characteristics. A numerical study using commercial computational fluid dynamics model is performed to gain insight into the flow characteristics in the bent tube. Oscillating flow experiments are performed with a straight and a bent tube at a filling pressure of 15 bar and an operating frequency of 40, 50 and 60 Hz. The data and the corresponding numerical simulations point to the hypothesis that the secondary flow in the bent tube causes a decrease in flow at a fixed pressure amplitude.

  18. Improving the cold flow properties of biodiesel with synthetic branched diester additives

    USDA-ARS?s Scientific Manuscript database

    A technical disadvantage of biodiesel relative to petroleum diesel fuel is inferior cold flow properties. One of many methodologies to address this deficiency is employment of cold flow improver (CFI) additives. Generally composed of low-molecular weight copolymers, CFIs originally developed for pet...

  19. Cold flow properties of biodiesel: A guide to getting an accurate analysis

    USDA-ARS?s Scientific Manuscript database

    Biodiesel has several advantages compared to conventional diesel fuel (petrodiesel). Nevertheless, biodiesel has poor cold flow properties that may restrict its use in moderate climates. It is essential that the cold flow properties of biodiesel and its blends with petrodiesel be measured as accurat...

  20. Studies on equatorial shock formation during plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1994-01-01

    Investigations based on small-scale simulations of microprocesses occurring when a magnetic flux tube refills with a cold plasma are summarized. Results of these investigations are reported in the following attached papers: (1) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: The Role of Ion Beam-Driven Instabilities'; and (2) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: Effects of Magnetically Trapped Hot Plasma'. Other papers included are: 'Interaction of Field-Aligned Cold Plasma Flows with an Equatorially-Trapped Hot Plasma: Electrostatic Shock Formation'; and 'Comparison of Hydrodynamic and Semikinetic Treatments for a Plasma Flow along Closed Field Lines'. A proposal for further research is included.

  1. A numerical comparison of cold flow and combustion characteristics for GCH4/GO2 splash platelet injector

    NASA Astrophysics Data System (ADS)

    Yin, Liang; Liu, Weiqiang

    2018-04-01

    The differences between cold flow and combustion under the same condition were investigated by the numerical simulations, an eddy dissipation concept (EDC) with 16 species and 41 reactions is considered for the CH4/O2 combustion. Three configurations of the splash platelet injector were selected for these simulations. Results show that cold flow and combustion have evident differences. Compared with cold flow, CH4 mole fraction was more evenly distributed in the combustion chamber head, and the mixing of propellants was lagged by the combustion of multi-elements. However, this conclusion is contrary for the single element. The recirculation zones were observable near the injector faceplate at the combustion condition. Moreover, the cold flow simulation cannot reflect the actual combustion but can provide a reference value for experimental research.

  2. Voluntary respiratory control and cerebral blood flow velocity upon ice-water immersion.

    PubMed

    Mantoni, Teit; Rasmussen, Jakob Højlund; Belhage, Bo; Pott, Frank Christian

    2008-08-01

    In non-habituated subjects, cold-shock response to cold-water immersion causes rapid reduction in cerebral blood flow velocity (approximately 50%) due to hyperventilation, increasing risk of syncope, aspiration, and drowning. Adaptation to the response is possible, but requires several cold immersions. This study examines whether thorough instruction enables non-habituated persons to attenuate the ventilatory component of cold-shock response. There were nine volunteers (four women) who were lowered into a 0 degrees C immersion tank for 60 s. Middle cerebral artery mean velocity (CBFV) was measured together with ventilatory parameters and heart rate before, during, and after immersion. Within seconds after immersion in ice-water, heart rate increased significantly from 95 +/- 8 to 126 +/- 7 bpm (mean +/- SEM). Immersion was associated with an elevation in respiratory rate (from 12 +/- 3 to 21 +/- 5 breaths, min(-1)) and tidal volume (1022 +/- 142 to 1992 +/- 253 ml). Though end-tidal carbon dioxide tension decreased from 4.9 +/- 0.13 to 3.9 +/- 0.21 kPa, CBFV was insignificantly reduced by 7 +/- 4% during immersion with a brief nadir of 21 +/- 4%. Even without prior cold-water experience, subjects were able to suppress reflex hyperventilation following ice-water immersion, maintaining the cerebral blood flow velocity at a level not associated with impaired consciousness. This study implies that those susceptible to accidental cold-water immersion could benefit from education in cold-shock response and the possibility of reducing the ventilatory response voluntarily.

  3. Meteorological Modeling of Wintertime Cold Air Pool Stagnation Episodes in the Uintah and Salt Lake Basins

    NASA Astrophysics Data System (ADS)

    Crosman, E.; Horel, J.; Blaylock, B. K.; Foster, C.

    2014-12-01

    High wintertime ozone concentrations in rural areas associated with oil and gas development and high particulate concentrations in urban areas have become topics of increasing concern in the Western United States, as both primary and secondary pollutants become trapped within stable wintertime boundary layers. While persistent cold air pools that enable such poor wintertime air quality are typically associated with high pressure aloft and light winds, the complex physical processes that contribute to the formation, maintenance, and decay of persistent wintertime temperature inversions are only partially understood. In addition, obtaining sufficiently accurate numerical weather forecasts and meteorological simulations of cold air pools for input into chemical models remains a challenge. This study examines the meteorological processes associated with several wintertime pollution episodes in Utah's Uintah and Salt Lake Basins using numerical Weather Research and Forecasting model simulations and observations collected from the Persistent Cold Air Pool and Uintah Basin Ozone Studies. The temperature, vertical structure, and winds within these cold air pools was found to vary as a function of snow cover, snow albedo, land use, cloud cover, large-scale synoptic flow, and episode duration. We evaluate the sensitivity of key atmospheric features such as stability, planetary boundary layer depth, local wind flow patterns and transport mechanisms to variations in surface forcing, clouds, and synoptic flow. Finally, noted deficiencies in the meteorological models of cold air pools and modifications to the model snow and microphysics treatment that have resulted in improved cold pool simulations will be presented.

  4. Linking the pacific decadal oscillation to seasonal stream discharge patterns in Southeast Alaska

    USGS Publications Warehouse

    Neal, E.G.; Todd, Walter M.; Coffeen, C.

    2002-01-01

    This study identified and examined differences in Southeast Alaskan streamflow patterns between the two most recent modes of the Pacific decadal oscillation (PDO). Identifying relationships between the PDO and specific regional phenomena is important for understanding climate variability, interpreting historical hydrological variability, and improving water-resources forecasting. Stream discharge data from six watersheds in Southeast Alaska were divided into cold-PDO (1947-1976) and warm-PDO (1977-1998) subsets. For all watersheds, the average annual streamflows during cold-PDO years were not significantly different from warm-PDO years. Monthly and seasonal discharges, however, did differ significantly between the two subsets, with the warm-PDO winter flows being typically higher than the cold-PDO winter flows and the warm-PDO summer flows being typically lower than the cold-PDO flows. These results were consistent with and driven by observed temperature and snowfall patterns for the region. During warm-PDO winters, precipitation fell as rain and ran-off immediately, causing higher than normal winter streamflow. During cold-PDO winters, precipitation was stored as snow and ran off during the summer snowmelt, creating greater summer streamflows. The Mendenhall River was unique in that it experienced higher flows for all seasons during the warm-PDO relative to the cold-PDO. The large amount of Mendenhall River discharge caused by glacial melt during warm-PDO summers offset any flow reduction caused by lack of snow accumulation during warm-PDO winters. The effect of the PDO on Southeast Alaskan watersheds differs from other regions of the Pacific Coast of North America in that monthly/seasonal discharge patterns changed dramatically with the switch in PDO modes but annual discharge did not. ?? 2002 Elsevier Science B.V. All rights reserved.

  5. A pilot study exploring the effects of reflexology on cold intolerance.

    PubMed

    Zhang, Wenping; Takahashi, Shougo; Miki, Takashi; Fujieda, Hisayo; Ishida, Torao

    2010-03-01

    Cold intolerance is an inability to tolerate cold temperatures and is accompanied by symptoms including headache, shoulder discomfort, dizziness and palpitations. The current study was performed to examine whether reflexology therapy affected cold intolerance in human subjects and whether the treatment was systemically effective. Ten female volunteer examinees with subjective feelings of cold were examined. After a 5-minute foot bath, 10 minutes of reflexology therapy was performed on their left foot. Skin temperature and blood flow were estimated before and after treatment, together with an interview concerning their feelings of cold and daily habits. In addition, how the recovery rate was affected by the application of a chilled-water load was also estimated. Along with significant increases in skin temperature and blood flow compared with pre-treatment at the bilateral points of KI-1, LR-3, and BL-60, a faster recovery after the application of the chilled-water load was also seen in the lower limbs on both sides. From these results, we conclude that reflexology has systemic effects and is an alternative method for treating cold intolerance. Copyright (c) 2010 Korean Pharmacopuncture Institute. Published by .. All rights reserved.

  6. Snow mass and river flows modelled using GRACE total water storage observations

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2017-12-01

    Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS and temperature data for river flow or flood forecasting. The model can be particularly useful for regions with spare observation networks, and can be used in combination with other available methods to help improve the accuracy in river flow and flood forecasting over cold regions.

  7. The 400W at 1.8K Test Facility at CEA-Grenoble

    NASA Astrophysics Data System (ADS)

    Roussel, P.; Girard, A.; Jager, B.; Rousset, B.; Bonnay, P.; Millet, F.; Gully, P.

    2006-04-01

    A new test facility with a cooling capacity respectively of 400W at 1.8K or 800W at 4.5K, is now under nominal operation in SBT (Low Temperature Department) at CEA Grenoble. It has been recently used for thermohydraulic studies of two phase superfluid helium in autumn 2004. In the near future, this test bench will allow: - to test industrial components at 1.8K (magnets, cavities of accelerators) - to continue the present studies on thermohydraulics of two phase superfluid helium - to develop and simulate new cooling loops for ITER Cryogenics, and other applications such as high Reynolds number flows This new facility consists of a cold box connected to a warm compressor station (one subatmospheric oil ring pump in series with two screw compressors). The cold box, designed by AIR LIQUIDE, comprises two centrifugal cold compressors, a cold turbine, a wet piston expander, counter flow heat exchangers and two phase separators at 4.5K and 1.8K. The new facility uses a Programmable Logic Controller (PLC) connected to a bus for the measurements. The design is modular and will allow the use of saturated fluid flow (two phase flow at 1.8K or 4.5K) or single phase fluid forced flow. Experimental results and cooling capacity in different operation modes are detailed.

  8. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-01-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  9. Biodiesel: Characterization by DSC and P-DSC

    NASA Astrophysics Data System (ADS)

    Chiriac, Rodica; Toche, François; Brylinski, Christian

    Thermal analytical methods such as differential scanning calorimetry (DSC) have been successfully applied to neat petrodiesel and engine oils in the last 25 years. This chapter shows how DSC and P-DSC (pressurized DSC) techniques can be used to compare, characterize, and predict some properties of alternative non-petroleum fuels, such as cold flow behavior and oxidative stability. These two properties are extremely important with respect to the operability, transport, and long-term storage of biodiesel fuel. It is shown that the quantity of unsaturated fatty acids in the fuel composition has an important impact on both properties. In addition, it is shown that the impact of fuel additives on the oxidative stability or the cold flow behavior of biodiesel can be studied by means of DSC and P-DSC techniques. Thermomicroscopy can also be used to study the cold flow behavior of biodiesel, giving information on the size and the morphology of crystals formed at low temperature.

  10. Evolution of velocity dispersion along cold collisionless flows

    DOE PAGES

    Banik, Nilanjan; Sikivie, Pierre

    2016-05-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results aremore » used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components.« less

  11. Influence of cold water immersion on limb and cutaneous blood flow at rest.

    PubMed

    Gregson, Warren; Black, Mark A; Jones, Helen; Milson, Jordon; Morton, James; Dawson, Brian; Atkinson, Greg; Green, Daniel J

    2011-06-01

    Cold water immersion reduces exercise-induced muscle damage. Benefits may partly arise from a decline in limb blood flow; however, no study has comprehensively investigated the influence of different degrees of cooling undertaken via cold water immersion on limb blood flow responses. To determine the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow. Controlled laboratory study. Nine men were placed in a semireclined position and lowered into 8°C or 22°C water to the iliac crest for two 5-minute periods interspersed with 2 minutes of nonimmersion. Rectal and thigh skin temperature, deep and superficial muscle temperature, heart rate, mean arterial pressure, thigh cutaneous blood velocity (laser Doppler), and superficial femoral artery blood flow (duplex ultrasound) were measured during immersion and for 30 minutes after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature (8°C, 0.2° ± 0.1°C; 22°C, 0.1° ± 0.1°C) and thigh skin temperature (8°C, 6.2° ± 0.5°C; 22°C, 3.2° ± 0.2°C) were greater in 8°C water than in 22°C (P < .01). Femoral artery conductance was reduced to a similar extent immediately after immersion (~30%) and 30 minutes after immersion (~40%) under both conditions (P < .01). In contrast, there was less thigh cutaneous vasoconstriction during and after immersion in 8°C water compared with 22°C (P = .01). These data suggest that immersion at both temperatures resulted in similar whole limb blood flow but, paradoxically, more blood was distributed to the skin in the colder water. This suggests that colder temperatures may be associated with reduced muscle blood flow, which could provide an explanation for the benefits of cold water immersion in alleviating exercise-induced muscle damage in sports and athletic contexts. Colder water temperatures may be more effective in the treatment of exercise-induced muscle damage and injury rehabilitation because of greater reductions in muscle blood flow.

  12. Nature of convection-stabilized dc arcs in dual-flow nozzle geometry. I - The cold flow field and dc arc characteristics. II - Optical diagnostics and theory

    NASA Astrophysics Data System (ADS)

    Serbetci, Ilter; Nagamatsu, H. T.

    1990-02-01

    Steady-state low-current air arcs in a dual-flow nozzle system are studied experimentally. The cold flow field with no arc is investigated using a 12.7-mm diameter dual-flow nozzle in a steady-flow facility. Mach number and mass flux distributions are determined for various nozzle-pressure ratios and nozzle-gap spacing. It is found that the shock waves in the converging-diverging nozzles result in a decrease in overal resistance by about 15 percent. Also, Schlieren and differential interferometry techniques are used to visualize the density gradients within the arc plasma and thermal mantle. Both optical techniques reveal a laminar arc structure for a reservoir pressure of 1 atm at various current levels. Experimentally determined axial static pressure and cold-flow mass flux rate distributions and a channel-flow model with constant arc temperatre are used to solve the energy integral for the arc radius as a function of axial distance. The arc electric field strength, voltage, resistance, and power are determined with Ohm's law and the total heat transfer is related to arc power.

  13. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  14. Noxious heat and scratching decrease histamine-induced itch and skin blood flow.

    PubMed

    Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D

    2005-12-01

    The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.

  15. LADEE Propulsion System Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.

    2013-01-01

    Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012

  16. Process control strategy for ITER central solenoid operation

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Takami, S.; Iwamoto, A.; Chang, H.-S.; Forgeas, A.; Chalifour, M.

    2016-12-01

    ITER Central Solenoid (CS) pulse operation induces significant flow disturbance in the forced-flow Supercritical Helium (SHe) cooling circuit, which could impact primarily on the operation of cold circulator (SHe centrifugal pump) in Auxiliary Cold Box (ACB). Numerical studies using Venecia®, SUPERMAGNET and 4C have identified reverse flow at the CS module inlet due to the substantial thermal energy deposition at the inner-most winding. To assess the reliable operation of ACB-CS (dedicated ACB for CS), the process analyses have been conducted with a dynamic process simulation model developed by Cryogenic Process REal-time SimulaTor (C-PREST). As implementing process control of hydrodynamic instability, several strategies have been applied to evaluate their feasibility. The paper discusses control strategy to protect the centrifugal type cold circulator/compressor operations and its impact on the CS cooling.

  17. Cold atmospheric pressure air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.

    2008-06-01

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  18. A Theoretical Study of Cold Air Damming.

    NASA Astrophysics Data System (ADS)

    Xu, Qin

    1990-12-01

    The dynamics of cold air damming are examined analytically with a two-layer steady state model. The upper layer is a warm and saturated cross-mountain (easterly or southeasterly onshore) flow. The lower layer is a cold mountain-parallel (northerly) jet trapped on the windward (eastern) side of the mountain. The interface between the two layers represents a coastal front-a sloping inversion layer coupling the trapped cold dome with the warm onshore flow above through pressure continuity.An analytical expression is obtained for the inviscid upper-layer flow with hydrostatic and moist adiabatic approximations. Blackadar's PBL parameterization of eddy viscosity is used in the lower-layer equations. Solutions for the mountain-parallel jet and its associated secondary transverse circulation are obtained by expanding asymptotically upon a small parameter proportional to the square root of the inertial aspect ratio-the ratio between the mountain height and the radius of inertial oscillation. The geometric shape of the sloping interface is solved numerically from a differential-integral equation derived from the pressure continuity condition imposed at the interface.The observed flow structures and force balances of cold air damming events are produced qualitatively by the model. In the cold dome the mountain-parallel jet is controlled by the competition between the mountain-parallel pressure gradient and friction: the jet is stronger with smoother surfaces, higher mountains, and faster mountain-normal geostrophic winds. In the mountain-normal direction the vertically averaged force balance in the cold dome is nearly geostrophic and controls the geometric shape of the cold dome. The basic mountain-normal pressure gradient generated in the cold dome by the negative buoyancy distribution tends to flatten the sloping interface and expand the cold dome upstream against the mountain-normal pressure gradient (produced by the upper-layer onshore wind) and Coriolis force (induced by the lower-layer mountain-parallel jet). It is found that the interface slope increases and the cold dome shrinks as the Froude number and/or upstream mountain-parallel geostrophic wind increase, or as the Rossby number, upper-layer depth, and/or surface roughness length decrease, and vice versa. The cold dome will either vanish or not be in a steady state if the Froude number is large enough or the roughness length gets too small. The theoretical findings are explained physically based on detailed analyses of the force balance along the inversion interface.

  19. Numerical and Experimental Studies of the Natural Convection Flow Within a Horizontal Cylinder Subjected to a Uniformly Cold Wall Boundary Condition. Ph.D. Thesis - Va. Poly. Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.

    1972-01-01

    Numberical solutions are obtained for the quasi-compressible Navier-Stokes equations governing the time dependent natural convection flow within a horizontal cylinder. The early time flow development and wall heat transfer is obtained after imposing a uniformly cold wall boundary condition on the cylinder. Solutions are also obtained for the case of a time varying cold wall boundary condition. Windware explicit differ-encing is used for the numerical solutions. The viscous truncation error associated with this scheme is controlled so that first order accuracy is maintained in time and space. The results encompass a range of Grashof numbers from 8.34 times 10,000 to 7 times 10 to the 7th power which is within the laminar flow regime for gravitationally driven fluid flows. Experiments within a small scale instrumented horizontal cylinder revealed the time development of the temperature distribution across the boundary layer and also the decay of wall heat transfer with time.

  20. Thermally conductive porous element-based recuperators

    NASA Technical Reports Server (NTRS)

    Du, Jian Hua (Inventor); Chow, Louis C (Inventor); Lin, Yeong-Ren (Inventor); Wu, Wei (Inventor); Kapat, Jayanta (Inventor); Notardonato, William U. (Inventor)

    2012-01-01

    A heat exchanger includes at least one hot fluid flow channel comprising a first plurality of open cell porous elements having first gaps there between for flowing a hot fluid in a flow direction and at least one cold fluid flow channel comprising a second plurality of open cell porous elements having second gaps therebetween for flowing a cold fluid in a countercurrent flow direction relative to the flow direction. The thermal conductivity of the porous elements is at least 10 W/mK. A separation member is interposed between the hot and cold flow channels for isolating flow paths associated these flow channels. The first and second plurality of porous elements at least partially overlap one another to form a plurality of heat transfer pairs which transfer heat from respective ones of the first porous elements to respective ones of the second porous elements through the separation member.

  1. Interaction of Shallow Cold Surges with Topography on Scales of 100-1000 Kilometers.

    NASA Astrophysics Data System (ADS)

    Toth, James John

    1987-09-01

    A shallow cold air mass is defined as one not extending to the top of the mountain ridge with which it interacts. The structure of such an airmass is examined using both observational data and a hydrostatic version of the Colorado State University Regional Atmospheric Modeling System. The prime constraint on a shallow cold surge is that the flow must ultimately be parallel to the mountain ridge. It is found that the effects of this constraint are altered significantly by surface sensible heat flux. Cold surges are slowed during the daylight hours, a result consistent with previous observational studies in Colorado east of the Continental Divide. Two case studies are described in detail, and several other events are cited. Since observations alone do not provide a complete description of diversion of the cold air by the mountain range, numerical model simulations provide additional insight into important mechanisms. A case study on 14 June 1985 is described using observational and model data. The model development of a deep boundary layer within the frontal baroclinic zone is consistent with the observations for this and other cases. This development is due to strong surface heating. Turning off the model shortwave radiation is seen to produce a rapid southward acceleration of the surface front, with very shallow cold air behind the front. Model simulations with specified surface temperature differences confirm the importance of upward heat flux from the surface in slowing the southward movement of the cold surge. It is concluded that the slowing is not due simply to the thermal wind developing in response to the heating of higher terrain to the west. Since surface heating is distributed over a deeper layer on the warm side of the temperature discontinuity, there is frontolysis at the surface. But this modification would develop even over flat terrain. Sloping terrain introduces additional effects. Heating at the western, upslope side of the cold surge inhibits the development of pressure gradients favorable to northerly flow. A second contribution comes from westerly winds at ridgetop level. These winds are heated over the higher terrain and flow downslope, further retarding the progression of the cold air at the surface.

  2. Influence of Locally Derived Recharge on the Water Quality and Temperature of Springs in Hot Springs National Park, Arkansas

    USGS Publications Warehouse

    Bell, Richard W.; Hays, Phillip D.

    2007-01-01

    The hot springs of Hot Springs National Park consist of a mixture of water from two recharge components: a primary hot-water component and a secondary cold-water component. Widespread distribution of fractures enables mixing of the hot- and cold-water components of flow near the discharge area for the springs. Urbanization in the area near the hot springs of Hot Springs National Park has increased the potential for degradation of the quality of surface-water runoff and locally derived ground-water recharge to the hot springs. Previous studies by the U.S. Geological Survey have indicated that water from some cold-water springs and wells in the vicinity of Hot Springs, Arkansas, showed evidence of contamination and that water from locally derived cold-water recharge might contribute 25 percent of the total flow to the hot springs after storms. Water samples were collected during base-flow conditions at nine hot springs and two cold-water springs in September 2000. Nine hot springs and one cold-water spring were resampled in October 2001 after a storm that resulted in a measurable decrease in water temperature in selected hot springs. Water samples were analyzed for a variety of dissolved chemical constituents (nutrients, major ions, trace elements, pesticides, semivolatile compounds, isotopes, and radiochemicals), physical properties, field measurements, and bacteria. Comparison of analyses of samples collected during base-flow conditions from the springs in 2000 and during a storm event in 2001 with the results from earlier studies dating back to the late 1800's indicates that little change in major, minor, and trace constituent chemistry has occurred and that the water continues to be of excellent quality. Water-quality data show distinguishable differences in water chemistry of the springs during base-flow and stormflow conditions, indicating changing input of cold-water recharge relative to hot-water recharge. Silica, total dissolved solids, strontium, barium, and sulfate show statistically significant differences between the median values of base-flow and stormflow samples. While variations in these constituents do not degrade water quality, the differences do provide evidence of variability in the factors controlling water quality of the hot springs and show that water quality is influenced by the locally derived, cold-water component of flow to the springs. Water temperature was measured continuously (3-minute intervals) between August 2000 and October 2002 at four hot springs. Continuous water-temperature data at the springs provide no indication of persistent long-term change in water temperature through time. Short time-scale water-temperature decreases occur in response to mixing of hot-springs water with locally derived recharge after storm events; the magnitude of these decreases varied inversely with the amount of rainfall. Maximum decreases in water temperature for specific storms had a non-linear relation with the amount of precipitation measured for the events. Response time for water temperature to begin decreasing from baseline temperature as a result of storm recharge was highly variable. Some springs began decreasing from baseline temperature as quickly as 1 hour after the beginning of a storm; one spring had an 8-hour minimum response time to show a storm-related temperature decrease. Water-quality, water-temperature, isotopic, and radiochemical data provide multiple lines of evidence supporting the importance of the contribution of cold-water recharge to hot springs. All the springs sampled indicated some measure of influence from local recharge. Binary mixing models using silica and total dissolved solids indicate that cold-water recharge from stormflow contributes an estimated 10 to 31 percent of the flow of hot springs. Models using water temperature indicate that cold-water recharge from stormflow contributes an estimated 1 to 35 percent of the flow of the various hot springs. Alth

  3. Resource Prospector Propulsion Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Pederson, Kevin; Dervan, Melanie; Holt, Kimberly; Jernigan, Frankie; Trinh, Huu; Flores, Sam

    2014-01-01

    For the past year, NASA Marshall Space Flight Center and Johnson Space Center have been working on a government version of a lunar lander design for the Resource Prospector Mission. A propulsion cold flow test system, representing an early flight design of the propulsion system, has been fabricated. The primary objective of the cold flow test is to simulate the Resource Prospector propulsion system operation through water flow testing and obtain data for anchoring analytical models. This effort will also provide an opportunity to develop a propulsion system mockup to examine hardware integration to a flight structure. This paper will report the work progress of the propulsion cold flow test system development and test preparation. At the time this paper is written, the initial waterhammer testing is underway. The initial assessment of the test data suggests that the results are as expected and have a similar trend with the pretest prediction. The test results will be reported in a future conference.

  4. Phenomenological and statistical analyses of turbulence in forced convection with temperature-dependent viscosity under non-Boussinesq condition.

    PubMed

    Yahya, S M; Anwer, S F; Sanghi, S

    2013-10-01

    In this work, Thermal Large Eddy Simulation (TLES) is performed to study the behavior of weakly compressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulent flow. A systematic analysis of variable-viscosity effects, isolated from gravity, with relevance to industrial cooling/heating applications is being carried out. A LES of a planar channel flow with significant heat transfer at a low Mach number was performed to study effects of fluid property variation on the near-wall turbulence structure. In this flow configuration the top wall is maintained at a higher temperature (T hot ) than the bottom wall (T cold ). The temperature ratio (R θ = T hot /T cold ) is fixed at 1.01, 2 and 3 to study the effects of property variations at low Mach number. Results indicate that average and turbulent fields undergo significant changes. Compared with isothermal flow with constant viscosity, we observe that turbulence is enhanced in the cold side of the channel, characterized by locally lower viscosity whereas a decrease of turbulent kinetic energy is found at the hot wall. The turbulent structures near the cold wall are very short and densely populated vortices but near the hot wall there seems to be a long streaky structure or large elongated vortices. Spectral study reveals that turbulence is completely suppressed at the hot side of the channel at a large temperature ratio because no inertial zone is obtained (i.e. index of Kolmogorov scaling law is zero) from the spectra in these region.

  5. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    NASA Astrophysics Data System (ADS)

    Dufay-Chanat, L.; Bremer, J.; Casas-Cubillos, J.; Chorowski, M.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Koettig, T.; Vauthier, N.; van Weelderen, R.; Winkler, T.

    2015-12-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point. This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests.

  6. Project Themis Supercritical Cold Flow Facility, Experiment Design and Modeling for the Study of Fluid Mixing

    DTIC Science & Technology

    2012-06-01

    AFRL facility was well suited for the Themis cold flow experiment. A test cell was selected that contained an insulated cryogenic oxygen tank that...could be used for the LN2 supply. Adjacent to the test cell is a cryogenic storage bunker that contained a helium supply tank with existing high...venturi to the fuel bunker tank was very low (less than 25 psi) while the helium pressure drop from the cryogenic storage bunker was almost 2000 psi

  7. Ignition characterization of the GOX/ethanol propellant combination

    NASA Technical Reports Server (NTRS)

    Lawver, B. R.; Rousar, D. C.; Boyd, W. C.

    1984-01-01

    This paper describes the results of a study to define the ignition characteristics and thruster pulse mode capabilities of the GOX/ethanol propellant combination. Ignition limits were defined in terms of mixture ratio and cold flow pressure using a spark initiated torch igniter. Igniter tests were run over a wide range of cold flow pressure, propellant temperature and mixture ratio. The product of cold flow pressure and igniter chamber diameter was used to correlate mixture ratio regimes of ignition and nonignition. Engine ignition reliability and pulse mode capability were demonstrated using a 620 lbF thruster with an integrated torch igniter. The nominal chamber pressure and mixture ratio were 150 psia and 1.8, respectively, thruster tests were run over a wide range of chamber pressures and mixture ratios. The feasibility of thruster pulse mode operation with the non-hypergolic GOX/ethanol propellant combination was demonstrated.

  8. Thermal Face Protection Delays Finger Cooling and Improves Thermal Comfort during Cold Air Exposure

    DTIC Science & Technology

    2011-01-01

    code) 2011 Journal Article-Eur Journal of Applied Physiology Thermal face protection delays Fnger cooling and improves thermal comfort during cold air...remains exposed. Facial cooling can decrease finger blood flow, reducing finger temperature (Tf). This study examined whether thermal face protection...limits Wnger cooling and thereby improves thermal comfort and manual dexterity during prolonged cold exposure. Tf was measured in ten volunteers dressed

  9. Annular recuperator design

    DOEpatents

    Kang, Yungmo

    2005-10-04

    An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.

  10. Role of the cold water on the formation of the East Korean Warm Current in the East/Japan Sea : A numerical experiment

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, Y. H.; Cho, Y. K.

    2016-12-01

    The East/Japan Sea (EJS) is a marginal sea of the western Pacific with an average depth of 2,000 m. The water exchange between the EJS and the Pacific occurs through the Korea Strait and Tsugaru Strait corresponding to the inlet and outlet respectively. The Tsushima Current flowing into the ESJ through the Korea Strait is divided into two main branches, the Nearshore Branch flowing along the Japanese coast, and the East Korean Warm Current (EKWC) heading northward along the Korean coast. Many previous studies reported the effects of cold water on the formation of the EKWC using 2-dimensional model that was limited in the Korea Strait. However, 3-dimensional structure of the cold water in relation to the EKWC have not been examined. In this study, we investigated the effects of cold water on the formation of the EKWC using 3-dimension numerical model. Model results indicate that the thickness and relative vorticity of the upper layer decrease due to the presence of the lower cold water along the Korean coast. Correspondingly, the negative relative vorticity also intensifies the EKWC along the Korean coast.

  11. Gas-Centered Swirl Coaxial Liquid Injector Evaluations

    NASA Technical Reports Server (NTRS)

    Cohn, A. K.; Strakey, P. A.; Talley, D. G.

    2005-01-01

    Development of Liquid Rocket Engines is expensive. Extensive testing at large scales usually required. In order to verify engine lifetime, large number of tests required. Limited Resources available for development. Sub-scale cold-flow and hot-fire testing is extremely cost effective. Could be a necessary (but not sufficient) condition for long engine lifetime. Reduces overall costs and risk of large scale testing. Goal: Determine knowledge that can be gained from sub-scale cold-flow and hot-fire evaluations of LRE injectors. Determine relationships between cold-flow and hot-fire data.

  12. Shaft Seal Compensates for Cold Flow

    NASA Technical Reports Server (NTRS)

    Myers, W. N.; Hein, L. A.

    1985-01-01

    Seal components easy to install. Ring seal for rotating or reciprocating shafts spring-loaded to compensate for slow yielding (cold flow) of sealing material. New seal relatively easy to install because components preassembled, then installed in one piece.

  13. 2. CATCH BASIN, INFLOW PIPES AT CENTER, COLD FLOW LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CATCH BASIN, INFLOW PIPES AT CENTER, COLD FLOW LABORATORY AT LEFT, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Catch Basin, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  14. Correlation of Wissler Human Thermal Model Blood Flow and Shiver Algorithms

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2010-01-01

    The Wissler Human Thermal Model (WHTM) is a thermal math model of the human body that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. The model has been shown to predict core temperature and skin temperatures higher and lower, respectively, than in tests of subjects in crew escape suit working in a controlled hot environments. Conversely the model predicts core temperature and skin temperatures lower and higher, respectively, than in tests of lightly clad subjects immersed in cold water conditions. The blood flow algorithms of the model has been investigated to allow for more and less flow, respectively, for the cold and hot case. These changes in the model have yielded better correlation of skin and core temperatures in the cold and hot cases. The algorithm for onset of shiver did not need to be modified to achieve good agreement in cold immersion simulations

  15. The Effects of Cold Stress on Photosynthesis in Hibiscus Plants

    PubMed Central

    Paredes, Miriam; Quiles, María José

    2015-01-01

    The present work studies the effects of cold on photosynthesis, as well as the involvement in the chilling stress of chlororespiratory enzymes and ferredoxin-mediated cyclic electron flow, in illuminated plants of Hibiscus rosa-sinensis. Plants were sensitive to cold stress, as indicated by a reduction in the photochemistry efficiency of PSII and in the capacity for electron transport. However, the susceptibility of leaves to cold may be modified by root temperature. When the stem, but not roots, was chilled, the quantum yield of PSII and the relative electron transport rates were much lower than when the whole plant, root and stem, was chilled at 10°C. Additionally, when the whole plant was cooled, both the activity of electron donation by NADPH and ferredoxin to plastoquinone and the amount of PGR5 polypeptide, an essential component of the cyclic electron flow around PSI, increased, suggesting that in these conditions cyclic electron flow helps protect photosystems. However, when the stem, but not the root, was cooled cyclic electron flow did not increase and PSII was damaged as a result of insufficient dissipation of the excess light energy. In contrast, the chlororespiratory enzymes (NDH complex and PTOX) remained similar to control when the whole plant was cooled, but increased when only the stem was cooled, suggesting the involvement of chlororespiration in the response to chilling stress when other pathways, such as cyclic electron flow around PSI, are insufficient to protect PSII. PMID:26360248

  16. Temporal prolongation of decreased skin blood flow causes cold limbs in Parkinson's disease.

    PubMed

    Shindo, Kazumasa; Kobayashi, Fumikazu; Miwa, Michiaki; Nagasaka, Takamura; Takiyama, Yoshihisa; Shiozawa, Zenji

    2013-03-01

    To unravel the pathogenesis of cold limbs in Parkinson's disease, we evaluated cutaneous vasomotor neural function in 25 Parkinson's disease patients with or without cold limbs and 20 healthy controls. We measured resting skin sympathetic nerve activity, as well as reflex changes of skin blood flow and skin sympathetic nerve activity after electrical stimulation, with the parameters including skin sympathetic nerve activity frequency at rest, the amplitude of reflex bursts, the absolute decrease and percent reduction of blood flow, and the recovery time which was calculated as the interval from the start of blood flow reduction until the return to baseline cutaneous blood flow. The resting frequency of skin sympathetic nerve activity was significantly lower in patients with Parkinson's disease than in controls (p < 0.01). There were no significant differences between the patients and controls with respect to the amplitude of skin sympathetic nerve activity and the absolute decrease or percent reduction of blood flow volume. In the controls, the recovery time (9.4 ± 1.2), which was similar to Parkinson's disease patients without cold limbs (9.0 ± 0.7), while the recovery time ranged (15.7 ± 3.2) in Parkinson's disease patients with cold limbs. Recovery was significantly slower in these patients compared with the other groups (p < 0.05). It is possible that cold limbs might arise due to impaired circulation based on prolonged vasoconstriction by peripheral autonomic impairments, in addition to central autonomic dysfunction in Parkinson's disease.

  17. Biobased, environmentally friendly lubricants for processing plants

    USDA-ARS?s Scientific Manuscript database

    Vegetable oil based lubricants have excellent lubricity, biodegradability, good viscosity temperature characteristics and low evaporation loss, but poor thermos-oxidative stability and cold flow properties. This paper presents a systematic approach to improve the oxidative and cold flow behavior of...

  18. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    PubMed

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. In China, Students in Crowded Dormitories with a Low Ventilation Rate Have More Common Colds: Evidence for Airborne Transmission

    PubMed Central

    Sun, Yuexia; Wang, Zhigang; Zhang, Yufeng; Sundell, Jan

    2011-01-01

    Objective To test whether the incidence of common colds among college students in China is associated with ventilation rates and crowdedness in dormitories. Methods In Phase I of the study, a cross-sectional study, 3712 students living in 1569 dorm rooms in 13 buildings responded to a questionnaire about incidence and duration of common colds in the previous 12 months. In Phase II, air temperature, relative humidity and CO2 concentration were measured for 24 hours in 238 dorm rooms in 13 buildings, during both summer and winter. Out-to indoor air flow rates at night were calculated based on measured CO2 concentrations. Results In Phase I, 10% of college students reported an incidence of more than 6 common colds in the previous 12 months, and 15% reported that each infection usually lasted for more than 2 weeks. Students in 6-person dorm rooms were about 2 times as likely to have an incidence of common colds ≥6 times per year and a duration ≥2 weeks, compared to students in 3-person rooms. In Phase II, 90% of the measured dorm rooms had an out-to indoor air flow rate less than the Chinese standard of 8.3 L/s per person during the heating season. There was a dose-response relationship between out-to indoor air flow rate per person in dorm rooms and the proportion of occupants with annual common cold infections ≥6 times. A mean ventilation rate of 5 L/(s•person) in dorm buildings was associated with 5% of self reported common cold ≥6 times, compared to 35% at 1 L/(s•person). Conclusion Crowded dormitories with low out-to indoor airflow rates are associated with more respiratory infections among college students. PMID:22110607

  20. A pulse tube cryocooler with a cold reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Zhang, K. H.; Qiu, L. M.; Gan, Z. H.; Shen, X.; Xiang, S. J.

    2013-02-01

    Phase difference between pressure wave and mass flow is decisive to the cooling capacity of regenerative cryocoolers. Unlike the direct phase shifting using a piston or displacer in conventional Stirling or GM cryocoolers, the pulse tube cyocooler (PTC) indirectly adjusts the cold phase due to the absence of moving parts at the cold end. The present paper proposed and validated theoretically and experimentally a novel configuration of PTC, termed cold reservoir PTC, in which a reservoir together with an adjustable orifice is connected to the cold end of the pulse tube. The impedance from the additional orifice to the cold end helps to increase the mass flow in phase with the pressure wave at the cold end. Theoretical analyses with the linear model for the orifice and double-inlet PTCs indicate that the cooling performance can be improved by introducing the cold reservoir. The preliminary experiments with a home-made single-stage GM PTC further validated the results on the premise of minor opening of the cold-end orifice.

  1. Expanding NevCAN capabilities: monitoring cold air drainage flow along a narrow wash within a Montane to PJ ecotone

    NASA Astrophysics Data System (ADS)

    Bird, B. M.; Devitt, D.

    2012-12-01

    Cold air drainage flows are a naturally occurring physical process of mountain systems. Plant communities that exist in cold air drainage basins respond to these localized cold air trends, and have been shown to be decoupled from larger global climate weather systems. The assumption that air temperature decreases with altitude is violated within these systems and climate model results based on this assumption would ultimately be inaccurate. In arid regions, high radiation loads lead to significant long wave radiation being emitted from the ground later in the day. As incoming radiation ceases, the surface very quickly loses energy through radiative processes, leading to surface inversions and enhanced cold air drainage opportunities. This study is being conducted in the Mojave desert on Sheep Mountain located between sites 3 and 4 of the NSF EPSCoR network. Monitoring of cold air drainage was initiated in September of 2011within a narrow ravine located between the 2164 and 2350 meter elevation. We have installed 25 towers (5 towers per location situated at the central low point in a ravine and at equal distances up the sides of the ravine on both the N and S facing slopes) to assess air temperatures from 0.1 meters to a height of 3 meters at 25m intervals. Our goal is to better understand the connection between cold air movement and plant physiological response. The species monitored in this study include: Pinus ponderosa (common name: Ponderosa Pine), Pinus pinyon (Pinyon Pine), Juniperus osteosperma (Utah juniper), Cercocarpus intricatus (Mountain Mahogany) and Symphoricarpos (snowberry). Hourly air temperature measurements within the wash are being captured from 100 ibuttons placed within PVC solar radiation shields. We are also developing a modeling approach to assess the three dimensional movement of cold air over time by incorporating wind vectors captured from 5 2D sonic anemometers. Wind velocities will be paired with air temperatures to better understand the thermal dynamics of cold air drainage. Granier probes were installed in the five test species to monitor transpirational flow relative to cold air movement. Mid day soil - plant - water measurements are also being taken on a monthly basis during the growing season at all locations. Measurements include: leaf xylem water potential, stomata conductance, chlorophyll index readings, canopy minus ambient temperatures and surface soil moisture contents. To date the monitoring system has revealed cold air drainage occurring during periods of every month. We will report the physiological response of the five plant species, with emphasis on assessing the linkages with cold air movement.

  2. Measurement and simulation of thermoelectric efficiency for single leg

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Yamamoto, Atsushi; Ohta, Michihiro; Nishiate, Hirotaka

    2015-04-01

    Thermoelectric efficiency measurements were carried out on n-type bismuth telluride legs with the hot-side temperature at 100 and 150 °C. The electric power and heat flow were measured individually. Water coolant was utilized to maintain the cold-side temperature and to measure heat flow out of the cold side. Leg length and vacuum pressure were studied in terms of temperature difference across the leg, open-circuit voltage, internal resistance, and heat flow. Finite-element simulation on thermoelectric generation was performed in COMSOL Multiphysics, by inputting two-side temperatures and thermoelectric material properties. The open-circuit voltage and resistance were in good agreement between the measurement and simulation. Much larger heat flows were found in measurements, since they were comprised of conductive, convective, and radiative contributions. Parasitic heat flow was measured in the absence of bismuth telluride leg, and the conductive heat flow was then available. Finally, the maximum thermoelectric efficiency was derived in accordance with the electric power and the conductive heat flow.

  3. An Investigation of Transonic Flow Fields Surrounding Hot and Cold Sonic Jets

    NASA Technical Reports Server (NTRS)

    Lee, George

    1961-01-01

    An investigation at free-stream Mach numbers of 0.90 t o 1.10 was made to determine (1) the jet boundaries and the flow fields around hot and cold jets, and (2) whether a cold-gas jet could adequately simulate the boundary and flow field of hot-gas jet. Schlieren photographs and static-pressure surveys were taken in the vacinity of a sonic jet which was operated over a range of jet pressure ratios of 1 to 6, specific heat ratios at the nozzle exit of 1.29 and 1.40, and jet temperatures up to 2600 R.

  4. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  5. [In vitro study of the flow duration of antibiotics solutions prepared in elastomeric infusion devices: effect of cold storage for 3 to 7days].

    PubMed

    Grangeon-Chapon, C; Robein-Dobremez, M-J; Pin, I; Trouiller, P; Allenet, B; Foroni, L

    2015-09-01

    Within the cystic fibrosis patients' home care, EMERAA network ("Together against Cystic fibrosis in Rhone-Alpes and Auvergne") organizes parenteral antibiotics cures at home prepared in elastomeric infusion devices by hospital pharmacies. However, patients and nurses found that the durations of infusion with these devices were often longer than the nominal duration of infusion indicated by their manufacturer. This study aimed to identify the potential different causes in relation to these discordances. Three hundred and ninety devices of two different manufacturers are tested in different experimental conditions: three antibiotics each at two different doses, duration of cold storage (three days or seven days) or immediate tests without cold storage, preparation and storage of the solution in the device (protocol Device) or transfer in the device just before measurement (protocol Pocket). All tests highlighted a longer flow duration for devices prepared according to the protocol Device versus the protocol Pocket (P=0.004). Flow duration is increased in the case of high doses of antibiotics with high viscosity such as piperacilline/tazobactam. The results of this in vitro study showed the impact of: (1) the time between the filling of the device and the flow of the solution; (2) cold storage of elastomeric infusion devices; (3) concentration of antibiotics and therefore the viscosity of the solution to infuse. It is therefore essential that health care teams are aware of factors, which may lead to longer infusion durations with these infusion devices. When the additional time for infusion remain acceptable, it should be necessary to inform the patient and to relativize these lengthening compared to many benefits that these devices provide for home care. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Cardiovascular function, compliance, and connective tissue remodeling in the turtle, Trachemys scripta, following thermal acclimation

    PubMed Central

    Keen, Adam N.; Crossley, Dane A.

    2016-01-01

    Low temperature directly alters cardiovascular physiology in freshwater turtles, causing bradycardia, arterial hypotension, and a reduction in systemic blood pressure. At the same time, blood viscosity and systemic resistance increase, as does sensitivity to cardiac preload (e.g., via the Frank-Starling response). However, the long-term effects of these seasonal responses on the cardiovascular system are unclear. We acclimated red-eared slider turtles to a control temperature (25°C) or to chronic cold (5°C). To differentiate the direct effects of temperature from a cold-induced remodeling response, all measurements were conducted at the control temperature (25°C). In anesthetized turtles, cold acclimation reduced systemic resistance by 1.8-fold and increased systemic blood flow by 1.4-fold, resulting in a 2.3-fold higher right to left (R-L; net systemic) cardiac shunt flow and a 1.8-fold greater shunt fraction. Following a volume load by bolus injection of saline (calculated to increase stroke volume by 5-fold, ∼2.2% of total blood volume), systemic resistance was reduced while pulmonary blood flow and systemic pressure increased. An increased systemic blood flow meant the R-L cardiac shunt was further pronounced. In the isolated ventricle, passive stiffness was increased following cold acclimation with 4.2-fold greater collagen deposition in the myocardium. Histological sections of the major outflow arteries revealed a 1.4-fold higher elastin content in cold-acclimated animals. These results suggest that cold acclimation alters cardiac shunting patterns with an increased R-L shunt flow, achieved through reducing systemic resistance and increasing systemic blood flow. Furthermore, our data suggests that cold-induced cardiac remodeling may reduce the stress of high cardiac preload by increasing compliance of the vasculature and decreasing compliance of the ventricle. Together, these responses could compensate for reduced systolic function at low temperatures in the slider turtle. PMID:27101300

  7. Airway hyperresponsiveness, peak flow variability and inflammatory markers in non-asthmatic subjects with respiratory infections.

    PubMed

    Björnsson, Eythór; Lúdvíksdóttir, Dóra; Hedenström, Hans; Eriksson, Britt-Marie; Högman, Marieann; Venge, Per; Janson, Christer

    2007-07-01

    The aim of this study was to characterise non-asthmatic subjects with asthma-like symptoms during a common cold, particularly in relation to airway hyperresponsiveness (AHR). Subjects with acute respiratory infections and a group of controls (n = 20 + 20), age 20-65 years, underwent bronchial provocations with methacholine, adenosine and cold air. All were non-smokers and had no history of asthma or heart disease. Those with infection had asthma-like symptoms (>2). Measurements of exhaled nitric oxide (eNO), serum levels of eosinophil cationic protein (ECP), eosinophil peroxidase, myeloperoxidase and human neutrophil lipocalin were made at each provocation. A 17-day symptom and peak flow diary was calculated. No differences between the two groups were found, regarding responsiveness to methacholine, adenosine or cold air challenge, as well as the inflammatory markers measured. In the infected group, the mean (standard deviation) ECP was higher in those with AHR to methacholine or cold air [15.7 (6.5) and 11.4 (4.2) microg/L, respectively; P < 0.05]; furthermore, eNO was higher in the infected group [116 (54) and 88 (52) nL/min, respectively; P = 0.055]. The infected group had, at all times, more symptoms and higher peak flow, with a decrease in the symptoms (P = 0.02) and a tendency to change in peak flow variation (P = 0.06). AHR does not seem to be the main cause of asthma-like symptoms in adults with infectious wheezing. Peak flow variation and symptom prevalence during the post-infection period may imply airway pathology different from AHR.

  8. Lung function after cold-water dives with a standard scuba regulator or full-face-mask during wintertime.

    PubMed

    Uhlig, Florian; Muth, Claus-Martin; Tetzlaff, Kay; Koch, Andreas; Leberle, Richard; Georgieff, Michael; Winkler, Bernd E

    2014-06-01

    Full-face-masks (FFM) prevent the diver's face from cold and can support nasal breathing underwater. The aim of the study was to evaluate the effect of the use of FFMs on lung function and wellbeing. Twenty-one, healthy, non-asthmatic divers performed two cold-water dives (4⁰C, 25 min, 10 metres' depth) - one with a FFM and the other with a standard scuba regulator (SSR). Spirometry was performed before and after each dive and well-being and cold sensation were assessed after the dives. Significant decreases in forced vital capacity (FVC), forced expiratory volume in one second (FEV₁) and midexpiratory flow at 75% of FVC (MEF₇₅) occurred after both FFM and SSR dives. Changes in FVC and FEV₁ did not differ significantly between FFM and SSR dives. However, the mid-expiratory flows measured at 50% and 25% of FVC (MEF₅₀ and MEF₂₅) were significantly lower 10 minutes after the FFM dive compared to 10 minutes after the SSR dive. The wellbeing and cold sensation of the divers were significantly improved with FFM dives compared to SSR dives. Cold-water dives during wintertime can be associated with airway narrowing. During cold-water dives, the use of a FFM appears to reduce the cold sensation and enhance the well-being of the divers. However, a FFM does not appear to prevent airway narrowing in healthy, non-asthmatic subjects.

  9. Influence of cold-water immersion on limb blood flow after resistance exercise.

    PubMed

    Mawhinney, Chris; Jones, Helen; Low, David A; Green, Daniel J; Howatson, Glyn; Gregson, Warren

    2017-06-01

    This study determined the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow following resistance exercise. Twelve males completed 4 sets of 10-repetition maximum squat exercise and were then immersed, semi-reclined, into 8°C or 22°C water for 10-min, or rested in a seated position (control) in a randomized order on different days. Rectal and thigh skin temperature, muscle temperature, thigh and calf skin blood flow and superficial femoral artery blood flow were measured before and after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). The colder water reduced thigh skin temperature and deep muscle temperature to the greatest extent (P < .001). Reductions in rectal temperature were similar (0.2-0.4°C) in all three trials (P = .69). Femoral artery conductance was similar after immersion in both cooling conditions, with both conditions significantly lower (55%) than the control post-immersion (P < .01). Similarly, there was greater thigh and calf cutaneous vasoconstriction (40-50%) after immersion in both cooling conditions, relative to the control (P < .01), with no difference between cooling conditions. These findings suggest that cold and cool water similarly reduce femoral artery and cutaneous blood flow responses but not muscle temperature following resistance exercise.

  10. The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process

    NASA Astrophysics Data System (ADS)

    Rahmati, Saeed; Ghaei, Abbas

    2014-02-01

    Cold spray is a coating deposition method in which the solid particles are accelerated to the substrate using a low temperature supersonic gas flow. Many numerical studies have been carried out in the literature in order to study this process in more depth. Despite the inability of Johnson-Cook plasticity model in prediction of material behavior at high strain rates, it is the model that has been frequently used in simulation of cold spray. Therefore, this research was devoted to compare the performance of different material models in the simulation of cold spray process. Six different material models, appropriate for high strain-rate plasticity, were employed in finite element simulation of cold spray process for copper. The results showed that the material model had a considerable effect on the predicted deformed shapes.

  11. DSC studies to evaluate the impact of bio-oil on cold flow properties and oxidation stability of bio-diesel.

    PubMed

    Garcia-Perez, Manuel; Adams, Thomas T; Goodrum, John W; Das, K C; Geller, Daniel P

    2010-08-01

    This paper describes the use of Differential Scanning Calorimetry (DSC) to evaluate the impact of varying mix ratios of bio-oil (pyrolysis oil) and bio-diesel on the oxidation stability and on some cold flow properties of resulting blends. The bio-oils employed were produced from the semi-continuous Auger pyrolysis of pine pellets and the batch pyrolysis of pine chips. The bio-diesel studied was obtained from poultry fat. The conditions used to prepare the bio-oil/bio-diesel blends as well as some of the fuel properties of these blends are reported. The experimental results suggest that the addition of bio-oil improves the oxidation stability of the resulting blends and modifies the crystallization behavior of unsaturated compounds. Upon the addition of bio-oil an increase in the oxidation onset temperature, as determined by DSC, was observed. The increase in bio-diesel oxidation stability is likely to be due to the presence of hindered phenols abundant in bio-oils. A relatively small reduction in DSC characteristic temperatures which are associated with cold flow properties was also observed but can likely be explained by a dilution effect. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Cold-Based Glaciation on Mercury: Accumulation and Flow of Ice in Permanently-Shadowed Circum-Polar Crater Interiors

    NASA Astrophysics Data System (ADS)

    Fastook, J. L.; Head, J. W.

    2018-05-01

    Examining the potential for dynamic flow of ice deposits in permanently-shadowed craters, it is determined that the cold environment of the polar craters yields very small velocities and deformation is minimal on a time scale of millions of years.

  13. Novel insights into the dynamics of cold-air drainage and pooling on a gentle slope from fiber-optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph

    2016-04-01

    Urban climate can benefit from cold-air drainage as it may help alleviate the urban heat island. In contrast, stable cold-air pools can damage plants especially in rural areas. In this study, we examined the dynamics of cold-air drainage and pooling in a peri-urban setting over a period of 47 days along a 170 m long slope with an inclination of 1.3° located in the Ecological Botany Gardens of the University of Bayreuth. Air and soil temperatures were measured using distributed temperature sensing of an 2-dimensional fiber-optic array at six heights (-2 cm to 100 cm) along the slope sampling every 1 min and every 1 m. Ancillary measurements of winds, turbulence intensity and momentum exchange were collected using two ultrasonic anemometers installed at 0.1 m and 17 m height at the center of the transect. We hypothesized that cold-air drainage, here defined as a gravity-driven density flow near the bottom originating from local radiative cooling of the surface, is decoupled from non-local flows and can thus be predicted from the local topography. The nocturnal data were stratified by classes of longwave radiation balance, wind speed, and wind direction at 0.1 m agl. The four most abundant classes were tested further for decoupling of wind velocities and directions between 17 and 0.1 m. We further computed the vertical and horizontal temperature perturbations of the fiber-optic array as evaluated for these cases, as well as subject the temperature data to a multiresolution decomposition to investigate the spatial two-point correlation coefficient along the transect. Finally, the cold pool intensity was calculated. The results revealed none of the four most abundant classes followed classical textbook knowledge of locally produced cold-air drainage. Instead, we found that the near-surface flow was strongly forced by two possibly competing non-local flow modes. The first mode caused weak (< 0.4 ms-1) near-surface winds directed perpendicular to the local slope and showed strong vertical decoupling of wind velocities and directions. The vertical and horizontal perturbation of the temperature as well as the cold-pool intensity was high and the two-point correlation coefficient decorrelated fast with increasing distance. In contrast, for the second mode the wind was aligned with the local slope and the wind velocities and directions agreed vertically. However, momentum exchange was much enhanced leading to intense shear-generated mixing and almost vanishing temperature perturbations, higher spatial coherence indicated by slower spatial decorrelations, and a cold-pool intensity of close to zero. In conclusion, the first mode was interpreted as a relatively weak non-local valley-scale cold-air drainage modulating the close to stationary cold-air pool filling the shallow depression the Botanical Gardens are located in. Here, the deeper cold-air drainage causes only weak local movements at the surface as both layers are largely decoupled. The second mode is possibly caused by a recirculation of a stronger valley-scale flow with sufficient synoptic forcing. Our findings challenge the common practice to predict cold-air dynamics solely based on micro-topographic analysis.

  14. Vascular conductance is reduced after menthol or cold application.

    PubMed

    Olive, Jennifer L; Hollis, Brandon; Mattson, Elizabeth; Topp, Robert

    2010-09-01

    To compare the effects of commercially sold menthol (3.5%) ointment and cold application on blood flow in the forearm. : Prospective counterbalanced design. University research laboratory. Twelve (6 men and 6 women) college-aged students. Each participant had blood flow measured in the brachial artery for 5 minutes before and 10 minutes after menthol ointment or cold application to the forearm. Blood velocity, arterial diameter size, and blood pressure were recorded during testing procedures. Vascular conductance was calculated based on these measures and used to describe limb blood flow. We observed a significant reduction (35%; P = 0.004) in vascular conductance within 60 seconds of menthol and cold application to the forearm. Vascular conductance remained significantly reduced for 10 minutes by approximately 19% after both menthol and cold application [F(2.313, 43.594) = 10.328, P < 0.0001]. There was no significant difference between conditions [F(1, 19) = 0.000, P = 0.945]. The application of a 3.5% menthol ointment significantly reduces conductance in the brachial artery within 60 seconds of application, and this effect is maintained for at least 10 minutes after application. The overall decline in conductance is similar between menthol ointment and cold application.

  15. Three-dimensional flow field measurements in a radial inflow turbine scroll using LDV

    NASA Technical Reports Server (NTRS)

    Malak, M. F.; Hamed, A.; Tabakoff, W.

    1986-01-01

    The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.

  16. Parametric Testing of Chevrons on Single Flow Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Brown, Clifford A.

    2004-01-01

    A parametric family of chevron nozzles have been studied, looking for relationships between chevron geometric parameters, flow characteristics, and far-field noise. Both cold and hot conditions have been run at acoustic Mach number 0.9. Ten models have been tested, varying chevron count, penetration, length, and chevron symmetry. Four comparative studies were defined from these datasets which show: that chevron length is not a major impact on either flow or sound; that chevron penetration increases noise at high frequency and lowers it at low frequency, especially for low chevron counts; that chevron count is a strong player with good low frequency reductions being achieved with high chevron count without strong high frequency penalty; and that chevron asymmetry slightly reduces the impact of the chevron. Finally, it is shown that although the hot jets differ systematically from the cold one, the overall trends with chevron parameters is the same.

  17. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    USGS Publications Warehouse

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water-quality standard for total arsenic of 50 micrograms per liter. All concentrations of dissolved copper, selenium, and zinc measured in samples were below the water-quality standard.Concentrations of dissolved nitrate plus nitrite generally increased from upstream to downstream during all flow periods. The largest downstream increase in dissolved nitrate plus nitrite concentration was measured between sites 07103970 and 07104905 on Monument Creek. All but one tributary that drain into Monument Creek between the two sites had higher median nitrate plus nitrite concentrations than the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). Increases in the concentration of dissolved nitrate plus nitrite were also evident below wastewater treatment plants located on Fountain Creek.Most stormflow concentrations of dissolved trace elements were smaller than concentrations from cold-season flow or warm-season samples. However, median concentrations of total arsenic, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during cold-season flow or warm-season fl. Median concentrations of total arsenic, total copper, total lead, dissolved and total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc concentrations increased from 1.5 to 28.5 times from site 07103700 (FoCr_Manitou) to 07103707 (FoCr_8th) during cold-season and warm-season flows, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek.Median suspended-sediment concentrations and median suspended-sediment loads increased in the downstream direction during all streamflow regimes between Monument Creek sites 07103970 (MoCr_Woodmen) and 07104905 (MoCr_Bijou); however, statistically significant increase (p-value less than 0.05) were only present during warm-season flow and stormflow. Significant increases in median suspended sediment concentrations were measured during cold-season flow and warm-season flow between Upper Fountain Creek site 07103707 (FoCr_8th) and Lower Fountain Creek site 07105500 (FoCr_Nevada) because of inflows from Monument Creek with higher suspended-sediment concentrations. Median suspended-sediment concentrations between sites 07104905 (MoCr_Bijou) and 07105500 (FoCr_Nevada) increased significantly during warm-season flow but showed no significant differences during cold-season flow and stormflow. Significant decreases in median suspended-sediment concentrations were measured between sites 07105500 (FoCr_Nevada) and 07105530 (FoCr_Janitell) during all flow regimes.Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with warm-season flow. Although large spatial variations in suspended-sediment yields occurred during warm-season flows, the suspended-sediment yield associated with stormflow were as much as 1,000 times larger than the suspended-sediment yields that occurred during warm-season flow. 

  18. Design verification and cold-flow modeling test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, andmore » TRW proprietary information has been excluded.« less

  19. Nocturnal Near-Surface Temperature, but not Flow Dynamics, can be Predicted by Microtopography in a Mid-Range Mountain Valley

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph K.

    2017-11-01

    We investigate nocturnal flow dynamics and temperature behaviour near the surface of a 170-m long gentle slope in a mid-range mountain valley. In contrast to many existing studies focusing on locations with significant topographic variations, gentle slopes cover a greater spatial extent of the Earth's surface. Air temperatures were measured using the high-resolution distributed-temperature-sensing method within a two-dimensional fibre-optic array in the lowest metre above the surface. The main objectives are to characterize the spatio-temporal patterns in the near-surface temperature and flow dynamics, and quantify their responses to the microtopography and land cover. For the duration of the experiment, including even clear-sky nights with weak winds and strong radiative forcing, the classical cold-air drainage predicted by theory could not be detected. In contrast, we show that the airflow for the two dominant flow modes originates non-locally. The most abundant flow mode is characterized by vertically-decoupled layers featuring a near-surface flow perpendicular to the slope and strong stable stratification, which contradicts the expectation of a gravity-driven downslope flow of locally produced cold air. Differences in microtopography and land cover clearly affect spatio-temporal temperature perturbations. The second most abundant flow mode is characterized by strong mixing, leading to vertical coupling with airflow directed down the local slope. Here variations of microtopography and land cover lead to negligible near-surface temperature perturbations. We conclude that spatio-temporal temperature perturbations, but not flow dynamics, can be predicted by microtopography, which complicates the prediction of advective-heat components and the existence and dynamics of cold-air pools in gently sloped terrain in the absence of observations.

  20. The effect of ultrasonics on the strength properties of carbon steel processed by cold plastic deformation

    NASA Technical Reports Server (NTRS)

    Atanasiu, N.; Dragan, O.; Atanasiu, Z.

    1974-01-01

    A study was made of the influence of ultrasounds on the mechanical properties of OLT 35 carbon steel tubes cold-drawn on a plug ultrasonically activated by longitudinal waves. Experimental results indicate that: 1. The reduction in the values of the flow limit and tensile strength is proportional to the increase in acoustic energy introduced into the material subjected to deformation. 2. The diminution in influence of ultrasounds on tensile strength and flow rate that is due to an increased degree of deformation is explained by a reduction in specific density of the acoustic energy at the focus of deformation. 3. The relations calculated on the basis of the variation in the flow limit and tensile strength as a function of acoustic energy intensity was verified experimentally.

  1. The laser Doppler flowmeter for measuring microcirculation in human nasal mucosa.

    PubMed

    Olsson, P; Bende, M; Ohlin, P

    1985-01-01

    A new technique, based on the laser doppler principle, for measuring nasal mucosal microcirculation in humans, is presented. With this technique the relation between the blood flow and the temperature of the nasal mucosa was evaluated in healthy subjects exposed to peripheral cold stimulus. A decrease in blood flow and in mucosal temperature was found in all subjects when the feet were exposed to cold water for 5 min. The decrease in blood flow occurred almost momentarily and was restored to normal within the 5 min of exposure, while the drop in mucosal temperature was more gradual and persisted for a longer time. The implication of this study is that the laser doppler flowmeter seems to be a useful tool for estimation of changes in nasal mucosal microcirculation.

  2. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests

    DOE PAGES

    Chan, Allison M.; Bowling, David R.

    2017-05-26

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less

  3. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Allison M.; Bowling, David R.

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less

  4. Increasing the Efficiency of a Thermoelectric Generator Using an Evaporative Cooling System

    NASA Astrophysics Data System (ADS)

    Boonyasri, M.; Jamradloedluk, J.; Lertsatitthanakorn, C.; Therdyothin, A.; Soponronnarit, S.

    2017-05-01

    A system for reducing heat from the cold side of a thermoelectric (TE) power generator, based on the principle of evaporative cooling, is presented. An evaporative cooling system could increase the conversion efficiency of a TE generator. To this end, two sets of TE generators were constructed. Both TE generators were composed of five TE power modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The hot side heat sinks were inserted in a hot gas duct. The cold side of one set was cooled by the cooling air from a counter flow evaporative cooling system, whereas the other set was cooled by the parallel flow evaporative cooling system. The counter flow pattern had better performance than the parallel flow pattern. A comparison between the TE generator with and without an evaporative cooling system was made. Experimental results show that the power output increased by using the evaporative cooling system. This can significantly increase the TE conversion efficiency. The evaporative cooling system increased the power output of the TE generator from 22.9 W of ambient air flowing through the heat sinks to 28.6 W at the hot gas temperature of 350°C (an increase of about 24.8%). The present study shows the promising potential of using TE generators with evaporative cooling for waste heat recovery.

  5. Multiple jet study

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Kors, D. L.

    1973-01-01

    Test data is presented which allows determination of jet penetration and mixing of multiple cold air jets into a ducted subsonic heated mainstream flow. Jet-to-mainstream momentum flux ratios ranged from 6 to 60. Temperature profile data is presented at various duct locations up to 24 orifice diameters downstream of the plane of jet injection. Except for two configurations, all geometries investigated had a single row of constant diameter orifices located transverse to the main flow direction. Orifice size and spacing between orifices were varied. Both of these were found to have a significant effect on jet penetration and mixing. The best mixing of the hot and cold streams was achieved with duct height.

  6. A comprehensive cold gas performance study of the Pocket Rocket radiofrequency electrothermal microthruster

    NASA Astrophysics Data System (ADS)

    Ho, Teck Seng; Charles, Christine; Boswell, Roderick W.

    2016-12-01

    This paper presents computational fluid dynamics simulations of the cold gas operation of Pocket Rocket and Mini Pocket Rocket radiofrequency electrothermal microthrusters, replicating experiments performed in both sub-Torr and vacuum environments. This work takes advantage of flow velocity choking to circumvent the invalidity of modelling vacuum regions within a CFD simulation, while still preserving the accuracy of the desired results in the internal regions of the microthrusters. Simulated results of the plenum stagnation pressure is in precise agreement with experimental measurements when slip boundary conditions with the correct tangential momentum accommodation coefficients for each gas are used. Thrust and specific impulse is calculated by integrating the flow profiles at the exit of the microthrusters, and are in good agreement with experimental pendulum thrust balance measurements and theoretical expectations. For low thrust conditions where experimental instruments are not sufficiently sensitive, these cold gas simulations provide additional data points against which experimental results can be verified and extrapolated. The cold gas simulations presented in this paper will be used as a benchmark to compare with future plasma simulations of the Pocket Rocket microthruster.

  7. Immersion in Cold-Water Evaluation (ICE) and self-reported cold intolerance are reliable but unrelated measures.

    PubMed

    Traynor, Robyn; MacDermid, Joy C

    2008-09-01

    Intolerance to the cold is common following peripheral nerve injury and surgery of the upper extremity. Despite its prevalence, the exact pathophysiology and natural history of this condition are not well understood. Subjective, self-report questionnaires have been created and validated as reliable measures of post-traumatic cold intolerance. The difficulty currently lies in assigning an objective measure to this predominantly subjective phenomenon. The present study evaluated the test-retest reliability of a proposed objective measure of cold intolerance, the Immersion in Cold-water Evaluation (ICE), and its correlation with subjective measures in healthy control subjects. Two age groups were also compared to investigate the effect of age on cold intolerance and temperature recovery. On two separate testing days, subjects completed three health-related questionnaires and submersed their dominant hands in cold water. The temperature of their second and fifth digits was monitored during recovery. Both the objective cold-provocation testing and the subjective self-report questionnaires were highly reliable albeit not significantly correlated. No significant temperature recovery trend was noted between the age groups. Post-traumatic cold intolerance is postulated to have both a vascular and neural etiology among other contributing causes. The protocol studied here was centered predominantly on the former etiology, examining peripheral blood flow and associated temperature recovery. This study established ICE as a reliable means to objectively measure cold response, supplementing information provided by previously validated self-report methods.

  8. Facility Activation and Characterization for IPD Oxidizer Turbopump Cold-Flow Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Raines, N. G.; Farner, B. R.; Ryan, H. M.

    2004-01-01

    The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) cold-flow test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in November 2001. A total of 11 IPD OTP cold-flow tests were completed. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and the cold-flow testing of the IPD OTP. In addition, some of the facility challenges encountered during the test project are addressed.

  9. Flow Separation Side Loads Excitation of Rocket Nozzle FEM

    NASA Technical Reports Server (NTRS)

    Smalley, Kurt B.; Brown, Andrew; Ruf, Joseph; Gilbert, John

    2007-01-01

    Modern rocket nozzles are designed to operate over a wide range of altitudes, and are also built with large aspect ratios to enable high efficiencies. Nozzles designed to operate over specific regions of a trajectory are being replaced in modern launch vehicles by those that are designed to operate from earth to orbit. This is happening in parallel with modern manufacturing and wall cooling techniques allowing for larger aspect ratio nozzles to be produced. Such nozzles, though operating over a large range of altitudes and ambient pressures, are typically designed for one specific altitude. Above that altitude the nozzle flow is 'underexpanded' and below that altitude, the nozzle flow is 'overexpanded'. In both conditions the nozzle produces less than the maximum possible thrust at that altitude. Usually the nozzle design altitude is well above sea level, leaving the nozzle flow in an overexpanded state for its start up as well as for its ground testing where, if it is a reusable nozzle such as the Space Shuttle Main Engine (SSME), the nozzle will operate for the majority of its life. Overexpansion in a rocket nozzle presents the critical, and sometimes design driving, problem of flow separation induced side loads. To increase their understanding of nozzle side loads, engineers at MSFC began an investigation in 2000 into the phenomenon through a task entitled "Characterization and Accurate Modeling of Rocket Engine Nozzle Side Loads", led by A. Brown. The stated objective of this study was to develop a methodology to accurately predict the character and magnitude of nozzle side loads. The study included further hot-fire testing of the MC-l engine, cold flow testing of subscale nozzles, CFD analyses of both hot-fire and cold flow nozzle testing, and finite element (fe.) analysis of the MC-1 engine and cold flow tested nozzles. A follow on task included an effort to formulate a simplified methodology for modeling a side load during a two nodal diameter fluid/structure interaction for a single moment in time.

  10. Approximate similarity principle for a full-scale STOVL ejector

    NASA Astrophysics Data System (ADS)

    Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.

    1994-03-01

    Full-scale ejector experiments are expensive and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles, in particular the Munk and prim principle for isentropic flow, was explored. Static performance test data for a full-scale thrust augmenting ejector were analyzed for primary flow temperature up to 1560 R. At different primary temperatures, exit pressure contours were compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, properly chosen performance parameters were found to be similar for both flow and cold flow model tests.

  11. Center for the Study of Plasma Microturbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Scott E.

    We have discovered a possible "natural fueling" mechanism in tokamak fusion reactors using large scale gyrokinetic turbulence simulation. In the presence of a heat flux dominated tokamak plasma, cold ions naturally pinch radially inward. If cold DT fuel is introduced near the edge using shallow pellet injection, the cold fuel will pinch inward, at the expense of hot helium ash going radially outward. By adjusting the cold DT fuel concentration, the core DT density profiles can be maintained. We have also shown that cold source ions from edge recycling of cold neutrals are pinched radially inward. This mechanism may bemore » important for fully understanding the edge pedestal buildup after an ELM crash. Work includes benchmarking the gyrokinetic turbulence codes in the electromagnetic regime. This includes cyclone base case parameters with an increasing plasma beta. The code comparisons include GEM, GYRO and GENE. There is good linear agreement between the codes using the Cyclone base case, but including electromagnetics and scanning the plasma beta. All the codes have difficulty achieving nonlinear saturation as the kinetic ballooning limit is approached. GEM does not saturate well when beta gets above about 1/2 of the ideal ballooning limit. We find that the lack of saturation is due to the long wavelength k{sub y} modes being nonlinearly pumped to high levels. If the fundamental k{sub y} mode is zeroed out, higher values of beta nonlinearly saturate well. Additionally, there have been studies to better understand CTEM nonlinear saturation and the importance of zonal flows. We have continued our investigation of trapped electron mode (TEM) turbulence. More recently, we have focused on the nonlinear saturation of TEM turbulence. An important feature of TEM is that in many parameter regimes, the zonal flow is unimportant. We find that when zonal flows are unimportant, zonal density is the dominant saturation mechanism. We developed a simple theory that agrees with the simulation and predicts zonal density generation and feedback stabilization of the most unstable mode even in the absence of zonal flow. We are using GEM to simulate NSTX discharges. We have also done verification and validation on DIII-D. Good agreement with GYRO and DIII-D flux levels were reported in the core region.« less

  12. Thermal Modeling of Bridgman Crystal Growth

    NASA Technical Reports Server (NTRS)

    Cothran, E.

    1983-01-01

    Heat Flow modeled for moving or stationary rod shaped sample inside directional-solidification furnace. Program effectively models one-dimensional heat flow in translating or motionless rod-shaped sample inside of directionalsolidification furnace in which adiabatic zone separates hot zone and cold zone. Applicable to systems for which Biot numbers in hot and cold zones are less than unity.

  13. Finger blood flow in Antarctica

    PubMed Central

    Elkington, E. J.

    1968-01-01

    1. Finger blood flow was estimated, by strain-gauge plethysmography, before and during a 1 hr immersion in ice water, on twenty-five men throughout a year at Wilkes, Antarctica. A total of 121 satisfactory immersions were made. 2. Blood flow before and during immersion decreased significantly in the colder months of the year, and the increase caused by cold-induced vasodilatation (CIVD) became less as the year progressed. The time of onset, blood flow at onset, and frequency of the cycles of CIVD showed no significant relation to the coldness of the weather (as measured by mean monthly wind chill) or the time in months. Comparisons of blood flow before and after five field trips (average duration 42 days), on which cold exposure was more severe than at Wilkes station, gave similar results. 3. The results suggest that vasoconstrictor tone increased. This interpretation agrees with previous work on general acclimatization in Antarctica, but contrasts with work elsewhere on local acclimatization of the hands. PMID:5684034

  14. Modeling and simulation of the flow field in the electrolysis of magnesium

    NASA Astrophysics Data System (ADS)

    Sun, Ze; Zhang, He-Nan; Li, Ping; Li, Bing; Lu, Gui-Min; Yu, Jian-Guo

    2009-05-01

    A three-dimensional mathematical model was developed to describe the flow field in the electrolysis cell of the molten magnesium salt, where the model of the three-phase flow was coupled with the electric field force. The mathematical model was validated against the experimental data of the cold model in the electrolysis cell of zinc sulfate with 2 mol/L concentration. The flow field of the cold model was measured by particle image velocimetry, a non-intrusive visualization experimental technique. The flow field in the advanced diaphragmless electrolytic cell of the molten magnesium salt was investigated by the simulations with the mathematical model.

  15. Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors

    NASA Astrophysics Data System (ADS)

    Sun, Bing-bing; Li, Shi-peng; Su, Wan-xing; Li, Jun-wei; Wang, Ning-fei

    2016-09-01

    In order to explore the impact of gas temperature on the nozzle damping characteristics of solid rocket motor, numerical simulations were carried out by an experimental motor in Naval Ordnance Test Station of China Lake in California. Using the pulse decay method, different cases were numerically studied via Fluent along with UDF (User Defined Functions). Firstly, mesh sensitivity analysis and monitor position-independent analysis were carried out for the computer code validation. Then, the numerical method was further validated by comparing the calculated results and experimental data. Finally, the effects of gas temperature on the nozzle damping characteristics were studied in this paper. The results indicated that the gas temperature had cooperative effects on the nozzle damping and there had great differences between cold flow and hot fire test. By discussion and analysis, it was found that the changing of mainstream velocity and the natural acoustic frequency resulted from gas temperature were the key factors that affected the nozzle damping, while the alteration of the mean pressure had little effect. Thus, the high pressure condition could be replaced by low pressure to reduce the difficulty of the test. Finally, the relation of the coefficients "alpha" between the cold flow and hot fire was got.

  16. THE LAUNCHING OF COLD CLOUDS BY GALAXY OUTFLOWS. II. THE ROLE OF THERMAL CONDUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brüggen, Marcus; Scannapieco, Evan

    2016-05-01

    We explore the impact of electron thermal conduction on the evolution of radiatively cooled cold clouds embedded in flows of hot and fast material as it occurs in outflowing galaxies. Performing a parameter study of three-dimensional adaptive mesh refinement hydrodynamical simulations, we show that electron thermal conduction causes cold clouds to evaporate, but it can also extend their lifetimes by compressing them into dense filaments. We distinguish between low column-density clouds, which are disrupted on very short times, and high-column density clouds with much longer disruption times that are set by a balance between impinging thermal energy and evaporation. Wemore » provide fits to the cloud lifetimes and velocities that can be used in galaxy-scale simulations of outflows in which the evolution of individual clouds cannot be modeled with the required resolution. Moreover, we show that the clouds are only accelerated to a small fraction of the ambient velocity because compression by evaporation causes the clouds to present a small cross-section to the ambient flow. This means that either magnetic fields must suppress thermal conduction, or that the cold clouds observed in galaxy outflows are not formed of cold material carried out from the galaxy.« less

  17. Anthocyanin-rich Aronia melanocarpa extract improves body temperature maintenance in healthy women with a cold constitution.

    PubMed

    Sonoda, Keisuke; Aoi, Wataru; Iwata, Tomoaki; Li, Yanmei

    2013-01-01

    Specific anthocyanin-rich dietary factors have been shown to improve metabolic functions associated with thermogenesis in animal studies. Aronia melanocarpa, commonly known as wild chokeberry, contains a high level of anthocyanin that would be expected to maintain body temperature through thermogenesis. We here investigated the effects of Aronia melanocarpa extracts on body temperature and peripheral blood flow in healthy women with a cold constitution. A pre/post comparison trial was performed in 11 women with a cold constitution, who were taking Aronia melanocarpa extracts (150 mg/day) for 4 weeks. Physiological and biochemical parameters, along with psychological tests were examined. The subjects' body surface temperature was significantly higher in the post-trial than in the pre-trial. In psychological tests, factors related to cold were significantly improved by Aronia intake. On the other hand, peripheral blood flow was not affected by Aronia supplementation. Plasma noradrenalin level was significantly elevated by Aronia intake, and subjects with a higher level of 8-hydroxy-2'-deoxyguanosine in the pre-trial showed decreased levels in the post-trial. These data suggest that dietary Aronia melanocarpa extract improves the maintenance of body temperature in healthy women with a cold constitution, which may be mediated by noradrenalin and oxidative stress levels.

  18. CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma

    NASA Astrophysics Data System (ADS)

    Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves

    2018-03-01

    The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.

  19. CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma

    NASA Astrophysics Data System (ADS)

    Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves

    2018-06-01

    The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.

  20. Gifford-McMahon refrigerator with split cold head

    NASA Technical Reports Server (NTRS)

    Forth, H. J.; Heisig, R.; Klein, H. H.

    1983-01-01

    Leybold-Heraeus Co. have developed, built and successfully tested a Gifford-McMahon cryocooler with splitted cold head for cooling a cryopump. The refrigerating part of the cold head and the gas flow control device have been separated (splitted cold head) and the distance between them is bridged by only two thin lines for carrying the working gas. Due to this separation the size of the refrigerating part is virtually defined only by the size of the displacers whilst the gas flow control device can be of any desired design. It has been shown that dimensioning of the connecting lines and the corresponding losses became less critical with increasing size of the expander, but additional cooling in proportion to the refrigerating capacity is required.

  1. The Structure of the Local Universe and the Coldness of the Cosmic Flow

    NASA Astrophysics Data System (ADS)

    van de Weygaert, R.; Hoffman, Y.

    Unlike the substantial coherent bulk motion in which our local patch of the Cosmos is participating, the amplitude of the random motions around this large scale flow seems to be surprisingly low. Attempts to invoke global explanations to account for this coldness of the local cosmic velocity field have not yet been succesfull. Here we propose a different view on this cosmic dilemma, stressing the repercussions of our cosmic neighbourhood embodying a rather uncharacteristic region of the Cosmos. Suspended between two huge mass concentrations, the Great Attractor region and the Perseus-Pisces chain, we find ourselves in a region of relatively low density yet with a very strong tidal shear. By means of constrained realizations of our local Universe, based on Wiener-filtered reconstructions inferred from the Mark III catalogue of galaxy peculiar velocities, we show that indeed this configuration may induce locally cold regions. Hence, the coldness of the local flow may be a cosmic variance effect.

  2. Operational experience with the supercritical helium during the TF coils tests campaign of SST-1

    NASA Astrophysics Data System (ADS)

    Panchal, Rohitkumar Natvarlal; Patel, Rakesh; Tank, Jignesh; Mahesuria, Gaurang; Sonara, Dashrath; Tanna, Vipul; Patel, Jayant; Srikanth, G. L. N.; Singh, Manoj; Patel, Ketan; Christian, Dikens; Garg, Atul; Bairagi, Nitn; Gupta, Manoj Kumar; Nimavat, Hiren; Shah, Pankil; Sharma, Rajiv; Pradhan, Subrata

    2012-06-01

    Under the 'SST-1 mission mandate' recently, all the sixteen Steady State Superconducting Tokamak (SST-1) Toroidal Field (TF) magnets have been successfully tested at their nominal currents of 10000 A in cold under supercritical helium (SHe) flow conditions. The TF magnets test campaign have begun in an experimental cryostat since June 2010 with the SST-1 Helium cryogenics facility, which is a 1.3 kW at 4.5 K helium refrigerator-cum-liquefier (HRL) system. The HRL provides ~300 g-s-1supercritical helium (SHe) with cold circulator (CC) as well as ~ 60 g-s-1 without cold circulator to fulfill the forced flow cooling requirements of SST- 1 magnets. In case of single TF coil tests, we can adjust HRL process parameters such that an adequate amount of required supercritical helium is available without the cold circulator. In this paper, the complete process is describing the Process Flow Diagram (PFD) of 1.3 kW at 4.5 K HRL, techniques to generate supercritical helium without using the cold-circulator and the results of the cooldown, steady state characteristics and experience of supercritical helium operations during the TF coils test campaign have been discussed.

  3. The Launching of Cold Clouds by Galaxy Outflows. I. Hydrodynamic Interactions with Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Scannapieco, Evan; Brüggen, Marcus

    2015-06-01

    To better understand the nature of the multiphase material found in outflowing galaxies, we study the evolution of cold clouds embedded in flows of hot and fast material. Using a suite of adaptive mesh refinement simulations that include radiative cooling, we investigate both cloud mass loss and cloud acceleration under the full range of conditions observed in galaxy outflows. The simulations are designed to track the cloud center of mass, enabling us to study the cloud evolution at long disruption times. For supersonic flows, a Mach cone forms around the cloud, which damps the Kelvin-Helmholtz instability but also establishes a streamwise pressure gradient that stretches the cloud apart. If time is expressed in units of the cloud crushing time, both the cloud lifetime and the cloud acceleration rate are independent of cloud radius, and we find simple scalings for these quantities as a function of the Mach number of the external medium. A resolution study suggests that our simulations accurately describe the evolution of cold clouds in the absence of thermal conduction and magnetic fields, physical processes whose roles will be studied in forthcoming papers.

  4. Noncircular orifice holes and advanced fabrication techniques for liquid rocket injectors. Phase 3: Analytical and cold-flow experimental evaluation of rectangular concentric tube injector elements for gas/liquid application. Phase 4: Analytical and experimental evaluation of noncircular injector elements for gas/liquid and liquid/liquid application

    NASA Technical Reports Server (NTRS)

    Mchale, R. M.

    1974-01-01

    Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.

  5. Two-Dimensional Heat Transfer Modeling of the Formosa Ridge Offshore SW Taiwan: Implication for Fluid Migrating Paths of a Cold Seep Site

    NASA Astrophysics Data System (ADS)

    Tsai, Y.; Chi, W.; Liu, C.; Shyu, C.

    2011-12-01

    The Formosa Ridge, a small ridge located on the passive China continental slope offshore southwestern Taiwan, is an active cold seep site. Large and dense chemosynthetic communities were found there by the ROV Hyper-Dolphin during the 2007 NT0705 cruise. A vertical blank zone is clearly observed on all the seismic profiles across the cold seep site. This narrow zone is interpreted to be the fluid conduit of the seep site. Previous studies suggest that cold sea water carrying large amount of sulfate could flow into the fluid system from flanks of the ridge, and forms a very effective fluid circulation system that emits both methane and hydrogen sulfide to feed the unusual chemosynthetic communities observed at the Formosa Ridge cold seep site. Here we use thermal signals to study possible fluid flow migration paths. In 2008 and 2010, we have collected vdense thermal probe data at this site. We also study the temperatures at Bottom-Simulating Reflectors (BSRs) based on methane hydrate phase diagram. We perform 2D finite element thermal conductive simulations to study the effects of bathymetry on the temperature field in the ridge, and compare the simulation result with thermal probe and BSR-derived datasets. The boundary conditions include insulated boundaries on both sides, and we assign a fix temperature at the bottom of the model using an average regional geothermal gradient. Sensitivity tests and thermal probe data from a nearby region give a regional background geothermal gradient of 0.04 to 0.05 °C/m. The outputs of the simulation runs include geothermal gradient and temperature at different parts of the model. The model can fit the geothermal gradient at a distance away from the ridge where there is less geophysics evidence of fluid flow. However our model over-predicts the geothermal gradient by 50% at the ridge top. We also compare simulated temperature field and found that under the flanks of the ridge the temperature is cooled by 2 °C compared with the BSR-derived temperatures. These results are consistent with the interpretation of cold seawater being pumped into the ridge from both flanks, cooling the temperature field. In summary, the thermal data are consistence with previously proposed fluid circulation model.

  6. On the variability of cold region flooding

    NASA Astrophysics Data System (ADS)

    Matti, Bettina; Dahlke, Helen E.; Lyon, Steve W.

    2016-03-01

    Cold region hydrological systems exhibit complex interactions with both climate and the cryosphere. Improving knowledge on that complexity is essential to determine drivers of extreme events and to predict changes under altered climate conditions. This is particularly true for cold region flooding where independent shifts in both precipitation and temperature can have significant influence on high flows. This study explores changes in the magnitude and the timing of streamflow in 18 Swedish Sub-Arctic catchments over their full record periods available and a common period (1990-2013). The Mann-Kendall trend test was used to estimate changes in several hydrological signatures (e.g. annual maximum daily flow, mean summer flow, snowmelt onset). Further, trends in the flood frequency were determined by fitting an extreme value type I (Gumbel) distribution to test selected flood percentiles for stationarity using a generalized least squares regression approach. Results highlight shifts from snowmelt-dominated to rainfall-dominated flow regimes with all significant trends (at the 5% significance level) pointing toward (1) lower magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest widespread permafrost thawing and are supported by increasing trends in annual minimum daily flows. Trends in selected flood percentiles showed an increase in extreme events over the full periods of record (significant for only four catchments), while trends were variable over the common period of data among the catchments. An uncertainty analysis emphasizes that the observed trends are highly sensitive to the period of record considered. As such, no clear overall regional hydrological response pattern could be determined suggesting that catchment response to regionally consistent changes in climatic drivers is strongly influenced by their physical characteristics.

  7. Development of Flow and Heat Transfer Models for the Carbon Fiber Rope in Nozzle Joints of the Space Shuttle Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Wang, Q.; Ewing, M. E.; Mathias, E. C.; Heman, J.; Smith, C.; McCool, Alex (Technical Monitor)

    2001-01-01

    Methodologies have been developed for modeling both gas dynamics and heat transfer inside the carbon fiber rope (CFR) for applications in the space shuttle reusable solid rocket motor joints. Specifically, the CFR is modeled using an equivalent rectangular duct with a cross-section area, friction factor and heat transfer coefficient such that this duct has the same amount of mass flow rate, pressure drop, and heat transfer rate as the CFR. An equation for the friction factor is derived based on the Darcy-Forschheimer law and the heat transfer coefficient is obtained from pipe flow correlations. The pressure, temperature and velocity of the gas inside the CFR are calculated using the one-dimensional Navier-Stokes equations. Various subscale tests, both cold flow and hot flow, have been carried out to validate and refine this CFR model. In particular, the following three types of testing were used: (1) cold flow in a RSRM nozzle-to-case joint geometry, (2) cold flow in a RSRM nozzle joint No. 2 geometry, and (3) hot flow in a RSRM nozzle joint environment simulator. The predicted pressure and temperature history are compared with experimental measurements. The effects of various input parameters for the model are discussed in detail.

  8. Fluid-dynamically coupled solid propellant combustion instability - cold flow simulation

    NASA Astrophysics Data System (ADS)

    Ben-Reuven, M.

    1983-10-01

    The near-wall processes in an injected, axisymmetric, viscous flow is examined. Solid propellant rocket instability, in which cold flow simulation is evaluated as a tool to elucidate possible instability driving mechanisms is studied. One such prominent mechanism seems to be visco-acoustic coupling. The formulation is presented in terms of a singular boundary layer problem, with detail (up to second order) given only to the near wall region. The injection Reynolds number is assumed large, and its inverse square root serves as an appropriate small perturbation quantity. The injected Mach number is also small, and taken of the same order as the aforesaid small quantity. The radial-dependence of the inner solutions up to second order is solved, in polynominal form. This leaves the (x,t) dependence to much simpler partial differential equations. Particular results demonstrate the existence of a first order pressure perturbation, which arises due to the dissipative near wall processes. This pressure and the associated viscous friction coefficient are shown to agree very well with experimental injected flow data.

  9. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster

    PubMed Central

    McCue, Marshall D.; Sunny, Nishanth E.; Szejner-Sigal, Andre; Morgan, Theodore J.; Allison, David B.; Hahn, Daniel A.

    2016-01-01

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using 13C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  10. Flood Seasonality in a Changing Climate - A Comparison Between Northern Europe and Northeastern North America

    NASA Astrophysics Data System (ADS)

    Matti, B.; Dahlke, H. E.; Dieppois, B.; Lawler, D.; Lyon, S. W.

    2016-12-01

    Fluvial flood events have a large impact on humans, both socially and economically. Concurrent with climate change flood seasonality in cold environments is expected to shift from a snowmelt-dominated to a rainfall-dominated flow regime. This would have profound impacts on water management strategies, i.e. flood risk mitigation, drinking water supply and hydro power. In addition, cold climate hydrological systems exhibit complex interactions with catchment properties and large-scale climate fluctuations making the manifestation of changes difficult to detect and predict. Understanding a possible change in flood seasonality is essential to mitigate risk and to keep management strategies viable under a changing climate. This study explored changes in flood seasonality across near-natural catchments in cold environments of the North Atlantic region (40 - 70° N) using circular statistics and trend tests. Results indicate strong seasonality in flooding for snowmelt-dominated catchments with a single peak occurring in spring (March through May), whereas flood peaks are more equally distributed throughout the year for catchments located close to the Atlantic coast and in the south of the study area. Flood seasonality has changed over the past century seen as decreasing trends in summer maximum daily flows and increasing winter and spring maximum daily flows. Mean daily flows corroborate those findings with approximately 50% of the catchments showing significant changes. Comparing Scandinavia to North America the same trends could be detected with a stronger signal at the west coast of Scandinavia due to the Westerlies. Contrasting trends were detected for spring flows, for which North American catchments showed decreasing trends whereas increasing trends were observed across Scandinavia. Such changes in flood seasonality have clear implications for management strategies such as the estimation of design floods for flood prevention measures.

  11. Urinary excretion of adrenal steroids, catecholamines and electrolytes in man, before and after acclimatization to cold in Antarctica

    PubMed Central

    Budd, G. M.; Warhaft, N.

    1970-01-01

    1. Urine samples were collected from four men before and during test cold exposures in Melbourne, Australia, and Mawson, Antarctica. Changes in the response of body temperature to the test exposures showed that the men had acclimatized to cold at Mawson. 2. Excretion rates of 17-hydroxycorticosteroids and 17-ketosteroids were significantly greater at Mawson than in Melbourne, in both the pre-exposure and exposure periods. 3. Excretion rates of noradrenaline, adrenaline, sodium, potassium and creatinine did not differ significantly between Mawson and Melbourne, nor did urine flow rates. 4. During the cold exposure significant increases occurred, to the same extent at Mawson as in Melbourne, in urine flow rate and in all measured urinary constituents except creatinine. PMID:5501486

  12. Population genetic structure in Sabatieria (Nematoda) reveals intermediary gene flow and admixture between distant cold seeps from the Mediterranean Sea.

    PubMed

    De Groote, Annelies; Hauquier, Freija; Vanreusel, Ann; Derycke, Sofie

    2017-07-01

    There is a general lack of information on the dispersal and genetic structuring for populations of small-sized deep-water taxa, including free-living nematodes which inhabit and dominate the seafloor sediments. This is also true for unique and scattered deep-sea habitats such as cold seeps. Given the limited dispersal capacity of marine nematodes, genetic differentiation between such geographically isolated habitat patches is expected to be high. Against this background, we examined genetic variation in both mitochondrial (COI) and nuclear (18S and 28S ribosomal) DNA markers of 333 individuals of the genus Sabatieria, abundantly present in reduced cold-seep sediments. Samples originated from four Eastern Mediterranean cold seeps, separated by hundreds of kilometers, and one seep in the Southeast Atlantic. Individuals from the Mediterranean and Atlantic were divided into two separate but closely-related species clades. Within the Eastern Mediterranean, all specimens belonged to a single species, but with a strong population genetic structure (Φ ST  = 0.149). The haplotype network of COI contained 19 haplotypes with the most abundant haplotype (52% of the specimens) shared between all four seeps. The number of private haplotypes was high (15), but the number of mutations between haplotypes was low (1-8). These results indicate intermediary gene flow among the Mediterranean Sabatieria populations with no evidence of long-term barriers to gene flow. The presence of shared haplotypes and multiple admixture events indicate that Sabatieria populations from disjunct cold seeps are not completely isolated, with gene flow most likely facilitated through water current transportation of individuals and/or eggs. Genetic structure and molecular diversity indices are comparable to those of epiphytic shallow-water marine nematodes, while no evidence of sympatric cryptic species was found for the cold-seep Sabatieria.

  13. Simulation of Cold Flow in a Truncated Ideal Nozzle with Film Cooling

    NASA Technical Reports Server (NTRS)

    Braman, Kalen; Ruf, Joseph

    2015-01-01

    Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket nozzles. The capability to estimate these side loads computationally can streamline the nozzle design process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated for a range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model choices and with four different versions of the TIC nozzle model geometry, each of which was created with a different simplification to the test article geometry.

  14. Skin cooling on contact with cold materials: the effect of blood flow during short-term exposures.

    PubMed

    Jay, Ollie; Havenith, George

    2004-03-01

    This study investigates the effect of blood flow upon the short-term (<180 s) skin contact cooling response in order to ascertain whether sufferers of circulatory disorders, such as the vasospastic disorder Raynaud's disease, are at a greater risk of cold injury than people with a normal rate of blood flow. Eight female volunteers participated, touching blocks of stainless steel and nylon with a finger contact force of 2.9 N at a surface temperature of -5 degrees C under occluded and vasodilated conditions. Contact temperature (Tc) of the finger pad was measured over time using a T-type thermocouple. Forearm blood flow was measured using strain gauge plethysmography. Contact cooling responses were analysed by fitting a modified Newtonian cooling curve. A significant difference was found between the starting skin temperatures for the two blood flow conditions (P<0.001). However, no effect of blood flow was found upon any of the derived cooling curve parameters characterizing the skin cooling response (P>0.05). It is hypothesized that the finger contact force used (2.9 N) and the resultant pressure upon the tissue of the contact finger pad restricted the blood supply to the contact area under both blood flow conditions; therefore, no effect of blood flow was found upon the parameters describing the contact cooling response. Whilst the findings of this study are sufficient to draw a conclusion for those in a working environment, i.e. contact forces below 2.9 N will seldom be encountered, a further study will be required to ascertain conclusively whether blood flow does affect the contact cooling response at a finger contact force low enough to allow unrestricted blood flow to the finger pad. Further protocol improvements are also recommended.

  15. Base Flow Model Validation

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John

    2011-01-01

    A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.

  16. Early sign of microangiopathy in systemic sclerosis: The significance of cold stress test in dynamic laser Doppler flowmetry.

    PubMed

    Yu, Sebastian; Hu, Stephen Chu-Sung; Yu, Hsin-Su; Chin, Yi-Ying; Cheng, Yang-Chun; Lee, Chih-Hung

    2018-06-05

    Skin physiology measurement is receiving more attention for detecting vasculopathy in systemic sclerosis (SSc). Laser Doppler flowmetry (LDF) is a widely used physiological measurement to assess cutaneous microcirculation. However, findings of LDF may be normal during early stage of microangiopathy in SSc. We hypothesized that cold stress test combined with LDF could detect early-stage microangiopathy in patients with SSc. A 67-year-old male came with multiple ulcerations on his fingers for one year. After excluding diseases such as diabetes mellitus-related peripheral arterial occlusive disease and smoking-related Buerger's disease, the diagnosis of SSc was made according to the 2013 ACR/EULAR criteria. We performed LDF and angiography for a patient with SSc and compared the results. Although occlusions of right ulnar and digital arteries were obvious in angiography, the baseline skin temperature and perfusion unit on right fingers remained within normal limits. While the microcirculatory abnormalities measured by LDF alone are subtle, LDF combined with cold stress test detected a significant slow recovery of skin blood flow 40 minutes after cold immersion. In conclusion, there may be discordance between macrovasculopathy and baseline microcirculatory blood flow in SSc. In such a case, cold immersion test is essential to measure the dynamic change and slow recovery of blood flow.

  17. Reactor Simulator Testing Overview

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Michael P.

    2013-01-01

    OBJECTIVE: Integrated testing of the TDU components TESTING SUMMARY: a) Verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. b) Thermal test heat regeneration design aspect of a cold trap purification filter. c) Pump performance test at pump voltages up to 150 V (targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V). TESTING HIGHLIGHTS: a) Gas and vacuum ground support test equipment performed effectively for NaK fill, loop pressurization, and NaK drain operations. b) Instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  18. Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples.

    PubMed

    Niemira, Brendan A; Sites, Joseph

    2008-07-01

    Cold plasma generated in a gliding arc was applied to outbreak strains of Escherichia coli O157:H7 and Salmonella Stanley on agar plates and inoculated onto the surfaces of Golden Delicious apples. This novel sanitizing technology inactivated both pathogens on agar plates, with higher flow rate (40 liters/min) observed to be more efficacious than were lower flow rates (20 liters/min), irrespective of treatment time (1 or 2 min). Golden Delicious apples were treated with various flow rates (10, 20, 30, or 40 liters/min) of cold plasma for various times (1, 2, or 3 min), applied to dried spot inoculations. All treatments resulted in significant (P < 0.05) reductions from the untreated control, with 40 liters/min more effective than were lower flow rates. Inactivation of Salmonella Stanley followed a time-dependent reduction for all flow rates. Reductions after 3 min ranged from 2.9 to 3.7 log CFU/ml, close to the limit of detection. For E. coli O157:H7, 40 liters/min gave similar reductions for all treatment times, 3.4 to 3.6 log CFU/ml. At lower flow rates, inactivation was related to exposure time, with 3 min resulting in reductions of 2.6 to 3 log CFU/ml. Temperature increase of the treated apples was related to exposure time for all flow rates. The maximum temperature of any plasma-treated apple was 50.8 degrees C (28 degrees C above ambient), after 20 liters/min for 3 min, indicating that antimicrobial effects were not the result of heat. These results indicate that cold plasma is a nonthermal process that can effectively reduce human pathogens inoculated onto fresh produce.

  19. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    NASA Image and Video Library

    1998-03-04

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. "I think all in all we had a good mission today," Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew "thought it was a really good flight." Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, "We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE."

  20. Reflux cooling experiments on the NCSU scaled PWR facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doster, J.M.; Giavedoni, E.

    1993-01-01

    Under loss of forced circulation, coupled with the loss or reduction in primary side coolant inventory, horizontal stratified flows can develop in the hot and cold legs of pressurized water reactors (PWRs). Vapor produced in the reactor vessel is transported through the hot leg to the steam generator tubes where it condenses and flows back to the reactor vessel. Within the steam generator tubes, the flow regimes may range from countercurrent annular flow to single-phase convection. As a result, a number of heat transfer mechanisms are possible, depending on the loop configuration, total heat transfer rate, and the steam flowmore » rate within the tubes. These include (but are not limited to) two-phase natural circulation, where the condensate flows concurrent to the vapor stream and is transported to the cold leg so that the entire reactor coolant loop is active, and reflux cooling, where the condensate flows back down the interior of the coolant tubes countercurrent to the vapor stream and is returned to the reactor vessel through the hot leg. While operating in the reflux cooling mode, the cold leg can effectively be inactive. Heat transfer can be further influenced by noncondensables in the vapor stream, which accumulate within the upper regions of the steam generator tube bundle. In addition to reducing the steam generator's effective heat transfer area, under these conditions operation under natural circulation may not be possible, and reflux cooling may be the only viable heat transfer mechanism. The scaled PWR (SPWR) facility in the nuclear engineering department at North Carolina State Univ. (NCSU) is being used to study the effectiveness of two-phase natural circulation and reflux cooling under conditions associated with loss of forced circulation, midloop coolant levels, and noncondensables in the primary coolant system.« less

  1. Vortex dynamics studies in supersonic flow

    NASA Astrophysics Data System (ADS)

    Vergine, Fabrizio

    This dissertation covers the study of selected vortex interaction scenarios both in cold and high enthalpy reacting flows. Specifically, the experimental results and the analysis of the flowfields resulting from two selected supersonic vortex interaction modes in a Mach 2.5 cold flow are presented. Additionally, the experiment design, based on vortex dynamics concepts, and the reacting plume survey of two pylon injectors in a Mach 2.4 high enthalpy flow are shown. All the cold flow experiments were conducted in the supersonic wind tunnel of the Aerodynamics Research Center at the University of Texas at Arlington. A strut injector equipped with specified ramp configurations was designed and used to produce the flowfields of interest. The reacting flow experiments were conducted in the the Expansion Tube Facility located in the High Temperature Gasdynamics Laboratory of Stanford University. A detailed description of the supersonic wind tunnel, the instrumentation, the strut injector and the supersonic wake flow downstream is shown as part of the characterization of the facility. As Stereoscopic Particle Image Velocimetry was the principal flow measurement technique used in this work to probe the streamwise vortices shed from ramps mounted on the strut, this dissertation provides a deep overview of the challenges and the application of the aforementioned technique to the survey of vortical flows. Moreover, the dissertation provides the comprehensive analysis of the mean and fluctuating velocity flowfields associated with two distinct vortex dynamics scenarios, as chosen by means of the outcomes of the simulations of a reduced order model developed in the research group. Specifically, the same streamwise vortices (strength, size and Reynolds number) were used experimentally to investigate both a case in which the resulting dynamics evolve in a vortex merging scenario and a case where the merging process is voluntarily avoided in order to focus the analysis on the fundamental differences associated with the amalgamation processes alone. The results from the mean flow highlight major differences between the two cases and will justify the use of the inviscid reduced order model used to predict the main flow physics. The analysis of the turbulence quantities based on concepts borrowed from incompressible turbulence theory explains interesting features of the fluctuating flowfields, suggesting that turbulence associated with the inspected flow conditions is essentially incompressible. Once the interactions among the vortical structures in cold flow were assessed, these vortex dynamics concepts were probed in a reacting environment. The dissertation describes the design phase of two pylon injectors based on the prediction capabilities of the aforementioned model. Then, the results of a set of combustion experiments conducted utilizing hydrogen fuel injected into Mach 2.4, high-enthalpy (2.8˜MJ/kg) air flow are discussed. The results show that, for the heat release levels considered in this study, the morphology of the plume and its evolution is very similar to the results produced by the code, enabling an interpretation of the phenomena based on vortex dynamics considerations. The persistence of the streamwise vortical structures created by the selected ramp configurations is shown together with the effectiveness of the coherent structures in successfully anchoring the flame very close to the injection point. The work shows the possibility of a new approach in the design of injection strategies (i.e., not limited to injection devices) suitable for adoption in scramjet combustors based on the ability to predict, with basic vortex dynamics concepts and a highly reduced computational cost, the main features of flows of technological interest.

  2. Time-Resolved PIV for Space-Time Correlations in Hot Jets

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is being used to characterize the decay of turbulence in jet flows a critical element for understanding the acoustic properties of the flow. A TR-PIV system, developed in-house at the NASA Glenn Research Center, is capable of acquiring planar PIV image frame pairs at up to 10 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number.

  3. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A.

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  4. Wolf Creek Research Basin Cold REgion Process Studies - 1992-2003

    NASA Astrophysics Data System (ADS)

    Janowicz, R.; Hedstrom, N.; Pomeroy, J.; Granger, R.; Carey, S.

    2004-12-01

    The development of hydrological models in northern regions are complicated by cold region processes. Sparse vegetation influences snowpack accumulation, redistribution and melt, frozen ground effects infiltration and runoff and cold soils in the summer effect evapotranspiration rates. Situated in the upper Yukon River watershed, the 195 km2 Wolf Creek Research Basin was instrumented in 1992 to calibrate hydrologic flow models, and has since evolved into a comprehensive study of cold region processes and linkages, contributing significantly to hydrological and climate change modelling. Studies include those of precipitation distribution, snowpack accumulation and redistribution, energy balance, snowmelt infiltration, and water balance. Studies of the spatial variability of hydrometeorological data demonstrate the importance of physical parameters on their distribution and control on runoff processes. Many studies have also identified the complex interaction of several of the physical parameters, including topography, vegetation and frozen ground (seasonal or permafrost) as important. They also show that there is a fundamental, underlying spatial structure to the watershed that must be adequately represented in parameterization schemes for scaling and watershed modelling. The specific results of numerous studies are presented.

  5. Sustaining Health and Performance in the Cold: Environmental Medicine Guidance for Cold-Weather Operation.

    DTIC Science & Technology

    1992-07-01

    or vehicle should be suspected of possible CO poisoning. 4. DO NOT APPLY OINTMENTS , SNOW OR ICE TO THE BURN , 3. Proper field sanitation is very AND DO...susceptible to cold injuries, and the use of indoor stoves may lead to burns or suffocation. Operational problems often arise in cold weather. Heavy...potential for body heat to escape. When the skin is exposed to cold, the brain signals the blood vessels in the skin to tighten, and blood flow to the skin

  6. Understanding the effects of process parameters on the properties of cold gas dynamic sprayed pure titanium coatings

    NASA Astrophysics Data System (ADS)

    Wong, Wilson

    The cold gas dynamic spraying of commercially pure titanium coatings was investigated. Specifically, the relationship between several key cold spray parameters on the quality of the resulting coatings was studied in order to gain a more thorough understanding of the cold spray process. To achieve this goal, three distinct investigations were performed. The first part of the investigation focussed on the effect of propelling gas, particularly helium and nitrogen, during the cold spraying of titanium coatings. Coatings were characterised by SEM and were evaluated for their deposition efficiency (DE), microhardness, and porosity. In selected conditions, three particle velocities were investigated such that for each condition, the propelling gasses temperature and pressure were attuned to attain similar particle velocities for each gas. In addition, a thick and fully dense cold sprayed titanium coating was achieved with optimised spray parameters and nozzle using helium. The corresponding average particle velocity was 1173 m/s. The second part of the investigation studied the effect of particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20, 29, and 36 mum) of commercially pure titanium on the mechanical properties of the resulting cold sprayed coatings. Numerous powder and coating characterisations were performed. From these data, semi-empirical flow (stress-strain) curves were generated based on the Johnson-Cook plasticity model which could be used as a measure of cold sprayability. Cold sprayability can be defined as the ease with which a powder can be cold sprayed. It was found that the sponge and irregular commercially pure titanium powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities compared to the spherical powders. XRD results showed no new phases present when comparing the various feedstock powders to their corresponding coatings. For all feedstock powder morphologies, it was observed that the larger the particle size, the higher the temperature generated on impact. For the spherical powders, the higher the temperature generated on impact, the lower the stress needed to deform the particle. In addition, as the kinetic energy of the impacting particle increased, the flow peak stress decreased while the final strain increased. Furthermore, higher final flow strains were associated with higher coating DeltaHV 10 (between the coatings and the feedstock powders). Similar relationships are expected to exist for the sponge and irregular feedstock powders. Based on porosity, the spherical medium powder was found to have the best cold sprayability. The final part of the investigation focussed on the effect of substrate surface roughness and coating thickness on the adhesion strength of commercially pure titanium cold sprayed coatings onto Steel 1020, Al 6061, and Ti substrates. Adhesion strength was measured by tensile/pull tests according to ASTM C-633-01 standard. Through-thickness residual stresses of selected coatings were measured using the modified layer removal method (MLRM). In addition, mean coating residual stresses were calculated from MLRM results. It was found that adhesion strength increases with increasing substrate surface roughness and decreases with increasing coating thickness. Furthermore, mean coating residual stresses were correlated with adhesion strength and it was suggested that higher adhesion strengths are associated with higher mean compressive stresses and a higher probability for adiabatic shear instability to occur due to the higher particle impact velocities. In general, it was found that under similar cold spray conditions and substrate surface preparation method, adhesion strength was strongest for commercially pure titanium coatings deposited onto Al 6061, followed by Ti, then Steel 1020.

  7. Use of an approximate similarity principle for the thermal scaling of a full-scale thrust augmenting ejector

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.

    1992-01-01

    Full temperature ejector model simulations are expensive, and difficult to implement experimentally. If an approximate similarity principle could be established, properly chosen performance parameters should be similar for both hot and cold flow tests if the initial Mach number and total pressures of the flow field are held constant. Existing ejector data is used to explore the utility of one particular similarity principle; the Munk and Prim similarity principle for isentropic flows. Static performance test data for a full-scale thrust augmenting ejector are analyzed for primary flow temperatures up to 1560 R. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments.

  8. Use of an approximate similarity principle for the thermal scaling of a full-scale thrust augmenting ejector

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy; Perusek, Gail P.; Ibrahim, Mounir

    1992-01-01

    Full temperature ejector model simulations are expensive, and difficult to implement experimentally. If an approximate similarity principle could be established, properly chosen performance parameters should be similar for both hot and cold flow tests if the initial Mach number and total pressures of the flow field are held constant. Existing ejector data is used to explore the utility of one particular similarity principle; the Munk and Prim similarity principle for isentropic flows. Static performance test data for a full-scale thrust augmenting ejector are analyzed for primary flow temperatures up to 1560 R. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow paramenter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments.

  9. RELAP5 Analyses of OECD/NEA ROSA-2 Project Experiments on Intermediate-Break LOCAs at Hot Leg or Cold Leg

    NASA Astrophysics Data System (ADS)

    Takeda, Takeshi; Maruyama, Yu; Watanabe, Tadashi; Nakamura, Hideo

    Experiments simulating PWR intermediate-break loss-of-coolant accidents (IBLOCAs) with 17% break at hot leg or cold leg were conducted in OECD/NEA ROSA-2 Project using the Large Scale Test Facility (LSTF). In the hot leg IBLOCA test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing (LSC) induced by steam condensation on accumulator coolant injected into cold leg. Water remained on upper core plate in upper plenum due to counter-current flow limiting (CCFL) because of significant upward steam flow from the core. In the cold leg IBLOCA test, core dryout took place due to rapid liquid level drop in the core before LSC. Liquid was accumulated in upper plenum, steam generator (SG) U-tube upflow-side and SG inlet plenum before the LSC due to CCFL by high velocity vapor flow, causing enhanced decrease in the core liquid level. The RELAP5/MOD3.2.1.2 post-test analyses of the two LSTF experiments were performed employing critical flow model in the code with a discharge coefficient of 1.0. In the hot leg IBLOCA case, cladding surface temperature of simulated fuel rods was underpredicted due to overprediction of core liquid level after the core uncovery. In the cold leg IBLOCA case, the cladding surface temperature was underpredicted too due to later core uncovery than in the experiment. These may suggest that the code has remaining problems in proper prediction of primary coolant distribution.

  10. Inflow velocities of cold flows streaming into massive galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Ceverino, Daniel

    2015-07-01

    We study the velocities of the accretion along streams from the cosmic web into massive galaxies at high redshift with the help of three different suites of AMR hydrodynamical cosmological simulations. The results are compared to free-fall velocities and to the sound speeds of the hot ambient medium. The sound speed of the hot ambient medium is calculated using two different methods to determine the medium's temperature. We find that the simulated cold stream velocities are in violent disagreement with the corresponding free-fall profiles. The sound speed is a better albeit not always correct description of the cold flows' velocity. Using these calculations as a first order approximation for the gas inflow velocities vinflow = 0.9 vvir is given. We conclude from the hydrodynamical simulations as our main result that the velocity profiles for the cold streams are constant with radius. These constant inflow velocities seem to have a `parabola-like' dependency on the host halo mass in units of the virial velocity that peaks at Mvir = 1012 M⊙ and we also propose that the best-fitting functional form for the dependency of the inflow velocity on the redshift is a square root power-law relation: v_inflow ∝ √{z + 1} v_vir.

  11. A Design Tool for Liquid Rocket Engine Injectors

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Cheng, Gary; Trinh, Huu Phuoc; Tucker, P. Kevin; Hutt, John

    1999-01-01

    A practical design tool for the analysis of flowfields near the injector face has been developed and used to analyze the Fastrac engine. The objective was to produce a computational design tool which was detailed enough to predict the interactive effects of injector element impingement angles and points and the momenta of the individual orifice flows. To obtain a model which could be used to simulate a significant number of individual orifices, a homogeneous computational fluid dynamics model was developed. To describe liquid and vapor sub- and super-critical flows, the model included thermal and caloric equations of state which were valid over a wide range of pressures and temperatures. A homogeneous model was constructed such that the local state of the flow was determined directly, i.e. the quality of the flow was calculated. Such a model does not identify drops or their distribution, but it does allow the flow along the injector face and into the acoustic cavity to be predicted. It also allows the film coolant flow to be accurately described. The initial evaluation of the injector code was made by simulating cold flow from an unlike injector element and from a like-on-like overlapping fan (LOL) injector element. The predicted mass flux distributions of these injector elements compared well to cold flow test results. These are the same cold flow tests which serve as the data base for the JANNAF performance prediction codes. The flux distributions 1 inch downstream of the injector face are very similar; the differences were somewhat larger at further distances from the faceplate. Since the cold flow testing did not achieve good mass balances when integrations across the entire fan were made, the CFD simulation appears to be reasonable alternative to future cold flow testing. To simulate the Fastrac, an RP-1/LOX combustion model must be chosen. This submodel must be relatively simple to accomplish three-dimensional, multiphase flow simulations. Single RP-1 pyrolysis and partial oxidation steps were chosen and the combustion was completed with the wet CO mechanism. Soot was also formed with a single global reaction. To validate the combustion submodel, global data from gas generator tests and from subscale motor test were used to predict qualitatively correct mean molecular weights, temperature, and soot levels. Because such tests do not provide general kinetics rates, the methodology is not necessarily appropriate for other than rocket type flows conditions. Soot predictions were made so that radiation heating to the motor walls can be made. These initial studies of the Fastrac were for a small region close to the injector face and chamber wall which included a segment of the acoustic cavity. The region analyzed includes 11 individual orifice holes to represent the LOL elements and the H2 film coolant holes. Typical results of this simulation are shown in Figure 1. At this point the only available test data to verify the predictions are temperatures measured in the acoustic cavity. These temperatures are in reasonable agreement at about 2000R (1111 K). Future work is expected to include improving the computational efficiency or the CFD model and/or using more computer capacity than the single Pentium PC with which these simulations were made.

  12. Study of plate-fin heat exchanger and cold plate for the active thermal control system of Space Station

    NASA Technical Reports Server (NTRS)

    Chyu, MING-C.

    1992-01-01

    Plate-fin heat exchangers will be employed in the Active Thermal Control System of Space Station Freedom. During ground testing of prototypic heat exchangers, certain anomalous behaviors have been observed. Diagnosis has been conducted to determine the cause of the observed behaviors, including a scrutiny of temperature, pressure, and flow rate test data, and verification calculations based on such data and more data collected during the ambient and thermal/vacuum tests participated by the author. The test data of a plate-fin cold plate have been also analyzed. Recommendation was made with regard to further tests providing more useful information of the cold plate performance.

  13. Study of Spray Disintegration in Accelerating Flow Fields

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1972-01-01

    An analytical and experimental investigation was conducted to perform "proof of principlem experiments to establish the effects of propellant combustion gas velocity on propella'nt atomization characteristics. The propellants were gaseous oxygen (GOX) and Shell Wax 270. The fuel was thus the same fluid used in earlier primary cold-flow atomization studies using the frozen wax method. Experiments were conducted over a range in L* (30 to 160 inches) at two contraction ratios (2 and 6). Characteristic exhaust velocity (c*) efficiencies varied from SO to 90 percent. The hot fire experimental performance characteristics at a contraction ratio of 6.0 in conjunction with analytical predictions from the drovlet heat-up version of the Distributed Energy Release (DER) combustion computer proDam showed that the apparent initial dropsize compared well with cold-flow predictions (if adjusted for the gas velocity effects). The results also compared very well with the trend in perfomnce as predicted with the model. significant propellant wall impingement at the contraction ratio of 2.0 precluded complete evaluation of the effect of gross changes in combustion gas velocity on spray dropsize.

  14. Optimization of Cold Spray Deposition of High-Density Polyethylene Powders

    NASA Astrophysics Data System (ADS)

    Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.

    2017-10-01

    When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.

  15. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    Papers included address the following topics: (1) Turbulent premixed flame propagation in microgravity; (2) The effect of gravity on turbulent premixed flame propagation - a preliminary cold flow study; and (3) Characteristics of a subgrid model for turbulent premixed combustion.

  16. NASA Propulsion Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Williams, Hunter; Burnside, Chris

    2015-01-01

    The Resource Prospector mission is to investigate the Moon's polar regions in search of volatiles. The government-version lander concept for the mission is composed of a braking stage and a liquid-propulsion lander stage. A propulsion trade study concluded with a solid rocket motor for the braking stage while using the 4th-stage Peacekeeper (PK) propulsion components for the lander stage. The mechanical design of the liquid propulsion system was conducted in concert with the lander structure design. A propulsion cold-flow test article was fabricated and integrated into a lander development structure, and a series of cold flow tests were conducted to characterize the fluid transient behavior and to collect data for validating analytical models. In parallel, RS-34 PK thrusters to be used on the lander stage were hot-fire tested in vacuum conditions as part of risk reduction activities.

  17. Effects of three postexercice recovery treatments on femoral artery blood flow kinetics.

    PubMed

    Ménétrier, A; Mourot, L; Degano, B; Bouhaddi, M; Walther, G; Regnard, J; Tordi, N

    2015-04-01

    This study aimed to compare the kinetics of muscle leg blood flow during three recovery treatments following a prolonged exercise: contrast water therapy (CWT), compression stockings (CS) or passive recovery (PR). Fifteen men came to the laboratory three times to perform a 45-min exercise followed 5 min after by a standardized 12-min recovery treatment in upright position, alternating between two vats every 2 min: CWT (cold: ~12 °C to warm: 36 °C), CS (~20 mmHg) or PR. The order of treatments was randomized. Blood flow was measured using Doppler ultrasound during the recovery treatments (i.e., min 3, 5, 7 and 9) in the superficial femoral artery distally to the common bifurcation (~3 cm) (above the water and stocking). Blood flow was significantly higher during CWT (P<0.01; +22.91%) and CS (P<0.05; +15.26%) than during PR. Although no statistical difference between CWT and CS was observed, effect sizes were larger during CWT (large) than during CS (moderate). No changes in blood flow occurred in the femoral artery between hot and cold transitions of CWT. During immediate recovery of a high intensity exercise, CWT and CS trigger higher femoral artery blood flow than PR. Moreover, effect sizes were greater during CWT than during CS.

  18. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  19. A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentarymore » intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10{sup 12} M {sub ⊙} halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.« less

  20. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic

    NASA Astrophysics Data System (ADS)

    Mohn, Christian; Rengstorf, Anna; White, Martin; Duineveld, Gerard; Mienis, Furu; Soetaert, Karline; Grehan, Anthony

    2014-03-01

    Observations from numerous cold-water coral locations in the NE Atlantic show energetic near-bottom flow dynamics along the European continental margin at individual coral mounds and mound clusters. Dynamics are largely controlled by tide-topography interaction generating and enhancing periodic motions such as trapped waves, freely propagating internal tides and internal hydraulic jumps. In this study, linkages between key abiotic parameters and cold water coral occurrences are explored across entire cold-water coral mound provinces using an integrated modelling and observational approach. The 3-D ocean circulation model ROMS-AGRIF was applied to simulate near-bottom hydrodynamic conditions at three provinces in the NE Atlantic (Logachev mounds, Arc mounds and Belgica mounds) adopting a nested model setup with a central grid resolution of 250 m. Simulations were carried out with a focus on accurate high-resolution topography and tidal forcing. The central model bathymetry was taken from high-resolution INSS (Irish National Seabed Survey) seafloor mapping data. The model was integrated over a full one-year reference period starting from the 1st January 2010. Interannual variability was not considered. Tidal forcing was obtained from a global solution of the Oregon State University (OSU) inverse tidal model. Modelled fields of benthic currents were validated against available independent in situ observations. Coral assemblage patterns (presence and absence locations) were obtained from benthic surveys of the EU FP7 CoralFISH programme and supplemented by data from additional field surveys. Modelled near-bottom currents, temperature and salinity were analysed for a 1-month subset (15th April to 15th May 2010) corresponding to the main CoralFISH survey period. The model results show intensified near-bottom currents in areas where living corals are observed by contrast with coral absence and random background locations. Instantaneous and time-mean current speeds at mound clusters in the Logachev province exceeded typical values in non-coral areas by up to a factor of three. Currents at cold-water coral locations in the Arc and Belgica mound provinces were less energetic, but still elevated compared to non-coral locations. An analysis of dynamical processes associated with oscillatory flow interacting with topography suggests that these motions are locally important food supply mechanisms to cold-water corals by promoting large amplitude local vertical mixing and organic matter fluxes. It is shown that their presence varies considerably between provinces based on the interplay of topographic slope, flow magnitude and ambient stratification.

  1. Development of a model and test equipment for cold flow tests at 500 atm of small nuclear light bulb configurations

    NASA Technical Reports Server (NTRS)

    Jaminet, J. F.

    1972-01-01

    A model and test equipment were developed and cold-flow-tested at greater than 500 atm in preparation for future high-pressure rf plasma experiments and in-reactor tests with small nuclear light bulb configurations. With minor exceptions, the model chamber is similar in design and dimensions to a proposed in-reactor geometry for tests with fissioning uranium plasmas in the nuclear furnace. The model and the equipment were designed for use with the UARL 1.2-MW rf induction heater in tests with rf plasmas at pressures up to 500 atm. A series of cold-flow tests of the model was then conducted at pressures up to about 510 atm. At 504 atm, the flow rates of argon and cooling water were 3.35 liter/sec (STP) and 26 gal/min, respectively. It was demonstrated that the model is capable of being operated for extended periods at the 500-atm pressure level and is, therefore, ready for use in initial high-pressure rf plasma experiments.

  2. Time Resolved PIV for Space-Time Correlations in Hot Jets

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is the newest and most exciting tool recently developed to support our continuing efforts to characterize and improve our understanding of the decay of turbulence in jet flows -- a critical element for understanding the acoustic properties of the flow. A new TR-PIV system has been developed at the NASA Glenn Research Center which is capable of acquiring planar PIV image frame pairs at up to 25 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number

  3. Effect of warming and flow rate conditions of blood warmers on red blood cell integrity.

    PubMed

    Poder, T G; Pruneau, D; Dorval, J; Thibault, L; Fisette, J-F; Bédard, S K; Jacques, A; Beauregard, P

    2016-11-01

    Fluid warmers are routinely used to reduce the risk of hypothermia and cardiac complications associated with the infusion of cold blood products. However, warming blood products could generate haemolysis. This study was undertaken to compare the impact of temperature of blood warmers on the per cent haemolysis of packed red blood cells (RBCs) heated at different flow rates as well as non-flow conditions. Infusion warmers used were calibrated at 41·5°C ± 0·5°C and 37·5°C ± 0·5°C. Cold RBC units stored at 4°C in AS-3 (n = 30), aged 30-39 days old, were divided into half units before being allocated under two different scenarios (i.e. infusion pump or syringe). Blood warmers were effective to warm cold RBCs to 37·5°C or 41·5°C when used in conjunction with an infusion pump at flow rate up to 600 ml/h. However, when the warmed blood was held in a syringe for various periods of time, such as may occur in neonatal transfusions, the final temperature was below the expected requirements with measurement as low as 33·1°C. Increasing the flow with an infusion pump increased haemolysis in RBCs from 0·2% to up to 2·1% at a flow rate of 600 ml/h regardless of the warming device used (P < 0·05). No relevant increase of haemolysis was observed using a syringe. The use of a blood warmer adjusted to 41·5°C is probably the best choice for reducing the risk of hypothermia for the patient without generating haemolysis. However, we should be cautious with the use of an infusion pump for RBC transfusion, particularly at high flow rates. © 2016 International Society of Blood Transfusion.

  4. Thermal Management of a Nitrogen Cryogenic Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, Ph.; Yan, T.

    2010-04-01

    Efficient thermal links are needed to ease the distribution of the cold power in satellites. Loop heat pipes are widely used at room temperature as passive thermal links based on a two-phase flow generated by capillary forces. Transportation of the cold power at cryogenic temperatures requires a specific design. In addition to the main loop, the cryogenic loop heat pipe (CLHP) features a hot reservoir and a secondary loop with a cold reservoir and a secondary evaporator which allows the cool down and the thermal management of the thermal link in normal cold operation. We have studied the influence of a heated cold reservoir and investigated the effect of parasitic heat loads on the performance of a nitrogen CLHP at around 80 K. It is shown that heating of the cold reservoir with a small amount of power (0.1 W) allows controlling the system temperature difference, which can be kept constant at a very low level (1 K) regardless of the transferred cold power (0-10 W). Parasitic heat loads have a significant effect on the thermal resistance, and the power applied on the secondary evaporator has to be increased up to 4 W to get stable operation.

  5. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    NASA Astrophysics Data System (ADS)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  6. Effect of whole-body mild-cold exposure on arterial stiffness and central haemodynamics: a randomised, cross-over trial in healthy men and women.

    PubMed

    King, Sibella G; Ahuja, Kiran D K; Wass, Jezreel; Shing, Cecilia M; Adams, Murray J; Davies, Justin E; Sharman, James E; Williams, Andrew D

    2013-05-01

    Aortic pulse wave velocity (PWV) and augmentation index (AIx) are independent predictors of cardiovascular risk and mortality, but little is known about the effect of air temperature changes on these variables. Our study investigated the effect of exposure to whole-body mild-cold on measures of arterial stiffness (aortic and brachial PWV), and on central haemodynamics [including augmented pressure (AP), AIx], and aortic reservoir components [including reservoir and excess pressures (P ex)]. Sixteen healthy volunteers (10 men, age 43 ± 19 years; mean ± SD) were randomised to be studied under conditions of 12 °C (mild-cold) and 21 °C (control) on separate days. Supine resting measures were taken at baseline (ambient temperature) and after 10, 30, and 60 min exposure to each experimental condition in a climate chamber. There was no significant change in brachial blood pressure between mild-cold and control conditions. However, compared to control, AP [+2 mmHg, 95 % confidence interval (CI) 0.36-4.36; p = 0.01] and AIx (+6 %, 95 % CI 1.24-10.1; p = 0.02) increased, and time to maximum P ex (a component of reservoir function related to timing of peak aortic in-flow) decreased (-7 ms, 95 % CI -15.4 to 2.03; p = 0.01) compared to control. Yet there was no significant change in aortic PWV (+0.04 m/s, 95 % CI -0.47 to 0.55; p = 0.87) or brachial PWV (+0.36 m/s; -0.41 to 1.12; p = 0.35) between conditions. We conclude that mild-cold exposure increases central haemodynamic stress and alters timing of peak aortic in-flow without differentially affecting arterial stiffness.

  7. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.

    PubMed

    Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun

    2018-03-12

    Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Combustion-transition interaction in a jet flame

    NASA Astrophysics Data System (ADS)

    Yule, A. J.; Chigier, N. A.; Ralph, S.; Boulderstone, R.; Ventura, J.

    1980-01-01

    The transition between laminar and turbulent flow in a round jet flame is studied experimentally. Comparison is made between transition in non-burning and burning jets and between jet flames with systematic variation in initial Reynolds number and equivalence ratio. Measurements are made using laser anemometry, miniature thermocouples, ionization probes, laser-schlieren and high speed cine films. Compared with the cold jet, the jet flame has a longer potential core, undergoes a slower transition to turbulence, has lower values of fluctuating velocity near the burner but higher values further downstream, contains higher velocity gradients in the mixing layer region although the total jet width does not alter greatly in the first twenty diameters. As in the cold jet, transitional flow in the flame contains waves and vortices and these convolute and stretch the initially laminar interface burning region. Unlike the cold jet, which has Kelvin-Helmholtz instabilities, the jet flame can contain at least two initial instabilities; an inner high frequency combustion driven instability and an outer low frequency instability which may be influenced by buoyancy forces.

  9. CFD study of a simple orifice pulse tube cooler

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Qiu, L. M.; Gan, Z. H.; He, Y. L.

    2007-05-01

    Pulse tube cooler (PTC) has the advantages of long-life and low vibration over the conventional cryocoolers, such as G-M and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional axis-symmetric computational fluid dynamic (CFD) simulation of a GM-type simple orifice PTC (OPTC). The detailed modeling process and the general results such as the phase difference between velocity and pressure at cold end, the temperature profiles along the wall as well as the temperature oscillations at cold end with different heat loads are presented. Emphases are put on analyzing the complicated phenomena of multi-dimensional flow and heat transfer in the pulse tube under conditions of oscillating pressure. Swirling flow pattern in the pulse tube is observed and the mechanism of formation is analyzed in details, which is further validated by modeling a basic PTC. The swirl causes undesirable mixing in the thermally stratified fluid and is partially responsible for the poor overall performance of the cooler, such as unsteady cold-end temperature.

  10. Cold-air performance of compressor-drive turbine of Department of Energy upgraded automobile gas turbine engine. 1: Volute-manifold and stator performance

    NASA Technical Reports Server (NTRS)

    Roelke, R. J.; Haas, J. E.

    1981-01-01

    The aerodynamic performance of the inlet manifold and stator assembly of the compressor drive turbine was experimentally determined with cold air as the working fluid. The investigation included measurements of mass flow and stator-exit fluid torque as well as radial surveys of total pressure and flow angle at the stator inlet and annulus surveys of total pressure and flow angle at the stator exit. The stator-exit aftermixed flow conditions and overall stator efficiency were obtained and compared with their design values and the experimental results from three other stators. In addition, an analysis was made to determine the constituent aerodynamic losses that made up the stator kinetic energy loss.

  11. "Agricultural Statecraft" in the Cold War: a case study of Poland and the West from 1945 to 1957.

    PubMed

    Spaulding, Robert Mark

    2009-01-01

    This paper examines how the rise and fall of Polish agriculture affected the larger political and economic relationship among Poland and three key members of the western alliance - the United States, the United Kingdom, and the Federal Republic of Germany - in the first decade of the Cold War. This period is revealing precisely because the reversal of fortunes in the Polish agricultural economy required the Polish government and some western counterparts to maneuver through periods of both agricultural advantage and disadvantage. Agricultural strategies as means and ends motivated the Polish, British, West German, and American governments to actions that bent, stretched, and limited some well-established practices in Cold War relations across divided Europe. By explicating the political consequences of changing flows of agricultural exports and imports in one specific context, this essay serves as case study of the role of agriculture in the global context of the Cold War.

  12. Determination of the optimum conditions for lung cancer cells treatment using cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Morteza; Rajaei, Hajar; Mashayekh, Amir Shahriar; Shafiae, Mojtaba; Mahdikia, Hamed; Khani, Mohammadreza; Hassan, Zuhair Mohammad; Shokri, Babak

    2016-10-01

    Cold atmospheric plasmas (CAPs) can affect live cells and organisms due to the production of different reactive species. In this paper, the effects of various parameters of the CAP such as the treatment time, gas mixture, gas flow rate, applied voltage, and distance from the nozzle on the LL/2 lung cancer cell line have been studied. The probable effect of UV radiation has also been investigated using an MgF2 filter. Besides the cancerous cells, the 3T3 fibroblast cell line as a normal cell has been treated with the CAP. The Methylthiazol Tetrazolium assay showed that all parameters except the gas flow rate could impress effectively on the cancer cell viability. The cell proliferation seemed to be stopped after plasma treatment. The flow cytometry assay revealed that apoptosis and necrosis were appreciable. It was also found that treating time up to 2 min will not exert any effect on the normal cells.

  13. Coronary vasomotor abnormalities in insulin-resistant individuals.

    PubMed

    Quiñones, Manuel J; Hernandez-Pampaloni, Miguel; Schelbert, Heinrich; Bulnes-Enriquez, Isabel; Jimenez, Xochitl; Hernandez, Gustavo; De La Rosa, Roxana; Chon, Yun; Yang, Huiying; Nicholas, Susanne B; Modilevsky, Tamara; Yu, Katherine; Van Herle, Katja; Castellani, Lawrence W; Elashoff, Robert; Hsueh, Willa A

    2004-05-04

    Insulin resistance is a metabolic spectrum that progresses from hyperinsulinemia to the metabolic syndrome, impaired glucose tolerance, and finally type 2 diabetes mellitus. It is unclear when vascular abnormalities begin in this spectrum of metabolic effects. To evaluate the association of insulin resistance with the presence and reversibility of coronary vasomotor abnormalities in young adults at low cardiovascular risk. Cross-sectional study followed by prospective, open-label treatment study. University hospital. 50 insulin-resistant and 22 insulin-sensitive, age-matched Mexican-American participants without glucose intolerance or traditional risk factors for or evidence of coronary artery disease. 3 months of thiazolidinedione therapy for 25 insulin-resistant patients. Glucose infusion rate in response to insulin infusion was used to define insulin resistance (glucose infusion rate < or = 4.00 mg/kg of body weight per minute [range, 0.90 to 3.96 mg/kg per minute]) and insulin sensitivity (glucose infusion rate > or = 7.50 mg/kg per minute [range, 7.52 to 13.92 mg/kg per minute]). Myocardial blood flow was measured by using positron emission tomography at rest, during cold pressor test (largely endothelium-dependent), and after dipyridamole administration (largely vascular smooth muscle-dependent). Myocardial blood flow responses to dipyridamole were similar in the insulin-sensitive and insulin-resistant groups. However, myocardial blood flow response to cold pressor test increased by 47.6% from resting values in insulin-sensitive patients and by 14.4% in insulin-resistant patients. During thiazolidinedione therapy in a subgroup of insulin-resistant patients, insulin sensitivity improved, fasting plasma insulin levels decreased, and myocardial blood flow responses to cold pressor test normalized. The study was not randomized, and it included only 1 ethnic group. Insulin-resistant patients who do not have hypercholesterolemia or hypertension and do not smoke manifest coronary vasomotor abnormalities. Insulin-sensitizing thiazolidinedione therapy normalized these abnormalities. These results suggest an association between insulin resistance and abnormal coronary vasomotor function, a relationship that requires confirmation in larger studies.

  14. Energy flow and trophic partitioning of contrasting Cold Water Coral ecosystems of the NE Atlantic.

    NASA Astrophysics Data System (ADS)

    Kiriakoulakis, K.; Smith, E. L.; Dempster, N. M.; Roberts, M.; Hennige, S. J.; Wolff, G. A.

    2016-02-01

    This study investigates the energy flow, trophic positioning and nutritional quality of suspended particulate organic matter (sPOM) that reaches cold-water coral (CWC) ecosystems from two contrasting oceanographic settings of the N. E. Atlantic using molecular (lipid) and stable isotopic analysis. Study sites are the shallow ( 150m) Mingulay Reef on the NW Scotland shelf vs the deeper ( 700m) Logachev Mounds on the eastern slope of the Rockall Bank. Cold water corals are now being realised as abundant, cosmopolitan and biodiverse hotspots of the global ocean. Recent research has shown links between high levels of surface primary productivity and sPOM flux; which when combined with hydrodynamic processes facilitates an almost continuous supply of nutrient rich sPOM to these deep-ocean ecosystems. However, little is understood regarding the exact nutritional requirements of these ecosystems. Fresh marine sPOM is usually rich in proteins and lipids; however during transport into the ocean interior its chemical composition is influenced by a variety of complex transformation, remineralisation and repackaging processes; thus altering its `freshness' and nutritional quality. The study of the bioavailable and nutritional fractions of sPOM in relation to specific oceanographic transport regimes can help further understand the processes, nutritional requirements and energy flow of these ecosystems. Isotopic ratios of carbon and nitrogen were analysed using EA-IR-MS and lipids via GC-MS. Initial results show significant differences in δ15N and δ13C values of sPOM between the two areas, indicating differences in trophic dynamics and sPOM re-working between locations. In addition lipid results highlight differences in trophic contributions to the energy flows of the two locations, yet similarities in molecular nutritional component contributions; thus supporting previous studies regarding the importance of certain lipid classes in the development of these deep and fragile ecosystems. This multi-disciplinary approach to biogeochemical analysis may also be used to detect chemosynthetic energy pathway contributions to sPOM.

  15. Changes of jugular venous blood temperature associated with measurements of cerebral blood flow using the transcerebral double-indicator dilution technique.

    PubMed

    Mielck, F; Bräuer, A; Radke, O; Hanekop, G; Loesch, S; Friedrich, M; Hilgers, R; Sonntag, H

    2004-04-01

    The transcerebral double-indicator dilution technique is a recently developed method to measure global cerebral blood flow at bedside. It is based on bolus injection of ice-cold indocyanine green dye and simultaneous recording of resulting thermo- and dye-dilution curves in the aorta and the jugular bulb. However, with this method 40 mL of ice-cold solution is administered as a bolus. Therefore, this prospective clinical study was performed to elucidate the effects of repeated administration of indicator on absolute blood temperature and on cerebral blood flow and metabolism. The investigation was performed in nine male patients scheduled for elective coronary artery bypass grafting. Absolute blood temperature was measured in the jugular bulb and in the aorta before and after repeated measurements using the transcerebral double-indicator dilution technique. During the investigated time course, the blood temperature in the jugular bulb, compared to the aorta, was significantly higher with a mean difference of 0.21 degrees C. The administration of an ice-cold bolus reduced the mean blood temperature by 0.06 degrees C in the jugular bulb as well as in the aorta. After the transcerebral double-indicator dilution measurements a temperature recovery to baseline conditions was not observed during the investigated time period. Cerebral blood flow and cerebral metabolism did not change during the investigated time period. Repeated measurements with the transcerebral double-indicator dilution technique do not affect absolute jugular bulb blood temperatures negatively. Global cerebral blood flow and metabolism measurements remain unaltered. However, accuracy and resolution of this technique is not high enough to detect the effect of minor changes of physiological variables.

  16. Treatment of Frostbite,

    DTIC Science & Technology

    1982-01-01

    that has been exposed to cold has had serious cold injuries. Ten percent of our wounded casualties in both World War 1I (90,000) and Korea (9,000...have been damaged which compromises blood flow. Late complications of cold/wet injuries Include ulceration and chronic Infections. Although rare in...painful during rewarming usually starting as a tingling or burning pain followed by throbbing, swelling, and increased redness throughout the area

  17. Cold air drainage flows subsidize montane valley ecosystem productivity.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Miniat, Chelcy Ford

    2016-12-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long-running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional- and global-scale terrestrial ecosystem models. Analyses driven by chamber-based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud-free (i.e., drought-like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco-physiological processes from macroscale climate change. © 2016 John Wiley & Sons Ltd.

  18. Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg

    2006-01-01

    Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.

  19. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to other active volcanic systems on Earth.

  20. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Volume 2. Development of microreactor systems for unsteady-state Fischer-Tropsch synthesis. Final technical report. [408 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, G.K.; Liu, Y.A.; Squires, A.M.

    1986-10-01

    Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the ''heat tray.'' This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor.more » The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395 C using a feed gas of H/sub 2//CO ratio of 2:1 or less. Above 395 C, the probability of hydrocarbon chain growth (..cap alpha.. < 0.50 to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395 C when a feed gas of H/sub 2//CO ratio of 2:1 or less was used. Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm/sup 3//s. Further, cold-flow microreactor model studies showed intense solid mixing when a bed of fused-iron catalyst (150 to 300 microns) was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of the microreactor systems provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. 408 refs., 156 figs., 27 tabs.« less

  1. Theoretical and experimental validation study on automotive air-conditioning based on heat pipe and LNG cold energy for LNG-fueled heavy vehicles

    NASA Astrophysics Data System (ADS)

    Deng, Dong; Cheng, Jiang-ping; Zhang, Sheng-chang; Ge, Fang-gen

    2017-08-01

    As a clean fuel, LNG has been used in heavy vehicles widely in China. Before reaching the engine for combustion, LNG store in a high vacuum multi-layer thermal insulation tank and need to be evaporated from its cryogenic state to natural gas. During the evaporation, the available cold energy of LNG has been calculated. The concept has been proposed that the separated type heat pipe technology is employed to utilize the available cold energy for automotive air-conditioning. The experiment has been conducted to validate the proposal. It is found that it is feasible to use the separated type heat pipe to convey the cold energy from LNG to automotive air-conditioning. And the cooling capacity of the automotive air-conditioning increase with the LNG consumption and air flow rate increasing.

  2. Large-eddy simulations of a Salt Lake Valley cold-air pool

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2017-09-01

    Persistent cold-air pools are often poorly forecast by mesoscale numerical weather prediction models, in part due to inadequate parameterization of planetary boundary-layer physics in stable atmospheric conditions, and also because of errors in the initialization and treatment of the model surface state. In this study, an improved numerical simulation of the 27-30 January 2011 cold-air pool in Utah's Great Salt Lake Basin is obtained using a large-eddy simulation with more realistic surface state characterization. Compared to a Weather Research and Forecasting model configuration run as a mesoscale model with a planetary boundary-layer scheme where turbulence is highly parameterized, the large-eddy simulation more accurately captured turbulent interactions between the stable boundary-layer and flow aloft. The simulations were also found to be sensitive to variations in the Great Salt Lake temperature and Salt Lake Valley snow cover, illustrating the importance of land surface state in modelling cold-air pools.

  3. Experimental Research on the Dense CFB's Riser and the Simulation Based on the EMMS Model

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Wang, S. D.; Fan, B. G.; Liao, L. L.; Jiang, F.; Xu, X.; Wu, X. Z.; Xiao, Y. H.

    2010-03-01

    The flow structure in the CFB (circulating fluidized bed) riser has been investigated. Experimental studies were performed in a cold square section unit with 270 mm×270 mm×10 m. Since the drag force model based on homogeneous two-phase flow such as the Gidaspow drag model could not depict the heterogeneous structures of the gas-solid flow, the structure-dependent energy-minimization multi-scale (EMMS) model based on the heterogenerity was applied in the paper and a revised drag force model based on the EMMS model was proposed. A 2D two-fluid model was used to simulate a bench-scale square cross-section riser of a cold CFB. The typical core-annulus structure and the back-mixing near the wall of the riser were observed and the assembly and fragmentation processes of clusters were captured. By comparing with the Gidaspow drag model, the results obtained by the revised drag model based on EMMS shows better consistency with the experimental data. The model can also depict the difference from the two exit configurations. This study once again proves the key role of drag force in CFD (Computational Fluid Dynamics) simulation and also shows the availability of the revised drag model to describe the gas-solid flow in CFB risers.

  4. Sympathetic Innervation of Cold-Activated Brown and White Fat in Lean Young Adults

    PubMed Central

    Mangner, Tom J.; Leonard, William R.; Kumar, Ajay; Granneman, James G.

    2017-01-01

    Recent work in rodents has demonstrated that basal activity of the local sympathetic nervous system is critical for maintaining brown adipocyte phenotypes in classic brown adipose tissue (BAT) and white adipose tissue (WAT). Accordingly, we sought to assess the relationship between sympathetic innervation and cold-induced activation of BAT and WAT in lean young adults. Methods: Twenty adult lean normal subjects (10 women and 10 men; mean age ± SD, 23.3 ± 3.8 y; body mass index, 23.7 ± 2.5 kg/m2) underwent 11C-meta-hydroxyephedrin (11C-HED) and 15O-water PET imaging at rest and after exposure to mild cold (16°C) temperature. In addition, 18F-FDG images were obtained during the cold stress condition to assess cold-activated BAT mass. Subjects were divided into 2 groups (high BAT and low BAT) based on the presence of 18F-FDG tracer uptake. Blood flow and 11C-HED retention index (RI, an indirect measure of sympathetic innervation) were calculated from dynamic PET scans at the location of BAT and WAT. Whole-body daily energy expenditure (DEE) during rest and cold stress was measured by indirect calorimetry. Tissue level oxygen consumption (MRO2) was determined and used to calculate the contribution of cold-activated BAT and WAT to daily DEE. Results: 18F-FDG uptake identified subjects with high and low levels of cold-activated BAT mass (high BAT, 96 ± 37 g; low-BAT, 16 ± 4 g). 11C-HED RI under thermoneutral conditions significantly predicted 18F-FDG uptake during cold stress (R2 = 0.68, P < 0.01). In contrast to the significant increase of 11C-HED RI during cold in BAT (2.42 ± 0.85 vs. 3.43 ± 0.93, P = 0.02), cold exposure decreased the 11C-HED RI in WAT (0.44 ± 0.22 vs. 0.41 ± 0.18) as a consequence of decreased perfusion (1.22 ± 0.20 vs. 1.12 ± 0.16 mL/100 g/min). The contribution of WAT to whole-body DEE was approximately 150 kcal/d at rest (149 ± 52 kcal/d), which decreased to approximately 100 kcal/d during cold (102 ± 47 kcal/d). Conclusion: The level of sympathetic innervation, as determined by 11C-HED RI, can predict levels of functional BAT. Overall, blood flow is the best independent predictor of 11C-HED RI and 18F-FDG uptake across thermoneutral and cold conditions. In contrast to BAT, cold stress reduces blood flow and 18F-FDG uptake in subcutaneous WAT, indicating that the physiologic response is to reduce heat loss rather than to generate heat. PMID:27789721

  5. A DESIGN METHOD FOR RETAINING WALL BASED ON RETURN PERIOD OF RAINFALL AND SNOWMELT

    NASA Astrophysics Data System (ADS)

    Ebana, Ryo; Uehira, Kenichiro; Yamada, Tadashi

    The main purpose of this study is to develop a new design method for the retaining wall in a cold district. In the cold district, snowfall and snowmelt is one of the main factors in sediment related disaster. However, the effect of the snowmelt is not being taken account of sediment disasters precaution and evacuation system. In this study, we target at past slope failure disaster and quantitatively evaluate that the effect of rainfall and snowmelt on groundwater level and then verify the stability of slope. Water supplied on the slope was determined from the probabilistic approach of the snowmelt using DegreeDay method in this study. Furthermore, a slope stability analysis was carried out based on the ground water level that was obtained from the unsaturated infiltration flow with the saturated seepage flow simulations. From the result of the slope stability analysis, it was found that the effect of ground water level on the stability of slope is much bigger than that of other factors.

  6. Effect of Korean red ginseng on cold hypersensitivity in the hands and feet: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Cold hypersensitivity in the hands and feet (CHHF) is one of the most common complaints among Asians, especially in women. Korean red ginseng (KRG), which is a steamed form of Panax ginseng, has vasodilating action in the peripheral vessels and increases blood flow under cold stress. However, few studies have evaluated the effect of KRG on cold hypersensitivity. Methods/Design This trial is a randomized, double-blind, placebo-controlled trial in 80 CHHF patients. The trial will be implemented at Kyung Hee University Hospital at Gangdong in Seoul, Korea. The participants will take KRG or a placebo for eight weeks, after which they will be followed-up for four weeks. During the administration period, six capsules of 500 mg KRG or placebo will be provided twice a day. The primary outcome is change of skin temperature in the hands between baseline and after treatment. The secondary outcomes include the visual analogue scale scores of cold hypersensitivity in the hands, change of skin temperature and the VAS scores of cold hypersensitivity in the feet, the recovery rate of the skin temperature by the cold stress test of the hands, the distal-dorsal difference of the hands, power variables of heart rate variability, and the 36-item short form health survey. Discussion This study is the first trial to evaluate the efficacy of KRG on CHHF by using infrared thermography. Our study will provide basic evidence regarding CHHF. Trial registration CliniacalTrials.gov NCT01664156 PMID:24354675

  7. Progressive enhancement in the secretory functions of the digestive system of the rat in the course of cold acclimation.

    PubMed Central

    Harada, E; Kanno, T

    1976-01-01

    1. The secretory function of the exocrine pancreas and the stomach have been studied in the course of cold acclimation of rats that had been fed at an ambient temperature of 1 degree C in a climatic room. 2. The secretory responses of pancreatic enzymes evoked by continuous infusion of pancreozymin (PZ, 2-5 mu./kg. hr) and a rapid single injection of PZ (1.7 mu./kg) reached a maximum in the group of rats fed at 1 degree C for 4 weeks, and fell to the control levels after 8 weeks. The increase in the flow of pancreatic juice evoked by single injection of PZ was maximal at 4 weeks and slightly decreased after 8 weeks. 3. The insulin (3-0 i.u./kg) evoked secretion of pancreatic enzymes gradually increased after cold exposure, reached a maximum at 4 weeks and fell to the control levels after 8 weeks. The flow of pancreatic juice after insulin injection was almost the same in every group throughout the course of cold exposure. 4. The ratio of amylase to the total amount of the protein in the pancreatic juice decreased abruptly, in contrast to an increase in the ratio of protease in the process of cold acclimation. The change in the ratio of enzyme activity in the pancreatic juice may reflect parallel changes in enzyme activity in the exocrine pancreas. 5. The gastric secretion in response to insulin and bile secretion in the group fed at 1 degree C for 7 weeks was significantly higher than that in the control group. 6. It was thus concluded that the secretory activities of digestive system were enhanced by prolonged cold exposure and then returned to control level, and that the activites of the pancreatic enzymes were altered in the process of cold acclimation in rats. PMID:978571

  8. Photosynthesis and Photosynthetic Electron Flow in the Alpine Evergreen Species Quercus guyavifolia in Winter

    PubMed Central

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao

    2016-01-01

    Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap), stomatal and mesophyll conductances (gs and gm), CO2 assimilation rate (An), and total electron flow through PSII (JPSII) at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap), the diurnal values of gs, gm, An, and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures. PMID:27812359

  9. Influence of the Substrate on the Formation of Metallic Glass Coatings by Cold Gas Spraying

    NASA Astrophysics Data System (ADS)

    Henao, John; Concustell, Amadeu; Dosta, Sergi; Cinca, Núria; Cano, Irene G.; Guilemany, Josep M.

    2016-06-01

    Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 108 to 109 s-1, involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology.

  10. AGN jet-driven stochastic cold accretion in cluster cores

    NASA Astrophysics Data System (ADS)

    Prasad, Deovrat; Sharma, Prateek; Babul, Arif

    2017-10-01

    Several arguments suggest that stochastic condensation of cold gas and its accretion on to the central supermassive black hole (SMBH) is essential for active galactic nuclei (AGNs) feedback to work in the most massive galaxies that lie at the centres of galaxy clusters. Our 3-D hydrodynamic AGN jet-ICM (intracluster medium) simulations, looking at the detailed angular momentum distribution of cold gas and its time variability for the first time, show that the angular momentum of the cold gas crossing ≲1 kpc is essentially isotropic. With almost equal mass in clockwise and counterclockwise orientations, we expect a cancellation of the angular momentum on roughly the dynamical time. This means that a compact accretion flow with a short viscous time ought to form, through which enough accretion power can be channeled into jet mechanical energy sufficiently quickly to prevent a cooling flow. The inherent stochasticity, expected in feedback cycles driven by cold gas condensation, gives rise to a large variation in the cold gas mass at the centres of galaxy clusters, for similar cluster and SMBH masses, in agreement with the observations. Such correlations are expected to be much tighter for the smoother hot/Bondi accretion. The weak correlation between cavity power and Bondi power obtained from our simulations also matches observations.

  11. Comparative evaluation of fracture resistance of root canals obturated with four different obturating systems

    PubMed Central

    Punjabi, Mansi; Dewan, Ruchika Gupta; Kochhar, Rohit

    2017-01-01

    Aim and Objectives: The aim of this study is to evaluate and compare the fracture resistance of root canals obturated with four different obturating systems in endodontically treated teeth. Materials and Methods: One hundred and twenty single-rooted teeth were selected and decoronated at cementoenamel junction. Instrumentation of teeth (except control group) was done with Mtwo rotary files up to size 25/0.06 using a step-back technique. All teeth were divided into four experimental groups (n = 25) and two control groups (n = 10). In Group I (negative control), teeth were neither instrumented nor obturated, in Group II (positive control), instrumentation was done, but no obturation was performed, in Group III, obturation was done with cold lateral compaction technique, in Group IV, obturation was done with cold free-flow compaction technique, in Group V, obturation was done with warm vertical compaction technique, and in Group VI, obturation was done with injection-molded thermoplasticized technique. All prepared teeth were embedded in an acrylic resin block, and their fracture strength was measured using Universal Testing Machine. Statistical data were analyzed using one-way analysis of variance and Tukey's honestly significant difference test. Results: Negative control Group I showed highest fracture resistance and positive control Group II had lowest fracture resistance. Among experimental groups, cold free-flow compaction technique with GuttaFlow2 (Group IV) showed higher fracture resistance as compared to the Group III, Group V, and Group VI. Conclusion: GuttaFlow2 has the potential to strengthen the endodontically treated roots to a level that is similar to that of intact teeth. PMID:29430099

  12. Comparative evaluation of fracture resistance of root canals obturated with four different obturating systems.

    PubMed

    Punjabi, Mansi; Dewan, Ruchika Gupta; Kochhar, Rohit

    2017-01-01

    The aim of this study is to evaluate and compare the fracture resistance of root canals obturated with four different obturating systems in endodontically treated teeth. One hundred and twenty single-rooted teeth were selected and decoronated at cementoenamel junction. Instrumentation of teeth (except control group) was done with Mtwo rotary files up to size 25/0.06 using a step-back technique. All teeth were divided into four experimental groups ( n = 25) and two control groups ( n = 10). In Group I (negative control), teeth were neither instrumented nor obturated, in Group II (positive control), instrumentation was done, but no obturation was performed, in Group III, obturation was done with cold lateral compaction technique, in Group IV, obturation was done with cold free-flow compaction technique, in Group V, obturation was done with warm vertical compaction technique, and in Group VI, obturation was done with injection-molded thermoplasticized technique. All prepared teeth were embedded in an acrylic resin block, and their fracture strength was measured using Universal Testing Machine. Statistical data were analyzed using one-way analysis of variance and Tukey's honestly significant difference test. Negative control Group I showed highest fracture resistance and positive control Group II had lowest fracture resistance. Among experimental groups, cold free-flow compaction technique with GuttaFlow2 (Group IV) showed higher fracture resistance as compared to the Group III, Group V, and Group VI. GuttaFlow2 has the potential to strengthen the endodontically treated roots to a level that is similar to that of intact teeth.

  13. Development of an Empirical Methods for Predicting Jet Mixing Noise of Cold Flow Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Russell, James W.

    1999-01-01

    This report presents an empirical method for predicting the jet mixing noise levels of cold flow rectangular jets. The report presents a detailed analysis of the methodology used in development of the prediction method. The empirical correlations used are based on narrow band acoustic data for cold flow rectangular model nozzle tests conducted in the NASA Langley Jet Noise Laboratory. There were 20 separate nozzle test operating conditions. For each operating condition 60 Hz bandwidth microphone measurements were made over a frequency range from 0 to 60,000 Hz. Measurements were performed at 16 polar directivity angles ranging from 45 degrees to 157.5 degrees. At each polar directivity angle, measurements were made at 9 azimuth directivity angles. The report shows the methods employed to remove screech tones and shock noise from the data in order to obtain the jet mixing noise component. The jet mixing noise was defined in terms of one third octave band spectral content, polar and azimuth directivity, and overall power level. Empirical correlations were performed over the range of test conditions to define each of these jet mixing noise parameters as a function of aspect ratio, jet velocity, and polar and azimuth directivity angles. The report presents the method for predicting the overall power level, the average polar directivity, the azimuth directivity and the location and shape of the spectra for jet mixing noise of cold flow rectangular jets.

  14. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Schunk, Richard G.

    2011-01-01

    An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.

  15. Simulation of Cold Flow in a Truncated Ideal Nozzle with Film Cooling

    NASA Technical Reports Server (NTRS)

    Braman, K. E.; Ruf, J. H.

    2015-01-01

    Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket nozzles. The capability to estimate these side loads computationally can streamline the nozzle design process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated using RANS and URANS for a range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model choices and for four approximations of the supersonic film injection geometry, each of which was created with a different simplification of the test article geometry. The results show that although a reasonable match to experiment can be obtained with varying levels of geometric fidelity, the modeling choices made do not fully represent the physics of flow separation in a TIC nozzle with film cooling.

  16. Experimental Studies on Grooved Double Pipe Heat Exchanger with Different Groove Space

    NASA Astrophysics Data System (ADS)

    Sunu, P. W.; Arsawan, I. M.; Anakottapary, D. S.; Santosa, I. D. M. C.; Yasa, I. K. A.

    2018-01-01

    Experimental studies were performed on grooved double pipe heat exchanger (DPHE) with different groove space. The objective of this work is to determine optimal heat transfer parameter especially logarithmic mean temperature difference (LMTD). The document in this paper also provides the total heat observed by the cold fluid. The rectangular grooves were incised on outer surface of tube side with circumferential pattern and two different grooves space, namely 1 mm and 2 mm. The distance between grooves and the grooves high were kept constant, 8 mm and 0.3 mm respectively. The tube diameter is 20 mm and its made of aluminium. The shell is made of acrylic which has 28 mm in diameter. Water is used as the working fluid. Using counter flow scheme, the cold fluid flows in the annulus room of DPHE. The volume flowrate of hot fluid remains constant at 15 lpm. The volume flowrate of cold fluid were varied from 11 lpm to 15 lpm. Based on logarithmic mean temperature difference analysis, the LMTD of 1 mm grooves space was higher compared to that of 2 mm grooves space. The smaller grooves space has more advantage since the recirculating region are increased which essentially cause larger heat transfer enhancement.

  17. Doughnut strikes sandwich: the geometry of hot medium in accreting black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Poutanen, Juri; Veledina, Alexandra; Zdziarski, Andrzej A.

    2018-06-01

    We study the effects of the mutual interaction of hot plasma and cold medium in black hole binaries in their hard spectral state. We consider a number of different geometries. In contrast to previous theoretical studies, we use a modern energy-conserving code for reflection and reprocessing from cold media. We show that a static corona above an accretion disc extending to the innermost stable circular orbit produces spectra not compatible with those observed. They are either too soft or require a much higher disc ionization than that observed. This conclusion confirms a number of previous findings, but disproves a recent study claiming an agreement of that model with observations. We show that the cold disc has to be truncated in order to agree with the observed spectral hardness. However, a cold disc truncated at a large radius and replaced by a hot flow produces spectra which are too hard if the only source of seed photons for Comptonization is the accretion disc. Our favourable geometry is a truncated disc coexisting with a hot plasma either overlapping with the disc or containing some cold matter within it, also including seed photons arising from cyclo-synchrotron emission of hybrid electrons, i.e. containing both thermal and non-thermal parts.

  18. Heat exchanges in wet suits.

    PubMed

    Wolff, A H; Coleshaw, S R; Newstead, C G; Keatinge, W R

    1985-03-01

    Flow of water under foam neoprene wet suits could halve insulation that the suits provided, even at rest in cold water. On the trunk conductance of this flow was approximately 6.6 at rest and 11.4 W . m-2 . C-1 exercising; on the limbs, it was only 3.4 at rest and 5.8 W . m-2 . degrees C-1 exercising; but during vasoconstriction in the cold, skin temperatures on distal parts of limbs were lower than were those of the trunk, allowing adequate metabolic responses. In warm water, minor postural changes and movement made flow under suits much higher, approximately 60 on trunk and 30 W . m-2 . degrees C-1 on limbs, both at rest and at work. These changes in flow allowed for a wide range of water temperatures at which people could stabilize body temperature in any given suit, neither overheating when exercising nor cooling below 35 degrees C when still. Even thin people with 4- or 7- mm suits covering the whole body could stabilize their body temperatures in water near 10 degrees C in spite of cold vasodilatation. Equations to predict limits of water temperature for stability with various suits and fat thicknesses are given.

  19. Numerical investigation of two interacting parallel thruster-plumes and comparison to experiment

    NASA Astrophysics Data System (ADS)

    Grabe, Martin; Holz, André; Ziegenhagen, Stefan; Hannemann, Klaus

    2014-12-01

    Clusters of orbital thrusters are an attractive option to achieve graduated thrust levels and increased redundancy with available hardware, but the heavily under-expanded plumes of chemical attitude control thrusters placed in close proximity will interact, leading to a local amplification of downstream fluxes and of back-flow onto the spacecraft. The interaction of two similar, parallel, axi-symmetric cold-gas model thrusters has recently been studied in the DLR High-Vacuum Plume Test Facility STG under space-like vacuum conditions, employing a Patterson-type impact pressure probe with slot orifice. We reproduce a selection of these experiments numerically, and emphasise that a comparison of numerical results to the measured data is not straight-forward. The signal of the probe used in the experiments must be interpreted according to the degree of rarefaction and local flow Mach number, and both vary dramatically thoughout the flow-field. We present a procedure to reconstruct the probe signal by post-processing the numerically obtained flow-field data and show that agreement to the experimental results is then improved. Features of the investigated cold-gas thruster plume interaction are discussed on the basis of the numerical results.

  20. Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Watts, P.; Walder, J.S.

    2006-01-01

    Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.

  1. Cold Ion Escape from Mars

    NASA Astrophysics Data System (ADS)

    Fränz, M.; Dubinin, E.; Wei, Y.; Morgan, D.; Andrews, D.; Barabash, S.; Lundin, R.; Fedorov, A.

    2013-09-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express in combination with the MARSIS radar experiment. We first compare calculations of the mean ion flux observed by ASPERA-3 alone with previously published results. We then combine observations of the cold ion velocity by ASPERA-3 with observations of the cold plasma density by MARSIS since ASPERA-3 misses the cold core of the ion distribution. We show that the mean density of the nightside plasma observed by MARSIS is about two orders higher than observed by ASPERA-3 (Fig.1). Combining both datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars (Fig. 2). At a distance of about 0.5 R_M the flux settles at a constant value (Fig. 3) which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  2. Temperature-dependent regulation of blood distribution in snakes.

    PubMed

    Amiel, Joshua J; Chua, Beverly; Wassersug, Richard J; Jones, David R

    2011-05-01

    Regional control of blood flow is often suggested as a mechanism for fine thermoregulatory adjustments in snakes. However, the flow of blood to different body regions at various temperatures has never been visualized to confirm this mechanism. We used (99m)technetium-labelled macroaggregated albumin ((99m)Tc-MAA), a radioactive tracer, to follow the flow of blood through the bodies of garter snakes (Thamnophis sirtalis) near their thermal maxima and minima. We injected snakes with(99m)Tc-MAA at cold (6-8°C) and hot (27-32°C) temperatures and imaged them using a gamma scanner. At cold ambient temperatures, snakes significantly reduced the blood flow to their tails and significantly increased the blood flow to their heads. Conversely, at hot ambient temperatures, snakes significantly increased the blood flow to their tails and significantly reduced the blood flow to their heads. This confirms that snakes are able to use differential blood distribution to regulate temperature. Our images confirm that snakes use regional control of blood flow as a means of thermoregulation and that vasomotor control of vascular beds is likely to be the mechanism of control.

  3. Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Hartwig, Jason W.; McQuillen John B.

    2014-01-01

    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.

  4. Permafrost thaw in a nested groundwater-flow system

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  5. Shear coaxial injector atomization phenomena for combusting and non-combusting conditions

    NASA Technical Reports Server (NTRS)

    Pal, S.; Moser, M. D.; Ryan, H. M.; Foust, M. J.; Santoro, R. J.

    1992-01-01

    Measurements of LOX drop size and velocity in a uni-element liquid propellant rocket chamber are presented. The use of the Phase Doppler Particle Analyzer in obtaining temporally-averaged probability density functions of drop size in a harsh rocket environment has been demonstrated. Complementary measurements of drop size/velocity for simulants under cold flow conditions are also presented. The drop size/velocity measurements made for combusting and cold flow conditions are compared, and the results indicate that there are significant differences in the two flowfields.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  7. Steam--water mixing and system hydrodynamics program. Task 4. Quarterly progress report, October 1, 1977--December 31, 1977. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbiener, W.A.; Cudnik, R.A.; Dykhuizen, R.C.

    Experimental studies were conducted in a /sup 2///sub 15/-scale model of a four-loop pressurized water reactor at pressures to 75 psia to extend the understanding of steam-water interaction phenomena and processes associated with a loss-of-coolant accident. Plenum filling studies were conducted with hydraulic communication between the cold leg and core steam supplies and hot walls, with both fixed and ramped steam flows. Comparisons of correlational fits have been made for penetration data obtained with hydraulic communication, fixed cold leg steam, and no cold leg steam. Statistical tests applied to these correlational fits have indicated that the hydraulic communication and fixedmore » cold leg steam data can be considered to be a common data set. Comparing either of these data sets to the no cold leg steam data using the statistical test indicated that it was unlikely that these sets could be considered to be a common data set. The introduction of cold leg steam results in a slight decrease in penetration relative to that obtained without cold leg steam at the same value of subcooling of water entering the downcomer. A dimensionless parameter which is a weighted mean of a modified Froude number and the Weber number has been proposed as a scaling parameter for penetration data. This parameter contains an additional degree of freedom which allows data from different scales to collapse more closely to a single curve than current scaling parameters permit.« less

  8. Evaluation of holmium laser versus cold knife in optical internal urethrotomy for the management of short segment urethral stricture.

    PubMed

    Jain, Sudhir Kumar; Kaza, Ram Chandra Murthy; Singh, Bipin Kumar

    2014-10-01

    SACHSE COLD KNIFE IS CONVENTIONALLY USED FOR OPTICAL INTERNAL URETHROTOMY INTENDED TO MANAGE URETHRAL STRICTURES AND HO: YAG laser is an alternative to it. The aim of this study was to evaluate the role of urethral stricture treatment outcomes, efficacy, and complications using cold knife and Ho: YAG (Holmium laser) for optical internal urethrotomy. In this prospective study included, 90 male patients age >18 years, with diagnosis of urethral stricture admitted for internal optical urethrotomy during April 2010 to March 2012. The patients were randomized into two groups containing 45 patients each using computer generated random number. In group A (Holmium group), internal urethrotomy was done with Holmium laser and in group B (Cold knife group) Sachse cold knife was used. Patients were followed up for 6 months after surgery in Out Patient Department on 15, 30 and 180 post-operative days. At each follow up visit physical examination, and uroflowmetry was performed along with noting complaints, if any. The peak flow rates (PFR) were compared between the two groups on each follow up. At 180 days (6 month interval) the difference between mean of PFR for Holmium and Cold knife group was statistically highly significant (P < 0.001). Complications were seen in 12.22% of cases. Both modalities are effective in providing immediate relief to patients with single and short segment (<2 cm long) urethral strictures but more sustained response was attained with Cold knife urethrotomy.

  9. Recovery benefits of using a heat and moisture exchange mask during sprint exercise in cold temperatures.

    PubMed

    Seifert, John G; Frost, Jeremy; St Cyr, John A

    2017-01-01

    Breathing cold air can lead to bronchoconstriction and peripheral vasoconstriction, both of which could impact muscular performance by affecting metabolic demands during exercise. Successful solutions dealing with these physiological changes during exercise in the cold has been lacking; therefore, we investigated the influence of a heat and moisture exchange mask during exercise in the cold. There were three trial arms within this study: wearing the heat and moisture exchange mask during the rest periods in the cold, no-mask application during the rest periods in the cold, and a trial at room temperature (22°C). Eight subjects cycled in four 35 kJ sprint sessions with each session separated by 20 min rest period. Workload was 4% of body mass. Mean sprint times were faster with heat and moisture exchange mask and room temperature trial than cold, no-mask trial (133.8 ± 8.6, 134.9 ± 8.8, and 138.0 ± 8.4 s (p = 0.001)). Systolic blood pressure and mean arterial pressure were greater during the cold trial with no mask (15% and 13%, respectively), and heart rate was 10 bpm less during the third rest or recovery period during cold, no mask compared to the heat and moisture exchange mask and room temperature trials. Subjects demonstrated significant decreases in vital capacity and peak expiratory flow rate during the cold with no mask applied during the rest periods. These negative responses to cold exposure were alleviated by the use of a heat and moisture exchange mask worn during the rest intervals by minimizing cold-induced temperature stress on the respiratory system with subsequent maintenance of cardiovascular function.

  10. Complete disassociation of adult pancreas into viable single cells through cold trypsin-EDTA digestion*

    PubMed Central

    Li, Dan; Peng, Shi-yun; Zhang, Zhen-wu; Feng, Rui-cheng; Li, Lu; Liang, Jie; Tai, Sheng; Teng, Chun-bo

    2013-01-01

    The in vitro isolation and analysis of pancreatic stem/progenitor cells are necessary for understanding their properties and function; however, the preparation of high-quality single-cell suspensions from adult pancreas is prerequisite. In this study, we applied a cold trypsin-ethylenediaminetetraacetic acid (EDTA) digestion method to disassociate adult mouse pancreata into single cells. The yield of single cells and the viability of the harvested cells were much higher than those obtained via the two commonly used warm digestion methods. Flow cytometric analysis showed that the ratio of ductal or BCRP1-positive cells in cell suspensions prepared through cold digestion was consistent with that found in vivo. Cell culture tests showed that pancreatic epithelial cells prepared by cold digestion maintained proliferative capacity comparable to those derived from warm collagenase digestion. These results indicate that cold trypsin-EDTA digestion can effectively disassociate an adult mouse pancreas into viable single cells with minimal cell loss, and can be used for the isolation and analysis of pancreatic stem/progenitor cells. PMID:23825145

  11. Chemistry of runoff and shallow ground water at the Cattlemans Detention basin site, South Lake Tahoe, California, August 2000-November 2001

    USGS Publications Warehouse

    Prudic, David E.; Sager, Sienna J.; Wood, James L.; Henkelman, Katherine K.; Caskey, Rachel M.

    2005-01-01

    A study at the Cattlemans detention basin site began in November 2000. The site is adjacent to Cold Creek in South Lake Tahoe, California. The purpose of the study is to evaluate the effects of the detention basin on ground-water discharge and changes in nutrient loads to Cold Creek, a tributary to Trout Creek and Lake Tahoe. The study is being done in cooperation with the Tahoe Engineering Division of the El Dorado County Department of Transportation. This report summarizes data collected prior to and during construction of the detention basin and includes: (1) nutrient and total suspended solid concentrations of urban runoff; (2) distribution of unconsolidated deposits; (3) direction of ground-water flow; and (4) chemistry of shallow ground water and Cold Creek. Unconsolidated deposits in the area of the detention basin were categorized into three classes: fill material consisting of a red-brown loamy sand with some gravel and an occasional cobble that was placed on top of the meadow; meadow deposits consisting of gray silt and sand with stringers of coarse sand and fine gravel; and a deeper brown to yellow-brown sand and gravel with lenses of silt and sand. Prior to construction of the detention basin, ground water flowed west-northwest across the area of the detention basin toward Cold Creek. The direction of ground-water flow did not change during construction of the detention basin. Median concentrations of dissolved iron and chloride were 500 and 30 times higher, respectively, in ground water from the meadow deposits than dissolved concentrations in Cold Creek. Median concentration of sulfate in ground water from the meadow deposits was 0.4 milligrams per liter and dissolved oxygen was below the detection level of 0.3 milligrams per liter. The relatively high concentrations of iron and the lack of sulfate in the shallow ground water likely are caused by chemical reactions and biological microbial oxidation of organic matter in the unconsolidated deposits that result in little to no dissolved oxygen in the ground water. The higher chloride concentrations in ground water compared with Cold Creek likely are caused from the application of salt on Pioneer Trail and streets in Montgomery Estates subdivision during the winter. Runoff from these roads contributes to the recharge of the shallow ground water. The range of dissolved constituents generally was greater in the meadow deposits than in the deeper sand and gravel. Ammonia plus organic nitrogen were the dominant forms of dissolved nitrogen and concentrations ranged from 0.04 to 18 milligrams per liter as nitrogen. Highest concentration was beneath the middle of the detention basin. Nitrate plus nitrite concentrations were low (<0.33 milligrams per liter as nitrogen) throughout the area and dissolved phosphorus concentrations ranged from 0.001 to 0.34 milligrams per liter. Nitrogen and dissolved organic carbon showed no consistent pattern in the direction of ground-water flow, which suggests that, similar to iron and sulfate, local variations in the chemical and biological reactions within the meadow deposits controlled the variation in nitrogen concentrations. The gradual increase in dissolved phosphorus along the direction of ground-water flow suggest that phosphorus may be slowly dissolving into ground water. Dissolved phosphorus was consistently low in July, which may be the result of greater microbial activity in the unconsolidated deposits or from uptake by roots during the summer.

  12. Influence of fluid temperature gradient on the flow within the shaft gap of a PLR pump

    NASA Astrophysics Data System (ADS)

    Qian, W.; Rosic, B.; Zhang, Q.; Khanal, B.

    2016-03-01

    In nuclear power plants the primary-loop recirculation (PLR) pump circulates the high temperature/high-pressure coolant in order to remove the thermal energy generated within the reactor. The pump is sealed using the cold purge flow in the shaft seal gap between the rotating shaft and stationary casing, where different forms of Taylor-Couette flow instabilities develop. Due to the temperature difference between the hot recirculating water and the cold purge water (of order of 200 °C), the flow instabilities in the gap cause temperature fluctuations, which can lead to shaft or casing thermal fatigue cracks. The present work numerically investigated the influence of temperature difference and rotating speed on the structure and dynamics of the Taylor-Couette flow instabilities. The CFD solver used in this study was extensively validated against the experimental data published in the open literature. Influence of temperature difference on the fluid dynamics of Taylor vortices was investigated in this study. With large temperature difference, the structure of the Taylor vortices is greatly stretched at the interface region between the annulus gap and the lower recirculating cavity. Higher temperature difference and rotating speed induce lower fluctuating frequency and smaller circumferential wave number of Taylor vortices. However, the azimuthal wave speed remains unchanged with all the cases tested. The predicted axial location of the maximum temperature fluctuation on the shaft is in a good agreement with the experimental data, identifying the region potentially affected by the thermal fatigue. The physical understandings of such flow instabilities presented in this paper would be useful for future PLR pump design optimization.

  13. TASK 2: QUENCH ZONE SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fusselman, Steve

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from themore » outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual results on the pilot plant gasifier and demonstration plant design recommendations, based on cold flow simulation results.« less

  14. LOX/Hydrogen Coaxial Injector Atomization Test Program

    NASA Technical Reports Server (NTRS)

    Zaller, M.

    1990-01-01

    Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.

  15. Sympathetic Innervation of Cold-Activated Brown and White Fat in Lean Young Adults.

    PubMed

    Muzik, Otto; Mangner, Tom J; Leonard, William R; Kumar, Ajay; Granneman, James G

    2017-05-01

    Recent work in rodents has demonstrated that basal activity of the local sympathetic nervous system is critical for maintaining brown adipocyte phenotypes in classic brown adipose tissue (BAT) and white adipose tissue (WAT). Accordingly, we sought to assess the relationship between sympathetic innervation and cold-induced activation of BAT and WAT in lean young adults. Methods: Twenty adult lean normal subjects (10 women and 10 men; mean age ± SD, 23.3 ± 3.8 y; body mass index, 23.7 ± 2.5 kg/m 2 ) underwent 11 C-meta-hydroxyephedrin ( 11 C-HED) and 15 O-water PET imaging at rest and after exposure to mild cold (16°C) temperature. In addition, 18 F-FDG images were obtained during the cold stress condition to assess cold-activated BAT mass. Subjects were divided into 2 groups (high BAT and low BAT) based on the presence of 18 F-FDG tracer uptake. Blood flow and 11 C-HED retention index (RI, an indirect measure of sympathetic innervation) were calculated from dynamic PET scans at the location of BAT and WAT. Whole-body daily energy expenditure (DEE) during rest and cold stress was measured by indirect calorimetry. Tissue level oxygen consumption (MRO 2 ) was determined and used to calculate the contribution of cold-activated BAT and WAT to daily DEE. Results: 18 F-FDG uptake identified subjects with high and low levels of cold-activated BAT mass (high BAT, 96 ± 37 g; low-BAT, 16 ± 4 g). 11 C-HED RI under thermoneutral conditions significantly predicted 18 F-FDG uptake during cold stress ( R 2 = 0.68, P < 0.01). In contrast to the significant increase of 11 C-HED RI during cold in BAT (2.42 ± 0.85 vs. 3.43 ± 0.93, P = 0.02), cold exposure decreased the 11 C-HED RI in WAT (0.44 ± 0.22 vs. 0.41 ± 0.18) as a consequence of decreased perfusion (1.22 ± 0.20 vs. 1.12 ± 0.16 mL/100 g/min). The contribution of WAT to whole-body DEE was approximately 150 kcal/d at rest (149 ± 52 kcal/d), which decreased to approximately 100 kcal/d during cold (102 ± 47 kcal/d). Conclusion: The level of sympathetic innervation, as determined by 11 C-HED RI, can predict levels of functional BAT. Overall, blood flow is the best independent predictor of 11 C-HED RI and 18 F-FDG uptake across thermoneutral and cold conditions. In contrast to BAT, cold stress reduces blood flow and 18 F-FDG uptake in subcutaneous WAT, indicating that the physiologic response is to reduce heat loss rather than to generate heat. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  16. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang

    2016-12-01

    This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.

  17. Partial Hydrothermal Oxidation of High Molecular Weight Unsaturated Carboxylic Acids for Upgrading of Biodiesel Fuel

    NASA Astrophysics Data System (ADS)

    Kawasaki, K.; Jin, F.; Kishita, A.; Tohji, K.; Enomoto, H.

    2007-03-01

    With increasing environmental awareness and crude oil price, biodiesel fuel (BDF) is gaining recognition as a renewable fuel which may be used as an alternative diesel fuel without any modification to the engine. The cold flow and viscosity of BDF, however, is a major drawback that limited its use in cold area. In this study, therefore, we investigated that partial oxidation of high molecular weight unsaturated carboxylic acids in subcritical water, which major compositions in BDF, to upgrade biodiesel fuel. Oleic acid, (HOOC(CH2)7CH=CH(CH2)7CH3), was selected as a model compound of high molecular weight unsaturated carboxylic acids. All experiments were performed with a batch reactor made of SUS 316 with an internal volume of 5.7 cm3. Oleic acid was oxidized at 300 °C with oxygen supply varying from 1-10 %. Results showed that a large amount of carboxylic acids and aldehydes having 8-9 carbon atoms were formed. These experimental results suggest that the hydrothermal oxidative cleavage may mainly occur at double bonds and the cleavage of double bonds could improve the cold flow and viscosity of BDF.

  18. Thermal margin protection system for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musick, C.R.

    1974-02-12

    A thermal margin protection system for a nuclear reactor is described where the coolant flow flow trip point and the calculated thermal margin trip point are switched simultaneously and the thermal limit locus is made more restrictive as the allowable flow rate is decreased. The invention is characterized by calculation of the thermal limit Locus in response to applied signals which accurately represent reactor cold leg temperature and core power; cold leg temperature being corrected for stratification before being utilized and reactor power signals commensurate with power as a function of measured neutron flux and thermal energy added to themore » coolant being auctioneered to select the more conservative measure of power. The invention further comprises the compensation of the selected core power signal for the effects of core radial peaking factor under maximum coolant flow conditions. (Official Oazette)« less

  19. Trends in streamflow in the Yukon River Basin from 1944 to 2005 and the influence of the Pacific Decadal Oscillation

    USGS Publications Warehouse

    Brabets, T.P.; Walvoord, Michelle Ann

    2009-01-01

    Streamflow characteristics in the Yukon River Basin of Alaska and Canada have changed from 1944 to 2005, and some of the change can be attributed to the two most recent modes of the Pacific Decadal Oscillation (PDO). Seasonal, monthly, and annual stream discharge data from 21 stations in the Yukon River Basin were analyzed for trends over the entire period of record, generally spanning 4-6 decades, and examined for differences between the two most recent modes of the PDO: cold-PDO (1944-1975) and warm-PDO (1976-2005) subsets. Between 1944 and 2005, average winter and April flow increased at 15 sites. Observed winter flow increases during the cold-PDO phase were generally limited to sites in the Upper Yukon River Basin. Positive trends in winter flow during the warm-PDO phase broadened to include stations in the Middle and Lower Yukon River drainage basins. Increases in winter streamflow most likely result from groundwater input enhanced by permafrost thawing that promotes infiltration and deeper subsurface flow paths. Increased April flow may be attributed to a combination of greater baseflow (from groundwater increases), earlier spring snowmelt and runoff, and increased winter precipitation, depending on location. Calculated deviations from long-term mean monthly discharges indicate below-average flow in the winter months during the cold PDO and above-average flow in the winter months during the warm PDO. Although not as strong a signal, results also support the reverse response during the summer months: above-average flow during the cold PDO and below-average flow during the warm PDO. Changes in the summer flows are likely an indirect consequence of the PDO, resulting from earlier spring snowmelt runoff and also perhaps increased summer infiltration and storage in a deeper active layer. Annual discharge has remained relatively unchanged in the Yukon River Basin, but a few glacier-fed rivers demonstrate positive trends, which can be attributed to enhanced glacier melting. A positive trend in annual flow during the warm PDO near the mouth of the Yukon River suggests that small increases in flow throughout the Yukon River Basin have resulted in an additive effect manifested in the downstream-most streamflow station. Many of the identified changes in streamflow patterns in the Yukon River Basin show a correlation to the PDO regime shift. This work highlights the importance of considering proximate climate forcings as well as global climate change when assessing hydrologic changes in the Arctic.

  20. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.20 Cold-cathode gas... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... cathode. Exit beam means that portion of the radiation which passes through the aperture resulting from...

  1. TISSUE ENZYME RESPONSE TO COLD AND TO HYPERPHAGIA IN THE RAT,

    DTIC Science & Technology

    activated glutaminase were increased. In animals with a comparable hyperphagia due to bilateral ablation of the ventromedial region of the hypothalamus...concluded that changes of enzyme activities in cold-exposed rats are not simply an adaptation to the increased nutrient flow consequent upon the hyperphagia induced. (Author)

  2. Acute effects of local cold therapy in superficial burns on pain, in vivo microcirculation, edema formation and histomorphology.

    PubMed

    Altintas, B; Altintas, A A; Kraemer, R; Sorg, H; Vogt, P M; Altintas, M A

    2014-08-01

    Local cold therapy for burns is generally recommended to relief pain and limit tissue damage, however, there is limited data of its physiological benefit. This study aimed to evaluate pathophysiological effects of cold therapy in superficial burn on microcirculation, edema formation, and histomorphology. In 12 volunteers (8f, 4m; aged 30.4±14.1 years) circumscribed superficial burn was induced on both hand back and either left untreated as control (control-group) or treated by local-cold-application (cold-treatment-group). Prior to burn (t0), immediately (t1), 15 min (t2), and 30 min (t3) following cold therapy, following parameter was evaluated using intravital-microscopy; epidermal-thickness (ET), granular-cell-size (GCS), individual-blood-cell-flow (IBCF), and functional-capillary-density (FCD). Both ET and GCS increased significantly more in control-group and slightly in cold-treatment-group in t1, while turns to insignificant t2 onwards. IBCF and FCD raised up in control-group compared to dramatically decrease in cold-treatment-group in t1. In t2 both parameter remains in control-group and increased in cold-treatment-group. Comparison of both groups for IBCF and FCD indicates significant difference in t1 and t2, however, insignificant in t0 and t3. Microcirculation, edema formation, and histomorphology of superficial burn has been significantly influenced through immediate cold therapy, however, this alterations are transient and turns to ineffective after 30 min. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    New inverter-driven ASHPs are gaining ground in colder climates. These systems operate at sub-zero temperatures without the use of electric resistance backup. There are still uncertainties, however, about cold-climate capacity and efficiency in cold weather and questions such as measuring: power consumption, supply, return, and outdoor air temperatures, and air flow through the indoor fan coil. CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10 degrees F. The reasons for the wide range in heating performance likelymore » include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.« less

  4. Influence of snow temperature on avalanche impact pressure

    NASA Astrophysics Data System (ADS)

    Sovilla, Betty; Koehler, Anselm; Steinkogler, Walter; Fischer, Jan-Thomas

    2015-04-01

    The properties of the snow entrained by an avalanche during its motion (density, temperature) significantly affect flow dynamics and can determine whether the flowing material forms granules or maintains its original fine-grained structure. In general, a cold and light snow cover typically fluidizes, while warmer and more cohesive snow may form a granular denser layer in a flowing avalanche. This structural difference has a fundamental influence not only in the mobility of the flow but also on the impact pressure of avalanches. Using measurements of impact pressure, velocity, density and snow temperature performed at the Swiss Vallée de la Sionne full-scale test site, we show that, impact pressure fundamentally changes with snow temperature. A transition threshold of about -2°C is determined, the same temperature at which snow granulation starts. On the one hand warm avalanches, characterized by temperatures larger than -2°C, move as a plug and exert impact pressures linearly proportional to the avalanche depth. For Froude numbers larger than 1, an additional square-velocity dependent contribution cannot be neglected. On the other hand cold avalanches, characterized by a temperature smaller than -2°C, move as dense sheared flows, or completely dilute powder clouds and exert impact pressures, which are mainly proportional to the square of the flow velocity. For these avalanches the impact pressures strongly depend on density variations within the flow. We suggest that the proposed temperature threshold can be used as a criterion to define the transition between the impact pressures exerted by warm and cold avalanches, thus offering a new way to elude the notorious difficulties in defining the differences between wet and dry flow, respectively.

  5. Cold plate

    DOEpatents

    Marroquin, Christopher M.; O'Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  6. Analysis of screeching in a cold flow jet experiment

    NASA Technical Reports Server (NTRS)

    Wang, M. E.; Slone, R. M., Jr.; Robertson, J. E.; Keefe, L.

    1975-01-01

    The screech phenomenon observed in a one-sixtieth scale model space shuttle test of the solid rocket booster exhaust flow noise has been investigated. A critical review is given of the cold flow test data representative of Space Shuttle launch configurations to define those parameters which contribute to screech generation. An acoustic feedback mechanism is found to be responsible for the generation of screech. A simple equation which permits prediction of screech frequency in terms of basic testing parameters such as the jet exhaust Mach number and the separating distance from nozzle exit to the surface of model launch pad is presented and is found in good agreement with the test data. Finally, techniques are recommended to eliminate or reduce the screech.

  7. Investigation of air stream from combustor-liner air entry holes, 3

    NASA Technical Reports Server (NTRS)

    Aiba, T.; Nakano, T.

    1979-01-01

    Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.

  8. Wind tunnel tests of an 0.019-scale space shuttle integrated vehicle -2A configuration (model 14-OTS) in the NASA Ames 8 X 7 foot unitary wind tunnel, volume 2. [cold jet gas plumes and pressure distribution

    NASA Technical Reports Server (NTRS)

    Hardin, R. B.; Burrows, R. R.

    1975-01-01

    The purpose of the test was to determine the effects of cold jet gas plumes on (1) the integrated vehicle longitudinal and lateral-directional force data, (2) exposed wing hinge moment, (3) wing pressure distributions, (4) orbiter MPS external pressure distributions, and (5) model base pressures. An investigation was undertaken to determine the similarity between solid and gaseous plumes; fluorescent oil flow visualization studies were also conducted. Plotted wing pressure data is tabulated.

  9. Hard X-Ray-emitting Black Hole Fed by Accretion of Low Angular Momentum Matter

    NASA Astrophysics Data System (ADS)

    Igumenshchev, Igor V.; Illarionov, Andrei F.; Abramowicz, Marek A.

    1999-05-01

    Observed spectra of active galactic nuclei and luminous X-ray binaries in our Galaxy suggest that both hot (~109 K) and cold (~106 K) plasma components exist close to the central accreting black hole. The hard X-ray component of the spectra is usually explained by Compton upscattering of optical/UV photons from optically thick cold plasma by hot electrons. Observations also indicate that some of these objects are quite efficient in converting gravitational energy of accretion matter into radiation. Existing theoretical models have difficulties in explaining the two plasma components and high intensity of hard X-rays. Most of the models assume that the hot component emerges from the cold one because of some kind of instability, but no one offers a satisfactory physical explanation for this. Here we propose a solution to these difficulties that reverses what was imagined previously: in our model, the hot component forms first and afterward it cools down to form the cold component. In our model, the accretion flow initially has a small angular momentum, and thus it has a quasi-spherical geometry at large radii. Close to the black hole, the accreting matter is heated up in shocks that form because of the action of the centrifugal force. The hot postshock matter is very efficiently cooled down by Comptonization of low-energy photons and condensates into a thin and cool accretion disk. The thin disk emits the low-energy photons which cool the hot component. All the properties of our model, in particular the existence of hot and cold components, follow from an exact numerical solution of standard hydrodynamical equations--we postulate no unknown processes operating in the flow. In contrast to the recently discussed advection-dominated accretion flow, the particular type of accretion flow considered in this Letter is both very hot and quite radiatively efficient.

  10. Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Chunyan

    2017-11-01

    With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.

  11. Heated air humidification versus cold air nebulization in newly tracheostomized patients.

    PubMed

    Birk, Richard; Händel, Alexander; Wenzel, Angela; Kramer, Benedikt; Aderhold, Christoph; Hörmann, Karl; Stuck, Boris A; Sommer, J Ulrich

    2017-12-01

    After tracheostomy, the airway lacks an essential mechanism for warming and humidifying the inspired air with the consequent functional impairment and discomfort. The purpose of this study was to compare airway hydration with cold-air nebulization versus heated high-flow humidification on medical interventions and tracheal ciliary beat frequency (CBF). Newly tracheostomized patients (n = 20) were treated either with cold-air nebulization or heated humidification. The number of required tracheal suctioning procedures to clean the trachea and tracheal CBF were assessed. The number of required suctions per day was significantly lower in the heated humidification group with medians 3 versus 5 times per day. Mean CBF was significantly higher in the heated humidification group (6.36 ± 1.49 Hz) compared to the cold-air nebulization group (3.99 ± 1.39 Hz). The data suggest that heated humidification enhanced mucociliary transport leading to a reduced number of required suctioning procedures in the trachea, which may improve postoperative patient care. © 2017 The Authors Head & Neck Published by Wiley Periodicals, Inc.

  12. The Effectiveness of Cattlemans Detention Basin, South Lake Tahoe, California

    USGS Publications Warehouse

    Green, Jena M.

    2006-01-01

    Lake Tahoe (Nevada-California) has been designated as an 'outstanding national water resource' by the U.S. Environmental Protection Agency, in part, for its exceptional clarity. Water clarity in Lake Tahoe, however, has been declining at a rate of about one foot per year for more than 35 years. To decrease the amount of sediment and nutrients delivered to the lake by way of alpine streams, wetlands and stormwater detention basins have been installed at several locations around the lake. Although an improvement in stormwater and snowmelt runoff quality has been measured, the effectiveness of the detention basins for increasing the clarity of Lake Tahoe needs further study. It is possible that poor ground-water quality conditions exist beneath the detention basins and adjacent wetlands and that the presence of the basins has altered ground-water flow paths to nearby streams. A hydrogeochemical and ground-water flow modeling study was done at Cattlemans detention basin, situated adjacent to Cold Creek, a tributary to Lake Tahoe, to determine whether the focusing of storm and snowmelt runoff into a confined area has (1) modified the ground-water flow system beneath the detention basin and affected transport of sediment and nutrients to nearby streams and (2) provided an increased source of solutes which has changed the distribution of nutrients and affected nutrient transport rates beneath the basin. Results of slug tests and ground-water flow modeling suggest that ground water flows unrestricted northwest across the detention basin through the meadow. The modeling also indicates that seasonal flow patterns and flow direction remain similar from year to year under transient conditions. Model results imply that about 34 percent (0.004 ft3/s) of the total ground water within the model area originates from the detention basin. Of the 0.004 ft3/s, about 45 percent discharges to Cold Creek within the modeled area downstream of the detention basin. The remaining 55 percent of ground water is either consumed by evapotranspiration, is discharged to Cold Creek outside the modeled area downstream of the detention basin, or is discharged directly to Lake Tahoe. Of the 45 percent discharging to Cold Creek, about 9 percent enters directly downstream of the detention basin and 36 percent enters further downstream. Geochemical and microbial data suggest that a seasonal variation of chemical constituents and microbe population size is present at most wells. The geochemical data also indicate that construction of Cattlemans detention basin has not substantially changed the composition of the ground water in the area. High concentrations of ammonia, iron, and dissolved organic carbon, low concentrations of sulfate and nitrate, and large populations of sulfate-reducing microbes imply that the major geochemical process controlling nutrient concentrations beneath the detention basin is sulfate reduction. High concentrations of total nitrogen indicate that oxidation of organic carbon is a second important geochemical process occurring beneath the basin. The influx of surface runoff during spring 2002 apparently provided sufficient oxidized organic carbon to produce iron-reducing conditions and an increase in reduced iron, sulfate, and iron-reducing microorganisms. The increase in recharge of oxygenated water to the ground water system beneath the basin in future intervals of increased recharge may eventually redistribute nutrients and speed up transport of dissolved nutrients from the ground water system to Cold Creek.

  13. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Technical Reports Server (NTRS)

    Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)

    1992-01-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  14. Reactor Simulator Testing

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  15. Reactor Simulator Integration and Testing

    NASA Technical Reports Server (NTRS)

    Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  16. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Astrophysics Data System (ADS)

    Bard, Steven; Wu, Jiunn-Jeng; Trimble, Curtis A.

    1992-06-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  17. Asymptotic domination of cold relativistic MHD winds by kinetic energy flux

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Li, Zhi-Yun

    1994-01-01

    We study the conditions which lead to the conversion of most Poynting flux into kinetic energy flux in cold, relativistic hydromagnetic winds. It is shown that plasma acceleration along a precisely radial flow is extremely inefficient due to the near cancellation of the toroidal magnetic pressure and tension forces. However, if the flux tubes in a flow diverge even slightly faster than radially, the fast magnetosonic point moves inward from infinity to a few times the light cylinder radius. Once the flow becomes supermagnetosonic, further divergence of the flux tubes beyond the fast point can accelerate the flow via the 'magnetic nozzle' effect, thereby further converting Poynting flux to kinetic energy flux. We show that the Grad-Shafranov equation admits a generic family of kinetic energy-dominated asymptotic wind solutions with finite total magnetic flux. The Poynting flux in these solutions vanishes logarithmically with distance. The way in which the flux surfaces are nested within the flow depends only on the ratio of angular velocity to poliodal 4-velocity as a function of magnetic flux. Radial variations in flow structure can be expressed in terms of a pressure boundary condition on the outermost flux surface, provided that no external toriodal field surrounds the flow. For a special case, we show explicitly how the flux surfaces merge gradually to their asymptotes. For flows confined by an external medium of pressure decreasing to zero at infinity we show that, depending on how fast the ambient pressure declines, the final flow state could be either a collimated jet or a wind that fills the entire space. We discuss the astrophysical implications of our results for jets from active galactic nuclei and for free pulsar winds such as that believed to power the Crab Nebula.

  18. Projected Changes in Hydrological Extremes in a Cold Region Watershed: Sensitivity of Results to Statistical Methods of Analysis

    NASA Astrophysics Data System (ADS)

    Dibike, Y. B.; Eum, H. I.; Prowse, T. D.

    2017-12-01

    Flows originating from alpine dominated cold region watersheds typically experience extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a warmer climate, there will be temperature- induced shift in precipitation from snow towards rain as well as changes in snowmelt timing affecting the frequency of extreme high and low flow events which could significantly alter ecosystem services. This study examines the potential changes in the frequency and severity of hydrologic extremes in the Athabasca River watershed in Alberta, Canada based on the Variable Infiltration Capacity (VIC) hydrologic model and selected and statistically downscaled climate change scenario data from the latest Coupled Model Intercomparison Project (CMIP5). The sensitivity of these projected changes is also examined by applying different extreme flow analysis methods. The hydrological model projections show an overall increase in mean annual streamflow in the watershed and a corresponding shift in the freshet timing to earlier period. Most of the streams are projected to experience increases during the winter and spring seasons and decreases during the summer and early fall seasons, with an overall projected increases in extreme high flows, especially for low frequency events. While the middle and lower parts of the watershed are characterised by projected increases in extreme high flows, the high elevation alpine region is mainly characterised by corresponding decreases in extreme low flow events. However, the magnitude of projected changes in extreme flow varies over a wide range, especially for low frequent events, depending on the climate scenario and period of analysis, and sometimes in a nonlinear way. Nonetheless, the sensitivity of the projected changes to the statistical method of analysis is found to be relatively small compared to the inter-model variability.

  19. Single bi-temperature thermal storage tank for application in solar thermal plant

    DOEpatents

    Litwin, Robert Zachary; Wait, David; Lancet, Robert T.

    2017-05-23

    Thermocline storage tanks for solar power systems are disclosed. A thermocline region is provided between hot and cold storage regions of a fluid within the storage tank cavity. One example storage tank includes spaced apart baffles fixed relative to the tank and arranged within the thermocline region to substantially physically separate the cavity into hot and cold storage regions. In another example, a flexible baffle separated the hot and cold storage regions and deflects as the thermocline region shifts to accommodate changing hot and cold volumes. In yet another example, a controller is configured to move a baffle within the thermocline region in response to flow rates from hot and cold pumps, which are used to pump the fluid.

  20. Study on the Influence of the Cold-End Cooling Water Thickness on the Generative Performance of TEG

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Guo, Xuexun; Tan, Gangfeng; Ji, Kangping; Xiao, Longjie

    2017-05-01

    At present, about 40% of the fuel energy is discharged into air with the exhaust gas when an automobile is working, which is a big waste of energy. A thermoelectric generator (TEG) has the ability to harvest the waste heat energy in the exhaust gas. The traditional TEG cold-end is cooled by the engine cooling system, and although its structure is compact, the TEG weight and the space occupied are important factors restricting its application. In this paper, under the premise of ensuring the TEG maximum net output power and reducing the TEG water consumption as much as possible, the optimization of the TEG water thickness in the normal direction of the cold-end surface (WTNCS) is studied, which results in lighter weight, less space occupied and better automobile fuel economy. First, the thermal characteristics of the target diesel vehicle exhaust gas are evaluated based on the experimental data. Then, according to the thermoelectric generation model and the cold-end heat transfer model, the effect of the WTNCS on the cold-end temperature control stability and the system flow resistance are studied. The results show that the WTNCS influences the TEG cold-end temperature. When the engine works in a stable condition, the cold-end temperature decreases with the decrease of the WTNCS. The optimal value of the WTNCS is 0.02 m and the TEG water consumption is 8.8 L. Comparin it with the traditional vehicle exhaust TEG structure, the power generation increased slightly, but the water consumption decreased by about 39.5%, which can save fuel at0.18 L/h when the vehicle works at the speed of 60 km/h.

  1. Viscous computations of cold air/air flow around scramjet nozzle afterbody

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.

    1991-01-01

    The flow field in and around the nozzle afterbody section of a hypersonic vehicle was computationally simulated. The compressible, Reynolds averaged, Navier Stokes equations were solved by an implicit, finite volume, characteristic based method. The computational grids were adapted to the flow as the solutions were developing in order to improve the accuracy. The exhaust gases were assumed to be cold. The computational results were obtained for the two dimensional longitudinal plane located at the half span of the internal portion of the nozzle for over expanded and under expanded conditions. Another set of results were obtained, where the three dimensional simulations were performed for a half span nozzle. The surface pressures were successfully compared with the data obtained from the wind tunnel tests. The results help in understanding this complex flow field and, in turn, should help the design of the nozzle afterbody section.

  2. Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi

    2018-04-01

    Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.

  3. Cold air drainage flows subsidize montane valley ecosystem productivity

    Treesearch

    Kimberly A. Novick; Andrew C. Oishi; Chelcy Ford Miniat

    2016-01-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate...

  4. Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Lahoti, G. D.; Akgerman, N.; Altan, T.

    1978-01-01

    Mild steel (AISI 1018) was selected as model cold-rolling material and Ti-6Al-4V and INCONEL 718 were selected as typical hot-rolling and cold-rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape-rolling process were developed. These models utilize the upper-bound and the slab methods of analysis, and are capable of predicting the lateral spread, roll-separating force, roll torque and local stresses, strains and strain rates. This computer-aided design (CAD) system is also capable of simulating the actual rolling process and thereby designing roll-pass schedule in rolling of an airfoil or similar shape. The predictions from the CAD system were verified with respect to cold rolling of mild steel plates. The system is being applied to cold and hot isothermal rolling of an airfoil shape, and will be verified with respect to laboratory experiments under controlled conditions.

  5. Performance evaluation approach for the supercritical helium cold circulators of ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaghela, H.; Sarkar, B.; Bhattacharya, R.

    2014-01-29

    The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe coldmore » circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.« less

  6. Hydrogen Sulfide Protects Renal Grafts Against Prolonged Cold Ischemia-Reperfusion Injury via Specific Mitochondrial Actions.

    PubMed

    Lobb, I; Jiang, J; Lian, D; Liu, W; Haig, A; Saha, M N; Torregrossa, R; Wood, M E; Whiteman, M; Sener, A

    2017-02-01

    Ischemia-reperfusion injury is unavoidably caused by loss and subsequent restoration of blood flow during organ procurement, and prolonged ischemia-reperfusion injury IRI results in increased rates of delayed graft function and early graft loss. The endogenously produced gasotransmitter, hydrogen sulfide (H 2 S), is a novel molecule that mitigates hypoxic tissue injury. The current study investigates the protective mitochondrial effects of H 2 S during in vivo cold storage and subsequent renal transplantation (RTx) and in vitro cold hypoxic renal injury. Donor allografts from Brown Norway rats treated with University of Wisconsin (UW) solution + H 2 S (150 μM NaSH) during prolonged (24-h) cold (4°C) storage exhibited significantly (p < 0.05) decreased acute necrotic/apoptotic injury and significantly (p < 0.05) improved function and recipient Lewis rat survival compared to UW solution alone. Treatment of rat kidney epithelial cells (NRK-52E) with the mitochondrial-targeted H 2 S donor, AP39, during in vitro cold hypoxic injury improved the protective capacity of H 2 S >1000-fold compared to similar levels of the nonspecific H 2 S donor, GYY4137 and also improved syngraft function and survival following prolonged cold storage compared to UW solution. H 2 S treatment mitigates cold IRI-associated renal injury via mitochondrial actions and could represent a novel therapeutic strategy to minimize the detrimental clinical outcomes of prolonged cold IRI during RTx. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Study of Cycling Air-Cooling System with a Cold Accumulator for Micro Gas-Turbine Installations

    NASA Astrophysics Data System (ADS)

    Ochkov, V. F.; Stepanova, T. A.; Katenev, G. M.; Tumanovskii, V. A.; Borisova, P. N.

    2018-05-01

    Using the cycling air-cooling systems of the CTIC type (Combustion Turbine Inlet Cooling) with a cold accumulator in a micro gas-turbine installation (micro-GTI) to preserve its capacity under the seasonal temperature rise of outside air is described. Water ice is used as the body-storage in the accumulators, and ice water (water at 0.5-1.0°C) is used as the body that cools air. The ice water circulates between the accumulator and the air-water heat exchanger. The cold accumulator model with renewable ice resources is considered. The model contains the heat-exchanging tube lattice-evaporator covered with ice. The lattice is cross-flowed with water. The criterion heat exchange equation that describes the process in the cold accumulator under consideration is presented. The calculations of duration of its active operation were performed. The dependence of cold accumulator service life on water circulation rate was evaluated. The adequacy of the design model was confirmed experimentally in the mock-up of the cold accumulator with a refrigerating machine periodically creating a 200 kg ice reserve in the reservoir-storage. The design model makes it possible to determine the weight of ice reserve of the discharged cold accumulator for cooling the cycle air in the operation of a C-30 type micro- GTI produced by the Capstone Company or micro-GTIs of other capacities. Recommendations for increasing the working capacity of cold accumulators of CTIC-systems of a micro-GTI were made.

  8. Cold-Flow Study of Low Frequency Pressure Instability in Hybrid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Jenkins, Rhonald M.

    1997-01-01

    Past experience with hybrid rockets has shown that certain motor operating conditions are conducive to the formation of low frequency pressure oscillations, or flow instabilities, within the motor. Both past and present work in the hybrid propulsion community acknowledges deficiencies in the understanding of such behavior, though it seems probable that the answer lies in an interaction between the flow dynamics and the combustion heat release. Knowledge of the fundamental flow dynamics is essential to the basic understanding of the overall stability problem. A first step in this direction was a study conducted at NASA Marshall Space Flight Center (MSFC), centered around a laboratory-scale two dimensional water flow model of a hybrid rocket motor. Principal objectives included: (1) visualization of flow and measurement of flow velocity distributions: (2) assessment of the importance of shear layer instabilities in driving motor pressure oscillations; (3) determination of the interactions between flow induced shear layers with the mainstream flow, the secondary (wall) throughflow, and solid boundaries; (4) investigation of the interactions between wall flow oscillations and the mainstream flow pressure distribution.

  9. Cold storage of rat hepatocyte suspensions for one week in a customized cold storage solution--preservation of cell attachment and metabolism.

    PubMed

    Pless-Petig, Gesine; Singer, Bernhard B; Rauen, Ursula

    2012-01-01

    Primary hepatocytes are of great importance for basic research as well as cell transplantation. However, their stability, especially in suspension, is very low. This feature severely compromises storage and shipment. Based on previous studies with adherent cells, we here assessed cold storage injury in rat hepatocyte suspensions and aimed to find a cold storage solution that preserves viability, attachment ability and functionality of these cells. Rat hepatocyte suspensions were stored in cell culture medium, organ preservation solutions and modified TiProtec solutions at 4°C for one week. Viability and cell volume were determined by flow cytometry. Thereafter, cells were seeded and density and metabolic capacity (reductive metabolism, forskolin-induced glucose release, urea production) of adherent cells were assessed. Cold storage injury in hepatocyte suspensions became evident as cell death occurring during cold storage or rewarming or as loss of attachment ability. Cell death during cold storage was not dependent on cell swelling and was almost completely inhibited in the presence of glycine and L-alanine. Cell attachment could be greatly improved by use of chloride-poor solutions and addition of iron chelators. Using a chloride-poor, potassium-rich storage solution containing glycine, alanine and iron chelators, cultures with 75% of the density of control cultures and with practically normal cell metabolism could be obtained after one week of cold storage. In the solution presented here, cold storage injury of hepatocyte suspensions, differing from that of adherent hepatocytes, was effectively inhibited. The components which acted on the different injurious processes were identified.

  10. Thermo-mechanical Design Methodology for ITER Cryodistribution cold boxes

    NASA Astrophysics Data System (ADS)

    Shukla, Vinit; Patel, Pratik; Das, Jotirmoy; Vaghela, Hitensinh; Bhattacharya, Ritendra; Shah, Nitin; Choukekar, Ketan; Chang, Hyun-Sik; Sarkar, Biswanath

    2017-04-01

    The ITER cryo-distribution (CD) system is in charge of proper distribution of the cryogen at required mass flow rate, pressure and temperature level to the users; namely the superconducting (SC) magnets and cryopumps (CPs). The CD system is also capable to use the magnet structures as a thermal buffer in order to operate the cryo-plant as much as possible at a steady state condition. A typical CD cold box is equipped with mainly liquid helium (LHe) bath, heat exchangers (HX’s), cryogenic valves, filter, heaters, cold circulator, cold compressor and process piping. The various load combinations which are likely to occur during the life cycle of the CD cold boxes are imposed on the representative model and impacts on the system are analyzed. This study shows that break of insulation vacuum during nominal operation (NO) along with seismic event (Seismic Level-2) is the most stringent load combination having maximum stress of 224 MPa. However, NO+SMHV (Séismes Maximaux Historiquement Vraisemblables = Maximum Historically Probable Earthquakes) load combination is having the least safety margin and will lead the basis of the design of the CD system and its sub components. This paper presents and compares the results of different load combinations which are likely to occur on a typical CD cold box.

  11. Efficacy of a heat exchanger mask in cold exercise-induced asthma.

    PubMed

    Beuther, David A; Martin, Richard J

    2006-05-01

    To determine the efficacy of a novel mask device in limiting cold air exercise-induced decline in lung function in subjects with a history of exercise-induced asthma (EIA). In spite of appropriate medical therapy, many asthma patients are limited in cold weather activities. In study 1, 13 asthmatic subjects performed two randomized, single-blind treadmill exercise tests while breathing cold air (- 25 to - 15 degrees C) through a placebo or active heat exchanger mask. In study 2, five subjects with EIA performed three treadmill exercise tests while breathing cold air: one test using the heat exchanger mask, one test without the mask but with albuterol pretreatment, and one test with neither the mask nor albuterol pretreatment (unprotected exercise). For all studies, spirometry was performed before and at 5, 15, and 30 min after exercise challenge. For both studies, a total of 15 subjects with a history of asthma symptoms during cold air exercise were recruited. In study 1, the mean decrease (+/- SE) in FEV1 was 19 +/- 4.9% with placebo, and 4.3 +/- 1.6% with the active device (p = 0.0002). The mean decrease in maximum mid-expiratory flow (FEF(25-75)) was 31 +/- 5.7% with placebo and 4.7 +/- 1.7% with the active device (p = 0.0002). In study 2, the mean decrease in FEV1 was 6.3 +/- 3.9%, 11 +/- 3.7%, and 28 +/- 10% for the heat exchanger mask, albuterol pretreatment, and unprotected exercises, respectively (p = 0.4375 for mask vs albuterol, p = 0.0625 for mask vs unprotected exercise). The mean decrease in FEF(25-75) was 10 +/- 4.8%, 23 +/- 6.0%, and 36 +/- 11%, respectively (p = 0.0625 for mask vs albuterol, p = 0.0625 for mask vs unprotected exercise). This heat exchanger mask blocks cold exercise-induced decline in lung function at least as effectively as albuterol pretreatment.

  12. A study of cooling flows in poor clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.; Dillingham, Stephen

    1995-01-01

    We observed three poor clusters with central dominant galaxies (AWM 4, MKW 4, and MKW 3's) using the Position Sensitive Proportional Counter on the ROSAT X-ray satellite. The images reveal smooth, symmetrical X-ray emission filling the cluster with a sharp peak on each central galaxy. The cluster surface brightness profiles can be decomposed using superposed King models for the central galaxy and the intracluster medium. The King model parameters for the cluster portions are consistent with previous observations of these clusters. The newly measured King model parameters for the central galaxies are typical of the X-ray surface brightness distributions of isolated elliptical galaxies. Spatially resolved temperature measurements in annular rings throughout the clusters show a nearly isothermal profile. Temperatures are consistent with previously measured values, but are much better determined. There is no significant drop in temperature noted in the innermost bins where cooling flows are likely to be present, nor is any excess absorption by cold gas required. All cold gas columns are consistent with galactic foreground absorption. We derive mass profiles for the clusters assuming both isothermal temperature profiles and cooling flow models with constant mass flow rates. Our results are consistent with previous Einstein IPC observations by Kriss, Cioffi, & Canizares, but extend the mass profiles out to 1 Mpc in these poor clusters.

  13. Cold Flow Determination of the Internal Flow Environment Around the Submerged TVC Nozzle for the Space Shuttle SRM

    NASA Technical Reports Server (NTRS)

    Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.

    1989-01-01

    A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru a scaling analysis and the results compared well with the 3-D computational fluid dynamics computer model.

  14. Rapid and selective brain cooling method using vortex tube: A feasibility study.

    PubMed

    Bakhsheshi, Mohammad Fazel; Keenliside, Lynn; Lee, Ting-Yim

    2016-05-01

    Vortex tubes are simple mechanical devices to produce cold air from a stream of compressed air without any moving parts. The primary focus of the current study is to investigate the feasibility and efficiency of nasopharyngeal brain cooling method using a vortex tube. Experiments were conducted on 5 juvenile pigs. Nasopharygeal brain cooling was achieved by directing cooled air via a catheter in each nostril into the nasal cavities. A vortex tube was used to generate cold air using various sources of compressed air: (I) hospital medical air outlet (n = 1); (II) medical air cylinders (n = 3); and (III) scuba (diving) cylinders (n = 1). By using compressed air from a hospital medical air outlet at fixed inlet pressure of 50 PSI, maximum brain-rectal temperature gradient of -2°C was reached about 45-60 minutes by setting the flow rate of 25 L/min and temperature of -7°C at the cold air outlet. Similarly, by using medical air cylinders at fill-pressure of 2265 PSI and down regulate the inlet pressure to the vortex tube to 50 PSI, brain temperature could be reduced more rapidly by blowing -22°C ± 2°C air at a flow rate of 50 L/min; brain-body temperature gradient of -8°C was obtained about 30 minutes. Furthermore, we examined scuba cylinders as a portable source of compressed gas supply to the vortex tube. Likewise, by setting up the vortex tube to have an inlet pressure of 25 PSI and 50 L/min and -3°C at the cold air outlet, brain temperature decreased 4.5°C within 10-20 min. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  16. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  17. Investigating the Development of Abnormal Subauroral Ion Drift (ASAID) and Abnormal Subauroral Polarization Stream (ASAPS) During the Magnetically Active Times of September 2003

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2018-02-01

    This study investigates two recently reported subauroral phenomena: the abnormal subauroral ion drift (ASAID) appearing as an inverted SAID and the shielding-E—SAID structure depicting a SAID feature on the poleward side of a small eastward or antisunward flow channel that is the shielding electric (E) field's signature. We have analyzed polar cross sections, constructed with multi-instrument Defense Meteorological Satellite Program data, for the development of these subauroral phenomena. New results show the features of abnormal subauroral polarization stream (ASAPS) and ASAID-ASAPS comprised by a narrow ASAID embedded in a wider ASAPS. We have identified undershielding, perfect shielding, and overshielding events. Our observational results demonstrate SAPS development during undershielding, the absence of subauroral flow channel during perfect shielding, and ASAID/ASAPS and shielding-E—SAID/SAPS development during overshielding. The appearance of an ASAID-ASAPS structure together with a pair of dayside-nightside eastward auroral flow channels implies the intensification of region 2 field-aligned currents via the westward traveling surge and thus the strengthening of overshielding conditions. From the observational results presented we conclude for the magnetically active time period studied that (i) the shielding E field drove the wider ASAPS flow channel, (ii) the ASAID-ASAPS structure's narrow antisunward flow channel developed due to the injections of hot ring current ions in a short-circuited system wherein the hot ring current plasma was closer to the Earth than the cold plasmaspheric plasma, and (iii) overshielding created this hot-cold plasma configuration via the development of a plasmaspheric shoulder.

  18. Time of death of victims found in cold water environment.

    PubMed

    Karhunen, Pekka J; Goebeler, Sirkka; Winberg, Olli; Tuominen, Markku

    2008-04-07

    Limited data is available on the application of post-mortem temperature methods to non-standard conditions, especially in problematic real life cases in which the body of the victim is found in cold water environment. Here we present our experience on two cases with known post-mortem times. A 14-year-old girl (rectal temperature 15.5 degrees C) was found assaulted and drowned after a rainy cold night (+5 degrees C) in wet clothing (four layers) at the bottom of a shallow ditch, lying in non-flowing water. The post-mortem time turned out to be 15-16 h. Four days later, at the same time in the morning, after a cold (+/- 0 degrees C) night, a young man (rectal temperature 10.8 degrees C) was found drowned in a shallow cold drain (+4 degrees C) wearing similar clothing (four layers) and being exposed to almost similar environmental and weather conditions, except of flow (7.7 l/s or 0.3 m/s) in the drain. The post-mortem time was deduced to be 10-12 h. We tested the applicability of five practical methods to estimate time of death. Henssge's temperature-time of death nomogram method with correction factors was the most versatile and gave also most accurate results, although there is limited data on choosing of correction factors. In the first case, the right correction factor was close to 1.0 (recommended 1.1-1.2), suggesting that wet clothing acted like dry clothing in slowing down body cooling. In the second case, the right correction factor was between 0.3 and 0.5, similar to the recommended 0.35 for naked bodies in flowing water.

  19. "Float first and kick for your life": Psychophysiological basis for safety behaviour on accidental short-term cold water immersion.

    PubMed

    Barwood, Martin J; Burrows, Holly; Cessford, Jess; Goodall, Stuart

    2016-02-01

    Accidental cold-water immersion (CWI) evokes the life threatening cold shock response (CSR) which increases the risk of drowning. Consequently, the safety behaviour selected is critical in determining survival; the present advice is to 'float first' and remain stationary (i.e. rest). We examined whether leg only exercise (i.e., treading water; 'CWI-Kick') immediately on CWI could reduce the symptoms of the CSR, offset the reduction in cerebral blood flow that is known to occur and reduce the CSR's symptoms of breathlessness. We also examined whether perceptual responses instinctive to accidental CWI were exacerbated by this alternative behaviour. We contrasted CWI-Kick to a 'CWI-Rest' condition and a thermoneutral control (35°C); 'TN-Rest'. Seventeen participants were tested (9 males, 8 females). All immersions were standardised; water temperature in cold conditions (i.e., 12°C) was matched ±/0.5°C within participant. Middle cerebral artery blood flow velocity (MCAv) and cardiorespiratory responses were measured along with thermal perception (sensation and comfort) and dyspnoea. Data were analysed using repeated measures ANOVA (alpha level of 0.05). MCAv was significantly reduced in CWI-Rest (-6 (9)%; 1st minute of immersion) but was offset by leg only exercise immediately on cold water entry; CWI-Kick MCAv was never different to TN-Rest (-3 (16)% cf. 5 (4)%). All CWI cardiorespiratory and perceptual responses were different to TN-Rest but were not exacerbated by leg only exercise. Treading water may aid survival by offsetting the reduction in brain blood flow velocity without changing the instinctive behavioural response (i.e. perceptions). "Float first - and kick for your life" would be a suitable amendment to the water safety advice. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Cold flow simulation of an internal combustion engine with vertical valves using layering approach

    NASA Astrophysics Data System (ADS)

    Martinas, G.; Cupsa, O. S.; Stan, L. C.; Arsenie, A.

    2015-11-01

    Complying with emission requirements and fuel consumption efficiency are the points which drive any development of internal combustion engine. Refinement of the process of combustion and mixture formation, together with in-cylinder flow refinement, is a requirement, valves and piston bowl and intake exhaust port design optimization is essential. In order to reduce the time for design optimization cycle it is used Computational Fluid Dynamics (CFD). Being time consuming and highly costly caring out of experiment using flow bench testing this methods start to become less utilized. Air motion inside the intake manifold is one of the important factors, which govern the engine performance and emission of multi-cylinder diesel engines. Any cold flow study on IC is targeting the process of identifying and improving the fluid flow inside the ports and the combustion chamber. This is only the base for an optimization process targeting to increase the volume of air accessing the combustion space and to increase the turbulence of the air at the end of the compression stage. One of the first conclusions will be that the valve diameter is a fine tradeoff between the need for a bigger diameter involving a greater mass of air filling the cylinder, and the need of a smaller diameter in order to reduce the blind zone. Here there is room for optimization studies. The relative pressure indicates a suction effect coming from the moving piston. The more the shape of the inlet port is smoother and the diameter of the piston is bigger, the aerodynamic resistance of the geometry will be smaller so that the difference of inlet port pressure and the pressure near to piston face will be smaller. Here again there is enough room for more optimization studies.

  1. Space shuttle orbiter reaction control system jet interaction study

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1975-01-01

    The space shuttle orbiter has forward mounted and rear mounted Reaction Control Systems (RCS) which are used for orbital maneuvering and also provide control during entry and abort maneuvers in the atmosphere. The effects of interaction between the RCS jets and the flow over the vehicle in the atmosphere are studied. Test data obtained in the NASA Langley Research Center 31 inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 is analyzed. The data were obtained with a 0.01 scale force model with aft mounted RCS nozzles mounted on the sting off of the force model balance. The plume simulations were accomplished primarily using air in a cold gas simulation through scaled nozzles, however, various cold gas mixtures of Helium and Argon were also tested. The effect of number of nozzles was tested as were limited tests of combined controls. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter where the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.

  2. Study of Low Flow Rate Ladle Bottom Gas Stirring Using Triaxial Vibration Signals

    NASA Astrophysics Data System (ADS)

    Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle; Li, Zushu; Goodwin, Tim

    2018-02-01

    Secondary steelmaking plays a great role in enhancing the quality of the final steel product. The metal quality is a function of metal bath stirring in ladles. The metal bath is often stirred by an inert gas to achieve maximum compositional and thermal uniformity throughout the melt. Ladle operators often observe the top surface phenomena, such as level of meniscus disturbance, to evaluate the status of stirring. However, this type of monitoring has significant limitations in assessing the process accurately especially at low gas flow rate bubbling. The present study investigates stirring phenomena using ladle wall triaxial vibration at a low flow rate on a steel-made laboratory model and plant scale for the case of the vacuum tank degasser. Cold model and plant data were successfully modeled by partial least-squares regression to predict the amount of stirring. In the cold model, it was found that the combined vibration signal could predict the stirring power and recirculation speed effectively in specific frequency ranges. Plant trials also revealed that there is a high structure in each data set and in the same frequency ranges at the water model. In the case of industrial data, the degree of linear relationship was strong for data taken from a single heat.

  3. Study of the flow mixing in a novel ARID raceway for algae production

    DOE PAGES

    Xu, Ben; Li, Peiwen; Waller, P.

    2014-07-31

    A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less

  4. Study of the flow mixing in a novel ARID raceway for algae production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ben; Li, Peiwen; Waller, P.

    A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less

  5. Cold Ion Escape from the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Fränz, Markus; Dubinin, Eduard; Andrews, David; Nilsson, Hans; Fedorov, Andrei

    2014-05-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. The ion sensor IMA of this experiment has in principle a low-energy cut-off at 10eV but in negative spacecraft charging cold ions are lifted into the range of measurement but the field of view is restricted to about 4x360 deg. In a recent paper Nilsson et al. (Earth Planets Space, 64, 135, 2012) tried to use the method of long-time averaged distribution functions to overcome these constraints. In this paper we first use the same method to show that we get results consistent with this when using ASPERA-3 observations only. But then we can show that these results are inconsistent with observations of the local plasma density by the MARSIS radar instrument on board Mars Express. We demonstrate that the method of averaged distribution function can deliver the mean flow speed of the plasma but the low-energy cut-off does usually not allow to reconstruct the density. We then combine measurements of the cold ion flow speed with the plasma density observations of MARSIS to derive the cold ion flux. In an analysis of the combined nightside datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 Martian radii the flux settles at a constant value which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  6. Impact of fatty ester composition on low temperature properties of biodiesel-petroleum diesel blends

    USDA-ARS?s Scientific Manuscript database

    Several biodiesel fuels along with neat fatty acid methyl esters (FAMEs) commonly encountered in biodiesel were blended with ultra-low sulfur diesel (ULSD) fuel at low blend levels permitted by ASTM D975 (B1-B5) and cold flow properties such as cloud point (CP), cold filter plugging point (CFPP), an...

  7. 40 CFR 63.7690 - What emissions limitations must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed a flow-weighted average of 20 ppmv. (11) For each triethylamine (TEA) cold box mold or core making... section: (i) You must not discharge emissions of TEA through a conveyance to the atmosphere that exceed 1... reduce emissions of TEA from each TEA cold box mold or core making line by at least 99 percent, as...

  8. A full-scale STOVL ejector experiment

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.

    1993-01-01

    The design and development of thrust augmenting short take-off and vertical landing (STOVL) ejectors has typically been an iterative process. In this investigation, static performance tests of a full-scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators, yarn tufts and paint dots) was used to assess inlet flowfield characteristics, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate 'seasonal' aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature. Full-scale experimental tests such as this are expensive, and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles -- in particular, the Munk and Prim similarity principle for isentropic flow -- was explored. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then shown to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, then properly chosen performance parameters should be similar for both hot flow and cold flow model tests.

  9. High resolution FTIR spectroscopic study of the ν4 band of CH 3CHF 2 enclosed in a flow of cold N 2 gas

    NASA Astrophysics Data System (ADS)

    Appadoo, Dominique R. T.; Robertson, Evan G.; McNaughton, Don

    2003-01-01

    An enclosive flow cooling (EFC) cell has been constructed, and coupled to a Brüker IFS 120HR high resolution Fourier transform spectrometer to record rotationally cold absorption spectra of gases of atmospheric interest at high spectral resolution. The new system has been characterized using N 2O, revealing that rotational temperatures as cold as 110 K are readily attainable using liquid nitrogen as a cryogen. Infrared spectra of the ν4 band of 1,1-difluoroethane (R152a), CH 3CHF 2, cooled in the EFC cell have been measured at a resolution of 0.0019 cm-1. Eight hundred and twenty rovibrational transitions of the weak ν4 band with 2⩽ J'⩽46 and Kc'⩽16 were assigned and fitted to Watson's A-reduced Hamiltonian. The ν4 CH 3 symmetric deformation ( a/c-type) was found to be coupled to the ν13 asymmetric deformation ( b-type) via an a-axis Coriolis interaction. In the ensuing analysis, values of spectroscopic constants were obtained for both the ν4 and dark ν13 states. Supporting ab initio calculations up to the MP2/TZV+(3 df,3 p) level are presented.

  10. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yang; Hu, Hui; Chen, Wen-Li

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and givemore » various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.« less

  11. Effect of Thread and Rotating Speed on Material Flow Behavior and Mechanical Properties of Friction Stir Lap Welding Joints

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng

    2017-10-01

    This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.

  12. Plasma and Energetic Particle Behaviors During Asymmetric Magnetic Reconnection at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Zhang, H.; Zong, Q.-G.; Otto, A.; Sibeck, D. G.; Wang, Y.; Glassmeier, K.-H.; Daly, P.W.; Reme, H.

    2014-01-01

    The factors controlling asymmetric reconnection and the role of the cold plasma population in the reconnection process are two outstanding questions. We present a case study of multipoint Cluster observations demonstrating that the separatrix and flow boundary angles are greater on the magnetosheath than on the magnetospheric side of the magnetopause, probably due to the stronger density than magnetic field asymmetry at this boundary. The motion of cold plasmaspheric ions entering the reconnection region differs from that of warmer magnetosheath and magnetospheric ions. In contrast to the warmer ions, which are probably accelerated by reconnection in the diffusion region near the subsolar magnetopause, the colder ions are simply entrained by ??×?? drifts at high latitudes on the recently reconnected magnetic field lines. This indicates that plasmaspheric ions can sometimes play only a very limited role in asymmetric reconnection, in contrast to previous simulation studies. Three cold ion populations (probably H+, He+, and O+) appear in the energy spectrum, consistent with ion acceleration to a common velocity.

  13. Investigation of Counter-Flow in a Heat Pipe-Thermoelectric Generator (HPTEG)

    NASA Astrophysics Data System (ADS)

    Remeli, Muhammad Fairuz; Singh, Baljit; Affandi, Nor Dalila Nor; Ding, Lai Chet; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-05-01

    This study explores a method of generating electricity while recovering waste heat through the integration of heat pipes and thermoelectric generators (i.e. HPTEG system). The simultaneous waste heat recovery and power generation processes are achieved without the use of any moving parts. The HPTEG system consists of bismuth telluride thermoelectric generators (TEG), which are sandwiched between two finned pipes to achieve a temperature gradient across the TEG for electricity generation. A counter-flow heat exchanger was built using two separate air ducts. The air ducts were thermally coupled using the HPTEG modules. The evaporator section of the heat pipe absorbed the waste heat in a hot air duct. The heat was then transferred across the TEG surfaces. The condenser section of the HPTEG collected the excess heat from the TEG cold side before releasing it to the cold air duct. A 2-kW electrical heater was installed in the hot air duct to simulate the exhaust gas. An air blower was installed at the inlet of each duct to direct the flow of air into the ducts. A theoretical model was developed for predicting the performance of the HPTEG system using the effectiveness-number of transfer units method. The developed model was able to predict the thermal and electrical output of the HPTEG, along with the rate of heat transfer. The results showed that by increasing the cold air velocity, the effectiveness of the heat exchanger was able to be increased from approximately 52% to 58%. As a consequence of the improved heat transfer, maximum power output of 4.3 W was obtained.

  14. Reactor Simulator Testing

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise Jon

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz. Keywords: fission, space power, nuclear, liquid metal, NaK.

  15. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  16. Boundary-layer effects on cold fronts at a coastline

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1986-07-01

    The present note discusses one physical mechanism which may contribute to cold air channelling, manifest as a frontal bulge on a surface-analysis chart, in the coastal region of Victoria in southeast Australia. This involves the modification of boundary-layer air in both offshore (prefrontal) and onshore (postfrontal) flow, and the effect on cross-frontal thermal contrast. The problem is discussed in terms of a north-south-oriented cold front behaving as an atmospheric gravity current, propagating along an east-west-oriented coastline, in the presence of a prefrontal offshore stream.

  17. Low pressure cold spraying on materials with low erosion resistance

    NASA Astrophysics Data System (ADS)

    Shikalov, V. S.; Klinkov, S. V.; Kosarev, V. F.

    2017-10-01

    In present work, the erosion-adhesion transition was investigated during cold spraying of aluminum particles on brittle ceramic substrates. Cold spraying was carried out with aid of sonic nozzle, which use allows significantly reducing the gas stagnation pressure without the effect of flow separation inside the nozzle and, accordingly, reducing the velocity of the spraying particles. Two stagnation pressures were chosen. The coating tracks were sprayed at different air temperatures in nozzle pre-chamber under each of regimes. Single sprayed tracks were obtained and their profiles were investigated by optical profilometry.

  18. A new treatment for frostbite sequelae; Botulinum toxin

    PubMed Central

    Norheim, Arne Johan; Mercer, James; Musial, Frauke; de Weerd, Louis

    2017-01-01

    ABSTRACT Frostbite sequelae are a relevant occupational injury outcome for soldiers in arctic environments. A Caucasian male soldier suffered frostbite to both hands during a military winter exercise. He developed sensory-motor disturbances and cold hypersensitivity. Angiography and thermography revealed impaired blood flow while Quantitative Sensory Testing indicated impaired somato-sensory nerve function. Two years after the initial event, he received an off label treatment with Botulinum toxin distributed around the neurovascular bundles of each finger. After treatment, cold sensitivity was reduced while blood flow and somato-sensory nerve function improved. The successful treatment enabled the soldier to successfully pursue his career in the army. PMID:28452678

  19. Reactor Simulator Testing Overview

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Michael P.

    2013-01-01

    Test Objectives Summary: a) Verify operation of the core simulator, the instrumentation & control system, and the ground support gas and vacuum test equipment. b) Examine cooling & heat regeneration performance of the cold trap purification. c) Test the ALIP pump at voltages beyond 120V to see if the targeted mass flow rate of 1.75 kg/s can be obtained in the RxSim. Testing Highlights: a) Gas and vacuum ground support test equipment performed effectively for operations (NaK fill, loop pressurization, and NaK drain). b) Instrumentation & Control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings and ramped within prescribed constraints. It effectively interacted with reactor simulator control model and defaulted back to temperature control mode if the transient fluctuations didn't dampen. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the minimum temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  20. A giant protogalactic disk linked to the cosmic web

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J. Xavier; Chang, Daphne

    2015-08-01

    The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that `cold accretion flows'--relatively cool (temperatures of the order of 104 kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 1013 solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.

  1. A giant protogalactic disk linked to the cosmic web.

    PubMed

    Martin, D Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J Xavier; Chang, Daphne

    2015-08-13

    The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that 'cold accretion flows'--relatively cool (temperatures of the order of 10(4) kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 10(13) solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.

  2. One or 4 h of "in-house" reconditioning by machine perfusion after cold storage improve reperfusion parameters in porcine kidneys.

    PubMed

    Gallinat, Anja; Efferz, Patrik; Paul, Andreas; Minor, Thomas

    2014-11-01

    In-house machine perfusion after cold storage (hypothermic reconditioning) has been proposed as convenient tool to improve kidney graft function. This study investigated the role of machine perfusion duration for early reperfusion parameters in porcine kidneys. Kidney function after cold preservation (4 °C, 18 h) and subsequent reconditioning by one or 4 h of pulsatile, nonoxygenated hypothermic machine perfusion (HMP) was studied in an isolated kidney perfusion model in pigs (n = 6, respectively) and compared with simply cold-stored grafts (CS). Compared with CS alone, one or 4 h of subsequent HMP similarly and significantly improved renal flow and kidney function (clearance and sodium reabsorption) upon warm reperfusion, along with reduced perfusate concentrations of endothelin-1 and increased vascular release of nitric oxide. Molecular effects of HMP comprised a significant (vs CS) mRNA increase in the endothelial transcription factor KLF2 and lower expression of endothelin that were observed already at the end of one-hour HMP after CS. Reconditioning of cold-stored kidneys is possible, even if clinical logistics only permit one hour of therapy, while limited extension of the overall storage time by in-house machine perfusion might also allow for postponing of transplantation from night to early day work. © 2014 Steunstichting ESOT.

  3. [Effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water].

    PubMed

    Xiuwen, Yang; Hongchen, Liu; Ke, Li; Zhen, Jin; Gang, Liu

    2014-12-01

    We used functional magnetic resonance imaging (fMRI) to explore the effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water. Six male and female subjects were subjected to whole-brain fMRI during the phasic delivery of non-noxious hot (23 °C) and no- xious cold (4 °C) water intraoral stimulation. A block-design blood oxygenation level-dependent fMRI scan covering the entire brain was also carried out. The activated cortical areas were as follows: left pre-/post-central gyrus, insula/operculum, anterior cingulate cortex (ACC), orbital frontal cortex (OFC), midbrain red nucleus, and thalamus. The activated cortical areas under cold condition were as follows: left occipital lobe, premotor cortex/Brodmann area (BA) 6, right motor language area BA44, lingual gyrus, parietal lobule (BA7, 40), and primary somatosensory cortex S I. Comparisons of the regional cerebral blood flow response magnitude were made among stereotactically concordant brain regions that showed significant responses under the two conditions of this study. Compared with non-noxious warmth, more regions were activated in noxious coldness, and the magnitude of activation in areas produced after non-noxious warm stimulation significantly increased. However, ACC only significantly increased the magnitude of activation under noxious coldness stimulation. Results suggested that a similar network of regions was activated common to the perception of pain and no-pain produced by either non-noxious warmth or noxious coldness stimulation. Non-noxious warmth also activated more brain regions and significantly increased the response magnitude of cerebral-cortex activation compared with noxious coldness. Noxious coldness stimulation further significantly increased the magnitude of activation in ACC areas compared with noxious warmth.

  4. Breath-hold duration in man and the diving response induced by face immersion.

    PubMed

    Sterba, J A; Lundgren, C E

    1988-09-01

    The objective of this study in 5 selected volunteer subjects was to see whether the circulatory diving response which is elicited by breath holding and by cold water on the face would affect the duration of maximal-effort breath holds. Compared to control measurements (breath holding during resting, breathing with 35 degrees C water on the face) breath holding with the face cooled by 20 degrees C water caused a 12% reduction of heart rate, 6% reduction of cardiac output, 33% reduction in [corrected] forearm blood flow, and 9% rise in mean arterial blood pressure, but there was no difference in breath-hold duration (control and experimental both 94 s). There were also no differences in time of appearance of the first involuntary respiratory efforts during breath holding, in alveolar gas exchange, or in breaking-point alveolar O2 and CO2 tensions. When the diving response was magnified by a brief bout of exercise so that there was a 19% [corrected] reduction in heart rate, 23% reduction in cardiac output, and 48% reduction in forearm blood flow, breath-hold duration was still unaffected by face cooling. Compared to intermittent immersions, continuous exposure of the face to cold water abolished the diving response, probably by a cold adaptation of facial thermal receptors. These results with cooling of the face only are consistent with our earlier finding that there was a negative correlation between the duration of a maximal-effort breath hold and the diving response during whole-body submersion in cold water.

  5. Exacerbation of South Asian monsoon biases in GCMs using when using coupled ocean models

    NASA Astrophysics Data System (ADS)

    Turner, Andrew

    2015-04-01

    Cold biases during spring in the northern Arabian Sea of coupled ocean-atmosphere GCMs have previously been shown to limit monsoon rainfall over South Asia during the subsequent summer, by limiting the availability of moisture being advected. The cold biases develop following advection of cold dry air on anomalous northerly low level flow, suggestive of a too-strong winter monsoon in the coupled GCMs. As the same time, these cold biases and the anomalous advection have been related to larger scales by interaction with progression of the midlatitude westerly upper level flow. In this study we compare monsoon characteristics in 20th century historical and AMIP integrations of the CMIP5 multi-model database. We use a period of 1979-2005, common to both the AMIP and historical integrations. While all available observed boundary conditions, including sea-surface temperature (SST), are prescribed in the AMIP integrations, the historical integrations feature ocean-atmosphere models that generate SSTs via air-sea coupled processes. In AMIP experiments, the seasonal mean monsoon rainfall is shown to be systematically larger than in the coupled versions, with an earlier onset date also shown using a variety of circulation and precipitation metrics. In addition, examination of the springtime jet structure suggests that it sits too far south in the coupled models, leading to a delayed formation of the South Asia High over the Tibetan Plateau in summer. Further, we show that anomalous low entropy air is being advected near the surface from the north over the Arabian Sea in spring in the coupled models.

  6. Shuttle APS propellant thermal conditioner study

    NASA Technical Reports Server (NTRS)

    Fulton, D. L.

    1971-01-01

    The conditioner design concept selected for evaluation consists of an integral reactor and baffle-type heat exchanger. Heat exchange is accomplished by flowing reactor hot gases past a series of slotted and formed plates, through which the conditioned propellant flows. Heat transfer analysis has resulted in the selection of a reactor hot gas nominal mixture ratio of 1.0, giving a combustion temperature of 1560 F with a hydrogen inlet temperature of 275 R. Worst case conditions result in a combustion gas temperature of 2060 F, satisfying the condition of no damage to the conditioner in case of failure to flow cold fluid. In addition, evaluation of hot gas flow requirements and conditioner weight has resulted in the selection of a reactor hot gas exhaust temperature of 750 R.

  7. Hydrodynamics of a cold one-dimensional fluid: the problem of strong shock waves

    NASA Astrophysics Data System (ADS)

    Hurtado, Pablo I.

    2005-03-01

    We study a shock wave induced by an infinitely massive piston propagating into a one-dimensional cold gas. The cold gas is modelled as a collection of hard rods which are initially at rest, so the temperature is zero. Most of our results are based on simulations of a gas of rods with binary mass distribution, and we partcularly focus on the case of spatially alternating masses. We find that the properties of the resulting shock wave are in striking contrast with those predicted by hydrodynamic and kinetic approaches, e.g., the flow-field profiles relax algebraically toward their equilibrium values. In addition, most relevant observables characterizing local thermodynamic equilibrium and equipartition decay as a power law of the distance to the shock layer. The exponents of these power laws depend non-monotonously on the mass ratio. Similar interesting dependences on the mass ratio also characterize the shock width, density and temperature overshoots, etc.

  8. Direct Simulation Monte Carlo for astrophysical flows - II. Ram-pressure dynamics

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.

    2014-03-01

    We use the Direct Simulation Monte Carlo method combined with an N-body code to study the dynamics of the interaction between a gas-rich spiral galaxy and intracluster or intragroup medium, often known as the ram pressure scenario. The advantage of this gas kinetic approach over traditional hydrodynamics is explicit treatment of the interface between the hot and cold, dense and rarefied media typical of astrophysical flows and the explicit conservation of energy and momentum and the interface. This approach yields some new physical insight. Owing to the shock and backward wave that forms at the point intracluster medium (ICM)-interstellar medium (ISM) contact, ICM gas is compressed, heated and slowed. The shock morphology is Mach disc like. In the outer galaxy, the hot turbulent post-shock gas flows around the galaxy disc while heating and ablating the initially cool disc gas. The outer gas and angular momentum are lost to the flow. In the inner galaxy, the hot gas pressurizes the neutral ISM gas causing a strong two-phase instability. As a result, the momentum of the wind is no longer impulsively communicated to the cold gas as assumed in the Gunn-Gott formula, but oozes through the porous disc, transferring its linear momentum to the disc en masse. The escaping gas mixture has a net positive angular momentum and forms a slowly rotating sheath. The shear flow caused by the post-shock ICM flowing through the porous multiphase ISM creates a strong Kelvin-Helmholtz instability in the disc that results in Cartwheel-like ring and spoke morphology.

  9. Formation of hydrothermal pits and the role of seamounts in the Guatemala Basin (Equatorial East Pacific) from heat flow, seismic, and core studies

    NASA Astrophysics Data System (ADS)

    Villinger, H. W.; Pichler, T.; Kaul, N.; Stephan, S.; Pälike, H.; Stephan, F.

    2017-01-01

    We acquired seismic and heat flow data and collected sediment cores in three areas in the Guatemala Basin (Cocos Plate, Eastern Pacific) to investigate the process by which depressions (pits) in the sedimentary cover on young oceanic crust were formed. Median heat flow of 55 mW/m2 for the three areas is about half of the expected conductive cooling value. The heat deficit is caused by massive recharge of cold seawater into the upper crust through seamounts which is inferred from depressed heat flow in the vicinity of seamounts. Heat flow inside of pits is always elevated, in some cases up to three times (max. 300 mW/m2) relative to background. None of the geochemical pore water profiles from cores inside and outside of the pits show any evidence of active fluid flow inside the pits. All three areas originated within the high productivity equatorial zone and moved northwest over the past 15 to 18 Ma. Pits found in the working areas are likely relict dissolution structures formed by diffuse hydrothermal venting in a zone of high biogenic carbonate production which were sealed when they moved north. It is likely that these pits were discharge sites of "hydrothermal siphons" where recharging seamounts could feed cold seawater via the upper crust to several discharging pits. Probably pit density on the whole Cocos Plate is similar to the three working areas and which may explain the huge heat deficit of the Cocos Plate.

  10. Investigation of bypass fluid flow in an active magnetic regenerative liquefier

    DOE PAGES

    Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry; ...

    2018-05-19

    Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. In conclusion, experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less

  11. Investigation of bypass fluid flow in an active magnetic regenerative liquefier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry

    Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. Experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less

  12. Investigation of bypass fluid flow in an active magnetic regenerative liquefier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry

    Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. In conclusion, experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less

  13. Dual throat thruster cold flow analysis

    NASA Technical Reports Server (NTRS)

    Lundgreen, R. B.; Nickerson, G. R.; Obrien, C. J.

    1978-01-01

    The concept was evaluated with cold flow (nitrogen gas) testing and through analysis for application as a tripropellant engine for single-stage-to-orbit type missions. Three modes of operation were tested and analyzed: (1) Mode 1 Series Burn, (2) Mode 1 Parallel Burn, and (3) Mode 2. Primary emphasis was placed on the Mode 2 plume attachment aerodynamics and performance. The conclusions from the test data analysis are as follows: (1) the concept is aerodynamically feasible, (2) the performance loss is as low as 0.5 percent, (3) the loss is minimized by an optimum nozzle spacing corresponding to an AF-ATS ratio of about 1.5 or an Le/Rtp ratio of 3.0 for the dual throat hardware tested, requiring only 4% bleed flow, (4) the Mode 1 and Mode 2 geometry requirements are compatible and pose no significant design problems.

  14. Experimental study on the regenerator under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Nam, Kwanwoo; Jeong, Sangkwon

    2002-05-01

    An experimental apparatus was prepared to investigate thermal and hydrodynamic characteristics of the regenerator under its actual operating conditions. The apparatus included a compressor to pressurize and depressurize regenerator with various operating frequencies. Cold end of the regenerator was maintained around 100 K by means of liquid nitrogen container and heat exchanger. Instantaneous gas temperature and mass flow rate were measured at both ends of the regenerator during the whole pressure cycle. Pulsating pressure and pressure drop across the regenerator were also measured. The operating frequency of the pressure cycle was varied between 3 and 60 Hz, which are typical operating frequencies of Gifford-McMahon, pulse tube, and Stirling cryocoolers. First, friction factor for the wire screen mesh was directly determined from room temperature experiments. When the operating frequency was less than 9 Hz, the oscillating flow friction factor was nearly same as the steady flow friction factor for Reynolds number up to 100. For 60 Hz operations, the ratio of oscillating flow friction factor to steady flow one was increased as hydraulic Reynolds number became high. When the Reynolds number was 100, this ratio was about 1.6. Second, ineffectiveness of the regenerator was obtained when the cold-end was maintained around 100 K and the warm-end at 300 K to simulate the actual operating condition of the regenerator in cryocooler. Effect of the operating frequency on ineffectiveness of regenerator was discussed at low frequency range.

  15. Experimental study of the effects of secondary air on the emissions and stability of a lean premixed combustor

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Raman, R. S. V.

    1981-01-01

    Tests were run using a perforated plate flameholder with a relatively short attached recirculation zone and a vee gutter flameholder with a relatively long attached recirculation zone. Combustor streamlines were traced in cold flow tests at ambient pressure. The amount of secondary air entrainment in the recirculation zones of the flameholders was determined by tracer gas testing at cold flow ambient pressure conditions. Combustion tests were caried out at entrance conditions of 0.5 MPa/630K and emission of NOx, CO and unburned hydrocarbons were measured along with lean stability and flashback limits. The degree of entrainment increases as dilution air injection decreases. Flashback appears to be a function of overall equivalence ratio and resistance to flashback increases with increasing combustor entrance velocity. Lean stability limit appears to be a function of both primary zone and flameholder recirculation zone equivalence ratios and resistance to lean blowout increases with increasing combustor entrance velocity.

  16. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  17. Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain.

    PubMed

    Lin, Min; Luo, Zheng Yuan; Bai, Bo Feng; Xu, Feng; Lu, Tian Jian

    2011-03-23

    Dental thermal pain is a significant health problem in daily life and dentistry. There is a long-standing question regarding the phenomenon that cold stimulation evokes sharper and more shooting pain sensations than hot stimulation. This phenomenon, however, outlives the well-known hydrodynamic theory used to explain dental thermal pain mechanism. Here, we present a mathematical model based on the hypothesis that hot or cold stimulation-induced different directions of dentinal fluid flow and the corresponding odontoblast movements in dentinal microtubules contribute to different dental pain responses. We coupled a computational fluid dynamics model, describing the fluid mechanics in dentinal microtubules, with a modified Hodgkin-Huxley model, describing the discharge behavior of intradental neuron. The simulated results agreed well with existing experimental measurements. We thence demonstrated theoretically that intradental mechano-sensitive nociceptors are not "equally sensitive" to inward (into the pulp) and outward (away from the pulp) fluid flows, providing mechanistic insights into the difference between hot and cold dental pain. The model developed here could enable better diagnosis in endodontics which requires an understanding of pulpal histology, neurology and physiology, as well as their dynamic response to the thermal stimulation used in dental practices.

  18. Fluid Mechanics in Dentinal Microtubules Provides Mechanistic Insights into the Difference between Hot and Cold Dental Pain

    PubMed Central

    Lin, Min; Luo, Zheng Yuan; Bai, Bo Feng; Xu, Feng; Lu, Tian Jian

    2011-01-01

    Dental thermal pain is a significant health problem in daily life and dentistry. There is a long-standing question regarding the phenomenon that cold stimulation evokes sharper and more shooting pain sensations than hot stimulation. This phenomenon, however, outlives the well-known hydrodynamic theory used to explain dental thermal pain mechanism. Here, we present a mathematical model based on the hypothesis that hot or cold stimulation-induced different directions of dentinal fluid flow and the corresponding odontoblast movements in dentinal microtubules contribute to different dental pain responses. We coupled a computational fluid dynamics model, describing the fluid mechanics in dentinal microtubules, with a modified Hodgkin-Huxley model, describing the discharge behavior of intradental neuron. The simulated results agreed well with existing experimental measurements. We thence demonstrated theoretically that intradental mechano-sensitive nociceptors are not “equally sensitive” to inward (into the pulp) and outward (away from the pulp) fluid flows, providing mechanistic insights into the difference between hot and cold dental pain. The model developed here could enable better diagnosis in endodontics which requires an understanding of pulpal histology, neurology and physiology, as well as their dynamic response to the thermal stimulation used in dental practices. PMID:21448459

  19. Intermountain Cyclogenesis: a Climatology and Multiscale Case Studies

    NASA Astrophysics Data System (ADS)

    Lee, Tiros Peijiun

    1995-11-01

    A detailed study of Intermountain cyclones over the western United States is conducted through climatological and case studies. An eleven-year (1976-1986) statistical survey shows that the Nevada cyclogenesis is mainly a springtime (March, April) event while a secondary maximum of cyclogenesis frequency is found in November. Nearly 75% of the Nevada cyclogenesis events (177 out of 237 cases) take place under large-scale westerly to southerly flow aloft across the Sierra Nevada Mountains, while 24% of the events (57 out of 237 cases) occur under northwesterly flow aloft. A composite study of these two types of the flow is shown to demonstrate how differences in large-scale topography affect Intermountain cyclogenesis processes. The result from a case study of 9-11 February 1984 reveals that an antecedent Nevada lee trough formed as a result of large-scale southwesterly flow aloft interacting with the underlying terrain well before the surface and upper-level troughs moved onshore. Subsequent cyclogenesis took place in situ with the axis of the trough as the center of large-scale quasi-geostrophic ascent/positive potential vorticity advection began to spread across the Sierra Nevada Mountains. As the cyclone moved downstream, it was observed to weaken well before reaching the Continental Divide while a new cyclonic development occurred east of the Rocky Mountains. It is shown that the weakening of the Intermountain cyclone was associated with the ongoing interaction between the Intermountain cyclone and large-scale topography and the progressive outrunning of the large-scale dynamical forcing aloft away from the surface cyclone center. An investigation of the large-scale evolution for the 26-29 January 1980 case, which developed beneath the northwesterly flow aloft, further reveals that the underlying topography plays two major roles in contributing to the initial cyclogenesis: (1) to block and to retard cold, stable air east of the Continental Divide from rushing into the Great Basin region, and (2) to produce differential pressure falls across the Sierra Nevada Mountains (more along the eastern slopes) in response to increasing cross -mountain flow. Numerous transient shortwaves in the midtroposphere rapidly move across the GB and the Rocky Mountains into the Plains States, while the Intermountain cyclone moves slower than to the disturbances aloft. There is no downstream lee trough/cyclogenesis to the east of the Rockies during the investigation period since the leeside is characterized by cold, stable air. The third case study is made of an 11-14 December 1987 Intermountain cyclogenesis case which took place in an area of relatively warm and less stable environment near the Arizona-New Mexico border beneath northwesterly flow aloft. The ensuing interaction between the large -scale flow and underlying terrain allowed the surface cyclone to remain quasi-stationary for its entire 36 h life span. We also document a cold-season small-scale Catalina eddy development in the coastal southern California waters in this case. The eddy formed as the equatorward and northeasterly flow upstream of the coastal (San Rafael and Saint Ynez) mountains increased in the lower troposphere. Weak large-scale ascent in the mid- and upper-troposphere over the incipient eddy environment provided evidence of the orographic nature of the small -scale cyclone. The eddy was eventually displaced seaward and weakened with the arrival of powerful large-scale subsidence and increasing northeasterly downslope flow at the lower levels that reached the coastal waters.

  20. View of cold water eddies in Falkland Current off southern Argentina

    NASA Image and Video Library

    1973-12-14

    SL4-137-3608 (14 Dec. 1973) --- A view of cold water eddies in the Falkland Current off the South Atlantic coast of southern Argentina as seen from the Skylab space station in Earth orbit. This picture was taken by one of the Skylab 4 crewmen using a hand-held 70mm Hasselblad camera. This land area (left corner) extends south along the coast from Puerto Deseado (center left border) for about 50 miles. Within the ocean, several light blue areas are visible and represent the occurrence of plankton with the Falkland Current. Over the ocean, the cold water eddies are identified by the circular cloud-free areas within the cloud street pattern and bordered by cumulus cloud buildup (white). The cloud streets indicate the wind is from the southwest and do not form over eddies because energy form the atmosphere is absorbed by the cold ocean water. On the downwind side of the eddies, cumulus clouds tend to form as the cold moist air flows over the warmer water. Similar cloud and eddy features have been observed by the Skylab 4 crewmen in the Yucatan Current off Yucatan Peninsula and in some parts of the South Pacific. Studies are underway by Dr. George Maul, NOAA, and Dr. Robert Stevenson, ONR, to determine the significance of the cold water eddies to ocean dynamics. Photo credit: NASA

  1. Natural convection in binary gases driven by combined horizontal thermal and vertical solutal gradients

    NASA Technical Reports Server (NTRS)

    Weaver, J. A.; Viskanta, Raymond

    1992-01-01

    An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model.

  2. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    USGS Publications Warehouse

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  3. A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment

    NASA Astrophysics Data System (ADS)

    Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra

    2017-11-01

    Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed ˜ 2 mm h^{-1}, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but near the cold pool edge; these are not consistent with observations, but do improve with smaller horizontal grid spacings.

  4. A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment

    NASA Astrophysics Data System (ADS)

    Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra

    Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed 2 mm h-1, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but near the cold pool edge; these are not consistent with observations, but do improve with smaller horizontal grid spacings.

  5. Studies on Phase Shifting Mechanism in Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Padmanabhan; Gurudath, C. S.; Srikanth, Thota; Ambirajan, A.; Basavaraj, SA; Dinesh, Kumar; Venkatarathnam, G.

    2017-02-01

    Pulse Tube cryocoolers (PTC) are being used extensively in spacecraft for applications such as sensor cooling due to their simple construction and long life owing to a fully passive cold head. Efforts at ISRO to develop a PTC for space use have resulted in a unit with a cooling capacity of 1W at 80K with an input of 45watts. This paper presents the results of a study with this PTC on the phase shifting characteristics of an Inertance tube in conjunction with a reservoir. The aim was to obtain an optimum phase angle between the mass flow (ṁ) and dynamic pressure (\\tilde p) at the PT cold end that results in the largest possible heat lift from this unit. Theoretical model was developed using Phasor Analysis and Transmission Line Model (TLM) for different mass flow and values of optimum frequency and phase angles were predicted. They were compared with experimental data from the PTC for different configurations of the Inertance tube/reservoir at various frequencies and charge pressures. These studies were carried out to characterise an existing cryocooler and design an optimised phase shifter with the aim of improving the performance with respect to specific power input.

  6. Single element injector cold flow testing for STME swirl coaxial injector element design

    NASA Technical Reports Server (NTRS)

    Hulka, J.; Schneider, J. A.

    1993-01-01

    An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.

  7. Computational flow field in energy efficient engine (EEE)

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-11-01

    In this paper, preliminary results for the recently-updated Open National Combustor Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the Eusing different ways to introduce the fuel injection. Supported by NASA's Transformational Tools and Technologies project.

  8. Computational Flow Field in Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-01-01

    In this paper, preliminary results for the recently-updated Open National Combustion Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the EEE using different ways to introduce the fuel injection.

  9. Moist Climates with an Ineffective Cold Trap

    NASA Astrophysics Data System (ADS)

    Ding, F.; Pierrehumbert, R.

    2016-12-01

    The tropopause of the Earth's atmosphere behaves as a cold trap, limiting the water vapor transport from the humid sea surface to the dry regions in the atmosphere including both the upper atmosphere and the highly sub-saturated places in the free troposphere. It is hypothesized that during some period of time on Earth, the cold trap mechanism would become less effective, due to either a reduced nitrogen inventory in the atmosphere or high surface temperatures. An ineffective cold trap favors a moist upper atmosphere and will lead to rapid water loss by the ultraviolet photodissociation, which was well studied in one-dimensional models. However, the effect of an ineffective cold trap on 3D climates has not yet received much attention. Here we explore the 3D effect with an idealized general circulation model especially designed for studying condensible-rich atmospheres. We consider two scenarios based on the orbital configuration of the planet. (a) With Earth's orbital parameters, sub-saturation in the free troposphere is difficult to be produced by large-scale atmospheric flows, which implies that an ineffective cold trap also favors the onset of the runaway greenhouse. (b) For synchronous-rotating planets, water vapor is easier to be transported to the nightside, building up an atmosphere with similar column water mass as the dayside. For extrasolar habitable planets detections around M dwarfs in the future, if the water vapor contrast between the day and night side could be provided by the phase-resolved emission spectra, the contrast might be useful as a constraint for evaluating the mass of the non-condensible components in the atmosphere.

  10. Multiple Steady States of Buoyancy Induced Flow in Cold Water and Their Stability.

    NASA Astrophysics Data System (ADS)

    El-Henawy, Ibrahim Mahmoud

    In Chapters 1 and 2 the physical background and the literature related to buoyancy-induced flows are reviewed. An accurate representation, based upon experimental data, of the motion-causing buoyancy force, in the vicinity of maximum density in pure water at low temperatures, is used. This representation is an accurate and quite simple formulation due to Gebhart and Mollendorf (1977). Using the representation, we study, numerically, Chapter 3, a model for the laminar, boundary-layer flow arising from natural convection adjacent to a vertical isothermal flat surface submerged in quiescent cold water. The results demonstrate for the first time the existence of multiple steady-state solutions in a natural convection flow. The existence of these new multiple steady-state solutions led to an investigation of their stability. This is carried out in Chapter 4 by a mathematical method, different from that of the usual hydrodynamic stability approach, Lin (1955) and Razinand and Reid (1982). Three real eigenvalue and eigenvector pairs corresponding to the new steady-state -solutions were found. Each of these eigenvalues changes its algebraic sign at a particular limit point (point of vertical tangency, nose, knee) in the bifurcation diagrams found in Chapter 3. The results indicate that the new steady-state solutions are unstable and that the previously found steady-state solutions, Carey, Gebhart, and Mollendorf (1980), may be stable.

  11. Ice Generation and the Heat and Mass Transfer Phenomena of Introducing Water to a Cold Bath of Brine.

    PubMed

    Yun, Xiao; Quarini, Giuseppe L

    2017-03-13

    We demonstrate a method for the study of the heat and mass transfer and of the freezing phenomena in a subcooled brine environment. Our experiment showed that, under the proper conditions, ice can be produced when water is introduced to a bath of cold brine. To make ice form, in addition to having the brine and water mix, the rate of heat transfer must bypass that of mass transfer. When water is introduced in the form of tiny droplets to the brine surface, the mode of heat and mass transfer is by diffusion. The buoyancy stops water from mixing with the brine underneath, but as the ice grows thicker, it slows down the rate of heat transfer, making ice more difficult to grow as a result. When water is introduced inside the brine in the form of a flow, a number of factors are found to influence how much ice can form. Brine temperature and concentration, which are the driving forces of heat and mass transfer, respectively, can affect the water-to-ice conversion ratio; lower bath temperatures and brine concentrations encourage more ice to form. The flow rheology, which can directly affect both the heat and mass transfer coefficients, is also a key factor. In addition, the flow rheology changes the area of contact of the flow with the bulk fluid.

  12. Gender differences in response to cold pressor test assessed with velocity-encoded cardiovascular magnetic resonance of the coronary sinus.

    PubMed

    Moro, Pierre-Julien; Flavian, Antonin; Jacquier, Alexis; Kober, Frank; Quilici, Jacques; Gaborit, Bénédicte; Bonnet, Jean-Louis; Moulin, Guy; Cozzone, Patrick J; Bernard, Monique

    2011-09-23

    Gender-specific differences in cardiovascular risk are well known, and current evidence supports an existing role of endothelium in these differences. The purpose of this study was to assess non invasively coronary endothelial function in male and female young volunteers by myocardial blood flow (MBF) measurement using coronary sinus (CS) flow quantification by velocity encoded cine cardiovascular magnetic resonance (CMR) at rest and during cold pressor test (CPT). Twenty-four healthy volunteers (12 men, 12 women) underwent CMR in a 3 Tesla MR imager. Coronary sinus flow was measured at rest and during CPT using non breath-hold velocity encoded phase contrast cine-CMR. Myocardial function and morphology were acquired using a cine steady-state free precession sequence. At baseline, mean MBF was 0.63 ± 0.23 mL·g⁻¹·min⁻¹ in men and 0.79 ± 0.21 mL·g⁻¹·min⁻¹ in women. During CPT, the rate pressure product in men significantly increased by 49 ± 36% (p < 0.0001) and in women by 52 ± 22% (p < 0.0001). MBF increased significantly in both men and women by 0.22 ± 0.19 mL·g⁻¹·min⁻¹ (p = 0.0022) and by 0.73 ± 0.43 mL·g⁻¹·min⁻¹ (p = 0.0001), respectively. The increase in MBF was significantly higher in women than in men (p = 0.0012). CMR coronary sinus flow quantification for measuring myocardial blood flow revealed a higher response of MBF to CPT in women than in men. This finding may reflect gender differences in endothelial-dependent vasodilatation in these young subjects. This non invasive rest/stress protocol may become helpful to study endothelial function in normal physiology and in physiopathology.

  13. Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications

    NASA Astrophysics Data System (ADS)

    Macheret, Sergey

    2005-05-01

    The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the "reverse energy bypass" scheme. MHD power generation on board reentry vehicles is also discussed.

  14. Environmental controls on cold-water coral mound distribution, morphology, and development in the straits of Florida

    NASA Astrophysics Data System (ADS)

    Simoes Correa, Thiago Barreto

    Scleractinian cold-water corals are widely distributed in seaways and basins of the North Atlantic Ocean, including the Straits of Florida. These corals can form extensive biogenic mounds, which are biodiversity hotspots in the deep ocean. The processes that lead to the genesis of such cold-water coral mounds and control their distribution and morphology are poorly understood. This work uses an innovative mapping approach that combines 130 km 2 of high resolution geophysical and oceanographic data collected using an Autonomous Underwater Vehicle (AUV) from five cold-water coral habitats in the Straits of Florida. These AUV data, together with ground-truthing observations from eleven submersible dives, are used to investigate fine-scale mound parameters and their relationships with environmental factors. Based on these datasets, automated methods are developed for extracting and analyzing mound morphometrics and coral cover. These analyses reveal that mound density is 14 mound/km 2 for the three surveyed sites on the toe-of-slope of Great Bahama Bank (GBB); this density is higher than previously documented (0.3 mound/km 2) in nearby mound fields. Morphometric analyses further indicate that mounds vary significantly in size, from a meter to up to 110 m in relief, and 81 to 600,000 m2 in footprint area. In addition to individual mounds, cold-water corals also develop in some areas as elongated low-relief ridges that are up to 25 m high and 2000 m long. These ridges cover approximately 60 and 70% of the mapped seafloor from the sites at the center of the Straits and at the base of the Miami Terrace, respectively. Morphometrics and current data analyses across the five surveyed fields indicate that mounds and ridges are not in alignment with the dominant current directions. These findings contradict previous studies that described streamlined mounds parallel to the northward Florida Current. In contrast, this study shows that the sites dominated by coral ridges are influenced by unidirectional flowing current, whereas the mounds on the GBB slope are influenced by tidal current regime. The GBB mounds also experience higher sedimentation rates relative to the sites away from the GBB slope. Sub-surface data document partially or completely buried mounds on the GBB sites. The sediments burying mounds are off-bank material transported downslope by mass gravity flow. Mass gravity transport creates complex slope architecture on the toe-of-slope of GBB, with canyons, slump scars, and gravity flow deposits. Cold-water corals use all three of these features as location for colonization. Coral mounds growing on such pre-existing topography keep up with off-bank sedimentation. In contrast, away from the GBB slope, off-bank sedimentation is absent and coral ridges grow independently of antecedent topography. In the sediment-starved Miami Terrace site, coral ridge initiation is related to a cemented mid-Miocene unconformity. In the center of the Straits, coral ridges and knobs develop over an unconsolidated sand sheet at the tail of the Pourtales drift. Coral features at the Miami Terrace and center of the Straits have intricate morphologies, including waveform and chevron-like ridges, which result from asymmetrical coral growth. Dense coral frameworks and living coral colonies grow preferentially on the current-facing ridge sides in order to optimize food particle capture, whereas coral rubble and mud-sized sediments accumulate in the ridge leesides. Finally, this study provides a method using solely acoustic data for discriminating habitats in which cold-water corals are actively growing. Results from this method can guide future research on and management of cold-water coral ecosystems. Taken together, spatial quantitative analyses of the large-scale, high-resolution integrated surveys indicate that cold-water coral habitats in the Straits of Florida: (1) are significantly more diverse and abundant than previously thought, and (2) can be influenced in their distribution and development by current regime, sedimentation, and/or antecedent topography.

  15. Using nocturnal cold air drainage flow to monitor ecosystem processes in complex terrain

    Treesearch

    Thomas G. Pypker; Michael H. Unsworth; Alan C. Mix; William Rugh; Troy Ocheltree; Karrin Alstad; Barbara J. Bond

    2007-01-01

    This paper presents initial investigations of a new approach to monitor ecosystem processes in complex terrain on large scales. Metabolic processes in mountainous ecosystems are poorly represented in current ecosystem monitoring campaigns because the methods used for monitoring metabolism at the ecosystem scale (e.g., eddy covariance) require flat study sites. Our goal...

  16. Method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi (Inventor); Paxson, Daniel E. (Inventor)

    1999-01-01

    A method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors having a plurality of channels formed around a periphery thereof. A first port injects a supply of cool air into the channels. A second port allows the supply of cool air to exit the channels and flow to a combustor. A third port injects a supply of hot gas from the combustor into the channels. A fourth port allows the supply of hot gas to exit the channels and flow to a turbine. A diverting port and a reinjection port are connected to the second and third ports, respectively. The diverting port diverts a portion of the cool air exiting through the second port as reinjection air. The diverting port is fluidly connected to the reinjection port which reinjects the reinjection air back into the channels. The reinjection air evacuates the channels of the hot gas resident therein and cools the channel walls, a pair of end walls of the rotor, ducts communicating with the rotor and subsequent downstream components. In a second embodiment, the second port receives all of the cool air exiting the channels and the diverting port diverts a portion of the cool air just prior to the cool air flowing to the combustor.

  17. Personal Computer System for Automatic Coronary Venous Flow Measurement

    PubMed Central

    Dew, Robert B.

    1985-01-01

    We developed an automated system based on an IBM PC/XT Personal computer to measure coronary venous blood flow during cardiac catheterization. Flow is determined by a thermodilution technique in which a cold saline solution is infused through a catheter into the coronary venous system. Regional temperature fluctuations sensed by the catheter are used to determine great cardiac vein and coronary sinus blood flow. The computer system replaces manual methods of acquiring and analyzing temperature data related to flow measurement, thereby increasing the speed and accuracy with which repetitive flow determinations can be made.

  18. Cardiac rehabilitation improves coronary endothelial function in patients with heart failure due to dilated cardiomyopathy: A positron emission tomography study.

    PubMed

    Legallois, Damien; Belin, Annette; Nesterov, Sergey V; Milliez, Paul; Parienti, J-J; Knuuti, Juhani; Abbas, Ahmed; Tirel, Olivier; Agostini, Denis; Manrique, Alain

    2016-01-01

    Endothelial dysfunction is common in patients with heart failure and is associated with poor clinical outcome. Cardiac rehabilitation is able to enhance peripheral endothelial function but its impact on coronary vasomotion remains unknown. We aimed to evaluate the effect of cardiac rehabilitation on coronary vasomotion in patients with heart failure. We prospectively enrolled 29 clinically stable heart failure patients from non-ischaemic dilated cardiomyopathy and without coronary risk factors. Myocardial blood flow was quantified using (15)-O water positron emission tomography at rest and during a cold pressor test, before and after 12 weeks of cardiac rehabilitation and optimization of medical therapy. Rest myocardial blood flow was significantly improved after the completion of rehabilitation compared to baseline (1.31 ± 0.38 mL/min/g vs. 1.16 ± 0.41 mL/min/g, p = 0.04). The endothelium-related change in myocardial blood flow from rest to cold pressor test and the percentage of myocardial blood flow increase during the cold pressor test were both significantly improved after cardiac rehabilitation (respectively from -0.03 ± 0.22 mL/min/g to 0.19 ± 0.22 mL/min/g, p < 0.001 and from 101.5 ± 16.5% to 118.3 ± 24.4%, p < 0.001). Left ventricular ejection fraction, plasma levels of brain natriuretic peptide, maximal oxygen consumption and the Minnesota Living with Heart Failure Questionnaire score were also significantly improved. The improvement was not related to uptitration of medical therapy. Coronary endothelial function is altered in patients with heart failure due to non-ischaemic dilated cardiomyopathy. In these patients, cardiac rehabilitation significantly improves coronary vasomotion. © The European Society of Cardiology 2014.

  19. Comparative study between microvascular tone regulation and rheological properties of blood in patients with type 2 diabetes mellitus.

    PubMed

    Antonova, N; Tsiberkin, K; Podtaev, S; Paskova, V; Velcheva, I; Chaushev, N

    2016-01-01

    The aim of the study is to investigate the changes of the skin blood flow responses to cold stress in patients with diabetes mellitus type 2 through wavelet analysis of the peripheral skin temperature oscillations and to estimate their relationship with the blood viscosity values. The amplitudes of the skin temperature pulsations (ASTP) were monitored by "Microtest" device ("FM-Diagnostics", Russia); the whole blood viscosity and the shear stresses were measured by Contraves LS30 viscometer (Switzerland) at a steady flow in 9 healthy subjects and in 30 patients with type 2 diabetes mellitus. Power law and Herschel-Bulkley (HB) equations were applied to describe the blood rheology. Both models include consistency (k) and flow index (m), and the HB also gives the yield stress (τ0). The Spearman rank correlations between these parameters and the ASTP in the frequency ranges, corresponding to the myogenic, neurogenic and endothelial mechanisms of the microcirculation tone regulation were calculated. The ASTP values decreased when the blood viscosity increased. The correlation analysis revealed good ASTP-m (r > 0.5) and ASTP-k (r < -0.5) relationships in the endothelial range, while the ASTP-τ0 correlation was weaker (r≈-0.4). These correlations became lower for the ASTP during the cold stress. The results prompt manifestation of endothelial dysfunction in patients with type 2 diabetes.

  20. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  1. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    PubMed

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  2. Hamiltonian thermostats fail to promote heat flow

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.

    2013-12-01

    Hamiltonian mechanics can be used to constrain temperature simultaneously with energy. We illustrate the interesting situations that develop when two different temperatures are imposed within a composite Hamiltonian system. The model systems we treat are ϕ4 chains, with quartic tethers and quadratic nearest-neighbor Hooke's-law interactions. This model is known to satisfy Fourier's law. Our prototypical problem sandwiches a Newtonian subsystem between hot and cold Hamiltonian reservoir regions. We have characterized four different Hamiltonian reservoir types. There is no tendency for any of these two-temperature Hamiltonian simulations to transfer heat from the hot to the cold degrees of freedom. Evidently steady heat flow simulations require energy sources and sinks, and are therefore incompatible with Hamiltonian mechanics.

  3. Mitigating cold flow problems of biodiesel: Strategies with additives

    NASA Astrophysics Data System (ADS)

    Mohanan, Athira

    The present thesis explores the cold flow properties of biodiesel and the effect of vegetable oil derived compounds on the crystallization path as well as the mechanisms at play at different stages and length scales. Model systems including triacylglycerol (TAG) oils and their derivatives, and a polymer were tested with biodiesel. The goal was to acquire the fundamental knowledge that would help design cold flow improver (CFI) additives that would address effectively and simultaneously the flow problems of biodiesel, particularly the cloud point (CP) and pour point (PP). The compounds were revealed to be fundamentally vegetable oil crystallization modifiers (VOCM) and the polymer was confirmed to be a pour point depressant (PPD). The results obtained with the VOCMs indicate that two cis-unsaturated moieties combined with a trans-/saturated fatty acid is a critical structural architecture for depressing the crystallization onset by a mechanism wherein while the straight chain promotes a first packing with the linear saturated FAMEs, the kinked moieties prevent further crystallization. The study of model binary systems made of a VOCM and a saturated FAME with DSC, XRD and PLM provided a complete phase diagram including the thermal transformation lines, crystal structure and microstructure that impact the phase composition along the different crystallization stages, and elicited the competing effects of molecular mass, chain length mismatch and isomerism. The liquid-solid boundary is discussed in light of a simple thermodynamic model based on the Hildebrand equation and pair interactions. In order to test for synergies, the PP and CP of a biodiesel (Soy1500) supplemented with several VOCM and PLMA binary cocktails were measured using a specially designed method inspired by ASTM standards. The results were impressive, the combination of additives depressed CP and PP better than any single additive. The PLM and DSC results suggest that the cocktail additives are most effective when the right molecular structure and optimal concentration are provided. The cocktail mixture achieves then tiny crystals that are prevented from aggregating for an extended temperature range. The results of the study can be directly used for the design of functional and economical CFI from vegetable oils and their derivatives.

  4. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    PubMed

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Lightweight, Rack-Mountable Composite Cold Plate/Shelves

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Ruemmele, Warren; Nguyen, Hai D.; Andish, Kambiz; McCalley, Sean

    2004-01-01

    Rack-mountable composite-material structural components that would serve as both shelves and cold plates for removing heat from electronic or other equipment mounted on the shelves have been proposed as lightweight alternatives to all-metal cold plate/shelves now in use. A proposed cold plate/shelf would include a highly thermally conductive face sheet containing oriented graphite fibers bonded to an aluminum honeycomb core, plus an extruded stainless-steel substructure containing optimized flow passages for a cooling fluid, and an inlet and outlet that could be connected to standard manifold sections. To maximize heat-transfer efficiency, the extruded stainless-steel substructure would be connected directly to the face sheet. On the basis of a tentative design, the proposed composite cold plate/shelf would weigh about 38 percent less than does an all-aluminum cold plate in use or planned for use in some spacecraft and possibly aircraft. Although weight is a primary consideration, the tentative design offers the additional benefit of reduction of thickness to half that of the all-aluminum version.

  6. DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions

    NASA Technical Reports Server (NTRS)

    Moss, James N.

    2000-01-01

    This paper describes the results of a numerical study of interacting hypersonic flows at conditions that can be produced in ground-based test facilities. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 10 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The flow conditions are those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel. The range of flow conditions, model configurations, and model sizes provides a significant range of shock/shock and shock/boundary layer interactions at low Reynolds number conditions. Results presented will highlight the sensitivity of the calculations to grid resolution, contrast the differences in flow structure for hypersonic cold flows and those of more energetic but still low enthalpy flows, and compare the present results with experimental measurements for surface heating, pressure, and extent of separation.

  7. Simulation and Analysis of One-time Forming Process of Automobile Steering Ball Head

    NASA Astrophysics Data System (ADS)

    Shi, Peicheng; Zhang, Xujun; Xu, Zengwei; Zhang, Rongyun

    2018-03-01

    Aiming at the problems such as large machining allowance, low production efficiency and material waste during die forging of ball pin, the cold extrusion process of ball head was studied and the analog simulation of the forming process was carried out by using the finite element analysis software DEFORM-3D. Through the analysis of the equivalent stress strain, velocity vector field and load-displacement curve, the flow regularity of the metal during the cold extrusion process of ball pin was clarified, and possible defects during the molding were predicted. The results showed that this process could solve the forming problem of ball pin and provide theoretical basis for actual production of enterprises.

  8. Experiments on high speed ejectors

    NASA Technical Reports Server (NTRS)

    Wu, J. J.

    1986-01-01

    Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.

  9. Numerical Model Studies of the Martian Mesoscale Circulations

    NASA Technical Reports Server (NTRS)

    Segal, M.; Arritt, R. W.

    1996-01-01

    Studies concerning mesoscale topographical effects on Martian flows examined low-level jets in the near equatorial latitudes and the dynamical intensification of flow by steep terrain. Continuation of work from previous years included evaluating the dissipation of cold air mass outbreaks due to enhanced sensible heat flux, further sensitivity and scaling evaluations for generalization of the characteristics of Martian mesoscale circulation caused by horizontal sensible heat-flux gradients, and evaluations of the significance that non-uniform surface would have on enhancing the polar CO2 ice sublimation during the spring. The sensitivity of maximum and minimum atmospheric temperatures to changes in wind speed, surface albedo, and deep soil temperature was investigated.

  10. Cold Flow Propulsion Test Complex Pulse Testing

    NASA Technical Reports Server (NTRS)

    McDougal, Kris

    2016-01-01

    When the propellants in a liquid rocket engine burn, the rocket not only launches and moves in space, it causes forces that interact with the vehicle itself. When these interactions occur under specific conditions, the vehicle's structures and components can become unstable. One instability of primary concern is termed pogo (named after the movement of a pogo stick), in which the oscillations (cycling movements) cause large loads, or pressure, against the vehicle, tanks, feedlines, and engine. Marshall Space Flight Center (MSFC) has developed a unique test technology to understand and quantify the complex fluid movements and forces in a liquid rocket engine that contribute strongly to both engine and integrated vehicle performance and stability. This new test technology was established in the MSFC Cold Flow Propulsion Test Complex to allow injection and measurement of scaled propellant flows and measurement of the resulting forces at multiple locations throughout the engine.

  11. Turbulence statistics with quantified uncertainty in cold-wall supersonic channel flow

    NASA Astrophysics Data System (ADS)

    Ulerich, Rhys; Moser, Robert D.

    2012-11-01

    To investigate compressibility effects in wall-bounded turbulence, a series of direct numerical simulations of compressible channel flow with isothermal (cold) walls have been conducted. All combinations of Re = { 3000 , 5000 } and Ma = { 0 . 1 , 0 . 5 , 1 . 5 , 3 . 0 } have been simulated where the Reynolds and Mach numbers are based on bulk velocity and sound speed at the wall temperature. Turbulence statistics with precisely quantified uncertainties computed from these simulations will be presented and are being made available in a public data base at http://turbulence.ices.utexas.edu/. The simulations were performed using a new pseudo-spectral code called Suzerain, which was designed to efficiently produce high quality data on compressible, wall-bounded turbulent flows using a semi-implicit Fourier/B-spline numerical formulation. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].

  12. Cold-air performance of a 15.41-cm-tip-diameter axial-flow power turbine with variable-area stator designed for a 75-kW automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Kofskey, M. G.; Wong, R. Y.

    1982-01-01

    An experimental evaluation of the aerodynamic performance of the axial flow, variable area stator power turbine stage for the Department of Energy upgraded automotive gas turbine engine was conducted in cold air. The interstage transition duct, the variable area stator, the rotor, and the exit diffuser were included in the evaluation of the turbine stage. The measured total blading efficiency was 0.096 less than the design value of 0.85. Large radial gradients in flow conditions were found at the exit of the interstage duct that adversely affected power turbine performance. Although power turbine efficiency was less than design, the turbine operating line corresponding to the steady state road load power curve was within 0.02 of the maximum available stage efficiency at any given speed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot andmore » 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.« less

  14. Tropical Storm Kyle (2002) and cold-air damming: their interactions and impacts on heavy rainfall in the Carolinas

    NASA Astrophysics Data System (ADS)

    Garcia-Rivera, Jose M.; Lin, Yuh-Lang; Rastigejev, Yevgenii

    2016-06-01

    The interactions between an Appalachian cold-air damming event and the near passage of Tropical Storm Kyle (2002) along the coastal Carolinas are assessed by using a numerical weather prediction model. As the storm moved along the coastline, it began extra-tropical transition, bringing heavy rains to both the coastal region and inland towards the Piedmont of North Carolina. Our goal is to quantify the effects of both interacting weather systems on heavy precipitation to improve the dynamical understanding of such effects, as well as precipitation forecasts in the study region. A series of sensitivity tests were performed to isolate and quantify the effects of both systems on the total accumulated precipitation. It was found that (a) for this type of along-coast track, the pre-existing cold-air damming played only a minor role on the total accumulated precipitation, (b) the outer circulation of Kyle weakened the cold-air damming due to a redirection of the mean flow away from the east side of the Appalachian Mountains, and (c) the combination of Kyle with a shortwave mid- to upper-level trough and a surface coastal front were responsible for the heavy precipitation experienced in the study area through the advection of moisture, vorticity, and the forcing of upward motion.

  15. PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field

    NASA Astrophysics Data System (ADS)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.

    2017-06-01

    This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.

  16. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions.

    PubMed

    French, Helen K; van der Zee, Sjoerd E A T M

    2014-01-01

    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated.

  17. Complete recovery of the heart following exposure to profound hypothermia.

    PubMed

    Shragge, B W; Digerness, S B; Blackstone, E H

    1981-03-01

    Cold injury has been suggested as a potential limitation to the use of temperatures below 10 degrees to 15 degrees C in clinical myocardial preservation. The isolated effects of profound hypothermia on myocardial function and energy metabolism were studied in the working rat heart preparation. Each heart was isolated and stabilized; then initial aortic flow, coronary flow, and heart rate were measured. The heart then was perfused in the Langendorf mode with oxygenated Krebs-Henseleit buffer for 20 minutes at 0.5 degree, 4 degrees, 10 degrees, 15 degrees, or 20 degrees C. After being rewarmed to 37 degrees C, the heart was returned to the working mode for final functional measurements. In a control group, the perfusion was kept at 37 degrees C. Recovery of function in hearts exposed to hypothermic perfusion was not significantly different from that observed in the hearts kept at 37 degrees C. When cold exposure time to 0.5 degree C perfusion was extended to 2 hours, heart function still returned to the same level as that of control hearts maintained at 37 degrees C, and adenosine triphosphate (ATP) and glycogen levels were higher than those in the control group. Thus, under these conditions, cold exposure per se, even for 2 hours at temperatures near 0 degree C, has no deleterious effect upon myocardial function and energy metabolism.

  18. Method for estimating off-axis pulse tube losses

    NASA Astrophysics Data System (ADS)

    Fang, T.; Mulcahey, T. I.; Taylor, R. P.; Spoor, P. S.; Conrad, T. J.; Ghiaasiaan, S. M.

    2017-12-01

    Some Stirling-type pulse tube cryocoolers (PTCs) exhibit sensitivity to gravitational orientation and often exhibit significant cooling performance losses unless situated with the cold end pointing downward. Prior investigations have indicated that some coolers exhibit sensitivity while others do not; however, a reliable method of predicting the level of sensitivity during the design process has not been developed. In this study, we present a relationship that estimates an upper limit to gravitationally induced losses as a function of the dimensionless pulse tube convection number (NPTC) that can be used to ensure that a PTC would remain functional at adverse static tilt conditions. The empirical relationship is based on experimental data as well as experimentally validated 3-D computational fluid dynamics simulations that examine the effects of frequency, mass flow rate, pressure ratio, mass-pressure phase difference, hot and cold end temperatures, and static tilt angle. The validation of the computational model is based on experimental data collected from six commercial pulse tube cryocoolers. The simulation results are obtained from component-level models of the pulse tube and heat exchangers. Parameter ranges covered in component level simulations are 0-180° for tilt angle, 4-8 for length to diameter ratios, 4-80 K cold tip temperatures, -30° to +30° for mass flow to pressure phase angles, and 25-60 Hz operating frequencies. Simulation results and experimental data are aggregated to yield the relationship between inclined PTC performance and pulse tube convection numbers. The results indicate that the pulse tube convection number can be used as an order of magnitude indicator of the orientation sensitivity, but CFD simulations should be used to calculate the change in energy flow more accurately.

  19. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-02-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater) and 87% (hydrothermal water), and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.

  20. Experimental spray atomization studies of uni-element shear coaxial injector plate geometry for LOX/CH4 combustion and propulsion research

    NASA Astrophysics Data System (ADS)

    Dorado, Vanessa

    The Center for Space Exploration Technology Research (cSETR) has developed a set of shear coaxial injectors as part of a system-level approach to study LOX/CH4 combustion. This thesis describes the experimental studies involved in the characterization of the effects produced by two design injection face plate variables: post thickness and recession length. A testing program was developed to study the injectors' atomization process using LN2 as a substitute for LOX in cold flow and the flame anchoring mechanisms in hot firings. The cold flow testing stage was conducted to obtain liquid core measurements and compare its behavior between the different geometric configurations. Shadowgraph technique was used during this testing stage to obtain these measurements and compare them to previously published data and core length mathematical models. The inlet conditions were selected to obtain mixture ratios in the 2-4 range and a wide range of high momentum flux ratios (30-150). Particle Image Velocimetry (PIV) was also used in the testing of the three injectors to assess their atomization performance and their fragmentation behaviors. Results show that changes in central post thickness and co-annular orifice recession length with respect to the injection plate have quantifiable effects in the generated spray flow field, despite not being accounted for in traditional break up calculations. The observations and results of this investigation lead to a proof of concept demonstration in a combustion setting to support the study of flame anchoring mechanisms, also discussed in this work.

  1. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    DOE PAGES

    Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...

    2016-05-24

    We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less

  2. Laminar and turbulent flow modes of cold atmospheric pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Basher, Abdulrahman H.; Mohamed, Abdel-Aleam H.

    2018-05-01

    Laminar and turbulent flow modes of a cold atmospheric pressure argon plasma jet are investigated in this work. The effects of the gas flow rate, applied voltage, and frequency on each plasma mode and on intermodal transitions are characterized using photographic, electrical, and spectroscopic techniques. Increasing the gas flow rate increases the plasma jet length in the laminar mode. Upon transition to the turbulent mode, increasing the gas flow rate leads to a decrease in the plasma jet length. The flow rate at which the jet transitions from laminar to turbulent increases with the applied voltage. The presence of nitric oxide (NO) radicals is indicated by the emission spectra of the turbulent plasmas only, while excited Ar, N2, OH, and O excited species are produced in both laminar and turbulent modes. With no distinctive behavior observed upon transition between the two operating modes, the power consumption was found to be insensitive to gas flow rate variation, while the energy density was found to decrease exponentially with the gas flow rate. Rotational and vibrational temperature measurements of the two plasma modes indicated that they are of the non-thermal equilibrium plasma type. Since they offer NO radicals while maintaining the benefits of the laminar plasma jet, the turbulent plasma jet is more useful than its laminar counterpart in biomedical applications.

  3. Spiral Flows in Cool-core Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Keshet, Uri

    2012-07-01

    We argue that bulk spiral flows are ubiquitous in the cool cores (CCs) of clusters and groups of galaxies. Such flows are gauged by spiral features in the thermal and chemical properties of the intracluster medium, by the multiphase properties of CCs, and by X-ray edges known as cold fronts. We analytically show that observations of piecewise-spiral fronts impose strong constraints on the CC, implying the presence of a cold, fast flow, which propagates below a hot, slow inflow, separated by a slowly rotating, trailing, quasi-spiral, tangential discontinuity surface. This leads to the nearly logarithmic spiral pattern, two-phase plasma, ρ ~ r -1 density (or T ~ r 0.4 temperature) radial profile, and ~100 kpc size, characteristic of CCs. By advecting heat and mixing the gas, such flows can eliminate the cooling problem, provided that a feedback mechanism regulates the flow. In particular, we present a quasi-steady-state model for an accretion-quenched, composite flow, in which the fast phase is an outflow, regulated by active galactic nucleus bubbles, reproducing the observed low star formation rates and explaining some features of bubbles such as their Rb vpropr size. The simplest two-component model reproduces several key properties of CCs, so we propose that all such cores harbor a spiral flow. Our results can be tested directly in the next few years, for example by ASTRO-H.

  4. Simulator test to study hot-flow problems related to a gas cooled reactor

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Freeman, M. P.; Doak, K. W.; Thorpe, M. L.

    1973-01-01

    An advance study of materials, fuel injection, and hot flow problems related to the gas core nuclear rocket is reported. The first task was to test a previously constructed induction heated plasma GCNR simulator above 300 kW. A number of tests are reported operating in the range of 300 kW at 10,000 cps. A second simulator was designed but not constructed for cold-hot visualization studies using louvered walls. A third task was a paper investigation of practical uranium feed systems, including a detailed discussion of related problems. The last assignment resulted in two designs for plasma nozzle test devices that could be operated at 200 atm on hydrogen.

  5. Cold Ion Escape from the Martian Ionosphere - 2005-2014

    NASA Astrophysics Data System (ADS)

    Fränz, Markus; Dubinin, Eduard; Andrews, David; Nilsson, Hans; Fedorov, Andrei

    2015-04-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. The ion sensor IMA of this experiment has in principle a low-energy cut-off at 10eV but in negative spacecraft charging cold ions are lifted into the range of measurement but the field of view is restricted to about 4x360 deg. In a recent paper Nilsson et al. (Earth Planets Space, 64, 135, 2012) tried to use the method of long-time averaged distribution functions to overcome these constraints. In this paper we first use the same method to show that we get results consistent with this when using ASPERA-3 observations only. But then we can show that these results are inconsistent with observations of the local plasma density by the MARSIS radar instrument on board Mars Express. We demonstrate that the method of averaged distribution function can deliver the mean flow speed of the plasma but the low-energy cut-off does usually not allow to reconstruct the density. We then combine measurements of the cold ion flow speed with the plasma density observations of MARSIS to derive the cold ion flux. In an analysis of the combined nightside datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 RM the flux settles at a constant value which indicates that about half of the transterminator ionospheric flow escapes from the planet. To derive the mean escape flux we include all combined observations of ASPERA-3 and MARSIS from 2005 to 2014. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  6. Enhancement of fine-scale mixing for fuel-rich plume combustion

    NASA Astrophysics Data System (ADS)

    Schadow, K. C.; Gutmark, E.; Parr, T. P.; Parr, D. M.; Wilson, K. J.; Ferrell, G. B.

    1987-01-01

    The effect of enhancing small-scale turbulent structures on the combustion intensity and flame stability was studied in nonreacting and reacting flows. Hot-wire anemometry was used to map the mean and turbulent flow fields of the nonreacting flows. Reacting flows were studied in a free flame and in a ducted gas-generator fuel-rich plume using Planar Laser Induced Fluorescence, a rake of thermocouples and high speed photography. A modified circular nozzle having several backward facing steps upstream of its exit was used to introduce numerous inflection points in the initial mean velocity profiles, thus producing multiple corresponding sources of small-scale turbulence generators. Cold flow tests showed turbulence increases of up to six times the initial turbulence level relative to a circular nozzle. The ensuing result was that the flame of this nozzle was more intense with a homogeneous heat release. The fuel-rich plume was stable even in supersonic speeds, and secondary ignition was obtained under conditions that prevented sustained afterburning using the circular nozzle.

  7. The crabs that live where hot and cold collide.

    PubMed

    Thurber, Andrew R

    2015-07-01

    The distribution of Kiwa tyleri with the large male individual in the high-temperature flow (right hand side - fluid flow indicated by shimmering water) and the mixed sex assemblage (left). Note the heavy coat of epibiotic bacteria (grey colouring) on the individual in the hottest section of the vent, as expected from being closest to the sulphide needed to sustain the epibiotic bacteria that this species harvests for its food. Image courtesy of Dr. L. Marsh (Credit: NERC ChEsSo Consortium). In Focus: Marsh, L., Copley, J.T., Tyler, P.A. & Thatje, S. (2015) In hot and cold water: differential life-history traits are key to success in contrasting thermal deep-sea environments. Journal of Animal Ecology, 84, 898-913. Southern Ocean hydrothermal vents juxtapose two extremes - intense food-poor cold and scalding food-rich oases. At these vents, Marsh et al. (2015) found a community of Kiwa (Yeti) crabs that separated themselves along this gradient with the largest males sitting in hot, food-rich waters, while smaller males and females co-occur in an intermediate zone of warmth. However, as their eggs start to develop, females embark away from the vent to the food-poor yet stable cold of the Southern Ocean. This species has found an intriguing way to balance foraging risk and population persistence at the interface of hot and cold. © 2015 The Author. Journal of Animal Ecology © 2015 British Ecological Society.

  8. Active magnetic regenerator method and apparatus

    DOEpatents

    DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.

    1993-01-01

    In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.

  9. Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, Craig B.; Whiteman, Charles D.; Horel, John D.

    2003-06-01

    The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah minimum temperature record of -56 C. The evolution of cold-pool characteristics depended on the strength of prevailing flows above the basin. On an undisturbed day, a 30 C diurnal temperature range and a strong nocturnal potential temperature inversion (22 K in 100 m) were observed in the basin. Initially, downslope flows formed on the basin sidewalls. As a very strong potential temperature jump (17 K)more » developed at the top of the cold pool, however, the winds died within the basin and over the sidewalls. A persistent turbulent sublayer formed below the jump. Turbulent sensible heat flux on the basin floor became negligible shortly after sunset while the basin atmosphere continued to cool. Temperatures over the slopes, except for a 1 to 2-m-deep layer, became warmer than over the basin center at the same altitude. Cooling rates for the entire basin near sunset were comparable to the 90 W m-2 rate of loss of net longwave radiation at the basin floor, but these rates decreased to only a few watts per square meter by sunrise. This paper compares the observed cold-pool buildup in basins with inversion buildup in valleys.« less

  10. Cold-induced vasoconstriction may persist long after cooling ends: an evaluation of multiple cryotherapy units

    PubMed Central

    Khoshnevis, Sepideh; Craik, Natalie K.

    2015-01-01

    Purpose Localized cooling is widely used in treating soft tissue injuries by modulating swelling, pain, and inflammation. One of the primary outcomes of localized cooling is vasoconstriction within the underlying skin. It is thought that in some instances, cryotherapy may be causative of tissue necrosis and neuropathy via cold-induced ischaemia leading to nonfreezing cold injury (NFCI). The purpose of this study is to quantify the magnitude and persistence of vasoconstriction associated with cryotherapy. Methods Data are presented from testing with four different FDA approved cryotherapy devices. Blood perfusion and skin temperature were measured at multiple anatomical sites during baseline, active cooling, and passive rewarming periods. Results Local cutaneous blood perfusion was depressed in response to cooling the skin surface with all devices, including the DonJoy (DJO, p = 2.6 × 10−8), Polar Care 300 (PC300, p = 1.1 × 10−3), Polar Care 500 Lite (PC500L, p = 0.010), and DeRoyal T505 (DR505, p = 0.016). During the rewarming period, parasitic heat gain from the underlying tissues and the environment resulted in increased temperatures of the skin and pad for all devices, but blood perfusion did not change significantly, DJO (n.s.), PC300 (n.s.), PC500L (n.s.), and DR505 (n.s.). Conclusions The results demonstrate that cryotherapy can create a deep state of vasoconstriction in the local area of treatment. In the absence of independent stimulation, the condition of reduced blood flow persists long after cooling is stopped and local temperatures have rewarmed towards the normal range, indicating that the maintenance of vasoconstriction is not directly dependent on the continuing existence of a cold state. The depressed blood flow may dispose tissue to NFCI. PMID:24562697

  11. The Precipitation Response Over the Continental United States to Cold Tropical Pacific Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Wang, Hailan; Schubert, Siegfried D.

    2013-01-01

    The dominant pattern of annual mean SST variability in the Pacific (in its cold phase) produces pronounced precipitation deficits over the continental United States (U.S.) throughout the annual cycle. This study investigates the physical and dynamical processes through which the cold Pacific pattern affects the U.S. precipitation, particularly the causes for the peak dry impacts in fall, as well as the nature of the differences between the summer and fall responses. Results, based on observations and reanalyses, show that the peak precipitation deficit over the U.S. during fall is primarily due to reduced atmospheric moisture transport from the Gulf of Mexico into the central and eastern U.S., and secondarily due to a reduction in local evaporation from land-atmosphere feedback. The former is associated with a strong and systematic low-level northeasterly flow anomaly over the southeastern U.S. that counteracts the northwest branch of the climatological flow associated with the north Atlantic subtropical high. The above northeasterly anomaly is maintained by both diabatic heating anomalies in the nearby Intra-American Seas and diabatic cooling anomalies in the tropical Pacific. In contrast, the modest summertime precipitation deficit over the U.S. is mainly the result of local land-atmosphere feedback; the rather weak and disorganized atmospheric circulation anomalies over and to the south of the U.S. make little contribution. An evaluation of NSIPP-1 AGCM simulations shows it to be deficient in simulating the warm season tropical convection responses over the Intra-American Seas to the cold Pacific pattern and thereby the precipitation responses over the U.S., a problem that appears to be common to many AGCMs.

  12. Cold-induced vasoconstriction may persist long after cooling ends: an evaluation of multiple cryotherapy units.

    PubMed

    Khoshnevis, Sepideh; Craik, Natalie K; Diller, Kenneth R

    2015-09-01

    Localized cooling is widely used in treating soft tissue injuries by modulating swelling, pain, and inflammation. One of the primary outcomes of localized cooling is vasoconstriction within the underlying skin. It is thought that in some instances, cryotherapy may be causative of tissue necrosis and neuropathy via cold-induced ischaemia leading to nonfreezing cold injury (NFCI). The purpose of this study is to quantify the magnitude and persistence of vasoconstriction associated with cryotherapy. Data are presented from testing with four different FDA approved cryotherapy devices. Blood perfusion and skin temperature were measured at multiple anatomical sites during baseline, active cooling, and passive rewarming periods. Local cutaneous blood perfusion was depressed in response to cooling the skin surface with all devices, including the DonJoy (DJO, p = 2.6 × 10(-8)), Polar Care 300 (PC300, p = 1.1 × 10(-3)), Polar Care 500 Lite (PC500L, p = 0.010), and DeRoyal T505 (DR505, p = 0.016). During the rewarming period, parasitic heat gain from the underlying tissues and the environment resulted in increased temperatures of the skin and pad for all devices, but blood perfusion did not change significantly, DJO (n.s.), PC300 (n.s.), PC500L (n.s.), and DR505 (n.s.). The results demonstrate that cryotherapy can create a deep state of vasoconstriction in the local area of treatment. In the absence of independent stimulation, the condition of reduced blood flow persists long after cooling is stopped and local temperatures have rewarmed towards the normal range, indicating that the maintenance of vasoconstriction is not directly dependent on the continuing existence of a cold state. The depressed blood flow may dispose tissue to NFCI.

  13. Variable Trends in High Peak Flow Generation Across the Swedish Sub-Arctic

    NASA Astrophysics Data System (ADS)

    Matti, B.; Dahlke, H. E.; Lyon, S. W.

    2015-12-01

    There is growing concern about increased frequency and severity of floods and droughts globally in recent years. Improving knowledge on the complexity of hydrological systems and their interactions with climate is essential to be able to determine drivers of these extreme events and to predict changes in these drivers under altered climate conditions. This is particularly true in cold regions such as the Swedish Sub-Arctic where independent shifts in both precipitation and temperature can have significant influence on extremes. This study explores changes in the magnitude and timing of the annual maximum daily flows in 18 Swedish sub-arctic catchments. The Mann-Kendall trend test was used to estimate changes in selected hydrological signatures. Further, a flood frequency analysis was conducted by fitting a Gumbel (Extreme Value type I) distribution whereby selected flood percentiles were tested for stationarity using a generalized least squares regression approach. Our results showed that hydrological systems in cold climates have complex, heterogeneous interactions with climate. Shifts from a snowmelt-dominated to a rainfall-dominated flow regime were evident with all significant trends pointing towards (1) lower flood magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest permafrost thawing and are in agreement with the increasing trends in annual minimum flows. Trends in the selected flood percentiles showed an increase in extreme events over the entire period of record, while trends were variable under shorter periods. A thorough uncertainty analysis emphasized that the applied trend test is highly sensitive to the period of record considered. As such, no clear overall regional pattern could be determined suggesting that how catchments are responding to changes in climatic drivers is strongly influenced by their physical characteristics.

  14. Analysis of a six-component, flow-through, strain-gage, force balance used for hypersonic wind tunnel models with scramjet exhaust flow simulation. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Kniskern, Marc W.

    1990-01-01

    The thermal effects of simulant gas injection and aerodynamic heating at the model's surface on the measurements of a non-watercooled, flow through balance were investigated. A stainless steel model of a hypersonic air breathing propulsion cruise missile concept (HAPCM-50) was used to evaluate this balance. The tests were conducted in the 20-inch Mach 6 wind tunnel at NASA-Langley. The balance thermal effects were evaluated at freestream Reynolds numbers ranging from .5 to 7 x 10(exp 6) ft and angles of attack between -3.5 to 5 deg at Mach 6. The injection gases considered included cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon-12. The stagnation temperatures of the cold air, hot air, and Ar-Fr(12) reached 111, 214, and 283 F, respectively within the balance. A bakelite sleeve was inserted into the inner tube of the balance to minimize the thermal effects of these injection gases. Throughout the tests, the normal force, side force, yaw moment, roll moment, and pitching moment balance measurements were unaffected by the balance thermal effects of the injection gases and the wind tunnel flow. However, the axial force (AF) measurement was significantly affected by balance heating. The average zero shifts in the AF measurements were 1.9, 3.8, and 5.9 percent for cold air, hot air, and Ar-Fr(12) injection, respectively. The AF measurements decreased throughout these tests which lasted from 70 to 110 seconds. During the cold air injection tests, the AF measurements were accurate up to at least ten seconds after the model was injected into the wind tunnel test section. For the hot air and Ar-Fr(12) tests, the AF measurements were accurate up to at least five seconds after model injection.

  15. Experimentally Identify the Effective Plume Chimney over a Natural Draft Chimney Model

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Chu, C. M.; Tahir, A. M.; Ismail, M. A. bin; Misran, M. S. bin; Ling, L. S.

    2017-07-01

    The demands of energy are in increasing order due to rapid industrialization and urbanization. The researchers and scientists are working hard to improve the performance of the industry so that the energy consumption can be reduced significantly. Industries like power plant, timber processing plant, oil refinery, etc. performance mainly depend on the cooling tower chimney’s performance, either natural draft or forced draft. Chimney is used to create sufficient draft, so that air can flow through it. Cold inflow or flow reversal at chimney exit is one of the main identified problems that may alter the overall plant performance. The presence Effective Plume Chimney (EPC) is an indication of cold inflow free operation of natural draft chimney. Different mathematical model equations are used to estimate the EPC height over the heat exchanger or hot surface. In this paper, it is aim to identify the EPC experimentally. In order to do that, horizontal temperature profiling is done at the exit of the chimneys of face area 0.56m2, 1.00m2 and 2.25m2. A wire mesh screen is installed at chimneys exit to ensure cold inflow chimney operation. It is found that EPC exists in all modified chimney models and the heights of EPC varied from 1 cm to 9 cm. The mathematical models indicate that the estimated heights of EPC varied from 1 cm to 2.3 cm. Smoke test is also conducted to ensure the existence of EPC and cold inflow free option of chimney. Smoke test results confirmed the presence of EPC and cold inflow free operation of chimney. The performance of the cold inflow free chimney is increased by 50% to 90% than normal chimney.

  16. The mechanism of plasma-assisted penetration of NO2- in model tissues

    NASA Astrophysics Data System (ADS)

    He, Tongtong; Liu, Dingxin; Liu, Zhijie; Liu, Zhichao; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.

    2017-11-01

    Cold atmospheric plasmas are reportedly capable of enhancing the percutaneous absorption of drugs, which is a development direction of plasma medicine. This motivated us to study how the enhancement effect was realized. In this letter, gelatin gel films were used as surrogates of human tissues, NaNO2 was used as a representative of small-molecule drugs, and cross-field and linear-field plasma jets were used for the purpose of enhancing the penetration of NaNO2 through the gelatin gel films. The permeability of gelatin gel films was quantified by measuring the NO2- concentration in water which was covered by those films. It was found that the gas flow and electric field of cold plasmas played a crucial role in the permeability enhancement of the model tissues, but the effect of gas flow was mainly confined in the surface layer, while the effect of the electric field was holistic. Those effects might be attributed to the localized squeezing of particles by gas flow and the weakening of the ion-dipole interaction by the AC electric field. The enhancement effect decreases with the increasing mass fraction of gelatin because the macromolecules of gelatin could significantly hinder the penetration of small molecules in the model tissues.

  17. Gas Accretion onto a Supermassive Black Hole: A Step to Model AGN Feedback

    NASA Astrophysics Data System (ADS)

    Nagamine, K.; Barai, P.; Proga, D.

    2012-08-01

    We study gas accretion onto a supermassive black hole (SMBH) using the 3D SPH code GADGET-3 on scales of 0.1-200 pc. First we test our code with the spherically symmetric, adiabatic Bondi accretion problem. We find that our simulation can reproduce the expected Bondi accretion flow very well for a limited amount of time until the effect of the outer boundary starts to be visible. We also find artificial heating of gas near the inner accretion boundary due to the artificial viscosity of SPH. Second, we implement radiative cooling and heating due to X-rays, and examine the impact of thermal feedback by the central X-ray source. The accretion flow roughly follows the Bondi solution for low central X-ray luminosities; however, the flow starts to exhibit non-spherical fragmentation due to the thermal instability for a certain range of central LX, and a strong overall outflow develops for greater LX. The cold gas develops filamentary structures that fall into the central SMBH, whereas the hot gas tries to escape through the channels in between the cold filaments. Such fragmentation of accreting gas can assist in the formation of clouds around AGN, induce star-formation, and contribute to the observed variability of narrow-line regions.

  18. Influence of the Yukon River on the Bering Sea

    NASA Technical Reports Server (NTRS)

    Dean, Kenneson G.; Mcroy, C. Peter

    1988-01-01

    Physical and biological oceanography of the northern Bering Sea including the influence of the Yukon River were studied. Satellite data acquired by the Advanced Very High Resolution Radiometer (AVHRR), the LANDSAT Multispectral Scanner (MSS) and the Thematic Mapper (TM) sensor were used to detect sea surface temperatures and suspended sediments. Shipboard measurements of temperature, salinity and nutrients were acquired through the Inner Shelf Transfer and Recycling (ISHTAR) project and were compared to digitally enhanced and historical satellite images. The satellite data reveal north-flowing, warm water along the Alaskan coast that is highly turbid with complex patterns of surface circulation near the Yukon River delta. To the west near the Soviet Union, cold water, derived from an upwelling, mixes with shelf water and also flows north. The cold and warm water coincide with the Anadyr, Bering Shelf and Alaskan coastal water masses. Generally, warm Alaskan coastal water forms near the coast and extends offshore as the summer progresses. Turbid water discharged by the Yukon River progresses in the same fashion but extends northward across the entrance to Norton Sound, attaining its maximum surface extent in October. The Anadyr water flows northward and around St. Lawrence Island, but its extent is highly variable and depends upon mesoscale pressure fields in the Arctic Ocean and the Bering Sea.

  19. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV)

    PubMed Central

    Doya, Carolina; Chatzievangelou, Damianos; Bahamon, Nixon; Purser, Autun; De Leo, Fabio C.; Juniper, S. Kim; Thomsen, Laurenz; Aguzzi, Jacopo

    2017-01-01

    Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ). Short video-transects were run at 4-h intervals during the first week of successive calendar months, over a 14 month period (February 14th 2013 to April 14th 2014). Within each recorded transect video megafauna abundances were computed and changes in environmental conditions concurrently measured. The responses of fauna to environmental conditions as a proxy of seasonality were assessed through analysis of abundances in a total of 438 video-transects (over 92 h of total footage). 7698 fauna individuals from 6 phyla (Cnidaria, Ctenophora, Arthropoda, Echinodermata, Mollusca, and Chordata) were logged and patterns in abundances of the 7 most abundant taxa (i.e. rockfish Sebastidae, sablefish Anoplopoma fimbria, hagfish Eptatretus stoutii, buccinids (Buccinoidea), undefined small crabs, ctenophores Bolinopsis infundibulum, and Scyphomedusa Poralia rufescens) were identified. Patterns in the reproductive behaviour of the grooved tanner crab (Chionnecetes tanneri) were also indicated. Temporal variations in biodiversity and abundance in megabenthic fauna was significantly influenced by variabilities in flow velocity flow direction (up or down canyon), dissolved oxygen concentration and month of study. Also reported here for the first time are transient mass aggregations of grooved tanner crabs through these depths of the canyon system, in early spring and likely linked to the crab’s reproductive cycle. PMID:28557992

  20. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV).

    PubMed

    Doya, Carolina; Chatzievangelou, Damianos; Bahamon, Nixon; Purser, Autun; De Leo, Fabio C; Juniper, S Kim; Thomsen, Laurenz; Aguzzi, Jacopo

    2017-01-01

    Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ). Short video-transects were run at 4-h intervals during the first week of successive calendar months, over a 14 month period (February 14th 2013 to April 14th 2014). Within each recorded transect video megafauna abundances were computed and changes in environmental conditions concurrently measured. The responses of fauna to environmental conditions as a proxy of seasonality were assessed through analysis of abundances in a total of 438 video-transects (over 92 h of total footage). 7698 fauna individuals from 6 phyla (Cnidaria, Ctenophora, Arthropoda, Echinodermata, Mollusca, and Chordata) were logged and patterns in abundances of the 7 most abundant taxa (i.e. rockfish Sebastidae, sablefish Anoplopoma fimbria, hagfish Eptatretus stoutii, buccinids (Buccinoidea), undefined small crabs, ctenophores Bolinopsis infundibulum, and Scyphomedusa Poralia rufescens) were identified. Patterns in the reproductive behaviour of the grooved tanner crab (Chionnecetes tanneri) were also indicated. Temporal variations in biodiversity and abundance in megabenthic fauna was significantly influenced by variabilities in flow velocity flow direction (up or down canyon), dissolved oxygen concentration and month of study. Also reported here for the first time are transient mass aggregations of grooved tanner crabs through these depths of the canyon system, in early spring and likely linked to the crab's reproductive cycle.

  1. Controls of sediment transfers, sedimentary budgets and relief development in cold environments: Results from four catchment systems in Iceland, Swedish Lapland and Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Beylich, A. A.

    2012-04-01

    By the combined, longer-term and quantitative recording of relevant denudative slope processes and stream work in four selected catchment systems in sub-arctic oceanic Eastern Iceland (Hrafndalur and Austdalur), arctic-oceanic Swedish Lapland (Latnjavagge) and sub-arctic oceanic Finnish Lapland (Kidisjoki), information on the absolute and relative importance of the different denudative processes is collected. Direct comparison of the four catchment geo-systems (the catchment sizes range from 7 km2 to 23 km2) allows conclusions on major controls of sediment transfers, sedimentary budgets and relief development in theses cold climate environments. To allow direct comparison of the different processes, all mass transfers are calculated as tonnes multiplied by meter per year, i.e. as the product of the annually transferred mass and the corresponding transport distance. Ranking the different processes according to their annual mass transfers shows that stream work dominates over slope denudation. For Hrafndalur (Eastern Iceland) the following order of denudative processes is found after nine years of process studies (2001 - 2010): (1) Fluvial suspended sediment plus bedload transport, (2) Fluvial solute transport, (3) Rock falls plus boulder falls, (4) Chemical slope denudation, (5) Mechanical fluvial slope denudation (slope wash), (6) Creep processes, (7) Avalanches, (8) Debris flows, (9) Translation slides, (10) Deflation. Compared to that, in Austdalur the following ranking is given after fourten years of process studies (1996 - 2010): (1) Fluvial suspended sediment plus bedload transport, (2) Fluvial solute transport, (3) Mechanical fluvial slope denudation (slope wash), (4) Chemical slope denudation, (5) Avalanches, (6) Rock falls plus boulder falls, (7) Creep processes, (8) Debris flows, (9) Deflation, (10) Translation slides. In the Latnjavagge catchment (Swedish Lapland) the ranking is (eleven-years period of studies, 1999 - 2010): (1) Fluvial solute transport, (2) Fluvial suspended sediment plus bedload transport, (3) Rock falls plus boulder falls, (4) Chemical slope denudation, (5) Mechanical fluvial slope denudation (slope wash), (6) Avalanches, (7) Creep processes and solifluction, (8) Slush flows, (9) Debris flows, (10) Translation slides, (11) Deflation. In Kidisjoki (Finnish Lapland) the order of processes, as determined after a nine-years period (2001 - 2010) of geomorphic process studies, is: (1) Fluvial solute transport, (2) Chemical slope denudation, (3) Fluvial suspended sediment plus bedload transport, (4) Mechanical fluvial slope denudation, (5) Creep processes, (6) Avalanches and slush flows, (7) Debris flows and slides, (8) Rock and boulder falls, (9) Deflation. As a result, in all four selected cold climate study areas the intensity of contemporary denudative processes and mass transfers is altogether rather low, which is in opposition to the earlier postulated oppinion of a generally high intensity of geomorphic processes in cold climate environments. A direct comparison of the annual mass transfers summarises that there are differences between process intensities and the relative importance of different denudative processes within the four study areas. The major controls of these detected differences are: (i) Climate: The higher annual precipitation along with the larger number of extreme rainfall events and the higher frequency of snowmelt and rainfall generated peak runoff events in Eastern Iceland as compared to Swedish Lapland and Finnish Lapland lead to higher mass transfers, (ii) Lithology: The low resistance of rhyolites in Hrafndalur causes especially high weathering rates and connected mass transfers in this catchment. Due to the lower resistance of the rhyolites as compared to the basalts found in Austdalur Postglacial modification of the glacially formed relief is clearly further advanced in Hrafndalur as compared to Austdalur, (iii) Relief: The greater steepness of the Icelandic catchments leads to higher mass transfers here as compared to Latnjavagge and Kidisjoki, (iv) Vegetation cover: The significant disturbance of the vegetation cover by human impacts in Easter Iceland causes higher mass transfers (slope wash) whereas restricted sediment availability is a main reason for lower mass transfers in Swedish Lapland and Finnish Lapland. The applied catchment-based approach seems to be effective for analysing sediment budgets and trends of Postglacial relief development in selected study areas with given environmental settings. Direct comparison of investigated catchments will improve possibilities to model relief development as well as possible effects of projected climate change in cold climate environments.

  2. Low gravity quenching of hot tubes with cryogens

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Collins, Frank G.; Kawaji, M.

    1992-01-01

    An experimental proceedure for examining flow boiling in low gravity environment is presented. The proceedure involves both ground based and KC-135 flight experiments. Two experimental apparati were employed, one for studying subcooled liquid boiling and another for examining saturated liquid boiling. For the saturated flow experiments, liquid nitrogen was used while freon 113 was used for the subcooled flow experiments. The boiling phenomenon was investigated in both cases using flow visualization techniques as well as tube wall temperature measurements. The flow field in both cases was established by injecting cold liquid in a heated tube whose temperature was set above the saturation values. The tubes were both vertically and horizontally supported with the liquid injected from the lower end of the tube. The results indicate substantial differences in the flow patterns established during boiling between the ground based, (1-g), experiments and the flight experiments, (low-g). These differences in the flow patterns will be discussed and some explanations will be offered.

  3. International News Flows in the Post-Cold War World: Mapping the News and the News Producers.

    ERIC Educational Resources Information Center

    Sreberny-Mohammadi, Annabelle

    1995-01-01

    Reviews the global political environment, major global news providers, and technologies of global news production. Argues for a multinational comparative mapping of international news representation in the 1990s. Outlines a major international venture to update and elaborate the 1979 UNESCO/IAMCR study of foreign news in the media of 29 countries,…

  4. Cold-gas experiments to study the flow separation characteristics of a dual-bell nozzle during its transition modes

    NASA Astrophysics Data System (ADS)

    Verma, S. B.; Stark, R.; Nuerenberger-Genin, C.; Haidn, O.

    2010-06-01

    An experimental investigation has been carried out to study the effect of test environment on transition characteristics and the flow unsteadiness associated with the transition modes of a dual-bell nozzle. Cold-gas tests using gaseous nitrogen were carried out in (i) a horizontal test-rig with nozzle exhausting into atmospheric conditions and, (ii) a high altitude simulation chamber with nozzle operation under self-evacuation mode. Transient tests indicate that increasing δP 0/ δt (the rate of stagnation chamber pressure change) reduces the amplitude of pressure fluctuations of the separation shock at the wall inflection point. This is preferable from the viewpoint of lowering the possible risk of any structural failure during the transition mode. Sea-level tests show 15-17% decrease in the transition nozzle pressure ratio (NPR) during subsequent tests in a single run primarily due to frost formation in the nozzle extension up to the wall inflection location. Frost reduces the wall inflection angle and hence, the transition NPR. However, tests inside the altitude chamber show nearly constant NPR value during subsequent runs primarily due to decrease in back temperature with decrease in back pressure that prevents any frost formation.

  5. Coupled prediction of flood response and debris flow initiation during warm and cold season events in the Southern Appalachians, USA

    NASA Astrophysics Data System (ADS)

    Tao, J.; Barros, A. P.

    2013-07-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. The first objective of this study is to investigate this hypothesis. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations, availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions, and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are strongly modulated by the topography and catchment specific geomorphologic features that determine subsurface flow convergence zones. The three case-studies demonstrate the value of coupled prediction of flood response and debris flow initiation potential in the context of developing a regional hazard warning system.

  6. Two-stage high frequency pulse tube cooler for refrigeration at 25 K

    NASA Astrophysics Data System (ADS)

    Dietrich, M.; Thummes, G.

    2010-04-01

    A two-stage Stirling-type U-shape pulse tube cryocooler driven by a 10 kW-class linear compressor was designed, built and tested. A special feature of the cold head is the absence of a heat exchanger at the cold end of the first-stage, since the intended application requires no cooling power at this intermediate temperature. Simulations where done using SAGE-software to find optimum operating conditions and cold head geometry. Flow-impedance matching was required to connect the compressor designed for 60 Hz operation to the 40 Hz cold head. A cooling power of 12.9 W at 25 K with an electrical input power of 4.6 kW has been achieved up to now. The lowest temperature reached is 13.7 K.

  7. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  8. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    PubMed

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  9. Kadomtsev−Petviashvili equation for a flow of highly nonisothermal collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Movsesyants, Yu. B., E-mail: yumovsesyants@gmail.com; Rukhadze, A. A., E-mail: rukh@fpl.gpi.ru; Tyuryukanov, P. M.

    2016-01-15

    It is shown that the equations of two-fluid electrodynamics for a cold ions flow and Boltzmann electrons in the vicinity of the ion-sound point can be reduced to the Kadomtsev−Petviashvili equation. Examples of two-dimensional equilibria with pole singularities obtained by exactly solving the equations are presented. An exact self-similar solution describing a two-dimensional transonic flow and having no pole singularities is found.

  10. Kadomtsev-Petviashvili equation for a flow of highly nonisothermal collisionless plasma

    NASA Astrophysics Data System (ADS)

    Movsesyants, Yu. B.; Rukhadze, A. A.; Tyuryukanov, P. M.

    2016-01-01

    It is shown that the equations of two-fluid electrodynamics for a cold ions flow and Boltzmann electrons in the vicinity of the ion-sound point can be reduced to the Kadomtsev-Petviashvili equation. Examples of two-dimensional equilibria with pole singularities obtained by exactly solving the equations are presented. An exact self-similar solution describing a two-dimensional transonic flow and having no pole singularities is found.

  11. Investigation of transition from thermal- to solutal-Marangoni flow in dilute alcohol/water mixtures using nano-plasmonic heaters

    NASA Astrophysics Data System (ADS)

    Namura, Kyoko; Nakajima, Kaoru; Suzuki, Motofumi

    2018-02-01

    We experimentally investigated Marangoni flows around a microbubble in diluted 1-butanol/water, 2-propanol/water, and ethanol/water mixtures using the thermoplasmonic effect of gold nanoisland film. A laser spot on the gold nanoisland film acted as a highly localized heat source that was utilized to generate stable air microbubbles with diameters of 32-48 μm in the fluid and to induce a steep temperature gradient on the bubble surface. The locally heated bubble has a flow along the bubble surface, with the flow direction showing a clear transition depending on the alcohol concentrations. The fluid is driven from the hot to cold regions when the alcohol concentration is lower than the transition concentration, whereas it is driven from the cold to hot regions when the concentration is higher than the transition concentration. In addition, the transition concentration increases as the carbon number of the alcohol decreases. The observed flow direction transition is explained by the balance of the thermal- and solutal-Marangoni forces that are cancelled out for the transition concentration. The selective evaporation of the alcohol at the locally heated surface allows us to generate stable and rapid thermoplasmonic solutal-Marangoni flows in the alcohol/water mixtures.

  12. Airflow analyses using thermal imaging in Arizona's Meteor Crater as part of METCRAX II

    NASA Astrophysics Data System (ADS)

    Grudzielanek, A. Martina; Vogt, Roland; Cermak, Jan; Maric, Mateja; Feigenwinter, Iris; Whiteman, C. David; Lehner, Manuela; Hoch, Sebastian W.; Krauß, Matthias G.; Bernhofer, Christian; Pitacco, Andrea

    2016-04-01

    In October 2013 the second Meteor Crater Experiment (METCRAX II) took place at the Barringer Meteorite Crater (aka Meteor Crater) in north central Arizona, USA. Downslope-windstorm-type flows (DWF), the main research objective of METCRAX II, were measured by a comprehensive set of meteorological sensors deployed in and around the crater. During two weeks of METCRAX II five infrared (IR) time lapse cameras (VarioCAM® hr research & VarioCAM® High Definition, InfraTec) were installed at various locations on the crater rim to record high-resolution images of the surface temperatures within the crater from different viewpoints. Changes of surface temperature are indicative of air temperature changes induced by flow dynamics inside the crater, including the DWF. By correlating thermal IR surface temperature data with meteorological sensor data during intensive observational periods the applicability of the IR method of representing flow dynamics can be assessed. We present evaluation results and draw conclusions relative to the application of this method for observing air flow dynamics in the crater. In addition we show the potential of the IR method for METCRAX II in 1) visualizing airflow processes to improve understanding of these flows, and 2) analyzing cold-air flows and cold-air pooling.

  13. Thermal transpiration: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    T, Joe Francis; Sathian, Sarith P.

    2014-12-01

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  14. Review of coaxial flow gas core nuclear rocket fluid mechanics

    NASA Technical Reports Server (NTRS)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  15. A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models

    PubMed Central

    Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-01-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386

  16. Gingival blood flow measurement with a non-contact laser flowmeter.

    PubMed

    Matsuki, M; Xu, Y B; Nagasawa, T

    2001-07-01

    A non-contact laser flowmeter was used to measure the changing of the gingival blood flow. Five university students with healthy oral condition were selected in this study. The blood flow measurement on the extensor digitorum (above the head of third metacarpal), with the changing of distance and angle between the probe and the tissue was used as a pre-study experiment. Blood flow rate was determined in the labial gingiva (2 mm above the cervical line) of upper central incisor using a stent fixing the probe at a 3-mm distance from the tissue. A basal level of gingival blood flow was taken two times each day for 5 days. The effects of water of different temperatures on the gingival blood flow are discussed. With the changing of distance, the blood flow rate became smaller, but there was no significant effect from the angle. The reproducibility was acceptable through the 5-day measurement. After stimulating with warm and body temperature water, the blood flow first increased significantly and then went back to the basal line (faster with the body temperature water). With cold water, different reactions between the subjects were observed.

  17. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  18. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  19. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  20. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  1. ACTIVE GALACTIC NUCLEUS OBSCURATION FROM WINDS: FROM DUSTY INFRARED-DRIVEN TO WARM AND X-RAY PHOTOIONIZED

    PubMed Central

    Dorodnitsyn, A.; Kallman, T.

    2016-01-01

    We present calculations of AGN winds at ~parsec scales, along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L=0.05 – 0.6Ledd, the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72° – 75° regardless of the luminosity. At L ≳ 0.1 the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations θ ≳ 70° and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR supported flow. At luminosities ≤0.1Ledd episodes of outflow are followed by extended periods when the wind switches to slow accretion. PMID:27642184

  2. Galactic cosmic-ray mediation of a spherical solar wind flow. 1: The steady state cold gas hydrodynamical approximation

    NASA Technical Reports Server (NTRS)

    Le Roux, J. A.; Ptuskin, V. S.

    1995-01-01

    Realistic models of the outer heliosphere should consider that the interstellar cosmic-ray pressure becomes comparable to pressures in the solar wind at distances more than 100 AU from the Sun. The cosmic-ray pressure dynamically affects solar wind flow through deceleration. This effect, which occurs over a scale length of the order of the effective diffusion length at large radial distances, has important implications for cosmic-ray modulation and acceleration. As a first step toward solution of this nonlinear problem, a steady state numerical model was developed for a relatively cold spherical solar wind flow which encounters the confining isotropic pressure of the surrounding Galactic medium. This pressure is assumed to be dominated by energetic particles (Galactic cosmic rays). The system of equations, which are solved self-consistently, includes the relevant hydrodynamical equations for the solar wind flow and the spherical cosmic-ray transport equation. To avoid the closure parameter problem of the two-fluid model, the latter equation is solved for the energy-dependent cosmic-ray distribution function.

  3. A fast sampling device for the mass spectrometric analysis of liquid rocket engine exhaust

    NASA Technical Reports Server (NTRS)

    Ryason, P. R.

    1975-01-01

    The design of a device to obtain compositional data on rocket exhaust by direct sampling of reactive flow exhausts into a mass spectrometer is presented. Sampling at three stages differing in pressure and orifice angle and diameter is possible. Results of calibration with pure gases and gas mixtures are erratic and of unknown accuracy for H2, limiting the usefulness of the apparatus for determining oxidizer/fuel ratios from combustion product analysis. Deposition effects are discussed, and data obtained from rocket exhaust spectra are analyzed to give O/F ratios and mixture ratio distribution. The O/F ratio determined spectrometrically is insufficiently accurate for quantitative comparison with cold flow data. However, a criterion for operating conditions with improved mixing of fuel and oxidizer which is consistent with cold flow results may be obtained by inspection of contour plots. A chemical inefficiency in the combustion process when oxidizer is in excess is observed from reactive flow measurements. Present results were obtained with N2O4/N2H4 propellants.

  4. Marshall Team Complete Testing for Lunar Atmosphere and Dust Environment Explorer

    NASA Technical Reports Server (NTRS)

    Swofford, Philip

    2013-01-01

    Dr. Huu Trinh and his team with the Propulsion Systems and Test Departments at Marshall Space Flight Center in Huntsville, Ala. successfully complete a simulated cold-flow test series on the propulsion system used for the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. NASA Ames Research Center, Moffett Field, Calif., is leading NASA s work on the development of the LADEE spacecraft, and the Marshall center is the program office for the project. The spacecraft, scheduled for launch this fall, will orbit the Moon and gather information about the lunar atmosphere, conditions near the surface of the Moon, and collect samples of lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. The test team at the Marshall center conducted the cold flow test to identify how the fluid flows through the propulsion system feed lines, especially during critical operation modes. The test data will be used to assist the LADEE team in identifying any potential flow issues in the propulsion system, and allow them to address and correct them in advance of the launch.

  5. Automatic flow-batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment.

    PubMed

    Domínguez, Marina A; Grünhut, Marcos; Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E

    2012-05-16

    An automatic flow-batch system that includes two borosilicate glass chambers to perform sample digestion and cold vapor atomic absorption spectroscopy determination of mercury in honey samples was designed. The sample digestion was performed by using a low-cost halogen lamp to obtain the optimum temperature. Optimization of the digestion procedure was done using a Box-Behnken experimental design. A linear response was observed from 2.30 to 11.20 μg Hg L(-1). The relative standard deviation was 3.20% (n = 11, 6.81 μg Hg L(-1)), the sample throughput was 4 sample h(-1), and the detection limit was 0.68 μg Hg L(-1). The obtained results with the flow-batch method are in good agreement with those obtained with the reference method. The flow-batch system is simple, allows the use of both chambers simultaneously, is seen as a promising methodology for achieving green chemistry goals, and is a good proposal to improving the quality control of honey.

  6. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  7. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies.

    PubMed

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  8. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    PubMed Central

    Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347

  9. Horizon in random matrix theory, the Hawking radiation, and flow of cold atoms.

    PubMed

    Franchini, Fabio; Kravtsov, Vladimir E

    2009-10-16

    We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connection between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.

  10. Wing shielding of high velocity jet and shock-associated noise with cold and hot flow jets

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Groesbeck, D.; Wagner, J.

    1976-01-01

    Jet exhaust noise shielding data are presented for cold and hot flows (ambient to 1,100 K) and pressure ratios from 1.7 to 2.75. A nominal 9.5-cm diameter conical nozzle was used with simple shielding surfaces that were varied in length from 28.8 to 114.3 cm. The nozzle was located 8.8 cm above the surfaces. The acoustic data with the various sheilding lengths are compared to each other and to that for the nozzle alone. In general, short shielding surfaces that provided shielding for subsonic jets did not provide as much shielding for jets with shock noise, however, long shielding surfaces did shield shock noise effectively.

  11. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOEpatents

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  12. Cardiovascular and Metabolic Responses to the Ingestion of Caffeinated Herbal Tea: Drink It Hot or Cold?

    PubMed

    Maufrais, Claire; Sarafian, Delphine; Dulloo, Abdul; Montani, Jean-Pierre

    2018-01-01

    Aim: Tea is usually consumed at two temperatures (as hot tea or as iced tea). However, the importance of drink temperature on the cardiovascular system and on metabolism has not been thoroughly investigated. The purpose of this study was to compare the cardiovascular, metabolic and cutaneous responses to the ingestion of caffeinated herbal tea (Yerba Mate) at cold or hot temperature in healthy young subjects. We hypothesized that ingestion of cold tea induces a higher increase in energy expenditure than hot tea without eliciting any negative effects on the cardiovascular system. Methods: Cardiovascular, metabolic and cutaneous responses were analyzed in 23 healthy subjects (12 men and 11 women) sitting comfortably during a 30-min baseline and 90 min following the ingestion of 500 mL of an unsweetened Yerba Mate tea ingested over 5 min either at cold (~3°C) or hot (~55°C) temperature, according to a randomized cross-over design. Results: Averaged over the 90 min post-drink ingestion and compared to hot tea, cold tea induced (1) a decrease in heart rate (cold tea: -5 ± 1 beats.min -1 ; hot tea: -1 ± 1 beats.min -1 , p < 0.05), double product, skin blood flow and hand temperature and (2) an increase in baroreflex sensitivity, fat oxidation and energy expenditure (cold tea: +8.3%; hot tea: +3.7%, p < 0.05). Averaged over the 90 min post-drink ingestion, we observed no differences of tea temperature on cardiac output work and mean blood pressure responses. Conclusion: Ingestion of an unsweetened caffeinated herbal tea at cold temperature induced a greater stimulation of thermogenesis and fat oxidation than hot tea while decreasing cardiac load as suggested by the decrease in the double product. Further experiments are needed to evaluate the clinical impact of unsweetened caffeinated herbal tea at a cold temperature for weight control.

  13. Cardiovascular and Metabolic Responses to the Ingestion of Caffeinated Herbal Tea: Drink It Hot or Cold?

    PubMed Central

    Maufrais, Claire; Sarafian, Delphine; Dulloo, Abdul; Montani, Jean-Pierre

    2018-01-01

    Aim: Tea is usually consumed at two temperatures (as hot tea or as iced tea). However, the importance of drink temperature on the cardiovascular system and on metabolism has not been thoroughly investigated. The purpose of this study was to compare the cardiovascular, metabolic and cutaneous responses to the ingestion of caffeinated herbal tea (Yerba Mate) at cold or hot temperature in healthy young subjects. We hypothesized that ingestion of cold tea induces a higher increase in energy expenditure than hot tea without eliciting any negative effects on the cardiovascular system. Methods: Cardiovascular, metabolic and cutaneous responses were analyzed in 23 healthy subjects (12 men and 11 women) sitting comfortably during a 30-min baseline and 90 min following the ingestion of 500 mL of an unsweetened Yerba Mate tea ingested over 5 min either at cold (~3°C) or hot (~55°C) temperature, according to a randomized cross-over design. Results: Averaged over the 90 min post-drink ingestion and compared to hot tea, cold tea induced (1) a decrease in heart rate (cold tea: −5 ± 1 beats.min−1; hot tea: −1 ± 1 beats.min−1, p < 0.05), double product, skin blood flow and hand temperature and (2) an increase in baroreflex sensitivity, fat oxidation and energy expenditure (cold tea: +8.3%; hot tea: +3.7%, p < 0.05). Averaged over the 90 min post-drink ingestion, we observed no differences of tea temperature on cardiac output work and mean blood pressure responses. Conclusion: Ingestion of an unsweetened caffeinated herbal tea at cold temperature induced a greater stimulation of thermogenesis and fat oxidation than hot tea while decreasing cardiac load as suggested by the decrease in the double product. Further experiments are needed to evaluate the clinical impact of unsweetened caffeinated herbal tea at a cold temperature for weight control. PMID:29681860

  14. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilpueng, Kitti; Wongwises, Somchai

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-watermore » mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)« less

  15. Topoclimatological and snowhydrological survey of Switzerland

    NASA Technical Reports Server (NTRS)

    Winiger, M. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The chosen time of overflight of HCMM seems to be ideal for the study of basic climatological events. Nocturnal temperature inversion zones are easily detectable and their dependency on the relief is clearly seen. Especially the alpine valleys show a very differentiated pattern of cold lakes, separated by warmer zones as a consequence of rock and forrest barriers or changes in the valley profile. Wet areas are usually colder than dry parts under comparable topographic conditions. Even very small topographic obstacles are able to block up the flow of cold air masses (or ground water flow). Urban areas are clearly detectable. Differences to the surface temperatures of surrounding rural land are much more significant during day-time (mainly during the summer months). Fog layers are clearly defined in the visible channel (day-time), but much more difficult to identify in the IR (mainly during the night). There is not a fundamental difference to NOAA-analysis of cloud systems. The most important advantage is the better detectability of convective cloud systems (small cumulus clouds).

  16. Heat to electricity conversion by cold carrier emissive energy harvesters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strandberg, Rune

    2015-12-07

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings whilemore » converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved.« less

  17. On the wind production from hot accretion flows with different accretion rates

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Gan, Zhao-Ming

    2018-02-01

    We perform two-dimensional simulations to study how the wind strength changes with accretion rate. We take into account bremsstrahlung, synchrotron radiation and the Comptonization. We find that when the accretion rate is low, radiative cooling is not important, and the accretion flow is hot. For the hot accretion flow, wind is very strong. The mass flux of wind can be ˜ 50 per cent of the mass inflow rate. When the accretion rate increases to a value at which radiative cooling rate is roughly equal to or slightly larger than viscous heating rate, cold clumps can form around the equatorial plane. In this case, the gas pressure gradient force is small and wind is very weak. Our results may be useful for the sub-grid model of active galactic nuclear feedback study.

  18. Analysis of Performance of Jet Engine from Characteristics of Components I : Aerodynamic and Matching Characteristics of Turbine Component Determined with Cold Air

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W

    1947-01-01

    The performance of the turbine component of an NACA research jet engine was investigated with cold air. The interaction and the matching of the turbine with the NACA eight-stage compressor were computed with the combination considered as a jet engine. The over-all performance of the engine was then determined. The internal aerodynamics were studied to the extent of investigating the performance of the first stator ring and its influence on the turbine performance. For this ring, the stream-filament method for computing velocity distribution permitted efficient sections to be designed, but the design condition of free-vortex flow with uniform axial velocities was not obtained.

  19. A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals.

    PubMed

    Caldwell, Joanne N; van den Heuvel, Anne M J; Kerry, Pete; Clark, Mitchell J; Peoples, Gregory E; Taylor, Nigel A S

    2018-04-01

    What is the central question of this study? Does the cold-water immersion (14°C) of profoundly hyperthermic individuals induce reductions in cutaneous and limb blood flow of sufficient magnitude to impair heat loss relative to the size of the thermal gradient? What is the main finding and its importance? The temperate-water cooling (26°C) of profoundly hyperthermic individuals was found to be rapid and reproducible. A vascular mechanism accounted for that outcome, with temperature-dependent differences in cutaneous and limb blood flows observed during cooling. Decisions relating to cooling strategies must be based upon deep-body temperature measurements that have response dynamics consistent with the urgency for cooling. Physiologically trivial time differences for cooling the intrathoracic viscera of hyperthermic individuals have been reported between cold- and temperate-water immersion treatments. One explanation for that observation is reduced convective heat delivery to the skin during cold immersion, and this study was designed to test both the validity of that observation, and its underlying hypothesis. Eight healthy men participated in four head-out water immersions: two when normothermic, and two after exercise-induced, moderate-to-profound hyperthermia. Two water temperatures were used within each thermal state: temperate (26°C) and cold (14°C). Tissue temperatures were measured at three deep-body sites (oesophagus, auditory canal and rectum) and eight skin surfaces, with cutaneous vascular responses simultaneously evaluated from both forearms (laser-Doppler flowmetry and venous-occlusion plethysmography). During the cold immersion of normothermic individuals, oesophageal temperature decreased relative to baseline (-0.31°C over 20 min; P < 0.05), whilst rectal temperature increased (0.20°C; P < 0.05). When rendered hyperthermic, oesophageal (-0.75°C) and rectal temperatures decreased (-0.05°C) during the transition period (<8.5 min, mostly in air at 22°C), with the former dropping to 37.5°C only 54 s faster when immersed in cold rather than in temperate water (P < 0.05). Minimal cutaneous vasoconstriction occurred during either normothermic immersion, whereas pronounced constriction was evident during both immersions when subjects were hyperthermic, with the colder water eliciting a greater vascular response (P < 0.05). It was concluded that the rapid intrathoracic cooling of asymptomatic, hyperthermic individuals in temperate water was a reproducible phenomenon, with slower than expected cooling in cold water brought about by stronger cutaneous vasoconstriction that reduced convective heat delivery to the periphery. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

  20. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets

  1. Thermoelectric Generation Using Counter-Flows of Ideal Fluids

    NASA Astrophysics Data System (ADS)

    Meng, Xiangning; Lu, Baiyi; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2017-08-01

    Thermoelectric (TE) performance of a three-dimensional (3-D) TE module is examined by exposing it between a pair of counter-flows of ideal fluids. The ideal fluids are thermal sources of TE module flow in the opposite direction at the same flow rate and generate temperature differences on the hot and cold surfaces due to their different temperatures at the channel inlet. TE performance caused by different inlet temperatures of thermal fluids are numerically analyzed by using the finite-volume method on 3-D meshed physical models and then compared with those using a constant boundary temperature. The results show that voltage and current of the TE module increase gradually from a beginning moment to a steady flow and reach a stable value. The stable values increase with inlet temperature of the hot fluid when the inlet temperature of cold fluid is fixed. However, the time to get to the stable values is almost consistent for all the temperature differences. Moreover, the trend of TE performance using a fluid flow boundary is similar to that of using a constant boundary temperature. Furthermore, 3-D contours of fluid pressure, temperature, enthalpy, electromotive force, current density and heat flux are exhibited in order to clarify the influence of counter-flows of ideal fluids on TE generation. The current density and heat flux homogeneously distribute on an entire TE module, thus indicating that the counter-flows of thermal fluids have high potential to bring about fine performance for TE modules.

  2. Small-Portion Water Dispenser

    NASA Technical Reports Server (NTRS)

    Joerns, J. C.

    1986-01-01

    Pressure regulated and flow timed to control amount dispensed. Dispenser provides measured amount of water for reconstituting dehydrated foods and beverages. Dispenser holds food or beverage package while being filled with either cold or room-temperature water. Other uses might include dispensing of fluids or medicine. Pressure regulator in dispenser reduces varying pressure of water supply to constant pressure. Electronic timer stops flow after predetermined length of time. Timed flow at regulated pressure ensures controlled volume of water dispensed.

  3. The effect of unsteadiness on the time-mean thermal loads in a turbine stage

    NASA Technical Reports Server (NTRS)

    Kirtley, K. R.; Celestina, M. L.; Adamczyk, J. J.

    1993-01-01

    Two steady numerical analysis methods and one unsteady method are used to study the viscous three-dimensional flow in the middle stage of the Pratt & Whitney alternate design Space Shuttle Main Engine fuel turbine. The principal characteristic of this flow is that the secondary flows generated in the rotor blade reconfigure a radial inlet total temperature distortion into one with a pitchwise exit hot streak distortion. Secondary flows in the following vane redistribute the radial variation while unsteadiness causes a segregation of hot and cold flow from the hot streak within the vane. Such redistribution and segregation can lead to unexpected thermal loads and reduced durability. The physical phenomena and the ability of a steady analysis to capture them are investigated by performing a numerical experiment whereby the results of the two steady analysis methods are compared to the time-mean of the unsteady simulation. The flow physics related to the segregation and mixing of total temperature are discussed.

  4. A constant flux of diverse thermophilic bacteria into the cold Arctic seabed.

    PubMed

    Hubert, Casey; Loy, Alexander; Nickel, Maren; Arnosti, Carol; Baranyi, Christian; Brüchert, Volker; Ferdelman, Timothy; Finster, Kai; Christensen, Flemming Mønsted; Rosa de Rezende, Júlia; Vandieken, Verona; Jørgensen, Bo Barker

    2009-09-18

    Microorganisms have been repeatedly discovered in environments that do not support their metabolic activity. Identifying and quantifying these misplaced organisms can reveal dispersal mechanisms that shape natural microbial diversity. Using endospore germination experiments, we estimated a stable supply of thermophilic bacteria into permanently cold Arctic marine sediment at a rate exceeding 10(8) spores per square meter per year. These metabolically and phylogenetically diverse Firmicutes show no detectable activity at cold in situ temperatures but rapidly mineralize organic matter by hydrolysis, fermentation, and sulfate reduction upon induction at 50 degrees C. The closest relatives to these bacteria come from warm subsurface petroleum reservoir and ocean crust ecosystems, suggesting that seabed fluid flow from these environments is delivering thermophiles to the cold ocean. These transport pathways may broadly influence microbial community composition in the marine environment.

  5. Effect of Anode Change on Heat Transfer and Magneto-hydrodynamic Flow in Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Li, Baokuan; Fafard, Mario

    2016-02-01

    In order to explore the impact of anode replacement on heat transfer and magneto-hydrodynamic flow in aluminum smelting cells, a transient three-dimensional coupled mathematical model has been developed. With a steady state magnetic field, an electrical potential approach was used to obtain electromagnetic fields. Joule heating and Lorentz force, which were the source terms in the energy and momentum equations, were updated at each iteration. The phase change of molten electrolyte (bath) was modeled by an enthalpy-based technique in which the mushy zone was treated as a porous medium with porosity equal to the liquid fraction. A reasonable agreement between the test data and simulated results was achieved. Under normal conditions, the bath at the middle of the cell is hotter, while becoming colder at the four corners. Due to the heat extracted from the bath, the temperature of the new cold anode increases over time. The temperature of the bath under the new cold anode therefore quickly drops, resulting in a decrease of the electrical conductivity. More Joule effect is created. In addition, the bath under the new cold anode gradually freezes and flows more slowly. The temperature of the new anode located at the middle of the cell rises faster because of the warmer bath. It is easier to eliminate the effect of anode change when it occurs in the middle of the cell.

  6. Concept of a Cryogenic System for a Cryogen-Free 25 T Superconducting Magnet

    NASA Astrophysics Data System (ADS)

    Iwai, Sadanori; Takahashi, Masahiko; Miyazaki, Hiroshi; Tosaka, Taizo; Tasaki, Kenji; Hanai, Satoshi; Ioka, Shigeru; Watanabe, Kazuo; Awaji, Satoshi; Oguro, Hidetoshi

    A cryogen-free 25 T superconducting magnet using a ReBCO insert coil that generates 11.5 T in a 14 T background field of outer low-temperature superconducting (LTS) coils is currently under development. The AC loss of the insert coil during field ramping is approximately 8.8 W, which is difficult to dissipate at the operating temperature of the LTS coils (4 K). However, since a ReBCO coil can operate at a temperature above 4 K, the ReBCO insert coil is cooled to about 10 K by two GM cryocoolers, and the LTS coils are independently cooled by two GM/JT cryocoolers. Two GM cryocoolers cool a circulating helium gas through heat exchangers, and the gas is transported over a long distance to the cold stage located on the ReBCO insert coil, in order to protect the cryocoolers from the leakage field of high magnetic fields. The temperature difference of the 2nd cold stage of the GM cryocoolers and the insert coil can be reduced by increasing the gas flow rate. However, at the same time, the heat loss of the heat exchangers increases, and the temperature of the second cold stage is raised. Therefore, the gas flow rate is optimized to minimize the operating temperature of the ReBCO insert coil by using a flow controller and a bypass circuit connected to a buffer tank.

  7. Lagrangian transport in a class of three-dimensional buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2017-11-01

    The study concerns the Lagrangian dynamics of three-dimensional (3D) buoyancy-driven cavity flows under steady and laminar conditions due to a global temperature gradient imposed via an opposite hot and cold sidewall. This serves as archetypal configuration for natural-convection flows in which gravity is perpendicular to the global temperature gradient. Limited insight into the Lagrangian properties of this class of flows motivates this study. The 3D Lagrangian dynamics are investigated in terms of the generic structure of the Lagrangian flow topology that is described in terms of the Grashof number (Gr) and the Prandtl number (Pr). Gr is the principal control parameter for the flow topology: vanishing Gr yields a state of closed streamlines (integrable state); increasing Gr causes the formation of toroidal coherent structures embedded in chaotic streamlines governed by Hamiltonian mechanisms. Fluid inertia prevails for ``smaller'' Gr. A buoyancy-induced bifurcation of the flow topology occurs for ``larger'' Gr and underlies the emergence of ``secondary rolls'' and secondary tori for ``larger'' Pr. Stagnation points and corresponding manifold interactions are key to the dynamics. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  8. Development and Analysis of Cold Trap for Use in Fission Surface Power-Primary Test Circuit

    NASA Technical Reports Server (NTRS)

    Wolfe, T. M.; Dervan, C. A.; Pearson, J. B.; Godfroy, T. J.

    2012-01-01

    The design and analysis of a cold trap proposed for use in the purification of circulated eutectic sodium potassium (NaK-78) loops is presented. The cold trap is designed to be incorporated into the Fission Surface Power-Primary Test Circuit (FSP-PTC), which incorporates a pumped NaK loop to simulate in-space nuclear reactor-based technology using non-nuclear test methodology as developed by the Early Flight Fission-Test Facility. The FSP-PTC provides a test circuit for the development of fission surface power technology. This system operates at temperatures that would be similar to those found in a reactor (500-800 K). By dropping the operating temperature of a specified percentage of NaK flow through a bypass containing a forced circulation cold trap, the NaK purity level can be increased by precipitating oxides from the NaK and capturing them within the cold trap. This would prevent recirculation of these oxides back through the system, which may help prevent corrosion.

  9. Tracer gauge: An automated dye dilution gauging system for ice‐affected streams

    USGS Publications Warehouse

    Clow, David W.; Fleming, Andrea C.

    2008-01-01

    In‐stream flow protection programs require accurate, real‐time streamflow data to aid in the protection of aquatic ecosystems during winter base flow periods. In cold regions, however, winter streamflow often can only be estimated because in‐channel ice causes variable backwater conditions and alters the stage‐discharge relation. In this study, an automated dye dilution gauging system, a tracer gauge, was developed for measuring discharge in ice‐affected streams. Rhodamine WT is injected into the stream at a constant rate, and downstream concentrations are measured with a submersible fluorometer. Data loggers control system operations, monitor key variables, and perform discharge calculations. Comparison of discharge from the tracer gauge and from a Cipoletti weir during periods of extensive ice cover indicated that the root‐mean‐square error of the tracer gauge was 0.029 m3 s−1, or 6.3% of average discharge for the study period. The tracer gauge system can provide much more accurate data than is currently available for streams that are strongly ice affected and, thus, could substantially improve management of in‐stream flow protection programs during winter in cold regions. Care must be taken, however, to test for the validity of key assumptions, including complete mixing and conservative behavior of dye, no changes in storage, and no gains or losses of water to or from the stream along the study reach. These assumptions may be tested by measuring flow‐weighted dye concentrations across the stream, performing dye mass balance analyses, and evaluating breakthrough curve behavior.

  10. Laboratory Investigation of Rheology and Infiltration Process of Non-Newtonian Fluids through Porous Media in a Non-Isothermal Flow Regime for Effective Remediation of Contaminants

    NASA Astrophysics Data System (ADS)

    Naseer, F.

    2017-12-01

    Contamination of soil and groundwater by adsorbent (persistent) contaminants have been a major concern. Mine tailings, Acid mine drainage, waste disposal areas, active or abandoned surface and underground mines are some major causes of soil and water contamination. It is need of the hour to develop cost effective and efficient remediation techniques for clean-up of soil and aquifers. The objective of this research is to study a methodology of using non-Newtonian fluids for effective remediation of adsorbent contaminants in porous media under non-isothermal flow regimes. The research comprises of three components. Since, non-Newtonian fluid rheology has not been well studied in cold temperatures, the first component of the objective is to expose a non-Newtonian fluid (Guar gum solution) to different temperatures ranging from 30 °C through -5 °C to understand the change in viscosity, shear strength and contact angle of the fluid. Study of the flow characteristic of non-Newtonian fluids in complex porous media has been limited. Hence, the second component of this study will focus on a comparison of flow characteristics of a Newtonian fluid, non-Newtonian fluid and a combination of both fluids in a glass-tube-bundle setup that will act as a synthetic porous media. The study of flow characteristics will also be done for different thermal regimes ranging from -5 °C to 30 °C. The third component of the research will be to compare the effectiveness Guar gum to remediate a surrogate adsorbed contaminant at a certain temperature from the synthetic porous media. Guar gum is biodegradable and hence it is benign to the environment. Through these experiments, the mobility and behavior of Guar gum under varying temperature ranges will be characterized and its effectiveness in removing contaminants from soils will be understood. The impact of temperature change on the fluid and flow stability in the porous medium will be examined in this research. Guar gum is good suspension fluid and hence, studying the suspension capability below the freezing point would be of great importance. The outcome of this research will provide critical knowledge of cost-effective, environmentally benign and time efficient remediation of contaminated mine sites in Alaska and other cold regions.

  11. Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces

    PubMed Central

    de Candia, Silvia; Morea, Maria; Baruzzi, Federico

    2015-01-01

    This study demonstrates the efficacy of cold gaseous ozone treatments at low concentrations in the eradication of high Listeria monocytogenes viable cell loads from glass, polypropylene, stainless steel, and expanded polystyrene food-contact surfaces. Using a step by step approach, involving the selection of the most resistant strain-surface combinations, 11 Listeria sp. strains resulted inactivated by a continuous ozone flow at 1.07 mg m-3 after 24 or 48 h of cold incubation, depending on both strain and surface evaluated. Increasing the inoculum level to 9 log CFU coupon-1, the best inactivation rate was obtained after 48 h of treatment at 3.21 mg m-3 ozone concentration when cells were deposited onto stainless steel and expanded polystyrene coupons, resulted the most resistant food-contact surfaces in the previous assays. The addition of naturally contaminated meat extract to a high load of L. monocytogenes LMG 23775 cells, the most resistant strain out of the 11 assayed Listeria sp. strains, led to its complete inactivation after 4 days of treatment. To the best of our knowledge, this is the first report describing the survival of L. monocytogenes and the effect of ozone treatment under cold storage conditions on expanded polystyrene, a commonly used material in food packaging. The results of this study could be useful for reducing pathogen cross-contamination phenomena during cold food storage. PMID:26236306

  12. Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms.

    PubMed

    Surowsky, Björn; Fröhling, Antje; Gottschalk, Nathalie; Schlüter, Oliver; Knorr, Dietrich

    2014-03-17

    Various studies have shown that cold plasma is capable of inactivating microorganisms located on a variety of food surfaces, food packaging materials and process equipment under atmospheric pressure conditions; however, less attention has been paid to the impact of cold plasma on microorganisms in liquid foodstuffs. The present study investigates cold plasma's ability to inactivate Citrobacter freundii in apple juice. Optical emission spectroscopy (OES) and temperature measurements were performed to characterise the plasma source. The plasma-related impact on microbial loads was evaluated by traditional plate count methods, while morphological changes were determined using scanning electron microscopy (SEM). Physiological property changes were obtained through flow cytometric measurements (membrane integrity, esterase activity and membrane potential). In addition, mathematical modelling was performed in order to achieve a reliable prediction of microbial inactivation and to establish the basis for possible industrial implementation. C. freundii loads in apple juice were reduced by about 5 log cycles after a plasma exposure of 480s using argon and 0.1% oxygen plus a subsequent storage time of 24h. The results indicate that a direct contact between bacterial cells and plasma is not necessary for achieving successful inactivation. The plasma-generated compounds in the liquid, such as H2O2 and most likely hydroperoxy radicals, are particularly responsible for microbial inactivation. Copyright © 2014. Published by Elsevier B.V.

  13. Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber

    DTIC Science & Technology

    2002-10-18

    try to quantify these effects, the direct simulation Monte Carlo method is applied to model a cold flow of xenon gas expanding from a Hall thruster into...a vacuum chamber. The simulations are performed for the P5 Hall thruster operating in a large vacuum tank at the University of Michigan. Comparison

  14. AEROSOL NUCLEATION AND GROWTH DURING LAMINAR TUBE FLOW: MAXIMUM SATURATIONS AND NUCLEATION RATES. (R827354C008)

    EPA Science Inventory

    An approximate method of estimating the maximum saturation, the nucleation rate, and the total number nucleated per second during the laminar flow of a hot vapour–gas mixture along a tube with cold walls is described. The basis of the approach is that the temperature an...

  15. FLUID PURIFIER AND SEALING VALVE

    DOEpatents

    Swanton, W.F.

    1962-04-24

    An improved cold trap designed to condense vapors and collect foreign particles in a flowing fluid is described. In the arrangement, a valve is provided to prevent flow reversal in case of pump failure and to act as a sealing valve. Provision is made for reducing the temperature of the fluid being processed, including a pre-cooling stage. (AEC)

  16. Investigation of Hypersonic Nozzle Flow Uniformity Using NO Fluorescence

    NASA Technical Reports Server (NTRS)

    O'Byrne, S.; Danehy, P. J.; Houwing, A. F. P.

    2005-01-01

    Planar laser-induced fluorescence visualisation is used to investigate nonuniformities in the flow of a hypersonic conical nozzle. Possible causes for the nonuniformity are outlined and investigated, and the problem is shown to be due to a small step at the nozzle throat. Entrainment of cold boundary layer gas is postulated as the cause of the signal nonuniformity.

  17. Seasonality of Arctic Mediterranean Exchanges

    NASA Astrophysics Data System (ADS)

    Rieper, Christoph; Quadfasel, Detlef

    2015-04-01

    The Arctic Mediterranean communicates through a number of passages with the Atlantic and the Pacific Oceans. Most of the volume exchange happens at the Greenland-Scotland-Ridge: warm and saline Atlantic Water flows in at the surface, cold, dense Overflow Water flows back at the bottom and fresh and cold Polar Water flows out along the East Greenland coast. All surface inflows show a seasonal signal whereas only the outflow through the Faroe Bank Channel exhibits significant seasonality. Here we present a quantification of the seasonal cycle of the exchanges across the Greenland-Scotland ridge based on volume estimates of the in- and outflows within the last 20 years (ADCP and altimetry). Our approach is comparatistic: we compare different properties of the seasonal cycle like the strength or the phase between the different in- and outflows. On the seasonal time scale the in- and outflows across the Greenland-Scotland-Ridge are not balanced. The net flux thus has to be balanced by the other passages on the Canadian Archipelago, Bering Strait as well as runoff from land.

  18. Assessment of Thermal Protection Afforded by Hot Water Diving Suits

    DTIC Science & Technology

    1980-07-03

    Assessment of Thermal Protect! " Afforded by Hot Water Diving Suits A AA L. A. Kuehn Diver thermal comfort in cold water is presently only...with proper control oj inlet suit water flow% and temperature, as well as heating of inspired gas, this suit technology suffices for thermal comfort for...technology provides in part to the convective heat loss that it prpsents, sustained long-term thermal comfort in cold water, Webb (W) has defined a

  19. Short papers of the Fourth International Conference, Geochronology, Cosmochronology, Isotope Geology, 1978

    USGS Publications Warehouse

    Zartman, Robert E.

    1978-01-01

    Tritium content of both hot and cold waters in Yellowstone National Park was used to infer something of the ground-water system feeding hot springs and geysers. Curves in three figures show: (1) Tritium content of water leaving piston flow and well mixed ground-water systems in Yellowstone Park; (2) tritium in precipitation, mixed reservoirs, and cold waters of Yellowstone Park, and (3) tritium in mixed reservoirs and hot waters of Yellowstone Park. (Woodard-USGS)

  20. Cardiac output variations in supine resting subjects during head-out cold water immersion.

    PubMed

    Vogelaere, P; Deklunder, G; Lecroart, J

    1995-08-01

    Five men, aged 31.2 years (SD 2.3), under semi-nude conditions and resting in a dorsal reclining position, were exposed to thermoneutral air for 30 min, followed immediately by a cold water (15 degrees C) immersion for 60 min. Cardiac output was measured using a dual-beam Doppler flow meter. During immersion in cold water, cardiac frequency (fc) showed an initial bradycardia. The lowest values were reached at about 10 min after immersion, 58.3 (SD 2.5) to 48.3 (SD 7.8) beats min-1 (P < 0.05). By the 20th min of exposure, fc had gradually risen to 70.0 beats min-1 (SD 6.6, P < 0.05). This change could be due to the inhibition of the initial vagal reflex by increased catecholamine concentration. Stroke volume (Vs) was significantly increased (P < 0.05) during the whole cold immersion period. Cardiac output, increased from 3.57 (SD 0.50) to 6.26 (SD 1.33) l min-1 (P < 0.05) and its change with time was a function of both Vs and fc. On the other hand, systolic flow acceleration was unchanged during the period of immersion. The changes in the respiratory variables (ventilation, oxygen uptake, carbon dioxide output and respiratory exchange ratio) during immersion showed an initial hyperventilation followed, as immersion proceeded, by a slower metabolic increase due to shivering.

  1. OTEC cold water pipe design for problems caused by vortex-excited oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, O. M.

    1980-03-14

    Vortex-excited oscillations of marine structures result in reduced fatigue life, large hydrodynamic forces and induced stresses, and sometimes lead to structural damage and to diestructive failures. The cold water pipe of an OTEC plant is nominally a bluff, flexible cylinder with a large aspect ratio (L/D = length/diameter), and is likely to be susceptible to resonant vortex-excited oscillations. The objective of this report is to survey recent results pertaining to the vortex-excited oscillations of structures in general and to consider the application of these findings to the design of the OTEC cold water pipe. Practical design calculations are given asmore » examples throughout the various sections of the report. This report is limited in scope to the problems of vortex shedding from bluff, flexible structures in steady currents and the resulting vortex-excited oscillations. The effects of flow non-uniformities, surface roughness of the cylinder, and inclination to the incident flow are considered in addition to the case of a smooth cyliner in a uniform stream. Emphasis is placed upon design procedures, hydrodynamic coefficients applicable in practice, and the specification of structural response parameters relevant to the OTEC cold water pipe. There are important problems associated with in shedding of vortices from cylinders in waves and from the combined action of waves and currents, but these complex fluid/structure interactions are not considered in this report.« less

  2. Cardiac output variations in supine resting subjects during head-out cold water immersion

    NASA Astrophysics Data System (ADS)

    Vogelaere, P.; Deklunder, G.; Lecroart, J.

    1995-03-01

    Five men, aged 31.2 years (SD 2.3), under semi-nude conditions and resting in a dorsal reclining position, were exposed to thermoneutral air for 30 min, followed immediately by a cold water (15°C) immersion for 60 min. Cardiac output was measured using a dualbeam Doppler flow meter. During immersion in cold water, cardiac frequency ( f c) showed an initial bradycardia. The lowest values were reached at about 10 min after immersion, 58.3 (SD 2.5) to 48.3 (SD 7.8) beats min-1 ( P < 0.05). By the 20th min of exposure, f c had gradually risen to 70.0 beats min-1 (SD 6.6, P < 0.05). This change could be due to the inhibition of the initial vagal reflex by increased catecholamine concentration. Stroke volume ( V s) was significantly increased ( P < 0.05) during the whole cold immersion period. Cardiac output, increased from 3.57 (SD 0.50) to 6.26 (SD 1.33)1 min-1 ( P < 0.05) and its change with time was a function of both V s and f c. On the other hand, systolic flow acceleration was unchanged during the period of immersion. The changes in the respiratory variables (ventilation, oxygen uptake, carbon dioxide output and respiratory exchange ratio) during immersion showed an initial hyperventilation followed, as immersion proceeded, by a slower metabolic increase due to shivering.

  3. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran.

    PubMed

    Sharifi, Reza; Moore, Farid; Mohammadi, Zargham; Keshavarzi, Behnam

    2016-01-01

    Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin.

  4. Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA

    NASA Astrophysics Data System (ADS)

    Tao, J.; Barros, A. P.

    2014-01-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm-season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold-season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. We further hypothesize that the transient mass fluxes associated with the temporal-spatial dynamics of interflow govern the timing of shallow landslide initiation, and subsequent debris flow mobilization. The first objective of this study is to investigate this relationship. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations; availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions; and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are strongly modulated by the topography and catchment-specific geomorphologic features that determine subsurface flow convergence zones. The three case studies demonstrate the value of coupled prediction of flood response and debris flow initiation potential in the context of developing a regional hazard warning system.

  5. An experimental investigation of a cold jet emitting from a body of revolution into a subsonic free stream

    NASA Technical Reports Server (NTRS)

    Ousterhout, D. S.

    1972-01-01

    An experimental program was undertaken to determine the pressure distribution induced on aerodynamic bodies by a subsonic cold jet exhausting normal to the body surface and into a subsonic free stream. The investigation was limited to two bodies with single exhaust jets a flat plate at zero angle of attack with respect to the free-stream flow and a cylinder, fitted with a conical nose, with the longitudinal axis alined with the free-stream flow. Experimental data were obtained for free-stream velocity to jet velocity ratios between 0.3 and 0.5. The experimental data are presented in tabular form with appropriate graphs to indicate pressure coefficient contours, pressure coefficient decay, pitching-moment characteristics, and lift characteristics.

  6. Horizon in Random Matrix Theory, the Hawking Radiation, and Flow of Cold Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franchini, Fabio; Kravtsov, Vladimir E.

    2009-10-16

    We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connectionmore » between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.« less

  7. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  8. Cold-flow acoustic evaluation of a small scale, divergent, lobed nozzle for supersonic jet noise suppression

    NASA Technical Reports Server (NTRS)

    Huff, R. G.; Groesbeck, D. E.

    1975-01-01

    A supersonic jet noise suppressor was tested with cold flow for acoustic and thrust characteristics at nozzle- to atmospheric-pressure ratios of 1.5 to 4.0. Jet noise suppression and spectral characteristics of the divergent, lobed, suppressor (DLS) nozzle with and without an ejector are presented. Suppression was obtained at nozzle pressure ratios of 2.5 to 4.0. The largest, maximum-lobe, sound pressure level suppression with a hard-wall ejector was 14.6 decibels at a nozzle pressure ratio of 3.5. The thrust loss was 2 percent. In general, low-frequency jet noise was suppressed, leaving higher frequencies essentially unchanged. Without the ejector the nozzle showed a thrust loss of 11 percent together with slightly poorer noise suppression.

  9. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOEpatents

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  10. Generation of waves in the Venus mantle by the ion acoustic beam instability

    NASA Technical Reports Server (NTRS)

    Huba, J. D.

    1993-01-01

    The ion acoustic beam instability is suggested as a mechanism to produce wave turbulence observed in the Venus mantle at frequencies 100 Hz and 730 Hz. The plasma is assumed to consist of a stationary cold O(+) ion plasma and a flowing, shocked solar wind plasma. The O(+) ions appear as a beam relative to the flowing ionosheath plasma which provides the free energy to drive the instability. The plasma is driven unstable by inverse electron Landau damping of an ion acoustic wave associated with the cold ionospheric O(+) ions. The instability can directly generate the observed 100 Hz waves in the Venus mantle as well as the observed 730 Hz waves through the Doppler shift of the frequency caused by the satellite motion.

  11. Experimental and Numerical Study of Nozzle Plume Impingement on Spacecraft Surfaces

    NASA Astrophysics Data System (ADS)

    Ketsdever, A. D.; Lilly, T. C.; Gimelshein, S. F.; Alexeenko, A. A.

    2005-05-01

    An experimental and numerical effort was undertaken to assess the effects of a cold gas (To=300K) nozzle plume impinging on a simulated spacecraft surface. The nozzle flow impingement is investigated experimentally using a nano-Newton resolution force balance and numerically using the Direct Simulation Monte Carlo (DSMC) numerical technique. The Reynolds number range investigated in this study is from 0.5 to approximately 900 using helium and nitrogen propellants. The thrust produced by the nozzle was first assessed on a force balance to provide a baseline case. Subsequently, an aluminum plate was attached to the same force balance at various angles from 0° (parallel to the plume flow) to 10°. For low Reynolds number helium flow, a 16.5% decrease in thrust was measured for the plate at 0° relative to the free plume expansion case. For low Reynolds number nitrogen flow, the difference was found to be 12%. The thrust degradation was found to decrease at higher Reynolds numbers and larger plate angles.

  12. Geometric optimization of thermal systems

    NASA Astrophysics Data System (ADS)

    Alebrahim, Asad Mansour

    2000-10-01

    The work in chapter 1 extends to three dimensions and to convective heat transfer the constructal method of minimizing the thermal resistance between a volume and one point. In the first part, the heat flow mechanism is conduction, and the heat generating volume is occupied by low conductivity material (k 0) and high conductivity inserts (kp) that are shaped as constant-thickness disks mounted on a common stem of kp material. In the second part the interstitial spaces once occupied by k0 material are bathed by forced convection. The internal and external geometric aspect ratios of the elemental volume and the first assembly are optimized numerically subject to volume constraints. Chapter 2 presents the constrained thermodynamic optimization of a cross-flow heat exchanger with ram air on the cold side, which is used in the environmental control systems of aircraft. Optimized geometric features such as the ratio of channel spacings and flow lengths are reported. It is found that the optimized features are relatively insensitive to changes in other physical parameters of the installation and relatively insensitive to the additional irreversibility due to discharging the ram-air stream into the atmosphere, emphasizing the robustness of the thermodynamic optimum. In chapter 3 the problem of maximizing exergy extraction from a hot stream by distributing streams over a heat transfer surface is studied. In the first part, the cold stream is compressed in an isothermal compressor, expanded in an adiabatic turbine, and discharged into the ambient. In the second part, the cold stream is compressed in an adiabatic compressor. Both designs are optimized with respect to the capacity-rate imbalance of the counter-flow and the pressure ratio maintained by the compressor. This study shows the tradeoff between simplicity and increased performance, and outlines the path for further conceptual work on the extraction of exergy from a hot stream that is being cooled gradually. The aim of chapter 4 was to optimize the performance of a boot-strap air cycle of an environmental control system (ECS) for aircraft. New in the present study was that the optimization refers to the performance of the entire ECS system, not to the performance of an individual component. Also, there were two heat exchangers, not one, and their relative positions and sizes were not specified in advance. This study showed that geometric optimization can be identified when the optimization procedure refers to the performance of the entire ECS system, not to the performance of an individual component. This optimized features were robust relative to some physical parameters. This robustness may be used to simplify future optimization of similar systems.

  13. Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same experimental conditions. CAP is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. It was shown that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. It was also shown that the expression of γH2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle together with significant decrease in EdU-signal of DNA-replicating cells. Thus, newly developed CAP technology was proven to be of a great interest for practical applications in the areas of wound healing and cancer treatment. The identification and explanation of the mechanisms by which CAP affects the cells was presented.

  14. What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review.

    PubMed

    Bleakley, Chris M; Davison, Gareth W

    2010-02-01

    Cold-water immersion (CWI) is a popular recovery intervention after exercise. The scientific rationale is not clear, and there are no clear guidelines for its use. The aim of this review was to study the physiological and biochemical effect of short periods of CWI. A computer-based literature search, citation tracking and related articles searches were undertaken. Primary research studies using healthy human participants, immersed in cold water (<15 degrees C), for 5 min durations or less were included. Data were extracted on body temperature, cardiovascular, respiratory and biochemical response. 16 studies were included. Sample size was restricted, and there was a large degree of study heterogeneity. CWI was associated with an increase in heart rate, blood pressure, respiratory minute volume and metabolism. Decreases in end tidal carbon dioxide partial pressure and a decrease in cerebral blood flow were also reported. There was evidence of increases in peripheral catecholamine concentration, oxidative stress and a possible increase in free-radical-species formation. The magnitude of these responses may be attenuated with acclimatisation. CWI induces significant physiological and biochemical changes to the body. Much of this evidence is derived from full body immersions using resting healthy participants. The physiological and biochemical rationale for using short periods of CWI in sports recovery still remains unclear.

  15. Cold Flow Testing of a Modified Subscale Model Exhaust System for a Space Based Laser

    DTIC Science & Technology

    2004-06-01

    Abstract The aim of this research was a continued study of gas-dynamic phenomena that occurred in a set of stacked nozzles as reported by Captains...join the vacuum and test sections. The goals of this research were two fold; first, modify the original scale-model of the stacked cylindrical...Defense Advanced Research Projects Agency (DARPA), in conjunction with the Airborne Laser Laboratory, have studied the use of an Airborne Laser (ABL

  16. Three Dimensional CFD Analysis of the GTX Combustor

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.

    2002-01-01

    The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. ScramJet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel massflow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.

  17. Vasomotor response of the human face: laser-Doppler measurements during mild hypo- and hyperthermia.

    PubMed

    Rasch, W; Cabanac, M

    1993-04-01

    The skin of the face is reputed not to vasoconstrict in response to cold stress because the face skin temperature remains steady during hypothermia. The purpose of the present work was to measure the vasomotor response of the human face to whole-body hypothermia, and to compare it with hyperthermia. Six male subjects were immersed in cold and in warm water to obtain the two conditions. Skin blood flow, evaporation, and skin temperature (Tsk) were recorded in three loci of the face, the forehead, the infra orbital area, and the cheek. Tympanic (Tty) and oesophageal (Toes) temperatures were also recorded during the different thermal states. Normothermic measurements served as control. Blood flow was recorded with a laser-Doppler flowmeter, evaporation measured with an evaporimeter. Face Tsk remained stable between normo-, hypo-, and hyperthermia. Facial blood flow, however, did not follow the same pattern. The facial blood flow remained at minimal vasoconstricted level when the subjects' condition was changed from normo- to hypothermia. When the condition changed from hypo- to hyperthermia a 3 to 9-fold increase in the blood flow was recorded. From these results it was concluded that a vasoconstriction seems to be the general vasomotor state in the face during normothermia.

  18. Reorganization of Ice Sheet Flow Patterns in Arctic Canada Prior to the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Refsnider, K. A.; Miller, G. H.

    2010-12-01

    The Foxe sector of the Laurentide Ice Sheet (LIS) experienced a complex and dynamic interplay between cold-based, non-erosive ice on uplands, fast-moving outlet glaciers that carved deep fiords through the Arctic Cordillera, and even more erosive ice streams that occupied larger straits and sounds, transporting ice from the Foxe Dome to calving margins in Baffin Bay and the Labrador Sea. The high topography of Baffin Island forms a broad barrier to the flow of ice to these calving margins and gradually has been dissected since the onset of Northern Hemisphere glaciation. However, evidence for the evolution of LIS erosion and basal thermal regime patterns during successive glaciations is poorly preserved in the geologic record. We use a new approach utilizing published till geochemistry and cosmogenic radionuclide (CRN) data to constrain the development of the fiorded coastline and the distribution of cold-based ice across central Baffin Island in both spatial and temporal domains over many glacial-interglacial cycles. The combination of till geochemistry data, which is used to characterize till weathering, and modeled CRN burial-exposure histories provides strong evidence for a shift in basal thermal regimes across the interior plateaux of Baffin Island between 1.9 and 1.2 Ma. While it may be coincidence that this time interval abuts the onset of the mid-Pleistocene transition (MPT), it has been hypothesized that changes in subglacial conditions were potentially an important mechanism in altering LIS dynamics across the MPT. Prior to this time, ice was likely wet-based and erosive across the majority of the Baffin Island interior, but by 1.9-1.2 Ma, some parts of the landscape became perpetually covered by cold-based ice during glaciations, a pattern that persisted through the last glacial cycle. The modern fiord system also must have developed by this time, and preferential channeling of ice flow into major fiords may have been sufficient to effectively shut off ice flow across the landscape between outlet glaciers. These results imply that there was a major shift in the basal thermal regime across the northeastern LIS, and the subsequent expansion of cold-based ice and the concentration of ice flow in fewer outlet systems across this region may help explain the cause of the MPT from 41- to 100-kyr glacial cycles.

  19. Improved parameterization of marine ice dynamics and flow instabilities for simulation of the Austfonna ice cap using a large-scale ice sheet model

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Greve, R.; Schuler, T.; Hagen, J. M.; Navarro, F.; Vasilenko, E.; Reijmer, C.

    2009-12-01

    The Austfonna ice cap covers an area of 8120 km2 and is by far the largest glacier on Svalbard. Almost 30% of the entire area is grounded below sea-level, while the figure is as large as 57% for the known surge-type basins in particular. Marine ice dynamics, as well as flow instabilities presumably control flow regime, form and evolution of Austfonna. These issues are our focus in numerical simulations of the ice cap. We employ the thermodynamic, large-scale ice sheet model SICOPOLIS (http://sicopolis.greveweb.net/) which is based on the shallow-ice approximation. We present improved parameterizations of (a) the marine extent and calving and (b) processes that may initiate flow instabilities such as switches from cold to temperate basal conditions, surface steepening and hence, increases in driving stress, enhanced sliding or deformation of unconsolidated marine sediments and diminishing ice thicknesses towards flotation thickness. Space-borne interferometric snapshots of Austfonna revealed a velocity structure of a slow moving polar ice cap (< 10m/a) interrupted by distinct fast flow units with velocities in excess of 100m/a. However, observations of flow variability are scarce. In spring 2008, we established a series of stakes along the centrelines of two fast-flowing units. Repeated DGPS and continuous GPS measurements of the stake positions give insight in the temporal flow variability of these units and provide constrains to the modeled surface velocity field. Austfonna’s thermal structure is described as polythermal. However, direct measurements of the temperature distribution is available only from one single borehole at the summit area. The vertical temperature profile shows that the bulk of the 567m thick ice column is cold, only underlain by a thin temperate basal layer of approximately 20m. To acquire a spatially extended picture of the thermal structure (and bed topography), we used low-frequency (20 MHz) GPR profiling across the ice cap and the particular flow units. The measurements indicate that the gross volume of Austfonna is cold. This observation is supported by model results which suggest that regional fast flow occurs despite the lack of considerable temperate-ice volumes. This in turn indicates that fast flow is accomplished exclusively by basal motion in regions where the glacier base is at pressure-melting conditions, and not by enhanced deformation of considerable volumes of temperate ice.

  20. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-02-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff <~ 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  1. NASA Ares I Launch Vehicle First Stage Roll Control System Cold Flow Development Test Program Overview

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.

    2010-01-01

    The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the pressurization system, including regulator blowdown and propellant ullage performance, measure system pressure drops for comparison to analysis of tubing and components, and validate system activation and re-activation procedures for the helium pressurant system. Secondary objectives included: validating system processes for loading, unloading, and purging, validating procedures and system response for multiple failure scenarios, including relief valve operation, and evaluating system performance for contingency scenarios. The test results of the cold flow development test program are essential in validating the performance and interaction of the Roll Control System and anchoring analysis tools and results to a Critical Design Review level of fidelity.

  2. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.

    1989-01-01

    A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.

  3. Influence of wall roughness and thermal coductivity on turbulent natural convection

    NASA Astrophysics Data System (ADS)

    Orlandi, Paolo; Pirozzoli, Sergio; Bernardini, Matteo

    2015-11-01

    We study turbulent natural convection in enclosures with conjugate heat transfer. The simplest way to increase the heat transfer in this flow is through rough surfaces. In numerical simulations often constant temperatures are assigned on the walls, but this is an unrealistic condition in laboratory experiments. Therefore, in the DNS, to be of help to experimentalists, it is necessary to solve the heat conduction in the solid walls together with the turbulent flow between the hot and the cold walls. Here the cold wall, 0 . 5 h tick is smooth, and the hot wall has 2D and 3D rough elements of thickness 0 . 2 h above a solid layer 0 . 3 h tick. The simulation is performed in a bi-periodic domain 4 h wide. The Rayleigh number varies from 106 to 108. Two values of the thermal conductivity, one corresponding to copper and the other ten times higher were assumed. It has been found that the Nusselt number behaves as Nu = αRaγ , with α increasing with the solid conductivity and depending of the roughness shape. 3D elements produce a heat transfer greater than 2D elements. An imprinting of the flow structures on the thermal field inside the walls is observed. The one-dimensional spectra at the center, one decade wide, agree with those of forced isotropic turbulence.

  4. Experimental evaluation of heat transfer efficiency of nanofluid in a double pipe heat exchanger and prediction of experimental results using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Maddah, Heydar; Ghasemi, Nahid

    2017-12-01

    In this study, heat transfer efficiency of water and iron oxide nanofluid in a double pipe heat exchanger equipped with a typical twisted tape is experimentally investigated and impacts of the concentration of nanofluid and twisted tape on the heat transfer efficiency are also studied. Experiments were conducted under the laminar and turbulent flow for Reynolds numbers in the range of 1000 to 6000 and the concentration of nanofluid was 0.01, 0.02 and 0.03 wt%. In order to model and predict the heat transfer efficiency, an artificial neural network was used. The temperature of the hot fluid (nanofluid), the temperature of the cold fluid (water), mass flow rate of hot fluid (nanofluid), mass flow rate of cold fluid (water), the concentration of nanofluid and twist ratio are input data in artificial neural network and heat transfer is output or target. Heat transfer efficiency in the presence of 0.03 wt% nanofluid increases by 30% while using both the 0.03 wt% nanofluid and twisted tape with twist ratio 2 increases the heat transfer efficiency by 60%. Implementation of various structures of neural network with different number of neurons in the middle layer showed that 1-10-6 arrangement with the correlation coefficient 0.99181 and normal root mean square error 0.001621 is suggested as a desirable arrangement. The above structure has been successful in predicting 72% to 97%of variation in heat transfer efficiency characteristics based on the independent variables changes. In total, comparing the predicted results in this study with other studies and also the statistical measures shows the efficiency of artificial neural network.

  5. Long-term temperature monitoring at the biological community site on the Nankai accretionary prism off Kii Peninsula

    NASA Astrophysics Data System (ADS)

    Goto, S.; Hamamoto, H.; Yamano, M.; Kinoshita, M.; Ashi, J.

    2008-12-01

    Nankai subduction zone off Kii Peninsula is one of the most intensively surveyed areas for studies on the seismogenic zone. Multichannel seismic reflection surveys carried out in this area revealed the existence of splay faults that branched from the subduction zone plate boundary [Park et al., 2002]. Along the splay faults, reversal of reflection polarity was observed, indicating elevated pore fluid pressure along the faults. Cold seepages with biological communities were discovered along a seafloor outcrop of one of the splay faults through submersible observations. Long-term temperature monitoring at a biological community site along the outcrop revealed high heat flow carried by upward fluid flow (>180 mW/m2) [Goto et al., 2003]. Toki et al. [2004] estimated upward fluid flow rates of 40-200 cm/yr from chloride distribution of interstitial water extracted from sediments in and around biological community sites along the outcrop. These observation results suggest upward fluid flow along the splay fault. In order to investigate hydrological nature of the splay fault, we conducted long-term temperature monitoring again in the same cold seepage site where Goto et al. [2003] carried out long-term temperature monitoring. In this presentation, we present results of the temperature monitoring and estimate heat flow carried by upward fluid flow from the temperature records. In this long-term temperature monitoring, we used stand-alone heat flow meter (SAHF), a probe-type sediment temperature recorder. Two SAHFs (SAHF-3 and SAHF-4) were used in this study. SAHF-4 was inserted into a bacterial mat, within several meters of which the previous long-term temperature monitoring was conducted. SAHF-3 was penetrated into ordinary sediment near the bacterial mat. The sub-bottom temperature records were obtained for 8 months. The subsurface temperatures oscillated reflecting bottom- water temperature variation (BTV). For sub-bottom temperatures measured with SAHF-3 (outside of the bacterial mat), we found that the effects of the BTV propagated into sediment by conduction only. By correcting the effect of the BTV, conductive heat flow estimated is higher than 100 mW/m2. Sub-bottom temperatures measured within bacterial mat (SAHF-4) except for the topmost sensor could be explained by a conduction model. The heat flow estimated based on the conduction model is similar to that measured with SAHF-3. The temperature of the topmost sensor is slightly higher than that expected from the conduction model. To explain the high temperature, upward fluid flow at a rate of 10-7 m/s order is needed. Heat flow carried by the upward fluid flow is higher than that estimated by Goto et al. [2003]. Heat flow value expected from the distribution of heat flow around this area is 70-80 mW/m2. The high heat flow values inside and outside the bacterial mat estimated in the present and previous studies may reflect upward fluid flow along the splay fault.

  6. Numerical Analysis of Base Flowfield for a Four-Engine Clustered Nozzle Configuration

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1995-01-01

    Excessive base heating has been a problem for many launch vehicles. For certain designs such as the direct dump of turbine exhaust inside and at the lip of the nozzle, the potential burning of the turbine exhaust in the base region can be of great concern. Accurate prediction of the base environment at altitudes is therefore very important during the vehicle design phase. Otherwise, undesirable consequences may occur. In this study, the turbulent base flowfield of a cold flow experimental investigation for a four-engine clustered nozzle was numerically benchmarked using a pressure-based computational fluid dynamics (CFD) method. This is a necessary step before the benchmarking of hot flow and combustion flow tests can be considered. Since the medium was unheated air, reasonable prediction of the base pressure distribution at high altitude was the main goal. Several physical phenomena pertaining to the multiengine clustered nozzle base flow physics were deduced from the analysis.

  7. Comparison of two computer programs by predicting turbulent mixing of helium in a ducted supersonic airstream

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.; Drummond, J. P.; Mcclinton, C. R.

    1978-01-01

    Two parabolic flow computer programs, SHIP (a finite-difference program) and COMOC (a finite-element program), are used for predicting three-dimensional turbulent reacting flow fields in supersonic combustors. The theoretical foundation of the two computer programs are described, and then the programs are applied to a three-dimensional turbulent mixing experiment. The cold (nonreacting) flow experiment was performed to study the mixing of helium jets with a supersonic airstream in a rectangular duct. Surveys of the flow field at an upstream were used as the initial data by programs; surveys at a downstream station provided comparison to assess program accuracy. Both computer programs predicted the experimental results and data trends reasonably well. However, the comparison between the computations from the two programs indicated that SHIP was more accurate in computation and more efficient in both computer storage and computing time than COMOC.

  8. Dam operations may improve aquatic habitat and offset negative effects of climate change.

    PubMed

    Benjankar, Rohan; Tonina, Daniele; McKean, James A; Sohrabi, Mohammad M; Chen, Quiwen; Vidergar, Dmitri

    2018-05-01

    Dam operation impacts on stream hydraulics and ecological processes are well documented, but their effect depends on geographical regions and varies spatially and temporally. Many studies have quantified their effects on aquatic ecosystem based mostly on flow hydraulics overlooking stream water temperature and climatic conditions. Here, we used an integrated modeling framework, an ecohydraulics virtual watershed, that links catchment hydrology, hydraulics, stream water temperature and aquatic habitat models to test the hypothesis that reservoir management may help to mitigate some impacts caused by climate change on downstream flows and temperature. To address this hypothesis we applied the model to analyze the impact of reservoir operation (regulated flows) on Bull Trout, a cold water obligate salmonid, habitat, against unregulated flows for dry, average, and wet climatic conditions in the South Fork Boise River (SFBR), Idaho, USA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 4; Cold Flow Analyses and CFD Analysis Capability Development

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An evaluation of the effect of model inlet air temperature drift during a test run was performed to aid in the decision on the need for and/or the schedule for including heaters in the SRMAFTE. The Sverdrup acceptance test data was used to determine the drift in air temperature during runs over the entire range of delivered flow rates and pressures. The effect of this temperature drift on the model Reynolds number was also calculated. It was concluded from this study that a 2% change in absolute temperature during a test run could be adequately accounted for by the data analysis program. A handout package of these results was prepared and presented to ED35 management.

  10. On the nature of low temperature internal friction peaks in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khonik, V.A.; Spivak, L.V.

    Low temperature (30 < T < 300 K) internal friction in a metallic glass Ni{sub 60}Nb{sub 40} subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs viamore » formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin.« less

  11. Complex regional pain syndrome

    MedlinePlus

    ... to properly control blood flow, feeling (sensation), and temperature to the affected area. This leads to problems ... lasts 1 to 3 months): Changes in skin temperature, switching between warm or cold Faster growth of ...

  12. Cold formability prediction by the modified maximum force criterion with a non-associated Hill48 model accounting for anisotropic hardening

    NASA Astrophysics Data System (ADS)

    Lian, J.; Ahn, D. C.; Chae, D. C.; Münstermann, S.; Bleck, W.

    2016-08-01

    Experimental and numerical investigations on the characterisation and prediction of cold formability of a ferritic steel sheet are performed in this study. Tensile tests and Nakajima tests were performed for the plasticity characterisation and the forming limit diagram determination. In the numerical prediction, the modified maximum force criterion is selected as the localisation criterion. For the plasticity model, a non-associated formulation of the Hill48 model is employed. With the non-associated flow rule, the model can result in a similar predictive capability of stress and r-value directionality to the advanced non-quadratic associated models. To accurately characterise the anisotropy evolution during hardening, the anisotropic hardening is also calibrated and implemented into the model for the prediction of the formability.

  13. J-2X Powerpack tests begin

    NASA Image and Video Library

    2007-12-18

    COLD FLOW - Liquid oxygen runs through the piping on Stennis Space Center's A-1 Test Stand on Dec. 18 to test the ability of the J-2X engine's Powerpack 1A to withstand the temperature change and pressure. Just visible above and to the right of the test article's nozzle is a frosty pipe, indicating the supercold fuel is flowing as it should.

  14. Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades.

    Treesearch

    A. Jefferson; G. Grant; T. Rose

    2006-01-01

    Spring systems on the west slope of the Oregon High Cascades exhibit complex relationships among modern topography, lava flow geometries, and groundwater flow patterns. Seven cold springs were continuously monitored for discharge and temperature in the 2004 water year, and they were periodically sampled for ?18O, ?D, tritium, and dissolved noble gases. Anomalously high...

  15. Investigation of Performance Envelope for Phenolic Impregnated Carbon Ablator (PICA)

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Prabhu, Dinesh; Milos, Frank S.; Stackpoole, Mairead

    2016-01-01

    The present work provides the results of a short exploratory study on the performance of Phenolic Impregnated Carbon Ablator, or PICA, at high heat flux and pressure in an arcjet facility at NASA Ames Research Center. The primary objective of the study was to explore the thermal response of PICA at cold-wall heat fluxes well in excess of 1500 W/cm (exp 2). Based on the results of a series of flow simulations, multiple PICA samples were tested at an estimated cold wall heat flux and stagnation pressure of 1800 W/cm (exp 2) and 130 kPa, respectively. All samples survived the test, and no failure was observed either during or after the exposure. The results indicate that PICA has a potential to perform well at environments with significantly higher heat flux and pressure than it has currently been flown.

  16. Externally blown flap noise research

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.

    1974-01-01

    The Lewis Research Center cold-flow model externally blown flap (EBF) noise research test program is summarized. Both engine under-the-wing and over-the-wing EBF wing section configurations were studied. Ten large scale and nineteen small scale EBF models were tested. A limited number of forward airspeed effect and flap noise suppression tests were also run. The key results and conclusions drawn from the flap noise tests are summarized and discussed.

  17. High performance constructed wetlands for cold climates.

    PubMed

    Jenssen, Petter D; Maehlum, Trend; Krogstad, Tore; Vråle, Lasse

    2005-01-01

    In 1991, the first subsurface flow constructed wetland for treatment of domestic wastewater was built in Norway. Today, this method is rapidly becoming a popular method for wastewater treatment in rural Norway. This is due to excellent performance even during winter and low maintenance. The systems can be constructed regardless of site conditions. The Norwegian concept for small constructed wetlands is based on the use of a septic tank followed by an aerobic vertical down-flow biofilter succeeded by a subsurface horizontal-flow constructed wetland. The aerobic biofilter, prior to the subsurface flow stage, is essential to remove BOD and achieve nitrification in a climate where the plants are dormant during the cold season. When designed according to present guidelines a consistent P-removal of > 90% can be expected for 15 years using natural iron or calcium rich sand or a new manufactured lightweight aggregate with P-sorption capacities, which exceeds most natural media. When the media is saturated with P it can be used as soil conditioner and P-fertilizer. Nitrogen removal in the range of 40-60% is achieved. Removal of indicator bacteria is high and < 1000 thermotolerant coliforms/100 ml is normally achieved.

  18. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry.

    PubMed

    Leal, L O; Elsholz, O; Forteza, R; Cerdà, V

    2006-07-28

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L(-1). The detection limit (3sigma(b)/S) achieved is 5 ng L(-1). The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L(-1) Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples.

  19. AGN Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.

    2012-01-01

    We present calculations of AGN winds at approximate parsec scales, along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L=0.05 - 0.6L(sub Edd) the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72? -75? regardless of the luminosity. At L 0.1 the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) greater than or approximately 70? and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR supported flow. At luminosities less than or equal to 0.1L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion.

  20. The role of horizontal thermal advection in regulating wintertime mean and extreme temperatures over the central United States during the past and future

    NASA Astrophysics Data System (ADS)

    Wang, F.; Vavrus, S. J.

    2017-12-01

    Horizontal temperature advection plays an especially prominent role in affecting winter climate over continental interiors, where both climatological conditions and extreme weather are strongly regulated by transport of remote air masses. Central North America is one such region, and it experienced a major cold-air outbreak (CAO) a few years ago that some have related to amplified Arctic warming. Despite the known importance of dynamics in shaping the winter climate of this sector and the potential for climate change to modify heat transport, limited attention has been paid to the regional impact of thermal advection. Here, we use a reanalysis product and output from the Community Earth System Model's Large Ensemble to quantify the roles of zonal and meridional temperature advection over the central U. S. during winter, both in the late 20th and 21st centuries. We frame our findings as a "tug of war" between opposing influences of the two advection components and between these dynamical forcings vs. thermodynamic changes under greenhouse warming. For example, Arctic amplification leads to much warmer polar air masses, causing a moderation of cold-air advection into the central U. S., yet the model also simulates a wavier mean circulation and stronger northerly flow during CAOs, favoring lower regional temperatures. We also compare the predominant warming effect of zonal advection and overall cooling effect of meridional temperature advection as an additional tug of war. During both historical and future periods, zonal temperature advection is stronger than meridional advection over the Central U. S. The model simulates a future weakening of both zonal and meridional temperature advection, such that westerly flow provides less warming and northerly flow less cooling. On the most extreme warm days in the past and future, both zonal and meridional temperature advection have positive (warming) contributions. On the most extreme cold days, meridional cold air advection is more important than zonal warm air advection. CAOs in the future feature stronger northerly flow but less extreme temperatures (even relative to the warmer climate), exemplifying the complex competition between thermodynamic and dynamic influences.

  1. Turbofan forced mixer-nozzle internal flowfield. Volume 3: A computer code for 3-D mixing in axisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.

    1982-01-01

    A finite difference method is developed for making detailed predictions of three dimensional subsonic turbulent flow in turbofan lobe mixers. The governing equations are solved by a forward-marching solution procedure which corrects an inviscid potential flow solution for viscous and thermal effects, secondary flows, total pressure distortion and losses, internal flow blockage and pressure drop. Test calculations for a turbulent coaxial jet flow verify that the turbulence model performs satisfactorily for this relatively simple flow. Lobe mixer flows are presented for two geometries typical of current mixer design. These calculations included both hot and cold flow conditions, and both matched and mismatched Mach number and total pressure in the fan and turbine streams.

  2. An Evaluation of GuttaFlow2 in Filling Artificial Internal Resorption Cavities: An in vitro Study.

    PubMed

    Mohammad, Yara; Alafif, Hisham; Hajeer, Mohammad; Yassin, Oula

    2016-06-01

    Obturation of root canal with internal resorption represents a major challenge in Endodontics. In spite of that, usual obturation techniques are often employed without considering the best technique to solve this problem. The goal of this study was to investigate the ability of GuttaFlow2 in filling artificial internal resorption cavities. The study sample included 36 human upper central incisors that were prepared using Protaper system (F4). Internal resorption cavities were prepared by cutting each tooth at 7 mm from the apex and preparing hemispherical cavities on both the sides and then re-attaching them. The sample was randomly separated into three groups (n = 12 in each group). In the first group, thermal injection technique (Obtura II) was employed and served as the control group. In the second group, injection of cold free-flow obturation technique with a master cone (GF2-C) was employed, whereas in the third group injection of cold free-flow obturation without a master cone (GF2) was followed. The teeth were re-cut at the same level as before and examined under a stereomicroscope. Subsequently, the captured images were transferred to AutoCAD program to measure the percentage of total filling "TF," gutta-percha "G," sealer "S," and voids "V" out of the total surface of the cross sections. All materials showed high filling properties in terms of "total filling," ranging from 99.17% (for Obtura II) to 99.72% (for GF2-C). Regarding gutta-percha percentages of filling, they ranged from 83.15 to 83.93%, whereas those for the sealer ranged from 5.71 to 15.24%. GuttaFlow2 group with a master cone appeared to give the best results despite the insignificant differences among the three groups. The GuttaFlow2 with a master cone technique seemed to be a promising filling material and gave results similar to those observed with Obtura II. It is recommended for use to obturate internal resorption cavities in clinical practice due to its good adaptability to root canal walls, ease of handling, and application. Internal resorption defects can be successfully filled with GuttaFlow2 material when supplemented with a master cone, and the results are comparable with those obtained with the Obtura II technique.

  3. Alteration of microcirculation is a hallmark of very early systemic sclerosis patients: a laser speckle contrast analysis.

    PubMed

    Della Rossa, Alessandra; Cazzato, Massimiliano; d'Ascanio, Anna; Tavoni, Antonio; Bencivelli, Walter; Pepe, Pasquale; Mosca, Marta; Baldini, Chiara; Rossi, Marco; Bombardieri, Stefano

    2013-01-01

    To investigate blood flow and microvascular reactivity by laser speckle perfusion imager (Perimed, Jarfalla) in consecutive patients affected by Raynaud's phenomenon at baseline and following dynamic stimulations. Skin blood flow in the dorsum of the hand was measured at baseline and after cold test and post-occlusive hyperemia test in 56 consecutive subjects affected by Raynaud's phenomenon (RP), 20 primary (PRP) and 36 secondary to systemic sclerosis (SSc). Twenty healthy subjects (HS) were studied as controls. After cold test, SSc had a significant reduction of blood flow (-58%) as compared to HS (-19%) (p=0.01). Recovery time was significantly higher in SSc (58 minutes) as compared to HS (18 minutes) and PRP (19 minutes) (p=0.006 and 0.0016, respectively). Peak flow after ischaemic test was significantly reduced in SSc (+237%) as compared to PRP (+485%) (p=0.0068). Post-ischaemic hyperemic area under the curve (AUC) was blunted in SSc (79U/sec) compared to PRP (167 U/sec) (p=0.0126). Proximal distal gradient was noticed in 74% of HS, 45% of PRP and 36% of SSc (p=0.01). Homogeneous pattern of flux distribution was significantly different between HS (95%), PRP (80%), and SSc (16%) (p<0.0001). Among SSc patients, a significant difference in ischaemic challenge was shown between patients with early-SSc versus patients with definite-SSc. Our preliminary results indicate a clearcut alteration of the dynamic of microcirculation in SSc-RP as compared to PRP and HS. Among SSc patients, early-SSc is a separate entity as compared to established disease.

  4. Water quality of stormwater generated from an airport in a cold climate, function of an infiltration pond, and sampling strategy with limited resources.

    PubMed

    Jia, Yu; Ehlert, Ludwig; Wahlskog, Cecilia; Lundberg, Angela; Maurice, Christian

    2017-12-05

    Monitoring pollutants in stormwater discharge in cold climates is challenging. An environmental survey was performed by sampling the stormwater from Luleå Airport, Northern Sweden, during the period 2010-2013, when urea was used as a main component of aircraft deicing/anti-icing fluids (ADAFs). The stormwater collected from the runway was led through an oil trap to an infiltration pond to store excess water during precipitation periods and enhance infiltration and water treatment. Due to insufficient capacity, an emergency spillway was established and equipped with a flow meter and an automatic sampler. This study proposes a program for effective monitoring of pollutant discharge with a minimum number of sampling occasions when use of automatic samplers is not possible. The results showed that 90% of nitrogen discharge occurs during late autumn before the water pipes freeze and during snow melting, regardless of the precipitation during the remaining months when the pollutant discharge was negligible. The concentrations of other constituents in the discharge were generally low compared to guideline values. The best data quality was obtained using flow controlled sampling. Intensive time-controlled sampling during late autumn (few weeks) and snow melting (2 weeks) would be sufficient for necessary information. The flow meters installed at the rectangular notch appeared to be difficult to calibrate and gave contradictory results. Overall, the spillway was dry, as water infiltrated into the pond, and stagnant water close to the edge might be registered as flow. Water level monitoring revealed that the infiltration capacity gradually decreased with time.

  5. Predicting the Effects of Powder Feeding Rates on Particle Impact Conditions and Cold Spray Deposited Coatings

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.

    2017-10-01

    As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.

  6. Effect of Mach number, valve angle and length to diameter ratio on thermal performance in flow of air through Ranque Hilsch vortex tube

    NASA Astrophysics Data System (ADS)

    Devade, Kiran D.; Pise, Ashok T.

    2017-01-01

    Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.

  7. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    DOEpatents

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  8. The Thaw:How Mexico and The United States Thawed Their Cold Peace And What Comes Next

    DTIC Science & Technology

    2014-04-01

    maintain a Cold Peace--so-called because it constituted a sustained state of political and military distancing between two powers.2 Over time, though...border in an effort to stem the flow of arms, impose order, and enforce neutrality laws .”14 Yet soon enough, the new administration of U.S. President...engagement with the United States, the implementation of the North American Free Trade Agreement ( NAFTA ) in 1994 was a watershed event, marking a decisive

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagier, B.; Rousset, B.; Hoa, C.

    Superconducting magnets used in tokamaks undergo periodic heat load caused by cycling plasma operations inducing AC losses, neutrons fluxes and eddy currents in magnet structures. In the cryogenic system of JT60-SA tokamak, the Auxiliary Cold Box (ACB) distributes helium from the refrigerator to the cryogenic users and in particular to the superconducting magnets. ACB comprises a saturated helium bath with immersed heat exchangers, extracting heat from independent cooling loops. The supercritical helium flow in each cooling loop is driven by a cold circulator. In order to safely operate the refrigerator during plasma pulses, the interface between the ACB and themore » refrigerator shall be as stable as possible, with well-balanced bath inlet and outlet mass flows during cycling operation. The solution presented in this paper relies on a combination of regulations to smooth pulsed heat loads and to keep a constant refrigeration power during all the cycle. Two smoothing strategies are presented, both regulating the outlet mass flow of the bath: the first one using the bath as a thermal buffer and the second one storing energy in the loop by varying the cold circulator speed. The bath outlet mass flow is also controlled by an immersed resistive heater which enables a constant evaporation rate in the bath when power coming from the loops is decreasing. The refrigeration power is controlled so that the compensating power remains within an acceptable margin. Experimental validation is achieved using the HELIOS facility. This facility running at CEA Grenoble since 2010 is a scaled down model of the ACB bath and Central Solenoid magnet cooling loop of the JT60-SA tokamak. Test results show performances and robustness of the regulations.« less

  10. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin

    1989-01-01

    The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.

  11. Heat transfer, velocity-temperature correlation, and turbulent shear stress from Navier-Stokes computations of shock wave/turbulent boundary layer interaction flows

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Hingst, W. R.; Porro, A. R.

    1991-01-01

    The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.

  12. Shock wave interactions in hypervelocity flow

    NASA Astrophysics Data System (ADS)

    Sanderson, S. R.; Sturtevant, B.

    1994-08-01

    The impingement of shock waves on blunt bodies in steady supersonic flow is known to cause extremely high local heat transfer rates and surface pressures. Although these problems have been studied in cold hypersonic flow, the effects of dissociative relaxation processes are unknown. In this paper we report a model aimed at determining the boundaries of the possible interaction regimes for an ideal dissociating gas. Local analysis about shock wave intersection points in the pressure-flow deflection angle plane with continuation of singular solutions is the fundamental tool employed. Further, we discuss an experimental investigation of the nominally two-dimensional mean flow that results from the impingement of an oblique shock wave on the leading edge of a cylinder. The effects of variations in shock impingement geometry were visualized using differential interferometry. Generally, real gas effects are seen to increase the range of shock impingement points for which enhanced heating occurs. They also reduce the type 4 interaction supersonic jet width and influence the type 2-3 transition process.

  13. Flow-synchronous field motion refrigeration

    DOEpatents

    Hassen, Charles N.

    2017-08-22

    An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.

  14. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, Anstein

    1994-01-01

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

  15. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  16. Resource Prospector Propulsion System Cold Flow Testing

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Holt, Kim; Addona, Brad; Trinh, Huu

    2015-01-01

    Resource Prospector (RP) is a NASA mission being led by NASA Ames Research Center with current plans to deliver a scientific payload package aboard a rover to the lunar surface. As part of an early risk reduction activity, Marshall Space Flight Center (MSFC) and Johnson Space Flight Center (JSC) have jointly developed a government-version concept of a lunar lander for the mission. The spacecraft consists of two parts, the lander and the rover which carries the scientific instruments. The lander holds the rover during launch, cruise, and landing on the surface. Following terminal descent and landing the lander portion of the spacecraft become dormant after the rover embarks on the science mission. The lander will be equipped with a propulsion system for lunar descent and landing, as well as trajectory correction and attitude control maneuvers during transit to the moon. Hypergolic propellants monomethyl hydrazine and nitrogen tetroxide will be used to fuel sixteen 70-lbf descent thrusters and twelve 5-lbf attitude control thrusters. A total of four metal-diaphragm tanks, two per propellant, will be used along with a high-pressure composite-overwrapped pressure vessel for the helium pressurant gas. Many of the major propulsion system components are heritage missile hardware obtained by NASA from the Air Force. In parallel with the flight system design activities, a simulated propulsion system based on flight drawings was built for conducting a series of water flow tests to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes such as system priming, waterhammer, and crucial mission duty cycles. The primary objective of the cold flow testing was to simulate the RP propulsion system fluid flow operation through water flow testing and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. All design and build efforts, including the analytical modeling, have been performed. The cold flow testing of the propulsion system was set up and conducted at a NASA MSFC test facility. All testing was completed in the summer of 2014, and this paper documents the results of that testing and the associated fluid system modeling efforts.

  17. An Investigation Into: I) Active Flow Control for Cold-Start Performance Enhancement of a Pump-Assisted, Capillary-Driven, Two-Phase Cooling Loop II) Surface Tension of n-Pentanol + Water, a Self-Rewetting Working Fluid, From 25 °C to 85 °C

    NASA Astrophysics Data System (ADS)

    Bejarano, Roberto Villa

    Cold-start performance enhancement of a pump-assisted, capillary-driven, two-phase cooling loop was attained using proportional integral and fuzzy logic controls to manage the boiling condition inside the evaporator. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting fluid, was also investigated for enhancing heat transfer performance of capillary driven (passive) thermal devices was also studied. A proportional-integral control algorithm was used to regulate the boiling condition (from pool boiling to thin-film boiling) and backpressure in the evaporator during cold-start and low heat input conditions. Active flow control improved the thermal resistance at low heat inputs by 50% compared to the baseline (constant flow rate) case, while realizing a total pumping power savings of 56%. Temperature overshoot at start-up was mitigated combining fuzzy-logic with a proportional-integral controller. A constant evaporator surface temperature of 60°C with a variation of +/-8°C during start-up was attained with evaporator thermal resistances as low as 0.10 cm2--K/W. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting working fluid, as a function of concentration and temperature were also investigated. Self-rewetting working fluids are promising in two-phase heat transfer applications because they have the ability to passively drive additional working fluid towards the heated surface; thereby increasing the dryout limitations of the thermal device. Very little data is available in literature regarding the surface tension of these fluids due to the complexity involved in fluid handling, heating, and experimentation. Careful experiments were performed to investigate the surface tension of n-Pentanol + water. The concentration and temperature range investigated were from 0.25%wt. to1.8%wt and 25°C to 85°C, respectively.

  18. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Mamoru

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less

  19. Heated, humidified air for the common cold.

    PubMed

    Singh, M

    2001-01-01

    Heated, humidified air is used by common cold sufferers since the invention of the steam kettle. There is scientific literature available investigating this mode of therapy using a rhinotherm. The present reviews addresses to the use of hot, humid air in common cold. To assess the effects of inhaling heated water vapour with the help of a rhinotherm (an equipment designed to deliver heated water vapour to a person's nasal cavity), in the treatment of the common cold by comparing a. symptoms b. viral shedding c. nasal resistance after a natural or experimentally induced common cold. We searched MEDLINE with MeSH headings: common cold, rhinopharyngitis, inhalation, steam, heated vapour, rhinothermy, till July 1999. EMBASE, Current Contents, review articles, cross references were also searched. Attempts were also made to contact the manufacturers for any unpublished data. Randomized trials using heated water vapour in a standardized way in patients with the common cold or volunteers with experimental induction of rhinovirus infection were included in the review. All the articles retrieved were initially subjected to a review for inclusion / exclusion criteria. Review articles, editorials, abstracts with inadequate outcome description were excluded. Studies selected for inclusion were subjected to a methodological assessment. The results of a systematic review of six trials with 319 participants, support the use of warm vapour inhalations in the common cold in terms of relief of symptoms (Odds Ratio with 95 % CI 0.31, 0.16-0.60, Relative risk 0.56, 0.4-0.79). Results on symptom score indices were equivocal. None of the studies demonstrated a worsening of clinical symptom scores. One study demonstrated increased nasal resistance one week after steam inhalation in contrast to an earlier study which showed improvement in the nasal resistance. There was no evidence of decreased viral shedding measured by virus isolation in the nasal secretions or measurement of viral titres in nasal washings among treatment group. The rhinovirus titres in the nasal washings from the treatment group were the same as those of the placebo group on day one prior to the treatment and on all four days after the treatment. The area under curve was also similar in the placebo and treatment groups for titres of virus in the nasal washings as were the average viral titres across five days of follow up, the maximum values after treatment, and viral shedding velocity i.e. amount of virus shed per day. Minor side effects due to thermal stress were reported in all the studies. Three trials demonstrated beneficial effects on the symptoms of the common cold. One study from Israel showed a decrease in nasal resistance measured by peak nasal expiratory and inspiratory flow rate. Studies done in North America failed to show any objective improvement in outcome measures with the study intervention. A multi-centre double blind randomised controlled trial testing this therapy with uniform outcome measures is recommended.

  20. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yortsos, Yanis C.

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  1. Design and performance of an 0.8 hub-tip ratio axial flow pump rotor with a blade tip diffusion factor of 0.55

    NASA Technical Reports Server (NTRS)

    Urasek, D. C.

    1972-01-01

    A 22.9-centimeter diameter axial flow rotor with a 0.8 hub-tip radius ratio, a design flow coefficient of 0.466, and a blade tip design diffusion factor of 0.55 was tested in cold water under both cavitating and noncavitating conditions. Radial surveys of the flow conditions at the rotor inlet and outlet were made. At design flow, the rotor produced an overall headrise coefficient of 0.360 with an overall efficiency of 95.0 percent. The efficiency remained greater than 88 percent over the entire flow coefficient range which varied from 0.350 to 0.615.

  2. 17β-Estradiol protects the liver against cold ischemia/reperfusion injury through the Akt kinase pathway.

    PubMed

    Yang, Xiaohua; Qin, Lei; Liu, Jianxia; Tian, Liping; Qian, Haixin

    2012-12-01

    Hepatic ischemia-reperfusion (IR) injury occurs during liver resection and transplantation. Recent studies have shown that 17β-estradiol (E2) can protect the heart and liver against warm IR. The present study focused on the cytoprotective effects of E2 on cold IR injury to the liver. Sprague-Dawley male rats were randomly divided into three groups: sham, IR, and IR plus E2. The model of rat orthotopic liver transplantation was used. The rats in the IR plus E2 group were intraperitoneally injected with E2 (100 μg/kg/d) for 7 d before surgery. The sham and IR group received the same quantity of saline. The donor livers were then orthotopically transplanted into rats after cold ischemia preservation for 4 h at 4°C lactated Ringer's solution. After 6 h reperfusion, liver function, bile flow volume, hepatocyte apoptosis, and activation of Akt, glycogen synthase kinase-3β, and Bcl-2-associated death promoter were assessed. The survival rate of the rats was also investigated. The administration of E2 significantly prolonged the survival of liver grafts by improving liver function and decreasing hepatocyte apoptosis. Rats undergoing E2 demonstrated a greater level activation of Akt in the liver compared with the IR group. In addition, E2 also inhibited the activities of glycogen synthase kinase-3β, Bcl-2-associated death promoter, and caspase-3-induced by IR injury. E2 pretreatment attenuated the hepatocellular damage caused by hepatic cold IR injury through the Akt pathway. Estrogen therapy might be important in clinical settings associated with cold IR injury during liver transplantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Extraction of spatial-temporal rules from mesoscale eddies in the South China Sea Based on rough set theory

    NASA Astrophysics Data System (ADS)

    Du, Y.; Fan, X.; He, Z.; Su, F.; Zhou, C.; Mao, H.; Wang, D.

    2011-06-01

    In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the South China Sea (SCS). Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. Spatial-temporal rules of typical states in the SCS are extracted as three decision attributes, which then are confirmed by the previous works. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-eddy states, and therefore provides a powerful approach to forecasts in the future. Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.

  4. Large scale structure in universes dominated by cold dark matter

    NASA Technical Reports Server (NTRS)

    Bond, J. Richard

    1986-01-01

    The theory of Gaussian random density field peaks is applied to a numerical study of the large-scale structure developing from adiabatic fluctuations in models of biased galaxy formation in universes with Omega = 1, h = 0.5 dominated by cold dark matter (CDM). The angular anisotropy of the cross-correlation function demonstrates that the far-field regions of cluster-scale peaks are asymmetric, as recent observations indicate. These regions will generate pancakes or filaments upon collapse. One-dimensional singularities in the large-scale bulk flow should arise in these CDM models, appearing as pancakes in position space. They are too rare to explain the CfA bubble walls, but pancakes that are just turning around now are sufficiently abundant and would appear to be thin walls normal to the line of sight in redshift space. Large scale streaming velocities are significantly smaller than recent observations indicate. To explain the reported 700 km/s coherent motions, mass must be significantly more clustered than galaxies with a biasing factor of less than 0.4 and a nonlinear redshift at cluster scales greater than one for both massive neutrino and cold models.

  5. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs

    NASA Astrophysics Data System (ADS)

    Henry, L.-A.; Moreno Navas, J.; Roberts, J. M.

    2013-04-01

    We investigated how interactions between hydrography, topography and species ecology influence the assembly of species and functional traits across multiple spatial scales of a cold-water coral reef seascape. In a novel approach for these ecosystems, we used a spatially resolved complex three-dimensional flow model of hydrography to help explain assembly patterns. Forward-selection of distance-based Moran's eigenvector mapping (dbMEM) variables identified two submodels of spatial scales at which communities change: broad-scale (across reef) and fine-scale (within reef). Variance partitioning identified bathymetric and hydrographic gradients important in creating broad-scale assembly of species and traits. In contrast, fine-scale assembly was related more to processes that created spatially autocorrelated patches of fauna, such as philopatric recruitment in sessile fauna, and social interactions and food supply in scavenging detritivores and mobile predators. Our study shows how habitat modification of reef connectivity and hydrography by bottom fishing and renewable energy installations could alter the structure and function of an entire cold-water coral reef seascape.

  6. Influence of cold-water immersion on limb and cutaneous blood flow after exercise.

    PubMed

    Mawhinney, Chris; Jones, Helen; Joo, Chang Hwa; Low, David A; Green, Daniel J; Gregson, Warren

    2013-12-01

    This study aimed to determine the influence of cold (8°C) and cool (22°C) water immersion on femoral artery and cutaneous blood flow after exercise. Twelve men completed a continuous cycle exercise protocol at 70% peak oxygen uptake until a core temperature of 38°C was attained. Subjects were then immersed semireclined into 8°C or 22°C water to the iliac crest for 10 min or rested. Rectal and thigh skin temperature, deep and superficial muscle temperature, thigh and calf skin blood flow (laser Doppler flowmetry), and superficial femoral artery blood flow (duplex ultrasound) were measured before and up to 30 min after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature were similar (0.6°C-0.7°C) in all three trials (P = 0.38). The mean ± SD thigh skin temperature during recovery was 25.4°C ± 3.8°C in the 8°C trial, which was lower than the 28.2°C ± 1.4°C and 33.78°C ± 1.0°C in the 22°C and control trials, respectively (P < 0.001). Recovery muscle temperature was also lowest in the 8°C trial (P < 0.01). Femoral artery conductance was similar after immersion in both cooling conditions and was lower (∼55%) compared with the control condition 30 min after immersion (P < 0.01). Similarly, there was greater thigh (P < 0.01) and calf (P < 0.05) cutaneous vasoconstriction during and after immersion in both cooling conditions relative to the control condition. Colder water temperatures may be more effective in the treatment of exercise-induced muscle damage and injury rehabilitation by virtue of greater reductions in muscle temperature and not muscle blood flow.

  7. Differences in finger skin contact cooling response between an arterial occlusion and a vasodilated condition.

    PubMed

    Jay, Ollie; Havenith, George

    2006-05-01

    To assess the presence and magnitude of the effect of skin blood flow on finger skin cooling on contact with cold objects against the background of circulatory disorder risks in occupational exposures, this study investigates the effect of zero vs. close-to-maximal hand blood flow on short-term (< or =180 s) skin contact cooling response at a contact pressure that allows capillary perfusion of the distal pulp of the fingertip. Six male volunteers touched a block of aluminium with a finger contact force of 0.5 N at a temperature of -2 degrees C under a vasodilated and an occluded condition. Before both conditions, participants were required to exercise in a hot room for > or = 30 min for cutaneous vasodilation to occur (increase in rectal temperature of 1 degrees C). Under the vasodilated condition, forearm blood flow rate rose as high as 16.8 ml.100 ml(-1).min(-1). Under the occluded condition, the arm was exsanguinated, after which a blood pressure cuff was secured on the wrist inducing arterial occlusion. Contact temperature of the finger pad during the subsequent cold contact exposure was measured. No significant difference was found between the starting skin temperatures for the two blood flow conditions, but a distinct difference in shape of the contact cooling curve was apparent between the two blood flow conditions, with Newtonian cooling observed under the occluded condition, whereas a rewarming of the finger skin toward the end of the exposure occurred for the vasodilated condition. Blood flow was found to significantly increase contact temperature from 40 s onward (P < 0.01). It is concluded that, at a finger contact force compatible with capillary perfusion of the finger pad ( approximately 0.5 N), circulating blood provides a heat input source that significantly affects finger skin contact cooling during a vasodilated state.

  8. Theoretical and Observational Studies of the Central Engines of AGN

    NASA Technical Reports Server (NTRS)

    Sivron, Ran

    1995-01-01

    In Active Galactic Nuclei (AGN) the luminosity is so intense that the effect of radiation pressure on a particle may exceed the gravitational attraction. It was shown that when such luminosities are reached, relatively cold (not completely ionized) thermal matter clouds may form in the central engines of AGN, where most of the luminosity originates. We show that the spectrum of emission from cold clouds embedded in hot relativistic matter is similar to the observed spectrum. We also show that within the hot relativistic matter, cold matter moves faster than the speed of sound or the Alfven speed, and shocks form. The shocks provide a mechanism by which a localized perturbation can propagate throughout the central engine. The shocked matter can emit the observed luminosity, and can explain the flux and spectral variability. It may also provide an efficient mechanism for the outward transfer of angular momentum and provide the outward flow of winds. With observations from X-ray satellites, emission features from the cold and hot matter may be revealed. Our analysis of X-ray data from the Seyfert 1 galaxy MCG - 6-30-15 over five years using detectors on the Ginga and Rosat satellites, revealed some interesting variable features. A source with hot matter emits non-thermal radiation which is Compton reflected from cold matter and then absorbed by warm (partially ionized) absorbing matter in the first model, which can be fit to the data if both the cold and warm absorbers are near the central engine. An alternative model in which the emission from the hot matter is partially covered by very warm matter (in which all elements except Iron are mostly ionized) is also successful. In this model the cold and warm matter may be at distances of up to 100 times the size of the central engine, well within the region where broad optical lines are produced. The flux variability is more naturally explained by the second model. Our results support the existence of cold matter in, or near, the central engine of MCG -6-30-15. Cold matter in the central engine, and evidence of the effects of shocks, is probably forthcoming with future X-ray satellites.

  9. For Anniversary of Orbiter Launch: Seasonal Flows in Mars Valles Marineris

    NASA Image and Video Library

    2015-08-10

    Among the many discoveries by NASA's Mars Reconnaissance Orbiter since the mission was launched on Aug. 12, 2005, are seasonal flows on some steep slopes. These flows have a set of characteristics consistent with shallow seeps of salty water. This July 21, 2015, image from the orbiter's High Resolution Imaging Science Experiment (HiRISE) camera shows examples of these flows on a slope within Coprates Chasma, which is part of the grandest canyon system on Mars, Valles Marineris. The image covers an area of ground one-third of a mile (536 meters) wide. These flows are called recurring slope lineae because they fade and disappear during cold seasons and reappear in warm seasons, repeating this pattern every Martian year. The flows seen in this image are on a north-facing slope, so they are active in northern-hemisphere spring. The flows emanate from the relatively bright bedrock and flow onto sandy fans, where they are remarkably straight, following linear channels. Valles Marineris contains more of these flows than everywhere else on Mars combined. At any season, some are active, though on different slope aspects at different seasons. Future human explorers (and settlers?) will need water to drink, grow food, produce oxygen to breath, and make rocket fuel. Bringing all of that water from Earth would be extremely expensive, so using water on Mars is essential. Although there is plenty of water ice at high latitudes, surviving the cold winters would be difficult. An equatorial source of water would be preferable, so Valles Marineris may be the best destination. However, the chemistry of this water must be understood before betting any lives on it. http://photojournal.jpl.nasa.gov/catalog/PIA19805

  10. Rewarming index of the lower leg assessed by infrared thermography in adolescents with type 1 diabetes mellitus.

    PubMed

    Zotter, Heinz; Kerbl, Reinhold; Gallistl, Siegfried; Nitsche, Hilde; Borkenstein, Martin

    2003-12-01

    The aim of this study was to determine whether infrared thermography before and after challenge of the lower leg in cold water may be a useful tool to detect abnormalities in skin blood flow in adolescent asymptomatic patients with type 1 diabetes mellitus (DM1) and to assess the optimal setting of skin temperature measurements. Twenty-five adolescents (10 female, 15 male, mean age 21.2 +/- 6.2 years, body mass index [BMI] 23.0 +/- 2.1 kg/m2) with a duration of DMI of 13.8 +/- 5.4 years and mean HbA1c levels 8.5 +/- 1.3% were compared to age- and sex-matched controls (BMI 22.9 +/- 2.2 kg/m2). Seven defined sites of the lower leg were assessed by infrared thermography before and for 10 min after exposure of the leg to 14 degrees C cold water. As skin temperature before exposure to cold water differs from individual to individual and basal temperature was significantly warmer in patients at the tip of the first (p < 0.05) and fifth (p < 0.05) toe, the rewarming index was calculated in order to compare data. Rewarming indexes of skin temperature during the whole measurement procedure (0-10 min) were significantly lower at the tip of the first (p < 0.05) and fifth (p < 0.01) toes and from minute 2-10 also at the inner ankle (p < 0.05) in patients compared to healthy controls. Rewarming indexes of the other four sites were not significantly different between patients and controls. Infrared thermography of the lower leg after cold water exposure is an easily applicable method and a useful tool to detect abnormalities of skin blood flow in adolescents with DM1 especially at the tips of the first and fifth toes and the inner ankle.

  11. The Packing and Jamming of Real Polymer Chains

    NASA Astrophysics Data System (ADS)

    Xue, Gi; Teng, Chao

    2010-03-01

    Jamming make a hope to unifying theme for granular materials, glasses and threshold behavior in materials. Here we experimentally prepared a real polymer (polystyrene, PS) with various packing density which was described by inter-segment distances (r) detected by NMR. We cold-pressed PS powder at 20 ^oC (with shearing) and then released the pressure. We found that a transparent pellet with high modulus was formed. PS is usually manufactured by a hot-melting process at 180 ^oC. The rigidity and transparency of our cold-pressed pellet and its accuracy of the form are testimony that the PS powder once flowed under cold compression to take the shape of its container. This shear-induced melting is exactly what is expected within the jamming picture. By measuring r and the applied pressure σ under which the polymer chain starts to flow, we drew a schematic jamming phase diagram. The σ-r curve for a real polymer is convex at r < 0.5 nm, while it becomes concave as r is larger than 1 nm. It is the van der Waals attraction that acts as a confining pressure on segments, and makes the σ-r curve convex on the very short scales.

  12. Evaluation and ranking of candidate ceramic wafer engine seal materials

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1991-01-01

    Modern engineered ceramics offer high temperature capabilities not found in even the best superalloy metals. The high temperature properties of several selected ceramics including aluminum oxide, silicon carbide, and silicon nitride are reviewed as they apply to hypersonic engine seal design. A ranking procedure is employed to objectively differentiate among four different monolithic ceramic materials considered, including: a cold-pressed and sintered aluminum oxide; a sintered alpha-phase silicon carbide; a hot-isostatically pressed silicon nitride; and a cold-pressed and sintered silicon nitride. This procedure is used to narrow the wide range of potential ceramics considered to an acceptable number for future detailed and costly analyses and tests. The materials are numerically scored according to their high temperature flexural strength; high temperature thermal conductivity; resistance to crack growth; resistance to high heating rates; fracture toughness; Weibull modulus; and finally according to their resistance to leakage flow, where materials having coefficients of thermal expansion closely matching the engine panel material resist leakage flow best. The cold-pressed and sintered material (Kyocera SN-251) ranked the highest in the overall ranking especially when implemented in engine panels made of low expansion rate materials being considered for the engine, including Incoloy and titanium alloys.

  13. Substantial Metabolic Activity of Human Brown Adipose Tissue during Warm Conditions and Cold-Induced Lipolysis of Local Triglycerides.

    PubMed

    Weir, Graeme; Ramage, Lynne E; Akyol, Murat; Rhodes, Jonathan K; Kyle, Catriona J; Fletcher, Alison M; Craven, Thomas H; Wakelin, Sonia J; Drake, Amanda J; Gregoriades, Maria-Lena; Ashton, Ceri; Weir, Nick; van Beek, Edwin J R; Karpe, Fredrik; Walker, Brian R; Stimson, Roland H

    2018-06-05

    Current understanding of in vivo human brown adipose tissue (BAT) physiology is limited by a reliance on positron emission tomography (PET)/computed tomography (CT) scanning, which has measured exogenous glucose and fatty acid uptake but not quantified endogenous substrate utilization by BAT. Six lean, healthy men underwent 18 fluorodeoxyglucose-PET/CT scanning to localize BAT so microdialysis catheters could be inserted in supraclavicular BAT under CT guidance and in abdominal subcutaneous white adipose tissue (WAT). Arterial and dialysate samples were collected during warm (∼25°C) and cold exposure (∼17°C), and blood flow was measured by 133 xenon washout. During warm conditions, there was increased glucose uptake and lactate release and decreased glycerol release by BAT compared with WAT. Cold exposure increased blood flow, glycerol release, and glucose and glutamate uptake only by BAT. This novel use of microdialysis reveals that human BAT is metabolically active during warm conditions. BAT activation substantially increases local lipolysis but also utilization of other substrates such as glutamate. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Contact discontinuities in a cold collision-free two-beam plasma

    NASA Technical Reports Server (NTRS)

    Kirkland, K. B.; Sonnerup, B. U. O.

    1982-01-01

    The structure of contact discontinuities in a collision-free plasma is examined using a model of a plasma which consists of two oppositely directed cold ion beams and a background of cold massless electrons such that exact charge neutrality is maintained and that the electric field is zero. The basic equations describing self-consistent equilibria are obtained for the more general situation where a net flow across the layer takes place and where the magnetic field has two nonzero tangential components but where the electric field remains zero. These equations are then specialized to the case of no net plasma flow where one of the tangential components is zero, and four different classes of sheets are obtained, all having thickness the order of the ion inertial length. The first class is for layers separating two identical plasma and magnetic field regions, the second is for an infinite array of parallel layers producing an undulated magnetic field, the third is for layers containing trapped ions in closed orbits which separate two vacuum regions with uniform identical magnetic fields, and the fourth is for layers which reflect a single plasma beam, leaving a vacuum with a reversed and compressed tangential field on the other side.

  15. Role of upper-level wind shear on the structure and maintenance of derecho-producing convective systems

    NASA Astrophysics Data System (ADS)

    Coniglio, Michael Charles

    Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of strong, linear mesoscale convective systems (MCSs) and may provide a conceptual model for the persistence of strong MCSs above a surface nocturnal inversion in situations that are not forced by a low-level jet.

  16. Cutaneous vascular and core temperature responses to sustained cold exposure in hypoxia.

    PubMed

    Simmons, Grant H; Barrett-O'Keefe, Zachary; Minson, Christopher T; Halliwill, John R

    2011-10-01

    We tested the effect of hypoxia on cutaneous vascular regulation and defense of core temperature during cold exposure. Twelve subjects had two microdialysis fibres placed in the ventral forearm and were immersed to the sternum in a bathtub on parallel study days (normoxia and poikilocapnic hypoxia with an arterial O(2) saturation of 80%). One fibre served as the control (1 mM propranolol) and the other received 5 mM yohimbine (plus 1 mM propranolol) to block adrenergic receptors. Skin blood flow was assessed at each site (laser Doppler flowmetry), divided by mean arterial pressure to calculate cutaneous vascular conductance (CVC), and scaled to baseline. Cold exposure was first induced by a progressive reduction in water temperature from 36 to 23°C over 30 min to assess cutaneous vascular regulation, then by clamping the water temperature at 10°C for 45 min to test defense of core temperature. During normoxia, cold stress reduced CVC in control (-44 ± 4%) and yohimbine sites (-13 ± 7%; both P < 0.05 versus precooling). Hypoxia caused vasodilatation prior to cooling but resulted in greater reductions in CVC in control (-67 ± 7%) and yohimbine sites (-35 ± 11%) during cooling (both P < 0.05 versus precooling; both P < 0.05 versus normoxia). Core cooling rate during the second phase of cold exposure was unaffected by hypoxia (-1.81 ± 0.23°C h(-1) in normoxia versus -1.97 ± 0.33°C h(-1) in hypoxia; P > 0.05). We conclude that hypoxia increases cutaneous (non-noradrenergic) vasoconstriction during prolonged cold exposure, while core cooling rate is not consistently affected.

  17. A Comprehensive Investigation of Facility Effects on the Testing of High-Power Monolithic and Clustered Hall Thruster Systems

    DTIC Science & Technology

    2004-09-02

    path for developing high-power EP systems is somewhat certain given NASA’s recent success with its 70+ kW NASA-457M Hall thruster , it is clear that...current density distribution, and summarize findings from cold- and hot-flow pressure map data of our vacuum chamber for a number of Hall thruster mass flow rates.

  18. DAMAS Processing for a Phased Array Study in the NASA Langley Jet Noise Laboratory

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M.; Plassman, Gerald e.

    2010-01-01

    A jet noise measurement study was conducted using a phased microphone array system for a range of jet nozzle configurations and flow conditions. The test effort included convergent and convergent/divergent single flow nozzles, as well as conventional and chevron dual-flow core and fan configurations. Cold jets were tested with and without wind tunnel co-flow, whereas, hot jets were tested only with co-flow. The intent of the measurement effort was to allow evaluation of new phased array technologies for their ability to separate and quantify distributions of jet noise sources. In the present paper, the array post-processing method focused upon is DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) for the quantitative determination of spatial distributions of noise sources. Jet noise is highly complex with stationary and convecting noise sources, convecting flows that are the sources themselves, and shock-related and screech noise for supersonic flow. The analysis presented in this paper addresses some processing details with DAMAS, for the array positioned at 90 (normal) to the jet. The paper demonstrates the applicability of DAMAS and how it indicates when strong coherence is present. Also, a new approach to calibrating the array focus and position is introduced and demonstrated.

  19. Mast Cell Dependent Vascular Changes Associated with an Acute Response to Cold Immersion in Primary Contact Urticaria

    PubMed Central

    Meyer, Joseph; Gorbach, Alexander M.; Liu, Wei-Min; Medic, Nevenka; Young, Michael; Nelson, Celeste; Arceo, Sarah; Desai, Avanti; Metcalfe, Dean D.; Komarow, Hirsh D.

    2013-01-01

    Background While a number of the consequences of mast cell degranulation within tissues have been documented including tissue-specific changes such as bronchospasm and the subsequent cellular infiltrate, there is little known about the immediate effects of mast cell degranulation on the associated vasculature, critical to understanding the evolution of mast cell dependent inflammation. Objective To characterize the microcirculatory events that follow mast cell degranulation. Methodology/Principal Findings Perturbations in dermal blood flow, temperature and skin color were analyzed using laser-speckle contrast imaging, infrared and polarized-light colorimetry following cold-hand immersion (CHI) challenge in patients with cold-induced urticaria compared to the response in healthy controls. Evidence for mast cell degranulation was established by documentation of serum histamine levels and the localized release of tryptase in post-challenge urticarial biopsies. Laser-speckle contrast imaging quantified the attenuated response to cold challenge in patients on cetirizine. We found that the histamine-associated vascular response accompanying mast cell degranulation is rapid and extensive. At the tissue level, it is characterized by a uniform pattern of increased blood flow, thermal warming, vasodilation, and recruitment of collateral circulation. These vascular responses are modified by the administration of an antihistamine. Conclusions/Significance Monitoring the hemodynamic responses within tissues that are associated with mast cell degranulation provides additional insight into the evolution of the acute inflammatory response and offers a unique approach to assess the effectiveness of treatment intervention. PMID:23451084

  20. Flow field and performance characteristics of combustor diffusers: A basic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hestermann, R.; Kim, S.; Ben Khaled, A.

    1995-10-01

    Results of a detailed study concerning the influence of geometric as well as fluid mechanic parameters o the performance of a plane model combustor diffuser in cold flow are presented. For a qualitative insight into the complex flow field inside the prediffuser, the sudden expansion region, and the flow field around the flame tube dome, results of a flow visualization study with the hydrogen bubble method as well as with the ink jet method are presented for different opening angles of the prediffuser and for different flame tube distances. Also, quantitative data from detailed measurements with LDV and conventional pressuremore » probes in a geometrically similar air-driven setup are presented. These data clearly demonstrate the effect of boundary layer thickness as well as the influence of different turbulence levels at the entry of the prediffuser on the performance characteristics of combustor diffusers. The possibility of getting an unseparated flow field inside the prediffuser even at large opening angles by appropriately matching the diffuser`s opening angle and the flame tube distance is demonstrated. Also, for flows with an increased turbulence level at the entrance--all other conditions held constant--an increased opening angle can be realized without experiencing flow separation. The comparison of the experimental data with predictions utilizing a finite-volume-code based on a body-fitted coordinate system for diffusers with an included total opening angle less than 18 deg demonstrates the capability of describing the flow field in combustor diffusers with reasonable accuracy.« less

  1. Cold plasma treatment in wound care: efficacy and risk assessment

    NASA Astrophysics Data System (ADS)

    Stoffels, Eva

    2007-10-01

    Cold atmospheric plasma is an ideal medium for non-destructive modification of vulnerable surfaces. One of the most promising medical applications of cold plasma treatment is wound healing. Potential advantages in wound healing have been demonstrated in vitro: the plasma does not necrotize the cells and does not affect the extracellular matrix [1], has clear bactericidal or bacteriostatic effects [2], and stimulates fibroblast cells towards faster attachment and proliferation [3]. However, safety issues, such as the potential cytotoxicity of the plasma must be clarified prior to clinical implementation. This work comprises the recent facts on sub-lethal plasma effects on mammalian cells, as well as studies on apoptosis induction and quantitative assessment of DNA damage. Fibroblast, smooth muscle and endothelial cells were treated using the standard cold plasma needle [1,2]; intra- and extracellular oxidant levels as well as the influence of the plasma on intracellular antioxidant balance were monitored using appropriate fluorescent markers [1]. We have studied long-term cellular damage was monitored using flow cytometry to determine the DNA profiles in treated cells. Dose-response curves were obtained: increased proliferation as well as apoptosis were visualized under different treatment conditions. The results from the in vitro studies are satisfying. [1] I.E. Kieft, ``Plasma needle: exploring biomedical applications of non-thermal plasmas'', PhD Thesis, Eindhoven University of Technology (2005). [2] R.E.J. Sladek, ``Plasma needle: non-thermal atmospheric plasmas in dentistry'' PhD Thesis, Eindhoven University of Technology (2006). [3] I.E. Kieft, D. Darios, A.J.M. Roks, E. Stoffels, IEEE Trans. Plasma Sci. 34(4), 2006, pp. 1331-1336.

  2. Stability of a non-orthogonal stagnation flow to three dimensional disturbances

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Jackson, T. L.

    1991-01-01

    A similarity solution for a low Mach number nonorthogonal flow impinging on a hot or cold plate is presented. For the constant density case, it is known that the stagnation point shifts in the direction of the incoming flow and that this shift increases as the angle of attack decreases. When the effects of density variations are included, a critical plate temperature exists; above this temperature the stagnation point shifts away from the incoming stream as the angle is decreased. This flow field is believed to have application to the reattachment zone of certain separated flows or to a lifting body at a high angle of attack. Finally, the stability of this nonorthogonal flow to self similar, 3-D disturbances is examined. Stability properties of the flow are given as a function of the parameters of this study; ratio of the plate temperature to that of the outer potential flow and angle of attack. In particular, it is shown that the angle of attack can be scaled out by a suitable definition of an equivalent wavenumber and temporal growth rate, and the stability problem for the nonorthogonal case is identical to the stability problem for the orthogonal case.

  3. Non-Medical Management of Raynaud’s Disease,

    DTIC Science & Technology

    1981-06-29

    Disease 3 Pavlovian conditioning is an alternative method of counter- conditioning the autonomic nervous system. Research has shown that vasoconstriction and...vasodilatauon inay be conditioned b) Pavlovian methods. 1 i Using these techniques it should be possible to alter the blood flow to the fingers... conditioning is helpful for individuals who are hypersensitive to cold.1I The purpose of the study was to explore the effects of Pavlovian conditioning with a

  4. Ice dynamics of the Allan Hills meteorite concentration sites revealed by satellite aperture radar interferometry

    NASA Astrophysics Data System (ADS)

    Coren, F.; Delisle, G.; Sterzai, P.

    2003-09-01

    The ice flow conditions of a 100 x 100 km area of Victoria Land, Antarctica were analyzed with the synthetic aperture radar (SAR) technique. The area includes a number of meteorite concentration sites, in particular the Allan Hills ice fields. Regional ice flow velocities around the Mid- western and Near-western ice fields and the Allan Hills main ice field are shown to be 2.5 m yr-1. These sites are located on a horseshoe-shaped area that bounds an area characterized by higher ice flow velocities of up to 5 m yr-1. Meteorite find locations on the Elephant Moraine are located in this "high ice flow" area. The SAR derived digital elevation model (DEM) shows atypical low surface slopes for Antarctic conditions, which are the cause for the slow ice movements. Numerous ice rises in the area are interpreted to cap sub-ice obstacles, which were formed by tectonic processes in the past. The ice rises are considered to represent temporary features, which develop only during warm stages when the regional ice stand is lowered. Ice depressions, which develop in warm stages on the lee side of ice rises, may act as the sites of temporary build-up of meteorite concentrations, which turn inoperative during cold stages when the regional ice level rises and the ice rises disappear. Based on a simplified ice flow model, we argue that the regional ice flow in cold stages is reduced by a factor of at least 3.

  5. Magnetothermal Convection of Air in a Shallow Vessel under the Application of an Axisymmetric Magnetic Force

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Tanaka, Keito; Morimoto, Shotaro

    2017-02-01

    We examined, by three-dimensional numerical computations, the magnetothermal convection of air (a paramagnetic substance) enclosed in a cylindrical vessel with a Rayleigh-Benard model under the application of an axisymmetric magnetic force at the center of a solenoidal superconducting magnet. Axisymmetric steady convective flows were induced when the magnitude of the radial component of the magnetic force (fmR) was 1.0 and 5.0 times that of the gravitational force at the vessel sidewall; e.g., the hot air was concentrated at the vessel center and the cold air was driven to the vicinity of the vessel sidewall. This flow pattern was similar to the case of water (a diamagnetic substance), although the axisymmetric arrangements of hot and cold water were the reverse of the present convection of air. When fmR was 0.5 times that of the gravitational force, the axisymmetric flows appeared only in the vicinity of the vessel sidewall. Unsteady convective rolls simultaneously occurred in the vessel center, and they repeatedly combined and separated from each other. When fmR was 0.1 times that of the gravitational force, there were barely any axisymmetric flows in the close vicinity of the vessel sidewall, while the initial convective flows remained in most other parts of the vessel. Thus, we varied the magnitude of fmR and clarified the transitional processes of isothermal and velocity distributions of magnetothermal convection. We discuss those convective flows with the magnitude and direction of fmR.

  6. Dark Flows in Newton Crater Extending During Summer Six-Image Sequence

    NASA Image and Video Library

    2011-08-04

    This image comes from observations of Newton crater by the HiRISE camera onboard NASA Mars Reconnaissance Orbiter where features appear and incrementally grow during warm seasons and fade in cold seasons.

  7. Compressibility Considerations for kappa-omega Turbulence Models in Hypersonic Boundary Layer Applications

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.

    2009-01-01

    The ability of kappa-omega models to predict compressible turbulent skin friction in hypersonic boundary layers is investigated. Although uncorrected two-equation models can agree well with correlations for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-Lomax perform better compared to experiments and correlations in these circumstances. Many of the compressibility corrections described in the literature are summarized here. These include corrections that have only a small influence for kappa-omega models, or that apply only in specific circumstances. The most widely-used general corrections were designed for use with jet or mixing-layer free shear flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall conditions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a need for improved understanding and better overall physical modeling for turbulence models applied to hypersonic boundary layer flows.

  8. The profiles of Fe K α line from the inhomogeneous accretion flow

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Di; Ma, Ren-Yi; Li, Ya-Ping; Zhang, Hui; Fang, Tao-Tao

    2018-05-01

    The clumpy disc, or inhomogeneous accretion flow, has been proposed to explain the properties of accreting black hole systems. However, the observational evidence remains to be explored. In this work, we calculate the profiles of Fe K α lines emitted from the inhomogeneous accretion flow through the ray-tracing technique, in order to find possible observable signals of the clumps. Compared with the skewed double-peaked profile of the continuous standard accretion disc, the lines show a multipeak structure when the emissivity index is not very steep. The peaks and wings are affected by the position and size of the cold clumps. When the clump is small and is located in the innermost region, due to the significant gravitational redshift, the blue wing can overlap with the red wing of the outer cold disc/clump, forming a fake peak or greatly enhancing the red peak. Given high enough resolution, it is easier to constrain the clumps around the supermassive black holes than the clumps in stellar mass black holes due to the thermal Doppler effect.

  9. Breaking out of the comfort zone: El Niño-Southern Oscillation as a driver of trophic flows in a benthic consumer of the Humboldt Current ecosystem.

    PubMed

    Riascos, José M; Solís, Marco A; Pacheco, Aldo S; Ballesteros, Manuel

    2017-06-28

    The trophic flow of a species is considered a characteristic trait reflecting its trophic position and function in the ecosystem and its interaction with the environment. However, climate patterns are changing and we ignore how patterns of trophic flow are being affected. In the Humboldt Current ecosystem, arguably one of the most productive marine systems, El Niño-Southern Oscillation is the main source of interannual and longer-term variability. To assess the effect of this variability on trophic flow we built a 16-year series of mass-specific somatic production rate (P/B) of the Peruvian scallop ( Argopecten purpuratus ), a species belonging to a former tropical fauna that thrived in this cold ecosystem. A strong increase of the P/B ratio of this species was observed during nutrient-poor, warmer water conditions typical of El Niño, owing to the massive recruitment of fast-growing juvenile scallops. Trophic ecology theory predicts that when primary production is nutrient limited, the trophic flow of organisms occupying low trophic levels should be constrained (bottom-up control). For former tropical fauna thriving in cold, productive upwelling coastal zones, a short time of low food conditions but warm waters during El Niño could be sufficient to waken their ancestral biological features and display massive proliferations. © 2017 The Author(s).

  10. Elliptic flow from Coulomb interaction and low density elastic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang

    2018-04-01

    In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.

  11. Shear flow control of cold and heated rectangular jets by mechanical tabs. Volume 2: Tabulated data

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Ahuja, K. K.

    1989-01-01

    The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. This volume contains tabulated data for each of the data runs cited in Volume 1. Baseline characteristics, mixing modifications (subsonic and supersonic, heated and unheated) and miscellaneous charts are included.

  12. Koroška 8000 Himalayan expedition: digit responses to cold stress following ascent to Broadpeak (Pakistan, 8051 m).

    PubMed

    Gorjanc, Jurij; Morrison, Shawnda A; McDonnell, Adam C; Mekjavic, Igor B

    2018-05-24

    Cold-induced vasodilatation (CIVD) is a peripheral blood flow response, observed in both the hands and feet. Exercise has been shown to enhance the response, specifically by increasing mean skin temperatures (T sk ), in part due to the increased number of CIVD waves. In contrast, hypobaric hypoxia has been suggested to impair digit skin temperature responses, particularly during subsequent hand rewarming following the cold stimulus. This study examined the combined effect of exercise and hypobaric hypoxia on the CIVD response. We compared the CIVD responses in the digits of both the hands and feet of a team of alpinists (N = 5) before and after a 35-day Himalayan expedition to Broadpeak, Pakistan (8051 m). Five elite alpinists participated in hand and foot cold water immersion tests 20 days before and immediately upon return from their expedition. The alpinists summited successfully without supplemental oxygen. Post-expedition, all alpinists demonstrated higher minimum T sk in their hands (pre: 9.9 ± 1.1, post: 10.1 ± 0.7 °C, p = 0.031). Four alpinists had either greater CIVD waves, and, consequently, higher mean T sk in their hands, or higher recovery temperatures (pre: 26.0 ± 5.5 °C post: 31.0 ± 4.1 °C, p = 0.052), or faster rewarming rate (pre: 2.6 ± 0.5 °C min -1 post: 3.1 ± 0.4 °C min -1, p = 0.052). In the feet, the responses varied: 1/5 had higher wave amplitudes and 1/5 had higher passive recovery temperatures, whereas 3/5 had lower mean toe temperatures during cold exposure. The results of the cold stress test suggest after a 35-day Himalayan expedition, alpinists experienced a slight cold adaptation of the hands, but not the feet.

  13. Cold sensitivity test for individuals with non-freezing cold injury: the effect of prior exercise

    PubMed Central

    2013-01-01

    Background One of the chronic symptoms of non-freezing cold injury (NFCI) is cold sensitivity. This study examined the effects of prior exercise on the response to a cold sensitivity test (CST) in NFCI patients with the aim of improving diagnostic accuracy. Methods Twenty three participants, previously diagnosed with NFCI by a Cold Injuries Clinic, undertook two CSTs. Participants either rested (air temperature 31°C) for approximately 80 min (prior rest condition (REST)) or rested for 30 min before exercising gently for 12 min (prior exercise condition (EX)). Following REST and EX, the participants placed their injured foot, covered in a plastic bag, into 15°C water for 2 min; this was followed by spontaneous rewarming in 31°C air for 10 min. Results The great toe skin temperature (Tsk) before immersion averaged 32.5 (3.4)°C in both conditions. Following immersion, the rate of rewarming of the great toe Tsk was faster in EX compared to REST and was higher 5 min (31.7 (3.4)°C vs. 29.8 (3.4)°C) and 10 min (33.8 (4.0)°C vs. 32.0 (4.0)°C) post-immersion. Over the first 5 min of rewarming, changes in the great toe Tsk correlated with the changes in skin blood flow (SkBF) in EX but not the REST condition. No relationship was observed between Tsk in either CST and the severity of NFCI as independently clinically assessed. Conclusions Exercise prior to the CST increased the rate of the toe Tsk rewarming, and this correlated with the changes in SkBF. However, the CST cannot be used in isolation in the diagnosis of NFCI, although the EX CST may prove useful in assessing the severity of post-injury cold sensitivity for prognostic and medico-legal purposes. PMID:23849038

  14. High-efficiency 3 W/40 K single-stage pulse tube cryocooler for space application

    NASA Astrophysics Data System (ADS)

    Zhang, Ankuo; Wu, Yinong; Liu, Shaoshuai; Liu, Biqiang; Yang, Baoyu

    2018-03-01

    Temperature is an extremely important parameter for space-borne infrared detectors. To develop a quantum-well infrared photodetector (QWIP), a high-efficiency Stirling-type pulse tube cryocooler (PTC) has been designed, manufactured and experimentally investigated for providing a large cooling power at 40 K cold temperature. Simulated and experimental studies were carried out to analyse the effects of low temperature on different energy flows and losses, and the performance of the PTC was improved by optimizing components and parameters such as regenerator and operating frequency. A no-load lowest temperature of 26.2 K could be reached at a frequency of 51 Hz, and the PTC could efficiently offer cooling power of 3 W at 40 K cold temperature when the input power was 225 W. The efficiency relative to the Carnot efficiency was approximately 8.4%.

  15. High-Resolution Fibre-Optic Temperature Sensing: A New Tool to Study the Two-Dimensional Structure of Atmospheric Surface-Layer Flow

    NASA Astrophysics Data System (ADS)

    Thomas, Christoph K.; Kennedy, Adam M.; Selker, John S.; Moretti, Ayla; Schroth, Martin H.; Smoot, Alexander R.; Tufillaro, Nicholas B.; Zeeman, Matthias J.

    2012-02-01

    We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25 m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8 m × 8 m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space-time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt-Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.

  16. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  17. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  18. Dry skin conditions are related to the recovery rate of skin temperature after cold stress rather than to blood flow.

    PubMed

    Yoshida-Amano, Yasuko; Nomura, Tomoko; Sugiyama, Yoshinori; Iwata, Kayoko; Higaki, Yuko; Tanahashi, Masanori

    2017-02-01

    Cutaneous blood flow plays an important role in the thermoregulation, oxygen supply, and nutritional support necessary to maintain the skin. However, there is little evidence for a link between blood flow and skin physiology. Therefore, we conducted surveys of healthy volunteers to determine the relationship(s) between dry skin properties and cutaneous vascular function. Water content of the stratum corneum, transepidermal water loss, and visual dryness score were investigated as dry skin parameters. Cutaneous blood flow in the resting state, the recovery rate (RR) of skin temperature on the hand after a cold-stress test, and the responsiveness of facial skin blood flow to local cooling were examined as indices of cutaneous vascular functions. The relationships between dry skin parameters and cutaneous vascular functions were assessed. The RR correlated negatively with the visual dryness score of skin on the leg but correlated positively with water content of the stratum corneum on the arm. No significant correlation between the resting state of blood flow and dry skin parameters was observed. In both the face and the body, deterioration in skin dryness from summer to winter was significant in subjects with low RR. The RR correlated well with the responsiveness of facial skin blood flow to local cooling, indicating that the RR affects systemic dry skin conditions. These results suggest that the RR but not blood flow at the resting state is associated with dry skin conditions and is involved in skin homeostasis during seasonal environmental changes. © 2016 The Authors. International Journal of Dermatology published by John Wiley & Sons Ltd on behalf of International Society of Dermatology.

  19. Biogeochemistry and geomicrobiology of cold-water coral carbonate mounds - lessons learned from IODP Expedition 307

    NASA Astrophysics Data System (ADS)

    Ferdelman, Timothy; Wehrmann, Laura; Mangelsdorf, Kai; Kano, Akihiro; Williams, Trevor; Jean-Pierre, Henriet

    2010-05-01

    Large mound structures associated with cold-water coral ecosystems commonly occur on the slopes of continental margins, for instance, west of Ireland in the Porcupine Seabight, the Gulf of Cadiz or the Straits of Florida. In the Porcupine Seabight over 1500 mounds of up to 5 km in diameter and 250 m height lie at water depths of 600 to 900 m. The cold-water coral reef ecosystems associated with these structures are considered to be "hotspots" of organic carbon mineralization and microbial systems. To establish a depositional and biogeochemical/diagenetic model for cold-water carbonate mounds, Challenger Mound and adjacent continental slope sites were drilled in May 2005 during IODP Expedition 307. One major objective was to test whether deep sub-surface hydrocarbon flow and enhanced microbial activity within the mound structure was important in producing and stabilizing these sedimentary structures. Drilling results showed that the Challenger mound succession (IODP Site U1317) is 130 to 150 meters thick, and mainly consists of floatstone and rudstone facies formed of fine sediments and cold-water branching corals. Pronounced recurring cycles on the scales of several meters are recognized in carbonate content (up to 70% carbonate) and color reflectance, and are probably associated with Pleistocene glacial-interglacial cycles. A role for methane seepage and subsequent anaerobic oxidation was discounted both as a hard-round substrate for mound initiation and as a principal source of carbonate within the mound succession. A broad sulfate-methane transition (approximately 50 m thick)within the Miocene sediments suggested that the zone of anaerobic oxidation of methane principally occurs below the moundbase. In the mound sediments, interstitial water profiles of sulfate, alkalinity, Mg, and Sr suggested a tight coupling between carbonate diagenesis and low rates of microbial sulfate reduction. Overall organic carbon mineralization within cold-water coral mound appeared to be dominated by low rates of iron- and sulfate-reduction that occur in discrete layers within the mound. This was consistent with distributions of total cell-counts, acetate turnover (Webster et al. 2009) and hydrogenase activity (Soffiento et al. 2009). However, biomarker lipid distributions suggested that the Miocene sediments underlying the mound, into which sulfate is diffusing, as well as the sediments from the non-cold water coral reference site (U1318) contain higher abundances of living microbes. The results obtained from Expedition 307 are consistent with a picture emerging from other biogeochemical studies of cold-water coral mound and reef sites. Unless impacted by some external forcing (e.g. fluid flow or erosion event), the microbial activity in the underlying cold-water coral mound sediments is largely decoupled from the highly diverse, active surface ecosystem. References: Soffiento B, Spivack AJ, Smith DC, and D'Hondt S (2009) Hydrogenase activity in deeply buried sediments of the Arctic and North Atlantic Oceans. Geomicro. J. 26: 537-545. Webster, G, Blazejak A, Cragg BA, Schippers A, Sass H, Rinna J, Tang X, Mathes F, Ferdelman TG., Fry JC, Weightman AJ, and Parkes RJ. 2009. Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expediton 307). Env. Microbiol., 11, 239-257, doi:10.1111/j.1462-2920.01759.x.

  20. Ignition Characterization Tests of the LOX/Ethanol Propellant Combination

    NASA Technical Reports Server (NTRS)

    Popp, Christopher G.; Robinson, Philip J.; Veith, Eric M.

    2004-01-01

    A series of contracts have been issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) to explore candidate technologies considered to be important for the Next Generation Launch Technology (NGLT) effort. One aspect of the NGLT effort is to explore the potential of incorporating non-toxic propellants for Reaction Control Subsystems (RCS). Contract NAS8-01109 has been issued to Aerojet to develop a dual thrust Reaction Control Engine (RCE) that utilizes liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporates a primary thrust level of 870 lbf, and a vernier thrust level of 10 - 30 lbf. Aerojet has designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk mitigation effort for the dual thrust RCE design. The objective of the ignition testing was to demonstrate successfid ignition from GOX to LOX, encompassing potential two-phase flow conditions. The workhorse igniter was designed to accommodate the full LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the inherent heat stored in the hardware, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the inherent heat of the test hardware would be removed and the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two-phase flow to subcooled LOX. Pressure and temperature instrumentation permitted oxygen state points to be determined, and gas-side igniter chamber thermocouples provided chamber thermal profile characteristics. The cold flow chamber pressure (P(sub c)) for each test was determined and coupled with the igniter chamber diameter (D(sub c)) to calculate the characteristic quench parameter (P(sub c) x D(sub c)), which was plotted as a function of core mixture ratio, MR(sub c). Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 173 R LOX to 480 R GQX. Once ignited at cold GOX conditions, combustion was continuous as the hardware chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5.

Top